Natural nutrient subsidies alter demographic rates in a functionally important coral-reef fish

Benkwitt, C.E. and Taylor, B.M. and Meekan, M.G. and Graham, N.A.J. (2021) Natural nutrient subsidies alter demographic rates in a functionally important coral-reef fish. Scientific Reports, 11 (1). ISSN 2045-2322

Full text not available from this repository.


By improving resource quality, cross-ecosystem nutrient subsidies may boost demographic rates of consumers in recipient ecosystems, which in turn can affect population and community dynamics. However, empirical studies on how nutrient subsidies simultaneously affect multiple demographic rates are lacking, in part because humans have disrupted the majority of these natural flows. Here, we compare the demographics of a sex-changing parrotfish (Chlorurus sordidus) between reefs where cross-ecosystem nutrients provided by seabirds are available versus nearby reefs where invasive, predatory rats have removed seabird populations. For this functionally important species, we found evidence for a trade-off between investing in growth and fecundity, with parrotfish around rat-free islands with many seabirds exhibiting 35% faster growth, but 21% lower size-based fecundity, than those around rat-infested islands with few seabirds. Although there were no concurrent differences in population-level density or biomass, overall mean body size was 16% larger around rat-free islands. Because the functional significance of parrotfish as grazers and bioeroders increases non-linearly with size, the increased growth rates and body sizes around rat-free islands likely contributes to higher ecosystem function on coral reefs that receive natural nutrient subsidies. More broadly, these results demonstrate additional benefits, and potential trade-offs, of restoring natural nutrient pathways for recipient ecosystems.

Item Type:
Journal Article
Journal or Publication Title:
Scientific Reports
Uncontrolled Keywords:
ID Code:
Deposited By:
Deposited On:
28 Jul 2021 11:35
Last Modified:
15 Sep 2023 04:37