
A Model-Driven and Business Approach to
Autonomic Network Management

Mehdi Bezahaf, Stephen Cassidy, David Hutchison, Daniel King,
Nicholas Race, Charalampos Rotsos

Lancaster University, (mehdi.bezahaf, d.hutchison, d.king, n.race,

c.rotsos)@lancaster.ac.uk, British Telecom, steve.cassidy@bt.com

Abstract

As corporate networks continue to expand, the technologies that underpin
these enterprises must be capable of meeting the operational goals of the
operators that own and manage them. Automation has enabled the impressive
scaling of networks from the days of Strowger. The challenge now is not
only to keep pace with the continuing huge expansion of capacity but at the
same time to manage a huge increase in complexity – driven by the range of
customer solutions and technologies.

Recent advances in automation, programmable network interfaces, and
model-driven networking will provide the possibility of closed-loop, self-
optimizing, and self-healing networks. Collectively these support the goals
of a truly automated network, commonly understood as “autonomic network-
ing” even though this is a prospect yet to be achieved.

This paper outlines the progress made towards autonomic networking and
the framework and procedures developed during the UK Next Generation
Converged Digital Infrastructure (NG-CDI) project. It outlines the operator-
driven requirements and capabilities that have been identified, and proposes
an autonomic management framework, and summarizes current art and the
challenges that remain.

Keywords: Autonomic Network Management, Intent-Based Networking.

River Journal, 1–27.
© 2021 River Publishers. All rights reserved.



2 M. Bezahaf

1 Introduction

Autonomic networking promises to radically change the way we deploy and
operate future networks [1]. The ultimate aim of autonomic networking is
to facilitate self-managing networks, which would be capable of overcoming
the increasing complexity of today’s networked systems.

In the UK, an ambitious project called Next Generation Converged
Digital Infrastructure (NG-CDI) [2] has been researching the autonomic net-
working space. The project has split the goals of self-managing (’intelligent’)
networks into three technology strands with the properties of being agile in
development, autonomic in management, and autonomous in diagnosing and
fixing faults. This research is being conducted with multiple UK academic
partners and a leading network operator, British Telecom (BT). The academic
and commercial joint research ensures that long-term commercial technology
goals are seeded in the academic and theoretical discussions, which will guide
the development of the project and implementation technologies and tech-
niques. This paper outlines the progress made towards autonomic networking
and the framework and procedures developed during the NG-CDI project.
It outlines the operator-driven requirements and capabilities; it proposes an
autonomic architecture and summarizes current art and the challenges that
remain.

2 Future Network Requirements

The management complexity of enterprise networks – including telecommu-
nications – is well known and stems from the rapid growth of infrastructures
and the increasing number of offered services [3].

Traditionally, deployment of new services has involved reinvestment in
infrastructure, extensive pre-testing, and people-intensive service support in
the operation, requiring several hundred people to deliver in an organization
such as BT. Future services are also expected to change ever more rapidly
– and unpredictably – and therefore organizations need to drastically reduce
the time it takes for innovative new services to be launched. This requires
improvements in the agility and responsiveness of the network infrastructure
to meet evolving customer requirements.

The current static and human-driven approach to controlling the vast
numbers of critical devices attached to the existing network infrastructure
is unsustainable. Recent research also suggests that continued rapid growth



Future Network Architecture 3

is commercially unviable and usability for future predicted services and
applications is at risk [4].

In the 21st Century, automation plays a significant role in the development
and operation of complex systems. The concept of “network autonomics”
revisits design concepts of biological systems [5, 6], including the human
autonomic nervous system. Many processes are of course already automated
in operating a network business. But when the system, environment, or busi-
ness requires modification, these automated processes need to be updated,
entailing cost and disruption.

A potential input to the autonomic network is an “intent” [13] interface.
Intent-Based Networking (IBN) statements use high-level declarative lan-
guage to specify outcomes and high-level operational goals. These goals do
not determine how they should be satisfied or by which network mechanisms
and devices. An Intent-based interface (also known as the “intent plane”)
into the autonomic network, would dramatically reduce the human-driven
management tasks and complexities and provide input into the autonomic
networking system.

An autonomic system augments an automatic operation by incorporating
self-learning, which makes the changes themselves automatic. Changes to
the system of automation are derived through machine learning, based on
measurements of the operation and its KPIs, and optimized for some business
goal.

Closing the self-learning loop in this way makes the closer tracking of
requirements more economical. But the control system now has a greater
influence on the continued successful operation of the process it controls, and
so needs to be constructed in specific ways. These incorporate not only the
building of the initial control algorithm and machine learning mechanisms but
also particular system protection features. The following sections describe the
incorporation of these principles into the building and operation of autonomic
network systems.

