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Abstract

This thesis examines the application of machine learning pipelines for automatic gener-

alised seizure detection. We begin by introducing the potential pipeline components of a

signal classification system (Pre-processing, Feature Engineering, Dimensionality Reduc-

tion, and Classification), and review the literature associated with each stage. In the sub-

sequent research chapters, Bayesian optimisation is used to systematically optimise many

pipeline/model configurations and hyperparameters to provide practical guidance and in-

form future pipeline development. There is a focus on ecological validity, therefore we use

real-world “raw” patient records collected as part of routine care from multiple healthcare

institutions. In chapter 3, using a large feature set and feature reduction techniques, we were

able to identify components of EEG records useful for identifying absence epilepsy seizures

for pipelines with “classical” classifiers. These pipelines had good overall performance, at

the expense of a high false positive rate (FPR); with the best binary classifiers never missing

a seizure and accurately marking the full duration of most seizures. As class imbalances

were a challenge for effective model training, chapter 4 examined pipelines with balanced en-

semble classifiers. Compared to chapter 3, boosted ensembles were faster, with a lower FPR

and high precision/specificity. However, typically the full seizure was not marked, meaning

they may be more useful for accessing the number of seizures in a record rather than their

length. Subsequently, chapter 5 examined the performance of boosted ensembles and deep

learning architectures on two different types of generalised seizure. Consistent with human

raters, models trained to detect absence seizures, a seizure type with little intra-patient and

inter-patient variability, had better performance across all investigated metrics compared

to non-specific seizures, which have large intra-patient and inter-patient variabilities. Com-

pared to deep learning models, boosted ensembles provided the best overall performance,

were more computationally-efficient, and would be easier to implement into healthcare prac-

tice. To our knowledge, this thesis provides the first use of optimal hyperparameters and

pipeline components found through Bayesian optimisation methods for absence epilepsy de-

tection. In the future, such pipelines could reduce the current bottleneck of clinical time



required to manually mark EEG records by providing a preliminary marked record to a

physiologist.
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Chapter 1

Introduction

Algorithms have been used to assist medical practice for decades. Clinical decision support

systems (CDSS), care pathway analysis (eg. Map of Medicine), and forecasting tools are

commonly found in clinical practice. The use of algorithms to assist diagnostic imaging

has received considerable research interest due to the opportunities to improve accuracy

and reduce costs with the advances in large data centres, cloud computing resources, and

machine learning. Algorithms to assist diagnostic imaging is by no means a new field;

indeed “computer aided” electrocardiograms (ECG) have been used in clinical practice

from as early as the 1970’s (Thomas Sheffield, 1987). However these algorithms were not

“machine learning”, instead based on heuristics (static rule based models), and had limited

accuracy comparative to modern advancements (Mincholé and Rodriguez, 2019; Mincholé

et al., 2019). More recently, many other medical disciplines such as radiology, dermatology,

and clinical pathology, have also all had major advancements in the application of machine

learning algorithms to aid the diagnostic process (Giger, 2018; Thomsen et al., 2020; Jang

and Cho, 2019).

This thesis documents research which began by developing a portable Electroencephalo-

gram (EEG) system for monitoring patients with generalised epilepsy seizures. EEG is

widely used in both research and clinical contexts for various applications, including sleep

analysis (Fiorillo et al., 2019), seizure detection (Abbasi and Goldenholz, 2019), and surgery

(Connor, 2019), due to its high temporal resolution, non-invasiveness, and comparatively

low financial cost. At the beginning of the project, hardware, software, and algorithms for
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a generalised epilepsy monitor were becoming more available; however few had combined

these into a full system. Indeed, subsequently there have been a number of portable EEG

headbands developed (e.g. Cognionics Quick-20r), as well as products specific to epilepsy

patients (e.g. Epihunter, Epilog) in various early stages of adoption and research. However,

during our research with the UK National Health Service (NHS) piloting our developing sys-

tem, it became apparent that the currently used method of manually marking EEG records

collected during routine practice was a bottleneck on services which would likely prevent the

implementation of any additional system; even if it promised to improve patient outcomes.

Therefore this thesis focuses on developing algorithms which could provide a preliminary

marked EEG record, to then be reviewed by a qualified physiologist, to reduce this current

bottleneck and facilitate future change.

Although computer aided marking of EEG records has been researched for as long as

their application to ECG’s (Tzallas et al., 2012), the use of such algorithms is much less

common in clinical practice. There are many reasons why automated or semi-automated

EEG scoring is not already routinely adopted in the healthcare system, as outlined in Fiorillo

et al. (2019):

1. The technical limitations of general EEG classification algorithms mean they typically

perform poorly on patients with neurological disorders (Boostani et al., 2017),

2. Difficulties and inconsistencies in EEG scoring rules leads to high inter- and intra-

scorer variability (Wilson et al., 2003; Younes et al., 2018),

3. Security and privacy issues for some cloud-based scoring services conflict with data

protection policies of healthcare providers (Ali et al., 2018),

4. There is a lack of friendly user interfaces (Marcilly et al., 2016),

5. A general aversion to new technologies in the healthcare sector, which are often per-

ceived as a threat; particularly if they substitute part of the work performed by humans

or somehow intervene in the diagnostic process (Fichman et al., 2011).

Although all the barriers above need to be addressed before future implementation, this the-

sis focuses on the first point (technical limitations) by developing algorithms which specifi-
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cally detect seizures with generalised onset. Generalized (or non-focal) seizures are a broad

categorisation of seizure which have an onset that manifests quickly across the entire brain

(Fisher, 2017). We choose to focus on this particular seizure type as NHS EEG data is

difficult and time-consuming to collect and prepare for research purposes, and generalised

seizures typically have less intra-patient and inter-patient variability than other types of

seizure. We therefore were still able to develop world-class patient-general classification

algorithms for this type of seizure despite the number of patient records available. No one

has used “raw” NHS patient records collected as part of routine practice, as most published

research uses pre-cleaned data. Furthermore, no one has compared seizure classification

models using such a systematic approach or focused on the whole classification pipeline.

This thesis begins by examining the application of machine learning for seizure detection

with chapter 2, which provides an overview of the main components for a potential seizure

detection pipeline. The framework for viewing the layers of such a system (Pre-processing,

Feature Engineering, Dimensionality Reduction, and Classification), is then used in the

subsequent experimental chapters where Bayesian optimisation is used to assess the per-

formance of different combinations of components within each of these layers. Chapter 3

specifically examines feature selection, reduction, and “classical” machine learning models

as components in a classification pipeline used to detect absence epilepsy seizures in rou-

tine NHS EEG recordings. Such an approach to pipeline development is important because

there is little consensus as to the best features or classifier to use to automatically detect

seizures. Chapter 4 then builds upon the findings in chapter 3 by assessing more complex

balanced ensemble models on the same and additional patient records. We aim to address

a generalisability problem for seizure detection classifiers, where there is often a lack of

multi-institution datasets used or compared. Chapter 5 then further expands the scope of

the previous two chapters by using a combination of Bayesian and Hyperband optimisa-

tion on deep learning model structures and hyperparameters for the detection of a broader

range of generalised seizures. This considers the performance of machine learning models on

different types of seizures which have distinct intra-patient and inter-patient variabilities.

Finally, chapter 6 gives a summary of the key findings and a number of suggestions for

future research and impact.

3



Chapter 2

Methodology Review

2.1 Introduction

This chapter describes and compares the statistical methods for building a system that

describes and separates signals into classes of interest; an important component of a complete

seizure detection system. We choose to focus primarily on approaches previously used for

the automatic detection of seizures in electroencephalography (EEG) data; however, these

processing and classification techniques can be applicable to a number of clinical event and

prediction detection systems using different recording modalities.

Most complete signal processing and classification systems will generally have the stages

of pre-processing, feature extraction, and classification. Pre-processing prepares the raw

signal for feature extraction, where aspects of the signal are quantified to best describe

attributes of the data, such as biomarkers or artefacts. In order to ensure there are not

unnecessary or similar features, there may be a step to reduce the number of features to

those that best represent the data or train a model, or combine similar features to make new

ones (extraction). The features that are chosen/created can then be classified by applying

threshold or model-based criteria after being “trained” if derived from machine learning.

These stages all fit into a global strategy, determined by the researcher based on the dataset,

to determine which features to calculate, how to combine them, and how to account for

contextual information before making a final decision in regards to a classification group

(expert system; Varsavsky et al., 2011a). Indeed, selecting the features that provide the
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most diversity between classes and similarity within classes is key to achieving the best

classification performance (Nasehi and Pourghassem, 2012).

This chapter is predominately structured to follow the pipeline outlined above. However

first, a basic introduction to time series is given in subsection 2.1.1. Time Series, fol-

lowed by an introduction to EEG signals in subsection 2.1.2. EEG Signals. An overview

of decisions that need to be made during the design of a signal classification system are

then outlined in section 2.2. System Design, to give a holistic view of the process, before

covering each part of a typical pipeline in detail. The first step in a typical pipeline is sub-

sequently outlined in section 2.3. Pre-Processing, covering specific techniques and filter

compositions often used to improve the signal-to-noise ratio of EEG data. Subsequently,

section 2.4. Feature Engineering outlines some common techniques to describe parts of

a signal in terms of their time and frequency components. We then briefly introduce and

revisit techniques for reducing the number of features used for model training in section 2.5.

Dimensionality Reduction, with these sub-categorised into methods that select a smaller

subset of features (2.5.1. Feature Selection) or by creating new synthetic features through

combining features (2.5.2. Feature Extraction). Following from this is section 2.6. Clas-

sification which reviews methods for separating signals into classes, focusing primarily on

supervised machine learning algorithms. In section 2.7. Discussion we then summarise

the various approaches to EEG signal classification, including their current limitations, and

give some suggestions for future implementation specific to seizure detection.

2.1.1 Time Series

Time series analysis primarily aims to develop models that adequately describe a sample

of ordered values. Data sampling usually is restricted by the method of collection, so

series often appear as discrete time samples spaced equally apart. Sampling intervals of a

data source is an important consideration as an insufficient sampling rate can lead to data

distortions called aliasing (Sun et al., 1993). For the remainder of the thesis, it is assumed

that adequate sampling rates have been chosen.

A time series could be considered as a sequence of random variables, x1, x2, x3, . . .

(Shumway and Stoffer, 2017), with a collection of random variables, {xt}t=1,...,N , referred
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to as a stochastic process. However adjacent points in time may be correlated, so that the

value xt depends on the previous values of xt−1, xt−2, . . . . Stationarity is a characteristic of

series where the statistical properties do not change over time; with first order stationarity

meaning the data has a constant mean, and second order describing data with a constant

mean, variance, and covariance which is independent of time. A strictly stationary time

series would mean that the probabilistic behaviour of every collection of values is identical

to a time shifted set. However, this assumption is often too strong in most applications,

so conditions are often placed on the first two moments of a series. The conditions for a

weakly stationary time series is firstly that the mean value function µt is constant and does

not depend on time. Secondly, that the autocovariance function:

γx(s, t) = cov(xs, xt) = E[(xs − µs)(xt − µt)], (2.1)

depends only on the difference between s and t so that:

γx(t+ h, t) = cov(xt+h, xt) = cov(xh, x0) = γ(h, 0). (2.2)

Often EEG signals are not stationary but instead are reduced to epochs (often 20-30 seconds)

which are assumed to be stationary.

2.1.2 EEG Signals

The time series gained from an EEG amplifier is a digital sample of analogue voltage record-

ings generated by the synchronous firing of open field neurons in the brain, observed at

several locations across the scalp. The digital EEG therefore approximates the continuous

time signal of neural activity xc through the discrete sampling of points, xt, over an interval

∆:

xt = xc(t∆), t = 1, 2, . . . , N (2.3)

At time of acquisition, data needs to be sampled abiding by the Nyquist criterion, which

states that the sampling rate, FsHz, can only represent frequencies of half the hertz (Fs/2)
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of the recorded sampling rate without aliasing. The typical sampling rates for clinical

EEG typically lie between 200-500Hz, meaning the spectral components generated by the

cortex predominately focused on by neurologists, typically within the 1-30Hz range, can be

estimated without aliasing (Kaplan and Shishkin, 2000). Changes in electrical activity can

be time-locked and averaged to a stimulus to investigate event related potentials (ERP’s),

or the oscillatory activity can be investigated through frequency analysis (Luck, 2014b); as

discussed in subsection 2.4.2.

EEG is inherently non-stationary due to many factors, such as current cognitive state

(e.g. sleeping or wakefulness), or if a patients eyes are open or eyes closed. To reflect these

changes, EEG is often windowed by dividing the time axis into sections that may or may

not overlap. Most often a window is rectangular so that all signals inside the window range

is 1 and outside is zeroed:

Hn,k =


1, if k + 1 < n < k +N

0, otherwise

(2.4)

However, rectangular windows have sharp edges which can affect analysis (see subsec-

tion 2.3.1), therefore other types of windows are often used; such as the Hanning window

(Varsavsky et al., 2011b):

Hn,k =


0.5
(

1− cos
(

2π(n−k+1)
N−1

))
, if k + 1 < n < k +N

0, otherwise

(2.5)

Similar to most signals, recorded EEG data has multiple dimensions of time, frequency,

power, phase, and space:

• Time is simply how the recorded signal changes amplitude across multiple sequential

samples.

• Frequency refers to the speed (or the number of cycles per second) of oscillations

in the signal, and can be represented in hertz (Hz) or π radians/sample (normalized

units where one is half the sampling rate).
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(a) Topoplot (b) 3D Locations

Figure 2.1: The international 10-20 electrode placement system.
Note. The precise locations of electrodes will depend on the equipment used.

• Power is the amount of energy in a frequency band, as measured by the squared

oscillation amplitude.

• Phase is the position of an oscillation at a given time point, as measured in radians or

degrees. Power and phase are two elements of a single dimension providing indepen-

dent information on the strength of frequency-band-specific activity and the timing of

activity, respectively (Cohen, 2014).

• Space refers to the locations of the electrodes on the scalp; a common montage being

the 10-20 electrode system (Jasper, 1958), which places electrodes in standardized

distances apart to cover the scalp (see figure 2.1).

Rhythmic brain activity contains multiple overlapping frequencies that can be separated

through signal-processing techniques. These are typically grouped into bands of delta (2-

4Hz), theta (4-8Hz), alpha (8-12Hz), beta (15-30Hz), lower gamma (30-80Hz), and upper

gamma (80-150Hz). Other bands include subdelta and omega (up to 600Hz), but these are

less commonly represented in the literature due to limitations regarding current scalp EEG’s

ability to represent such signals (see Gotman, 2013). These groupings of brain oscillations
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loosely reflect neurobiological mechanisms of brain oscillations, such as synaptic decay and

signal transmission dynamics (Buzsáki, 2009; Steriade, 2006); with faster frequencies (e.g.

gamma) thought to generally reflect spatially local processing, and slower frequencies (e.g.

delta) reflecting larger scale networks (von Stein and Sarnthein, 2000). Each oscillatory

activity is also associated with separate cognitive functions, for example the alpha rhythm

is correlated negatively with cortical activation, suggesting it reflects inhibition (Jensen

et al., 2012; Klimesch et al., 2007).

Scalp EEG is typically gained by placing 21-256 Ag/AgCl electrodes on the scalp to

enable the measurement of the electrical potential between spatially different electrodes.

One electrode is dedicated as a reference during recording and another as a ground. A

ground electrode is a common reference for the system voltage that aims to cancel out the

common-mode interference that occurs from the body naturally picking up electromagnetic

interference. Unless recording takes place in a Faraday cage, this interference often needs to

be filtered out during pre-processing (as discussed in section 2.3) if not already conducted

at time of recording by the amplifier. The ground electrode can be placed anywhere on the

body, although the forehead or the ear are the most common (Light et al., 2010). Conversely,

a reference electrode aims to remove unspecific brain activity by representing the electrical

potential between an active electrode of interest and a relatively inactive reference. A

reference electrode is also still affected by global voltage changes as it is collected against the

signal ground. Referencing can be done either by using a physical reference electrode placed

on the earlobe, using any electrode during recording and later re-referencing electrodes to the

average output of all electrodes, or by measuring the potential between two active electrodes

(bipolar recording; Varsavsky et al., 2011a). The combination of an active electrode with a

reference and a ground creates a channel, and the general configuration of these channels

are called a montage (Teplan, 2002).

“Normal” EEG

There is a lack of global definition of what normal EEG looks like (Varsavsky et al., 2011a).

This is due to EEG changing over the course of a patients life, as well as between levels

of cognition (e.g. awake/asleep) or behaviour (e.g. eyes open/closed). For example, the
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alpha rhythm (8-13Hz) tends to occur during wakefulness over posterior channels and is

best seen when healthy adults have their eyes closed. However, large variability in voltages,

spread, and quality have been noted; for example, some otherwise healthy adults have been

demonstrated to have no discernible alpha rhythm (Varsavsky et al., 2011a; Niedermeyer

and Da Silva, 1999). Furthermore, a common variation in EEG is found between awake and

asleep EEG where, in the latter, more global waveforms oscillate at slower frequencies across

the head. This global activity is inter-dispersed with fast “spikes”, which are commonly

found in different sleep stages. Because of such variability, clinical EEG is still assessed

by human experts who aim to recognise general patterns either present in the majority of

the population, or specific to a diagnostic population, based on training and experience

(Varsavsky et al., 2011a). This variability also means EEG alone is rarely sufficient for a

clinical diagnosis, with other diagnostic imaging and forms of observation often necessary.

Artefacts

Artefacts reflect electrical phenomena which distort the neural signal (see figure 2.3). Often

strategies are employed during data collection to reduce the presence of artefacts in the data

(a) Background EEG (b) Rhythmic Waveforms

Figure 2.2: Examples of “normal” waking EEG.
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(e.g. replacing electrodes), but these require correct identification by EEG technicians at the

time of collection. A large number of artefacts in EEG data are caused by improper electrode

application or recording preparation, so laboratories and medical facilities often have specific

protocols to reduce these (see figure 2.A.1; Spriggs, 2009). Post-collection strategies for

reducing the effects of artefacts include manually removing segments of data or channels

with excessive artefacts, filtering (see subsection 2.3.1), removal using separation methods

(see subsection 2.3.2), or training a system to identify and cope with common artefacts

(see section 2.6). These latter methods are preferable due to their ability to preserve more

data, but still typically struggle with muscle artefacts which appear in the 15-20Hz range

(Gotman et al., 1981; Osorio et al., 1998; Safieddine et al., 2012).

The main artefacts that contaminate EEG are:

• Amplifier Saturation which is caused by a high input signal, such as electrode

movements or impedance testing, and causes signal loss.

• Cardiac Activity which is often measured using an electrocardiograms (ECG), with

this interference in EEG channels typically being of relatively low amplitude (Sörnmo

and Laguna, 2005). However, due to its repetitive and regular pattern, it can some-

times be mistaken for epileptiform activity, when ECG is not simultaneously measured

(Urigüen and Garcia-Zapirain, 2015).

• Line Noise or High Impedances which are usually in the frequency range of 50Hz

in the United Kingdom (60Hz in the United States), due to this being the frequency

used by most electrical devices and outlets (Spriggs, 2009).

• Myogenic Activity which is typically measured using an electromyogram (EMG)

to capture electrical activity generated by contracting muscles. The shape and am-

plitude of the interference depends on the muscle contracted and is often difficult to

characterise (Goncharova et al., 2003).

• Ocular Artefacts which are often measured using an electrocardiogram (EOG) and

contaminate EEG signals primarily in frontal electrodes (Romero et al., 2008). For

example, a blink artefact can typically be easily identified as a short large amplitude
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(a) Amplifier saturation found at the start of a
recording.

(b) Effect of ECG present in the reference elec-
trode.

(c) Line Noise in the middle channel (P4) likely
due to disconnection from the scalp.

(d) A movement artefact likely caused from full
body movement.

(e) An example of an artefact in the temporal
electrodes caused by jaw clenching.

(f) Example of a patient blinking in rapid suc-
cession

Figure 2.3: Examples of typical artefacts found in EEG.
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spike that is larger than background activity (Croft and Barry, 2000).

• Skin Potentials are less common than other artefacts, but are caused by electro-

dermal interference from skin potentials and the sweat glands (Urigüen and Garcia-

Zapirain, 2015).

Seizures

EEG can be used to identify various clinical markers relevant for diagnosis and treatment;

most commonly regarding sleep and epilepsy disorders. There are many different types

of epilepsies and causes, but for this review we will adopt the three broad classifications

proposed in the International Classification of Seizure Types (Fisher, 2017): focal onset,

generalised onset, and unknown onset. Focal (or partial) seizures are caused by an abnor-

mality in a specific part of the brain, with seizures categorised as secondarily generalized if

they spread to a large proportion of the brain (Varsavsky et al., 2011a). Primarily gener-

alized (or non-focal) epilepsies have seizures where the seizure onset manifests across the

entire brain immediately, or at least so fast they seem instantaneous. Unknown onset, en-

compasses seizures that are yet to be fully classified with confidence into the previous two

broad categories. Seizures can also be categorised as continuous (or status epilepticus),

which can be either focal or non-focal in nature. Continuous seizures show no observable

recovery between seizures and can be life-threatening if they last more than 5 minutes. As

this thesis focuses on generalised seizures, the other types are not discussed in any further

detail.

Similar to “typical” EEG, there is a lot of variability found between and within seizure

types. Nevertheless, comparative to pre-seizure background EEG (often termed inter-ictal

EEG), seizures have the common traits of synchronisation across a few or many EEG chan-

nels, a large amplitude, and increased oscillatory activity. Onsets and offsets of seizures are

typically abrupt, however variations can occur both between patients as well as between

seizures. Patients may also have spiked inter-seizure discharges, which are short bursts of

high amplitude, syncronized activity around an epileptic focus (see figure 2.4; Varsavsky

et al., 2011a).
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(a) Generalised Absence Seizure (b) Spiked Inter-Seizure Discharge

Figure 2.4: Examples of epileptiform activity in EEG.

2.2 Signal Classification System Design

Before looking at each potential step in a signal classification pipeline, which could be used

to detect seizures, it is worth taking a broad view of the decisions that need to be made

in their design (see figure 2.5). Such considerations are sometimes referred to as part of

an expert system, where each step in a potential pipeline is tailored to be applicable to a

certain problem (Varsavsky et al., 2011a). This includes making decisions regarding...

• ...how to prepare the data for input into the system,

• ...the number and type of features to use,

• ...the order of components in a system,

• ...how the system accounts for known contextual information.

Data can be prepared for a system in many ways, with the process of transforming

and mapping data from a “raw” form to a format appropriate for downstream purposes

known as data wrangling or data munging. Although we focus in this chapter on specific

pre-processing techniques for signals, this stage of the development will likely also include
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Figure 2.5: A basic signal processing and classification system development pipeline.
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other steps of data visualization and data aggregation to aid decision making for all steps

of the pipeline. If a classification model is chosen that requires features to be manually

created (“hand-crafted”), the number and type of features to use needs to be considered to

avoid over-parameterization. Over-parameterization can be an issue as it adds redundancy

and time to the system, therefore only features that provide new or partially independent

information should be added to a model. As well as reviewing appropriate prior literature

for features that work best for specific models and applications, there are also data driven

techniques to assess which are the best features to aid classification (see section 2.5).

Different authors often take different strategies regarding how they order a system; even

when using the same pipeline components. Furthermore, a system need not only have one

of the possible components at each stage outlined in this review, and need not strictly follow

its ordering. For example, a system may have multiple classification stages, with extracted

features first classified by simple threshold rules that feed into a more complex classification

system (e.g. Liu et al., 2002), or have multiple classifiers running simultaneously, with the

one that models the data best used (e.g. Subasi, 2007b). Specific to an automatic seizure

detection system, components specific to detecting unwanted features in the data, such as

artefacts and noise, may have their own features and classification system, with its output

feeding sequentially into a system used to detect features of interest (e.g. seizures).

Many decisions regarding a pipelines design will likely involve how to account for contex-

tual information. For example, alterations to steps in the pipeline may be made to account

for differences in the time of day the EEG was collected (the temporal context); such as

by altering the size of labelled windows, the number of predictions in succession needed to

output a classification label, or the use of forgetting factors/varied window length to ensure

recent events are focused upon more during training (e.g. Wilson et al., 2004). Other known

contextual information can also be incorporated into the model design, such as the spatial

context. Considering this dimension, EEG channels may be combined into groups, treated

separately, or compared at the end of the classification process when making a labelling

decision.

Decisions around pipeline design are informed by the overall purpose of the system.

Generally a seizure detector can be classified as a seizure-event detector or a seizure-onset
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detector. Seizure-event detectors aim to identify seizures with the greatest possible accuracy,

and tend to focus on being able to be generalised to a whole population. These could

enable physicians to better titrate therapy as they could provide a summary of frequency,

duration, and time of individual seizures and relate this to the individualised patient therapy

plan to maximise their benefit (Kharbouch et al., 2011; Nasehi and Pourghassem, 2012).

Seizure-onset detectors aim to detect the onset of a seizure with the shortest possible delay

(Nasehi and Pourghassem, 2012); favourable for time sensitive diagnostic and therapeutic

interventions, and for life threatening seizures specific to individual patients. Seizure-onset

detectors could be used to initiate functional neuroimaging to localise the cerebral origin of

a seizure (Nanobashvili et al., 2011), trigger neurostimulators to affect seizure progression

(Rothman and Yang, 2003; Theodore and Fisher, 2004), or alert a patient or carer to the

patient’s condition (Nasehi and Pourghassem, 2012). Therefore, seizure-event detectors tend

to favour pipeline components which improve system accuracy, and seizure-onset detectors

favour components which improve prediction latency.

Developing a classification system is often not a linear process, and will tend towards

refinement and reiteration. Although some decisions above are best made before developing

a system, changes in components and methods in all stages of pre-processing, feature engi-

neering, dimension reduction, and classification will likely occur over time. The following

examines each step in a typical pipeline, investigating potential decisions that are possible

in each component.

2.3 Pre-processing

Pre-processing refers to transforming a signal through its re-organisation (e.g. extracting

epochs), removal of bad/artefactual data (e.g. removing bad electrodes or rejecting epochs

with artefacts), or modifying otherwise clean data (e.g. normalising, referencing). Many

signal processing systems epoch data into segments either around particular experimental

events or in defined window sizes to create quasi-stationary segments of EEG. At this early

stage of the process, normalisation is typically applied to convert the signals into a common

range so they can be compared. This is especially required if signals are acquired by different
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(a) Mastoid Reference

(b) Central Reference

Figure 2.6: Changes in average amplitude across a full EEG record due to re-referencing.

recording equipment or by other researchers/technicians. Signals can be normalised through

detrending the signal by removing the mean and/or scaling to a unit variance; as the mean

of a single electrode recording is not meaningful as it depends on the setting of the amplifier

gain. This is particularly useful for classifiers that use optimization algorithms (e.g. support

vector machines), as it makes it easier for the model to learn weights and makes the algorithm

less sensitive to outliers (Raschka and Mirjalili, 2019). Re-referencing can also be conducted

at this stage to emphasise differences in electrical activity between electrodes. The most

common re-reference method for seizure detection uses the linked ears or mastoids, which

can be used to show the spike and wave pattern in seizures at a large amplitude (Lopes

Da Silva, 1978), but can introduce some bias. Another option is to use bi-polar or average

re-referencing, which can be used to reduce the influence of cardiac artefacts if the recording

reference electrodes were placed on the mastoid. However, changing a signals reference will

inevitably change some of the topological properties of the EEG (see figure 2.6).
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Modification of the signal to improve the signal-to-noise ratio is commonly achieved

through the use of signal filtering/source separation or removing/interpolation of “bad chan-

nels”. Identifying bad channels can be done visually, however this approach suffers from a

lack of standardisation which is required for generalisability across subjects and paradigms.

Instead, a pre-processing pipeline to remove bad channels, such as the PREP pipeline, can

be used (Bigdely-Shamlo et al., 2015).

The remainder of this pre-processing section will focus on filtering (subsection 2.3.1)

and blind source separation (subsection 2.3.2) methods. Here we focus mostly on time-

domain filters purely because they are more common for pre-processing EEG signals, with

frequency-based filters (e.g. Fourier and wavelet transforms) more common for feature

engineering (section 2.4). Additionally, we focus on digital filters, that are used for offline

filtering; but the principles discussed also apply to online analogue filters that are found in

EEG amplifiers. The theory introduced in the following section is applicable to many of the

other potential steps in the pipeline, and is specifically used to demonstrate common EEG

filters to clean noisy, or “artefactual”, segments of EEG data.

2.3.1 Signal Filtering

Temporal or frequency filtering aims to attenuate signal components of a particular fre-

quency/frequency band. Filters are characterised in the time domain by their impulse re-

sponse and in the frequency domain by their frequency response. These responses describe

the transfer function of a filter, which is the effect of a filter on the signal input that results

in a filtered output (Widmann et al., 2015). Therefore, lets first look at how to understand

these in each respective domain.

Impulse Response Function

A basic filter based in the time domain could average each time point, xi, with adjacent

time points, xi−1, xi+1. This approach can be extended to filter a broader range of high

frequencies by averaging a larger number of points. This can be formalised so that a filtered
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series, f(x) at time i is computed using:

f(xi) =
n∑

j=−n
wjxi+j (2.6)

where wj is a weighting value, wj = 1
2n+1 .We can change the weighting function to account

for the temporal proximity of surrounding timepoints, which will increase the temporal pre-

cision of the filtered series, by changing w to a series of weights (e.g. w = [0.25, 0.50, 0.25]).

Changing the weighting function will determine the desired properties of the filter. As well

as computing the each filtered timepoint, often the weighting function is reversed in time to

describe the effect of the current point on the output of the filter. As reversing the weight-

ing function is equivalent to a filtered waveform in response to a voltage spike or impulse,

it is known as the impulse response function of the filter (Luck, 2014c). Often filters are

described by the impulse response function instead of a weighting function, which can be

reflected by performing the same filtering operation described in equation 2.6, except re-

versing the weighting function to create coefficients of the impulse response function. When

expressed as an impulse response function, I, filtering can be viewed as a convolution:

g(xi) =
n∑

j=−n
Ijxi−j (2.7)

where Ij is an impulse response function which gives 1 at time j, and 0 elsewhere. The

function g(x) simply reverses our weighting vector. Convolution is based on the dot product,

which can be interpreted as the sum of elements in one vector weighted by the elements of

another, or co-variance between two vectors. Simply a dot product is the multiplication of

each element in one vector by the corresponding element in the other:

< a,b >=
n∑
i=1

aibi (2.8)

Convolution extends the dot product by computing it repeatedly over time. For a signal-

processing interpretation, it is easiest to interpret convolution as a time series weighted

by another signal that slides along the signal. One vector is the signal and the other is

the kernel; which could be a wavelet or sine wave (see subsection 2.4.2). The dot product
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between the kernel and corresponding signal is placed in a new vector corresponding to the

centre of the kernel, meaning it is often convenient to have an odd number of data points

(Cohen, 2014). Furthermore, to ensure the resulting vector after convolution is not shorter

than the original signal, the signal is often zero padded.

Frequency Response Function

As previously mentioned, as well as characterised by the impulse response function, prop-

erties of the filter also are described by their frequency response. The frequency response of

a filter can be calculated simply by taking a Fourier transform of the impulse response.

A Fourier transform computes the dot product between a signal and sine waves of dif-

ferent frequencies (kernels; Cohen, 2014). Sine waves are oscillations, characterised by their

frequency, power, and phase (see subsection 2.1.2). This means the result of a Fourier

transform is a three-dimensional representation of the original signal. We denote a sinu-

soidal signal as A sin(2πωt+θ), where A is the amplitude of the sine wave, ω is the frequency,

t is time, and θ is the phase angle.

A discrete-time Fourier transform computes the dot product between multiple sine

waves, with different frequencies, and the signal. The number of sine waves created, and

their frequency, is determined by the number of data points in the time series as the fre-

quencies can range from zero to the Nyquist frequency. Given a periodic sequence xn, with

period N , the discrete-time Fourier series representation of xn is expressed as (Proakis and

Manolakis, 2006):

xn =
N−1∑
ω=0

cωe
j2πωn/N (2.9)

Often we wish to obtain the Fourier coefficients cω, which provides a description of xn in

the frequency domain, ω, using:

cω =
1

N

N−1∑
n=0

xne
−j2πωn/N (2.10)

with cω representing amplitude and phase associated with a frequency component. However,
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the discrete-time Fourier transform, as outlined above, is rarely used in practice, instead

replaced by the fast Fourier transform.

Taking a Fourier transform of a filters impulse response results in two parts: the mag-

nitude response (or amplitude) and the phase response. The magnitude response, typically

plotted along the x-axis in linear or logarithmic scale (dB), is effectively multiplied with the

spectrum of the signal during filtering (Widmann et al., 2015). Ideally, frequency bands to

be attenuated will have values of 0, to remove these spectral components, and those to be

passed will have a magnitude value of one, so they are not changed. However, digital filters

rarely can meet such a criteria and never completely remove spectral components. The

phase response of a filters impulse response reflects the delay of the filters output compara-

tive to its input, with negative values reflecting delays. A filter said to have a linear phase

response has the same delay for all spectral components. For visualisation it is typically

“unwrapped” and plotted along the x-axis in radians or degree (e.g. figure 2.8).

Filtering EEG Signals

Filtering can distort both the temporality and amplitude of an EEG signal (VanRullen,

2011), however if used appropriately and in moderation, it can increase the signal-to-noise

(SNR) to reveal more clearly the temporal dynamics of EEG data (Widmann and Schröger,

2012). As hardware filters can only use previous time points, they are more likely to cause

a significant phase shift on the data (Luck, 2014b). This is the main reason it is best to do

most EEG filtering “offline” rather than “online”. However, as filtered values are computed

using the surrounding points, if time points do not exist prior or after a given time point,

this will cause the filter to produce edge artefacts (Luck, 2014b). The signal therefore

should be padded at the edges, either by an inverted image of time and amplitude or with

a DC constant. This also leads to the recommendation against filtering epoched data, as

continuous EEG will have less distortions from padding. Furthermore, filtering across signal

discontinuities and DC offset corrections should also be avoided.

For offline filtering of EEG signals there are various recommendations, but these are in-

tended to be altered depending on their specific application (e.g. Luck, 2014a; Swartz Center

for Computational Neuroscience, 2018). For example, some authors argue against high-pass
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filtering below 0.1Hz cut-off frequencies, particularly if estimating window mean or peak

amplitudes (e.g. Acunzo et al., 2012; Luck, 2014a), or low-pass filtering if estimating onset

latencies (e.g. VanRullen, 2011), due to the potential temporal distortions if using filters

with a steep rolloff. Finite Impulse Response (FIR) filters (see figure 2.8), are commonly

preferred over Infinite Impulse Response (IIR) filters (see figure 2.7); as a causal FIR filter

has the same time delay across frequencies (linear-phase), whereas causal IIR filters have

non-linear phase, and are generally less numerically stable due to the use of recursive cal-

culations (Parks and Burrus, 1987). This means IIR filters are only recommended in cases

where there is a high throughput, due to their computational efficiency, or a sharp cutoff

is required, because their reduced ripple (Widmann et al., 2015). For EEG, FIR filters are

typically steep for high-pass filters and shallower for low-pass filters (Acunzo et al., 2012;

Luck, 2014a). Band-stop filters are almost exclusively used to suppress line (50/60Hz) or

cathode ray tube (CRT) noise. However, as sharper filters lead to worse precision in the

time domain, band-stop filters are not always recommended (e.g. Widmann et al., 2015).

High-pass filters are typically used to force a signal to zero amplitude, to reduce a signals

offset caused by direct current (DC), and to attenuate skin potentials and other slow voltage

changes. Low-pass filters are used to smooth a signal and reduce the effect of high frequency

noise and myogenic activity.

2.3.2 Blind Source Separation

Although simple low-pass, band-pass, and high-pass filters are common methods in EEG

research, these are not effective when the spectrum of artefacts and the signal overlap

(Sweeney et al., 2012). Common alternative techniques for removing artefacts include

blind source separation (BSS), wavelet transform, empirical-mode decomposition, regres-

sion, and/or combining these into hybrid methods. We choose in this subsection to focus

on BSS techniques; with some of the other methods further discussed in relation to feature

engineering (e.g. wavelets) or classification (e.g. regression).

BSS methods cover a variety of unsupervised learning algorithms for separating a set of

mixed signals into their component sources, with little information on how they are mixed.

Generally, a set of observed signals, X, is assumed to come from a collection of original
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(a) Butterworth Filter (b) Elliptic Filter

Figure 2.7: Example IIR filters for EEG.

signals mixed with artefacts, U . These signals are linearly mixed via an unknown matrix A,

X = AU . BSS reverses this algorithm to a reverse mixing of X, U = WX, as to estimate the

sources by W (Jiang and Bian, 2019). Typically when applied to signal pre-processing, once

a signal is split into components, the components of the signal representing artefacts are

identified, removed, and the signal is reconstructed. There are many BSS algorithms, such

as Canonical Correlation Analysis and EASI, but we will look at the two mostly commonly

applied to EEG; Principal Components Analysis and Independent Components Analysis.

Principal Components Analysis (PCA)

Although briefly covered here, more complete descriptions of PCA can be found in Jolliffe

(1986) and Lebart et al. (1984). To separate signal components, PCA aims to find vectors

that best explain data variability by transforming data onto an equal or lower dimensional

subspace. Principle components are the orthogonal axes of the new subspace giving direc-

tions of maximum variance. To estimate the orthogonal space, X is factored as:

X = U ×D × V T (2.11)
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(a) Luck (0.1Hz) (b) SCCN (1Hz)

(c) SCCN (4Hz) (d) SCCN (16Hz)

Figure 2.8: High-pass FIR filters according to recommendations (Luck, 2014a; Swartz Center
for Computational Neuroscience, 2018).

where U and V are left and right singular vector matrices, T being the transpose, and D

the diagonal matrix with singular values λi (Costa et al., 2014). The PC scores, Z, are then

linear combinations of X with the column-vector V (loadings matrix):

Z = X × V = U ×D (2.12)

The first principle component will have the largest variance, with subsequent components

decreasing in magnitude, as well as each being uncorrelated (mutually orthogonal) to other

components. For example, the portion of data variance accounted for by the first p compo-

nent, as a percentage ratio, is:

RVp =

∑p
i=1 λi∑n
i=1 λi

× 100% (2.13)
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where λi is the eigenvalue associated with the ith PC (Artoni et al., 2018). The number

of PCs are typically constrained to a pre-defined threshold so that the “signal” subspace is

kept, while the orthogonal “noise” subspace is rejected (Artoni et al., 2018).

Independent Components Analysis (ICA)

ICA is another BSS algorithm, which transforms observed data into latent components that

are maximally independent (Hyvarinen and Oja, 2000). For ICA, the different components

of a signal are assumed to be statistically independent with non-Gaussian distributions;

meaning one variable does not give any information on the values of another. ICA re-

volves around maximising or minimising contrast functions to provide the optimal separa-

tion of latent components (Hyvarinen and Oja, 2000). A commonly used contrast function

is kurtosis, used to measure non-Gaussianity. Kurtosis describes the peak sharpness of a

frequency-distribution curve, with zero representing a Gaussian variable and greater than

zero representing most non-Gaussian variables. However, kurtosis is sensitive to outliers

(Huber, 1985) as its estimated value may depend on the few observations at the tail end

of a distribution. Negentropy is another contrast function that measures non-Gaussianity

and is based on entropy. Entropy, which quantifies the amount of disorder in a system,

can be used as a measure of non-Gaussianity as Gaussian distributions are known to be

the least structured distributions (Cover and Thomas, 1991; Papoulis, 1991), and therefore

have high entropy values. Negentropy modifies entropy to provide a non-negative value for

non-Guassian variable and zero for a Gaussian variable. However this method is compu-

tationally difficult, as an estimate of the probability density function of the components

is necessary. There are also other contrast functions for ICA estimation available; such as

the minimization of mutual information and maximum likelihood estimation. When apply-

ing ICA, whitening is often performed by linearly transforming a vector so its components

are uncorrelated, with an equal variance of one. This also reduces the complexity of the

problem, as it reduces the number of parameters that need to be estimated. If the eigen-

value decomposition of the covariance matrix is used for whitening, you can also reduce

the dimension of the data simultaneously by disregarding the eigenvalues of the co-variance

matrix that are small, similar to PCA.
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Source Separation of EEG Signals

Many research and signal classification applications of EEG use BSS to remove artefacts from

the data (e.g. Joyce et al., 2004; Vos et al., 2010). BSS is compatible with a model of EEG

that assumes signals are linear mixtures of waveforms from multiple neural and artifactual

sources that propagate instantaneously to the scalp (Sarvas, 1987; Safieddine et al., 2012;

Urigüen and Garcia-Zapirain, 2015). To use BSS, an appropriate algorithm may be selected

per artefact, which can be chosen based on the valid assumptions for each type of artefact

(De Vos et al., 2011). For example, PCA has been shown to be more effective for removing

ocular artefacts and source localisation than non-BSS methods (Berg and Scherg, 1991;

Casarotto et al., 2004); with robust (Shi et al., 2013) and kernelised (Teixeira et al., 2008)

variants also previously applied. However, the assumption of orthogonality between neural

activity and typical physiological artefacts required for PCA is not often supported (James

and Hesse, 2005; Vigário, 1997; Choi et al., 2005). Furthermore, PCA has been shown to be

unable to separate some artifactual components from brain signals (Fitzgibbon and Powers,

2007; Urigüen and Garcia-Zapirain, 2015), meaning it is sometimes only used as a whitening

step for a subsequent ICA algorithm (Vigário, 1997; Vigário and Oja, 2008).

The basic method of noise removal using ICA is carried out by decomposing the EEG

signal into independent components (IC), the component with the most noise is detected

and values zeroed, and the newly formed IC matrix is multiplied by the mixing matrix to

obtain a cleaned EEG signal (Çınar and Acır, 2017). Such an approach to ICA has been

shown to have good performance separating linear mixtures of EOG signals with simulated

and experimental data (Vigário, 1997), and when compared to regression methods (Jung

et al., 2000). Biomedical signals are commonly processed using SOBI (Belouchrani et al.,

1993), InfoMax (Sejnowski et al., 1999), or fastICA (Hyvarinen and Oja, 1997; Hyvarinen,

2008) variations of ICA (Delorme et al., 2012; Albera et al., 2012; Urigüen and Garcia-

Zapirain, 2015). Prior knowledge of the signals can be used to semi-automate the selection of

components, such as a temporal constraint which uses a reference signal to find components

similar to the reference but statistically independent of other sources (James and Hesse,

2005; Lu and Rajapakse, 2006; Romero et al., 2008; Lu and Rajapakse, 2000, 2005; James

27



and Gibson, 2003), or a spatial constraint by making assumptions of the spatial topography

of source projections (James and Hesse, 2005; Hesse and James, 2006; Akhtar et al., 2012).

To fully automate this approach, authors have also used measures of kurtosis (Yang, 2015)

and modified multiscale sample entropy (mMSE; Mahajan and Morshed, 2015) to determine

the component that contains artefacts. However, ICA methods are typically best used in

hybrid systems (e.g. Klados et al., 2009; Zhou and Gotman, 2009; Çınar and Acır, 2017).

Nevertheless, similar to PCA, the properties of EEG data does not meet all the assump-

tions of ICA. Indeed, most signals measured by physical sensors are typically non-Gaussian.

Although PCA does not require Gaussianity of the data, it does typically work better with

Gaussian data as this can ensure the principle components are independent. PCA is typ-

ically used to condense as much variance into the fewest components possible, but should

not be expected to separate signals from different generators. Indeed, as artefact compo-

nents are often correlated with EEG data, PCA is limited when drifts and EEG signals

are similar (Jiang and Bian, 2019). However, an priori knowledge of how many components

there should be is required when applying ICA, as the the higher-order statistical dependen-

cies that are intended to be reduced by ICA can result in a number of potentially optimal

solutions (Lee, 1998); meaning repeated ICA decompositions can give different solutions

(Delorme and Makeig, 2004; Duann et al., 2003, 2001; Esposito et al., 2002). Conversely,

PCA is not influenced by the number of components selected, as the components generated

by PCA are consistent given the same conditions. Also when reducing components of an

EEG signal using ICA, additional variance can be induced in reconstructed EEG signals

where potential artefactual components are removed, as real signal aspects may also have

been removed, or aspects of the artefact may still be present (Pontifex et al., 2017). Nev-

ertheless, both methods are useful for removing artefacts as part of a signal pre-processing

pipeline, particularly when addressing ocular and cardiac artefacts.

2.4 Feature Engineering

Key to the performance of any machine learning algorithm is the successful extraction of

salient features, which can come from both domain knowledge and computational feature ex-
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traction techniques (Raschka and Mirjalili, 2019). We will first look over basic time-domain

features that have been previously used with EEG, before revisiting frequency domain rep-

resentations of signals to cover Fourier and wavelet transforms. These techniques, as well

as other methods that fall into time, frequency, and time-frequency domains, are examined

throughout in regards to their application to EEG signal analysis.

2.4.1 Time Domain Features

For signals, a single sample isolated in time has limited explanatory value. However, ob-

servations over time allow for signal dynamics to be better observed. Although raw values

from two samples of a signal may be different, they are likely to have a similar distribu-

tions; suggesting they are, on average, drawn from the same statistical distribution (see

figure 2.9). Averages taken over time, space, or distribution are common to describe a sig-

nal. However, the length of the window used to calculate this average is important, as the

longer the window, the more likely the estimated statistic reflects the “true” distribution

of a signal (Varsavsky et al., 2011a). We have already discussed measurement noise, as the

recorded signal differs from the true signal due to the acquisition process and artifacts, but

there can also be computational noise. Computational noise results from an inappropriate

representation of data and limits the interpretation of a statistic, so caution should be used

when choosing statistics to represent signal components.

Linear Signal Analysis

Windowing can used to enforce artificial stationarity for the local signal so that linear

statistical methods can be performed. Window sizes for EEG are often short, with 20-

30 seconds of EEG assumed to be weakly stationary (Elger et al., 2002); but the window

size should not be too short as to make the computed statistic invalid (Varsavsky et al.,

2011a). Given long window sizes, time domain statistics can be used to give estimates of

long-term behaviour at the expense of missing short term patterns, or short windows to

better temporal information but less representative signal estimates.

A basic linear time domain feature, that is often used inside a window, is average energy

or power. Energy, E of a signal xn, can be defined as the magnitude, |.| over a finite interval,
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(a) Signal 1

(b) Signal 2

Figure 2.9: Probability distribution functions of signals in subsequent 10 second windows.

−N ≤ n ≤ N :

EN =
N∑

n=−N
|xn| (2.14)

Instead of |xn|, it is also common to replace with |xn|2. Another alternative statistic is the

sample variance, s2, of a signal. Sample variance computes how a signal deviates from the

mean and can be defined as:

s2 =
1

N − 1

N−1∑
n=0

(xn − µx)2 (2.15)

where

x̄ =
1

N

N−1∑
n=0

xn (2.16)
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The square root of variance (standard deviation), is also commonly used (Varsavsky et al.,

2011a). As short non-stationarities, such as transient bursts found in EEG, can affect the

calculation of µx, variability is sometimes used instead of variance. Total variability, vk, of

a non-constant signal can be calculated using the number of times a signal changes polarity

within a window:

vk =
1

N − 1

k+N∑
n=k+1

|xn − xn−1|

(maxn∈Ak
x−minn∈Ak

x)
(2.17)

where Ak = {k + 1, k + 2, . . . , k + N}. It is also worth noting that DC offsets can affect

statistics such as variance and variation, therefore the signal should first be detrended or

normalised to unit variance before windowing.