2.1 Summary of requirements

The range of operational processes that can benefit from autonomic operation
includes all those which are sufficiently instrumented to provide the data for
machine learning, control levers to regulate the process automatically, and
which would naturally evolve to keep pace with changing conditions. These
include optimizing the allocation of service requests to network slices; the
allocation of network resources to these slices or to optimize traffic flows



4 M. Bezahaf

generally, and a range of service assurance processes. In the latter, the opti-
mum action to take may depend on the criticality of a failed network element
to the system as a whole, or to the state of the traffic flows at the time, or to
other constraints such as back-up resources available. All these are open to
machine learning as they give rise to volumes of network event data, can be
controlled through automated means, and require regular re-optimization in
the face of dynamic changes in the network state.

To describe the NG-CDI architecture, it is useful to initially identify the
key management functions of an autonomic network [10, 12]. The manage-
ment layer of an autonomic network typically has access to different control
and monitoring interfaces to enforce routing and configuration decisions and
receive control feedback. At the heart of any autonomic system is the ability
to fulfill service delivery requirements under changing conditions. During
normal conditions, an autonomic network must be able to fulfill user policy
by adapting the configuration of the underlying infrastructure, with minimal
user input. This typically requires the execution of several decision processes
to define optimal allocation policies (network and compute resources) given
the resources of the infrastructure and the service requirements. Decision
processes must run both after a policy change, as well as during operation,
in order to identify when services require additional resources to meet the
required service level (scale up/down) [11].

In parallel, an autonomic network must be able to predict and manage
operational anomalies, including failures and attacks, in a timely fashion.
During normal operation, an autonomic network must offer failure prediction
mechanisms and adapt appropriately the network configuration, to minimize
service delivery degradation. Furthermore, an autonomic network must con-
tain mechanisms that can detect network failures, by analyzing monitoring
information, and recover and remediate the impact of these failures in service
delivery, with minimal human intervention. Finally, the decision processes
used to support the processes require continuous training, in order to im-
prove future decision making. Continuous training requires the collection of
monitoring information from the system and tuning the parameters of control
algorithms to reflect the discovery of new behaviors, statuses, or events.

To implement the capabilities above, it will require the monitoring and
analysis of network state, including inputs from:

• Network elements
• Element configurations
• Historical network usage



Future Network Architecture 5

• Current network usage and state
• Traffic flows
• Users and End-hosts
• Application requirements and performance data
• Application, User and Network Service-Level-Agreements (SLAs)
• Intended network design and operation specifications.

The network input and state above will be available as data sources and
relatively raw and unprocessed, some data will be incomplete and certain
states may have limited relevance. Therefore, post-processing of the data
streams and state will be critical to automatically generate meaningful and
useful measurements, so that events may be classified, assessed, and decisions
may be taken.

Several additional technical and commercial requirements (listed below)
should also be considered for truly autonomic networking. First, an auto-
nomic control system must be able to deal with large complexity and scale
and maintain high levels of service delivery while maintaining low opera-
tional costs. Second, autonomic networks must support network evolvability
and agility by allowing seamless support for new products, trials, and mod-
els. Enabling such a level of agility can increase drastically the complexity
of control algorithms since they must fulfill the requirements of multiple
diverse policies. Third, an autonomic network infrastructure must target ser-
vice levels on customers, optimized over a range of investment timescales.
Fourth, because the delivery of service requires the coordination of multiple
administrative domains, an autonomic network must be able to interact with
existing and new external control processes, through standardized control and
information exchange interfaces. Fifth, the autonomic network infrastructure
must target service levels on customers, optimized over a range of investment
timescales. This aspect is expanded in the next section. Each of these aspects
entails different dimensions of business impact. Employing greater levels of
automation in these processes opens the system to risks that are associated
with any control system. Autonomic networks must incorporate risk models
and methods for mitigation in their decision processes.

3 The Autonomic Network System

Fundamentally, autonomic systems are designed to adapt their behavior in
response to change. The automated response to individual events adapts ac-
cording to the pace of change in the environment. The learning rate is also



6 M. Bezahaf

affected by the statistical properties of the system data. Automated responses
can generally be enacted in a few milliseconds, whereas the self-learning
loop might typically take weeks or months, depending on the dynamics of
the process under control. Beyond this, more fundamental changes would
still require human activity, with generally longer timescales. The effects
on the business and customers also take place on a range of timescales and
other factors – for example, when and how much is invested in infrastructure
capacity versus maintenance operations, price impacts, and service levels.
These features are described next, in terms of two examples from different
domains of network operation.

3.1 Process clock speed

The first example is network slicing automation. Instantiating a new network
slice can be fully automatic and straightforward. This operation should be
an immediate action taking a few milliseconds. Re-allocating an existing
network slice can also be quasi-real-time and should take a few minutes. In
an autonomic system, these automatic actions are continuously optimized by
a slower process, encompassing the collection of data and subsequent pro-
cessing for statistical learning. This can involve a timescale of weeks. The
creation of the initial or new slice template typically involves human activities
in requirements definition and design, with a still longer timescale.

The second example emphasizes the timescales of business and customer
impact. In Service Assurance, a balance needs to be struck between increas-
ing network capacity to provide a higher level of redundancy for service
protection, and proactive maintenance which reduces faults in the first place.
These choices rebalance between reactive route protection and proactive
maintenance. Each has its consequences on service levels and costs and runs
on different process timescales. This currently involves separate manual busi-
ness processes. Autonomic control of these processes enables them to learn
from their performance and to be balanced according to business priorities.

3.2 Generic process for autonomics

The initial stage in the generic process of autonomics is the development and
agreement of new service requirements. It represents the merging and rec-
onciliation of the various stakeholders’ intent – high-level operational goals
– which involves human actions in balancing the likely incommensurable
requirements of the different stakeholder domains. The output is a formal set



Future Network Architecture 7

Figure 1 Generic process for autonomics

of definitions expressed in a way that a machine can interpret, and a repertoire
of network or process solutions that fit these requests.

Figure 1 describes the generic process for the operation of autonomic
networking – irrespective of the domain of the business process under con-
trol. The advantage of a domain-independent architecture is that it reduces
cost and risk by establishing a rigorous common autonomic architecture.
The yellow arrows and states represent the balancing of incommensurable
requirements of the stakeholders, through largely human actions, the light
blue represents the statistical machine-driven actions, and the light red repre-
sents the deterministic automatic actions. Beforehand, the operator through a
human process will first define the language that is going to be used by the



8 M. Bezahaf

system to translate the human-inquired intents using a structured request, via
a declarative policy language. This then creates a list of initial options that
match these structured requests and translates them to technical low-level
imperative policies.

When the system subsequently receives a new request, expressed in the
agreed language, the machine can match in a deterministic way the request
against its repertoire of available options. The chosen option is then automat-
ically translated to technical low-level policies and deployed. The selected
actions and the resulting performance are monitored through agreed KPIs,
which enables self-learning to adjust the mapping of requests to the repertoire
of actions. It should be noted that this repertoire includes the available span of
reconfigurations and service orchestrations available under automatic control.
Changes in the requirements, the environment, or the system may mean that
the existing repertoire could become insufficient. If, in this case, the required
performance cannot be delivered from the initial repertoire of options, new
ones can be designed – essentially returning to the initial human process
of negotiation between incommensurate needs of the stakeholders and the
design and implementation of new pre-set options. Note that the self-learning
process is statistical but also gets input from the human about the learning
goals.

3.3 Building an autonomic system

This section describes the architecture in terms of a rigorous process for
building an autonomic system. An autonomic system deployed in a real busi-
ness environment is a set of continuous, living processes and not a static
solution. This is necessary to ensure it can learn and adjust on all relevant
timescales, adapt to changes of different natures and scales, and operate
safely.

We represent the different constituent processes as separate “stages” for
clarity of explanation, although all five stages are in operation continuously
in a nested way. These are shown in Figure 2. Describing the stages as quasi-
sequential separates the different clock-speeds of each process and helps
define the nature of each process. For this reason, we describe the five stages
in sequence.

3.3.1 Stage 1: Creation
The first stage encompasses the iteration of a proposed solution between a
range of business domain owners and solution analysts. Their requirements



Future Network Architecture 9

Figure 2 Building an autonomic system

are immeasurable and not easy to quantify. Initially, it is not fully clear what
is feasible and will only be characterized in the light of the analysis activity
involving an interplay between the original requirements. Part of the negoti-
ation is the articulation of the real system limitations found and the projected
cost of alleviating these limitations. For example, do we implement the near-
est equivalent service using current network functionality, or should we invest
in some new capability? The iteration amongst the parties continues until the
ambiguity is resolved, and a formal description that outlines the operation of
the system in run-time is defined.



10 M. Bezahaf

The formalized output defines the following measures and variables
(judged, via the iterations and analysis, to represent the behavior of the system
well enough for the current business purpose):

• Business aim. A set of numbers that represent the balance between cost
and service, risk levels, etc. The goal to reach for the system (KPI).