Further linear time domain statistics include inferring the synchronicity from the cross-

correlation or mean phase coherence, and periodicity from autocorrelation, among others

(see table 2.1).

Non-linear Signal Analysis

Most of the statistical approaches discussed so far are linear approaches, which have been

applied within a window to categorise non-stationary and non-linear EEG signals. Often

non-linear signals are treat as linear because linear signal processing tools are better un-

derstood and take less computation time. Furthermore, non-linear methods can be greatly

impacted by noise; meaning noise reduction techniques, such as those previously discussed,

need to be applied before their application (Diks, 1999). Nevertheless, often the true dynam-

ics of a system are unknown, so these need be reconstructed from experimentally collected

data. Takens/Aeyel’s theorem (Takens, 1981; Aeyels, 1981) suggests the true dynamics of a

system can be reconstructed by taking time delayed versions of the experimentally collected

signal. Although this reconstruction does not result in the same appearance as the real

data, properties of the signal remain the same (Varsavsky et al., 2011a).

Non-linear approaches generally have two stages, the first is to reconstruct the multidi-

mensional dynamics of a true signal from a single dimensional recording (embedding), and

the second is to extract features of a system; such as how complicated it is (dimension), its
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predictability (Lyapunov exponents), or its randomness (entropy; Varsavsky et al., 2011a).

Dimension is a measure of complexity in the dynamics of a multidimensional system or de-

fined as the number of variables needed to describe a systems behaviour. The dimension of a

non-linear system can be a non-integer in that, although the actual dimension is an integer,

the coordinates required to specify most of a physical systems state may only be a small

volume of the whole phase space. Different fractal dimensions can be used to gain this non-

integer; specifically the information, capacity, and correlation dimensions (Parker and Chua,

2012; Varsavsky et al., 2011a). Another non-linear approach is to use Lyapunov exponents

to describe the deterministic structure of a system by looking at how the system changes

when a small change is introduced; with small Lyapunov exponents indicating predictable

behaviour, and large indicating less predictability (Parker and Chua, 2012; Varsavsky et al.,

2011a). Entropy can be used as a measure of the randomness, information, and compressibil-

ity of a system; with the more “random” or unstructured a variable, the larger the entropy

value. Entropy quantifies the amount of disorder in a system, with more disorder indicating

more information is transferred in a single measurement and therefore less efficiency in com-

municating this information. During the calculation of entropy, the signal can be coarsely

or finely divided up into larger or smaller bins, with coarse graining having the advantage

of being less susceptible to noise than the Lyapunov exponent or dimension measurements.

Shannon entropy is commonly used for normalised EEG, which partitions the phase space

into a number of bins and calculates the probability by counting the number of data points

in each bin (Varsavsky et al., 2011a; Kiranyaz et al., 2014; Iešmantas and Alzbutas, 2020).

As entropy measures the complexity or irregularity of biomedical signals, it can be applied

to seizure detection as brain activity during a seizure is more predictable than normally,

and can therefore be reflected reduction in the entropy value (Yuan et al., 2012; Omerhodzic

et al., 2013; Päivinen et al., 2005; Hamdan et al., 2015).

However, there is a number of limitations applying non-linear statistical methods to

EEG. Firstly, the window size commonly applied to EEG (20- to 30- seconds) is typically

insufficient to reliably compute dimension, Lyapunov exponents, and entropy of the recon-

structed EEG signal. Therefore approximations of these statistics are required, such as the

effective correlation dimension and maximum Lyapunov exponent. Furthermore, as both di-
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Table 2.1: A sample of common time-domain features used for seizure detection.

Feature Authors Feature Authors

Approximate entropy

Chen et al. (2014)

Root Mean Square

Pramod et al. (2014)
Mitha et al. (2014) Mitha et al. (2014)
Kiranyaz et al. (2014) Kiranyaz et al. (2014)
Awan et al. (2016) Fergus et al. (2015)
Orellana and Cerqueira (2016) Fergus et al. (2016)

Average Energy

Kiranyaz et al. (2014) Harpale and Bairagi (2018)

Pramod et al. (2014)

Sample Entropy

Chen et al. (2014)
Zabihi et al. (2013) Xiang et al. (2015)
Shanir et al. (2015) Fergus et al. (2015)
Fergus et al. (2015) Hamdan et al. (2015)
Khan and Khan (2017) Awan et al. (2016)
Yuan et al. (2018b) Fergus et al. (2016)

Coefficient of Variation
Mitha et al. (2014) Zhu et al. (2017)

Kiranyaz et al. (2014)
Shannon Entropy

Kiranyaz et al. (2014)
Harpale and Bairagi (2018) Iešmantas and Alzbutas (2020)

Interquartile Range

Rafiuddin et al. (2011)

Skewness

Mitha et al. (2014)
Pramod et al. (2014) Kiranyaz et al. (2014)
Paulose and Bedeeuzzaman (2014) Fergus et al. (2015)
Awan et al. (2016) Elmahdy et al. (2015)
Chandel et al. (2016) Hamdan et al. (2015)
Chandel et al. (2017) Awan et al. (2016)

Kurtosis

Mitha et al. (2014) Fergus et al. (2016)
Kiranyaz et al. (2014) Tsiouris et al. (2017)
Fergus et al. (2015) Ammar et al. (2018)

Elmahdy et al. (2015)
Standard Deviation

Mitha et al. (2014)
Hamdan et al. (2015) Ammar et al. (2018)

Awan et al. (2016)

Variance

Kiranyaz et al. (2014)
Fergus et al. (2016) Elmahdy et al. (2015)
Tsiouris et al. (2017) Hamdan et al. (2015)
Harpale and Bairagi (2018) Fergus et al. (2016)
Ammar et al. (2018) Tsiouris et al. (2017)

Mean

Mitha et al. (2014) Khan and Khan (2017)

Kiranyaz et al. (2014)

Zero Crossings

Mitha et al. (2014)
Elmahdy et al. (2015) Kiranyaz et al. (2014)
Hamdan et al. (2015) Zabihi et al. (2013)
Awan et al. (2016) Tsiouris et al. (2017)

Tsiouris et al. (2017)
Harpale and Bairagi (2018)

Median Absolute Deviation

Rafiuddin et al. (2011)
Pramod et al. (2014)
Awan et al. (2016)
Chandel et al. (2016)
Chandel et al. (2017)
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mension and Lyapunov exponents are highly sensitive to noise (Kantz and Schreiber, 2004),

it is often only used with intra-cranial EEG, with entropy being used more extensively with

scalp EEG. Moreover, it is unlikely EEG is truly able capture the dynamics of a highly

complex non-linear system such as the brain, due to low spatial resolution. Despite papers

that support a non-linear deterministic structure (e.g. Andrzejak et al., 2001; Casdagli et al.,

1997; Li et al., 2003), there is also limited evidence that EEG has low dimensionality, espe-

cially with scalp recordings. This could be either because the dynamics are very complex,

or the skull and scalp cause noise that affects the non-linear characteristics of the signal

(Varsavsky et al., 2011a).

2.4.2 Frequency Domain Features

As we have previously discussed in subsection 2.3.1, as well as the time domain, a signal

can be represented by its frequency and phase. We will now briefly revisit the Fourier

Transform in relation to how it can be used to represent a signal for features in a machine

learning model. Beforehand it is worth considering, in its application to EEG, that it

is still unclear if “power” increases characterised by Fourier transforms reflect a change

in the number of neurons synchronized or the strength of local synchronisation (Cohen,

2014). Although mathematically waveforms can be reconstructed by adding a set of sine

waves that vary in amplitude, frequency, and phase (Fourier, 1878), this does not mean

physiologically the waveform consists of sine waves oscillating at a particular frequency.

The power measured by Fourier-based, or later discussed wavelet-based methods, is not

evidence for physiological oscillations per say, as these methods will always give power

at frequencies given a signal. Nevertheless, a “true” oscillation by the brain would be

represented by these methods, as would a artefact generated by various external generators

(Luck, 2014b). Indeed, spectral properties of an EEG not only depend on an individual’s

state (awake/asleep) and the cognitive tasks being conducted (Cranstoun et al., 2002),

but also on factors such as individual differences of brain structure, age, working memory

capacity, and brain chemistry (Cohen, 2014), as well as the positioning and referencing of

the electrodes.
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Frequency Features for EEG

Commonly, frequency features for windowed EEG are based on the power spectral density

(PSD), which represents the contribution of power in each frequency component of a signal.

Typically PSD is calculated using a discrete-time Fourier transform, which for a windowed

signal xn for n = k + 1, k + 1 · · · k +N is similar to equation 2.10:

cω,k =
N∑
n=1

xn+ke
−j2πωn/N . (2.18)

However, an assumption of the Fourier transform is that data is stationary, as violations

of stationarity decrease the power in frequencies produced by the Fourier transform. This

results in less well defined peaks in a spectrogram and power in other frequencies beside those

defined in simulated data. To prevent edge artefacts, as would be present equation 2.18, a

taper is typically applied; with popular choices including Hann, Hamming, and Gaussian

windows (Cohen, 2014). The short-time FFT also often has overlaps between time segments

to improve temporal precision, reduce loss of signal from tapering, and smooth the time-

frequency plots. The Welch (Welch, 1967) method is one such non-parametric method of

power spectrum estimation where periodograms are allowed to overlap (Bartlett and Medhi,

1955). Periodograms are formed for sequential blocks, and averaged over time to gain an

estimate of the PSD. To make a more representative PSD, it can be applied across analysis

windows and an average taken:

Pω,k =
1

N

N−1∑
n=0

|cω,k|2 (2.19)

Increasing N in the above equation has the effect of having better characterisation of the

signal but at a worse frequency resolution. As PSD uses averaging, it cannot isolate in time

where particular spikes in frequency occur, indeed these are smoothed out, thus frequency

resolution is gained at the expense of temporal resolution. A common method to visualise the

temporal evolution of frequency content is to use a spectrogram, which calculates sequential

PSDs with small analysis windows (see figure 2.10). For EEG, PSDs can be used to reflect

the locally stationary properties within a window, as well as time-evolving changes across
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windows.

PSD is often used as a basis for calculating various basic statistics (see table 2.2). For

example, a measure of peak frequency is common, and merely reflects the frequency of

the highest peak in the PSD for a given window. Similarly, median frequency is just the

midpoint in the frequency power spectrum (Fergus et al., 2015). However, a limitation of

gaining features from a windowed Fourier analysis is that power within the entire window

is treat as if it was at the centre of the window. Furthermore, the same window size is used

to calculate power in different frequencies despite low and high frequencies yielding greater

precision with different window sizes (Luck, 2014c). Indeed, the width of the window can

result in poor frequency resolution if too narrow, or poor time localisation that violates

the stationarity assumption if too wide (Rosso et al., 2006; Varsavsky et al., 2011a). A

multitaper approach for short-time FFT is available, where several tapers with different

temporal characteristics are applied (Mitra and Pesaran, 1999; Thomson, 1982); however

this is useful mostly for high frequencies, due to the potential to impede frequency isolation

from lower frequencies (Cohen, 2014). Additionally, the smooth functions used by windowed

Fourier functions have been argued, using the Balian-Low theorem (Benedetto et al., 1994),

to not be able to provide the smallest amount of information needed (orthogonal) whilst

(a) Signals (b) Spectogram

Figure 2.10: The spectrogram of an EEG sequence containing a seizure.
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Table 2.2: A sample of common frequency-domain features used for seizure detection.

Feature Authors Feature Authors

Maximum
Kiranyaz et al. (2014)

Minimum
Kiranyaz et al. (2014)

Zabihi et al. (2013) Zabihi et al. (2013)
Ammar et al. (2018) Shanir et al. (2015)

Median

Kiranyaz et al. (2014)
Peak Frequency

Fergus et al. (2015)
Zabihi et al. (2013) Hamdan et al. (2015)
Fergus et al. (2015) Fergus et al. (2016)
Hamdan et al. (2015)

Spectral Entropy

Mitha et al. (2014)
Fergus et al. (2016) Kiranyaz et al. (2014)

Mel Frequency Cepstral Coefficients

Kiranyaz et al. (2014) Zabihi et al. (2013)
Zabihi et al. (2013) Hamdan et al. (2015)
Golmohammadi et al. (2019)
Ramadhani et al. (2019)

also being localised in time and frequency. This means the physical representation of the

energy in an original time series can be lost using this method (Cranstoun et al., 2002).

2.4.3 Time-Frequency Features

Instead of just gaining frequency information, at the expense of temporal resolution, one

can use a variety of time-frequency techniques designed to resolve both temporal and fre-

quency content for non-stationary signals. Such techniques include the use of Gabor atoms

and Wigner-Ville distributions, but a common approach for EEG is to use a wavelet trans-

formation (WT). WT’s have been deemed superior to the Fourier transformation in their

application to EEG data analysis as, although they are computationally slower, they give

more accurate results with data containing discontinuities and sharp spikes (Kiymik et al.,

2005). Wavelets can be used to analyse time series with nonstationary power at different

frequency bands (Sakkalis et al., 2006), shown to express discontinuities caused by recording

apparatus (Akin and Kiymik, 2000), and are useful for identifying and removing artefacts

(e.g. eye and muscle movements; Khatun et al., 2016; Mammone and Morabito, 2014; Ol-

und et al., 2014). They have also been used to investigate a number of pathologies such as

Autism (Bhat et al., 2014), Alzheimer disease (Sankari et al., 2012) and obsessive compulsive

disorder (OCD; Hazarika et al., 1997).

Wavelet Transform

A wavelet, ψ(x), is a function that (Rao and Bopardikar, 1998):
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1. Integrates to zero:
∑∞

n=−∞ ψ(x) = 0,

2. Has finite power:
∑∞

n=−∞ |ψ(x)|2 <∞.

A basic wavelet has the properties of a, by which it is scaled, and b, by which it is shifted

(or translated) across samples:

ψa,b(x) = 2−a/2ψ(2−ax− b), a, b ∈ Z. (2.20)

If a = 1 and b = 0 then ψab(x) is known as the mother wavelet (Varsavsky et al., 2011a).

The parameter a represents different scales for which temporal and frequency content will be

extracted at different resolutions. Small values of a give more detailed temporal information

(or temporal scaling), and occupy higher frequencies, than large values. This illustrates the

uncertainty principle that resolution can be high for either time or frequency. Furthermore,

the range of frequency details the wavelet covers becomes smaller for larger values of a

(frequency scaling ; Varsavsky et al., 2011a).

A time-frequency representation of a signal can be gained from the convolution of

wavelets of different frequencies with a signal (Cohen, 2014). A wavelet representation

of a function, f(x), can be expressed as:

f(x) =
∞∑

a=−∞

∑
b∈Z

da,bψa,b(x), (2.21)

where da,b are the wavelet detail coefficients. These detail coefficients give us the contri-

butions at each scale-location pair. The most common way of calculating d is through a

discrete wavelet transform (see figure 2.A.2). This is an orthogonal transformation, as there

is no overlap of frequency content at different scales, and can be achieved by restricting the

dilations and translations of the mother wavelet (dyadic sampling). An example of this is

the Haar wavelet family (see figure 2.11). da,b can be iteratively computed using the coeffi-

cients from a higher scale, that can also be thought of as filters, that describe the wavelet

family (Varsavsky et al., 2011a).

Other wavelet transforms exist, of note is the stationary wavelet transform (or undec-

imated wavelet transform, UDWT; Holschneider et al., 1989) and wavelet packet decom-
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Figure 2.11: Piecewise linear approximations of the Haar wavelet family at various scales.
Note. Obtained using the cascade algorithm (see, The MathWorks Inc., 2020).

position (WPD; Wickerhauser, 1996). UDWT aims to address the problem of translation-

invariance in DWT, which means the transform coefficients and data are not shifted along

by the same integer amount due to the decimated step. For DWT, an odd or even decima-

tion can be made (e.g. a = 2A), whereas UDWT use both odd and even transformations

at each scale (see figure 2.A.3). UDWT is a more computationally intensive method than

DWT, but can result in better discrimination between noise and activity, as well as more

precise frequency localization. However, UDWT’s are not orthogonal (Gyaourova et al.,

2002), and frequencies close to each other may provide similar, if not identical, results due

to frequency smoothing; meaning more frequency bins may unnecessarily increase compu-

tation time without increasing information (Cohen, 2014). WPD differs from the previous

methods as, rather than only passing wavelet approximation coefficients through low- and

high-pass filters at each level, both the detail and approximation coefficients are passed

to create a binary tree (see figure 2.A.4). Due to the over-complete signal representation

provided by this method, a number of algorithms have been proposed to prune the tree to

a more sparse representation based on cost functions; such as entropy (Coifman and Wick-

erhauser, 1992) or thresholding based on the energy values before further decomposition

at each node (Mojsilovic et al., 1997). WPD has been suggested to have better frequency

resolution than DWT (Alakus and Turkoglu, 2018), particularly in higher frequencies, due

39



to decomposing detail coefficients to gain information that would otherwise be lost (Yang

et al., 2006).

Other Time-Frequency Methods

There are a number of other time-frequency methods that appear in the seizure detection

literature that we will briefly mention. For example, empirical mode decomposition (EMD;

Huang et al., 1996) is a nonlinear time–frequency technique which breaks up time series

signals into independent groups of functions or components called intrinsic mode functions

(IMFs Jaber et al., 2014). EMD differs from Fourier and wavelet domains as it is adaptive,

rather than having a prior fixed basis (Yash, 2018); meaning it is not assumed that the

components of a signal are fixed in frequency over time and therefore can be generated

from a dynamic signal generator. EMD provides empirically derived frequencies, useful

for identifying changes in instantaneous frequency in non-stationary data. As such, this

method has been applied, among other things, to detecting epileptic spikes (Oweis and

Abdulhay, 2011). However, interpreting EMD components can be difficult, with oscillations

of interest in multiple IMFs (Cole, 2016), and changes in hyperparameter values can result

in significantly different results (Cole and Voytek, 2019). Furthermore, IMFs require the

number of extrema and the number of zero-crossings to be equal or differ at most by one

across the whole dataset (Cole, 2016), which is unlikely to occur in EEG data.

Other time-frequency decomposition methods of note include autoregressive modelling,

matching pursuit, and the p-episode. However, these are not further discussed as autoregres-

sive modelling has largely been replaced by wavelet convolution (Cohen, 2014), matching

pursuit has a large convergence time (Pati et al., 1993) and, due to different sets of atoms

used in the decomposition of each signal, phase across frequencies in simultaneously recorded

signals is difficult to compare (Subhash Chandran et al., 2016), and the p-episode is influ-

enced by a manually chosen threshold and is not appropriate for noisy data (Caplan et al.,

2001; Montez et al., 2009; van Vugt et al., 2007; Cohen, 2014).
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Time-Frequency Features for EEG

Among several families of mother wavelets, cubic spline functions have previously been rec-

ommended as mother wavelet for natural signals, due to their symmetry, smoothing, and

numerical properties (Unser and Aldroubi, 1996). However, the Daubechies wavelet, typ-

ically of order 4 (db4; see figure 2.12), is the most commonly used wavelet for EEG. Db4

smooths the frequency filtering enough to characterise the EEG well, but is also compu-

tationally efficient (Kjaer et al., 2017; Subasi, 2007b). Nevertheless, other wavelet families

such as the Coiflet (Gandhi et al., 2011; Uyulan and Erguzel, 2016) and Symlets families

(Al-Qazzaz et al., 2015; Akkar and Ali Jasim, 2017) have been demonstrated to be optimal

for classification and denoising EEG in certain applications.

DWT is currently the most commonly applied wavelet transformation method for ex-

tracting wavelet coefficients for EEG; likely due to its computational efficiency and simplicity

of application compared to other WT methods. DWT has been used in a broad range of

EEG research from emotion recognition (e.g. Jenke et al., 2014), to Alzheimer’s Disease (e.g.

Ghorbanian et al., 2013), and seizure detection (e.g. Ocak, 2009). However, as previously

noted, UDWTs have potential applications for noise elimination. Mamun et al. (2013), for

example, found different UDWT’s were best for noise elimination in healthy and epileptic

subjects. Specifically the db8 wavelet function was more useful for healthy subjects and the

orthogonal Meyer wavelet function for epileptic subjects. This can be particularly useful

in assessing epileptic seizures which have high amplitude muscle and physiological artefacts

(e.g. tonic-clonic), which can make them difficult to analyse visually (Rosso et al., 2004).

Wavelet packets have also been applied to a number of clinical diagnosis domains (e.g.

Zhang et al., 2015; Bhat et al., 2018), including seizure detection (Alakus and Turkoglu,

2018; Raghu et al., 2017). Alickovic et al. (2018) compared EMD, DWT, and WPD for

automated epileptic seizure detection and prediction using multiple classification models.

They found models using features from EMD had the poorest performance, with the au-

thors suggesting WPD as a feature extractor for random forest or support vector machine

classifiers. However, most authors have only applied this technique on small intracranial

epilepsy datasets (e.g. the EEG database from the University of Bonn; Andrzejak et al.,
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Figure 2.12: Piecewise linear approximations of the Daubechies 4 wavelet family at various
scales.
Note. Obtained using the cascade algorithm (see, The MathWorks Inc., 2020).

2001). Furthermore, often all the wavelet scales from a WPD are used as features, but this

is inefficient without the use of approaches to gain a selection of the subband trees (Huang

and Aviyente, 2006; Raja and Gangatharan, 2015). Therefore, more work is required to ob-

serve its application to larger, extracranial EEG datasets, as well as applying dimensionality

reduction techniques.

Similar to frequency features, it is uncommon for the wavelet coefficients to be used

directly as features. Wavelet filters isolate spectral information in different frequency ranges

similar to the previously described PSD. As such, the features computed from the wavelet

coefficients are often similar to those computed on frequency methods (see table 2.3).

There are several limitations to time-frequency power analyses in general, with some also

applying to other neuroimaging methods such as ERP’s and fMRI. The model parameters

selected will affect the outcome of the analyses, such as the decisions around temporal and

frequency precision, shape of the wavelet or band-pass filter, and baseline time period and

normalization. Exploratory data analyses are often required due to problems with time-

frequency analyses, with multiple comparisons requiring conservative statistical corrections

that cannot identity subtle effects. Finally, EEG time-frequency features may not represent

neural oscillations, however could reflect a manifest variable rather than the latent variable
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Table 2.3: A sample of common time-frequency domain features used for seizure detection.

Feature Authors Feature Authors

Coefficient of Variation

Rafiuddin et al. (2011)
Minimum

Pramod et al. (2014)
Khan et al. (2012) Kiranyaz et al. (2014)
Kiranyaz et al. (2014) Zabihi et al. (2013)
Zabihi et al. (2013)

Relative Scale Energy
Kiranyaz et al. (2014)

Hussain (2018) Zabihi et al. (2013)

Energy

Bugeja et al. (2016)

Shannon Entropy

Kiranyaz et al. (2014)
Awan et al. (2016) Zabihi et al. (2013)
Mitha et al. (2014) Ibrahim and Majzoub (2017)
Kiranyaz et al. (2014) Sopic et al. (2018)
Rafiuddin et al. (2011) Perera et al. (2017)
Pramod et al. (2014)

Standard Deviation

Pramod et al. (2014)
Chen et al. (2014) Zabihi et al. (2013)
Kiranyaz et al. (2014) Javaid et al. (2015)
Mitha et al. (2014) Ibrahim and Majzoub (2017)
Zabihi et al. (2013) Harpale and Bairagi (2018)
Orosco et al. (2016)

Variance

Kiranyaz et al. (2014)
Tsiouris et al. (2017) Das et al. (2016)
Chandel et al. (2016) Perera et al. (2017)
Chandel et al. (2017) Selvathi and Meera (2018)
Kaleem et al. (2018) Chandel et al. (2019)
Hussain (2018)

Power
Javaid et al. (2015)

Entropy
Pramod et al. (2014) Perera et al. (2017)
Chandel et al. (2016)

Kurtosis
Alickovic et al. (2018)

Maximum

Pramod et al. (2014) Chandel et al. (2019)
Kiranyaz et al. (2014)
Zabihi et al. (2013)
Orosco et al. (2016)

Mean

Pramod et al. (2014)
Kiranyaz et al. (2014)
Zabihi et al. (2013)
Javaid et al. (2015)
Orosco et al. (2016)
Chandel et al. (2016)
Chandel et al. (2017)
Alickovic et al. (2018)
Harpale and Bairagi (2018)
Selvathi and Meera (2018)

of a neural oscillation. However, this latter criticism does not mean that time-frequency

analyses is not useful. Indeed, Cohen (2014) suggests this uncertainty means that findings

should be described as “band-limited” or “frequency-band-specific” to be more conservative

when describing a finding, and reserving the use of “neural oscillation” as an interpretation

or speculation around the results.
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2.5 Dimensionality Reduction

Once features have been created, in order to reduce a models complexity, run time, and

potential for over-fitting to the training data, dimension reduction techniques are often

applied. Broadly they can be grouped into methods that create a subset of the original

set of features (Feature Selection) or methods that create new synthetic features through

combining the original features and discarding less important ones (Feature Extraction).

2.5.1 Feature Selection

A simple method for feature selection could be to impose a sparsity constraint when training

a classifier to ensure a model favours fewer features. However, one could also use model

stacking, where the input to one model is the output of another. This allows for non-

linearities to be captured in the first more complex model, and the subsequent use of an

efficient linear model as the last layer. Deep learning is an example of model stacking, as

often neural networks are layered on top of one another to optimise both the features and

the classifier simultaneously (Zheng and Casari, 2018). Another example of model stacking

is to use the output of a decision tree–type classifier as input to a linear classifier. As

decision trees (see subsection 2.6.1) rank the importance for each feature on the model, you

can use these importance values to reduce the features down to features that contribute

most to assigning a class membership (see figures 4.A.4 & 4.A.5). However, if features are

highly correlated, which is often the case in EEG (e.g. figures 3.A.7 & 3.A.8), one feature

may be ranked highly while the information of the others not fully captured (Raschka and

Mirjalili, 2019). Nevertheless, this method has been used by Birjandtalab et al. (2017) for

finding the best few EEG channels for seizure detection using the same spectral feature set

in each channel. They suggest identifying the best channels for seizure detection may enable

limited-channel EEG, which has a faster run time, lower power consumption, and increased

accuracy by avoiding non-focal/unnecessary channels.
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2.5.2 Feature Extraction

As some features may be highly correlated to others, PCA (introduced in subsection 2.3.2)

can be used to compresses them into an lower dimensional subspace. As PCA is sensitive

to data scales, components need to be standardized before applying PCA, because equal

importance should be given to all features despite being measured on different scales. How-

ever, when used for dimensionality reduction, the number principal components must be

set; which can be based on a trade-off between computational efficiency and classifier per-

formance (Raschka and Mirjalili, 2019), or the use of a threshold that accounts for a desired

proportion of total variance (Zheng and Casari, 2018).

Another method for reducing non-linear data with high-dimensionality down to a lower-

dimensional subspace is t-Distributed Stochastic Neighbor Embedding (t-SNE), commonly

used for data visualisation. It has been applied to seizure detection by Birjandtalab et al.

(2017) as a feature extraction technique, however t-SNE is not intended primarily as a pre-

processor for models as it fits clusters onto the training data which are difficult to apply

to a separate test set. A better alternative is the use of Uniform Manifold Approximation

and Projection (UMAP; McInnes et al., 2018), a supervised and unsupervised dimension

reduction technique that can be used for non-linear dimension reduction (McInnes and

Healy, 2018). UMAP is intended as a replacement for t-SNE as it has better runtime

performance and often preserves more global structure. As well as unsupervised dimension

reduction (e.g. PCA or t-SNE), class labels can also be used; as well as a combined approach

using labelled data embedding with new unlabelled points added after. However when used

for clustering data, UMAP and t-SNE do not completely preserve density and can result in

a finer clustering than is present in the data, and are not as interpretable as PCA (McInnes

et al., 2018). Still, it is an interesting feature extraction method which to date that has not

been applied to EEG seizure detection.

2.6 Classification

Once approaches have been taken to transform a signal into relevant descriptors, classifiers

can be run on the data to detect signal differences and separate signals into different classes.
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Classifiers can separate pre-determined classes under the assumption that the presented

data belongs to one of the classes. A classifier can simply impose a threshold on features, or

employ more complex methods, such as using machine learning algorithms, which require

training and subsequent testing on unseen data (Varsavsky et al., 2011a). However, it is

worth noting that machines are not literally “learning”, as one would traditionally use the

word, as they are in fact finding a mathematical formula that produces desired outputs

based on inputs. These formulas can then be used on new data, provided they have a

similar statistical distribution to the data the model was trained on (Burkov, 2019).

Machine learning algorithms can be broadly categorised by the level of supervision re-

quired for learning (see figure 2.13). Supervised learning aims to determine how to map

labels to data using training examples. This type of learning is a classification task, with

“supervised” referring to where the desired output labels are already known (Raschka and

Mirjalili, 2019). The aim of supervised learning is to use a dataset, (xi, yi)
N
i=1, where xi

is the D-dimensional real-valued feature vector of example i = 1, · · · , N , and yi is a real-

valued label (or target). Its worth noting that the output, yi, can be more complex, such

as a vector, matrix, tree, or graph, but is most commonly a categorical label, a number

that can be used to deduce a label, or a real valued continuous label (regression; Burkov,

2019). A simple algorithm for categorical labelling may be trained to distinguish between

two cases; such as the case of spam email detection, where mail is sorted into spam or not

spam. Most machine learning algorithms are able to do such binary classification and, if

not naturally multi-class, can be extended to multi-class classification (e.g. gmail categories:

Social, Promotions, Updates) using techniques such as the One-versus-Rest or One-versus-

One methods (Raschka and Mirjalili, 2019). In these approaches, after all models in the

ensemble have been trained, every model outputs prediction probabilities based on their

inputs and the labels from the most certain model is chosen (Burkov, 2019).

Supervised classification models can be further sub-categorised by whether they are gen-

erative or discriminative algorithms. Generative algorithms, such as Naive Bayes’, hidden

Markov, and Gaussian mixture models, learn the joint probability of data instances and

their labels. Conversely, discriminative algorithms (e.g. Logistic Regression and Support

Vector Machines) model the boundaries separating labels (Mohr et al., 2017). Additionally

46



Machine
Learning

Reinforcement
Learning

Classical
Learning

SupervisedUnsupervised

Regression

Classification

Dimension
Reduction

Clustering

Ensemble
Methods

Neural Nets
and Deep
Learning

Bagging Boosting

Stacking

Q-Learning

Deep Q-
Network

SARSA

K-Nearest
Neighbour

Naive Bayes

Support
Vector

Machine

Decision Trees

Logistic
Regression

Linear
Regression

Polynomial
Regression

Ridge/Lasso
Regression

T-Distributed
Stochastic
Neighbor

Embedding

Principal
Component

Analysis

Singular Value
Decomposition

Linear
Discriminant

Analysis

Fuzzy C-
Means

K-Means

DBSCAN

Random
Forest

Extremely
Random-
ized Trees

AdaBoost

CatBoost

LightGBM

XGBoost

Autoencoders

Convolutional
Neural

Networks
Perceptrons

Recurrent
Neural

Networks

Generative
Adversarial
Networks

Figure 2.13: Categorisation for a sample of machine learning methods.
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instead of learning internal parameters from training data which can be later discarded, la-

bels for new data can be assigned by directly comparing them to data points in the training

data (e.g. k-Nearest Neighbours; Burkov, 2019).

Other types of learning include unsupervised and semi-supervised learning. Unsuper-

vised methods aim to find hidden structures within data as labels are not provided (Mohr

et al., 2017). Unsupervised methods can be grouped into clustering algorithms (e.g. K-

means and hierarchical clustering), which cluster similar data together, anomaly detection

(e.g. one-class support vector machines), which identify instances different from the ma-

jority of the data, and the previously discussed dimensionality reduction algorithms (e.g.

principle component analysis), which remove multicollinearity and retain important infor-

mation by creating new synthetic features. Semi-supervised methods use both labelled and

unlabelled data as training samples, and are practical for large scale data where there is a

higher ratio of unlabelled to labelled data (Mohr et al., 2017). A type of semi-supervised

learning is active learning, which ask users to provide a new label when data is generated

that has not previously been classified. This allows users to update models by adding in

additional labels, which could be used to make a model more personalized, even if it does

incur a labelling burden (Mohr et al., 2017; Settles, 2010). In their general application,

although it may seem detrimental to add uncertainly to the model, unlabelled data does

allow for better information of the probability distribution the data is drawn from, which

can be leveraged by models (Burkov, 2019).

2.6.1 Classical Methods

Classical methods are categorised typically in relation to ensemble or neural network/deep

learning models. They have a background in statistics, rather than computing, and were

used for solving mathematical problems such as finding similarities in data points and search-

ing for patterns. We have already discussed some unsupervised classical learning methods,

specifically regarding dimension reduction (see section 2.5), so the rest of this subsection

will focus on supervised classical methods; Linear Regression, Logistic Regression, Support

Vector Machines, k-Nearest Neighbours, and Decision Trees. These are by no means obso-

lete comparative to modern ensemble methods, and for simple classification problems where
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explainable outcomes are required, these are often preferable.

Linear Regression

Discriminative classification algorithms are typically used for pre-processing or to group

EEG data based on its content (e.g. inter-ictal, ictal). However, basic understanding of

linear regression, which provides continuous outcomes rather than categorical labels, can be

useful for supporting understanding of the subsequently discussed discriminative models.

In linear regression, the distance between explanatory variables (xi), of which there can

be multiple, (xi,j), and a model/prediction is minimised to gain a real-valued target/response

(yi). The model is parametrized using a linear combination of features (Raschka and Mir-

jalili, 2019):

yi = w0xi,0 + w1xi,1 + · · ·+ wDxi,D + εi =
D∑
j=1

wjxi,j + εi = wTxi + εi. (2.22)

Here, w is a D-dimensional vector of parameters, with w0 as the y-axis intercept (sometimes

denoted by b) and xi,0 is a bias unit equal to 1. This model can be used to predict an unknown

label ŷi for a new xi once the optimal values, w∗, have been found. To find optimal values

of w, an objective function is maximised or minimised, such as the mean squared error:

1

N

N∑
i=1

(yi − ŷi)2, (2.23)

where ŷi = w∗xi.

As the optimisation criteria above is convex, meaning it has only one global minimum,

optimisation algorithms can be used to find this global minimum. Generally, this is achieved

by computing a prediction error for each instance, multiplying this by the feature values,

and then taking the average over all training instances (Géron, 2019). However, for large or

high dimensional datasets, this approach is not always feasible due to the large computa-

tional cost. Therefore, often approximate optimizations are used by training the algorithm

in batches of data (e.g. Batch Gradient Descent, Mini-batch Gradient Descent), or an in-

stance at a time (Stochastic Gradient Descent; Géron, 2019). Gradient descent finds a local
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Figure 2.14: Changes to decision boundaries according to regulation.
Data Source: The Epileptologie Database (Andrzejak et al., 2001)

minimum of a function by starting at a random point and taking steps down in proportion

to the slope (negative) of the gradient at its current point (Burkov, 2019). Each parameter

has a partial derivative calculated, proceeding in epochs (entire runs of the provided training

data), in order to update the parameters. At each epoch, w and σ are updated using the

partial derivatives in respect to the learning rate, η, subtracting the derivatives from the

parameter values until convergence is reached (change is minimal):

w← w − η(yi − σ(wTxi))xi. (2.24)

Improvements on gradient descent means it is more common to use algorithms such as

RMSprop and Adam, which are variants of stochastic gradient descent (Burkov, 2019) and

are commonly used with modern deep learning methods (see subsubsection 2.6.2).

When optimising the model, it is commonly regularised to build a less complex model in

an attempt to prevent overfitting. Overfitting means that the model can predict the training

data well, but poorly predicts unseen data. This is also refereed to as “high variance”, to

reflect the lack of consistency (or variability) in model predictions which would change if

the model was retrained on different subsets of the training dataset (Raschka and Mirjalili,
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2019). This can be due to either the model being too complex, or the model training with too

many features on a small set of data (Burkov, 2019). L1 (Equation 2.25) and L2 (Equation

2.26) regularisation are the most common methods for dealing with overfitting:

L1 : λ||w|| = λ

D∑
j=1

|wj |, (2.25)

L2 : λ||w||2 = λ
D∑
j=1

w2
j . (2.26)

Both methods add a penalising term to the objective function, producing higher values

when the models are more complex. The regularization parameter λ is used to control the

regularisation, with the higher the value of λ, the stronger the regularization. In practice

L1 mostly performs feature selection and L2 maximises performance and is better to use in

combination with optimisation algorithms.

Logistic Regression

Logistic regression is a common discriminative algorithm used for the classification of a

dependent variable which has a limited number of possible values, so is more applicable to

seizure classification. Logistic regression is similar to linear regression, in that it computes a

weighted sum of input features with a bias term, but instead outputs the logistic (S shaped

sigmoid function) of the result to model the probability of class membership (Raschka and

Mirjalili, 2019):

φ(zi) =
1

1 + e−zi
, (2.27)

where z is the linear combination of weights and inputs, similar to equation 2.22. The

output of the sigmoid can be interpreted as the probability of an example belonging to class

1, φ(zi) = P (y = 1|xi; w). A binary outcome is then typically gained by using a threshold:

ŷi =


1, if φ(zi) ≥ 0.5

0, otherwise.

(2.28)
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In order to learn the weights, w, we can use an optimisation algorithm (such as gradient

descent) to minimise a log-likelihood function (as a cost function J):

J(w) =
N∑
i=1

[−yilog (φ(zi))− (1− yi) log (1− φ(zi))] . (2.29)

Similar to linear regression, for large datasets this optimisation can take place using gradient

descent or other optimisation algorithms. As logistic regression produces a decision bound-

ary to separate data, this can be adapted by changing the strength of the regularisation

on the model (Géron, 2019). As well as using one-versus-all and one-versus-one strategies,

logistic regression can also be extended to separate multiple classes using softmax regres-

sion or multinomial logistic regression. For example, in softmax regression each instance

has a score computed for each class, with the probability estimated by applying the softmax

function; which computes the normalised exponential of the scores:

ζ(z)
def
=
[
ζ1, ..., ζN

]
, where ζi

def
=

exp(zi)∑N
s=1 exp(zs)

. (2.30)

This allows for class membership to be predicted based on the class with the highest esti-

mated probability. Training such a model means minimising the cross entropy cost, as this

penalises low target probabilities, so measures how well estimated class probabilities match

a target class (Géron, 2019).

Support Vector Machine (SVM)

A SVM is another common discriminative algorithm which distinguishes classes of objects

by finding a hyperplane that provides the maximum margin of separation for data points be-

longing to different classes. Each feature vector is represented as a point in high-dimensional

space, the size of which is the number of features in the dataset. For example, a dataset

with 2 features could be plotted in 2 dimensional space (using an x- and y-axis), with the

dimensions increasing as the number of features increase (24 features as 24-dimensional

space). Imaginary hyperplanes (lines) are drawn to separate the classes 1 dimension less

than the space (e.g. 1D line in 2D space), these being parallel to the decision boundary
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which separates the classes (Burkov, 2019). During training, the model attempts to find the

optimal values w∗ to separate the classes so that negative-class examples are on one side of

the negative hyperplane, and all positive-class examples fall behind the positive hyperplane

(Raschka and Mirjalili, 2019):

wTxi ≥ 1 if yi = 1, (2.31)

wTxi ≤ −1 if yi = −1. (2.32)

Also, the distance between the positive and negative hyperplanes (margin) needs to be

maximised:

wT (xpos − xneg)

||w||
=

2

||w||
; (2.33)

although in practice, often the reciprocal term 1
2 ||w||

2 is minimised (Raschka and Mirjalili,

2019).

When optimising the model, a subset of training data, known as support vectors, are

selected to compute the optimal separation hyperplane. If data can be linearly separated,

then a hard margin of separation can be used; whereby a point on the edge of a class is used

as the support vector for the decision boundary. These two points, which are the closest

examples of the two separate classes, are used to provide the hyperplane that draws the

largest separation (or margin) between them. This is so that when new data is provided

from a similar distribution, the model has the highest chance of correctly identifying its class

membership (generalisation). However, this method is sensitive to outliers, so a more flexible

method may be preferable. Instead, a soft margin can be used to compute a hyperplane

that still provides a maximum margin of separation, whilst allowing for some errors. This

introduces a slack variable, ξ, to the linear constraints:

wTxi ≥ 1− ξi if yi = 1, (2.34)

wTxi ≤ −1 + ξi if yi = −1, (2.35)
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and objective function:

1

2
||w||2 + C

(∑
i

ξi

)
. (2.36)

The hyperparameter C determines the trade-off between increasing the size of the de-

cision boundary and ensuring that xi,j is on the correct side of the decision boundary;

resulting in a trade-off between optimal separation of the training data and classification of

future examples (Burkov, 2019). Furthermore, if classes cannot be linearly separated, the

input feature space can be projected to higher dimensions using the kernel trick (e.g. radial

basis kernel; Cover, 1965; Varsavsky et al., 2011a), where the data may be separable linearly

(see figure 2.15). The kernel trick avoids actually doing the transformation of the vectors

into higher dimensions and computing their dot product, by using the kernel function as

a modified dot product that only works with the original lower dimensional space; relying

on the fact that each coordinate of a transformed vector Φ(x) is a function of the coordi-

nates of the lower dimensional vector x anyway. After “transformation”, the data can then

be mapped back into the original feature space to create a nonlinear separation boundary

(Duun-Henriksen et al., 2012b). SVMs can therefore be used to model non-linear decision

boundaries and are generally robust to overfitting in high-dimensional space. Comparative

to other subsequently discussed models (e.g. Deep Learning), SVMs are faster to implement

on small- to medium-sized datasets (Varsavsky et al., 2011a), and are not as effected by an

Figure 2.15: Linear and non-linear SVM decision boundaries on two features.
Data Source: The Epileptologie Database (Andrzejak et al., 2001)
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over-representation of data in the training phase due to over-parameterization or over-fitting

(Gonzalez-Vellon et al., 2003; Shoeb et al., 2004). Furthermore, SVMs always converge on

the same answer given identical data. However, even though kernels do not actually trans-

form data onto higher dimensions, they are still generally computationally expensive and

do not scale well to larger datasets; linear kernels having a running time of O(mn), and

non-linear kernels running between O(m2n) and O(m3n).

Decision Tree (DT)

Decision trees, in their most basic form, effectively ask a series of questions in order to

partition datapoints into nodes (bins). An algorithm starts at a tree root and then splits the

data based on the features that gives the largest information gain. This splitting procedure

occurs until all the samples within a given node all belong to the same class. A limit on

nodes, or tree depth, is often set to avoid over-fitting due to a deep tree. To split using

information gain relies on calculating the difference between an impurity measure of a parent

node and the sum of the impurities of its child nodes; information gain being high when

impurity of the child nodes is low. An optimisation function to maximise information gain,

IG, at each split can be defined as (Raschka and Mirjalili, 2019):

IG(Vp, f) = I(Vp)−
C∑
c=1

Nc

Np
I(Vc). (2.37)

Here f is the feature used for the split, Vp and Vc are the parent and child dataset nodes, I is

the impurity measure (see equation 2.39), Np is the total number of training examples in the

parent node, and Nc is the number of examples in the cth child node (Raschka and Mirjalili,

2019). Different algorithms can be used to define how trees are produced, such as Iterative

Dichotomiser 3 (ID3; Quinlan, 1986), C4.5 (Quinlan, 2014), and Classification And Regres-

sion Tree (CART; Breiman et al., 1984). We choose here to focus on the CART algorithm

as an optimised version is implemented into the popular Python package Scikit-learn,

used in this thesis. Scikit-learn, similar to other libraries, reduces the search space by
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implementing binary trees, meaning parent nodes always have two children:

IG(Vp, f) = I(Vp)−
Nleft

Np
I(Vleft)−

Nright

Np
I(Vright). (2.38)

The training set is split into two subsets using a threshold on a single feature by searching

for the pair that produces the “purest” subset, based on size and minimisation of a cost

function. Once split, it uses the same logic recursively until the maximum depth is reached

or a split cannot be found that reduces impurity.

Three impurity measures that are commonly used in binary decision trees are Gini im-

purity, entropy, and classification error (Raschka and Mirjalili, 2019). For example, entropy,

IH , can be used to gain the proportion of the examples that belong to class l, p(i|Vt), for a

particular node, Vt:

Ih(Vt) = −
l∑

i=1

p(i|Vt) log2 p(i|Vt). (2.39)

where p(i|Vt) 6= 0. This results in entropy being 0 if all examples at a node belong to

the same class, and maximal if there is a uniform class distribution (Raschka and Mirjalili,

2019).

Due to their hierarchical structure, decision trees can easily model non-linear decision

boundaries, and are generally robust to outliers and scalable to large datasets. However

without regulating the tree depth, they are prone to overfitting to the data (see figure 2.16).

Furthermore, decision trees tend to model their decision boundaries as orthogonal straight

lines, meaning they are sensitive to the rotation of the dataset. This can be helped by the

use of PCA to rotate the data before fitting the model (Géron, 2019). Nevertheless, due to

the fact decision trees randomly (stochastically) choose features and are sensitive to small

variations in the data, they can create very different models if data is removed or different

random states are assigned (Géron, 2019).
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Figure 2.16: The effects on decision boundaries of decision tree splits when the maximum
depth is set to 2 or there is no maximum.
Data Source: The Epileptologie Database (Andrzejak et al., 2001)

k-Nearest Neighbour (KNN)

KNN is different from the previously discussed algorithms as it does not learn a discrimina-

tive function from the training data, instead memorizing the training data directly (a lazy

learner; Raschka and Mirjalili, 2019). KNN finds the k number of samples that are the most

similar to a data point, xi,j , to be classified (nearest neighbours), based on a given distance

metric, and uses them to assign a class label using a majority vote (Raschka and Mirjalili,

2019). Multiple distance metrics are available, such as the Manhattan distance (p = 1) and

Euclidean distance (p = 2):
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d(xi,xk) =
p

√√√√ D∑
j=1

|xi,j − xk,j |p, (2.40)

or cosine similarity:

s(xi,xk)
def
= cos(∠(xi,xk)) =

D∑
j=1

xi,jxk,j√
D∑
j=1

x2
i,j

√
D∑
j=1

x2
k,j

. (2.41)

The classifier can be easily adapted as new data becomes available, however KNN is suscep-

tible to overfitting due to the curse of dimensionality; where the feature space becomes more

sparse as the number of dimensions of the feature space increases (Raschka and Mirjalili,

2019). Furthermore, classification complexity linearly increases with the number of data in

the training set unless data structures such as k-d trees, a combination of decision trees and

KNN, are used (Raschka and Mirjalili, 2019; Friedman et al., 1977).

Classical Methods for EEG Classification

Regression-based models are commonly used as a baseline model to compare algorithms to

when classifying EEG data for its content (Jiang and Bian, 2019). For example, comparative

to other machine learning models, logistic regression provides an efficient and interpretable

model, as it outputs probabilities for each class which are easy to regularise. Logistic

regression has been found to have comparable performance to other models for patient-

independent seizure detection (Fergus et al., 2015; Samiee et al., 2017), and good sensitivity

for patient-specific seizure detection but a high false positive rate (Supratak et al., 2014).