• Input parameters. The measures that characterize the system state and
the nature of the real-time request/stimulus.

• System levers. The repertoire of actions made available for choice by the
algorithm classifier to control the system.

• Goal measures. The KPI defined for the system’s performance to reach
the goal.

• The initial algorithm. The algorithm created as a result of the analysis
that sufficiently represents the system.

• System limits. A list of all available resources and capacities.

In terms of processing clock-speed, stage one is a slow clock-speed that
typically works at month timescales.

3.3.2 Stage 2: Automatic Operation
Service requests or stimulus for process action is detected by the control
system under the formal description agreed. The stage 1 formalized output
should be sufficient for the system to take reflex and automatic – completely
deterministic – actions, with no human interaction (typically sub-second
timescales). The rate of event arrivals means that human intervention would
be impossible. Instead, the system performance is assessed statistically over
a longer period, in the next stage.

3.3.3 Stage 3: Self-Learning
If the system model defined for Stage 2 is complete (the entire state of the
system is determined, and actions follow completely known rules), there is no
need to self-learn from changes in the system or environment. This applies for
example to famous examples of game-playing computers. The rules and goal
are static in these examples. This means that the space of possibilities can be
explored with arbitrary thoroughness, with all the conditions held constant –
a luxury not afforded to real business systems in real dynamic environments.
The learning in the gaming examples takes the form of exploring beforehand
the combinatorial space of possible moves. If this is very large, the space
is populated and refined during the creation of the algorithm by capturing
existing games and generating many more through adversarial techniques. In



Future Network Architecture 11

the architectural stages described here, this would correspond to Stage 1 – the
analysis.

In the general case of a real system, the system model (“language”, pa-
rameters, algorithm, etc.) is assessed to be sufficient for the purpose in Stage
1. But it is incomplete. The measurements of the system and the repertoire
of actions are agreed to be a good enough representation of the system, but
there will be characteristics of the system and its environment which are
not captured. When these exogenous causes affect the system, the measured
parameters will be altered in some way, and the classification algorithm in
use would continue to represent the system behavior before the change. To
cope with such changes, statistical self-learning is employed as described
in Stage 3. If the change is significant enough that the existing scheme of
measurements is now considered to be an insufficient model of the system, a
different process is needed (Stage 5).

For statistical self-learning, data are gathered on each incoming event,
according to the agreed parameters/language (the arriving request or stimu-
lus, the current algorithm, the action taken, the system state, and the success
measure (KPI)). Self-learning is then used on the same system data (measured
parameters) to create new algorithms that operate in parallel to the one in op-
eration but do not act on the system. Instead, their performance is measured as
if they had been in operation. If one of these outperforms the one in operation
(subject to consistency, accuracy, and size of impact thresholds (also set in
Stage 1), it is substituted as the one in operation.

In general, the choices made by the algorithm are not automatically acted
upon. There are possible modifications made to the classifications made by
the algorithm for the protection of the real operation, or to implement learning
strategies. These are tackled in the next stage.

3.3.4 Stage 4: System Protection
This stage is about protecting the real business process/infrastructure techni-
cally and commercially. The real system has limited capacity (e.g., network
load, or the number of engineers available for a process). Anomaly detec-
tion of the data flows can signal changes that are unexpected in nature or
timescale. These will be used to provide useful data/insights on the problem,
and trigger processes, such as alerting field or desk engineers to investigate
and take remedial action. An accumulation of smaller-scale problems may be
used by processes such as scheduled repair.

The stages so far relate to changes within the established paradigm – the
language of the chosen parameters. “Established” means that the system un-



12 M. Bezahaf

der this description has been subject to the analysis, iteration, and interdomain
negotiation and agreement of sufficiency in Stage 1. In general, there will be
changes that mean that the previously agreed paradigm – language – is no
longer sufficient to describe the new circumstance. This is covered in the
final stage.

3.3.5 Stage 5: Second Loop Learning
Stages 2-4 have operated within the formal definitions set up in Stage 1. They
are thus operating in a “closed world” environment. Their scope of measure-
ment and action repertoire has been selected and determined by Stage 1. The
language is fully defined.

A change in the environment or the system may be of a scale that requires
a new language to capture it. These might be, for example, changes to the
technology or process, environmental changes that affect the system (e.g.,
climate change), market changes that introduce new behaviors, or significant
changes in the business goal. There may be opportunities for improvement
such as the implementation of further system measures that could improve the
accuracy of the control model. All these causes outside the system paradigm
– “open world” – need a modified language to describe them. The business,
therefore, needs to set measures and thresholds that detect possible open
world effects on the system. This will trigger Stage 5 – Second Loop Learning
– which is identical to Stage 1. This complete refresh of the system will
similarly entail a return to negotiating and iterating immeasurable goals and
so will be a human process, albeit aided by various triggers set in the process,
and extensive data analysis.