However, it has a number of limitations in its application; including a tendency to overfit

when data is not independent, as it can over-weight the significance of particular obser-

vations. This therefore means there is a burden of feature engineering to ensure features

are not too correlated. Furthermore, logistic regression can only provide a linear decision

boundary, limiting its use to linear problems, or when feature engineering has accounted for

non-linearities. Often other, more complex models, have preferable performance compara-

tive to logistic regression, but at greater computational cost; such as multilayer perceptrons

(Alkan et al., 2005) and support vector machines (Zhang et al., 2018).
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The most commonly applied classifier for seizure detection is currently a support vector

machine (SVM), typically including features from a Daubechies 4 mother wavelet (e.g. Duun-

Henriksen et al., 2012b; Adeli et al., 2003; Henriksen et al., 2010). Commonly a radial

basis function kernel is used (e.g. Gu et al., 2018; Perera et al., 2017), providing greater

performance than a linear hyperplane (Paulose and Bedeeuzzaman, 2014). However, a

linear hyperplane may be preferable in particular situations where computational efficiency

is important (Elmahdy et al., 2015; Selvathi and Meera, 2018); such as online limited channel

classification (Petersen et al., 2011), or at scale in parallel cluster environments (Sendi et al.,

2018). A feature selection/reduction step before a SVM classifier is common in the more

recent literature; such as PCA (e.g. Yuan et al., 2019a; Selvakumari et al., 2019) or ICA

(e.g. Wang et al., 2017; Ramadhani et al., 2019). However, although commonly used, some

authors have found other classifiers perform better than SVMs when compared on the same

dataset, features, and evaluation paradigm, although not exclusively (e.g. Javaid et al., 2015;

Alickovic et al., 2018; Zhang et al., 2018; Kaleem et al., 2018). These classifiers include K-

nearest neighbour (KNN; Fergus et al., 2015; Hamdan et al., 2015), Gaussian Mixture Model

(GMM; Awan et al., 2016), AdaBoost (Amin and Kamboh, 2016), Logistic Regression (LR;

Samiee et al., 2017), Random Forest (RF; Samiee et al., 2017; Wang et al., 2017), Extreme

Learning Machine (ELM; Chen et al., 2014), Convolutional Neural Networks (CNN; Cao

et al., 2017; Iešmantas and Alzbutas, 2020), and other deep learning variants (Yuan et al.,

2019b).

KNN, applied to EEG commonly in the brain–computer interface (BCI) literature, has

been successfully applied to seizure detection by a number of authors (e.g. Shanir et al.,

2018; Chandel et al., 2019). The hyperparameter k is typically set to 3, with Polat and

Ozerdem (2016) finding this though optimisation, and the Euclidean distance is often used

to determine the nearest neighbours (although distance measures are not always reported).

Rather than supervised learning, it has also been implemented in an adaptive learning

method, so users can provide feedback if there is a false detection and this updates the

model, such as by adding more features (Ibrahim and Majzoub, 2017). KNN has been

found to have better performance than other classifiers, such as LDA (Chandel et al., 2019)

and ensemble methods (Roy et al., 2019a); however others have found it outperformed by
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SVM (Kaleem et al., 2018) and RF (Bhattacharyya and Pachori, 2017) models.

Decision trees have also been previously applied for seizure detection with mixed per-

formance. Authors such as Polat and Güneş (2007) and Mohammadpoory et al. (2017)

find decision trees to have favourable performance compared to other model designs, includ-

ing neural networks and other classical models, but on a small inter-cranial dataset (Bonn

Epileptologie Database). However, on other datasets they have been found to have average

(e.g. Fergus et al., 2016; Tzallas et al., 2009) or worse performance comparative to other

classical models (e.g. Zeng et al., 2016). Feature selection is not commonly used before a

tree-based model as the models produce feature importances based on their criterion func-

tion to measure the quality of a split. Although not always reported, the C4.5 algorithm

(Quinlan, 2014) has been used generate decision trees (Mohammadpoory et al., 2017; Tzal-

las et al., 2009), although CART is another popular choice to generate trees. Decision trees

have also been used to identify seizures using video rather than just EEG (e.g. Pediaditis

et al., 2012). However in more modern literature, decision tree models are more commonly

used in ensembles (e.g. random forests/boosting).

2.6.2 Ensemble Methods

Ensemble methods aim to improve generalisability of an algorithm by combining the pre-

dictions of several estimators (Raschka and Mirjalili, 2019). To achieve this there are two

general methods: averaging and boosting.

Averaging Classifiers

Averaging methods build several separate estimators and then average their predictions,

reducing variance and chance of overfitting an estimator. A bagging method can be used to

average, where an ensemble of base classifiers are each fit on random subsets of a dataset.

Specifically, bagging is when sampling is produced with replacement (Breiman, 1996) and

without replacement being called pasting (Breiman et al., 1999). Therefore both bagging

and pasting allow training to be sampled several times across multiple predictors (Géron,

2019). A random forest is a version of bagging where multiple decision trees are averaged

together to build a robust model. The random forest algorithm draws a random bootstrap
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sample of data and grows a decision tree on this sample. At each node, a number of features

are randomly selected without replacement and the node is split using the feature that

provides the best split according to a given function. This process is repeated and the

prediction is aggregated to assign the class label by majority vote or probabilistic prediction

(Raschka and Mirjalili, 2019; Breiman, 2001). The reason for taking a random subset of

features is to prevent individual trees in the forest becoming too correlated and it reduces

the model’s variance, which in turn reduces the chance of overfitting (Burkov, 2019).

A group of classifiers are not always all decision trees, as multiple different classification

pipelines can be combined. This aggregation can be done by simply selecting the class

label that has been predicted by the majority of the classifiers (more than 50% of votes)

for hard voting. Certain classifiers return the probability of a predicted class label and this

can be used for soft voting instead of class labels (Raschka and Mirjalili, 2019). Soft voting

often achieves a higher performance than hard voting because highly confident votes are

given more weight (Géron, 2019). Ensemble methods work best when the predictors are

as independent as possible, so one way of achieving this is to get diverse classifiers. This

increases the chance they each make different types of errors, which in combination will

improve the overall accuracy (Raschka and Mirjalili, 2019).

Boosted Classifiers

Unlike bagging methods, which tend to work best with complex models (Scikit-learn, 2019),

boosting methods typically use weak estimators that are built sequentially, with each estima-

tor attempting to reduce the bias of the predecessor (Géron, 2019). Weak learners initially

often only have a slight performance advantage over random guessing, but by focusing on

training samples that are hard to classify, the overall performance of the ensemble is im-

proved (Raschka and Mirjalili, 2019). Compared to bagging models, boosting can lead to a

decrease in bias, but boosting algorithms such as AdaBoost are also known for over-fitting

to the training data (high variance; Raschka and Mirjalili, 2019). AdaBoost (Freund and

Schapire, 1997) works by first training a base classifier to make predictions on the training

set and then increases the weights for misclassified training instances. A second classifier

then is trained with these new weights and a prediction of the classes are made. This is
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then repeated until all predictors are trained, wherein the ensemble makes predictions like

bagging, except with weights depending on overall accuracy on the weighted training set

(Géron, 2019).

Gradient boosting works similar to AdaBoost, in that it sequentially adds weighted

predictors to correct predecessors in an ensemble; however, instead of changing weights,

it fits a new predictor to the residual errors (Géron, 2019). Gradient boosting does not

calculate a gradient, as was previously outlined with linear regression, instead the residuals

are used as a proxy of the gradient to show how the model should be adjusted. Gradient

boosting enables the handling of large datasets with lots of examples and features, and

typically outperforms random forests; even if some implementations of the method are slower

to train due to their sequential nature (Burkov, 2019). However, two very effective, efficient,

and parallelizable algorithms, popular at time of writing, are XGBoost (Chen and Guestrin,

2016) and lightGBM (Ke et al., 2017). Both algorithms improve upon basic gradient boosted

decision tree (GBDT) algorithms in a number of ways. Both algorithms can grow trees leaf-

wise, so that each split is in the leaf that reduces the most loss, rather than a level-wise

strategy, which maintains a more balanced tree with splits generally increasing as the levels

increase. Although leaf-wise training is more prone to overfitting, it is more flexible and

applicable to large datasets. Both algorithms allow for methods to find the best split of

features for each leaf, such as histogram-based bin sampling and ignoring sparse inputs,

with some specific to lightGBM; such as data subsampling and exclusive feature bundling.

Histogram-based methods subsample the number of splits evaluated by a model by grouping

features into a set of bins before building each tree. Gradient-based one-side sampling,

available in lightGBM, concentrates on data points with larger gradients rather than data

points that contribute less to training. In order to ensure ignoring small gradients does not

lead to biased sampling, data with small gradients are randomly sampled and these samples

are given increased weight when assessing their contribution to the change in loss. Another

package of note is CatBoost (Prokhorenkova et al., 2018), which makes improvements on

the handling of categorical features and has been shown to be quicker on some datasets than

XGBoost and LightGBM. However, although in both industrial and academic applications

gradient boosted trees are becoming known as consistently strong performing classifiers, the

62



interpretability of final model is still worse than classical models.

Deep Learning

Another popular ensemble method is deep learning, where layers of artificial neurons or

other formulas are stacked on top of each other. Artificial neural networks (ANN’s) can be

supervised or unsupervised (e.g. self-organizing maps) and are often compared to networks

of neurons in the brain; however, although originally inspired by biological neurons (McCul-

loch and Pitts, 1943), modern implementations are usually far from how the brain operates

(Géron, 2019). Nodes in the network are interconnected and typically arranged into input,

middle (hidden), and output layers to complete a given task. The Perceptron is one of the

simplest ANN architectures based on artificial neurons called threshold logic units (TLUs)

or linear threshold units (LTUs). The inputs and outputs are numerical, with each input

associated with a weight. The TLU computes a weighted sum of the inputs, applies a step

function (e.g. Heaviside step function):

heaviside(zi) =


0, if zi < 0

1, if zi ≥ 0

(2.42)

and outputs the result. A single TLU can be used for simple linear binary classification

by computing a linear combination of inputs, and if these exceed a threshold, outputs a

positive or negative class (Géron, 2019). A perceptron is a single layer of TLUs with each

neuron connected to all the inputs (see figure 2.17). Special pass through neurons called

input neurons, which output whatever input is fed, tend to be first in the network; along

with an extra bias neuron that outputs 1 consistently (Géron, 2019). For training the

network, the connection weight between two neurons is increased when they have the same

output as the training label, taking into account the network error, and connections that

lead to the wrong output are not reinforced. One training instance is fed at a time, with

each making a prediction. For each output neuron that produced a wrong prediction, it

reinforces the connection weights that would have contributed to the correct prediction

(Géron, 2019). Perceptrons have a few limitations in their application. They are similar
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Figure 2.17: A perceptron as a node map.
Note. Reproduced from van Veen and Leijnen (2019)

to logistic regression classifiers, but cannot output a class probability, as they only make

predictions based on a hard threshold. Also, as was shown by Minsky and Papert (1969),

they are incapable of solving some trivial problems. However some of these limitations can

be addressed by organising them into multiple layers (Géron, 2019).

Multi-layer perceptrons are comprised of three general layers; a pass-through input layer,

one or more layers of TLUs (hidden layers), and a final layer of TLUs (output layer; see

figure 2.18). Every layer has a bias neuron and is fully connected to the next layer. All unit

inputs are joined to form an input vector, with this vector having a linear transformation

applied to it similar to linear regression. The unit then applies an activation function (gl)

to produce a real valued number, which is then used as the input to the next layer. A single

input layer for a 2D input, x, would be:

y1,1 ← g1(w1,1x). (2.43)

Each unit in a layer is just indexed as a row (wl,u) with l being the layer and u being the

unit. The output of above then feeds into a subsequent layer:

y2,1 ← g2(w2,1y1). (2.44)

The last layer in a feed-forward network usually just has one unit which either has a linear

or logistic activation function depending if it is to be used as a regression or classification

model. Furthermore, when the output classes are exclusive, the output layer is modified by
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Figure 2.18: A multi-layer perceptron as a node map
Note. Reproduced from van Veen and Leijnen (2019)

a shared softmax function so the output of each neuron corresponds to the estimated prob-

ability of the corresponding class (Géron, 2019). There are a number of activation functions

available, with them enabling a model to approximate non-linear functions (Burkov, 2019;

Chollet, 2017a). As well as the previously mentioned logistic function (output range 0 to 1),

common functions include hyperbolic tangent function (tanh), which outputs ranges from

-1 to 1 helping make each layers output more normalised, and the ReLU function, which

is continuous and has an abrupt change in slope (Géron, 2019). In the modern literature

variants on the ReLU are often used; such as SELU, ELU, and Leaky ReLU depending on

the model architecture (see figure 2.19; Chollet, 2017a).

When an ANN has two or more hidden layers it is called a deep neural network (DNN).

This was previously intractable due to problems of exploding or vanishing gradients. As

previously mentioned, a network is trained by back-propagation (or gradient descent using

reverse mode autodiff; Rumelhart et al., 1986) by the process of:

1. Feeding training instances to the network.

2. The output of each neuron in each layer is measured against the output error.

3. How much each neuron in the last hidden layer contributed to each output neurons

error is computed.

4. This is repeated for each previous hidden later until the algorithm reaches the input

layer.
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Figure 2.19: Visualisation of various neural network activation functions.
Note. Reproduced from Géron (2019)

5. The connection weights are then tweaked to reduce error.

For this process to work, the step function has to be changed by an activation function to

allow gradient descent to make progress each step. However, the previous problem was that

the gradient became vanishingly small, preventing parameters from changing, before the

use of modern activation functions and other techniques such as skip connections, gradient

clipping, batch normalisation, early stopping, and dropout. Dropout means each time a

training example is run through the network, some units are randomly excluded, with the

more neurons excluded the higher the regularisation. This regulates the model as it prevents

neurons becoming solely reliant on a small number of their inputs, or as sensitive to slight

input changes, thus making the model as a whole more robust (Géron, 2019). Early stopping

refers to the process of saving the model at each full training pass of the data and using

the model that performs best on the validation data; as training tends to eventually lead
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Table 2.4: A selection of common neural network layers and their associated applications.

Name Description Use

Fully Connected (Dense) Layers
A set of linear functions of all of the input features
used for every independent output.

Global pattern detection

Convolutional Layers
Use a subset of inputs for each output commonly
by moving filters across the inputs in strides.

Local pattern detection
Image recognition
Voice recognition
Natural language processing

Response Normalization Layers
Divide neurons output by a function of the
collective total response.

Pooling Layers
Combine multipule inputs into a single output
using averaging, summing, or taking the
maximum value.

Recurrent Layers
Have forward and backward connections so that
activations can flow back and forth.

Sequence data

to overfitting to the training data, to the detriment of performance on the validation data.

Batch normalisation regulates the model as it standardises the outputs of each layer before

the subsequent layer use them as input (Burkov, 2019).

Networks can be loosely grouped into their number of layers (single or multi-layered),

whether each layer projects only to later layers (feed-forward) or if they also project to

earlier layers (recurrent/feedback), and the number of connections between the layers (fully

interconnected or partially interconnected). Many different layers (see table 2.4) and net-

work architectures exist; with multi-layer perceptrons consisting of all fully connected layers,

convolutional neural networks using fully connected, convolutional, and pooling layers, and

recurrent neural networks using recurrent, and fully connected layers.

Convolutional Neural Network (CNN) models typically have 2D or 3D images as

their input, on which a square moving window is applied to train multiple smaller regression

models on each patch of data. Each regression model learns a parameter matrix which is

convolved with the input matrix to output higher values if they are similar. In deep learning,

convolution refers to element-wise multiplication and addition using a weighting matrix

which is learned during training. A single layer can therefore be viewed as a collection of

multiple convolution filters (each with a bias parameter) which convolve across an image

from left to right, top to bottom, computing a convolution at each iteration with a non-linear

activation function applied to the sum of the convolution (Burkov, 2019). Each subsequent

convolutional layer then treats the preceding layer as a collection of image matrices called
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Figure 2.20: A deep convolutional network as a node map.
Note. Reproduced from van Veen and Leijnen (2019).

volumes, which is the sum of convolutions for the patches of each matrices. Convolutions

are influenced by the stride step of each moving window, meaning how many cells a window

moves across a matrix, as bigger strides create smaller output matrices. Padding is often

used to add additional cells around the image/volume before it is convolved with the filter

(usually with 0); useful when larger filters are used as it aids “scanning” of the image

boundaries. Usually after a convolutional layer there is a pooling layer, which applies

a filter with a fixed operator moving window, usually the max or average, rather than a

trainable filter. This typically improves a model as it reduces the parameters in the network.

This differs from an architecture such as MLP, where each layer added adds an additional

(sizel−1 + 1) · sizel parameters; meaning 1 million parameters are added for each 1000-unit

layer (Burkov, 2019).
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Figure 2.21: A recurrent neural network as a node map
Note. Reproduced from van Veen and Leijnen (2019)

Recurrent Neural Network (RNN) models can be used to label, classify, or generate

a sequence matrix where each row is a feature vector and the row order matters. For these

models, labelling refers to predicting a class for each feature vector, classification is a class

prediction for an entire sequence, and generation outputs a different sequence relevant to

the input sequence (Burkov, 2019). Instead of feeding states forward, units in recurrent

layers have loops so that they have a real-valued state analogous to a memory of prior

timesteps. Feature vectors are input sequentially by order of timestep, so that the state

of each unit is updated by calculating the linear combination of the input feature vector

and the previous timestep in the same layer. The output of a RNN model is typically

a vector unless an MLP is used at the end of the network. RNN models suffer from the

vanishing gradient problem, particularly for long input sequences, and in handling long-term

dependencies; meaning feature vectors at the start of a sequence can be forgotten by the end

of a sequence (Burkov, 2019). This means often gated RNN and long short-term memory

(LSTM) networks are used to allow networks to store information in units for future use.

In these models, activation functions control the reading, writing, and erasing of stored

information in the unit to interpret later timesteps, with what information to control in this

way learned from the data (Burkov, 2019).
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Ensemble Methods for EEG Classification

Ensembles have an increasing popularity across a number of domains, due to typically per-

forming better than classical methods. For example, the winning and third place submissions

in an online seizure detection Kaggle competition both used random forests as classifiers

with predominately frequency derived features (Baldassano et al., 2017). In the literature,

“hardware friendly” random forest implementations are often tested (Wang et al., 2017;

Sopic et al., 2018). Since the class distribution for seizure detection is highly imbalanced,

some authors also use methods such as data under-sampling (e.g. Roy et al., 2019a), over-

sampling with interpolation (e.g. de la Cal et al., 2018), or boosting. Classification models

which use a hybrid method of sampling and boosting, such as the RF variant RUSBoost

(Seiffert et al., 2008), Adaboost, and XGBoost (Roy et al., 2019a), have also been applied to

seizure detection as these methods have low computational cost and high performance com-

parative to common models such as SVM (Solaija et al., 2018; Amin and Kamboh, 2016).

However, despite their common use in other applications and online competitions, bagging

and boosted ensembles are less commonly used in the current seizure detection literature

comparative to the previously discussed “classical” and deep learning models.

In a systematic review of the literature, Roy et al. (2019b) found that most studies

applying deep learning to EEG focus on its application to sleep staging (e.g. Sors et al.,

2018) and abnormalities (e.g. Ruffini et al., 2019), seizure detection and prediction (as re-

viewed below), brain-computer interfaces (e.g. Yoon et al., 2018), and cognitive and affective

monitoring (e.g. Almogbel et al., 2019). CNN models are currently the most popular deep

learning model architecture for EEG, despite RNN architectures designed to explicitly take

temporal dependencies into consideration. Indeed, this is consistent with a recent systematic

evaluation of architectures which concluded that currently convolutional networks tend to

perform better than recurrent networks on a number of sequence modelling tasks (Bai et al.,

2018). Indeed, specific to seizure detection, Tjepkema-Cloostermans et al. (2018) found 2D

CNNs and 2D CNN-LSTMs were the best models from a number of different deep learning

architectures. Although raw EEG data, with the matrix consisting of segmented batches of

channels and time, has been used (Alhussein et al., 2018; Truong et al., 2018; Yuvaraj et al.,
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2018; Zou et al., 2018), EEG recordings are commonly converted to a topomap (Manoranjan

and Parvez, 2015; Thodoroff et al., 2016) or STFT spectrogram (e.g. Cao et al., 2017; Yuan

et al., 2019a; Alkanhal et al., 2018) for input into a CNN model. Furthermore, due to a large

class imbalance in seizure data, training of deep learning models is often done on randomly

under-sampled data (Yuvaraj et al., 2018; Yao et al., 2019; Yuan et al., 2019a).

CNN architectures are sometimes combined with other methods to improve performance.

For example, combining a CNN with an Autoencoder (Alhussein et al., 2018), or using CNN

as a feature extraction method and SVM as a classifier (Muhammad et al., 2018), has been

demonstrated to perform better than just using CNN alone. In other deep learning appli-

cations, there are also architectures which combine aspects of RNN and CNN architectures,

such as replacing fully-connected layers in an LSTM with convolutional layers (Shi et al.,

2015), mixing convolutional and recurrent layers (Bradbury et al., 2017), and adding dila-

tion to the recurrent architecture (Chang et al., 2017; Bai et al., 2018); however comparisons

of these mixed approaches to other methods are limited for seizure detection (Choi et al.,

2019; Thodoroff et al., 2016). There are also a number of CNN models that now can take

into account the history of sequence data for prediction, temporal convolutional networks

(Bai et al., 2018), as well as improvements to RNN models, such as independently recurrent

neural networks (Yao et al., 2019).

Deep learning networks are useful for EEG classification as they are adaptive, so are

suitable for non-stationary signals, and can be trained to detect artefacts that may trigger

false seizure classifications (Varsavsky et al., 2011a). Rather than depending on chosen

features, which largely affect the performance of other machine learning methods (Bengio

et al., 2013), deep learning adopts a data-driven approach which reduces the demands of

signal pre-processing and feature engineering. Although downsampling, re-referencing, and

STFT transformed data are still common pre-processing steps used with these methods,

explicit handling of EEG artefacts only occurs in around 50% of papers, suggesting they are

not always required to achieve meaningful results (Roy et al., 2019b). Although they may

overfit to data with small sample sizes, deep learning generally achieves a better performance

as the sample size increases as they can identify intricate data characteristics missed by

traditional machine-learning methods (Mohr et al., 2017). A further interesting property

71



of deep learning models in general is transfer learning, where model parameters can be

transferred from one model to another. This enables models to be trained to identify an

individuals seizure expression without starting from scratch as a model can be adapted

from a general patient model and tailored to suit an individuals seizure expression (e.g.

Page et al., 2016).

Although, comparative to classical machine learning models, deep learning models gen-

erally have been shown to improve accuracy in their application to EEG by around 5.4%,

improvements specific to seizure detection are generally lower than in other areas (e.g. sleep

scoring; Roy et al., 2019b). Furthermore, ensemble and neural network methods are also

generally harder to interpret (Géron, 2019), with deep learning in particular referenced as

a “black box” approach. However, despite this common criticism, there are a number of

model inspection techniques that are being developed for deep learning methods. For ex-

ample, methods applied to models trained on EEG include a class activation map (Ghosh

et al., 2018), Deeplift (Lawhern et al., 2018), saliency maps (Volker et al., 2018), input-

feature unit-output correlation maps (Schirrmeister et al., 2017), and retrieval of closest

examples (Deiss et al., 2018). These are important in clinical settings as understanding a

models choices will aid clinical decision making and could lead to future discoveries in brain

functioning (Roy et al., 2019b). Despite work in this area, there are still a number of po-

tential limitations in applying deep learning models to EEG data. A practical limitation is

that there are generally fewer labelled examples available for training than in other common

applications (e.g. computer vision and natural language processing). This is largely due to

time and financial costs, as well as ethical issues around privacy, associated with clinical

data collection and labelling. Other approaches beyond supervised learning therefore may

be required to account for this, such as active learning, semi-supervised learning, and the

aforementioned transfer learning. Furthermore, EEG has a low signal-to-noise ratio, dif-

fering it from other successful uses of deep learning in image, text, and speech recognition

(Roy et al., 2019b). Additionally, deep learning models from the current literature tend to

be difficult or impossible to reproduce due to data or code unavailability (Roy et al., 2019b),

with papers generally having poor reporting practices. One aspect particularly lacking is

the description of hyperparameter optimisation, with Roy et al. (2019b) finding 80% of

72



reviewed papers not declaring their strategies. Of papers that did report their strategies,

most use manual trial and error (e.g. Acharya et al., 2018; Dong et al., 2018) or Gridsearch

(e.g. Liao et al., 2018; Aznan et al., 2018), with only a few using more optimal strategies

such as bayesian methods (e.g. Stober et al., 2015; Schwabedal et al., 2018).

2.7 Discussion

There are numerous algorithms for the automatic detection of seizure events, however there

are generally a lack of independent comprehensive reviews of seizure detection algorithms

(e.g. Pauri et al., 1992; Wilson et al., 2004) or evaluations of algorithms on the same dataset

(e.g. Varsavsky et al., 2011a; Baldassano et al., 2017). It is difficult to compare algorithms

between authors and several factors should be considered when assessing a detectors validity.

Firstly, the general application of the methods, be this for intra- or inter-subject classifica-

tion, will impact performance. Intra-subject models, which are trained and tested on each

subject data independently, tend to lead to better performance due to reduced variability

of the data (Roy et al., 2019b). The choice of validation procedure will also impact the

reported performance of the model. Methods such as Leave-N-Subjects-Out tend to lead

to lower performance but, as it uses different subjects for training and testing, it is more

applicable to real-life scenarios where a model has not trained on the data it is presented

with (Roy et al., 2019b). Conversely, K-fold cross-validation, where data is combined from

all subjects in the training and test sets, typically will lead to higher performance (see

Deiss et al., 2018). Even with the same applications and validation procedure, there is a

lack of norms regarding the calculation and reporting of performance metrics. Although

common metrics, such as accuracy, precision, sensitivity, and F1-score, are often reported,

these measures do not inherently account for the timescale to which the scoring relates, and

can therefore be scored in different ways. For example, the Any-Overlap Method (OVLP;

see Ziyabari et al., 2017) is popular across neuroengineering research domains (e.g. Gotman

et al., 1997). OVLP considers an event correctly detected if a prediction is made in close

proximity to the reference event and groups multiple predicted events in the reference event

as a single correct prediction; regardless if a there are gaps between these correct predictions
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or if they only cover a short proportion of the actual event. OVLP has been supported in

its application to seizure detection on the grounds that seizure onset/offset times are typ-

ically ambiguous (Wilson et al., 2003), so this reduces the chance detections of epileptic

activities leading up to a seizure are counted as false positives (Varsavsky et al., 2011a).

This is further supported by the fact that fundamentally algorithms are always compared

to experts visual assessment of the EEG data, which includes bias (Varsavsky et al., 2011a),

and therefore reflects relative, rather than absolute, measures of performance. Nevertheless,

the adoption of performance metrics using OVLP sampling may lead to a misrepresentation

of the actual performance of an algorithm, as it could result in artificially high sensitivities.

Another approach is to use Epoch-Based Sampling (EPOCH), where signals and their asso-

ciated labels are sampled at a fixed epoch duration (e.g. 1 or 30 second windows). Indeed

EPOCH based sampling is often the method of choice to manually label the data; for ex-

ample, sleep data is commonly visually labelled in 30 second windows. However, although

this mitigates some of the problems in the OVLP approach, because the annotations are

given fixed time windows, long seizures inherently have a higher weighting in performance

evaluation; a problem for seizure detection where seizures often vary in length. Furthermore,

models that predict labels across windows of the same duration as it was marked could also

see improved performance to those that choose different window sizes. A number of other

metrics and methods of evaluation have also been proposed that could be applied to seizure

detection and sequential pattern recognition applications in general (Ziyabari et al., 2017;

Wilson et al., 2003; Kelly et al., 2010; Baldassano et al., 2016), which may in the future

help to standardise reporting of detection algorithms.

However, although evaluation methods commonly differ between authors (see table

2.A.1), the use of shared standardised datasets is becoming more common (Wagenaar et al.,

2015). Indeed in a recent systematic literature review of general applications of deep learn-

ing to EEG (Roy et al., 2019b), 54% of the 156 papers reviewed used a publicly available

dataset; however only 19% released their source code, so when taken in combination with the

dataset, only 7% of studies could be fully reproduced. Its worth noting that the definitions

of reproducibility and replicability are often inconsistent or contradictory across different

institutions and scientific disciplines. Here we use definitions from National Academies of
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Sciences Engineering and Medicine (2019), where reproducibility (or “computational repro-

ducibility”) is the act of “a second researcher recomputing the original results, and it can

be satisfied with the availability of data, code, and methods that makes that recomputation

possible. This definition of reproducibility refers to the transparency and reproducibility of

computations” (p.45). Replicability in this case therefore refers to:

When a new study is conducted and new data are collected, aimed at the same

or a similar scientific question as a previous one, we define it as a replication. A

replication attempt might be conducted by the same investigators in the same

lab in order to verify the original result, or it might be conducted by new in-

vestigators in a new lab or context, using the same or different methods and

conditions of analysis. If this second study, aimed at the same scientific question

but collecting new data, finds consistent results or can draw consistent conclu-

sions, the research is replicable. (p.45)

Furthermore, we also define generalisability where “a second study explores a similar sci-

entific question but in other contexts or populations that differ from the original one and

finds consistent results” (p.45-46).

Currently, the most common dataset in the literature appears to be the Bonn Epilep-

tologie Database (http://epileptologie-bonn.de/cms; Andrzejak et al., 2001), which contains

100 single-channel intracranial EEG segments of 23.6 seconds. Although limited in both size

and ecological validity comparative to other more recent datasets, it is still commonly used

by authors to demonstrate classification pipelines in a simple and comparable way. The

European Epilepsy Database (Schulze-Bonhage et al., 2010; Ihle et al., 2012; Klatt et al.,

2012) is another common dataset (e.g. Manzouri et al., 2018), due to its large collection

of scalp and intracranial EEG data; although it is not open-source as it has a limited

access licence. On-the-other-hand, open-source data sharing has been facilitated by the in-

crease of dedicated data sharing platforms such as Kaggle (https://www.kaggle.com), and

the Open Science Framework (https://osf.io), as well as more specific sites such as iEEG

(https://www.ieeg.org; Wagenaar et al., 2013) and PhysioNet (https://physionet.org; Gold-

berger et al., 2000). Kaggle, owned by Google LLC, is an online community of data scientists
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where datasets and classification competitions are hosted. One such competition was the

UPenn and Mayo Clinic’s Seizure Detection Challenge (https://www.kaggle.com/c/seizure-

detection; Baldassano et al., 2017), where 200 teams competed to develop seizure detec-

tion algorithms for 1 second ictal and interictal intracranial EEG segments from 4 ca-

nines (Coles et al., 2013) and 8 patients (Stead et al., 2010; Brinkmann et al., 2009) with

epilepsy. iEEG (Wagenaar et al., 2013) is a specific data sharing platform, aimed at pro-

viding access to over 1,200 datasets of continuous scalp and intracranial EEG hosted on

commercial cloud (Amazon Web Services, using Amazon’s S3 and RDS) and on a local

intranet (using Tomcat, NFS and MySQL) resources (Wagenaar et al., 2015). However

iEEG can be difficult to navigate without knowing specific dataset ID’s. Conversely, Phy-

sioNet’s PhysioBank databases are easy to access and come with software (PhysioToolkit)

to aid signal processing and analysis. PhysioNet hosts the CHB-MIT Scalp EEG Database

(https://www.physionet.org/pn6/chbmit/), which is commonly used due to ease of access

and provision of continuous extracranial recordings of 22 patients (198 seizures total). How-

ever the largest open-source corpus of clinical EEG data, containing 15,757 hours of EEG

recordings from 13,539 patients, is the TUH EEG corpus (Obeid and Picone, 2016). The

corpus contains archival records from Temple University Hospital (TUH) paired with cor-

responding clinician reports. The TUH EEG Seizure Corpus (1.5.0; Shah et al., 2018) is a

subset of the TUH corpus which has been manually annotated to categorise a total of 3055

seizures from 642 patients, split into training and validation sets. As both the CHB-MIT and

TUH EEG Seizure Corpus are among the most common and largest data-sets available in

the literature, research using these datasets are often referenced in the subsequent chapters.

Furthermore, for the reasons outlined above regarding the difficulty comparing performance

metrics, results of many papers using these datasets are presented in tables 2.A.1 and 2.A.3,

rather than written here, to allow for a more holistic context for comparison.

Ultimately, the seizure detection algorithms that have been discussed in this chapter

aim to be integrated into a seizure detection system used in clinical practice (e.g. Mirarchi

et al., 2017; Alhussein et al., 2018; Muhammad et al., 2018). Indeed there have already

been a number of detection systems that have been sold commercially to varying success

(see table 2.A.2). In a review of some of the commercially available algorithms by Varsavsky
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et al. (2011a), CNet was found to have the highest true positive rate (TPR), but as Reveal

had a lower false positive rate (FPR), this was the most reliable detector. The authors

determined in this study that an FPR of 6 per hour was reasonable, due to this meaning

only 10% of an EEG record needed to be subsequently visually reviewed, and a sensitiv-

ity of 80% reasonable, due to the previous literature suggesting experts only agree 80%

of the time on seizure labelling (Wilson et al., 2003). However, the previously discussed

academic advancements in algorithm performance and design promise greater accuracy and

performance in a healthcare environment. Nevertheless, it is worth noting that generally

most modern detection algorithms provide good results for routine intra- and extra-cranial

EEG recording, but are poorer in ambulatory settings due to increased artefacts (Chavakula

et al., 2013), and generally should still be considered complimentary in clinical settings to

traditional EEG visual analysis (Rosso et al., 2006).
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2.A Appendix A
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Figure 2.A.1: Methods for manual correction of artefacts during data collection
Note. Reproduced from Spriggs (2009)
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Figure 2.A.2: Decimation procedure for a discrete wavelet decomposition into components.
Note. Adapted from Varsavsky et al. (2011b)
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Figure 2.A.3: Decimation procedure for a stationary wavelet decomposition.
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Figure 2.A.4: Decimation procedure for a wavelet packet decomposition with 3 levels.
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Table 2.A.1: Seizure onset and detection research papers using CHB-MIT dataset.

Reference Patients Feature(s) Feature Reduction Classifier(s) Evaluation Method ACC SEN SPEC PREC F1 AUC FPR Latency (s)

Shoeb and Guttag (2010) 23 1 frequency - SVM
Leave-one-record-out

- 97.00 - - - - 0.08/h 4.60
cross-validation

Rafiuddin et al. (2011) 23
2 time

- LDA 20% hold-out 80.16 - - - - - - -
2 time-frequency

Khan et al. (2012) 5 2 time-frequency - LDA 20% hold-out 91.80 83.60 100.00 - - - - -

Nasehi and Pourghassem (2013) 23 1 time-frequency/frequency - MLP 10% hold-out - 98.00 - - - - 0.13/h 0-10

Ahammad et al. (2014) 23
2 time

- LC 40% hold-out - 98.50 - - - - - 1.76
6 time-frequency

Chen et al. (2014) 12
2 time

-
SVM Leave-one-patient-out - 88.20 - - - - 0.06/h -

1 time-frequency ELM cross-validation - 92.60 - - - - 0.08/h -
1 phase

Kiranyaz et al. (2014) 23
27 time

- CNBC 75% hold-out - 89.01 94.71 - - - - -5 frequency
12 time-frequency

Mitha et al. (2014)
?s segments 16 time

FS SVM ?? 92.80 88.66 87.00 - - - - -1000 ictal 2 frequency
1000 inter-ictal 1 time-frequency

Paulose and Bedeeuzzaman (2014) 23 1 time -
LOG

40% hold-out
71.62 - - - - - - -

SVM 96.57 - - - - - - -

Pramod et al. (2014) 16
10 time

- MLP
Leave-one-patient-out

- 98.06 99.29 73.29 - - 0.50% -1 frequency cross-validation
1 time-frequency

Supratak et al. (2014) 6
5 raw

- LC & SA
Leave-one-record-out - 87.18 - - - - 1.86/h 11.18

3 raw cross-validation - 100.00 - - - - 7.90/h 6.87
1 raw - 100.00 - - - - 83.13/h 3.36

Zabihi et al. (2013) 4

31 time

CMIM SVM 50% hold-out 98.94 93.78 97.65 - - - - -
7 frequency
12 time-frequency
1 phase

Alotaiby et al. (2015) 9 1 time - SVM Leave-one-record-out 93.16 87.04 98.28 - - - - -

Behnam and Pourghassem (2015) 100hrs 4 frequency - MLP & BPNN
30% hold-out

94.40 - - - - - - -
(20% test, 10% validation)

Elmahdy et al. (2015) 23
4 time

- SVM ??% hold-out 94.82 91.64 98.01 - - - 2.16% -
2 frequency

Fergus et al. (2015) 23

6 time FR LDA

80% SMOTE hold-out

- 82.00 90.00 - - 56.00 - -
2 frequency PCA QDC - 87.00 92.00 - - 63.00 - -

UDC - 52.00 91.00 - - 70.00 - -
POLY - 82.00 90.00 - - 92.00 - -
LC - 88.00 87.00 - - 94.00 - -
KNN - 93.00 94.00 - - 98.00 - -
DT - 90.00 90.00 - - 94.00 - -
PARZEN - 96.00 98.00 - - 82.00 - -
SVM - 90.00 89.00 - - 93.00 - -

Hamdan et al. (2015) 60s segments 5 time SS LDC 20% hold-out - 78.00 88.00 - - 55.00 - -

Javaid et al. (2015) 32,290 epochs 3 time-frequency PCA
SVM 10-fold cross-validation 96.30 93.50 97.40 - - - - -
QDA 50% hold-out 94.00 90.00 96.00 - - - - -
ANN 92.88 75.75 98.66 - - - - -

Shanir et al. (2015) 3 2 frequency - LC 40% hold-out 99.81 100.00 99.81 - - - - -

Xun et al. (2015)
4 - SAE SVM 20% hold-out 77.07 - - - - 88.80 - -

Xun et al. (2016)

Amin and Kamboh (2016) 23 1 time-frequency -
ADABOOST

50% hold-out
- 97.87 - - - - 0.08/h 2.7

SVM - 96.00 - - - - 0.15/h 4.62

Awan et al. (2016) 12

12 time WSR KNN

??

80.90 80.10 81.40 - - - - -
3 time-frequency AB SVM 83.60 84.30 83.70 - - - - -

GMM 84.70 86.10 83.60 - - - - -
MV 88.10 87.90 89.20 - - - - -
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Reference Patients Feature(s) Feature Reduction Classifier(s) Evaluation Method ACC SEN SPEC PREC F1 AUC FPR Latency (s)

Bugeja et al. (2016)
Reduced epochs 1 time

-
SVM

3-fold cross-validation
- 97.98 83.73 - - - - 2.95

around seizures 1 frequency ELM - 98.99 81.39 - - - - 1.26

Chandel et al. (2016) 23
3 time-frequency

- LC 40% ictal hold-out - 100.00 - - - - - 1.90
2 time

Das et al. (2016) 5 1 time-frequency - SVM 20% hold-out
98.33 97.25 98.34

- - - - -
(T7-P7) (T7-P7) (T7-P7)

Fergus et al. (2016)

171 Ictal

2 frequency

PCA QDC - 84.00 86.00 - - 60.00 - -
171 interictal LDA UDC - 51.00 91.00 - - 70.00 - -

LDAi POLY - 78.00 88.00 - - 89.00 - -
LDAf LOGL - 82.00 84.00 - - 90.00 - -
LDAb KNN - 88.00 88.00 - - 93.00 - -
GS DT - 82.00 81.00 - - 89.00 - -
- PARZEN - 81.00 93.00 - - 61.00 - -
- SVM - 85.00 86.00 - - 90.00 - -

Orellana and Cerqueira (2016) 23
2 time

PCA RF 10-fold cross-validation 92.46 89.73 94.77 - - - 6.87/h -1 frequency
1 phase

Orosco et al. (2016) 18 3 time-frequency LW
LDA

30% hold-out
- 92.60 99.90 - - - 0.30/h 0.20

PRNN - 79.90 99.70 - - - 3.90/h 18.40

Thodoroff et al. (2016) 23 1 frequency - CNN & RNN
Leave-one-patient-out

- 85.00 - - - - 0.80/h -
cross-validation

Van Esbroeck et al. (2016) 23 1 frequency - SVM
Leave-one-record-out

- - - - - 96.20 41.73/h 10.12
cross-validation

Vidyaratne et al. (2016) 5 - - RNN
Leave-one-patient-out

- 100.00 - - - - 0.08/h 7.00
cross-validation

Zabihi et al. (2016) 23 6 phase PCA LDA & NB 50% hold-out 94.69 89.10 94.80 - - - - -

Ammar and Senouci (2017) 3
5 time

- ELM ?? 94.85 - - - - - - -
2 frequency

Bhattacharyya and Pachori (2017) 23 1 time-frequency -

RF

10-fold cross-validation

99.41 97.91 99.57 - - 99.90 - -
C4.5 98.64 95.44 99.09 - - 98.80 - -
FT 98.90 95.58 99.30 - - 97.90 - -
Bayes-net 97.98 91.93 98.70 - - 99.30 - -
NB 95.16 88.46 95.74 - - 98.10 - -
KNN 98.35 94.02 98.82 - - 96.40 - -

Bolagh and Clifford (2017) 23 1 frequency - SVM
Leave-one-patient-out

89.84 85.77 - - - - 0.77/h 5.24
cross-validation

Cao et al. (2017) 12 1 Frequency -
SVM

Leave-one-ictal-record-out
80.53 76.06 - - - - - -

7-layer CNN 90.13 96.50 - - - - - -

Chandel et al. (2017) 14
2 time

- LC 25-40% hold-out 98.60 96.43 98.64 - - - - 1.70/0.90
2 time-frequency

Ibrahim and Majzoub (2017) 10 2 time-frequency - KNN
Leave-one-record-out

- 94.50 - - - - 1.14/h 8.60
cross-validation

Khan and Khan (2017) 23 4 time - QC 4-fold cross-validation 86.58 83.47 90.27 86.87 - - - 3.43

Samiee et al. (2017) 23 1 time-frequency -
LOG

75% hold-out
- 70.39 99.09 - 98.85 85.41 - -

RF - 66.35 99.29 - 98.62 82.79 - -
SVM - 60.42 99.49 - 98.89 83.00 - -

Vidyaratne and Iftekharuddin (2017) 23
1 time

- RVM
Leave-one-ictal-record-out

- 96.00 - - - - 0.10/h 1.89
1 frequency cross-validation

Wang et al. (2017) 20 1 frequency
ICA

SVM Leave-one-record-out - 74.20 - - - - 0.36/h 6.00RF
SVM-RFE

Yuan et al. (2017c) 9 - SAE Wave2Vec 20% hold-out 92.42 - - - 95.06 96.77 - -

Yuan et al. (2017b) 9 1 time-frequency - SA 20% hold-out 95.71 98.65 - 96.08 97.71 - - -

Zhu et al. (2017) 23 2 time - QDA
Leave-one-ictal-record-out

- 99.00 100.00 - - - - -
cross-validation
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Reference Patients Feature(s) Feature Reduction Classifier(s) Evaluation Method ACC SEN SPEC PREC F1 AUC FPR Latency (s)

Alhussein et al. (2018) 23 - -
7-layer CNN

hold-out? 99.20 93.50 - - - - - -
& Autoencoder

Alickovic et al. (2018)

8s segments 5 time-frequency

Manual

RF

10-fold cross-validation

100.00 100.00 100.00 - - - - -
1000 inter-ictal 1 empirical mode decomposition SVM 100.00 100.00 100.00 - - - - -
1000 ictal MLP 100.00 100.00 100.00 - - - - -
1000 pre-ictal KNN 100.00 100.00 100.00 - - - - -

Ammar et al. (2018) 1
3 time

PSO SVM ??% hold-out - 91.00 95.00 - - - - -
2 frequency

Deng et al. (2018) 22 3 time-frequency - TTL-FSs
1-4 different patients

94.04 91.29 93.16 - - - - -
trained for each tested

Harpale and Bairagi (2018) 5
4 time

ANOVA FC 50% hold-out 96.48 96.52 95.34 - - - 3.52% -1 frequency
4 time-frequency

Hussain (2018) 6 4 time-frequency - MLP 50% ictal hold-out 92.27 90.54 93.07 - - - - -

Kaleem et al. (2018) 23 3 time-frequency T-Test

LDA

5-fold cross-validation

95.70 97.60 93.80 - - - - -
SVM 99.60 99.90 99.40 - - - - -
NB 96.20 98.00 94.30 - - - - -
KNN 99.50 100.00 99.10 - - - - -
CT 99.30 99.50 99.10 - - - - -

Ke et al. (2018) 18 1 time -
9-layer VGGNet

64%, 16%, 20% hold-out 98.13 98.85 97.47 - - - - -
(CNN & MLP)

Khanmohammadi and Chou (2018) 23 1 time PCA-CSP CP
Leave-one-record-out

- 96.00 - - - - 0.12/h 4.21
cross-validation

Muhammad et al. (2018) 23 1 frequency
8-layer CNN/

SVM
Leave-one-patient-out

99.02 92.35 93.64 - - - - -
Autoencoder cross-validation

Park et al. (2018)
23

- - 11-layer CNN
I ictal event hold-out

85.60 91.70 80.60 - - - - -
(92 Segments) per patient

Perera et al. (2017) 7 3 time-frequency ANOVA SVM 25-40% hold-out - 90.30 99.00 - - - 2.60 3.41

Ramakrishnan and Muthanantha Murugavel (2018) 23 3 time-frequency FRB LDAG & SVM 50% hold-out 98.00 99.00 96.00 - - - - -

Selvathi and Meera (2018) ? 2 time-frequency - SVM 50% hold-out 95.60 - - - - - - -

Sendi et al. (2018) 23 1 time LDA SVM 10-fold cross-validation 99.32 99.41 95.25 99.86 99.64 98.17 - -

Shanir et al. (2018) 22 3 time - KNN
Patient specific 3-fold

- 99.20 99.80 - - - 0.47 -
cross-validation

Solaija et al. (2018) 23 - DMD RUSBoost 50% hold-out - 87.32 98.93 - - - 0.64/h -

Sopic et al. (2018) 10
5 time-frequency

- RF
Leave-one-patient-out

- 96.95 95.77 - - - - -
2 frequency cross-validation

Truong et al. (2018) 23 1 frequency - 5-layer CNN
Leave-one-patient-out

- - - - - 96.10 - -
cross-validation

Wang and Ke (2018) 18 1 time - MLP 5-fold cross-validation 97.93 99.42 96.76 - - - - -

Yao et al. (2018) 23 - - BiLSTM 70%, 15%, 15% hold-out 83.89 83.72 84.06 - 83.63 - - -

Yuan et al. (2018b) 9 1 time PCA MLP ??% hold-out 96.61 - - - 97.85 98.47 - -

Yuan et al. (2018a) 9 1 time-frequency - DAE 20% hold-out 95.71 98.65 - 96.08 97.25 98.74 - -

Zhou et al. (2018) 21 1 frequency - 3-layer CNN 6-fold cross-validation 97.50 96.90 98.10 - - - - -

Alkanhal et al. (2018) 23 1 frequency - 9-layer CNN
Leave-one-patient-out

- 87.95 86.50 - - - 0.75/h -
cross-validation

Chandel et al. (2019) 18 7 time-frequency -
LDA 40% ictal & all-1hr iter-ictal 98.00 100.00 98.05 - - - 4.02/h 1.41
KNN 5-fold cross-validation 99.45 98.36 99.62 - - - 0.80/h 6.32

Choi et al. (2019) 23 1 frequency - CNN & RNN 1 patient hold-out 99.40 89.00 99.50 - - - 0.50/h -

Nandy et al. (2019) 23?
4 time

MOEA
LDA

???
76.41 76.09 76.73 76.61 76.35 83.05 23.27% -

7 frequency QLDA 80.79 73.4 88.2 86.17 79.27 89.98 11.80% -
1 time-frequency SVM 97.05 98.99 95.12 95.29 97.11 99.54 4.88% -

Selvakumari et al. (2019) 23 7 phase PCA SVM/NB 50% hold-out 96.28 97.50 94.50 - - - - -

Yao et al. (2019) 23 - -
LSTM 10-fold reduced 84.35 84.40 84.25 84.70 84.25 - - -
CNN cross-validation 82.90 84.80 81.00 82.56 83.05 - - -
RNN 86.55 84.20 88.90 88.51 86.22 - - -

Yuan et al. (2019b) 23 -

PCA SVM

20% balanced hold-out

79.76 - - - 86.38 85.52 - -
SSAEs SVM 87.04 - - - 91.44 91.71 - -
Skip-gram SVM 86.84 - - - 91.45 90.39 - -
Med2Vec SVM 68.99 - - - 77.12 76.29 - -
- Wave2Vec 93.92 - - - 96.05 98.33 - -
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Reference Patients Feature(s) Feature Reduction Classifier(s) Evaluation Method ACC SEN SPEC PREC F1 AUC FPR Latency (s)

Yuan et al. (2019a) 23 -

PCA SVM 5-fold subject independent 79.46 - - - 0.77 52.00 - -
PCA NN cross-validation 72.68 - - - 29.32 57.89 - -
- WT-CtxFusionEEG 90.25 - - - 72.02 92.87 - -
- CNN & MLP 94.37 - - - 85.34 95.72 - -

Yuvaraj et al. (2018) 23 1 frequency - 11-layer CNN
4-fold subject independent

- 86.29 - - - - 0.74/h 2.10
reduced cross-validation

Zabihi et al. (2019) 23 3 phase - LDA/NN 50% hold-out per patient 95.11 91.15 95.16 - - 93.16 - -

Zhang et al. (2019) 12 1 frequency W-FPE-F ELM 50% reduced hold-out 94.17 98.99 89.33 - - - - -

Zou et al. (2018) 23 - - CNN
Leave-one-record-out

- 99.46 - - - - 0.12/h 8.08
reduced cross-validation

Note. Features refer to a method to extract features and may have multiple levels depending on number of channels or number of decomposition. The best performing version of a pipeline in a paper is
chosen to save on space.

Table 2.A.2: Current and previous commercially available seizure detection systems.

Name Features Classification Expert System Papers

Monitor
Relative amplitude to past averages

Manual Threshold Detections required in more than one channel & epoch
Gotman (1982)

Coefficient of variation Gotman (1990)
Average duration

CNet Difference from background using a Fourier transform
Manual Threshold Groups of averaged channels intially evaluated before individual channels Gabor et al. (1996)
Self-Organising Map Epochs rejected based on EEG amplitudes relative to past and future epochs Gabor (1998)

Detections required to occur at least twice in 15 seconds

Reveal Amplitude, duration, and frequency of Gabor atoms Artificial Neural Network Accounting for the temporal and spatial context? Wilson et al. (2004)

Persyst

Background activity,

Various Neural Networks

Accounts for artifactual components Wilson (2005)
Rhythmicity, Wilson (2006)
Amplitude,
...
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Table 2.A.3: Seizure onset and detection research papers using TUH dataset

Reference Subjects Features Feature Selection/Extraction Classifier Evaluation Method ACC SEN SPEC PREC F1-score AUC FPR

Golmohammadi et al. (2017) 246 3 Frequency
- CNN/GRU

25% Holdout
- 30.83 91.49 - - - 0.88/h

- CNN/LSTM - 30.83 97.1 - - - 0.25/h

Shah et al. (2017) 246 3 Frequency - CNN/LSTM 25% Holdout - 39.15 90.37 - - - 0.95/h

Golmohammadi et al. (2018) 159 3 Frequency

HMM DAE

60% Holdout

- 35.35 73.35 - - - 3.21/h
HMM LSTM - 30.05 80.53 - - - 2.5/h
PCA LSTM - 32.97 77.57 - - - 3.04/h

- CNN/MLP - 39.09 76.84 - - - 3.21/h
- CNN/LSTM - 30.83 96.86 - - - 0.29/h

Zhang et al. (2018) 27

23 Time Small standard deviations removed SVM

10-Fold Cross-Validation

100.00 100.00 99.00 - - - -
2 Frequency Recursive feature elimination SVM LR 98.00 95.00 98.00 - - - -

23 Time-Frequency Backwards feature selection RF 81.00 25.00 97.00 - - - -
Gboost 83.00 40.00 96.00 - - - -

NB 60.00 75.00 56.00 - - - -
KNN 80.00 43.00 90.00 - - - -

Asif et al. (2019) 246 1 Frequency - CNN 5-Fold Cross-Validation - - - - 88.01 - -

Golmohammadi et al. (2019) 370 3 Frequency
Manual Feature Selection HMM

30% Holdout
- 86.78 82.3 - - - -

PCA HMM/DAE - 78.93 95.6 - - - -
PCA HMM/DAE/SLM - 90.1 95.12 - - - -

Iešmantas and Alzbutas (2020) 246
1 Time - SVM

25% Holdout
- - - - - 64 -

1 Frequency - CNN - - - - - 74 -
1 Phase

Ramadhani et al. (2019)
??? 3 Time

Independent Component Analysis SVM 40% Holdout 91.4 90.25 97.83 - - - -
(210 Signals) 1 Frequency

Roy et al. (2019a) 246 3 Frequency

- KNN

5-Fold Cross-Validation

- - - - 90.70 - -
- SGD - - - - 77.50 - -
- XGBoost - - - - 79.60 - -
- Adaboost - - - - 70.70 - -
- CNN - - - - 72.30 - -

Vanabelle et al. (2020)
36 10 Time - XGBoost Leave-One-Patient-Out Cross-validation - 78.72 76.41 33.54 47.04 - -

12 Frequency

George et al. (2020)

???

3 Entropy/Time-Frequency Particle Swarm Optimization ANN 33% Holdout

(normal-focal)
- - - - - -

(150 files/24608s each for 95.10
generalized, focal, normal) (normal-generalised)

- - - - - -
97.4

(normal-focal + generalised)
- - - - - -

96.2
(normal-focal-generalised)

- - - - - -
88.8

Li et al. (2020)

?? 1 Time-Frequency

-

SVM

5-Fold Cross-Validation

85.69 (0.73) - - - 86.85 (0.87) - -
(1983 Seizures) 1 Time-Frequency SVM 90.89 (0.35) - - - 91.90 (0.70) - -

ResNet18 79.58 (0.68) - - - 75.36 (1.51) - -
ConvNet 88.03 (0.68) - - - 89.40 (0.41) - -

CE-stSENet 92.00 (0.15) - - - 93.69 (0.33) - -

Liu et al. (2020) 314 1 Frequency -

CNN

Stratified 5-Fold Cross-Validation

- - - - 95.5 - -
RNN - - - - 95.8 - -

B-CNN - - - - 96.7 - -
B-RNN - - - - 96.9 - -
Hybrid - - - - 97.4 - -

Zhang et al. (2020) 14 - -

SVM Leave-One-Patient-Out Cross-validation 64.3 - - - - - -
RF 61.9 - - - - - -

KNN 69.9 - - - - - -
CNN 80.5 - - - - - -
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Table 2.A.4: Abbreviations for tables 2.A.1 & 2.A.3.

AB Ansari-Bradley Test ANOVA Analysis of Variance
BiLSTM Bidirectional Long Short-Term Memory BPNN Back-Propagation Neural Networks
CMIM Conditional Mutual Information Maximization CNBC Collective Network of (Evolutionary) Binary Classifiers
CNN Convolution Neural Network CP Changepoint
CSP Common Spatial Patterns DT Decision Tree
DAE Denoising Autoencoders DMD Dynamic Mode Decomposition
ELM Extreme Learning Machine FC Fuzzy Classifier
FR Feature-Ranking FRB Fuzzy-Rules-Based Feature Selection
FS Forward Selection FT Functional Tree
GA Genetic Algorithms GMM Gaussian Mixture Model
GS Gram-Schmidt Analysis HMM Hidden Markov Model
ICA Independent Component Analysis KNN K-Nearest Neighbour
LDA Linear Discriminant Analysis LDAB Linear Discriminant Analysis (Backwards Search)
LDAF Linear Discriminant Analysis (Forward Search) LDAG Layered Directed Acyclic Graph
LDAi Independent Search LSTM Long Short-Term Memory
LW Lambda of Wilks POLYC Polynomial Classifier
LC Linear Classifier LDA Linear Discriminant Analysi
LOG Logistic Regression MLP Multilayer Perceptron
MOEA Multi-Objective Evolutionary Algorithm MV Majority Vote
NB Naive-Bayes NN Neural Network
PARZEN Parzen Classifier PCA Principal Component Analysis
PRNN Pattern Recognition Neural Network PSO Particle Swarm Optimisation
QC Quadratic Classifier QDA Quadratic Discriminant Analysis
QDC Quadratic Discriminant Classifier RBF Radial Basis Kernel
RCNN Recurrent Convolutional Neural Network RF Random Forest
RFE Recursive Feature Elimination RNN Recurrent Neural Network
RVM Relevance Vector Machine RIPPER Repeated Incremental Pruning to Produce Error Reduction
SA Stacked Autoencoders SAE Sparse Autoencoder
SG Skip-Gram SLM Statistical Language Modeling
SS Statistical Significance SSAEs Stacked Sparse Autoencoders
SVM Support Vector Machine T-Test Student’s T-Test
TTL-FSs Transductive Transfer Learning Fuzzy Systems UDC Uncorrelated Normal Density Classifier
W-FPE-F K-Means Feature Weighting and FPE-Complexity Degree WSR Wilcoxon Signed-Rank Test
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Chapter 3

Automatic Detection of Absence

Epilepsy Seizures in Paediatric

Electroencephalography Records

3.1 Introduction

Epilepsy is the tendency to have unprovoked and recurrent seizures, which are often ac-

companied by an alteration of consciousness (Giourou et al., 2015; Krumholz et al., 2007).

Clinical manifestations of epilepsy are dependent on several factors; such as the particular

epilepsy syndrome, patient age, the brain area that generates seizures, and if discharges re-

main local or propagate to other brain areas (Giourou et al., 2015). Whilst all seizures result

from an increase in cellular excitability, the mechanisms of synchronization differ between

seizures, broadly categorising them as focal or generalized epilepsies. This research focuses

on the detection of generalized epileptiform discharges using in-clinic diagnostic assessment

records from patients diagnosed with absence epilepsy. Absence epilepsy constitutes around

10% of paediatric epilepsy patients (Hughes, 2009; Tanaka et al., 2008), and is characterised

by 9- to 12-seconds bilateral 3Hz generalized spike-and-slow wave discharges of electrical

activity generated from firing neurons (Hughes, 2009). Absences may be termed “frontal

absences” to acknowledge the fast propagation of a seizure generated from a frontal fo-
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cus (Holmes et al., 2004); as although historically categorised as “primarily generalized” in

nature, there is an increasing acceptance that seizures originate in local ictogenenic microcir-

cuits which propagate to other areas (Paz and Huguenard, 2014; Holmes et al., 2004). The

clinical symptoms include a blank stare, interrupted activities, slowed speech, and upward

rotation of the eyes (Sakkalis et al., 2013). Hyperventilation activates a seizure in a majority

of childhood patients, whereas phoneic stimulation is only associated with a minority (Durá

Travé and Yoldi Petri, 2006). Particularly when the onset is in early adolescence, gener-

alized tonic-clonic seizures (GTCS) may also occur, with the occurrence of these seizures

associated with a worse prognosis (Tovia et al., 2006). Furthermore, sometimes polyspikes

appear before the onset of classic 3Hz generalized spike-and-waves; with these patients sug-

gested to be associated with an intermediary form of idiopathic generalized epilepsy that

may be drug resistant (Tatum et al., 2010).

The diagnosis of epilepsy relies on the identification of clinical features specific to a

particular epilepsy syndrome. Electroencephalography (EEG), magnetic resonance imaging

(MRI), and verbal descriptions of seizures are the most commonly available information to

neurologists; with hospital records, seizure diaries, and videos of patient events desirable

(Bidwell et al., 2015). In-clinic scalp EEG is useful for diagnosis as it provides a non-invasive

method to characterise the mean electrical activity generated by the synchronous firing of

open field neurons at a high temporal resolution. Typically, in the UK National Health

Service (NHS), patients have an approximately 30-minute scalp EEG assessment, during

which the patient may be asked to hyperventilate and exposed to photic stimulation to

provoke a seizure. If a diagnosis is suspected, but not gained, a patient may then have

a longer EEG assessment. Human experts, trained to qualitatively assess EEG records,

will look for seizure-like oscillations that occur for a long duration and over a number of

channels; however this manual review of EEG is time consuming, expensive, and prone to

error (Varsavsky et al., 2011a). Indeed, Wilson et al. (2003) found less than 80% of events

were similarly identified between two or more experts on a previously marked EEG record

and misdiagnosis rates generally are estimated to be between 20-30% in developed countries

(NICE Clinical Guidelines and Evidence Review for the Epilepsies, 2004).

The automation of seizure detection in EEG records has been investigated since the early
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1970s (Tzallas et al., 2012), with modern approaches relying less on heuristic strategies with

a select number of features and more on a variety of signal features with machine learning

classification strategies. The majority of feature extraction methods for EEG signals can

be segmented into categories of time, frequency, and time-frequency analysis methods. In

time domain analysis, the mean (Mitha et al., 2014; Harpale and Bairagi, 2018), variance

(Kiranyaz et al., 2014; Tsiouris et al., 2017), kurtosis (Fergus et al., 2015; Awan et al., 2016),

and skewness (Elmahdy et al., 2015; Hamdan et al., 2015), are often used as basic statistics

for defining the characteristics of EEG waveforms. Frequency domain characteristics are

used to describe the power variations in brain waves at different frequencies, and are often

reduced to mean (Pramod et al., 2014; Van Esbroeck et al., 2016), median (Zabihi et al.,

2013; Fergus et al., 2016), and peak frequency (Hamdan et al., 2015; Fergus et al., 2016)

features. Time-frequency analysis simultaneously extracts time and frequency domains to

more effectively characterise non-stationary EEG signals. Similarly, these are often reduced

to basic statistics such as mean (Javaid et al., 2015; Alickovic et al., 2018), standard deviation

(SD; Ibrahim and Majzoub, 2017), and energy (Rafiuddin et al., 2011; Chandel et al., 2017).

These features are often calculated in windowed sections of the data, sometimes followed by

dimension reduction and extraction techniques, to reduce the complexity of the non-linear

EEG data for classification.

As well as feature extraction, there has also been a broad range of classification ap-

proaches that have been applied (for review see Varsavsky et al., 2011a; Roy et al., 2019b).

However, there is little consensus on the best features and classification pipeline to use,

particularly for specific seizure types. Features commonly differ between papers, however it

is increasingly common that wavelets are used (e.g. Alickovic et al., 2018). Feature selection

or dimension reduction techniques are not commonly used but, where present, the features

that were selected are often not reported or investigated. It is also common that one type

of classifier is predominately focused upon, with some papers failing to provide adequate

performance comparisons for other classifiers using the same features, data, and evaluation

methods. Evaluation methods can vary between papers, with differing amounts of data

held-out or cross-validation folds, or whether complete patient records are separated into

different training and test sets or mixed and separated based on the proportion of seizures
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in the data; with the former approach typically leading to worse performance but a more

naturalistic testing environment.

This research compares three common “classical” classifiers (k-nearest neighbors, ran-

dom forest, support vector machine), separately and grouped in an ensemble. Each classifi-

cation pipeline has the same features extracted for each record, but can vary based on if there

are preceding feature selection or dimension reduction steps before the classifier. Bayesian

optimisation is used both to search for optimal components of the classification pipeline, and

for optimal hyperparameters of these components. This is because often hyperparameters

are chosen based on manual model test runs, previous literature that is not well documented

or justified, computationally expensive grid search methods. By finding optimal hyperpa-

rameters, comparisons between models become more objective. This research therefore aims

to provide a clearer understanding of features and classification pipelines that provide the

best performance for seizure detection on real-world data, tested using a method similar

to how they would be used in practice on unseen patient records (leave-one-patient-out

cross-validation).

This chapter is structured as follows: in section 3.2 we describe how the NHS records

were prepared for feature extraction and subsequent classification. Section 3.3 then presents

the features extracted in each EEG channel, the machine learning classifiers investigated,

the hyperparameter optimisation method, how model performance was assessed, and addi-

tional data handling information. Section 3.4 subsequently describes the validation and test

set results, examines the best performing classifiers and the important features used for clas-

sification, and finally how performance can be improved using prediction post-processing.

We then examine whether performance can be improved by training multi-class, as opposed

to binary ictal/interictal classifiers, to also identify artefact labels. Finally, sections 3.5 and

3.6 discuss our findings and present our conclusions.

3.2 Data Preparation

EEG records from 21 paediatric patients (aged 4-13 yrs, mean age = 8.6) diagnosed with

absence epilepsy were obtained from Royal Preston Hospital in the UK. The EEG is mostly
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recorded at 256 samples per second (512Hz for P5 and P19) using an Xltek 18 channel

system, with electrodes configured using the International 10-20 system. During data col-

lection, a common reference was used for all electrodes (monopolar montage), with the

reference electrode placed on the midline either between Cz and Fz or between Cz and Pz

(see figure 3.2.1). A low impedance high conductive gel (Nuprep) was used to gently scarify

the skin and a conductive paste (Ten20) applied to hold the electrodes in place. Patients

underwent a routine clinical EEG assessment, lasting approximately 30 minutes, and were

asked to hyperventilate and exposed to photic stimulation to provoke a seizure. Data from

these sessions were anonymised and burned to a CD by a clinical physiologist after being

used for diagnostic purposes. The raw data, with accompanying clinical physiologist notes,

were accessed using a portable version of Natus NeuroWorks EEG software. The data was

exported into .txt files to be processed, and later analysed, in Jupyter Notebooks (5.7.0)

using Python 3 (3.6.8). Signals were loaded into an MNE (0.17.0; Gramfort et al., 2013;

Alexandre Gramfort et al., 2014) object and key terms in the physiologist notes, such as

“unresponsive” and “absence”, were used to aid visual labelling of the EEG record appro-

priate for training machine learning models. The duration and labels associated with the

visually assessed data segments were created by the researchers, and reviewed by a Con-

sultant Neurophysiologist, using both the average of all the electrodes and A-P bipolar as

re-reference montages (see table 3.2.1).

Figure 3.2.1: EEG channel locations for NHS diagnostic procedure.
Note. CPZ was the recording reference and FPZ was not used.
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Table 3.2.1: A-P EEG bipolar montage

FP2-F8 F8-T4 T4-T6 T6-O2
FP2-F4 F4-C4 C4-P4 P4-O2
FP1-F3 F3-C3 C3-P3 P3-O1
FP1-F7 F7-T3 T3-T5 T5-O1

Data segments, of varying length, were assigned one of five labels; “Generalized Epilep-

tiform Discharge” (576 secs; 1.45%), “Notched Rhythmic Waveforms” (213 secs; 0.54%),

“Spikes” (14 Secs; 0.04%), “Artefact” (9,123 secs; 22.96%), and “AMPSAT” (10,891 secs;

27.41%). All data that was not marked, was assigned a “Baseline” label (18,911 secs;

47.60%) to represent interictal EEG with no content of interest (see tables 3.A.1 and 3.A.2).

Labelling was not conducted on a second-by-second basis, instead sections of the data that

fell into the above categories were labelled for their onset and offset to the nearest millisecond

to provide a more naturalistic labelling than binned windows. “Generalized Epileptiform

Discharge” encompass EEG data where there are spike-and-wave discharges, sometimes

proceeded by polyspikes (see figure 3.2.2). Segments marked as “Notched Rhythmic Wave-

forms” represent benign EEG activity, likely a result of the patient being in a state of

drowsiness (Britton et al., 2016). “Spikes” represent events that in isolation would be un-

likely to be used as a diagnostic marker, as they could be epileptiform activity or just benign

EEG. “Artefact” segments represent data likely representing physiologic or extraphysiologic

electrical phenomena which distorts the neural signal; from respiratory, eye movement, mus-

cle, or environmental sources. Segments of the data with amplifier saturation (“AMPSAT”)

resulted in missing data or extremely high amplitude signals. These sections of data, typ-

ically at the start of the recording, are caused by the technician adjusting the electrodes

or inputting a small measurement voltage into the EEG device in order to determine the

signal quality of the electrodes (impedance test). As these segments are not representative

of electrical signals produced by the brain, or part of the data assessed for seizures by a

physiologist as they reflect the technician configuring the diagnosis equipment, these were

all filled in with missing data (NumPy NaN) to keep the time series consistent throughout

the record. After feature extraction, sections of “AMPSAT” were removed before training

the classification pipeline.
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(a) Generalized seizure (b) Generalized seizure with preceding polyspikes

Figure 3.2.2: Generalized epileptiform discharges in the P4 record.
Note. Plotted using an average reference with the MNE package.

The MNE objects were converted to Pandas (0.24.2; McKinney, 2010) dataframes and

separated into NumPy (1.15.4) arrays for the raw signal data, labels, and a list of feature

names. The events in each dataset were assigned an integer. For binary classification,

“Notched Rhythmic Waveforms”, “Spikes”, “Artefact”, and “Baseline” data labels were

encoded as 0, to represent interictal periods, and “Generalized Epileptiform Discharge” as

1 (ictal). “Notched Rhythmic Waveforms” and “Spikes” were included with the baseline

data due to the limited number of events (see table 3.A.1).

3.3 Methods

In this section, we start by describing the features extracted in each EEG channel. We

then describe how Bayesian optimization is used to search over pipeline components and

model hyperparameters. Subsequently, a description of how performance was assessed dur-

ing training and on left-out patient datasets is given. Finally, we give a description of the

hardware and software used to implement the training and testing paradigm.
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3.3.1 Feature Extraction

For this study, the data was epoched into window sizes of 2 seconds with a 1 second overlap

(e.g. Henriksen et al., 2010; Duun-Henriksen et al., 2012b), to create quasi-stationary seg-

ments of EEG. For each window, a number of features were calculated for each electrode (see

table 3.3.1). Firstly, the median power in several frequency bands (1-4Hz, 4-8Hz, 8-12Hz,

12-30Hz, 30-70Hz) was calculated using the Welch method for spectral density estimation

(Welch, 1967) from the SciPy library (1.2.1; Virtanen et al., 2020). Welch’s method divides

the data into overlapping segments and computes an average periodogram across the seg-

ments using a fast Fourier transform (FFT). We used a Hann window with a length of 1

second to ensure there was at least 2 cycles of the lowest frequency (1Hz) in the epoch. We

also used this method to get a general power measure for the 1-30Hz band, as well as the

relative power between the 3-12Hz and 1-30Hz bands (Kjaer et al., 2017). The PyWavelets

package (1.0.1; Lee et al., 2019) was used to apply a discrete wavelet transform, using the

Daubechies 4 (db4) wavelet family, to split data into 6 sub-bands: d1, 128-64 Hz (Gamma);

d2, 64-32 Hz (Gamma); d3, 32-16 Hz (Beta); d4, 16-8 Hz (Alpha); d5, 8-4 Hz (Theta);

d6, 4-2 Hz (Delta). A wavelet transform projects the data onto several oscillatory ker-

nels to gain different frequency components which can be analysed in respect to their scale

(Kiymik et al., 2005; Sakkalis et al., 2008, 2006). Wavelets are scaled and shifted temporally

Table 3.3.1: Features extracted from patient records in multiple domains, frequencies, and
channels.

Time Frequency Time-Frequency
Feature Frequency (Hz) Feature Frequency (Hz) Feature

Correlation Coefficients - Correlation Coefficients 2− 4 Mean
Eigenvalues - Eigenvalues Standard Deviation

1− 30 Median Power Log Sum
1− 4 · · · Mean Absolute
4− 8 · · · 4− 8 · · ·
8− 12 · · · 8− 16 · · ·
12− 30 · · · 16− 32 · · ·
30− 70 · · · 32− 64 · · ·
3− 12/1− 30 Relative Power 64− 128 · · ·

2− 4/4− 8 Ratio
4− 8/(2−4+8−16

2 ) · · ·
8− 16/(4−8+16−32

2 ) · · ·
16− 32/(8−16+32−64

2 ) · · ·
32− 64/(16−32+64−128

2 ) · · ·
64− 128/32− 64 · · ·
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so are often used to characterise non-stationary signals (Varsavsky et al., 2011a). In each

sub-band, the mean and SD of the coefficients, the mean absolute power, and the ratio of

the mean absolute values of adjacent sub-bands were calculated (Subasi, 2007b; Alickovic

et al., 2018); as well as the log-sum energy of the sub-band coefficients (Petersen et al.,

2011; Duun-Henriksen et al., 2012b; Kjaer et al., 2017). Additionally, a FFT was applied

to get the frequency magnitudes in the 1-47Hz range, for which correlation coefficients and

eigenvalues were calculated in the time and frequency domains (Baldassano et al., 2017;

Roy et al., 2019a) using functions in the NumPy library (Van Der Walt et al., 2011). For

each patient, all the above features were combined and stored in a .hdf5 file with patient

identifiers used as keys.

3.3.2 Signal Classification

Three “classical” machine learning classifiers were investigated to separate the windowed

EEG signals into ictal and interictal classes; k-nearest neighbour (subsubsection 2.6.1),

support vector machine (subsubsection 2.6.1), and random forest (subsubsection 2.6.2). A

dummy classifier was also trained as a simple baseline for comparison, although results from

this model are only subsequently presented visually. This dummy model makes a prediction

of a class label based on a simple rule, the training set’s class distribution, therefore is not

considered a “learning” algorithm.

3.3.3 Optimisation and Cross-Validation

A Bayesian optimisation method, using the fmin function from the Hyperopt package (0.2;

Bergstra et al., 2013), was used to search over classification pipeline components and model

hyperparameters for each classifier. We used this approach to address the lack of consensus

regarding optimal pipeline components or hyperparameter values in the current literature.

The search space (see table 3.3.2) begins with a random combination of components and

hyperparameters, which are optimised over 1000 iterations. The objective function, the

mean F1-score from a stratified 5-fold cross-validation, was used at each iteration to update

a prior from a history of model configuration and score pairs. For Bayesian optimisation, a

probability model P (score|configuration) is used to search for the most promising candi-
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Table 3.3.2: Hyperparameter spaces for different pipeline components.

Pipeline Step Algorithm Hyperparameter Parameter Space
Feature Selection None - -

SelectFromModel(RF) Max Features randint(1, 541)
Dimension Reduction None - -

PCA Number of Components uniform(0.05, 1.0)
Classification Dummy Classifier - -

KNN Nearest Neighbors randint(1,10)
Algorithm choice(ball tree, kd tree, brute)
p randint(1,10)
Leaf Size normal(m=30, sd=8)

SVM C uniform(0.05, 8)
Kernel choice(linear, rbf)
Gamma uniform(0.005, 2)

RF Number of Estimators normal(m=2000, sd=500)
Criterion choice(Gini, Entropy)
Max Depth choice(None, randint(1, 50))
Min Samples Split uniform(0.01, 1.)
Max Features uniform(0.01, 1.)

Note. choice: choose one; randint: random integer; normal: normal distribution; uniform: value selected
randomly between lower and upper bounds; lognormal: exponential of the normal distribution so the logarithm
of the return value is from a normal distribution.

dates and is therefore quicker than evaluating all possible combinations (e.g. grid search).

Gaussian processes (Williams and Rasmussen, 2006) or regression models, such as decision

trees (Bergstra et al., 2012), can be used for modelling the probability; here we use a Tree

of Parzen Estimators (TPE; Bergstra et al., 2011) algorithm. The TPE fits a Gaussian

Mixture Model (GMM; l(x)) to parameters associated with the smallest loss function val-

ues, and another GMM, g(x), to the remaining values to choose a parameter value, x, that

maximises the ratio l(x)/g(x) (Bergstra et al., 2013). The model implementation weights

recent trials more than older trials and varies the fraction of trials used to estimate l(x) and

g(x). The TPE algorithm provided by the Hyperopt package was chosen as it can handle

real-valued, discrete and conditional variables, as well as being able to optimize large-scale

hyperparameter optimization problems (Bergstra et al., 2015). Furthermore, TPEs allow

for tree-structured dependencies for hyperparameters; for example, a Gamma hyperparam-

eter value can only be selected if the SVM kernel is chosen to be a RBF rather than linear

(NeuPy, 2019).

Separately for each classifier, at each step of the Bayesian optimisation training, features

could be selected using a RF (model stacking), extracted using PCA, or both. Model

stacking, where the input to one model is the output of another, can be used to capture

non-linearities in a complex model which is followed by a more efficient linear classifier.

Model stacking was implemented for feature selection by using the ranked importance of
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features; calculated using the average impurity decrease from a RF model. Although the

number of features to be selected from this RF model could vary between 1 and half the

available features, the rest of the hyperparameter space for the RF when used for feature

selection was fixed to be the same as Birjandtalab et al. (2017); Gini impurity as the criterion

for splits, 1000 separate trees, and the maximum features selected at each node being set

to the square root. For models using SVM as a classifier, the provided range of values for

the penalty (C), kernel, and gamma hyperparameters were based on previous research (see

Kjaer et al., 2017). Most other hyperparameters across the PCA, KNN, and RF pipeline

components were set to cover all available options or centred around the software default;

with the exception being the number of estimators for RF models, which were based on

models in Baldassano et al. (2017) when used in the classifier step of a pipeline. The

data was standardised to mean 0 and variance 1, to remove the mean and scale to a unit

variance, if PCA, SVM, or KNN were in the model. At each Bayesian optimisation iteration

and stratified k-fold, pipelines were trained on an undersample of the data to balance the

number of ictal and inter-ical data during training (e.g. Roy et al., 2019a; Iešmantas and

Alzbutas, 2020; Zhang et al., 2019). Indeed, it has been demonstrated that undersampling

tends to outperform more advanced methods for dealing with extreme class imbalance (e.g.

SMOTE; Wallace et al., 2011; Hulse and Khoshgoftaar, 2007). Reducing the proportion

of ictal and intra-ictal activity is required for most models, not just because of its effects

on decision boundaries, but also as models are slower to train as the number of training

examples, n, increases; particularly for SVM models (Bottou and Lin, 2007). For each

training data set, the Bayesian optimisation process was run 2 times to test if similar models

performed best using different undersampled data, random states, and starting parameters

(see figures 3.A.1-3.A.4). By changing the starting values, so they begin at different areas

in the parameter space, we could check on chain convergence.

3.3.4 Performance Evaluation

Models were trained and tested using a leave-one-patient-out cross-validation scheme, which

trained models on data from all the patients except one. Performance is measured on the

patient that was left out to replicate how the models would be used in practice. The best
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pipelines for each classifier (SVM, RF, KNN) on each held-out dataset were selected and re-

trained on the entire randomly undersampled training data it was previously cross-validated

on, as during cross-validation it was only trained on 4/5th of training data at each fold.

These models were then also grouped into a soft voting ensemble (SVE), which votes using

class probabilities, and re-trained on new undersampled training data. This is to check if

the combination of these models was better than each model individually, which can occur

when models in an ensemble are diverse. A SVE specifically often performs better than a

hard voting ensemble because more weight is given to cases where models are more certain

(Géron, 2019). A number of evaluative metrics were used to assess the final performance of

each model on each held-out patient test set:

Accuracy is used to give general performance information regarding the number of all

correct (True Positive, TP; True Negative, TN) or false (False Positive, FP; False Negative,

FN) predictions comparative to the total number of predictions. Positive in the context

of binary seizure classification refers to ictal (seizure) activity, whereas negative refers to

interictal activity.

Accuracy = 1− FP + FN

FP + FN + TP + TN
(3.1)

Accuracy is a common metric for supervised classification to reflect general model perfor-

mance, however is less focused upon for imbalanced datasets as it will likely over-represent

the true positives for the negative class. For example, a seizure detection model may have

a high accuracy but only produce “naive behaviour” by always labelling each window as

interictal. So despite often being reported (e.g. Alkan et al., 2005; Subasi, 2007a; Liang

et al., 2010; Zeng et al., 2016), it should be viewed as complimentary to other metrics in

this thesis.

Precision compares the total number of positive predicted labels from a model to the

number of true positives.

Precision =
TP

TP + FP
(3.2)
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Precision is a good measure to use when the costs of a false positive is high. Therefore

in a clinical decision support system, where false positives could be identified by a human

interpreter (physiologist) reviewing a models detections, it is less central than other metrics.

Sensitivity (or True Positive Rate/Recall) calculates how many true positives a model

correctly labelled.

Sensitivity =
TP

TP + FN
(3.3)

This is particularly useful when the fraction of correct or misclassified samples in the positive

class are of interest. This is the most commonly reported metric for seizure detection (e.g.

Petersen et al., 2011; Duun-Henriksen et al., 2012b) as it focuses on the ability of the model

to detect seizures correctly.

Specificity (or True Negative Rate) calculates how many of the actual negatives our

model correctly labelled.

Specificity =
TN

TN + FP
(3.4)

Although this metric focuses on the class of less interest (interictal), in the context of seizure

detection, it is often reported to compliment the sensitivity metric.

F1-score is a combination of sensitivity and precision metrics.

F1 = 2 ∗ PRE ∗REC
PRE +REC

(3.5)

F1-score is commonly used when there is an uneven class distribution due to a large number

of true negatives and where false negatives and false positives are focused upon. However,

despite its clear applicability to seizure detection, it is rarely reported.

ROC AUC is an abbreviation for the area under the curve (AUC) of a Receiver Operating

Characteristic Curve (ROC). ROC AUC plots the true positive rate against the false positive

rate (FPR) at different thresholds.

FPR =
FP

FP + TN
(3.6)

100



ROC AUC is useful for summarising the overall accuracy of the model. As it focuses on the

accuracy of the model, it is also a less useful metric in this case, with mixed reporting in

the literature.

False detection rate (FDR/h) is a commonly reported metric in the seizure detection

literature, representing the number of false positives that occur per hour. Because the

recordings in the dataset used in this research are typically shorter than an hour, we first

calculate the proportion of an hour the length of the data is and divide it from the number

of false positives.

FDR/h =
FP

SECS/3600
(3.7)

FDR/h is the only metric not bounded between 1 (best) and 0 (worst).

3.3.5 Data Handling

Feature selection, extraction, and classification pipeline steps all used functions from the

Scikit-learn (0.20.2; Pedregosa et al., 2011) and Imblearn (0.4.3; Lemaitre et al., 2017)

packages. Feature extraction and test set predictions were made in serial on a Dell XPS

13 9370 laptop using an IntelR© CoreTMi7-8550U CPU with 16GB RAM. For each model

classification pipeline (Dummy, KNN, SVM, and RF), on each hold-out training dataset,

serial model training occurred on the Lancaster High End Computing cluster (HEC) using

a single core and 2 gigabytes of memory per core, running separately and simultaneously

across many cores.

Feature extraction for records was relatively quick considering the total number of fea-

tures extracted per record (1083), due to the simplicity of the features chosen to be calculated

(mean = 19.57s, SD = 6.68s), and the short length of each recorded session (mean = 31.53

mins, SD = 10.29 mins). Due to 4 models being trained on each of the 21 patients separately

(leave-one-patient-out), with 1000 Bayesian hyperparameter optimisations, each configura-

tion assessed using the mean F1-score from a stratified 5-fold cross-validation, and 2 separate

iterations of the whole training paradigm with different random states, there were a total

of 840000 models trained for binary classification (168,000 unique pipeline/hyper-parameter

configurations).
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3.4 Results

In this section we start by describing the validation results gained during training. We

then look at the performance of the best pipelines for each classifier across held-out patient

datasets. For each pipeline that contained a feature reduction step, we then examine the

most commonly selected features used to aid classification. We then look at how performance

can be improved using post-processing, so that seizure predictions are only kept if they

occur sequentially for a given length of time. As the most common cause of false positives

was artefactual EEG, we then examine whether seizure detection performance is improved

by training multi-class classifiers that separate features into ictal, interictal, and artefact

labels. Patient results are typically displayed in average, with further patient-by-patient

details available in the supplementary information document (https://bit.ly/3bZQxop).

3.4.1 Binary Classification

The highest scoring pipelines on the validation data, as measured by the F1-score during

training optimisation, ended with a KNN classifier (see figure 3.4.1). Pipelines ending with

a KNN classifier were also the most consistent across the two separate Bayesian optimisation

iterations, both in terms of pipeline components (see figure 3.4.1) and optimal hyperparam-

eters (see figure 3.A.2). Conversely, pipelines using a RF classifier were the lowest scorers

and those ending in SVM classifiers had the most variation for pipeline components (see

Figure 3.4.1: Best validation F1-score for binary classification when individual patient
datasets were left out.
Note. Overlapping bars are plotted where different pipelines were optimal between the two Bayesian opti-
misation iterations.
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figure 3.4.1) and optimal hyperparameters (see figure 3.A.3).

As can be seen in table 3.4.1, across the held-out patient test sets, pipelines with a

KNN classifier generally scored better across performance metrics comparative to other

pipelines. FDR/h was particularly high for pipelines with RF classification comparative to

other models, and is high compared to the broader literature (see table 3.5.1). Relative to

KNN, only sensitivity, AUC, and time taken to predict test set labels were better in other

pipelines.

For each best pipeline that used feature extraction as a step, the features that were se-

lected to reduce the data dimensionality were collected. On average, 325.23 (SD = 177.77)

out of the 1083 features were selected across the models. Pipelines that had KNN classifica-

tion selected the most features and SVM the least (see table 3.4.2); indeed three “optimal”

SVM models used only 2 features (see figure 3.A.9). To investigate which features were

commonly selected across the different pipelines, we first added together the occurrence of

each feature to get the number of times it was selected. To reduce this further, and focus on

the most commonly selected features, we used an implementation of cPOP (Fearnhead et al.,

2019), using rpy2, to determine a threshold beyond which the feature counts significantly

reduce in times selected (see figure 3.4.2a). cPOP aims to detect multiple changes in slope

by finding the “best” continuous piecewise linear fit of the data by minimizing a square

error loss plus an L0 penalty. Although the original paper found a penalty of 2logn worked

well for simulations, we used 8logn to reduce the number of changes detected even further

and to account for the autocorrelation between features selected. The smallest threshold,

determined by the smallest changepoint, was selected in order to find the best features and

channels. As displayed in figures 3.4.2b and 3.4.2c, features predominately in frontal chan-

nels, and covering slower oscillation frequencies, were more commonly selected. However,

these were not restricted to the frequency range associated with absence seizures (3/4Hz),

demonstrating a broad range of frequencies may be useful for classifying absence seizures.

They also appear to be predominately time-frequency (mean of the wavelet coefficients or

mean absolute power) or frequency (median power) based features.

The majority of performance metrics can be improved with post-processing of the predic-

tions. Post-processing is often used to reduce the number of false positives generated from

103



Table 3.4.1: Average (and standard deviation) test scores for binary classification.

Accuracy Sensitivity Specificity Precision F1-score AUC FDR/h Prediction Time (secs)
Classifier

Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD)

KNN 98.73 (2.26) 91.49 (7.94) 98.84 (2.32) 85.12 (15.61) 86.91 (7.94) 96.74 (2.67) 40.91 (82.89) 1.79 (0.54)
RF 92.63 (21.55) 80.95 (36.19) 93.38 (21.59) 55.23 (34.71) 62.87 (33.27) 91.26 (18.38) 237.21 (777.42) 0.44 (0.27)
SVM 97.94 (3.2) 91.37 (7.97) 98.07 (3.24) 77.03 (26.87) 79.74 (22.18) 99.22 (1.09) 68.61 (115.92) 0.07 (0.04)
SMV 98.14 (3.16) 94.96 (4.74) 98.21 (3.24) 79.68 (23.6) 84.23 (16.86) 98.98 (1.56) 63.5 (115.4) 2.29 (0.57)

Note. The best average score for each metric, across classifiers, are in bold.

Table 3.4.2: Most common pipeline steps for binary classification across all datasets with either the most common categorical or average
(and standard deviation) hyperparameter value.

KNN RF SVM
Steps Hyperparameters Average Value (SD) Steps Hyperparameters Average Value (SD) Steps Hyperparameters Average Value (SD)

1. Random Undersample - - 1. Random Undersample - - 1. Random Undersample - -
2. Feature Selection Num Features 469.94 2. Feature Selection Num Features 276.62 2. Feature Selection Num Features 142.5

(52.27) (106.90) (208.79)
3. Scale - - 3. Classifier Criterion Entropy 3. Scale - -
4. Classifier Algorithm k-d tree Number of Estimators 889.81 4. Classifier Kernel Linear

(651.27)
Leaf Size 41.19 Max Depth 15.43 C 2.97

(25.49) (15.32) (2.75)
Nearest Neighbours 2 Minimum Samples Split 0.21 Gamma 0.09

(0) (0.27) (0.07)
Distance Metric Manhattan Max Features 0.45

(0.35)
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(a) Number of times features were selected across the best models with cPOP slope change detections.

(b) Number of selected features in each EEG channel with topoplot. (c) Number of times a feature was selected across channels.

Figure 3.4.2: Most common EEG channels and features selected for when a feature selection component was in a binary classification
pipeline.
Note. Channels and features were reduced using the smallest cPOP threshold.
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(a) Post-processing window length sensitivity (solid)
and precision (dashed) scores for binary classification
predictions.

(b) Average test set score change (%) from a four
second long post-processing window on binary model
predictions.

Figure 3.4.3: Affect of prediction label post-processing on binary classification performance
metrics.

a models predictions (e.g. Duun-Henriksen et al., 2012b). In this work, to post-process the

pipeline predictions, we kept predictions only when they consecutively predicted a seizure

each second for the length of a given window size. Figure 3.4.3a depicts the relationship

between the minimum size of this window and the tradeoff between sensitivity and precision.

The optimal window size of 4 seconds was determined by finding the value between 2 and 20

seconds that gave the maximum mean precision, sensitivity, specificity, and F1-score across

participants. Using this post-processing window size increased precision and F1-score across

all models (see figure 3.4.3b), as well as reduced the number of false positives per hour (see

figure 3.4.5). The most common cause of these false positives appeared to be physiologic or

extraphysiologic electrical artefacts (see figure 3.4.4).

3.4.2 Multi-Class Classification

It was hypothesised that training the models to also distinguish artefactual labels separately

from the ictal and interictal classes could improve seizure detection performance. As such,

the same data and analysis process for binary classification was used to train new pipelines;

differing only in that “Artefact” labels were now separately encoded as 2, keeping “Notched

Rhythmic Waveforms”, “Spikes”, and “Baseline” data labels as 0, and “Generalized Epilep-

tiform Discharge” as 1. SVM was fitted with the (OvR) strategy, with the other classifiers

already being able to handle multi-class labels.
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(a) P16 (b) P17 (c) P18

Figure 3.4.4: Examples of misclassified segments of patient EEG records

The average F1-score on the validation set during training, for the different classifier

types, were similar across patient datasets and the two iterations; KNN (mean = 82.25,

SD = 0.53), RF (mean = 82.99, SD = 0.49), SVM (mean = 83.17, SD = 0.70). Only

pipelines ending with SVM classification had different pipeline components performing best

between the two different runs; varying between feature selection before classification and

both feature selection and PCA before classification. All optimal pipelines ending in KNN

or RF classifiers had preceding feature selection.

Multi-class test set performance is reported in table 3.4.3, both for metrics based on

the seizure class compared to the baseline and artefact labels grouped (one-against-all), and

the weighted metrics, which account for label imbalances across all metrics. It is worth

noting that categorisation of baseline and artefact labels was poorer than with seizures,

as evidenced by the lower scores in the weighted metrics. However, as identifying absence

seizures is the main focus of this research, rather than the models ability to distinguish

baseline and artefact segments, metrics from grouped predictions using an one-against-all

approach are more relevant to our aims and subsequently focused on. Furthermore, these

metrics allow for a direct comparison between the binary and multi-class pipelines.

As can be seen in figure 3.4.6, the gains from training models on the multi-class data

are mainly for pipelines ending with RF models. The most affected metric is FDR/h, where

both RF and SVM see a decease in average false positives (see figure 3.4.5), although there is

a slight increase for KNN and SMV. As can be seen in the ROC plots (figure 3.A.6), models

107



Table 3.4.3: Average (and standard deviation) test scores for multi-class classification when viewed as between the seizure class and the
rest (One-Against-All) or weighted metrics.

Recall
Accuracy

Sensitivity Specificity
Precision F1-score AUC FDR/h Prediction Time

Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD)

KNN 98.23 (2.74) 92.3 (6.24) 98.33 (2.79) 82.48 (20.96) 85.44 (13.69) 97.94 (1.75) 59.2 (99.7) 2.25 (0.77)
RF 98.23 (2.47) 93.66 (5.0) 98.31 (2.53) 73.19 (21.43) 80.42 (14.93) 98.85 (1.56) 59.91 (90.38) 0.39 (0.2)
SVM 98.52 (1.53) 86.69 (16.77) 98.83 (1.37) 77.99 (23.82) 79.26 (19.11) 98.06 (1.97) 41.67 (48.76) 0.53 (0.34)

Seizure
(One-Against-All)

SMV 98.07 (2.68) 94.13 (4.23) 98.15 (2.72) 75.99 (23.32) 81.98 (17.19) 98.92 (1.36) 65.66 (97.49) 3.23 (1.05)

KNN 77.37 (9.17) 77.37 (9.17) · · · · · · 79.43 (8.06) 76.53 (11.41) - - - - · · · · · ·
RF 79.09 (9.12) 79.09 (9.12) · · · · · · 82.68 (5.56) 78.37 (11.7) - - - - · · · · · ·
SMV 79.39 (8.79) 79.39 (8.79) · · · · · · 82.4 (5.59) 78.7 (11.26) - - - - · · · · · ·Weighted Metrics

SVM 78.16 (8.93) 78.16 (8.93) · · · · · · 80.32 (7.96) 77.28 (11.28) - - - - · · · · · ·
Note. The best average score for each metric, across classifiers and method of reporting (One-Against-All and Weighted), are in bold. Sensitivity and specificity are typically
reported separately for binary classification, but are covered by a single metric (recall) for multi-class classification. Prediction time is the same for both methods of reporting as
they reflect the same models, with post-processing occurring after predictions have been made.

Table 3.4.4: Most common pipeline steps for multi-class classification across all datasets with either the most common categorical or
average (and standard deviation) hyperparameter value.