4 High-level NG-CDI architecture

In the context of the NG-CDI project, we apply the concept of autonomic
systems presented in the previous section. Figure 3 illustrates a high-level
view of a possible NG-CDI architecture. In the Business-oriented driven by
Intent plane, the operator defines the initial design of new services and op-
erations. These will help the Intent plane to map the incoming intents, in a
deterministic way, to an intermediary intent language, which will have been
agreed beforehand.

The system collects data from multiple sources and in different ways.
Field engineers interact (human process) directly with the infrastructure;
standard activities are captured along with other information.



Future Network Architecture 13

Figure 3 High-level NG-CDI architecture

BT uses a range of statistical algorithms in its operations. Examples range
from identifying individual customer faults correlating service characteristics
with electrical line characteristics across the whole network, to optimizing the
workflows of every individual field engineer based on geography, fault type,
skill levels, job times, and several other parameters. Finally, in a deterministic
way, the system collects information about the topology.

All this accumulated information (topology data, fault traces from BT,
and field engineers) will then feed the knowledge plane that uses statistical
algorithms to predict for example any maintenance on the infrastructure to
the field engineers, periodically assist the intent plane to improve the intent
mapping process and to make better decisions, or help the business plane for
possible negotiation of new intents and their definition.



14 M. Bezahaf

As described in the previous section, the process of stakeholder negotia-
tion towards the expression of intents in machine language is a largely human
process, which balances incommensurable requirements involved in creating
new services and operations. Please note that this process of negotiation is
referred to as the business plane in the rest of the document. The knowledge
plane acts as a repository for the different types of captured information as
well as the training goals.

In the next section, we present in detail the automated knowledge-based
management system and the relationship between different planes. We use
“knowledge” in the following section and Figures to mean the collection of
information that supports learning, including history, for underpinning auto-
nomic management. The repository can be used by various processes such as
risk assessment and to inform actions.

4.1 Automated knowledge-based management system

At the outset of the NG-CDI project, it was essential to establish the
project research goals, these were structured around five different Research
Contributions (RCs):

• RC1 - Agile converged infrastructure systems architecture: The first
research contribution is to understand how to build reliable and flexi-
ble architectures able to automate operations using the technologies of
future networks.

• RC2 - Future network operations and services: RC2 is all about auto-
mated processes to capture and predict service characteristics based on
use-cases; automated fulfillment of service guarantees and automated
service ecosystem.

• RC3 - Autonomic knowledge framework: In order to operate the network
in an automated manner, RC3 enables system measurement and data
collection.

• RC4 - Autonomous diagnostics and response: The massive volumes of
collected data in RC3 will feed into RC4 in order to automatically, and
using different machine learning and deep learning techniques, detect
disruptions, learn, and provide responses.

• RC5 - Future organizational dynamics: RC5 examines how to bring
all these new research challenges together to improve organizational
performance through improved service assurance and enhancing orga-
nizational capabilities.



Future Network Architecture 15

Figure 4 Automated, knowledge-based management

We have investigated the adoption and extension of the Knowledge
Plane proposal by David Clark and others [7] along with autonomic net-
work and service management within the context of the ITU-T Focus Group
Technologies for Network 2030 [8].

Figure 4 represents the resulting automated, knowledge-based manage-
ment architecture with all the research challenges introduced above. RC1
and RC2 cover the intent plane, management plane, control/data planes, and
orchestration plane. RC3 concentrates on data collection and classification.
RC4 processes all collected data from RC3 in the knowledge plane using
different deep learning and machine learning. Finally, RC5 is represented
by the business plane. In the following section, each of these planes will be
presented.

4.1.1 Intent Plane
Improving the level of automation and intelligence has become an intrin-
sic demand on network management operation and maintenance. With key
properties of intelligent and closed-loop intent assurance, Intent-Based Net-



16 M. Bezahaf

Figure 5 Multi-layer Intent System

working (IBN) can be a powerful solution to achieve in the context of
predictive maintenance and automation.

An intent designates a requirement that can be expressed from an external
client, application, or owned by the network operator (internal). In the first
case, the intent is more about quality and is expressed in a high-level manner.
For example, “I want connectivity or reserve me an audible connection”. In
the case of the network operator, the intent is more about quantity and it is
expressed in a more low-level/network-level manner and with more precision
than in the previous case. For example, “restrict the load to 50% maximum
on each link”.