KNN RF SVM
Steps Hyperparameters Average Value (std) Steps Hyperparameters Average Value (std) Steps Hyperparameters Average Value (std)

1. Random Undersample - - 1. Random Undersample - - 1. Random Undersample - -
2. Feature Selection Num Features 222.1 2. Feature Selection Num Features 423.1 2. Feature Selection Num Features 225.9

(45.32) (59.72) (88.57)
3. Scale - - 3. Classifier Criterion Entropy 3. Scale - -
4. Classifier Algorithm Brute Number of Estimators 1517.86 4. Classifier Kernel RBF

(532.34)
Leaf Size 37.1 Max Depth 26.86 C 4.54

(32.3) (13.87) (1.69)
Nearest Neighbours 6.95 Minimum Samples Split 0.01 Gamma 0.02

(1.02) (0) (0.02)
Distance Metric Manhattan Max Features 0.17

(0.13)
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Figure 3.4.5: Average (with standard error of the mean) false positive rate for both the
binary and multi-class pipelines before and after prediction post-processing.

Figure 3.4.6: Average test set score change (%) between binary and multi-class classification
predictions.
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(a) Post-processing window length sensitivity (solid)
and precision (dashed) scores for multi-class classifi-
cation predictions.

(b) Average test set score change (%) from a four
second long post-processing window on multi-class
model predictions.

Figure 3.4.7: Affect of prediction label post-processing on multi-class classification perfor-
mance metrics.

are generally more similar for multi-class predictions than binary; with RF having a greater

AUC than KNN and SVM for multi-class labelling and the inverse for binary labelling.

In general, the best pipelines for the multi-class models had more complex classifiers (see

table 3.4.4) than the binary pipelines (see table 3.4.2). For example, on average there were

more trees, which were each deeper, in RF models, and RBF kernels were more commonly

used than linear kernels for SVM models. This no doubt reflects the added complexity of

the classification problem when more classes are introduced to a model.

Similar to the binary pipelines, where a feature selection component was present, features

in the frontal channels were most commonly selected. However, the features generally

covered a broader range of frequencies (see figure 3.4.8). The average number of features

selected was also smaller in multi-class pipelines (mean = 290.37, SD = 115.31) than binary

(mean = 325.23, SD = 177.77). Also similar to binary classification pipelines, the best

window size for post-processing was also 4 seconds (see figure 3.4.7a). The effect of this

windowing on predictions is also similar for both multi-class and binary pipelines (see figure

3.4.7b); although there is a smaller overall reduction in sensitivity and larger reduction in

the FDR/h (see figure 3.4.5).
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(a) Number of times features were selected across the best models with cPOP slope change detections.

(b) Number of selected features in each EEG channel with topoplot. (c) Number of times a feature was selected across channels.

Figure 3.4.8: Most common EEG channels and features selected for when a feature selection component was in a multi-class classification
pipeline.
Note. Channels and features were reduced using the smallest cPOP threshold.
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3.5 Discussion

We aimed to assess a number of machine learning pipelines for the automatic detection

of absence epilepsy seizures in NHS records using Bayesian optimisation. Similar to other

papers focusing specifically on absence epilepsy seizures (see table 3.5.1), we developed and

tested models on a novel dataset. This dataset reflects records gained from clinical prac-

tice, wherein an investigation of an epilepsy diagnosis is being made, with this research

being the first to use NHS diagnostic records for automated seizure detection. The mod-

els reported from this research have greater accuracy, specificity, and precision than most

previous research, where reported (see table 3.5.1). This is notable due to a number of au-

thors specifically removing artefacts from the data before training and testing models (e.g.

Zeng et al., 2016). Through the combination of a large feature set and feature reduction

techniques, we were also able to identify components of the EEG record that are useful for

identifying absence epilepsy seizures. To our knowledge, this work also provides the first

use of Bayesian optimisation methods to find optimal hyperparameters and pipeline config-

urations for absence epilepsy detection. Finding optimal hyperparameters is important not

only in improving the fit of models, but also to ensure differences between tested models

are not just a result of default/selected parameters rather than the actual behaviour of the

models or features (Zheng and Casari, 2018).

Machine learning algorithms could assist with collecting longer EEG records from pa-

tients with epilepsy, due to the current bottleneck of clinical time required for manual

marking. Indeed, using a new algorithmic approach would no doubt have benefited the

∼ 40% of patients in our dataset who did not have any identifiable generalized epilepti-

form activity in the 30 minute records provided, but were later diagnosed with absence

epilepsy. Indeed, it has been shown that 30% of 451 children with absence seizures who had

no clinically detected seizures in a standard recording procedure had them detected in 1

hour EEG recordings (Glauser et al., 2013; Ulate-Campos et al., 2016). Algorithms would

enable longer recordings with such patients without as large an increase in the marking and

reporting time burden on clinical psychologists this imposes. The algorithms detailed in this

work have a high false positive rate, which would be an issue in a remote patient monitoring
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Table 3.5.1: Comparison of metrics from our approach after post-processing predictions, using a four second window, to previous research.

Reference Participants Data Length Seizures Channels Features Label Classification Classifier Evaluation Method ACC SEN SPEC PREC F1 FPR/h

Alkan et al. (2005)
5 In-Clinic Patients - 20

4 3 Frequency Binary
Logistic Regression

40% Hold-out
90.5 87.9 92.6 - - -

7 Controls - N/A Multilayer Perceptron 92 90 93.6 - - -

Subasi (2007a)
5 In-Clinic Patients - 20

128 4 Time-Frequency Binary
Multilayer Perceptron

40% Hold-out
92 92 91.9 - - -

7 Controls - N/A Adaptive Neuro-Fuzzy Inference System 94 94.3 93.7 - - -

Liang et al. (2010) 3 Rats 1288 secs 44%
1
(Inter-cranial)

Binary

Linear Least Squares
Leave-One-Out
Cross-Validation

95.39 90.33 99.07 - - -
2 Time Linear Discriminate Analysis 95.81 91.37 98.93 - - -
1 Frequency Backpropagation Neural Network 97.37 96.8 97.83 - - -

Support Vector Machine 97.5 97.03 97.83 - - -

Petersen et al. (2011) 19 In-Clinic Patients 11hrs 48m 111
18

1 Time-Frequency Binary Support Vector Machine
Leave-One-Out
Cross-Validation

- 99.1 - 94.8 - 0.5
(F7-FP1)

Duun-Henriksen et al. (2012b)
20 In-Clinic Patients 11hrs 23m 125 19 2 Time

Binary Support Vector Machine
Triple-Repeated Fivefold - 97.2 - - - 0

1 Ambulatory Patient 4 Days - 4 1 Time-Frequency Cross-Validation - 95 - - - 0.037
(F7-FP1) (1 Day Training, 3 Test)

Zeng et al. (2016) 9 In-Clinic Patients 600 secs 33% 19

3 Time Decision Tree
10-Fold
Cross-Validation

71.8 - - - - -
1 Frequency Multi-class K-nearest Neighbor 72.1 - - - - -
1 Time-Frequency (Ictal, Interictal, Pre-Ictal) Discriminant Analysis 76.7 - - - - -

Support Vector Machine 74.3 - - - - -

Kjaer et al. (2017) 6 Ambulatory Patients 96hrs -

1 Time

Binary Support Vector Machine
5-Fold
Cross-Validation

- 98.4 100 87.1 - 0.23
3 4 Frequency
(F7-FP1) 1 Time-Frequency

1 Phase

Our Approach 21 In-Clinic Patients 11hrs 53 19

Binary

K-Nearest Neighbors
Leave-One-Out
Cross-Validation

99.39 88.14 99.55 93.78 90.36 15.77
Random Forest 93.44 80.39 94.22 65.15 70.64 207.49

2 Time Support Vector Machine 98.93 89.07 99.11 86.57 85.28 31.65
4 Frequency Soft Majority Vote 98.95 93.85 99.05 87.73 89.69 33.63
5 Time-Frequency K-Nearest Neighbors

Leave-One-Out
Cross-Validation

99.05 91.36 99.17 87.71 88.59 29.21
Multi-class Random Forest 99.11 92.62 99.21 85.02 87.78 27.97
(Ictal, Interictal, Artefact) Support Vector Machine 99.09 83.14 99.49 85.55 81.66 17.94

Soft Majority Vote 98.88 93.82 98.98 84.44 87.83 36.3

Note. The best average score for each metric, across classifiers and label classification, for our approach are in bold.
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system. However, if ever practically implemented into a clinical environment, the classifi-

cation predictions from these algorithms would be reviewed by a qualified physiologist; so

there is a preference for false positives over false negatives. Indeed, despite the number of

false positives, the best binary algorithms in this work never missed marking a seizure, and

in most cases, accurately marked the full duration of seizures where present. Therefore, in

practice the use of the binary KNN classifier could result in reducing reviewing the full 11

hours of EEG across all 21 patients down to only 14 minutes of EEG segments identified by

the algorithm.

As well as increasing the speed of assessing an EEG record, the best algorithms in this

research have the potential to improve diagnostic accuracy of epilepsy seizures above the

70-80% rates currently estimated to occur in developed countries (NICE Clinical Guidelines

and Evidence Review for the Epilepsies, 2004). Due to the nature of the diagnostic as-

sessment, although collected in controlled environment (NHS clinics), the records are often

contaminated with activity that could be mistaken for epileptic seizures. The sources of

this activity can be rhythmic brain activity from drowsiness, caused by asking patients to

lie down and close their eyes during the assessment, or respiratory artefacts from heavy

breathing. It is key that these EEG segments are not mistaken for epileptic EEG in or-

der to ensure a misdiagnosis is not made. Indeed, it is more difficult to both visually and

automatically accurately classify data with significant numbers of artefacts comparative to

relatively “clean” records. Furthermore, an algorithm trained on multiple types of seizures,

or ensemble of algorithms that each focus on specific seizure types, could also improve di-

agnostic accuracy when assessing a patient for multiple types of epilepsy. Indeed, the type

of epilepsy to be investigated is often not clear before assessment and epileptic patients are

at risk of having co-morbidities and experience multiple seizure types.

A limitation to the current automated absence epilepsy seizure classification literature,

is the difficulty in determining the context recordings were taken in beyond “routine exam-

ination”, as well as their content; due to most authors using private datasets and lack of

data description. In this work we demonstrate the application of machine learning methods

for seizure detection on routine EEG data where a fifth is known to contain artefacts; a sub-

stantial proportion of which is due to the procedure including sustained heavy breathing.

114



This could be one of the causes of increased instances of false positives in this particular

dataset comparative to other authors, or that these metrics are reported on a second-by-

second basis rather than detections grouped together. The artefacts present in the data may

also have influenced the larger optimal window size for post-processing than other authors

(e.g. 2; Duun-Henriksen et al., 2012b; Petersen et al., 2011). Post-processing was reported

separately to the output of the models, as if such models were implemented into practice,

it would likely be useful to manually change the post-processing window size on a record-

by-record basis; dependent on the type of epilepsy being investigated, the number of short

seizure predictions made, and the data quality. Regardless of post-processing, the models

predict seizures on a second-by-second basis, as it is still important to identify short seizures

(Browne et al., 1974; Duun-Henriksen et al., 2012b), even if these brief seizures are unlikely

to affect complex tasks (Goode et al., 1970; Opp et al., 1992). The shortest seizures present

in this dataset were 3/4 seconds (see table 3.A.2), which is likely the main reason why 4

seconds was found to be an optimal window size, as seizures begin to be missed as window

sizes increase beyond this.

A limitation to the labelling of the EEG dataset used in this research, was that no

personally identifiable data, such as videos, were provided to the researchers. Although

written notes about patients seizures and movements, coded alongside video recordings

during and after the assessment by clinical physiologists, were used to aid visual coding by

the researchers, access to the video would have enabled clarification of some EEG features

which were not immediately clear as to their origin. Cautious interpretation of the EEG

was therefore given to the mark-up, with clearly diagnostic or benign features given the

categories of “Generalized Epileptiform Discharge” or “Notched Rhythmic Waveforms”,

and the other more subtle phenomena being categorised as “Spikes” or “Artefact”; these

all reviewed by a Consultant Neurophysiologist. Conversely this does mean the labelling is

focused specifically on the electrical phenomena present within the EEG, which the machine

learning models were trained on. Furthermore, as the data was limited to recording patients

in the clinic of a hospital, these records were shorter and with a narrower range of movement

artefacts present than would be expected in typical ambulatory paediatric measurements.

However, a benefit to this dataset was that it was marked freely, in that segments were
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not marked on a second-by-second basis; instead start and end times were recorded using

indexing to the nearest millisecond. This means the labels reflect the data more closely

than if it was segmented into 1 or 30 second bins, and also does not artificially improve

performance of methods that window data into segments that correspond to how it was

marked.

Although childhood absence epilepsy is generalized in its presentation, focal paroyms

have also been observed to occur in 38% of cases, albeit predominantly in the frontal lobes

(Mariani et al., 2011). Therefore approaches which aim to limit the electrodes assessed (e.g.

Duun-Henriksen et al., 2012b), mean some focal seizures may not be detected. Neverthe-

less, dimensionality reduction methods can be used to best identify features and channels

for seizure detection for faster run time, lower power consumption, and increased accuracy.

Indeed, dimensionality reduction has been used previously by Birjandtalab et al. (2017) to

find the best few EEG channels for seizure detection using the same spectral feature set in

each channel, with a potential future use in flexible and personalised electrode positioning.

The features selected by random forests before classification models in this work do arguably

best reflect the presentation of absence seizures, as they were predominately in frontal chan-

nels and focused on slower oscillation frequencies. However, it is of note that a broad range

of frequencies, predominately around alpha bands and below, as well as the 2-4Hz range,

were selected for classification; suggesting other frequency ranges beyond the typical 3/4Hz

are still useful in determining the occurrence of absence seizures. Indeed respiratory and eye

movement artefacts typically overlap with the slower frequency ranges (>15Hz), meaning a

broader range of slow frequencies may be required for 3Hz seizure identification to account

for this (Duun-Henriksen et al., 2012b). This also lends credence to the idea that feature

selection based on tree classifiers may enable a seizure specific EEG channel profile based

on the focal area of seizures, and with enough data from a patient, enable patient specific

limited channel EEG for long term monitoring based on their unique seizure topography.

However, these inferences should be taken with a degree of caution, as the features in chan-

nels are highly correlated (see figures 3.A.7 & 3.A.7), so feature ranking is unlikely to be able

to capture the information of all features fully (Raschka and Mirjalili, 2019). Indeed, future

investigation into the high correlations of features may be served by grouping features based
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on correlation structure and investigating group selection. Furthermore, future work needs

to confirm chosen channels are indeed the best for classifying a broad range of seizure types

and that these channels are not just selected due to just having less noise/artefacts present.

Additionally, similar to Fearnhead et al. (2019), the penalty value selected for reducing the

feature set currently used no theory to support the choice, with future work recommended

to investigate a range of penalties using methods such as CROPS (Haynes et al., 2017).

A few other papers have also focused on seizure-event detection algorithms to detect

childhood absence seizures (see table 3.5.1). Although difficult to compare to other research,

this work is broadly similar to Petersen et al. (2011) in number of patients, data length,

features (log-sum of wavelet transform), and evaluation method. Although their reported

metrics of sensitivity, precision, and false positives per hour are generally better than the

metrics from this work (see table 3.5.1), their models were trained on individual channels

with fewer features; meaning models were less likely to overfit, at the expense of reporting

different detections in different channels to varying accuracy. Duun-Henriksen et al. (2012b)

has the second highest sensitivity with the lowest false detection rate, comparative to the

previous absence epilepsy literature. However, they also limit the electrodes used, meaning

some focal seizures may not be detected. Furthermore, both papers did not test algorithms

on data without seizures present (e.g. Alkan et al., 2005; Subasi, 2007b) to get a better

representation of the FPR/h. As previously mentioned, ∼ 40% of patient records in this

work did not have any identifiable generalized epileptiform activity. Interestingly, model

performance tended to be worse on these patients comparative to those that had evident

seizures; suggesting future work should test algorithms on records collected with patients

without a history of seizures and potentially on records from epileptic patients without

seizures in.

Some limited comparisons regarding model parameter values between this and other

papers can also be drawn; although it is worth noting optimal pipeline components and

hyperparameter values varied between held-out datasets, as well as between and binary and

multi-class labelled data. For our best performing classifier, KNN, the hyperparameter k

is typically set higher than 2 (e.g. Zeng et al., 2016; Polat and Ozerdem, 2016), as was

found for our binary models. Distance measures are not always reported, however we found
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Manhattan distance was the most commonly used in our optimal models, different from the

Euclidean distance which is often used. Regarding SVM, Liang et al. (2010) similarly found

increased performance with a proceeding PCA step. The value of C, between 3 and 5 for the

binary and multi-class models, is broadly similar to other authors (e.g. Liang et al., 2010;

Petersen et al., 2011), but the gamma parameter was much lower; for example Liang et al.

(2010) used a value of 0.5 whereas values were typically lower than 0.1 in this work. However

it is important to note, model architecture and hyperparameters tend to be manually set by

authors rather than found through a specific search method; although some authors men-

tion testing different parameters without providing details as to the methods (e.g. Petersen

et al., 2011). Specific to the absence epilepsy literature, only Duun-Henriksen et al. (2012b)

and Kjaer et al. (2017) detail their use of a grid search method. These papers used a hyper-

parameter search space that was similar to this work, although they do not provide the final

optimised hyperparameter values found for comparison. As previously mentioned, finding

optimal hyperparameters is important for improving model fit and ensuring differences be-

tween models are not just a result of default/selected parameters (Zheng and Casari, 2018).

It is however also worth noting that the sensitivity to hyperparameter settings do change

depending on the specific classifier.

As training took place on multiple single core CPUs, and the pipelines searched over

could be complex, training time was long (particularly for random forests). However, predic-

tion of class membership was quite quick for most models after features had been extracted

from the data (see tables 3.4.1 & 3.4.3), with binary models generally being quicker. This

means the majority of the prediction time in practice would be spent on extracting features

for the models. SVM were the fastest for making predictions, likely due to predominately

using linear kernels for binary classification and selecting fewer features than other models.

Indeed, for SVM models with P6, P10, and P20 records held-out, only 2 features were se-

lected for classification (see figure 3.A.9). Such simple models, although not providing the

best performance, are certainly interpretable in their classifications, so would have advan-

tages in medical practice where decisions need to be justifiable. As SVMs seem to favour

more simple models, it is unsurprising they are common in both the offline and online de-

tection literature. Still, it is common to use a RBF (e.g. Kjaer et al., 2017; Perera et al.,
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2017) rather than a linear kernel, to compensate for the complexity of the data. This sug-

gests that with sufficient dimensionality reduction, linear models may still be able to be

used in practice. However, there was a lot of variation on the best dimensionality reduction

approach and hyperparameters for each participant hold-out dataset, and with different

random states, for the SVM pipelines comparative to other models.

RF models performed particularly poorly on data with one class (without seizures),

which lead to improvements in its application to data with artefacts also labelled. RF mod-

els are known to be more stable with larger datasets and linear approaches better in their

application to smaller datasets. As training balanced ictal and interictal data, the data size

was substantially reduced, which may have lead to problems of overfitting. Furthermore,

RF models did not have the data scaled before classification, a common practice, but one

which could have lead the models to be influenced by changing data scales between patients

that occur as part of EEG measurement. In general for other models, there was limited

benefit to training data with artefacts additionally labelled over the more common binary

ictal/interictal labels. The main benefit appears to be that model pipelines and optimal

hyperparameters were more similar between models trained on different hold-out datasets

when trained on the three class data comparative to the binary data labels. Explicit meth-

ods to handle artefacts before EEG machine learning classification, beyond basic filtering,

downsampling, and re-referencing, is not always used; suggesting this is not always required

to gain meaningful results (Roy et al., 2019b). Nevertheless, this research did not create

features explicitly demonstrated to separate artefactual data from “normal” EEG, instead

focusing on those known to classify ictal/interictal labels, and did not employ common

automatic/semi-automatic artefact removal methods, such as ICA (Delorme et al., 2012;

Albera et al., 2012; Urigüen and Garcia-Zapirain, 2015). Instead models could employ a

PCA step to reduce data’s dimensionality, although this was only found to be optimal for

SVM models. The use of PCA in its application to EEG data has been questioned as the

assumption of orthogonality between neural activity and typical physiological artefacts, re-

quired for effective PCA application, is not often supported (James and Hesse, 2005; Jung

et al., 2000; Vigário, 1997; Choi et al., 2005). Other methods for handling artefacts could

be investigated in the future to see if it improves performance, such as setting thresholds on
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the number of zero crossings and absolute amplitude before classification (Duun-Henriksen

et al., 2012b).

3.6 Conclusion

We successfully assessed a number of machine learning pipelines for the automatic detec-

tion of absence epilepsy seizures in NHS records. The models reported from this research

have greater accuracy, specificity, and precision than most previous research. Through the

combination of a large feature set and feature reduction techniques, we were able to identify

components of the EEG record that are useful for identifying absence epilepsy seizures. To

our knowledge, this work also provides the first use of optimal hyperparameters and pipeline

components found through Bayesian optimisation methods for absence epilepsy detection.

In the future, such pipelines could reduce the current bottleneck of clinical time required

for manual marking of EEG records. Although there is currently a high false-positive rate,

the best binary algorithms in this work never missed marking a seizure and, in most cases,

accurately marked the full duration of seizures where present. This is promising for later

integration into a full system which provides a preliminary marked record to be reviewed

by a qualified physiologist.
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3.A Appendix B

Table 3.A.1: Length of time, rounded to nearest second, of classification labels in each NHS
patient.

AMPSAT Artefact Baseline Generalised Epileptiform Discharge Notched Rhythmic Waveforms Spikes Total

P1 1025 327 925 18 0 0 2294
P2 447 480 696 7 0 2 1632
P3 0 508 769 32 0 1 1311
P4 1126 392 955 69 0 0 2542
P5 0 323 913 0 0 0 1237
P6 1268 349 954 22 0 1 2595
P7 1389 264 836 167 0 3 2660
P8 1118 546 669 0 7 0 2340
P9 1384 769 628 0 8 0 2789
P10 0 361 842 0 0 0 1203
P11 0 349 833 0 105 0 1287
P12 1008 501 558 35 12 0 2115
P13 262 423 854 0 67 4 1609
P14 69 73 2920 67 3 2 3134
P15 0 566 625 18 0 0 1209
P16 148 622 631 0 0 0 1401
P17 190 552 525 65 0 0 1333
P18 786 382 1039 0 0 0 2206
P19 639 206 1141 16 0 0 2003
P20 14 685 583 53 0 0 1335
P21 18 444 1015 7 10 1 1495
All 10891 9123 18911 576 213 14 39729

Table 3.A.2: Length of each seizure, rounded to nearest second, for each NHS patient.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Sum
P1 18 18
P2 7 7
P3 7 10 6 9 32
P4 13 15 20 11 10 69
P5 0
P6 8 4 3 3 3 22
P7 18 21 27 20 26 15 21 20 167
P8 0
P9 0
P10 0
P11 0
P12 17 17 35
P13 0
P14 5 4 6 4 5 6 4 4 4 4 4 3 4 3 5 3 67
P15 18 18
P16 0
P17 15 11 11 13 16 65
P18 0
P19 16 16
P20 18 18 18 53
P21 7 7
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Figure 3.A.1: Progression of Bayesian optimisation over binary classifiers when P2 was held-out.
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(a) Random state 1.

(b) Random state 2.

Figure 3.A.2: Binary classification hyperparameter values, and F1-score on the validation
set, during training pipelines ending in KNN models when P2 was held-out.
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(a) Random state 1.

(b) Random state 2.

Figure 3.A.3: Binary classification hyperparameter values, and F1-score on the validation
set, during training pipelines ending in SVM models when P2 was held-out.
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(a) Random state 1.

(b) Random state 2.

Figure 3.A.4: Binary classification hyperparameter values, and F1-score on the validation
set, during training pipelines ending in RF models when P2 was held-out.
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(a) Binary Labels

(b) Multi-class Labels

Figure 3.A.5: F1-scores on the validation set during training across classifiers and datasets
with patients held-out.
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(a) Binary Labels (b) Multi-class Labels

Figure 3.A.6: Pipeline Receiver Operating Characteristic Curves (ROCS) for test set performance.
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Figure 3.A.7: Correlations between features in the same channel across the full P19 record.
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Figure 3.A.8: Correlations of the same feature between channels across the full P19 record.
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(a) P6 test data (b) Training/validation and P6 test data (circled)

(c) P10 test data (d) Training/validation and P10 test data (circled)

(e) P20 test data (f) Training/validation and P20 test data (circled)

Figure 3.A.9: SVM decision boundaries on held-out test records where optimal models only
used 2 features.
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Chapter 4

Ensemble Classification of Absence

Epilepsy Seizures in

Electroencephalography Records

4.1 Introduction

In chapter 3 we assessed a number of “classical” machine learning models for their ability

to detect generalized absence seizures. We found models with good overall performance

at the expense of a high false positive rate. Furthermore, class imbalances inherent in the

data were a challenge for effective and consistent model training. A number of methods are

available to address training models on imbalanced datasets; such as increasing the training

weights of the minority class (e.g. Yuan et al., 2017a), undersampling the majority class

(e.g. Roy et al., 2019a), or oversampling the minority class with interpolation (e.g. de la Cal

et al., 2018). Changing the training class distribution has previously been demonstrated

to be important for achieving good model performance (e.g. Zou et al., 2018); with differ-

ent sub-sampling ratios found to improve seizure detection performance to different degrees

(Alkanhal et al., 2018). Similarly, classification models which use a hybrid method of sam-

pling and boosting (e.g. RUSBoost, Adaboost, XGBoost), have also previously been applied

to seizure detection (Seiffert et al., 2008; Roy et al., 2019a). These models have a low com-
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putational cost comparative to deep learning models and high performance comparative to

“classical” models (e.g. support vector machines; Solaija et al., 2018; Amin and Kamboh,

2016); although are not as commonly used in the seizure detection literature as they are in

other applied domains.

The replicability (see section 2.7 for definition) of results from machine learning pipelines

in chapter 3 varied according to a number of factors; such as which patient was left-out of

model training, the classification model used at the end of the pipeline, and the starting

values of an optimisation search space. Another likely contributing factor to the differences

in pipeline performance, across repetitions of the same optimisation method with differ-

ent random states, was that pipelines were only trained on one undersample of the data.

Therefore, different samples of interictal data used when repeating training could have lead

to variations in “optimal” pipeline design. However, balanced ensemble methods allow for

individual models in an ensemble to each be trained on different resamples of the data, so

collectively they are trained using more than just one undersample of the data. For the case

of undersampling epileptic EEG data, this means each model in an ensemble would train

on the same ictal samples but different inter-ictal samples.

Seizure detection classifiers also have a generalisability problem due to the lack of multi-

institution datasets used or compared in published research; a broader issue affecting most

research into machine learning for healthcare applications (see McDermott et al., 2019). This

is in part due to health data being privacy sensitive, therefore it is difficult to release data

openly without de-identification techniques that could affect the utility of the data (Dwork

and Ullman, 2018). What limited datasets are available, are frequently used (see section 2.7),

which leads to a risk of dataset-specific over-fitting in the literature (McDermott et al.,

2019). It is well established that developing models which generalise over care practices

or data formats is challenging (Gong et al., 2017; Nestor et al., 2018), not least due to

differences in data collection and deployment environments as changes to care patterns

evolve (McDermott et al., 2019; Caruana et al., 2015). In this chapter we train and test

models on multiple datasets from different health organisations. We analyse NHS EEG

records from two hospitals in the UK, Royal Preston and Leeds Teaching Hospitals, and

one hospital in the US, the Temple University Hospital. Furthermore, as it has been shown

132



that increasing the size of a dataset typically increases the replicability of machine learning

pipelines (Bouckaert, 2005), we examine the differences in model performance in each dataset

separately, as well as when datasets are combined.

Additionally, we aim to further explore the features that are important for absence

seizure detection in EEG records. In chapter 3 we found slow frequency frontal channel

features were predominately selected when using random forest models in a classification

pipeline; which are similar to the properties looked at by physiologists. Therefore, we exam-

ine whether this finding is replicable using different ensemble models, examining the feature

importances directly instead of feature selection counts. This is important as future clinical

adoption of an algorithm depends on its usefulness and trustworthiness; with the impli-

cation that a model’s processing pipeline needs to be explainable and justifiable (Vollmer

et al., 2020). Beyond trust, recent legislative changes (e.g. the EU General Data Protec-

tion Regulation) has created a legal requirement to make clear the existence of automated

decision-making, provide insight into the decision making process, and explain the signif-

icance and the envisaged consequences of such processing for the data subject (European

Parliament, 2016).

This chapter is structured as follows: Section 4.2 describes how the datasets were pre-

pared for feature extraction. Section 4.3 introduces the extracted features, machine learning

classifiers, and hyperparameter optimisation method used. Section 4.4 describes the valida-

tion and test set results, then examines the best performing classifiers and the important

features used for decision making, and finally how performance can be improved using pre-

diction post-processing. Finally, sections 4.5 and 4.6 discuss our findings and present our

conclusions.

4.2 Data Preparation

In addition to the previously described NHS dataset introduced in chapter 3, hereby refereed

to as NHS (Preston), two additional datasets were used in this study; NHS (Leeds), and

the Temple University Hospital (TUH) EEG Seizure Corpus (v1.5.0; Shah et al., 2018).

This allows us to compare ensemble models to classical models in chapter 3 using the NHS
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(Preston) data, as well as also compare performance across datasets from different health

organisations.

NHS (Leeds) is a collection of 20 EEG records from 16 paediatric patients (aged 3-10

yrs, mean age = 6.2), diagnosed with absence epilepsy, from Leeds Teaching Hospitals NHS

Trust. The EEG signals were mostly sampled at 512Hz, with one record from P2 recorded

at 200Hz. As in NHS (Preston) records, EEG was collected using the international 10-20

EEG electrode system with a monopolar recording montage using a central midline refer-

ence electrode. Most records are collected using the same diagnostic routine as previously

described in section 3.2, although one record from P2 was collected during longer term in-

clinic monitoring. To prepare the datasets for training, they were first re-referenced to the

average, and key terms in the physiologist notes used to aid visual labelling of the EEG

record in all but 2 records where labels were unavailable (P2 & P5). These records were

still included in the research, with labelling in these cases solely focusing on the EEG data.

The duration and labels associated with the visually assessed data segments were created

by the researchers and reviewed by a Consultant Neurophysiologist. Similar to NHS (Pre-

ston), data segments were assigned one of four labels (see tables 4.A.1 & 4.A.2); Generalized

Epileptiform Discharge (1498.11 secs; 2.85%), Spikes (386.88 secs; 0.74%), AMPSAT (780.85

secs; 1.48%), or Baseline (49929.16 secs; 94.93%). As spikes are not always a clear diagnostic

marker, and this research focuses on binary classification, Spikes and Baseline data labels

were encoded as 0 (interictal) and Generalized Epileptiform Discharge as 1 (ictal; see table

4.2.1). AMPSAT segments were treated similar to chapter 3 and removed before training

the classification pipeline.

We also created a dataset from a subset of patients in the TUH EEG Seizure Corpus

(TUHS); a subset of the TUH EEG corpus (Harati et al., 2014; Obeid and Picone, 2016),

the world’s largest publicly available corpus of clinical EEG data. To prepare the data for

classification, the TUHS dataset was firstly downloaded from the project page on the Insti-

tute for Signal and Information Processing website (Picone and Obeid, 2016) on 24/05/2019.

Eleven patients (mean age = 9.8, 6 female) with 97 absence seizures were identified and used

for the dataset hereafter referred to as the TUH (Absence) dataset. Although all patients

are recorded using the same 10/20 channel configuration, the electrodes in the TUHS are

134



Table 4.2.1: Information on patient records used in each dataset for model training.

NHS (Preston) NHS (Leeds) TUH (Absence)

Patient ID Age (Gender) Seizure Events
Total Time (Seconds)

Patient ID Age (Gender) Seizure Events
Total Time (Seconds)

Patient ID Age (Gender) Seizure Events
Total Time (Seconds)

Ictal Inter-Ictal Ictal Inter-Ictal Ictal Inter-Ictal

P1 13 (NR) 1 17.80 2276.60 P1 7 (NR) 2 15.69 990.31 P1 (00000675) 4, 6 (F) 27 202.70 2279.29
P2 8 (NR) 1 6.65 1625.60 P2 5, 8 (NR) 46 577.28 26070.72 P2 (00001113) 20 (F) 14 83.37 2726.62
P3 7 (NR) 4 32.33 1279.15 P3 5 (NR) 7 46.49 1317.51 P3 (00001413) 10, 12, 14 (F) 11 80.16 3760.82
P4 11 (NR) 5 68.77 2473.08 P4 5 (NR) 0 - 1711.00 P4 (00001795) 9 (F) 2 46.26 1194.74
P5 4 (NR) 0 - 1236.54 P5 5 (NR) 7 61.98 1255.02 P5 (00001984) 6 (M) 9 83.90 1375.10
P6 10 (NR) 5 21.55 2573.02 P6 9 (NR) 3 25.59 1177.41 P6 (00002448) 4 (M) 10 119.96 2101.02
P7 9 (NR) 8 167.14 2492.80 P7 10 (NR) 10 60.44 1294.56 P7 (00002657) 5 (M) 10 133.98 2540.01
P8 5 (NR) 0 - 2340.11 P8 3 (NR) 4 62.76 1136.24 P8 (00003053) 5 (F) 1 16.45 1454.55
P9 9 (NR) 0 - 2789.27 P9 6 (NR) 5 109.55 1147.45 P9 (00003281) 13 (M) 2 19.81 1293.18
P10 11 (NR) 0 - 1203.35 P10 6 (NR) 2 35.53 1230.47 P10 (00003306) 13 (F) 4 31.51 1394.48
P11 7 (NR) 0 - 1287.10 P11 5 (NR) 7 152.44 1258.56 P11 (00003635) 6 (M) 7 19.19 1598.80
P12 4 (NR) 2 34.66 2079.85 P12 4 (NR) 6 28.99 1100.01
P13 7 (NR) 0 - 1609.09 P13 7 (NR) 5 67.63 1182.37
P14 12 (NR) 16 67.33 3066.19 P14 7, 9 (NR) 4 32.36 3677.64
P15 9 (NR) 1 18.07 1190.44 P15 5 (NR) 16 193.79 5370.21
P16 12 (NR) 0 - 1400.93 P16 6 (NR) 4 27.58 1177.42
P17 5 (NR) 5 65.28 1267.61
P18 12 (NR) 0 - 2206.33
P19 11 (NR) 1 16.35 1986.17
P20 5 (NR) 3 52.93 1281.71
P21 11 (NR) 1 7.24 1487.88

Total N/A 53 576.08 39152.80 - N/A 127 1498.09 51096.91 - N/A 97 837.31 21718.61
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either referenced to the average or linked ears montage. Therefore, although one additional

patient was also identified with absence seizures, we removed them as they had a different

EEG reference montage (average rather than linked mastoids). All records were recorded

at 250Hz and all but one patient (P2) was examined routinely; with the exception under

long-term-monitoring. As models were assessed using a patient-specific leave-one-out cross-

validation scheme, the pre-determined groups of training and test sets found in the TUHS

were not used, and session records from the same individual patients were combined.

A combined dataset, consisting of both the NHS (Preston) and NHS (Leeds) datasets,

was also created to see if the model performance could be further improved with more

available data across different institutions. The TUH (Absence) dataset was not included

in this combined set due to differences in the reference montage.

4.3 Methods

In this section we start by describing the features extracted in each EEG channel in sub-

section 4.3.1. In subsection 4.3.2 we then give an overview of the four machine learning

classifiers used to separate features into ictal and interictal classes. Subsection 4.3.3 then

briefly describes how Bayesian optimization was used to search over model hyperparameters,

focusing on differences from chapter 3. For a description of how performance was assessed

during training and on left-out patient datasets, see subsection 3.3.4.

4.3.1 Feature Extraction

Features were chosen based on those most commonly selected for classification from the

random forest model stacking in chapter 3. Firstly, we calculated the median power of

frequency bands using a fast Fourier transform, in 1-4Hz, 4-8Hz, 8-12Hz, 12-30Hz, and 30-

70Hz ranges. We also calculated the mean and mean absolute amplitude of 2-4Hz, 4-8Hz,

8-16Hz, 16-32Hz, 32-64Hz, and 64-128Hz frequency bands, using an undecimated wavelet

transform (UDWT) with the db4 wavelet family. UDWT was used rather than a decimated

wavelet transform (DWT), as although it takes longer to calculate, it has been shown to

result in better discrimination between noise and activity and has a more precise frequency
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localisation (see chapter 2 for details; Mamun et al., 2013). A common feature, that was

not used in chapter 3, was the entropy of a signal. Entropy-based approaches are commonly

used for seizure detection (e.g. Orellana and Cerqueira, 2016; Zhu et al., 2017) as they

quantify the regularity and unpredictability of a non-stationary EEG signal (see chapter 2

for details). Entropy can be applied in a number of ways, with this study using spectral and

sample entropy, due to research showing these are better suited to physiological time-series

than approximate entropy (Richman and Moorman, 2000). Phase can also be calculated

(e.g. Parvez and Paul, 2016), however it is a computationally intensive calculation and, given

the volume of data, was therefore not used. All data was scaled on a patient-by-patient basis

by removing the mean and scaling to a unit variance of 1. Although most models trained

in this research are based around tree classifiers, which do not require data to be scaled,

scaling was conducted because EEG data scales vary according to numerous factors; such

as amplifier gain and electrode contact to the skin. Scaling was completed separately for

each feature in each channel, apart from features in the frequency domain, where scaling

was completed for each type of feature across all frequency bands for each channel (e.g. C3

Mean 2-4Hz, 4-8Hz, 8-16Hz, 16-32Hz, 32-64Hz, 64-128Hz). Scaling across frequency bands

was used to ensure scale relationships between frequency bands were not altered.

4.3.2 Signal Classification

In chapter 3 we found that imbalances in the data were a challenge for effective and consistent

model training. As such, this study focuses on ensemble models that have been shown to

be effective with imbalanced data. We choose to focus on two balanced bagging methods;

a balanced random forest (BRF) and a balanced bagged ensemble of k-nearest neighbours

(BKNN) models, as well as two balanced boosted methods; RUSBoost and LightGBM.

Balanced Bagging Ensembles individually train multiple base classifiers on a random

undersample of data without replacement, which then are used in an ensemble to vote on the

class of unseen data. In other words, instead of training on just one random undersample

of data, this enables the training of individual models on multiple undersamples of data.

Indeed, bagged classifiers over balanced bootstrapped samples have been recommended for
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imbalanced datasets by many authors (e.g. Wallace et al., 2011; Hido et al., 2009; Liu

et al., 2008). Balanced bagging can be applied to most classifiers, although are commonly

used to create a BRF from multiple tree classifiers (Chen et al., 2004). In this research

we used the BalancedRandomForestClassifier from imbalanced-learn (0.5.0; Lemaitre

et al., 2017). As KNN was the best performing model in chapter 3, we also trained a

bagged ensemble of KNN models using the BalancedBaggingClassifier function from

imbalanced-learn with the KNeighborsClassifier from Scikit-learn (0.21.3; Pedregosa

et al., 2011) as the base estimator. To our knowledge, both variants have not been applied

to EEG seizure detection, although BRF has been applied to detect tonic seizures using

surface electromyography (Larsen et al., 2014).

Balanced Boosted Ensembles are typically comprised of weak estimators that are se-

quentially built so that each estimator attempts to reduce the bias of the previous model

(Géron, 2019). In this research we use RUSBoost, which alters AdaBoost (subsubsec-

tion 2.6.2) by adding data sampling into the algorithm, so that examples from the majority

class are balanced and randomly sampled from the full data each iteration (Seiffert et al.,

2008). RUSBoost has been shown to perform comparably to SMOTEBoost, an oversam-

pling method, but is simpler and faster to implement (Seiffert et al., 2009). RUSBoost

has been applied to seizure detection using spectral, spatial, temporal (Amin and Kamboh,

2016), and dynamic mode decomposition (Solaija et al., 2018) features; achieving good sen-

sitivity with low computational cost. In this work we used the RUSBoostClassifier from

imbalanced-learn (0.5.0; Lemaitre et al., 2017). Currently, the KNeighborsClassifier

from Scikit-learn cannot be used with a boosting model as it is unable to change the

sample weight at each fit. Compared to bagging models, boosting generally leads to a de-

crease in bias, however it is prone to overfitting to the training data (high variance; Raschka

and Mirjalili, 2019). Furthermore, some implementations of boosted trees can be slower

than bagged trees as it is easy to parallelise bagging models comparative to boosting. How-

ever, an efficient boosting model is LightGBM (Ke et al., 2017), which has a number of

improvements upon basic gradient boosted decision tree (GBDT) algorithms (see subsub-

section 2.6.2). LightGBM is often compared with XGBoost (Chen and Guestrin, 2016),
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which has previously been used in combination with Bayesian hyperparameter optimisa-

tion to classify seizures in the TUHS dataset, where only KNN was found to surpass its

performance (Roy et al., 2019a). In their application to imbalanced datasets, at the time

of writing, both XGBoost and LightGBM can scale the positive weight and subsample the

data, but only LightGBM can specifically subsample the negative (interictal) or positive

(ictal) samples. Due to this, and their similarities, we chose to focus only on LightGBM

(2.2.3) as a balanced gradient boosting ensemble, rather than both.

4.3.3 Optimisation and Cross-Validation

Similar to chapter 3, a Bayesian optimisation method, using the fmin function from the

Hyperopt package (0.2; Bergstra et al., 2013), was used to search over model hyperparame-

ters for each classifier. The search space (see table 4.3.1) begins with a random combination

of hyperparameters, which were optimised over 1000 iterations. The objective function, the

mean F1-score from a stratified 3-fold cross-validation, was used at each iteration to update

a prior from a history of model configuration and score pairs. Generally, the search spaces

for the hyperparameters were set to cover a range of potential values around either the de-

fault, prior work, or encompassing all available options for the hyperparameter. Each model

had different numbers of available parameters to optimise, with bagged models having less

than boosted models; BKNN (7), BRF (8), RUSBoost (9). LightGBM (12). Having more

hyperparameters to fine-tune can be a limitation as it makes it less clear what the effect

each hyperparameter has on the outcome. Furthermore, for Bayesian optimisation, it means

more runs are required to start finding parameters based on a model; as the optimisation

starts by randomly testing parameters in the search space, more random tests are required

the more hyperparameters searched over. For each training data set, the Bayesian optimi-

sation process was re-run 2 times to test if similar models performed better using different

random states and starting parameters.
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Table 4.3.1: Hyperparameter search spaces for different classifiers.

Algorithm Hyperparameter Parameters

BKNN Nearest Neighbors randint(1,10)
Weights choice(uniform, distance)

Algorithm choice(ball tree, kd tree, brute)
Metric minkowski

p randint(1,10)
Leaf Size normal(m=30, sd=8)

Number of Estimators randint(1,10)
Max Features uniform(0.01, 1.0)

Bootstrap Features TRUE

BRF Number of Estimators randint(1, 2500)

BRF/RUSBoost Criterion choice(Gini, Entropy)
Max Depth choice(None, randint(1, 50))

Min Samples Split randint(2,10)
Min Samples Leaf randint(1, 10)
Max Leaf Nodes choice(None, randint(2, 40))

Max Features uniform(0.01, 1.0)
Minimum Impurity Decrease uniform(0.00005, 0.01)

RUSBoost/LightGBM Learning Rate loguniform(log(0.01), log(0.2))
Number of Estimators randint(1, 200)

LightGBM Boosting Type choice(gbdt, goss, dart)
Num Leaves randint(2, 40)
Max Depth choice(None, randint(1, 25))

Subsample For Bin 200000
Objective binary

Min Split Gain 0
Min Child Weight uniform(0.001, 5.)
Min Child Samples randint(1, 30)

Subsample 1
Subsample Freq 1

Colsample By Tree uniform(0.1, 1.)
Reg Alpha uniform(0., 1.)

Reg Lambda uniform(0., 1.)
Importance Type split
Scale Pos Weight uniform(0., 10.)

Neg Bagging Fraction uniform(0.01, 1.0)

Note. Some hyperparameters are shared between classifiers.
choice: choose one; randint: random integer; normal: normal distribution; uniform: value
selected randomly between lower and upper bounds; loguniform: a log-uniform distribution.
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4.4 Results

In this section, we start in subsection 4.4.1 by describing the validation results gained dur-

ing training. Subsection 4.4.2 then looks at the performance of the best classifiers on each

respective held-out patient test set. In subsection 4.4.3 we examine the most important fea-

tures used in the ensembles for classification. Finally, similar to chapter 3, Figure 4.4.4 looks

at how performance can be improved using post-processing of the predictions. Similar to

chapter 3, patient results are typically displayed in average, with further patient-by-patient

details available in the supplementary information document (https://bit.ly/3bZQxop).

4.4.1 Validation Scores

LightGBM classifiers were the highest scoring models on the validation data, as measured

by the average maximum F1-score gained during training optimisation across each training

dataset where a patient was left-out (see figure 4.4.1). The ordering of the methods, for

both the training times and average maximum validation scores, were similar across the

different datasets. BRF models generally had the lowest maximum validation score, followed

by BKNN, RUSBoost, and LightGBM performing best. The boosting methods (RUSBoost

and LightGBM) generally had similar performance, but LightGBM had a consistently higher

average score, smaller standard deviation of scores, and was faster to train (see table 4.4.1).

All optimal models had similar validation scores between re-runs with different random

states.

The TUH (Absence) dataset had the highest maximum validation F1-score across each

model comparative to other datasets. This could be due to a number of potential factors. A

simple explanation is that there are fewer patients in the sample, meaning there are fewer

folds in the leave-one-patient-out cross-validation and less variability of EEG data compar-

ative to other datasets. Another explanation could be that all files in the TUHS are pruned

versions of original EEG recordings; meaning unlike the other two NHS datasets, there is a

lack of continuous EEG data. This also means these records have fewer artefacts, although

this can only be assessed visually as no artefact labels were provided with the records. Fur-

thermore, hyperventilation and photic stimulation only occurred in 64% of TUH (Absence)
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Figure 4.4.1: Boxplot of maximum validation scores across each training dataset where a
patient was held-out.

Table 4.4.1: Average and total training times across each held-out training data.

Data Name Classifier
Training Time (hrs)

1 Bayesian Iteration
Total (Per EEG hr)

Mean (SD)

TUH

Bagged KNN 0.15 (0.29) 3309.56 528.22
Balanced RF 0.08 (0.10) 1787.76 285.33

RUSBoost 0.03 (0.02) 584.84 93.34
LightGBM 0.005 (0.003) 115.91 18.50

NHS (Preston)

Bagged KNN 0.15 (0.27) 6235.53 565.03
Balanced RF 0.10 (0.08) 4048.79 366.88

RUSBoost 0.01 (0.01) 604.74 54.80
LightGBM 0.005 (0.002) 196.64 17.82

NHS (Leeds)
Balanced RF 0.14 (0.13) 4583.53 313.73

RUSBoost 0.03 (0.02) 890.20 60.93
LightGBM 0.005 (0.003) 170.81 11.69

NHS (Combined)
Balanced RF 0.48 (0.37) 35156.36 1370.86

RUSBoost 0.06 (0.04) 4326.86 168.72
LightGBM 0.01 (0.005) 798.84 31.15

Note. Average and standard deviation training time of 1 iteration of the Bayesian optimi-
sation is calculated across all training folds of the dataset. Total training time is the total
CPU hours needed to train all optimisation iterations on all training folds. Total (Per EEG
hr) is the total training time divided by the total number of hours of EEG in the dataset.



records, compared to 100% of NHS (Preston) and 95% of NHS (Leeds) records. Similarly,

there are more records where the patient is sleeping in the TUH (Absence) dataset (29%),

compared to NHS (Preston) and NHS (Leeds); 0% and 5% respectively. This is another

reason why EEG records in the TUH (Absence) dataset may be less affected by artefacts,

as they are less common in EEG recorded while a patient is sleeping or hyperventilating.

NHS (Preston) had the highest variation in validation F1-scores across models and

datasets. This could be due to this dataset having the most records without any seizures (see

table 4.2.1). Indeed, in chapter 3 and this work (see figure 4.A.1), performance generally

was lower on records with no seizures present. Similar to models trained on the TUH (Ab-

sence) dataset, NHS (Preston) bagged models have an order of magnitude higher training

time comparative to boosted models. Indeed this is the reason only one of the two bagged

models, BRF, was subsequently run on the NHS (Leeds) and NHS (Combined) datasets;

which both have increased data sizes. Models trained on the NHS (Leeds) and NHS (Com-

bined) datasets have comparable results for the maximum F1-score on the validation set,

although combining the datasets did reduce the standard deviation (SD), meaning the per-

formance across patient datasets was less variable. Training time was unsurprisingly the

largest for models on the NHS (Combined) dataset due to the increased size of the training

data. However, the increase in average training time from combining the datasets was larger

than the sum of each NHS dataset separately. Although, this increase in training time was

considerably smaller for LightGBM models than BRF and RUSBoost models.

Despite LightGBM having the most hyperparameters available to tune, it was generally

the least sensitive model to changes in hyperparameter values during optimisation. However,

some LightGBM model configurations did get an F1-score of 0 during optimisation, reflective

of a model which only predicted inter-ictal labels. This was likely due to low hyperparameter

values for the learning rate and number of estimators for these poor performing models (see

figure 4.4.2). Although generally performing worse, the BRF was also relatively insensitive

to parameter values. Conversely, both RUSBoost and BKNN models had a greater variation

in score according to hyperparameter values. The average optimal model hyperparmeters

were generally similar across datasets for each model, with the maximum number of features

for BRF being the notable exception (see table 4.A.3).
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(a) Learning Rate

(b) Number of Estimators

Figure 4.4.2: Histogram of hyperparameter values for LightGBM models when the validation
F1-score score was either equal to zero or higher.
Note. The distribution of other hyperparameter values were not substantially different.

4.4.2 Test Scores

Similar to the validation scores, where LightGBM had the best average maximum F1-score

and lowest training time, LightGBM generally had the best average performance across the

held-out patient test records on all metrics except sensitivity; as well as F1-score and AUC

on some datasets (see table 4.4.2). In the TUH (Absence) dataset, LightGBM consistently

scored the best across all performance metrics, except sensitivity where BRF scored the
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Table 4.4.2: Average (and standard deviation) test scores across patient held-out datasets.

Dataset Classifier Combined
Accuracy Sensitivity Specificity Precision F1-score AUC FP/h Pred Time

Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD)

TUH (Absence)

BKNN

False

98.05 (1.51) 84.71 (6.75) 98.73 (1.37) 74.61 (16.58) 78.29 (10.42) 95.8 (2.98) 43.16 (46.28) 5.76 (3.27)
BRF 97.3 (1.7) 87.01 (7.14) 97.86 (1.78) 65.07 (22.27) 71.95 (16.03) 97.47 (1.71) 73.73 (61.69) 0.56 (0.34)

RUSBoost 98.43 (1.1) 81.65 (9.0) 99.3 (0.96) 82.09 (19.77) 79.99 (12.47) 97.05 (2.33) 24.26 (32.56) 1.41 (0.51)
LightGBM 98.63 (1.01) 81.35 (8.5) 99.46 (0.83) 88.21 (12.29) 83.92 (6.96) 97.76 (2.33) 18.65 (28.0) 0.11 (0.07)

NHS (Preston)

BKNN False 97.61 (2.26) 81.76 (17.38) 98.16 (2.19) 69.41 (21.44) 72.3 (16.78) 95.43 (3.88) 65.56 (78.84) 2.29 (0.64)
BRF False 97.05 (2.63) 76.68 (21.78) 97.58 (2.83) 63.98 (26.66) 66.28 (22.4) 96.72 (2.22) 86.43 (102.14) 0.49 (0.33)

True 96.12 (3.79) 86.62 (16.13) 96.33 (3.93) 56.87 (23.37) 63.88 (15.45) 97.21 (2.23) 130.25 (141.29) 0.28 (0.18)
RUSBoost False 98.82 (1.73) 65.13 (29.74) 99.68 (1.06) 87.4 (27.98) 71.52 (29.26) 96.46 (3.26) 11.37 (38.22) 0.86 (0.2)

True 98.72 (2.12) 79.02 (6.67) 99.21 (2.1) 91.18 (11.87) 84.09 (6.63) 96.14 (3.55) 28.11 (75.6) 0.43 (0.13)
LightGBM False 98.91 (1.54) 63.87 (31.83) 99.77 (0.71) 90.61 (27.42) 71.24 (33.3) 95.99 (2.78) 8.27 (25.62) 0.1 (0.06)

True 99.03 (1.66) 74.59 (22.28) 99.48 (1.67) 94.59 (6.15) 80.48 (21.79) 96.76 (3.18) 18.67 (59.96) 0.03 (0.01)

NHS (Leeds)

BRF False 95.09 (3.47) 86.23 (8.97) 95.6 (3.91) 57.0 (29.77) 63.97 (22.77) 96.09 (3.3) 151.8 (135.34) 0.28 (0.45)
True 96.43 (2.84) 85.41 (13.25) 96.98 (3.05) 63.19 (27.65) 69.73 (22.82) 96.67 (3.2) 103.88 (105.96) 0.44 (1.17)

RUSBoost False 97.72 (1.58) 76.23 (13.52) 98.9 (1.52) 78.64 (25.2) 75.28 (17.04) 96.27 (3.07) 37.78 (52.33) 0.74 (2.04)
True 97.72 (1.54) 66.16 (19.71) 99.43 (0.71) 82.65 (21.11) 71.78 (18.78) 95.38 (4.17) 19.77 (24.55) 0.64 (1.68)

LightGBM False 98.11 (0.99) 75.65 (14.48) 99.31 (0.76) 81.74 (21.47) 77.35 (15.94) 96.96 (2.43) 23.96 (26.42) 0.04 (0.09)
True 98.21 (1.18) 68.84 (17.5) 99.75 (0.35) 89.41 (17.02) 76.55 (16.32) 96.41 (3.14) 8.64 (12.41) 0.06 (0.14)

NHS (Combined)
BRF

True
96.26 (3.38) 85.97 (14.39) 96.61 (3.54) 60.26 (25.48) 67.02 (19.62) 96.92 (2.76) 118.85 (126.27) 0.35 (0.77)

RUSBoost 98.29 (1.93) 72.13 (16.24) 99.31 (1.63) 86.61 (17.68) 77.5 (15.54) 95.73 (3.84) 24.5 (58.68) 0.53 (1.09)
LightGBM 98.67 (1.51) 71.51 (19.69) 99.6 (1.27) 91.81 (13.19) 78.37 (18.79) 96.57 (3.11) 14.34 (45.68) 0.04 (0.09)

Note. The best average score for each metric, across classifiers, are in bold. Results are shown both for when datasets from different NHS sites were trained separately and when they were combined.



highest. However, this higher sensitivity is due to BRF having the highest false positives

per hour (FP/h), on average over four times higher than LightGBM models. For the NHS

(Preston) dataset, the accuracy, specificity, and F1-score were comparable between boosting

classifiers; with both generally performing better on these metrics than the bagged classifiers.

However, what separates the two boosted models is the lower average false positives and

prediction time for LightGBM models. Similar to the TUH (Absence) dataset, bagging

classifiers provided better sensitivity at the expense of a greatly increased false positive

rate. Comparative to chapter 3, the sensitivity across all models in this chapter is lower at

the expense of having better classification of inter-ictal data segments. Therefore, as there

are fewer false positives, the accuracy of models are generally higher in this chapter before

prediction post-processing (discussed in Figure 4.4.4). NHS (Leeds) also demonstrates a

similar pattern to both NHS (Preston) and the TUH (Absence) datasets; with LightGBM

scoring the best on most metrics, except sensitivity.

Combining the NHS (Preston) and NHS (Leeds) data together had different influences on

model performance for each dataset than when models were trained on each separately (see

table 4.4.2). Firstly, sensitivity for all models and F1-score for boosted models are improved

for NHS (Preston) records when models are trained on a combined dataset compared to

independently, and worse for the records in the NHS (Leeds) dataset. Conversely, the

specificity of all models and FP/h were improved on records in the NHS (Leeds) dataset and

reduced in performance for those in NHS (Preston). Therefore, generally this reflects models

having a better identification of seizures in the NHS (Preston) set, at the expense of increased

false positives, and conversely, reduced false positives in the NHS (Leeds) dataset, at the

expense of marking fewer seizure epochs. This could be due to NHS (Leeds) having over

twice as many seizure events than NHS (Preston), so this improves the ability of the models

to identify them in NHS (Preston) records when combined. Similarly, the improvement in

specificity for the NHS (Leeds) records could be due to some NHS (Preston) records having

no seizures throughout the record, improving the model’s false positive rate.

Examining model performance on individual records reveals that boosted methods are

generally more conservative and often correctly label epochs in the middle of seizures rather

than towards the onset or offset (see figure 4.A.3). This is unlike chapter 3, where classical
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models trained on the NHS (Preston) data generally marked the full seizure. However,

boosted models have many fewer false positives, particularly on data with no seizures in the

whole record (see figure 4.A.2).

F1-scores for the validation set were generally better than those from the left-out test

set (mean difference of 7.56%). However, this effect was different for bagged and boosted

models, as bagged models had a smaller difference between validation and test sets (BKNN,

3.19%; BRF, 2.56%; RUSBoost, 11.90%; LightGBM, 12.02%). This difference was generally

consistent across datasets, apart from TUH (Absence) where the difference was more similar

across models (see figure 4.4.3). This general improvement of F1-scores on the validation

data, compared to the test set, could be due to training and validation sets being split to

preserve the percentage of samples for each class (stratified cross-validation), rather than

separating patient records so different segments from the same patient do not appear in

both sets. Stratified cross-validation was specifically used as a simple k-fold cross-validation

might result in training subsamples with no or insufficient instances of the minority class;

resulting in an unrepresentative subsample to train with. For each left-out training dataset,

no data from the test set patient record was contained, therefore this performance decrease

on the test data may be due to models simply being worse at classifying EEG from unseen

patients due to baseline differences in brain activity (for example see Deiss et al., 2018).

However this could also reasonably reflect, or be contributed to by, optimisation overfitting

to the training/validation data. Nevertheless, for real world applications of general models,

Figure 4.4.3: Average F1-score increase in the validation set comparative to the test set.
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which are not trained to be specific to particular individuals, it is typically expected that

there will be worse performance than those reported from models trained and tested on

parts of the same EEG records (see section 2.7). In reality, training is unlikely to occur

using part of an individual patients record; with training more likely to occur across a range

of patient data external to the individual either at the hospital or trust level.

4.4.3 Feature Importances

To investigate which features were the most important for seizure detection, we look at

the average feature importance for the best BRF, RUSBoost, and LightGBM models across

left-out patient datasets. The largest difference between models is that BRF models focused

on more specific channel locations and areas of the frequency spectrum than RUSBoost and

LightGBM models. As shown in figures 4.4.4 and 4.A.4, BRF models primarily use the

frontal channels, as well as some temporal or central locations, for classification. Similar to

findings in chapter 3, this arguably represents an absence seizure; which although primarily

generalized, is more associated with frontal channels. The other two models still predomi-

nantly use the frontal and central channels, but to a much less prominent degree. Another

main difference between models in this chapter is that BRF models generally use features in

the slower frequencies, between the range of 4-16Hz, much more than features in the other

frequencies or entropy measures (see figure 4.A.5). This pattern still occurs in RUSBoost

models, with slower frequency components more important than faster frequencies, but to a

smaller degree. LightGBM models appear to use features in different frequencies relatively

similarly, although there is more use of entropy features than the other models. Focusing on

differences between the datasets, although TUH (Absence) is broadly similar in important

features, it differs slightly from the other datasets specifically for BRF models; where more

features across the frequency range are used rather than being as selective. Its worth noting

the TUH (Absence) dataset has a different reference to the NHS (Preston) and NHS (Leeds)

datasets, as it has been re-referenced to the linked mastoids rather than the average, as well

as the other differences outlined in subsection 4.4.1. Additionally, non-EEG channels are

present in this data not found in the NHS data, which although are the least important for

BRF and RUSBoost models, do still contribute to LightGBM models (further discussed in
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(a) TUH (Absence) - BRF (b) TUH (Absence) - RUSBoost (c) TUH (Absence) - LightGBM

(d) NHS (Preston) - BRF (e) NHS (Preston) - RUSBoost (f) NHS (Preston) - LightGBM

(g) NHS (Leeds) - BRF (h) NHS (Leeds) - RUSBoost (i) NHS (Leeds) - LightGBM

(j) NHS (Combined) - BRF (k) NHS (Combined) - RUSBoost (l) NHS (Combined) - LightGBM

Figure 4.4.4: Topoplots of average feature importance, according to electrode location,
across features and models trained on different left-out patient training data.



section 4.5).

4.4.4 Prediction Post-Processing

The majority of performance metrics can be improved with post-processing of the predic-

tions. This requires finding an appropriate threshold for the length of a seizure prediction,

to remove short predictions. Similar to chapter 3, the best window sizes for this threshold

varied between 3 and 5 seconds across datasets and classifiers (see figure 4.4.5). A notable

exception to post-processing improving performance was to the LightGBM models in the

NHS (Preston) dataset, where any post-processing had a detrimental effect on performance.

This could be due to this model generally predicting short seizures that did not cover the

full length of seizures. Therefore increasing the threshold for the length of a prediction

removed the short positive seizure predictions, affecting performance more than in other

(a) TUH (Absence) (b) NHS (Preston)

(c) NHS (Leeds) (d) NHS (Combined)

Figure 4.4.5: Effects of post-processing window size on test set performance metrics.
Note. Thick line is sensitivity and the dashed line is precision.
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models where predictions were more often longer and grouped.

As can be seen in figure 4.4.6, there is a greater change to performance metrics for the

bagging models than boosting models due to post-processing. This change is more promi-

nent in the smaller datasets (TUH, Preston) than the larger datasets (Leeds, Combined).

Although generally boosting methods are still preferable, post-processing significantly re-

duces the difference in performance between bagging and boosting performance metrics (see

table 4.A.4). This further emphasises the main performance limitation of bagging models

compared to boosting models being the false positive rate rather than model sensitivity.

Figure 4.4.6: Average test set score change (%) due to post-processing on various perfor-
mance metrics.
Note. LightGBM models on NHS (Preston) were not improved with any post-processing (see figure 4.4.5).
Bag KNN was not run on NHS (Leeds) or NHS (Combined) datasets.
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4.5 Discussion

In this chapter we assessed four balanced ensemble classifiers for the automatic detection

of absence epilepsy seizures on three different datasets; making this the largest number of

patients used for absence seizure detection in the current literature. Similar to chapter 3,

optimal hyperparameters were found using Bayesian optimisation and datasets were chosen

to reflect records gained during routine clinical practice. Balanced ensembles are not often

applied to seizure detection, but are nevertheless useful for classifying data with large class

imbalances. The models reported from this research have greater specificity and precision

than most previous research (see tables 3.5.1 and 4.5.1) despite containing a significant

amount of artefactual data. However, due to being more conservative than other models in

chapter 3, they have comparatively poor sensitivity.

Balanced ensemble models generally were found to have a high specificity and precision,

correctly marking inter-ictal segments, and a lower false positive rate comparative to classical

models in chapter 3 (see table 4.5.2). This is likely due to each classifier in the ensemble

training on different sampled inter-ictal epochs, meaning the ensemble overall used a broader

range of the full training data than if one undersample was taken to train the whole model.

However, the lower sensitivity in these models means less of a seizure was marked where

detected than classical models. For example, although LightGBM models without post-

processing on the NHS (combined) dataset marked at least 1 second within nearly every

seizure (missing 1 seizure in P35 and 6 in P23), the full duration of seizures were often

not marked. Electrical artefacts were still the leading cause of false positives; as shown

by the similar misidentification of data segments in P18 in the NHS (Preston) dataset

as in chapter 3. Nevertheless, for LightGBM models on the NHS (combined) dataset,

30% of patient records had less than 1 false positive per hour, and 49% less than 5 (see

Supplementary Information), which is a vast improvement. Classical and ensemble methods

therefore appear to describe the data in different, but complimentary, ways; as the more

specific ensemble algorithms are more useful to determine the number of seizures present in

a record, and the more sensitive classical methods on the duration of seizures.

In this chapter we found that bagged ensembles generally had better sensitivity than
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Table 4.5.1: Comparison between average model performance reported in this paper (after post-processing), using the TUH (Absence)
dataset, to other TUH papers which report absence seizure detection performance.

Paper Classifier Sensitivity Specificity F1-score AUC

Iešmantas and Alzbutas (2020) CNN 80.00 66.00 - 72.00

Liu et al. (2020)
CNN - - 58.60 -
RNN - - 66.19 -

Hybrid - - 67.70 -

This Paper

BKNN 82.28 99.57 86.48 94.58
BRF 84.4 99.28 85.01 95.11

RUSBoost 78.65 99.7 84.86 94.17
LightGBM 80.31 99.69 85.92 96.78

Note. The best average score for each metric, across classifiers, are in bold. For the full post-
processed scores see table 4.A.4.

Table 4.5.2: Table showing how the post-processed binary algorithms scores compare between chapters on the NHS (Preston) dataset.

Chapter Classifier
Accuracy Sensitivity Specificity Precision F1-Score FPR/h Prediction Time (secs)

Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Chapter 3

K-Nearest Neighbours 99.39 (1.06) 88.14 (12.77) 99.55 (1.07) 93.78 (8.77) 90.36 (9.17) 15.77 (38.52) 1.91 (0.57)
Random Forest 93.44 (21.65) 80.39 (36.05) 94.22 (21.66) 65.16 (34.14) 70.64 (33.39) 207.49 (779.98) 0.49 (0.28)

Support Vector Machine 98.93 (1.99) 89.07 (10.57) 99.11 (2.03) 86.57 (22.04) 85.28 (17.88) 31.65 (73.23) 0.08 (0.04)
Soft Majority Vote 98.95 (1.83) 93.85 (6.25) 99.05 (1.89) 87.73 (16.22) 89.69 (10.08) 33.63 (67.07) 2.49 (0.6)

This Chapter

Bagged K-Nearest Neighbours 98.74 (1.61) 76.66 (24.97) 99.48 (0.9) 92.17 (13.14) 79.86 (22.5) 18.58 (32.58) 2.29 (0.64)
Balanced Random Forest 98.10 (1.91) 72.62 (28.13) 98.73 (2.0) 77.32 (30.3) 72.45 (26.85) 45.51 (72.08) 0.49 (0.33)

RUSBoost 98.87 (1.68) 64.24 (30.52) 99.75 (0.88) 90.79 (27.51) 72.31 (30.59) 8.79 (31.64) 0.86 (0.2)
LightGBM 98.91 (1.54) 63.87 (31.83) 99.77 (0.71) 90.61 (27.42) 71.24 (33.3) 8.27 (25.62) 0.10 (0.06)

Note. The best average score for each chapter and metric, across classifiers, are in bold. For the full post-processed scores see table 4.A.4.
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boosted ensembles, but at the cost of a much higher training time and worse specificity/false

positive rate. Indeed, for larger datasets, such as the NHS (Leeds) and NHS (Combined),

the BKNN ensemble was not run due to a large estimated run-time. As available data

increases for training, we would not recommend BKNN due to the limited performance

gains compared to a single KNN model with prior feature reduction shown to be better

overall in chapter 3. The boosted models (RUSBoost and LightGBM) performed similarly,

although LightGBM generally had slightly improved performance and was faster to train,

at the expense of having more hyperparameters to fine-tune. LightGBM, although not

previously used for seizure detection, is generally a popular ML method due to model

performance and execution speed (e.g. Tyralis and Papacharalampous, 2020; Iskandaryan

et al., 2020). Although XGBoost is a more popular gradient boosted model, in this case

LightGBM is currently recommended as it has more internal hyperparameters specific for

imbalanced datasets not yet available in XGBoost.

Combining the two NHS datasets to make a larger dataset, collected at different NHS

trusts, marginally improved accuracy and other model performance metrics. The main

benefit of the increased size was for the boosted models, as it ensured that in two records

where all seizures were missed entirely, P17 and P19 in NHS (Preston), they became at

least partly marked. This therefore suggests training on a larger dataset removes some

of the more extreme errors of models, likely due to the larger variety of data available to

train on. Furthermore, it also suggests that despite some marginal differences in practices

between NHS sites in their diagnostic procedure using EEG (e.g. data lengths, order of

procedure, amount of AMPSAT present in records), the data can still be combined between

trusts for improved machine learning performance. This is promising, as often it is difficult

to generalise model performance across multiple healthcare institutions. Indeed in general,

replicability of the results from the balanced ensemble models was improved comparative

to classical models in chapter 3, as there was lower variation in scores between re-runs with

different random states.

In this chapter we were able to replicate the finding that features from the slower fre-

quency components were generally the most important for optimal random forest models

to detect absence seizures. Both this chapter and chapter 3 also demonstrate the frontal,
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central, and, to a smaller degree, temporal channels are important for these models to detect

absence seizures. This is notable as this similarity exists despite using a different method-

ology and models to assess the most prominent features; this chapter using the average

importance scores from balanced ensembles and chapter 3 using a threshold on forest fea-

ture selection counts across models. However, interestingly this effect was less prominent

in boosted models, likely representative of these optimal models on average using a larger

number of features for training (see table 4.A.3). The TUH (Absence) dataset also differed

from these patterns specifically in the BRF models, where a broader range of electrodes and

frequencies were used. This no doubt was affected by the much lower maximum number of

features (1%) used for training each tree, than for the same model on different datasets. It

is also worth noting that this dataset was re-referenced differently to the NHS datasets, via

the linked mastoids rather than the average, as well as had more channels which could have

affected training.

Comparisons between this chapter and chapter 3 should note the difference in the number

of different feature types used in each channel, in order to reduce the time to train the models

and chance of overfitting; 1 Time, 2 Frequency, and 2 Time-Frequency in this chapter

compared to 2 Time, 4 Frequency, and 5 Time-Frequency in chapter 3. It is possible that

the removal of some features, although shown not to be the most important for detecting

seizures for classical models, were still beneficial to overall sensitivity performance. It could

also have been affected by the different data scaling method using in this chapter, where we

scaled across frequency bands. A limitation for comparisons between the TUH (Absence)

dataset and NHS datasets was that upon investigation some channels in TUH (Absence)

records were not EEG channels, despite being labelled as such; 2 Nasopharyngeal Electrodes,

1 ECG channel, and one misc channel “EEG 30-LE”.

Comparisons between results from this chapter to other published papers should note

that models trained only to detect childhood absence seizures often are more accurate than

models that classify other seizure types. This is due to the EEG patterns being distinct, with

little intra-patient and inter-patient variability or movement artefacts during the seizure

(Baier et al., 2006). If we focus specificity on the TUH (Absence) dataset used in this

work (see chapter 3 for a discussion of published results from other absence datasets), it
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is initially apparent that there is currently limited use of the TUHS dataset for seizure

detection comparative to older datasets (e.g. Bonn Epileptologie Database, CHB-MIT).

What research has been conducted using the TUHS dataset typically aims to detect seizures,

or the type of seizure contained in a record, across multiple different seizure types rather

than focusing on one type as we did in this research. However, although trained on multiple

seizure types, Iešmantas and Alzbutas (2020) does report detection metrics separately for

each seizure type from a CNN model. Comparing our results, we find all our models perform

better on all reported metrics on patients with absence seizures (see table 4.5.1). Similarly,

Liu et al. (2020) also trained on multiple seizure types, and report lower F1-scores than

found in this work across their tested models. Indeed, seizure detection performance was

the lowest for absence seizures in their paper compared to other seizure types. This is

likely due to absence seizures only constituting a small portion of both research papers full

datasets (0.68% and 0.5% respectively). Nevertheless, this could be used to demonstrate

the performance gains from focusing model training on specific seizure types rather than

across multiple.

Other authors have reported metrics based on the detection of the broader category of

“generalized” seizures in the TUHS dataset, but these are hard to directly compare to this

current work as they cover a much larger range of seizure types (see table 2.A.3). Never-

theless, similar to our findings, boosted models typically perform favourably comparative

to other model types (e.g. Vanabelle et al., 2020), with only KNN surpassing XGBoost in

performance in Roy et al. (2019a). Looking at other common datasets, RUSBoost has been

shown to be better than (Amin and Kamboh, 2016), or comparable to (Solaija et al., 2018),

SVM on records in the CHB-MIT dataset. Furthermore, XGBoost has also been demon-

strated to have improved performance comparative to a variety of other model types on

this dataset, including KNN, SVM, LDA, and CNN (Wu et al., 2020). To our knowledge

no previous research on seizure detection uses BRF or BKNN classifiers, as implemented in

this research, despite BRF models shown to be effective on a number of highly imbalanced

datasets (Chen et al., 2004).
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4.6 Conclusion

Overall, this work is consistent in demonstrating the performance gains from using boosted

ensemble models for seizure detection, which are often better or comparable to other model

types, but with considerably lower training and prediction time. We suggest that boosted

ensembles may be more useful for accessing the number of seizures present in a record, due

to a low false positive rate and high precision/specificity, and classical models for the length

of seizures where present. Furthermore, we have been able to demonstrate alpha frequencies

in the frontal, central, and temporal channels as important for machine learning models to

detect absence epilepsy seizures. This finding is clearly explainable and justifiable in the

context of the data, so could be used as guidance for clinical staff and patients alike. We

also found that merging datasets from multiple NHS sites could improve model performance

and applicability if future adoption into practice were to occur. Despite future adoption

requiring a more user friendly interface to be developed (e.g. Selvakumari et al., 2019),

these models show promise for reducing the clinical time required for screening a potential

epileptic patient’s record; affording more of a physician’s time to work on a patient focused

treatment plan.
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4.A Appendix C

Table 4.A.1: Length of time, rounded to the nearest second, of classification labels in each NHS (Leeds) patient.

AMPSAT Baseline Generalised Epileptiform Discharge Spikes Total
P1 13 960 16 17 1006
P2 75 25789 577 207 26648
P3 5 1304 46 9 1364
P4 66 1635 0 10 1711
P5 27 1226 62 2 1317
P6 18 1152 26 7 1203
P7 0 1290 60 5 1355
P8 142 994 63 1 1199
P9 10 1138 110 0 1257
P10 8 1218 36 4 1266
P11 3 1255 152 0 1411
P12 8 1073 29 19 1129
P13 26 1127 68 29 1250
P14 27 3583 32 67 3710
P15 451 4910 194 9 5564
P16 1 1177 28 0 1205
All 879 49831 1498 387 52595

Table 4.A.2: Length of each seizure, rounded to the nearest second, for each NHS (Leeds) patient.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 Sum

P1 8 8 16
P2 14 19 15 12 18 17 14 19 22 15 14 13 18 16 14 17 15 15 16 21 6 4 8 6 5 5 6 6 10 8 6 3 10 10 11 11 17 13 12 14 14 12 14 13 15 14 577
P3 9 7 9 4 4 8 5 46
P5 7 8 9 14 5 10 8 62
P6 9 8 9 26
P7 7 3 5 8 3 4 9 4 7 9 60
P8 13 16 13 20 63
P9 20 25 22 21 21 110
P10 17 18 36
P11 15 25 14 25 24 28 22 152
P12 6 5 4 5 5 5 29
P13 17 14 8 20 9 68
P14 14 8 4 6 32
P15 8 11 9 9 8 18 10 18 10 11 15 22 11 24 4 4 194
P16 8 6 9 4 28
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Table 4.A.3: The most common categorical or average hyperparameter value for each model
across left-out patient training sets.

Classifier Hyperparameter
TUH NHS (Preston) NHS (Leeds) NHS (Combined)

Mean (SD) Mean (SD) Mean (SD) Mean (SD)

BKNN

Leaf Size 34.0 (18.22) 31.29 (18.17) - - - -
Nearest Neighbors 2.45 (3.24) 1.0 (0.) - - - -
P 1.0 (0.0) 1.0 (0.) - - - -
Max Features 0.18 (0.06) 0.22 (0.09) - - - -
Number of Estimators 7.0 (2.14) 6.48 (1.78) - - - -
Algorithm Ball Tree - Ball Tree - - - - -

BRF

Max Features 0.01 (0.00035) 0.49 (0.26) 0.43 (0.33) 0.61 (0.2)
Number of Estimators 1211.91 (786.21) 1236.52 (796.36) 1052.63 (758.59) 1141.05 (759.76)
Min Impurity Decrease 0.0061 (0.0032) 0.0037 (0.003) 0.0016 (0.0021) 0.00058 (0.00046)
Min Samples Leaf 4.73 (2.61) 1.81 (1.40) 1.94 (2.41) 1.027 (0.16)
Min Samples Split 6.91 (1.92) 4.67 (2.39) 3.25 (1.73) 2.57 (0.73)
Criterion Entropy - Entropy - Entropy - Entropy -

RUSBoost

Number of Estimators 180.64 (17.48) 184.67 (12.33) 191.31 (9.75) 191.78 (8.45)
Max Features 0.69 (0.16) 0.58 (0.25) 0.76 (0.16) 0.75 (0.19)
Min Impurity Decrease 0.0016 (0.0019) 0.0013 (0.0022) 0.00099 (0.0018) 0.00025 (0.00035)
Min Samples Leaf 5.64 (2.20) 4.71 (2.51) 4.81 (3.23) 4.05 (2.65)
Min Samples Split 5.09 (2.12) 5.52 (2.54) 6.75 (1.95) 5.57 (2.65)
Learning Rate 0.066 (0.0076) 0.11 (0.03) 0.098 (0.27) 0.095 (2.28)
Criterion Entropy - Entropy - Entropy - Entropy -

LightGBM

Number of Estimators 163.18 (38.52) 162.48 (29.36) 167.69 (27.38) 182.70 (15.89)
Max Depth 13.0 (17.04) 9.29 (15.68) 13.44 (15.38) 12.84 (17.60)
Learning Rate 0.16 (0.024) 0.12 (0.038) 0.14 (0.03) 0.12 (0.023)
Column Sample per Tree 0.49 (0.21) 0.63 (0.2) 0.63 (0.23) 0.61 (0.24)
Min Child Samples 14.45 (8.27) 15.57 (9.14) 12.69 (7.68) 14.3 (9.25)
Min Child Weight 2.21 (0.90) 1.93 (0.89) 2.99 (1.36) 3.24 (1.04)
Number of Leaves 19.45 (8.24) 21.38 (9.93) 24.19 (9.09) 25.11 (4.6)
Alpha 0.55 (0.33) 0.31 (0.21) 0.29 (0.22) 0.34 (0.24)
Lambda 0.51 (0.30) 0.43 (0.28) 0.34 (0.24) 0.46 (0.28)
Negative Class Subsample 0.76 (0.15) 0.57 (0.20) 0.50 (0.15) 0.67 (0.16)
Boosting Type Gradient - Gradient - Gradient - Gradient -
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Figure 4.A.1: Difference between average scores, across left-out patient test sets, when records had seizures present or when absent.
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Figure 4.A.2: Example of the prediction certainty of models on a patient record with no
seizures present in the whole record (P16).
Note. Models were trained on a combined dataset of NHS (Preston) and NHS (Leeds). The BRF model
marks many false positive sections, but after post-processing, boosted models do not mark any.
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(a) Models only trained on records in the NHS (Preston) dataset.
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(b) Models trained on both records in the NHS (Preston) and NHS (Leeds) datasets.

Figure 4.A.3: Prediction certainty of models on a patient record (P17) when records from
one dataset or a combination were used for training.
Note. There is poor performance when only records from the Preston site were used for training, with bagged
models only partially marking seizures and boosted models marking only a portion of one seizure. When
trained on the combined dataset, the BRF model marks most of the length of seizures, but with many more
false positives than the boosted models, which do not fully mark all of the seizures.
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Table 4.A.4: Average (and standard deviation) post-processed test scores across patient held-out datasets.

Dataset Classifier Combined
Accuracy Sensitivity Specificity Precision F1-score AUC FP/h Pred Time

Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD)

TUH (Absence)

BKNN

False

98.73 (1.14) 82.28 (9.45) 99.57 (0.97) 93.08 (11.2) 86.48 (6.28) 94.58 (4.22) 14.62 (32.88) 5.76 (3.27)
BRF 98.54 (1.13) 84.4 (10.19) 99.28 (1.01) 87.95 (13.69) 85.01 (7.39) 95.11 (5.58) 24.58 (34.22) 0.56 (0.34)

RUSBoost 98.65 (1.14) 78.65 (11.94) 99.7 (0.72) 94.53 (9.92) 84.86 (7.08) 94.17 (5.56) 10.09 (24.53) 1.41 (0.51)
LightGBM 98.82 (0.91) 80.31 (8.9) 99.69 (0.68) 93.95 (9.43) 85.92 (5.4) 96.78 (3.22) 10.63 (22.96) 0.11 (0.07)

NHS (Preston)

Bag KNN False 98.74 (1.61) 76.66 (24.97) 99.48 (0.9) 92.17 (13.14) 79.86 (22.5) 92.5 (8.41) 18.58 (32.58) 2.29 (0.64)

BRF
False 98.1 (1.91) 72.62 (28.13) 98.73 (2.0) 77.32 (30.3) 72.45 (26.85) 92.94 (6.74) 45.51 (72.08) 0.49 (0.33)
True 97.11 (3.54) 86.62 (16.13) 97.33 (3.64) 71.59 (20.13) 75.2 (13.08) 97.33 (2.24) 94.94 (131.27) 0.28 (0.18)

RUSBoost
False 98.87 (1.68) 64.24 (30.52) 99.75 (0.88) 90.79 (27.51) 72.31 (30.59) 95.58 (3.69) 8.79 (31.64) 0.86 (0.2)
True 99.1 (1.48) 78.81 (6.71) 99.61 (1.38) 97.12 (5.93) 86.75 (4.78) 95.99 (3.52) 13.9 (49.59) 0.43 (0.13)

LightGBM
False 98.91 (1.54) 63.87 (31.83) 99.77 (0.71) 90.61 (27.42) 71.24 (33.3) 95.99 (2.78) 8.27 (25.62) 0.1 (0.06)
True 99.31 (1.0) 74.18 (23.65) 99.77 (0.91) 90.62 (27.45) 81.33 (24.95) 96.38 (3.09) 8.36 (32.84) 0.03 (0.01)

NHS (Leeds)

BRF
False 96.48 (3.27) 81.46 (15.22) 97.29 (3.72) 69.14 (28.77) 70.02 (20.01) 91.76 (9.64) 93.38 (128.28) 0.28 (0.45)
True 97.42 (2.73) 84.92 (13.39) 98.06 (2.92) 75.39 (25.55) 77.0 (20.1) 96.48 (2.9) 66.75 (101.29) 0.44 (1.17)

RUSBoost
False 98.28 (1.14) 74.56 (14.82) 99.6 (0.75) 90.9 (16.92) 79.84 (11.71) 94.87 (3.53) 13.89 (26.24) 0.74 (2.04)
True 97.95 (1.74) 62.08 (24.7) 99.92 (0.23) 97.42 (6.46) 72.33 (21.55) 91.57 (8.08) 2.73 (7.93) 0.64 (1.68)

LightGBM
False 98.45 (1.08) 74.14 (17.61) 99.74 (0.64) 93.88 (13.79) 80.54 (14.31) 95.63 (5.02) 9.22 (22.41) 0.04 (0.09)
True 98.27 (1.45) 66.06 (21.91) 99.95 (0.17) 97.62 (7.92) 76.4 (19.93) 93.73 (6.5) 1.77 (5.74) 0.06 (0.14)

NHS (Combined)
BRF

True
97.24 (3.18) 85.71 (14.47) 97.65 (3.33) 73.63 (22.85) 76.16 (16.93) 96.87 (2.6) 82.75 (118.53) 0.35 (0.77)

RUSBoost 98.61 (1.67) 69.85 (20.21) 99.75 (1.05) 97.28 (6.11) 79.03 (17.45) 93.63 (6.66) 9.07 (37.74) 0.53 (1.09)
LightGBM 98.86 (1.3) 69.83 (22.68) 99.85 (0.69) 94.37 (19.49) 78.69 (22.11) 94.96 (5.29) 5.51 (24.98) 0.04 (0.09)

Note. The best average score for each metric, across classifiers, are in bold. Results are shown both for when datasets from different NHS sites were trained separately and when they were combined.
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(a) TUH (Absence) - BRF (b) NHS (Preston) - BRF

(c) TUH (Absence) - RUSBoost (d) NHS (Preston) - RUSBoost

(e) TUH (Absence) - LightGBM (f) NHS (Preston) - LightGBM
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(g) NHS (Leeds) - BRF (h) NHS (Combined) - BRF

(i) NHS (Leeds) - RUSBoost (j) NHS (Combined) - RUSBoost

(k) NHS (Leeds) - LightGBM (l) NHS (Combined) - LightGBM

Figure 4.A.4: Bar graphs of average (and standard deviation) feature importances, across patient records and features, according to
electrode channel.
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(a) TUH (Absence) - BRF (b) NHS (Preston) - BRF

(c) TUH (Absence) - RUSBoost (d) NHS (Preston) - RUSBoost

(e) TUH (Absence) - LightGBM (f) NHS (Preston) - LightGBM
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(g) NHS (Leeds) - BRF (h) NHS (Combined) - BRF

(i) NHS (Leeds) - RUSBoost (j) NHS (Combined) - RUSBoost

(k) NHS (Leeds) - LightGBM (l) NHS (Combined) - LightGBM

Figure 4.A.5: Bar graphs of average feature importances according to signal feature.
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Chapter 5

Automatic Detection of

Generalised and Intractable

Epileptiform Discharges in

Extra-cranial

Electroencephalography using

Tree-Based and Deep Neural

Network Models

5.1 Introduction

There are many types of seizure, with behavioural effects reflecting the origin of the abnormal

neuronal activity and if it propagates to both cerebral hemispheres (see subsubsection 2.1.2;

Engel Jr, 2013). Seizures are broadly categorised as having a focal onset, generalized onset,

or unknown onset (Fisher, 2017), with this thesis focusing on seizures with generalized on-

set. Generalized seizures encompass a range of seizures, associated with different symptoms,
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ages, and potential co-morbidities. Although epilepsy is the most common cause of seizures,

it is important to distinguish epileptic seizures from “nonepileptic” isolated events resulting

from stressors such as drug withdrawal, head trauma, or infection. Although standard clin-

ical evaluations such as blood tests, electroencephalography (EEG), computed tomography

(CT), and magnetic resonance imaging (MRI) can lead to an accurate epilepsy syndrome

diagnosis in most patients, around 20% of patients can remain unclassified (King et al., 1998;

Mohanraj et al., 2006). Although these patients often have seizures which are identified in

diagnostic imaging, enough information may not have been gained to classify them into a

particular epilepsy sub-category.

This chapter aims to compare the generalization and flexibility of machine learning (ML)

models by examining their performance to detect two different classifications of generalized

seizure, with different intra-patient and inter-patient variabilities. The first seizure type

are generalized absence seizures, as in chapters 3 and 4, which represent seizures which are

distinct from background noise, with little variability, or movement artefacts during the

seizure (Baier et al., 2006). We compare these models to those trained to detect generalized

non-specific (GN) seizures, a label given to seizures which could not be categorised into

a specific generalized seizure sub-category in the TUH EEG Seizure Corpus (TUHS; Shah

et al., 2018). As such, these seizures cover a broad range of seizure etiologies with significant

variation in appearance, length, and focality (see Ochal et al., 2020). The variability of

EEG data has been shown to significantly affect the performance of “classical” machine

learning classifiers, such as KNN, SVM, and LDA; with neural network/deep learning models

potentially better able to account for this variability (Teo et al., 2018; Jana et al., 2019).

Deep learning (DL; Lecun et al., 2015) is often viewed as a simplified framework for end-

to-end pre-processing, feature extraction, and classification, providing generalisable and

flexible models with competitive performance (Roy et al., 2019b). DL is a class of machine

learning algorithms that use multiple layers to create a neural network and typically have

state-of-the-art performance on a variety of processing tasks for images, text, and audio sig-

nals (Lecun et al., 2015), as well as a number of successful applications to medical diagnostic

imaging (e.g. Giger, 2018; Thomsen et al., 2020; Jang and Cho, 2019). DL is thought to

have better generalisation than other ML model types (e.g. classical models) as these more
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traditional models require the amount of information used for classification to be restricted,

as performance deteriorates for higher dimensional inputs (Bengio et al., 2013; Faust et al.,

2018). However, there are many reasons why DL may not currently be optimal for EEG

processing, distinct from its other successful applications; including comparatively limited

available data, a low signal-to-noise ratio, and little empirical work addressing class imbal-

ance with DL models (Johnson and Khoshgoftaar, 2019). Furthermore, DL models generally

have a high computational complexity which can lead to large financial, environmental, and

productivity costs (Thompson et al., 2020).

This chapter focuses on comparing LightGBM and DL models for the detection of ab-

sence and GN seizures. LightGBM was chosen as a baseline comparison model as gradient

boosting is another popular ensemble method found to have good performance on absence

seizures in chapter 4, and similar to DL models, can be run on graphics processing units

(GPUs). Although there has been a number of applications of DL to EEG classification

(Roy et al., 2019b), comparisons between gradient boosting and DL model architectures for

seizure detection are limited. Where comparisons have been made, they are currently on

the University of Bonn dataset, a comparatively small and inter-cranial EEG dataset (see

Andrzejak et al., 2001). Nevertheless, Liu et al. (2019) found a gradient boosting classifier

gave the best performance for binary seizure classification on this dataset when compared

to a number of classical and deep learning models. Sahu et al. (2020) also found gradient

boosting models gave better classification accuracy than a number of classical models, but

worse accuracy than a Convolutional Neural Network (CNN) classifier; similarly found by

Chen et al. (2018) with an ensemble of boosted trees. Therefore, we predicted that a gra-

dient boosted classifier or CNN classifier would provide better performance (e.g. accuracy)

than other deep learning model configurations. For the models in these research papers, as

well as DL research generally, model design was manually set rather than though the use

of hyperparameter optimisation (e.g. Schwabedal et al., 2018; Stober et al., 2014, 2015).

Therefore in this chapter, we also investigate the use of Bayesian optimisation to search

for optimal model design and hyperparameters, to ensure objective comparisons between

models.

This chapter is structured as follows: in section 5.2 we describe how the absence and
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GN datasets were prepared for feature extraction. Section 5.3 describes the three different

feature sets, used as input into different machine learning classifiers, and the hyperparameter

optimisation method used in this chapter. Section 5.4 describes the model training and

evaluation of absence seizure feature sets, followed by GN seizure feature sets. Finally,

sections 5.5 and 5.6 discuss our findings and present our conclusions.

5.2 Data Preparation

The data we use in this chapter are subsets of the TUHS (1.5.0). As the details of the

records from the TUHS containing absence seizures used in this chapter were outlined in

section 4.2, hereafter referred to as the TUH (Absence) dataset, we will instead here focus

on the records containing GN seizures, the TUH (Generalized) dataset.

102 recording sessions, across 65 patients (mean age = 50, 38 female), were identified with

“Generalized Non-Specific Seizures” contained in their records (see table 5.2.2). Sessions

would often be split into multiple records, with the TUH (Generalized) dataset consisting

of 557 records in total. Sometimes sessions contained multiple seizure types, with all seizure

types given the class “ictal”, and baseline labels assigned the class “interictal” (see table

5.2.1). The majority of patients were recorded in the Intensive Care Unit (66%), with

other recordings occurring in Inpatient (17%), Epilepsy Monitoring Units (11%), Outpatient

(4%), and unknown (2%) environments. Most patients were under long-term monitoring

(67%), but a number were routine assessments (33%). Patient’s medical history was varied,

however common medical conditions found across patients were Epilepsy, Hypertension,

Stroke, HIV, Anoxic Brain Injury, Drug Abuse, and Diabetes (see table 5.A.3). Most records

Table 5.2.1: Time (in seconds) and proportion of each seizure type in the TUH (Generalized)
dataset.

Time (%)

Background 299116.67 (83.88)
Generalized Non-Specific (GN) Seizure 45218.94 (12.68)

Focal Non-Specific (FN) Seizure 11832.17 (3.32)
Simple Partial (SP) Seizure 204.30 (0.06)

Complex Partial (CP) Seizure 122.52 (0.03)
Tonic-Clonic (TC) Seizure 96.40 (0.03)
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Table 5.2.2: Information on patient records used in each dataset for model training.