• Multi-layer Intent system
Once an intent arrives into the system, it has to pass through different
stages of processing before reaching the management plane. In fact, the
intent needs some translation processes to go from a high-level form to
something more technical and feasible at the management plane.
Figure 5 shows the multi-layer nature of the intent plane. We believe
that an intent originated from a client or an application is more high
level than an operator or system itself intent. For this reason, the client’s
intent goes through an intent translation process in order to be mapped
from a verbal intent to action. The more we go down through the layers,
the more the intent becomes technical and feasible for the management
plane.
In order to have a better idea about the intent multi-layer, we present, in
Figure 6, a simple example of how intent can be translated from high-



Future Network Architecture 17

Figure 6 Example of Multi-layer Intent System

level requests to more in detailed demand. We used for this example
a graph representation, but we could use any other tool. Let us assume
that the intent is “I want connectivity”. The first layer (enterprise view) is
about what for? Why? Who? When? Once the initial intent goes through
an NLP process, we know that the action is “want”, the need is “connec-
tivity” and the when is “now”. In the information view, we represent the
intent graphically, where the client is characterized by a node. The more
we go down, the more the graph becomes specific. We end up with a
graph, where the client and the Internet are represented by nodes linked
by a bidirectional arrow defining the public IP address and the minimum
bandwidth needed.

• Intent Framework
As described in Section 4.1, the automated and knowledge-based net-
work management architecture consists of several planes including the
intent plane. In this section, we introduce an IBN framework by describ-
ing the intent plane and different interactions with other planes. Figure 7
introduces a high-level IBN framework.
The Intent Plane is decomposed into four main modules that translate,
validate, decompose the original intent into network tasks, and keep
track of its fulfillment once it is handed to the management plane.

• Intent Translation
When an intent is exposed to the intent plane, the first module that deals
with it is the “Intent Translation”. Intent translation consists of mapping
the intent from a certain high-level form to a more system-oriented re-



18 M. Bezahaf

Figure 7 A Framework of Intent-Based Networking

quest. This process can be done through a service template or a sort of
language transformation.
When an intent is exposed to the intent plane, the first module that deals
with it is the “Intent Translation”. Intention translation consists of map-
ping the intent from a certain high-level form to a more system-oriented
request. This process can be done through a service template or a sort of
language transformation.

• Intent Validation
The “Intent Validation” module checks the syntax of the transformation
and if everything is understandable to the system. If it is not the case, it
can recommend a new syntax to the intent’s originator. This micro-loop
is the first control point to make sure that the intent can be processed
correctly.

• Intent Processing
Once the intent is validated, the “Intent Processor” takes into account
the SLAs and service profiles (from the business plane) to normalize the
intent and decompose it into small network tasks. It also checks if there
are any conflicts with existing intents. The intent processing module
interacts with the knowledge plane to analyze if any improvement can
be done.



Future Network Architecture 19

Figure 8 Instrumentation – Cross-source data collection

• Intent Assurance
The “Intent assurance” module fulfills, observes, and assures in real-
time whether the final result of the user’s intent execution in network
infrastructure meets the user’s expectation. The intent assurance module
interacts with the intent processing module and the service manager
(from the management plane) in a closed-loop process of monitoring,
tracking, diagnosing, and restoring based on user intents.

4.1.2 Multi-sources data collection
Instrumentation is one of the most important processes in our framework,
which feeds the knowledge plane that will be described in the next section.
We do not mean here only the traditional data collected from the data plane
(legacy NMS and SDN controllers) but a cross-source data collection. In fact,
on top of the traditional “network” data, we aim to use external data such as
weather events, societal behaviors, political decisions, and so forth (Figure 8).
One of the challenges here is to know what data to collect that might be
beneficial to the system? How to collect that we do not interfere with the
normal system operations? And find the correlations between different data
sources.

4.1.3 Knowledge plane
As described earlier in the document, the knowledge plane uses multi-sources
data collection as an input to provide predictions and/or solutions. The
knowledge plane is formed by three blocks (Figure 9).

• Data collection block:
Once the data arrives at the knowledge plane from different sources, the
data collection block processes it by filtering, adapting, and managing



20 M. Bezahaf

Figure 9 Knowledge plane

it. In fact, as the data is arriving from different sources, the first step is to
clean the data from any residual information and classify it for the next
block.

• Analytics block:
The huge amount of classified data needs to be processed. In the ana-
lytics block, we use big data algorithms, machine learning, and some
reasoning to analyze the data by source but also as a whole to see if
combining two sources can bring any useful information.