TUH (Generalized) TUH (Absence)

Patient ID Group Age Gender
Seizure Total Time (Seconds)

Patient ID Group Age Gender
Seizure Total Time (Seconds)

Types Events Ictal Inter-Ictal Types Events Ictal Inter-Ictal

P1 (00000492) Training 54 M GN 14 328.08 1711.92 P1 (00000675) 5 4 F AB 27 202.70 2279.29
P2 (00000975) Training 19 F GN 1 26.44 3868.56 6 AB
P3 (00002380) Test - M GN 4 366.26 2409.74 P2 (00001113) 2 20 F AB 14 83.37 2726.62
P4 (00002521) Training 27 F FN 1 59.08 570.92 P3 (00001413) 2 10 F AB 11 80.16 3760.82

GN 2 419.00 12
P5 (00002868) Training 64 F FN 3 243.54 1050.21 14

GN 2 134.25 P4 (00001795) 3 9 F AB 2 46.26 1194.74
P6 (00002991) Training 63 M FN 21 496.30 3766.63 P5 (00001984) 4 6 M AB 9 83.90 1375.10

GN 1 27.07 P6 (00002448) 3 4 M AB 10 119.96 2101.02
P7 (00003210) Validation 29 F GN 1 44.17 1366.83 P7 (00002657) 5 5 M AB 10 133.98 2540.01
P8 (00004087) Training 58 F GN 2 226.23 1264.77 P8 (00003053) 4 5 F AB 1 16.45 1454.55
P9 (00004456) Validation 43 F FN 11 45.55 4232.21 P9 (00003281) 1 13 M AB 2 19.81 1293.18

47 GN 11 138.24 P10 (00003306) 1 13 F AB 4 31.51 1394.48
P10 (00004671) Validation 22 M GN 39 250.4 1679.6 P11 (00003635) 5 6 M AB 7 19.19 1598.80
P11 (00005101) Training 82 F GN 1 53 2
P12 (00005265) Training 22 M GN 1 569 2235.00
P13 (00006107) Training 89 M GN 12 341.47 3192.53
P14 (00006230) Validation 29 M GN 4 225.27 3018.73

32
P15 (00006440) Training 47 M FN 16 1163.09 3642.88

GN 9 945.03
P16 (00006520) Training 20 F GN 2 149.49 2752.12

TC 1 96.40
P17 (00006546) Test 38 M CP 1 52.00 18982.43

40 FN 40 1787.57
41 GN 22 1144.69
42 SP 3 204.30

P18 (00006563) Training 55 F FN 8 350.54 1031.96
GN 12 715.50

P19 (00007032) Validation 68 F FN 10 958.09 2986.43
GN 5 2786.48

P20 (00007170) Test 80 F GN 3 220.37 3905.63
P21 (00007828) Training 60 M GN 1 26.18 1866.82
P22 (00007936) Training 55 F GN 2 181.06 393.93
P23 (00007937) Test 38 M GN 1 18.02 2392.98
P24 (00008174) Training 91 M GN 6 495.5 784.5
P25 (00008204) Training 60 F GN 3 53.03 1347.97
P26 (00008295) Test 22 F CP 1 70.52 1539.80

FN 8 1757.34
GN 2 209.35

P27 (00008303) Training 55 F GN 19 636.12 3656.88
P28 (00008453) Training 47 M GN 2 100.88 5190.12

48
49

P29 (00008479) Training 59 M GN 30 471.78 9699.22
P30 (00008480) Training 43 M GN 1 350 5498.00
P31 (00008512) Test 60 M FN 2 134.10 5545.12

61 GN 22 1271.79
P32 (00008760) Test 42 F GN 1 44.1 1281.90
P33 (00009104) Test 60 M FN 17 1144.49 48351.96

62 GN 9 845.55
P34 (00009158) Training 82 F GN 2 72.24 1130.76
P35 (00009162) Validation 58 F GN 2 49.71 4930.29
P36 (00009231) Training - F GN 3 2258.00 2669.00
P37 (00009232) Training 49 M GN 1 119.02 4356.98
P38 (00009370) Test 61 F GN 2 497.1 3106.90
P39 (00009540) Validation 50 F GN 1 1121.00 301.00
P40 (00009623) Validation 61 M GN 3 229.58 5745.42
P41 (00009839) Training 64 M FN 2 131.14 7240.91

65 GN 4 240.95
P42 (00009852) Training 39 M GN 1 293.55 3251.45
P43 (00009932) Training 53 F GN 1 99.32 4405.68
P44 (00009934) Training 24 M FN 9 133.36 2936.80

GN 1 11.84
P45 (00009994) Training 29 M GN 5 105.97 3967.02
P46 (00010020) Training 70 F GN 71 1120.47 1047.52
P47 (00010062) Validation 39 F FN 4 1394.91 10028.78

GN 28 9002.30
P48 (00010106) Training 53 F GN 1 113.6 1245.40
P49 (00010158) Training 59 M GN 5 241.75 3523.25
P50 (00010418) Test 66 F FN 25 425.41 5932.57

GN 7 193.02
P51 (00010421) Test 42 F GN 1 80.18 1798.82
P52 (00010455) Training 55 F GN 2 1215.9 2297.10
P53 (00010639) Training 61 F GN 18 308.35 1660.65

62
P54 (00010760) Test 61 F GN 4 174.38 3763.62
P55 (00010843) Training 64 F FN 3 184.55 2226.51

65 GN 5 434.94
P56 (00010861) Validation 57 F GN 3 155.92 1047.08
P57 (00011272) Training 58 M GN 1 51.1 4099.90
P58 (00011580) Training - F FN 10 868.02 20025.36

GN 21 894.62
P59 (00011870) Training 88 F FN 1 10.84 5367.11

GN 11 2717.05
P60 (00011972) Training 66 F FN 3 318.37 7438.21

GN 9 894.42
P61 (00011999) Validation 40 M FN 1 179.68 13533.64

GN 2 146.68
P62 (00012046) Validation 21 F GN 13 158.13 2305.87
P63 (00012707) Training 28 F FN 2 46.20 7466.40

GN 3 118.39
P64 (00012940) Test 20 M GN 11 6657.00 6360.00
P65 (00012941) Validation - F GN 9 1628.7 2686.30

Total - - - - 701 57474.37 299116.6 - - - - - 97 837.31 21718.61
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were recorded at sampling rates of either 256Hz (75.58%) or 250Hz (9.52%), with some

records being recorded at 1000Hz (0.9%), 512Hz (1.44%), and 400Hz (12.57%), which were

downsampled to ∼200Hz. An additional 22 sessions, from 18 patients, were also identified,

but were excluded as they already used a linked mastoid re-reference as opposed to an

average re-reference.

5.3 Methods

In this section, subsection 5.3.1 starts by describing the different feature sets extracted

for the different classifiers. Then, in subsection 5.3.2, we give an overview of the ML

classifiers used to separate features into ictal and interictal classes. Subsection 5.3.3 then

briefly describes how Bayesian optimization was used to search over model hyperparameters,

focusing on differences from chapters 3 and 4. For a description of how performance metrics

were calculated, see subsection 3.3.4.

5.3.1 Feature Extraction

Three separate feature sets were created separately for both the TUH (Absence) and TUH

(Generalized) datasets to reflect the typical input into different classifiers (see figure 5.3.1).

Separately for the TUH (Absence) and TUH (Generalized) datasets, EEG channels that

were common to all records were kept and all other channels were removed (see table 5.A.1).

All feature sets were windowed into epochs of 512 samples in length (2 seconds at 256Hz)

with a 256 sample overlap (1 second at 256Hz). The first feature set, used as an input into

LightGBM and Multilayer Perception (MLP) models (see subsection 5.3.2), used the same

features as detailed in subsection 4.3.1. The other two feature sets required less feature engi-

neering, as commonly found in applications of DL. A filtered feature set, used for Recurrent

Neural Network (RNN) models and 1-dimensional Convolutional Neural Network (CNN1D)

models, was created using a digital butterworth filter of order 4 with a passband between

1 and 30Hz, applied both forwards and backwards to each electrode channel. The third

feature set, used for 2-dimensional CNNs (CNN2D), represented EEG signals in windowed

epochs as a spectrogram (see figure 5.3.2), created using an undecimated wavelet transform
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Classifer

Feature Sets

Datasets

LightGBM MLP RNN CNN1D CNN2D LightGBM MLP RNN CNN1D

“Handcrafted”
Features

Filtered EEG
Spectogram

(UDWT)
“Handcrafted”

Features
Filtered EEG

TUH
(Absence)

TUH
(Generalized)

TUHS

Figure 5.3.1: Classifiers used in this chapter and their associated features and datasets.
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Figure 5.3.2: Example epoch of data used as an input to 2D CNN models.
Note. Illustrates a generalized non-specific seizure

(UDWT; discussed in subsections 2.4.3 and 5.3.2).

All data was scaled on a patient-by-patient basis by removing the mean and scaling to

a unit variance of 1, identical to the pre-processing in subsection 4.3.1. For the filtered

datasets, and where features were manually extracted, scaling was performed separately for

each channel and each feature; except for features in the frequency domain, where scaling

was done for each type of feature across all frequency bands for each channel (e.g. C3 Mean

2-4Hz, 4-8Hz, 8-16Hz, 16-32Hz, 32-64Hz, 64-128Hz). Scaling across frequency bands for

each channel was also conducted for the UDWT feature set.

5.3.2 Signal Classification

The gradient boosting (LightGBM) and DL models chosen used GPU hardware for training

and prediction to account for the size of the datasets and computational cost of DL models.

Specifically, each model was trained using a NVIDIAR© Tesla T4 GPU, attached to a virtual

machine on the GoogleR© Cloud Platform with various vCPUs and RAM sizes according to

the dataset size. LightGBM (2.3.2; Ke et al., 2017), previously discussed in chapters 2 and

4, is a gradient boosting model which sequentially fits predictors to the residual errors of

previous tree-like models. DL is another popular ensemble method, also discussed in more
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detail in chapter 2, where layers of artificial neurons or other formulas are stacked on top

of each other. These models reduce the amount of required hard-coded feature engineering

as, although the input data is rarely completely “raw”, generally there is less data trans-

formation required outside the neural network. This is due to the model layers generally

generating representations of the input which increase or decrease in complexity throughout

the network layers. Neural networks can consist of various layer types, with common types

including; Fully Connected (Dense) Layers, Convolutional Layers, and Recurrent Layers

associated with global, local, or sequence pattern detection respectively. Different combina-

tions and configurations of various layers are associated with different networks, with MLP,

CNN, and RNN models currently the most common.

DL models were all created using Tensorflow (2.1.0/2.2.0; Abadi et al., 2016), with

IntelR© MKL-DNN/MKL and CUDA 10.1 (NVIDIA et al., 2019). All models were trained

using a batch size of 32, a common size as larger batch sizes may lead to worse generalisation

(Keskar et al., 2019). An Adam (Kingma and Ba, 2015) optimiser was used, with the learning

rate reduced from the value chosen during optimisation (see subsection 5.3.3) to a minimum

of 1e-4 when the validation loss had not improved in more than 2 epochs. All DL models

ended with between 0 and 2 hidden dense layers, with Exponential Linear Unit (ELU)

activation functions, before a final output layer with 1 output and a sigmoid activation

function. MLP models consisted only of these hidden dense layers throughout, with batch

normalisation (Ioffe and Szegedy, 2015) used before the activation function to standardise

the outputs of each layer (Burkov, 2019). A 50% dropout rate (Hinton et al., 2012; Srivastava

et al., 2014) was also used as a regularisation technique to prevent overfitting. A variant

of dropout, Monte Carlo Dropout (MCD; Gal and Ghahramani, 2016), was used which

keeps dropout on while making predictions so that models output predictions which better

represent model uncertainty. MCD is useful in risk-sensitive medical systems as predictions,

for both the positive and negative classes, should be made with more caution (Géron,

2019). For the recurrent networks, we used gated RNN (GRU) layers, to give the network

“memory”. RNNs are sometimes proceeded by CNN layers, as a 1D convolutional layer with

strides above 1 downsamples the data. There are many different approaches to developing

a CNN model, with this chapter using four different architectures which could be chosen
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during optimisation, based on VGGNet, ResNet, Xception, and WaveNet (only available

to 1-dimensional CNN models). Inputs into a 1-dimensional CNN model are 2-dimensional

arrays (e.g. time× EEGchannel), with 3-dimensional arrays (e.g. time× EEGchannel ×

frequency) input into 2-dimensional CNN models. The dimension of a CNN model describes

how its kernel slides across the data, 1D CNN models therefore sliding across the one axis

(e.g. time), and 2D CNN models sliding across two axes (e.g. time & EEGchannel).

VGGNet (Simonyan and Zisserman, 2014) follows a typical CNN architecture, in that it

stacks multiple convolutional and Rectified Linear Unit (RELU) activation layers together

with occasional pooling layers. The number of filters applied to the data in each layer tends

to increase as the other input dimensions get smaller. For 1D CNNs, the term filter and

kernel can be used interchangeably to refer to a 2D array of weights. However, in 2D CNNs,

a filter refers to a collection of unique kernels which output one “channel”. Channels (or

feature maps) is a term often used to describe the structure of a layer. An example could

be an input layer of time× EEGchannel × frequency which would have 3 channels if the

inputs have 3 frequency band components; although channels do not always need to be last

in the input. In 2D CNNs, 2D kernels are first convoluted separately to each input channel

of the previous layer. The result of each separate convolution is then summed together

to form a single channel, to which a bias gets added. In order for the next layer to have

an input with multiple channels, multiple filters are applied to the input layer. VGGNet

specifically uses a 3x3 kernel and double filters for each of the 5 stacks of convolutional layers

from 64 to 512. In this work, the number of filters in the first layer, as well as the kernel

size, could be optimised (see subsection 5.3.3). Furthermore, we added batch normalisation

layers between convolution and activation layers, as adding these to the original VGGNet

model design has been shown to improve performance (Santurkar et al., 2018).

ResNet (He et al., 2016) is variant of VGGNet, developed for the ILSVRC ImageNet

challenge (Russakovsky et al., 2015). ResNet uses skip connections to add the input signal

of a group of convolutional layers to the output. This leads to residual learning, as the

layer now models the target function minus the input rather than just the target function.
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Residual units are made up of two main parts. Firstly there are two convolutional layers that

feed sequentially into each other, separated by batch normalisation and activation layers.

The first convolutional layer has a stride of 1 or 2 depending on if there is an increase in the

number of filters from the previous layer, so that the output of the layer is reduced similar

to using pooling, and the second convolutional layer always has a stride of 1. The second

part is a third separate convolutional and batch normalisation layer which takes the input

for the first convolutional layer in the unit, runs it though a 1x1 kernel, and also applies a

stride of 2 or 1 so that the output is the same as the other separate sequential convolutional

layers. The unit then ends with an activation on the added output of the two paths in the

unit.

Xception (Chollet, 2017b) merges ideas from GoogLeNet’s (Szegedy et al., 2015) incep-

tion modules and ResNet. Xception (extreme inception) uses depthwise separable convo-

lution layers to separate spatial and cross-channel pattern modelling. In this architecture,

filters are similar to the convolution layers used above, as kernels are first separately con-

voluted for each input channel for 2D CNNs. However, instead of summing the resulting

maps/channels to output one channel per filter, a pointwise convolution (1x1 convolution)

is used. Essentially, convolution layers are split into a layer to filter the data and a layer to

combine them. Depthwise separable convolution layers are less useful when the number of

channels is low (Géron, 2019), therefore in Xception they are used after 2 regular convolu-

tional layers to increase the channel number. The rest of the model then uses combinations

of separable convolutional layers with skip connections, pooling, and final dense layers.

WaveNet (van den Oord et al., 2016), the final CNN model architecture used in this

work, is only used with 2D data. WaveNet uses stacked 1D convolutional layers, doubling

the dilation rate at each layer rather than increasing the number of filters. The dilation

rate is the distance a neuron is in a layer, from the neuron feeding it an input from the

previous layer. This means in the input layer there is a neuron for each sample in the data,

in this case a sequence of 512 samples in a window, with this decreasing like a pooling or

strided convolution at each layer. Therefore the initial layers can learn long-term patterns
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and smaller patterns at lower levels. By zero padding the input sequences to each layer by

the dilation rate, the sequence length of the input is preserved in the output of the model.

Multiple dilated layers form a block, similar to a single convolutional layer with a kernel size

of 1,024, which can be repeated and stacked on-top of each other to make a deeper model

(Géron, 2019). Similar to ResNet and Xception, WaveNet also includes skip connections,

however also includes Gated Activation Units (GAUs), which are similar to GRU cells found

in RNNs.

5.3.3 Optimisation and Cross-Validation

BOHB, using Hpbandster (0.7.4 Falkner et al., 2018), was used to optimise model structure

and hyperparameters separately for LightGBM, MLP, RNN, CNN1D, and CNN2D network

models. BOHB is a combination of Bayesian and Hyperband optimisation methods, found

to be faster, with better solutions, than Hyperband or random search alone (Falkner et al.,

2018). The Bayesian part of the algorithm is based on Tree Parzen Estimators (Bergstra

et al., 2011), which use a kernel density estimator to model the input configuration space

to find optimal hyperparameters. Hyperband (Li et al., 2018) is a bandit strategy that

randomly samples configurations of hyperparameters and removes poorly performing con-

figurations using successive halving whilst allocating resources effectively.

For feature sets from the TUH (Absence) dataset, the BOHB algorithm had 200 iter-

ations to determine the best parameters for each model based on the validation F1-score.

This was lowered to 100 iterations for the models trained on the TUH (Generalized) feature

sets to account for the increased computational cost associated with the larger amount of

data. Bayesian optimisation does typically require fewer iterations than random search or

gridsearch to get the optimal set of hyperparameter values, due to focusing on areas of the

search space expected to generate a higher validation score (Falkner et al., 2018). However,

the number of iterations chosen here is based on the available computational budget. Other

published research using Bayesian optimisation for deep learning models (e.g. Wang et al.,

2018; Nguyen et al., 2019; Liang, 2019) tend to use fewer iterations (18-90), however they

tend to optimise fewer hyperparameters (3-6). The budget for the BOHB was set between

50 and 1000 estimators for each trained LightGBM model and between 5 and 30 epochs for
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Table 5.3.1: Hyperparameter search spaces for different classifiers.

LGBM MLP

Hyperparameter Value Hyperparameter Value
Min Split Gain 0 Batch Size 32
Subsample Frequency 1 Optimizer Adam
Subsample For Bin 200000 ReduceLROnPlateau (Factor) 0.1
Objective binary ReduceLROnPlateau (Patience) 2
Min Split Gain 0 Dropout (Type) MCDropout
Importance Type split Dropout (Rate) 0.5

Hyperparameter Search Space Hyperparameter Search Space
Learning Rate loguniform(0.01, 0.2) Learning Rate . . .
Negative Class Fraction uniform(0.01, 0.5) Negative Class Fraction . . .
Scale Pos Weight uniform(0., 10.) Sample Weight choice(True, False)
Boosting Type choice(gbdt, goss, dart) Kernel Regularization choice(None, ’L2’, ’Max Norm’)
Num Leaves randint(2, 40) Number of Dense Layers randint(1, 12)
Max Depth choice(None, randint(1, 25)) First Layer Dense (Units) randint(3, 300)
Min Child Weight uniform(0.001, 5.) Hidden Layer Dense (Units) randint(2, 300)
Min Child Samples randint(1, 30)
Colsample By Tree uniform(0.1, 1.)
Reg Alpha uniform(0., 1.)
Reg Lambda uniform(0., 1.)

Hyperparameter Budget Hyperparameter Budget
Number of Estimators Min = 50; Max = 1000 Epochs Min = 5; Max = 30

RNN 1D CNN

Hyperparameter Value Hyperparameter Value
Batch Size . . . Input Configuration Samples× Channel
Optimizer . . . Batch Size . . .
ReduceLROnPlateau (Factor) . . . Optimizer . . .
ReduceLROnPlateau (Patience) . . . ReduceLROnPlateau (Factor) . . .
Dropout (Type) . . . ReduceLROnPlateau (Patience) . . .
Dropout (Rate) . . . Dropout (Type) . . .

Hyperparameter Search Space Dropout (Rate) . . .
Learning Rate . . . Hyperparameter Search Space
Negative Class Fraction . . . Learning Rate . . .
Sample Weight . . . Negative Class Fraction . . .
Kernel Regularization . . . Sample Weight . . .
Number of Dense Layers randint(0, 2) Kernel Regularization . . .
Conv (Filters) randint(2, 128) Number of Dense Layers . . .
Conv (Kernel) randint(2,6) Conv (Filters) . . .
Number of Conv Layers choice(0, 1) Conv (Kernel) . . .
Number of Rec Layers randint(1, 9) Conv Layer Types choice( ’VGGNet’, ’ResNet’, ’Xception’, ’WaveNet’)
Rec (Units) randint(1, 128) VGGNet (Number of Conv Blocks) randint(1,4)
Dense (Units) randint(3, 100) VGGNet Dense (Units) randint(3, 600)

ResNet (Number of Conv Blocks) randint(1,10)
ResNet Dense (Units) randint(3, 600)
Xception (Number of Conv Blocks) randint(1, 10)
Xception Dense (Units) randint(3, 1500)
Wavenet (Number of Conv Blocks) randint(1, 5)
Wavenet Dense (Units) randint(3, 300)

Hyperparameter Budget Hyperparameter Budget
Epochs . . . Epochs . . .

2D CNN

Hyperparameter Value
Batch Size . . .
Optimizer . . .
ReduceLROnPlateau (Factor) . . .
ReduceLROnPlateau (Patience) . . .
Dropout (Type) . . .
Dropout (Rate) . . .

Hyperparameter Search Space
Learning Rate . . .
Negative Class Fraction . . .
Sample Weight . . .
Kernel Regularization . . .
Number of Dense Layers . . .
Conv (Filters) . . .
Conv (Kernel) randint(4,12)
Conv Layer Types choice( ’VGGNet’, ’ResNet’, ’Xception’)

Input Configuration
choice(Freq × Samples× Channel,

Channel × Samples× Freq)
VGGNet (Number of Conv Blocks) . . .
VGGNet Dense (Units) . . .
ResNet (Number of Conv Blocks) . . .
ResNet Dense (Units) . . .
Xception (Number of Conv Blocks) . . .
Xception Dense (Units) . . .

Hyperparameter Budget
Epochs . . .

Note. Some hyperparameters are shared between classifiers (. . .). choice: choose one; randint: random integer; normal: normal distribution; uniform: value selected randomly
between lower and upper bounds; loguniform: a log-uniform distribution.
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each trained DL model. Training epochs for the DL models in this chapter do not reflect

a full training run on all the available training data, as a batch generator from Imblearn

(0.7.0; Lemaitre et al., 2017) was used to randomly undersample the training data to cre-

ate mini-batches of ictal and interictal data. All available ictal data was used for training,

whereas the proportion of available interictal data for these batches could be optimised. The

search space, created using ConfigSpace (0.4.13; Lindauer et al., 2019), consists of both

hyperparameters and model layer configurations for DL models (see table 5.3.1). The model

hyperparameters for LightGBM were determined based on previous results (see chapter 4).

The defined search space for initial learning rate and whether to add a weighting to classes ac-

cording to their proportion in the data were the same between all deep learning models. The

heuristic used to calculate the class weights, NumSamples/(NumClasses∗bincount(y)), is

the same as implemented in Scikit-Learn (0.23.1; Pedregosa et al., 2011; King and Zeng,

2001).

For RNN and CNN models, the number of dense layers at the end of the model and

number of filters for convolutional layers were the same. The number of dense, convolutional,

and recurrent layers/blocks in most models were set to a maximum of 12, with the exceptions

being Wavenet architectures (7) to ensure the data fitted into GPU memory, and VGGNet

(4) as maxpooling could not halve the electrode channels beyond this if data was input as

(Freq×Samples×EEGChannel). Indeed, the UDWT feature set could be input into the

CNN2D models as either Freq × Samples×EEGChannel or EEGChannel× Samples×

Freq. However, as illustrated in table 5.3.2, the layers as described above are not all

of the layers in a model (e.g. input, reshape, batch normalisation, activation, dropout,

global average pooling, and flatten layers); with convolutional blocks typically consisting of

multiple layers. This means that models can be much deeper, or have more parameters to

train, compared to other model types or chosen architectures. CNN models can, at the start

of each iteration of model optimisation, choose one of three types of hidden blocks based

on VGGNet, ResNet, and Xception, as well as Wavenet for 1D CNN models. Filters across

the different layers/blocks in the CNN models increase according to the type of layers being

used (see table 5.A.2); with 2D CNN models also halving the kernel value after the first

block. The hidden dense layers at the end of RNN and CNN models similarly halve the
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Table 5.3.2: Number of model layers and internal parameters if the maximum of all possible
parameters/ hyperparameters were chosen during optimisation

Model Type Max Layers Max Params

MLP 49 1,160,101
RNN 30 927,273

CNN1D

VGGNet 46 7,898,977
ResNet 25 30,167,521

Xception 109 278,815,591
Wavenet 176 8,835,625

CNN2D
VGGNet 47 177,567,073
ResNet 26 344,932,321

Xception 110 293,026,273

number of units at each subsequent layer before the final 1 unit output layer. Each type of

DL model has a different maximum for the number of units for the hidden dense layers, to

reflect that the proceeding number of outputs into those layers tend to be larger or smaller

depending on the type of previous layers; for example, convolutional layers tend to have

many outputs compared to recurrent layers.

5.4 Results

In this section we begin by describing the model training and evaluation on the feature

sets generated from the TUH (Absence) dataset (subsection 5.4.1), followed by feature sets

from the TUH (Generalized) dataset (subsection 5.4.2). Each subsection for the different

seizure types begins by examining the validation scores gained during training, along with

the time to train each model. We then look at the search space and optimal parameters for

the different models found using BOHB optimisation. Subsequently, in each subsection, we

examine the performance of the best classifiers for each model type on the test sets, followed

by how these metrics can be improved using prediction post-processing. Similar to previous

chapters, patient results are typically displayed in average, with further patient-by-patient

details available in the supplementary information document (https://bit.ly/3bZQxop).
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5.4.1 Absence Seizures

As discussed in subsection 5.3.1, three separate absence seizure feature sets were created

to reflect the typical input into different classifiers; LightGBM and MLP models having

“hand-crafted” features, RNN and CNN1D models using filtered EEG as an input, and

CNN2D models using a spectrogram from an UDWT as an input. Patients were randomly

allocated into one of five groups (see table 5.2.2). The model optimisation and evaluation

then occurred within a 5-fold cross-validation scheme, where at each fold 3 groups of patients

were used for training, 1 group for validation, and 1 for testing (see table 5.4.1). As can be

seen in figure 5.A.1, this can lead to each fold having varying numbers of seizures in each

set.

Validation Scores

Across folds, LightGBM models on average had the highest validation F1-score and were

the fastest models to train (see table 5.4.2). CNN2D and MLP models had the lowest

average F1-score, followed by CNN1D, RNN, and LightGBM. The validation F1-scores

for all models across folds overlapped to some degree, when considering their standard

deviation (SD), however there were clear differences in the training times; as LightGBM

Table 5.4.1: TUH (Absence) folds and associated groups.

Training Validation Test

Fold 1
Group 1
Group 2
Group 3

Group 4 Group 5

Fold 2
Group 2
Group 3
Group 4

Group 5 Group 1

Fold 3
Group 3
Group 4
Group 5

Group 1 Group 2

Fold 4
Group 4
Group 5
Group 1

Group 2 Group 3

Fold 5
Group 5
Group 1
Group 2

Group 3 Group 4
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Table 5.4.2: Average training F1-scores and total training times across all TUH (Absence)
folds.

Model
Max F1-score Training Time (secs) Unique

Runs
Total

Mean (SD) Mean (SD) Configurations Time (hrs)

LightGBM 89.0 (3.96) 7.43 (6.72) 5010 6685 13.79
MLP 85.93 (4.37) 57.63 (34.76) 3000 4340 69.47
RNN 87.24 (6.44) 387.19 (289.08) 3000 4340 385.79

CNN1D 87.11 (4.97) 459.18 (798.41) 3000 4340 553.56
CNN2D 85.86 (4.59) 1352.68 (2108.3) 3000 4340 1630.74

Note. Average and standard deviation training time represents time in seconds to train 1 iteration of the
Bayesian optimisation across all folds. Total time is the total GPU hours needed to train all optimisation
runs across all folds.

was significantly faster to train than MLP, RNN, CNN1D, and CNN2D DL models. The

differences in training time also reflect the size of the dataset used to train each model,

the two models (LightGBM, MLP) that used “hand-crafted” features (0.08 Gb) were the

fastest, followed by the two models (RNN, CNN1D) which used just the filtered EEG (0.6

Gb), with CNN2D the slowest using a spectograms as the input (5.3 Gb). Although all

models were set to 200 iterations to determine the best parameters, the actual number of

unique configurations and runs conducted is determined by the minimum and maximum

budget set. In this case, all DL models had the same number of configurations and runs

for training as they had the same budget of between 5 and 30 epochs, whereas LightGBM

used between 50 and 1000 estimators as the budget. In practice, this optimisation method

samples model configurations and trains them on a smaller budget, and only trains certain

configurations on higher budgets which are more computationally demanding, in this case

more epochs or estimators.

Model Parameters

All models in this work have a lot of hyperparameters to tune, with LightGBM having the

most. Some models had clear areas of the hyperparameter search space that improved model

performance (e.g. MLP), whereas others were less clear (e.g. LightGBM). Furthermore, a

variety of model configurations were found in the optimal models for each fold. Indeed,

looking across the training and validation scores during optimisation (see figure 5.A.2), it is

evident that changes to hyperparameters generally either make minor differences to F1-score

in the majority of models or create models with very poor performance. Training fold 3

185



appeared to have the most variation in scores across models compared to other folds, which

could be due to the testing group in this fold (group 5) being the largest, and therefore the

models in this case were training and validating models on an overall smaller amount of

data. This is because we randomly assigned patients in each group, so each had roughly the

same number of patients, rather than controlling for the same number of seizures in each

fold (see figure 5.A.1).

LightGBM appears to be the least sensitive model to particular hyperparameter changes

when compared to the other models. It also appears to be the most prone to overfitting

to the training data (see figure 5.A.2a). Looking at the hyperparameter search space (see

figure 5.A.3), across folds, learning rate typically produced better models when it was below

0.05 and models were generally worse when less than 10% of available interictal data was

sampled for training. Certain folds had other clear patterns, such as folds 2, 3, and 4 (to a

smaller degree) where weights on the seizure labels were best below 2, and folds 2 and 4 where

sampling below 40% of available features for trees produced better models. However, as these

patterns in the search space were not present across all folds, these recommendations should

be taken with caution. If we look across the folds at the hyperparameters of the optimal

LightGBM models (models with the best validation score) we can see that there are quite a

range of “optimal” model configurations (see table 5.4.3). It is interesting that the boosting

type for LightGBM varied between a traditional Gradient Boosting Decision Tree (GBDT)

and Gradient-based One-Side Sampling (GOSS) between training folds. GOSS is a novel

sampling method available in LightGBM which retains instances with large gradients and

performs random sampling on instances with small gradients so that Stochastic Gradient

Descent converges faster/better during training. Other large differences in hyperparameters

between optimal models are the number of features sampled, L2-regularization, and weight

applied to seizure labels.

As mentioned above, MLP models had the clearest areas in the hyperparameter search

space that produced better models, even if these were not always consistent across folds (see

figure 5.A.4). Learning rate was generally best below 0.05 (apart from fold 3), a finding

that was consistent across most folds in other DL models, and the sample of interictal data

was generally best between 35 and 50%, although this was not the case in folds 1 and 5.
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Table 5.4.3: Optimal TUH (Absence) seizure model hyperparameters for each fold.

Classifier Type Hyperparameter Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

LightGBM Boosting Specific

Boosting Type Gbdt Goss Goss Goss Gbdt
Early Stopping Rounds 73 73 65 57 62

L1 Regularization 0.41 0.85 0.37 0.58 0.31
L2 Regularization 0.09 0.43 0.42 0.83 0.43

Learning Rate 0.05 0.13 0.01 0.08 0.19
Maximum Tree Depth 37 29 20 19 32
Maximum Tree Leaves 19 8 10 37 11

Minimal Sum Hessian in a Leaf 1.07 4.41 0.03 0.25 3.58
Minimum Samples at a Node 7 14 2 3 7

Number of Estimators 1000 1000 1000 1000 111
Sample of Features 0.89 0.12 0.52 0.25 0.99

Sample of Interictal Data 0.45 0.83 0.71 0.6 0.72
Weight of Seizure Labels 3.6 0.2 0.03 5.32 1.77

MLP

Network General

Kernel Regularizer - Max Norm - - Max Norm
Learning Rate 0.01 0.1 0.11 0.05 0.05

Loss Function Weighting False False False False False
Number of Epochs 30 30 30 30 30

Sample of Interictal Data 0.27 0.45 0.47 0.45 0.45

Network Specific
Dense Layers 3 1 10 11 7

First Layer Neurons 204 185 207 298 295
Hidden Layer Neurons 293 - 231 245 283

RNN

Network General

Kernel Regularizer Max Norm L2 Max Norm - Max Norm
Learning Rate 0.01 0.01 0.01 0.01 0.02

Loss Function Weighting False False False False False
Number of Epochs 30 30 30 30 7

Sample of Interictal Data 0.34 0.42 0.42 0.39 0.36

Network Specific

Convolutional Layer False True False False False
Filters - 6 - - -
Kernel - 4 - - -

Recurrent Layers 3 4 3 4 4
Recurrent Neurons 113 86 28 39 14

Dense Layers 0 1 1 2 0
Dense Neurons - 53 75 93 -

CNN1D

Network General

Kernel Regularizer - L2 - - -
Learning Rate 0.07 0.02 0.12 0.02 0.02

Loss Function Weighting False False False False False
Number of Epochs 30 30 30 30 30

Sample of Interictal Data 0.19 0.33 0.29 0.49 0.41

Network Specific

Convolutional Model VGGNet Xception VGGNet WaveNet Xception
Convolutional Layers/Blocks 1 2 3 2 9

Filters 97 2 77 106 2
Kernel 2 4 2 2 5

Dense Layers 1 2 1 1 0
Dense Neurons 64 1495 371 128 -

CNN2D

Network General

Kernel Regularizer Max Norm L2 L2 L2 -
Learning Rate 0.12 0.01 0.02 0.18 0.01

Loss Function Weighting False False False False False
Number of Epochs 30 30 30 30 30

Sample of Interictal Data 0.28 0.33 0.48 0.31 0.16

Network Specific

Convolutional Model ResNet Xception Xception Xception VGGNet
Input Chan× Samp× Freq Freq × Samp× Chan Chan× Samp× Freq Chan× Samp× Freq Chan× Samp× Freq

Convolutional Layers 6 3 10 6 1
Filters 34 98 18 6 11
Kernel 4 6 5 8 7

Dense Layers 0 2 1 0 0
Dense Neurons - 658 528 - -
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This may be linked to hidden layer neurons, which also had similar patterns in folds 2,

3, and 4, associated with better models when set between 200 and 300, with this pattern

not occurring in folds 1 and 5. Another clear difference between the search space results

was that folds 1, 2, and 5 generally had better results with models with few dense layers

(3 and below), whereas folds 3 and 4 had better models with many dense layers (between

9 and 12). This inconsistency is likely due to the small amount of patients in the TUH

(Absence) dataset, meaning training and validation samples varied across folds, with more

patients potentially leading to more consistent hyperparameter search spaces between folds.

However, MLP models were mostly comparable across folds in their optimal configurations

(see table 5.4.3), with the number of dense layers being the exception. The number of

optimal dense layers varied between 1 and 11 across folds, but the number of neurons in

these layers were generally more consistently between 200 to 300. All models found training

for the full available 30 epochs optimal, a finding that was similar across all other DL model

configurations. It is worth noting that 30 epochs is a comparatively small number of epochs

for DL models, chosen in the interest of being able to train many DL model configurations;

therefore certain configurations would likely benefit from an increase in epochs. Similarly,

across optimal DL models, sample weighting was never applied to the loss function based

on class distribution; suggesting resampling the interictal classes alone was a better method

to account for the class imbalance.

During training, RNN models were the most affected by hyperparameter choice as it had

the most variable validation F1-score (see figure 5.A.2a). The search space values in figure

5.A.5 reveal poor performing models generally had many recurrent neurons and layers, a

small sample of interictal data, and not enough dense neurons in the final hidden layer(s).

Generally, between 10 and 40 recurrent neurons, and below 5 recurrent layers, lead to

better models. The number of dense neurons associated with better models was inconsistent

between folds, however above 50 appears to be a general pattern. For the optimal models

(see table 5.4.3), RNN had the most consistent “network general” parameters of all the

optimal DL models, and generally had a similar number of recurrent layers. However, the

number of recurrent neurons in layers varied, as well as the number of dense hidden layers.

Indeed, two models did not have any hidden dense layers before the final output dense layer.
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The two types of CNN models (1D & 2D) were different in their optimal model param-

eters. However, for both 1D and 2D CNN models, limited conclusions regarding optimal

configuration can be drawn from the search space (see figures 5.A.6 and 5.A.7) or optimal

model configurations (see table 5.4.3). Nevertheless, it seems from the optimal 1D CNN

models that the chosen model type influences the best number of filters, as VGGNet mod-

els have a large number of filters, whereas Xception models have fewer. However, there

is no clear area in the search space for the number of filters, or many other parameters

for that matter, associated with better models. This could be due to there not being sep-

arate search spaces for a number of parameters for each different model type (VGGNet,

ResNet, Xception, and WaveNet); although we had separate search spaces for the number

of hidden layer dense neurons and CNN layers/blocks. There is a balance between creating

too many parameters to optimise and allowing the granularity of separate search spaces for

parameters which are associated with particular model configurations. Nevertheless, this

may have affected CNN model performance. With an increased computational budget, this

could be addressed by training each model type separately or separating these search spaces

and having more optimisation iterations. Still, it appears generally that shallow 1D CNN

models, compared to other applications, provide better performance for absence seizure de-

tection - although this is likely affected by the comparatively small data size. For optimal

2D CNN models, it is clear that models benefited from the input data being formatted as

EEGChannel×Samples×Freq, rather than Freq×Samples×EEGChannel, as well as

having a larger kernel than 1D CNN models. Optimal 2D models also were generally deeper

than 1D CNN models, as well as other DL models, and favoured model types that had skip

connections (Xception & ResNet), which was also the case for 1D CNN models (Xception

& WaveNet).

Test Scores

Similar to the validation scores, where LightGBM had the best average maximum F1-score

and lowest training time, LightGBM generally had the best average performance across the

test records on all metrics except from sensitivity and AUC (see table 5.4.4). As with the

validation scores, 2D CNNs generally performed the weakest across performance metrics.
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Table 5.4.4: Average (and standard deviation) test scores, across folds, for TUH (Absence) seizure models.

Classifier
Accuracy Sensitivity Specificity Precision F1-score AUC FP/h Prediction Time

Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD)

LightGBM 98.52 (1.36) 79.8 (9.52) 99.39 (1.31) 89.42 (15.01) 83.07 (8.12) 89.6 (4.55) 20.66 (44.36) 0.04 (0.03)
MLP 98.36 (1.42) 80.07 (8.53) 99.25 (1.35) 84.74 (14.41) 81.42 (8.58) 89.66 (4.12) 25.68 (45.6) 0.17 (0.11)
RNN 98.41 (1.32) 81.55 (9.15) 99.22 (1.26) 84.97 (16.18) 82.04 (9.26) 90.39 (4.47) 26.55 (42.83) 1.51 (0.58)

CNN1D 98.21 (1.47) 76.29 (9.15) 99.24 (1.34) 84.35 (16.41) 78.94 (9.65) 87.76 (4.53) 26.16 (45.4) 0.74 (0.95)
CNN2D 98.01 (1.52) 80.59 (12.3) 98.87 (1.6) 79.54 (19.99) 77.78 (10.96) 89.73 (5.86) 38.8 (54.48) 1.36 (0.78)

Note. The best average score for each metric, across classifiers, are in bold.

Table 5.4.5: Average (and standard deviation) post-processed test scores, across folds, for TUH (Absence) seizure models.

Classifier
Accuracy Sensitivity Specificity Precision F1-score AUC FP/h Prediction Time

Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD)

LightGBM 98.66 (1.22) 77.07 (9.76) 99.68 (1.04) 96.21 (11.54) 84.65 (6.99) 88.37 (4.68) 11.02 (35.26) 0.04 (0.03)
MLP 98.65 (1.13) 77.07 (10.52) 99.68 (0.91) 95.57 (10.57) 84.43 (6.99) 88.37 (5.11) 10.93 (30.78) 0.17 (0.11)
RNN 98.72 (1.05) 80.16 (9.98) 99.6 (0.87) 92.66 (11.25) 85.15 (7.17) 89.88 (4.89) 13.63 (29.64) 1.51 (0.58)

CNN1D 98.42 (1.26) 71.19 (12.4) 99.68 (0.99) 96.03 (11.91) 80.65 (9.04) 85.44 (6.1) 10.77 (33.56) 0.74 (0.95)
CNN2D 98.4 (1.29) 78.58 (15.34) 99.38 (1.15) 89.5 (14.65) 81.7 (9.56) 88.98 (7.47) 21.02 (39.02) 1.36 (0.78)

Note. The best average score for each metric, across classifiers, are in bold.
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Although the sensitivity of CNN2D models was comparatively good, this was at the expense

of the highest number of false positives. Unlike the validation scores, the second poorest

model was CNN1D, which was similar to MLP in most aspects apart from a worse sensitivity.

The second best model was RNN, which had the best sensitivity and AUC, but had poorer

performance on precision and FP/h compared to LightGBM. Similar to models in chapter 4,

the main limitation across models was not fully marking the full duration of seizures.

In chapter 4, we found there was generally an F1-score increase in the validation set

compared to the test set. We suggest in that chapter this could be due to stratified cross-

validation splitting training and validation sets whilst preserving the percentage of samples

for each class, rather than separating patient records so different segments from the same

patient do not appear in both sets. However, in the current chapter we find there is also

generally better performance in validation scores compared to the test set (see figures 5.4.1

and 5.A.8), despite having whole patient records completely separate between training and

validation sets. This suggests this finding is likely to be due to some over-fitting of the

Figure 5.4.1: Difference between the best absence models validation and test score metrics.
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models to the validation set during optimisation.

Post-Processing

As discussed in chapters 3 and 4, the majority of performance metrics can be improved

with post-processing of the predictions. Performance is improved as short predictions are

removed based on an appropriate threshold for the length of a seizure prediction. As in the

previous chapters, the best window sizes for this threshold varied between 3 and 4 seconds

across folds and classifiers for absence seizure detection (see figure 5.4.2). Post-processing

is most beneficial for improving the precision of models, at the expense of sensitivity. After

post-processing, LightGBM was no longer the best performing model, instead it is surpassed

by RNN (see table 5.4.5). This is due to the increase in precision and reduction of FP/h

for this model, whilst still maintaining the best sensitivity. LightGBM still performs as the

second best model, however its performance is more similar to MLP. The greatest model

improvement is arguably for CNN1D, which although has the worst sensitivity, now has the

best specificity and lowest false positives. The improvements seen in RNN, CNN1D, and

CNN2D models are due to them being more prone than LightGBM or MLP to predict short

false positives which are filtered out by the post-processing.

Figure 5.4.2: Effects of post-processing window size on TUH (Absence) test set performance
metrics.
Note. Thick line is sensitivity and the dashed line is precision.
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5.4.2 Generalised Model Training

We trained LightGBM, MLP, RNN, and CNN1D models using a similar method as above

for the TUH (Generalized) dataset. However, due to the increased computational cost

resulting from larger feature sets (“handcrafted” feature set, 1.2 Gb; filtered EEG set, 7.4

Gb), we only trained, validated, and tested these models using one fold instead of five -

resulting in a single training/validation/test split. We did not train CNN2D models on the

TUH (Generalized) dataset due to the considerable increase in training time these models

required compared to other models on the TUH (Absence) dataset (see table 5.4.2) and

increase in input data size for the generalized UDWT feature set (47.2 Gb). Furthermore,

on the TUH (Absence) data, average 2D CNN model performance was worse than CNN1D

models (see tables 5.4.4 and 5.4.5), other than for sensitivity metrics.

Validation Scores

As with the models trained on the TUH (Absence) feature sets, LightGBM models had the

highest maximum F1-score on the validation data during training optimisation, as well as

being the fastest to train (see table 5.4.6). Similarly, the time to train each model followed

the same ordering as the absence models, except 5-20 times longer per model iteration

depending on model type. Again, this reflects not only the typical model complexity, but also

the size of the input data. However, in contrast to the absence analysis, RNN models were

now the poorest performing model, followed by CNN1D, MLP, and LightGBM remaining

as the top performing model. A limitation to the model training was that the number of

unique configurations and runs varied across models due to larger models (RNN & CNN1D)

requiring larger computational resources, so were more costly to train.

Model Parameters

Similar to the TUH (absence) models, changing model hyperparameters either resulted in

small changes in the best F1-score the models could achieve, or models performed very

poorly. MLP models were the least sensitive to hyperparameter changes, with LightGBM,

RNN, and CNN1D having lots of variation between iterations (see figure 5.A.9). Further-
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Table 5.4.6: Average training F1-scores and total training times across all TUH (General-
ized) folds.

Model
Max Training Time (secs) Unique

Runs
Total

F1-score Mean (SD) Configurations Time (hrs)

LightGBM 57.15 33.01 (32.8) 504 673 6.17
MLP 55.34 522.47 (329.57) 600 868 125.97
RNN 41.75 5768.76 (5149.56) 259 374 599.31

CNN1D 49.34 8861.07 (12227.52) 107 154 379.06

Note. Average and standard deviation training time represents time in seconds to train 1
iteration of the Bayesian optimisation across all folds. Total time is the total GPU hours
needed to train all optimisation runs across all folds.

more, the overfitting of LightGBM models to the training data is much less prominent in

this dataset, raising the question whether this is due to the increased size or related to the

properties of the different seizure classes. Instead, MLP models clearly were overfitting to

the training data, as well as most RNN and CNN1D models.

As shown in figure 5.A.10, it is difficult to identify particular values that are optimal

for LightGBM hyperparameters except a low maximum number of tree leaves (between

1-10), some weighting for seizure labels being useful, and high L1-regularization generally

resulting in better performing models. However, the optimal model for LightGBM (see table

5.4.7) only used a low amount of L1-regularization, therefore high L1-regularization may

not be necessary, just more likely to lead to a better model. The optimal generalized model

was also relatively similar to the optimal model configurations observed on the absence

data, although with lower L1- and L2-regularization; likely as with more intra-patient and

inter-patient variability for seizures, there is less chance for the model to overfit to the

validation data. However it is still worth keeping in mind the variation in potential model

configurations which would have produced similar scores for this particular model.

For all models, except MLP, a low learning rate generally led to better validation F1-

scores during training. Similar to MLP models trained on absence data, generalized MLP

models also had more clear optimal areas of the search space than other models (see figure

5.A.10). Loss function weighting was generally preferable, along with a small sample of

interictal data for training. Models generally consisted of 1 or 2 dense layers with between

1 and 100 neurons in the first layer and 1 and 150 neurons in the hidden layers. The
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Table 5.4.7: Optimal TUH (Generalized) seizure model hyperparameters

Classifier Type Hyperparameter Value

LightGBM Boosting Specific

Boosting Type Goss
Early Stopping Rounds 88

L1 Regularization 0.16
L2 Regularization 0.03

Learning Rate 0.17
Maximum Tree Depth 27
Maximum Tree Leaves 7

Minimal Sum Hessian in a Leaf 3.51
Minimum Samples at a Node 15

Number of Estimators 1000
Sample of Features 0.44

Sample of Interictal Data 0.53
Weight of Seizure Labels 3.59

MLP

Network General

Kernel Regularizer -
Learning Rate 0.18

Loss Function Weighting False
Number of Epochs 30

Sample of Interictal Data 0.13

Network Specific
Dense Layers 1

First Layer Neurons 272
Hidden Layer Neurons -

RNN

Network General

Kernel Regularizer L2
Learning Rate 0.02

Loss Function Weighting False
Number of Epochs 7

Sample of Interictal Data 0.1

Network Specific

Convolutional Layer True
Filters 57
Kernel 5

Recurrent Layers 1
Recurrent Neurons 54

Dense Layers 2
Dense Neurons 68

CNN1D

Network General

Kernel Regularizer -
Learning Rate 0.01

Loss Function Weighting False
Number of Epochs 30

Sample of Interictal Data 0.11

Network Specific

Convolutional Model Wavenet
Convolutional Layers/Blocks 4

Filters 99
Kernel 4

Dense Layers 0
Dense Neurons -
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optimal MLP model for the generalized seizures (see table 5.4.7) was different to the absence

optimal models in that it had a lower number of dense layers (just 1), with a smaller sample

of interictal data, and higher learning rate. Therefore it appears the features input into

the model require less transformations within the model to represent generalized seizures,

however this is relative to the potential model performance on generalized seizures alone as

overall absence seizure performance was better.

As there are fewer iterations of RNN and CNN1D models for generalized models it is

more difficult to identify clear patterns in the search space. Nevertheless, 2 hidden dense

layers at the end of the RNN models seem to be better than only 1 or none, and again

only a small sample of interictal data was generally needed for training (see figure 5.A.10).

This small sample of interictal data was also in the optimal model and is different from the

generally larger amount of interictal data used in the optimal absence models. Furthermore,

the optimal models for the absence folds generally had no or one dense layer, whereas here it

proved beneficial to have 2. For CNN1D models, more training would be required to identify

any optimal areas in the search space. For the optimal model, the sample of interictal data

is again comparatively low, and it chose a deep WaveNet model configuration; a shallower

WaveNet only optimal in one of the folds in the absence seizure data.

Test Scores

Similar to the absence seizures and generalized validation scores, where LightGBM had the

best maximum F1-score and lowest training time, LightGBM generally had the best average

performance across the test records on all metrics apart from sensitivity (see table 5.4.8).