• Intelligent policy, monitoring and prediction block:
All the magic happens in this block. In fact, collecting data from the data
plane gives us good knowledge about resource utilization and network
status. Adding to this the analyzed data and system policies, this block
will provide fault prediction, network improvement, and eventually can
generate self-intents.

4.1.4 Management plane
It should be noted that the original intent will traverse through different layers
during its process inside the intent plane, then it is released to the management
plane. The management plane is formed by two main modules that make
sure that the new intent has enough available resources to run correctly and
without affecting existing already running intents (Figure 10).

• Network Resources
The “Network Resources” module collects live data from the network
elements and lists an up to date inventory of all available resources in



Future Network Architecture 21

Figure 10 Management plane

the system. It communicates this information with the service manager
through the resource management API, which helps the service manager
to allocate properly the available resources for new requests.

• Service Manager
Using the available resources (from the network resources module) and
DevOps techniques like continuous integration continuous deployment
(CI/CD), the “Service Manager” module creates a virtual real-time rep-
resentation of the physical assets and builds, and deploys virtually the
new configurations (that answer the intent). Finally, it tests to be sure
that the configuration is bug-free and the output satisfies the requested
intent. The new configuration is pushed for real deployment if all the
tests pass.

4.1.5 Business plane
In our framework, the business plane represents the network’s operator, in
our case BT. It communicates existing SLAs and service profiles to the
intent processing module in order to ensure that the new intents are not im-
pacting the existing SLAs. From all information/predictions received from
the knowledge plane, it also can generate and inject low-level intent to the
system.



22 M. Bezahaf

Figure 11 Self-Intent operational loop

4.2 Self-Intent operational loop

As highlighted in Figure 11, the operational loop of self-generated intent. In
fact, when an intent is formulated by a human-being, the intent is mapped into
something more technical and is checked against available resources (main-
tained by the management plane). On top of the user-intent, the system itself
collects data from multiple sources and uses some machine learning or deep
learning to extract any useful information. The system itself can generate and
inject a self-generated intent if it detects any kind of network improvement
or fault detection [9].

5 Conclusion

We know that the sustained growth of the Internet will continue, and the
types and numbers of devices are rapidly expanding. The path towards auto-
nomic networking started many years ago, but it is only recently that several
factors have combined to accelerate the pace to enable the design and deploy-
ment of genuinely autonomic network devices in operator environments and
underpinned by commercial pressures.

The framework and phases outlined in this paper, along with the recursive
capabilities, use a “business aim” that derives the overall autonomic decision-
making process via the following five stages: Creation; Automatic Operation;
Self-Learning; System Protection; and Second Loop Learning. Each phase
of the autonomic process will require distinct time-horizons, together with



Future Network Architecture 23

appropriate functional logic, and a collaborative loop to link with the previous
stage.

The next step for this framework and its approach to autonomic net-
working is the application and extraction of results for the use case of
self-adaptation. We intend to show how self-organization mechanisms in our
framework may be applied to the operator network environment.

Further steps will consist of identifying and improving on observed short-
comings in the use case experiments, followed by building more ambitious
use cases in order to expand the scope of, and confidence in, our system.

6 Acknowledgment

The authors gratefully acknowledge the support of the Next Generation Con-
verged Digital Infrastructure (NG-CDI) Prosperity Partnership project funded
by UK’s EPSRC and British Telecom plc.

References

[1] S. Dobson, S. Denazis, A. Fernández, D. Gaı̈ti, E. Gelenbe, F. Massacci, P. Nixon, F.
Saffre, N. Schmidt and F. Zambonelli. A Survey of Autonomic Communications. ACM
Trans. Auton. Adapt. Syst., 1(2):223–259, Dec 2006.

[2] Next Generation Converged Digital Infrastructure project - https://www.ng-cdi.org/
[3] M. Bezahaf, D. Hutchison, D. King and N. Race. Internet Evolution: Critical Issues.

Proceedings of the IEEE, 24(4):5–14, Jul 2020.
[4] S. Dobson, D. Hutchison, A. Mauthe, A. Schaeffer-Filho, P. Smith and J. P. G. Sterbenz.

Self-Organization and Resilience for Networked Systems: Design Principles and Open
Research Issues. Proceedings of the IEEE, 107(4):819–834, 2019.

[5] O. Babaoglu, M. Jelasity and A. Montresor. Grassroots approach to self-management
in large-scale distributed systems. In Unconventional Programming Paradigms. Lecture
Notes in Computer Science, vol. 3566:286–296, 2005.

[6] O. Babaoglu, M. Jelasity, A. Montresor, A. Fetzer, C. Leonardi, S. Van Moorsel and M.
Van Steen. Self-star properties in complex information systems, conceptual and practical
foundations. Lecture Notes in Computer Science, vol. 3460, 2005.

[7] D. Clark, C. Partridge, J. Ramming and J. Wroclawski. A knowledge plane for the inter-
net. In Proceedings of the 2003 conference on Applications, technologies, architectures,
and protocols for computer communications (SIGCOMM ’03), 3–10, 2003.

[8] ITU-T Technical Specification. Network 2030 Architecture Framework FG-NET2030 –
Focus Group on Technologies for Network 2030, Jun 2020.

[9] M. Bezahaf, M. Perez Hernandez, L. Bardwell, E. Davies, M. Broadbent, D. King and
D. Hutchison. Self-Generated Intent-Based System. 2019 10th International Conference
on Networks of the Future (NoF), 138–140, Feb 2020.



24 M. Bezahaf

[10] Y. Wang, R. Forbes, U. Elzur, J. Strassner, A. Gamelas, H. Wang, S. Liu, L. Pesando,
X. Yuan and S. Cai. From Design to Practice: ETSI ENI Reference Architecture and
Instantiation for Network Management and Orchestration Using Artificial Intelligence.
in IEEE Communications Standards Magazine, 4(3):38–45, Sep 2020.

[11] R. Li, Z. Zhao, X. Zhou, G. Ding, Y. Chen, Z. Wang and H. Zhang. Intelligent 5G: When
Cellular Networks Meet Artificial Intelligence. in IEEE Wireless Communications,
24(5):175–183, Oct 2017.

[12] Tayeb Ben Meriem, Ranganai Chaparadza, Benoı̂t Radier, Said Soulhi, José-Antonio
Lozano López and Arun Prakash. GANA–Generic Autonomic Networking Archi-
tecture: Reference Model for Autonomic Networking, Cognitive Networking, and
Self-Management of Networks and Services. ETSI White Paper 16 (2016).

[13] M. Behringer, M. Pritikin, S. Bjarnason, A. Clemm, B. Carpenter, S. Jiang, and L.
Ciavaglia. Autonomic Networking: Definitions and Design Goals. RFC 7575, Jun 2015.

Biographies

Mehdi Bezahaf is a Senior Research Associate at Lancaster Univer-
sity. He received his Ph.D. degree from Sorbonne Université in 2010. With
a demonstrated history of working in academia and industry, his research
interests include experimental networking, mobility management, wireless
networks, Internet architecture, and network virtualization. Mehdi is also an
active researcher and contributor to open Internet standards, including the
IRTF, IETF, and ITU.



Future Network Architecture 25

Stephen Cassidy MA MInstP CEng FIET is a Senior Manager at BT
Applied Research, interested in the relationship between people, information
technology and organisational structure, and how they determine enterprise
culture and effectiveness. This combines research into AI, data-driven deci-
sion tools, self-learning systems, human behaviour and culture. He lectures
on MBA programmes and serves on several advisory boards. He has pub-
lished over 60 papers, holds a similar number of patents, and is a winner of
the Queen’s Award for Industry.

David Hutchison is Professor of Computing at Lancaster University, UK,
and the Founding Director of InfoLab21. His work is well known internation-
ally for contributions in a range of areas including Quality of Service, active
and programmable networking, content distribution networks, and testbed ac-
tivities. His current research focuses on the resilience of networked computer
systems, and the protection of critical infrastructures and services.



26 M. Bezahaf

Daniel King is a Senior Research Associate at Lancaster University. He
holds a PhD and MBA from Lancaster University. He worked previously for
leading technology companies including Cisco, Redback Networks, Movaz
Networks, and he co-founded Aria Networks. Daniel is also an active leader,
researcher and contributor to open Internet standards, including the Internet
Research Task Force (IRTF), the Internet Engineering Task Force (IETF), the
Open Networking Foundation (ONF), and MEF.

Nicholas Race is a Professor of networked systems with the School
of Computing and Communications, Lancaster University. His research is
broadly around experimental networking and networked media, special-
izing in the use of software-defined networking and network-functions-
virtualization for new network-level services, including in-network media
caching, network-level fairness, and network monitoring.

Charalampos Rotsos received the Ph.D. degree from the Computer Lab-
oratory, Cambridge University. He is a Lecturer in computer networks and
networked systems with Lancaster University. His research focus is in net-
work service management and orchestration, network programmability and
monitoring, and cloud operating systems. He is an active contributor to many



Future Network Architecture 27

popular open-source projects relevant to SDN experimentation (OFLOPS),
open-hardware (Blueswitch),and cloud OS (Mirage Unikernel).