Also similar to the generalized validation scores, RNN models generally performed the weak-

est across performance metrics. Although this models sensitivity alone was comparatively

very good, this was at the expense of a very high number of false positives which would make

this algorithm realistically unusable. Similar to the generalized validation scores, CNN1D

was the second worst model on the test set due to its high false positive rate and much slower

prediction time than other models. However due to its comparatively high sensitivity it had

the second best F1-score, although all models F1-scores were generally poor. This could

however be related to this model having the least amount of unique configurations sampled
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Table 5.4.8: Average (and standard deviation) test scores, across folds, for TUH (Generalized) seizure models.

Classifier
Accuracy Sensitivity Specificity Precision F1-score AUC FP/h Prediction Time

Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD)

LightGBM 84.33 (15.39) 47.69 (40.62) 92.19 (10.46) 36.69 (29.86) 36.38 (29.58) 69.94 (20.13) 200.24 (196.11) 0.04 (0.05)
MLP 68.21 (14.66) 66.26 (34.0) 70.79 (19.95) 25.78 (22.36) 28.7 (23.09) 68.53 (11.67) 882.43 (614.12) 0.42 (0.58)
RNN 20.83 (16.18) 96.6 (2.08) 6.63 (3.31) 16.11 (18.04) 24.27 (22.22) 51.62 (1.88) 2826.44 (614.01) 1.92 (2.73)

CNN1D 62.66 (16.88) 70.76 (20.71) 60.14 (20.66) 24.13 (22.25) 31.29 (22.48) 65.45 (15.21) 1159.59 (617.11) 29.89 (43.37)

Note. The best average score for each metric, across classifiers, are in bold.

Table 5.4.9: Average (and standard deviation) post-processed test scores, across folds, for TUH (Generalized) seizure models.

Classifier
Accuracy Sensitivity Specificity Precision F1-score AUC FP/h Prediction Time

Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD)

LightGBM 86.04 (18.25) 39.37 (40.63) 97.45 (5.82) 46.52 (38.29) 38.37 (35.36) 68.41 (20.57) 54.78 (94.59) 0.04 (0.05)
MLP 85.63 (17.03) 46.91 (39.95) 95.25 (8.82) 58.31 (31.29) 39.8 (28.65) 71.08 (20.1) 112.25 (152.29) 0.42 (0.58)
RNN 49.56 (17.24) 80.28 (16.95) 44.66 (19.96) 20.78 (19.35) 28.27 (21.0) 62.47 (11.08) 1660.71 (698.47) 1.92 (2.73)

CNN1D 85.65 (15.35) 40.29 (33.07) 95.22 (9.16) 63.56 (38.27) 42.29 (30.34) 67.75 (17.3) 116.46 (230.42) 29.89 (43.37)

Note. The best average score for each metric, across classifiers, are in bold.
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during optimisation (see table 5.4.6). MLP was the second best model, and was similar to

CNN1D except it had a slightly worse sensitivity but with a better specificity.

Across test patient records, MLP and CNN1D models predicted lots of false positives

of short/medium length, with this occouring less frequently in LightGBM models. Across

most patients, RNN models predicted the majority of the records as ictal, explaining its

high false positive rate but good sensitivity. Particularly poor performance for all models

was on record P26, which has a large proportion of data containing focal non-specific (FN)

seizures. Although not exclusively, TUHS records are generally segmented around events of

interest, which is why over half of this record consists of FN seizures. FNs, as labelled in

TUHS, are similar to GN seizures, in that they are a category which covers a broad range of

seizure etiologies and are “delineated from GN seizures only by the number and location of

the channels on which they occur” (Ochal et al., 2020). Although similar to GN seizures, FN

seizures occur 4 times less in the TUH (Generalized) dataset, so poor performance on this

patients records is likely due to reduced training of models on FN seizures (see table 5.2.1).

Similarly, models had poor performance on P50 records; particularly LightGBM models

which missed all the FN and GN seizures present in this record. Although proportionally

FN seizures covered less of the patients records than P26, they still covered more than

GN seizures, also likely contributing to the poor performance of models on this patient.

Nevertheless, performance on P64 was also poor for all models, due to a lot of false negative

classifications, and these records only contained GN seizures.

Post-Processing

A much larger post-processing window size was best for the generalized seizures compared

to models trained on the absence seizures (see figure 5.4.3) Nevertheless, the best window

sizes for these models (12 - 26 seconds) should be able to capture a majority of generalized

seizures, as the median length of seizures have been shown to range from 18 seconds to 130

seconds depending on type (Jenssen et al., 2006). This longer window size suggests that

where GN seizures were predicted, they generally covered a number of sequential windows.

Indeed, post-processing did have some affect on sensitivity, but not as much as the absence

seizures. LightGBM had the smallest best windowsize, followed by MLP, CNN1D, and RNN
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Figure 5.4.3: Effects of post-processing window size on TUH (Generalized) test set perfor-
mance metrics.
Note. Thick line is sensitivity and the dashed line is precision.

with the largest. The specificity benefits were the largest in MLP and CNN1D models,

due to these models predicting longer continuous false positives comparative to absence

seizure records. With a larger post-processing window size, this reduced these false positives

significantly.

After post-processing, LightGBM is still generally the best model (see table 5.4.9), how-

ever the other DL models have a noticeable improvement. Indeed CNN1D models now have

the best precision and F1-score. However all models had relatively poor sensitivity to be-

gin with, so a further decrease in sensitivity noticeably impacts their performance to fully

classify ictal data segments. However, the FP/h is considerably reduced for the DL models

using post-processing, demonstrating a clear trade-off.

5.5 Discussion

We assessed five ensemble classifiers (gradient boosting and DL) for the automatic detection

of absence and GN seizures. Optimal hyperparameters and model configuration were inves-

tigated using a combination of Bayesian and Hyperband optimisation (BOHB). We found

better performance across all models in their application to detecting absence seizures com-

pared to GN seizures. This is likely due to GN seizures having large intra-patient and

inter-patient variability compared to generalized absence seizures, which have little intra-

patient and inter-patient variability. Across both seizure types, LightGBM appeared to
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provide the best overall performance whilst being dramatically faster to train.

Performance in this chapter was comparable to, but weaker than, the balanced ensemble

classifiers in chapter 4 using the same absence dataset. This difference could be accounted

for by the different training/test paradigm, this chapter using five-fold-cross validation to

group patients and chapter 4 using leave-one-patient-out cross-validation. Therefore, models

were trained on more data in chapter 4 than in this chapter; with this different approach

taken due to the computational cost associated with training DL models. There were also

a number of differences between the hyperparameters in the optimal models in this chapter

compared to chapter 4; LightGBM models in this chapter using Goss sampling more often,

with deeper trees, less interictal data sampled per tree, and more estimators - although

models in this chapter also had early stopping to try prevent overfitting. Models in this

chapter also had a broader range of optimal parameters across folds, with these differences

potentially due to a number of reasons, such as the different optimisation method used, less

data per fold, and a more restricted choice for the number of estimators in the ensemble; as

in this chapter this was used for the budget rather than having a separate search space.

In comparison to other published papers on the TUHS dataset, few have used gradient

boosting to specifically detect absence or GN seizures for hyperparameters and model metric

comparison. Vanabelle et al. (2020) trained another gradient boosting model (XGBoost) on

a range of various seizure types in the TUHS dataset. Although they manually set hyperpa-

rameters, they used less estimators and had a smaller tree depth than the optimal LightGBM

models found in this chapter (see table 5.5.1). Compared to this chapter, Vanabelle et al.

(2020) reports XGBoost models as having a better average sensitivity (59.50%), using an

leave-one-patient-out cross-validation, on a broader group of generalized seizures than used

in this chapter. However this paper uses the Any Overlap (OVLP; Ziyabari et al., 2017)

Table 5.5.1: The most common categorical or average (and standard deviation) hyperpa-
rameter values across folds for LightGBM models compared to published research.

Depth Estimators Methods Type

Vanabelle et al. (2020) 3 400 GPU Hist XGBoost

This Chapter
(Absence) 27.4 (6.95) 822.2 (355.6) Goss LightGBM

(Generalized) 27 1000 Goss LightGBM

Note. For all the optimal hyperparameters for each fold in this chapter, see tables 5.4.3 and 5.4.7.
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method for calculating the metric, which inflates the sensitivity compared to the method

used here. Roy et al. (2019a) also trained an XGBoost model to identify seizure type across

a range of seizures in the TUHS dataset. They found the XGBoost model had the second

best F1-score compared to KNN, and was better than SGD, AdaBoost, and CNN models.

This paper used HyperOpt (Bergstra et al., 2015) to find the best hyperparameters for all

models apart from the CNN model, but do not report the search space or final values for

comparison. Zhang et al. (2018) also used a general gradient boosting model for seizure

detection across multiple seizure types, finding poor sensitivity but good specificity; similar

to the results found for GNs in this chapter. This paper also found gradient boosting to

be better than naive Bayes, KNN, and random forest models, but worse than a logistic

regression or support vector machine.

Although DL models are more common than gradient boosting in the seizure detection

literature, comparisons between this chapter and other published research for DL model

parameters is also limited by poor reporting practices (for review see Roy et al., 2019b).

Nevertheless, although on a different dataset (CHB-MIT; see section 2.7), authors such as

Pramod et al. (2014) and Wang and Ke (2018) have found great performance of MLP for

paediatric seizure detection. Both authors also use “hand-crafted” features and balance the

ictal/interictal classes before training, although only Pramod et al. (2014) test the models

on full records using leave-one-patient-out-cross-validation on 1-second segments. This is

likely why Wang and Ke (2018) report much better accuracy, sensitivity, and specificity

metrics than found in Pramod et al. (2014) or this chapter. For comparison, our absence

models (which are also trained with records from paediatric patients) have worse sensitiv-

ity, similar specificity, but better precision and F1-score than Pramod et al. (2014); but

as these are on different datasets, this comparison should be made with caution. Although

using random sampling for hyperparameter optimisation on a smaller search space than this

chapter, Pramod et al. (2014) do not provide the best hyperparameters found for compari-

son. Conversely, Wang and Ke (2018) manually set all hyperparameters. Furthermore, both

papers do not have a control model for comparison using the same methods.

Different types of RNN models have also been applied to records in both the CHB-MIT

and TUHS datasets. For example, Vidyaratne et al. (2016) trained bidirectional RNNs on
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5 subjects from the CHB-MIT dataset, as opposed to the unidirectional models we used in

this chapter (see table 5.5.3). Using a patient specific leave-one-record-out validation scheme

they found very high sensitivity with a low number of false detections. However, as part of

the output, experimentally obtained patient-specific threshold values are used for prediction

post-processing, which would be unrealistic to implement in practice beyond patients in

long-term monitoring. Also on the CHB-MIT records, Yao et al. (2019) trained a much

deeper independent RNN model than those trained in this chapter. They found RNNs to

have better accuracy, sensitivity, specificity, F1-score, and precision than a CNN model (see

table 5.5.4). However, compared our absence RNN models, their models had lower accuracy,

specificity, F1-score, and precision, but better sensitivity. Again this comparison should be

made with caution due to the different dataset and the fact they randomly undersampled

the seizure and non-seizure segments to be used for both training and testing models in a

ten-fold cross-validation. More similar to this chapter is Liu et al. (2020), who compared

standard and bilinear RNN and CNN models on the TUHS dataset. They found RNN

models overall generally had better performance, with this improved further by employing

both in a hybrid model. Their RNN model had less recurrent layers, with fewer recurrent

neurons, than the absence RNN models in this chapter, but more layers than the GN RNN

models. They had a similar number of hidden dense layers at the end of the model, but

each with more dense neurons. As shown in table 5.5.5, our optimal models had better

accuracy for absence seizures, but were poorer for GN seizures. This could be due to their

models training on a variety of generalized seizures, which may have boosted performance

for the GN seizures. Indeed it is common that models are trained on multiple seizure types,

however few authors report these models performance for each seizure type separately, as

most just report general performance (see table 2.A.3). Their improved performance on GN

seizures could also be due to their models training on more epochs, or the different input

data; as they used an STFT (Freq × Samples × EEGChannel; 32, 9, 19), as opposed to

a UDWT (Freq × Samples × EEGChannel; 5, 512, 19). However, this difference could

merely be down to their use of stratified five-fold cross-validation for training and evaluation.

Due to this cross-validation procedure, data from the same patient could have been mixed

between training and test sets, although these would not be the exact same data segments.
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Table 5.5.2: The most common categorical or average (and standard deviation) hyperparameter values across folds for MLP models
compared to published research.

Activation Batch Dense Dropout
Epochs Regularization

Learning
Optimizer Type

Function Size (Layers) (Neurons) Rate Rate

Pramod et al. (2014) ReLU ?? [2-5] [10-100] [0.1-0.5] 200 L1 = 0.01 [0.01-0.1] ?? MLP

Wang and Ke (2018) ReLU 50 4
hl1 = 529 hl1 = 0.1

300 L2 = 2e-4 0.01
Gradient Cross-Layer

hl2 = 80 hl2+ = 0 Descent MLP
hl3 = 20

This Chaper
(Absence) ELU 32 6.4 (3.88)

hl1 = 237.8 (48.53)
0.5 30 Max Norm = 1.0 0.06 (0.04) Adam MLP

hl2+ = 263 (25.73)
(Generalized) ELU 32 1 272 0.5 30 - 0.18 Adam MLP

Note. For all the optimal hyperparameters for each fold in this chapter, see tables 5.4.3 and 5.4.7. Some hyperparameters have different values for each hidden
layer (hl).

Table 5.5.3: The most common categorical or average (and standard deviation) hyperparameter values across folds for RNN models
compared to published research.

Activation Batch
Epochs

Dense
Regularization

Recurrent Learning
Optimizer Type

Function Size (Layers) (Neurons) (Layers) (Neurons) Rate

Vidyaratne et al. (2016) ?? ?? ?? 0 - -
1

5 ??
Unscented

DRNN
(18 cells) Kalman Filer

Yao et al. (2019) ReLU 30 30 1 100 - 12 120 0.0007 RMSprop IndRNN

Liu et al. (2020) Tanh 32 200 2
hl1 = 768

- 2 5 ?? Adam
Conv

hl2 = 256 LSTM

This Chaper
(Absence)

Tanh &
32 30 0.8 (0.75) 73.7 (16.36) Max Norm = 1.0 3.6 (0.49) 56 (37.38) 0.012 (0.004) Adam GRU

Sigmoid

(Generalized)
Tanh &

32 30 2 68 L2 = 0.01 1 54 0.02 Adam GRU
Sigmoid

Note. For all the optimal hyperparameters for each fold in this chapter, see tables 5.4.3 and 5.4.7. Some hyperparameters have different values for each hidden
layer (hl).
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Table 5.5.4: The most common categorical or average (and standard deviation) hyperparameter values across folds for CNN models
compared to published research.

Activation Batch Convolutional
Epochs

Dense
Regularization

Learning
Optimizer Type

Function Size (Layers/Blocks) (Filters) (Layers) (Neurons) Rate

Iešmantas and Alzbutas (2020) ReLU ?? 2 10 ?? 1 1000 - 0.001 Adam CNN2D

Yao et al. (2019) LeakyReLU 30 5
hl1 & 2 = 100

50 2
h1 = 100

- 0.01 Adam CNN2Dhl3 & 4 = 200 h2 = 50
hl5 = 260

Liu et al. (2020) ReLU 32 3
hl1 = 128

200 2
h1 = 768

L2 = 0.0001 0.0001 Adam
CNN2D

hl2 = 64 h2 = 256 (Bilinear)

Zhang et al. (2020) ReLU ?? 4

hl1 = 16

250 2 L2 = 0.0001 0.0001 Adam
hl2 = 32 hl1 = 300 CNN2D
hl3 = 64 hl2 = 22 (Adversarial)
hl4 = 128

This Chaper
(Absence)

ReLU 32 2 (1) 87 (10) 30 1 (0) 217.5 (153.5) - 0.095 (0.025) Adam
CNN1D

(VGGNet)

ReLU 32 5.5 (3.5) 2 (0) 30 1 (1) 1495 L2 = 0.01 0.02 (0) Adam
CNN1D

(Xception)
Tanh &

32 2 106 30 1 128 L2 = 0.01 0.02 Adam
CNN1D

Sigmoid (WaveNet)

ReLU 32 6 34 30 0 - Max Norm = 1.0 0.12 Adam
CNN2D
(ResNet)

ReLU 32 1 11 30 0 - - 0.01 Adam
CNN2D

(VGGNet)

ReLU 32 6.3 (2.89) 40.67 (40.84) 30 1 (0.81) 593 (65) L2 = 0.01 0.07 (0.08) Adam
CNN2D

(Xception)

(Generalized)
Tanh &

32 4 99 30 0 - - 0.01 Adam
CNN1D

Sigmoid (WaveNet)

Note. For all the optimal hyperparameters for each fold in this chapter, see tables 5.4.3 and 5.4.7. Some hyperparameters have different values for each hidden layer (hl).
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Nevertheless, currently for absence seizures, due to the availability of absence records, it

seems clear that they are best trained separately until they are at least more represented in

larger datasets.

In this chapter, we found RNN models performed better than CNN models for absence

seizures but much poorer on the GN seizure feature sets. Indeed, this latter finding is con-

sistent with a recent systematic evaluation of architectures which concluded that currently

CNNs tend to perform better than RNNs on a number of sequence modelling tasks (Bai

et al., 2018). Indeed, CNNs popularity for a number of pattern recognition tasks is reflected

by them being the most commonly applied DL model for EEG classification (Roy et al.,

2019b). For seizure detection, CNN models tend to be the deepest DL models; indeed

deeper CNNs have been found to give improved performance for neonatal seizure detection

compared to shallower CNNs and a support vector machine (O’Shea et al., 2017). However,

other published research has found that comparatively shallow CNN models can also be

better than classical ML models (e.g. Iešmantas and Alzbutas, 2020; Zhang et al., 2020).

Generally the number of electrodes and number of seizures in the data, as well as the chosen

window size of each batch, limit the depth of CNN network architectures which use pooling

layers (e.g. VGGNet). There are however benefits of a shallow network, such as simpler

training which could aid online clinical diagnosis of epileptic signals (Zhou et al., 2018;

Yan et al., 2018), and less chance of overfitting. Indeed, similar to this chapter and other

published research (e.g. Schirrmeister et al., 2017), shallow networks have been shown to

perform as good or better than deep networks with more complex structures (such as resid-

ual connections) for EEG classification. Nevertheless, the flexibility of DL models mean that

deep complex models, such as ResNet50 (He et al., 2016), can be adapted to EEG classifica-

tion by only re-training the final layer(s) (e.g. Roy et al., 2019a). Both the 1D and 2D CNN

models in this chapter had worse sensitivity for absence and GN seizures than Iešmantas

and Alzbutas (2020), but much better specificity and therefore better overall AUC (see ta-

ble 5.5.5). Still, as these models were generally worse than other faster models, its hard to

recommend these current CNN models over LightGBM, which provides substantially faster

training and prediction times.

DL models generally take a long time to train due to their high computational complexity

205



Table 5.5.5: Comparison between average model performance reported in this chapter (after post-processing), to other published research
using the TUHS dataset.

Reference Evaluation Method Subjects Seizure Types Classifier ACC SEN SPEC AUC

Iešmantas and Alzbutas (2020) 25% Holdout 246
Absence (0.68%) CNN - 80 50 62

Generalized Non-Specific (16%) CNN - 62 58 63

Liu et al. (2020) 314

Absence (0.56%) B-CNN 58.6 - - -
B-RNN 66.19 - - -

Stratified 5-Fold Hybrid 67.7 - - -
Cross-Validation Generalized Non-Specific (23%) B-CNN 96.45 - - -

B-RNN 96.46 - - -
Hybrid 96.68 - - -

This chapter

5-Fold Cross-Validation 11 Absence (100%) LightGBM 98.66 77.07 99.68 88.37
MLP 98.65 77.07 99.68 88.37
RNN 98.72 80.16 99.6 89.88

CNN1D 98.42 71.19 99.68 85.44
CNN2D 98.4 78.58 99.38 88.98

20% Holdout 65 Generalized Non-Specific (100%) LightGBM 86.04 39.37 97.45 68.41
MLP 85.63 46.91 95.25 71.08
RNN 49.56 80.28 44.66 62.47

CNN1D 85.65 40.29 95.22 67.75

Note. The best average score for each metric, across classifiers, are in bold. For the full post-processed scores see table 5.4.9. Only papers which report
seizure type performance are included.
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(Coleman et al., 2017), with this limitation often influencing model selection strategies. In

literature reviews focused on DL models for physiological signal classification, very few (Roy

et al., 2019b) or even no (Faust et al., 2018) research papers were found to declare their

model selection strategy or used statistical methods (e.g. cross-validation). This means

most published research in this domain selected models and hyperparameters based on a

single run and training the network only once, potentially resulting in a sample selection

bias (Zadrozny, 2004; Huang et al., 2007; Faust et al., 2018). Computational power alone

has been shown to account for 43% of the variance in image classification accuracy on

the ImageNet benchmark, showing it is an inherent property of flexible and accurate DL

models (Thompson et al., 2020). These computational costs also come with large financial

costs; with the best performing models in other applications costing between $7,000 to

$12 million to train (see Synced, 2019). Furthermore, after building and training costs,

most organizations continue to commit 25-75% of the resources required to develop and

deploy machine learning solutions to maintain the project (Dimensional Research, 2019).

Furthermore, these costs can be more than purely financial, as large common DL models

can emit five times the lifetime emissions of the average American car (Strubell et al.,

2019). For an applied domain, such as seizure detection, these costs should be weighed

against the current non-automated costs and performance gains available. There is clear

potential monetary, performance, and productivity savings from introducing automation

into healthcare (further discussed in chapter 6), but currently there will likely be a preference

for ML techniques that are more computationally-efficient than current DL models, even if

there is a slight improvement in performance in some cases (Thompson et al., 2020). As such,

along with generally having better overall performance for both the detection of absence

and GN seizures, future research should focus on training gradient boosted classifiers as well

as the popular deep learning models for seizure detection.

There are also many other recommendations for future research to further the work pre-

sented in this chapter. Firstly, future research should investigate if/how including different

seizure types improves generalized seizure detection for each distinct seizure category. This

would contextualise the worse sensitivity for GN seizures found in this chapter compared

to other research on generalized seizures. Furthermore, CNN models should be further in-
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vestigated to see if separate search spaces for hyperparameters which are associated with

particular model configurations improve model performance. Often research focuses on one

particular CNN model configuration, but as there are now many potential model structures

available in the DL literature, these should be compared using hyperparameter optimisation.

Furthermore, this investigation could include other CNN structures which have promising

applications, such as temporal convolutional networks (Bai et al., 2018).

A limitation for the application of DL for seizure detection is the lack of research on their

application to highly imbalanced datasets (see Johnson and Khoshgoftaar, 2019). Indeed

most published DL research for seizure detection input random undersamples of data into

the networks for training, however balanced ensembles (see chapter 4) have a more robust

way of accounting for imbalance; each tree of the forest having a balanced bootstrap sample

rather than only one undersample for the whole model. Although LightGBM has hyper-

parameters specific to resampling input data, further investigation should be undertaken

to look into methods to further regularize the model to prevent overfitting to the balanced

training data, as was seen for the absence seizures.

There was a general inconsistency in hyperparameter spaces between folds which could

be due to the small amount of patients in the absence dataset, with more patients potentially

leading to more consistent hyperparameter search spaces. Therefore, an investigation of the

methodology outlined in this chapter with a larger absence dataset and with additional folds

for generalized datasets would be beneficial; although there is a large computational cost

associated with such work. This chapter is limited by its high-dimensionality, as there are

many hyperparameters, so it was difficult to identify the interactions between hyperparam-

eters in models. As the search space is large due to limited previous research for guidance,

subsequent research could do additional optimisation focusing on specific areas around the

optimal parameters found in the results presented here. Additionally, although we looked

at the features used for seizure classification for LightGBM models in chapter 4, it would

be beneficial to look into the features used in optimal DL models for both absence and

generalized seizures. Indeed this would be required to meet legislative requirements which

require insight into automated decision making processes (European Parliament, 2016).
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5.6 Conclusion

A gradient boosted tree algorithm (LightGBM) and several DL models (MLP, RNN, CNN)

were compared for offline detection of absence and GN seizures within EEG recordings.

Models trained to detect absence seizures, a seizure type with little intra-patient and inter-

patient variability, had better performance across all investigated metrics compared to GN

seizures; a seizure type with large intra-patient and inter-patient variability. This is how-

ever consistent with human raters, where visual review of ICU EEG records for seizures

is also more prone to error. LightGBM models provided the best overall performance and

were much faster to train, providing a computationally-efficient model which would be eas-

ier to implement into current NHS practice than costly deep learning models. Further

investigation is required to assess performance across multiple seizure types, LightGBM

and DL models decision making processes, and the cost/benefits of implementing different

automated seizure detection models into NHS practice. Nevertheless, such an implementa-

tion has promise for monetary, performance, and productivity savings for the diagnosis of

epilepsy and the monitoring of patients with seizures.
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5.A Appendix D

Table 5.A.1: Channel occurrence across TUH (Generalised) records.

Used Channels EEG PZ-REF EEG T4-REF EEG C3-REF EEG FP1-REF EEG C4-REF EEG T5-REF EEG F3-REF EEG F8-REF EEG T6-REF EEG CZ-REF
(Count = 557) EEG O1-REF EEG FZ-REF EEG FP2-REF EEG T3-REF EEG O2-REF EEG F7-REF EEG P3-REF EEG F4-REF EEG P4-REF

Dropped Channels EEG T2-REF EEG T1-REF SUPPR EEG EKG1-REF IBI BURSTS EEG A2-REF EEG A1-REF EEG 31-REF EEG 32-REF
Counts 509 509 487 487 487 487 421 421 368 368
Dropped Channels EEG C4P-REF EEG C3P-REF EEG SP1-REF EEG SP2-REF EMG-REF EEG 29-REF EEG 30-REF PHOTIC-REF EEG 26-REF EEG 28-REF
Counts 316 316 248 220 209 164 164 115 85 85
Dropped Channels EEG 27-REF EEG LOC-REF EEG ROC-REF EEG 21-REF EEG 25-REF EEG 23-REF EEG 20-REF EEG 24-REF EEG 22-REF RESP ABDOMEN-REF
Counts 85 79 79 48 48 48 48 48 48
Dropped Channels EEG EKG-REF EEG LUC-REF EEG RESP1-REF EEG RLC-REF EEG RESP2-REF
Counts 22 22 22 22 22

Table 5.A.2: Number of filters in the convolutional layers at each block.

Type Layer 1 2 3 4 5 6 7 8 9 10

VGGNet/ResNet

1 1 - - - - - - - - -
2 1 2 - - - - - - - -
3 1 2 4 - - - - - - -
4 1 2 4 8 - - - - - -
5 1 2 4 8 8 - - - - -
6 1 2 4 4 8 8 - - - -
7 1 2 4 4 8 8 8 - - -
8 1 2 4 4 4 8 8 8 - -
9 1 2 2 4 4 4 8 8 8 -
10 1 2 2 4 4 4 8 8 8 8

Xception

1 1—2 - - - - - - - - -
2 1—2 4 - - - - - - - -
3 1—2 4 8 - - - - - - -
4 1—2 4 8 16 - - - - - -
5 1—2 4 8 16 16 - - - - -
6 1—2 4 8 16 16 16 - - - -
7 1—2 4 8 16 16 16—20 22—24 - - -
8 1—2 4 8 16 16 16 16—20 22—24 - -
9 1—2 4 8 16 16 16 16 16—20 22—24 -
10 1—2 4 8 16 16 16 16 16 16—20 22—24

Note. Values based on if the search space were to select 1 filter for the first layer. — if change occours
within the same layer. These are based on the increase found in their respective original papers.
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Table 5.A.3: Medical history of patients in the TUH (Generalised) dataset according to patient notes.

Patient ID Age (Gender) Patient History

P1 (00000492) 54 (M) Epilepsy Head Trauma
P2 (00000975) 19 (F) Aspiration Pneumonia Shaken Baby Syndrome
P3 (00002380) - (M) Neurosurgical History
P4 (00002521) 27 (F) Anoxic Brain Injury
P5 (00002868) 64 (F) Cryptococcal Meningitis
P6 (00002991) 63 (M) Epilepsy HIV Disease
P7 (00003210) 29 (F) Epilepsy Head Trauma
P8 (00004087) 58 (F) Hypertension Hyperlipidemia Elevated Glucose Refractory Seizures
P9 (00004456) 43, 47 (F) Refractory Epilepsy
P10 (00004671) 22 (M) Cardiomyopathy MELAS syndrome Refractory Epilepsy
P11 (00005101) 82 (F) Cranial Surgery Refractory Statue Epilepticus Tumor Resection
P12 (00005265) 22 (M) Mitochondrial Disease Refractory Epilepsy
P13 (00006107) 89 (M) Post-Craniectomy Subdural Hematoma
P14 (00006230) 29, 32 (M) Refractory Epilepsy
P15 (00006440) 47 (M) Renal Disease
P16 (00006520) 20 (F) Refractory Epilepsy
P17 (00006546) 38, 40, 41, 42 (M) Rasmussen’s Encephalitis Refractory Epilepsy
P18 (00006563) 55 (F) Anoxic Brain Injury
P19 (00007032) 68 (F) Stroke
P20 (00007170) 80 (F) Atherosclerosis Dementia Post-Traumatic Epilepsy
P21 (00007828) 60 (M) Anoxic Brain Injury
P22 (00007936) 55 (F) Diabetes Hypertension Obesity
P23 (00007937) 38 (M) Limbic Encephalitis
P24 (00008174) 91 (M) Dementia Generalized Compulsive Seizures Hypertension
P25 (00008204) 60 (F) Head Trauma?
P26 (00008295) 22 (F) Central Neurocytoma Post-Craniectomy
P27 (00008303) 55 (F) Epiglottitis
P28 (00008453) 47, 48, 49 (M) Alcohol Dependence Hypertension Temporal Lobe Epilepsy
P29 (00008479) 59 (M) Cardiac Arrest
P30 (00008480) 43 (M) Childhood Epilepsy Stroke
P31 (00008512) 60, 61 (M) Aphasia Atrial Fibrillation Hypertension Stroke
P32 (00008760) 42 (F) Asthma Migraines Schizophrenia
P33 (00009104) 60, 62 (M) Epilepsy
P34 (00009158) 82 (F) Cancer Craniotomy Glioma/Encephalitis Stroke
P35 (00009162) 58 (F) Bipolar Depression Diabetes Hypertension Craniectomy
P36 (00009231) - (F) Dementia Epilepsy Schizophrenia
P37 (00009232) 49 (M) HIV Hypertension
P38 (00009370) 61 (F) -
P39 (00009540) 50 (F) Thyroid Cancer
P40 (00009623) 61 (M) Acute Hyponatremia Alcohol Abuse
P41 (00009839) 64, 65 (M) Alcoholic Cirrhosis Cerebrovascular Accident Hepatitis Hypertension Stroke
P42 (00009852) 39 (M) HIV Post-Traumatic Epilepsy
P43 (00009932) 53 (F) Anxiety Epilepsy Hypertension
P44 (00009934) 24 (M) -
P45 (00009994) 29 (M) Lennox-Gastaut Syndrome
P46 (00010020) 70 (F) Atrial Fibrillation Cardiac Arrest Congestive Heart Failure Diabetes Hypertension
P47 (00010062) 39 (F) Lennox-Gastaut Syndrome
P48 (00010106) 53 (F) Breast Cancer Depression Diabetes Hypertension
P49 (00010158) 59 (M) Chronic Obstructive Pulmonary Disease Coronary Artery Disease Schizophrenia
P50 (00010418) 66 (F) Cancer
P51 (00010421) 42 (F) Hepatitis C History of Seizures Drug Abuse
P52 (00010455) 55 (F) Asthma Chronic Obstructive Pulmonary Disease Diabetes Drug Abuse Emphysema Heart Disease Hepatitis B HIV Hypertension
P53 (00010639) 61, 62 (F) Congestive Heart Failure Coronary Artery Disease Mitral Regurgitation Stroke
P54 (00010760) 61 (F) Glioblastoma
P55 (00010843) 64, 65 (F) History of Seizures
P56 (00010861) 57 (F) Breast Cancer HIV
P57 (00011272) 58 (M) -
P58 (00011580) - (F) -
P59 (00011870) 88 (F) Craniotomy Stroke
P60 (00011972) 66 (F) -
P61 (00011999) 40 (M) AIDS CNS Lymphoma
P62 (00012046) 21 (F) Atypical Absence Epilepsy Learning Disability
P63 (00012707) 28 (F) Bipolar
P64 (00012940) 20 (M) Anoxic Brain Injury
P65 (00012941) - (F) Cardiac Arrest Drug Abuse
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(a) TUH (Absence) - Fold 1 (b) TUH (Absence) - Fold 2

(c) TUH (Absence) - Fold 3 (d) TUH (Absence) - Fold 4

(e) TUH (Absence) - Fold 5 (f) TUH (Generalised)

Figure 5.A.1: Gaussian kernel density estimates for the number of seizures in each fold
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(a) LightGBM
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(b) MLP
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(c) RNN
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(d) CNN1D
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(e) CNN2D

Figure 5.A.2: F1-scores during BOHB optimisation for models trained on TUH (Absence) records.
Note. Dots: Training scores; Line: Validation scores
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(a) Fold 1
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(b) Fold 2
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(c) Fold 3
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(d) Fold 4
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(e) Fold 5

Figure 5.A.3: LightGBM hyperparameter values, and F1-scores on the validation set, during model training on TUH (Absence) records.

222



(a) Fold 1
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(b) Fold 2
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(c) Fold 3
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(d) Fold 4
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(e) Fold 5

Figure 5.A.4: MLP hyperparameter values, and F1-scores on the validation set, during model training on TUH (Absence) records.
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(a) Fold 1
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(b) Fold 2
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(c) Fold 3
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(d) Fold 4
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(e) Fold 5

Figure 5.A.5: RNN hyperparameter values, and F1-scores on the validation set, during model training on TUH (Absence) records.
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(a) Fold 1
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(b) Fold 2
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(c) Fold 3
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(d) Fold 4
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(e) Fold 5

Figure 5.A.6: CNN1D hyperparameter values, and F1-scores on the validation set, during model training on TUH (Absence) records.
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(a) Fold 1
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(b) Fold 2
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(c) Fold 3

240



(d) Fold 4
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(e) Fold 5

Figure 5.A.7: CNN2D hyperparameter values, and F1-scores on the validation set, during model training on TUH (Absence) records.
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Figure 5.A.8: Boxplots to show the performance of optimal TUH (Absence) model config-
urations across all folds on each data split type.

243



Figure 5.A.9: F1-scores during BOHB optimisation for models trained on TUH (Generalised) records.
Note. Dots: Training scores; Line: Validation scores
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(a) LightGBM
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(b) MLP
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(c) RNN
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(d) CNN1D

Figure 5.A.10: Hyperparameter values, and F1-scores on the validation set, during model training on TUH (Generalised) records.
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Figure 5.A.11: Boxplots to show the the performance of optimal TUH (Generalised) model
configurations across all folds on each data split type.
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Chapter 6

Recommendations and Conclusions

This thesis has examined a range of signal features and classification pipelines for the opti-

mal detection of generalized seizures, focusing particularly on generalized absence seizures.

Chapter 2 provided a broad overview of the possible components of a classification pipeline,

demonstrating the large search space over which classification pipeline components and hy-

perparameters could be selected from. This also emphasised the current lack of consensus in

the literature over optimal configurations, therefore chapters 3, 4, and 5 used a systematic

approach to compare hundreds/thousands of potential model configurations, at a scale not

seen in the current seizure detection literature. This provides a more complete representa-

tion of the potential search space for model design, and will aid in comparing results from

published papers. Specifically, chapter 3 focused on the use of Bayesian optimisation to se-

lect optimal pipeline components and hyperparameters for the detection of absence seizures

in a novel clinical dataset. This chapter is the first research to use Bayesian optimisation

for absence epilepsy detection and to use NHS EEG patient records for automated epilepsy

detection, and we find some of the best pipelines for detecting this type of seizure are compa-

rable to the current literature. This work demonstrated the best pipeline stacked a Random

Forest (RF) for feature selection followed by a k-Nearest Neighbours (KNN) algorithm for

classification. The features that were selected by the RF reflected the prominent proper-

ties of absence seizures familiar to physiologists and clinicians, these being average alpha

frequency amplitude in the frontal/central electrodes. This is important as future clinical

adoption of an algorithm depends on its processing pipeline being explainable and justifi-
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able (Vollmer et al., 2020) in order to meet recent legislative changes (e.g. the EU General

Data Protection Regulation; European Parliament, 2016). In chapter 4, we built upon this

work by assessing more complex balanced ensemble models on a broader range of absence

patient data. Indeed, by training the models on more patient data from different NHS sites,

we were able to improve model performance. The models chosen in this chapter also had

improved training speeds, important as data size increases, and a lower false positive rate

than those found in chapter 3. However, the observed higher specificity and precision was

at the expense of sensitivity; likely due to each balanced classifier in the ensemble being

trained on different sampled interictal data. Furthermore, we also replicated our previous

finding that optimal random forest models selected slow frequency frontal channel features

for training, which could reflect models identifying these as optimal features for identifying

absence seizures. Chapter 5 then expanded on the approaches of the previous chapters,

applying a combination of Bayesian and Hyperband optimisation to deep learning model

structures and hyperparameters. Comparisons between this approach for absence seizure

detection and a broader range of generalized non-specific seizures demonstrated absence

seizures are easier for current models to detect accurately; highlighting differences in perfor-

mance depending on intra-patient and inter-patient variability. Nevertheless, the speed and

applicability of LightGBM models to large patient databases provide promising applications

for future healthcare needs.

6.1 Recommendations

There are various avenues of future research which can further the work in this thesis.

Chapter 3 investigated a range of features for classical machine learning models, however

optimal feature selection was not investigated exclusively. Hundreds of features have been

used in the literature for seizure detection (with some discussed in chapter 2), however there

is still little consensus regarding the best choices. Very little research is focused specifically

on feature engineering despite it being one of the most important aspects of a detection

pipeline. More reviews and research specific to the best feature engineering methods (e.g.

Greene et al., 2008; Logesparan et al., 2012) need to be conducted in order to give confidence
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in the differences found between components downstream in a detection pipeline. Similarly,

future investigation should explicitly consider the correlation structure between potential

features and investigations of optimal group selection of these features for dimensionality

reduction. As features in EEG encapsulate both temporal and spatial information, this

should include the investigation of optimal limited channel locations for seizure detection

(e.g. Chang et al., 2012; Duun-Henriksen et al., 2012a). However, caution should be taken

to ensure that these channels are selected due to relevance to a seizure type rather than

due to being less prone to noise/artefacts. There are many methods for handling artefacts

which could be investigated in classification pipelines in the future; from setting thresholds

on the number of zero crossings (e.g. Duun-Henriksen et al., 2012b), to semi-automatic

ICA approaches (e.g. Himberg and Hyvxrinen, 2003). An in-depth exploration of these

potential pipeline steps was beyond the scope of this research, however in chapter 3 we did

investigate multi-class labelling for classifying both seizures and artefacts, but did not find a

benefit of such an approach compared to binary classification for “classical” machine learning

models. Nevertheless, feature reduction/extraction methods could play a role in long term

patient monitoring as they could enable clinicians to find the best few EEG channels for

seizure detection, allowing for flexible and personalised electrode positioning. Indeed, such

flexible electrode systems are being developed currently (e.g. Epilog; Epitel Inc., 2019), with

specialised long term monitoring systems also recently available (e.g. Epihunter, 2020).

As demonstrated in chapter 5, different seizure types provide different challenges, there-

fore methodologies specific to each seizure type should be investigated separately to find

optimal pipelines for each seizure type. Having said this, ultimately these approaches will

need to be brought together into a unified approach. This is not to suggest ceasing the in-

vestigation of multi-class pipelines, instead it supports a global appreciation of the different

challenges between different seizure types. More general systems should be considered for

seizure diagnosis beyond one single multi-class model, which likely would be inferior to a

holistic approach. This would need to encapsulate different diagnostic protocols for techni-

cians and clinicians as well as the output of various algorithms overseen and interpreted by

trained users. For example, classical and ensemble methods in chapters 3 and 4 describe

the data in different, but complimentary, ways; as the more specific ensemble algorithms
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give better information on the number of seizures, and the more sensitive classical methods

on seizure duration. It could be that future implementations would combine markings from

both, with seizures predicted by a classical model removed if not partly overlapping with

predictions from an ensemble model. There could also be control over the post-processing

set by the end-user, with sensible defaults for minimum detection length provided based

on research; for example, an investigation into absence seizures could have the default at 4

seconds and generalized seizures set at 17 seconds.

There is often a lack of multi-institution datasets used or compared in research for

machine learning in healthcare applications (McDermott et al., 2019), as discussed in chap-

ter 4. This is of course partly due to health data being privacy sensitive (discussed further

in section 6.2), nevertheless potential data providers such as hospitals and clinical research

centres produce vast quantities of valuable data which could further ensure future models

could replicate and generalise over care practices. Currently researchers have limited ac-

cess to data resources from which to develop new algorithms. Therefore, like other authors

(e.g. McDermott et al., 2019), we recommend the creation of more large data trusts where

medical institutions can anonymously pool data; such as MIMIC (Johnson et al., 2016), the

U.K. and Japan Biobanks (Sudlow et al., 2015; Nagai et al., 2017), eICU (Pollard et al.,

2018), the Temple University Hospital EEG Corpus (Harati et al., 2014), and Physionet

(Goldberger et al., 2000). This is particularly important due to the number of corporate

entities investing in datasets (Rajkomar et al., 2018; Wood, 2019) and patents (Google,

2019), which keep medical data and models in the non-public/non-academic domain, thus

reducing research reproducibility and replicability.

6.2 Limitations and Challenges

This thesis focused on the technical limitations of general EEG classification algorithms,

which was highlighted in chapter 1 as a reason why semi-automated EEG scoring is not

more widely adopted in healthcare. However, there are many other limitations that need to

be addressed before future clinical adoption. For instance, it should be taken into account

that currently markings of clinical EEG records typically fluctuate between neurologists,
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due to the difficulties of following EEG scoring rules, leading to high inter- and intra-scorer

variability (Wilson et al., 2003; Younes et al., 2018). There are published criteria of EEG sig-

nal characteristics for recognizing electrographic seizures and periodic discharges (e.g. Arif

et al., 2013), but inter-rater agreement among EEG experts can be poor, especially where

there are complex and abnormal background activities (Ronner et al., 2009). Typically an

EEG is marked by experienced clinicians who only have time to skim though records anno-

tating interesting events. However, these transcriptions lack detailed information required

for classification training and often miss subtle or brief events. Indeed, periodic discharges

have been shown to have a worse inter-rater agreement than seizures (Halford et al., 2015).

Brief events are often the most contentious for seizure labelling and there is no official length

of time required to define a seizure, with the consequence that the minimum time sufficient

to define a seizure is often variable (D’Ambrosio and Miller, 2010). However, discharges

accompanied by clinical seizures qualify as electrographic seizures regardless of duration;

although whether a person is shown to have clinical signs (e.g. limited responsiveness) de-

pends on how carefully they are observed (Fisher et al., 2014). Furthermore, there is often

not always one definitive label for a seizures onset and offset time as the borders of ictal,

interictal, and postictal are often indistinct (Fisher et al., 2014). This is unlike other clinical

data where labels are more concrete e.g. time of patient death. This uncertainty is often not

represented during model training, where onset and offset labels are used as concrete labels

rather than based on a certainty metric. Accounting for this uncertainty, with a wider range

of seizure onset/offset labelling or certainty weighting, could improve the false positive rate

of models which identify onsets sooner than currently labelled.

Another main limitation is that many current datasets, including those used in this

research, consist of retrospective data that is collected as part of routine care and later

used for research purposes. This method of collection can cause potential privacy risks and

contain confounding variables if not handled carefully. These can be somewhat, although

not completely, reduced from prospective data collection from consenting participants. Such

a regime poses logistical challenges, indeed we struggled to gain prospective data from NHS

trusts over the course of this research, but is possible (e.g. All of Us Research Program

Investigators, 2019; Arges et al., 2020). There are further security and privacy issues as we
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move past training dataset collection and to implementation. For example, some current

automated EEG sleep scoring software requires the uploading of recordings to the cloud (e.g.

Tay et al., 2017) or external servers (e.g. Younes et al., 2015), which can conflict with data

protection policies of healthcare providers (Ali et al., 2018). Indeed healthcare information

is highly personal, therefore any transfer of information between parties involves risks, both

actual and perceived (Fichman et al., 2011). Its also worth appreciating that different

models have different hardware requirements, as shown across this thesis. The models in

chapters 3 and 4 for example can run locally on basic CPU hardware, whereas chapter 5

used models that require more expensive GPU hardware and are ideal for running on large

computing clusters, in this case we used Google’s Cloud Platform. Therefore due to the

varying requirements of different algorithms, there is a variation in the degree of data transfer

that would be required to deploy them at scale. However, careful societal consideration needs

to be taken when implementing any cloud machine learning technology in a healthcare

system as such technologies lend themselves to natural monopolies, so regulation will be

required to ensure this technology does not get exploited (e.g. increased healthcare costs).

There are other important limitations, which are beyond the scope of this research.

These include; the lack of friendly user interfaces (Marcilly et al., 2016), and a general

aversion to new technologies in the healthcare sector (Fichman et al., 2011).

6.3 Future Impact

The models discussed in this work are ultimately intended to be further extended and

incorporated into assessment tools for EEG diagnosis. These would reduce the time taken

for EEG technicians to assess an EEG record, allowing for a greater involvement in patient

focused treatment plans (see Topol, 2019) and a broader range of assessment options less

constrained by the mark-up time of the EEG record. Seizures are unlikely to be marked

as a binary decision, requiring systems that enable a combination of expert and automated

workflows to highlight differences between different seizure types and benign features. Such

systems should be clear regarding the decision process, such as highlighting where potential

seizures are in records, the certainty regarding the diagnostic label, and what specific features
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of the highlighted segment were important for labelling. Such a user friendly system (e.g.

Selvakumari et al., 2019), would no doubt aid clinical decision making and could also lead

to future discoveries in brain functioning (Roy et al., 2019a).

Investments into automation presents a significant opportunity to improve both the

efficiency and the quality of care in the NHS. Freed up time for care of patients by intro-

ducing automation varies, but estimates range from 11% to 57% for different job roles, at

a total estimated value of £12.5 billion a year for the NHS and £6 billion for social care

(Darzi, 2018). There are many barriers to increase the pace of adoption of automation,

many of which have been covered in this thesis. However, this can be accomplished pro-

vided there is appropriate investments in infrastructure and staff training to re-design care

pathways. Scientific and health service research is powered by quality datasets and there

is a powerful moral imperative to improve care for others through research; which does not

require personally identifiable data, but does require integrated datasets shared securely

with researchers (Darzi, 2018). Indeed, the NHS has a distinct advantage than other health

systems for developing and integrating automated systems due to the “single payer” system

which provides a complete, deep, and broad dataset for the whole population; as well as

world-leading big data and artificial intelligence research in the UK. With the appropriate

investments and continued research interest, automated/semi-automated diagnostic imag-

ing promises to improve care practices in the NHS, with the UK becoming world-leaders in

its implementation into healthcare practice.
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