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Chapter 1

Introduction

Over the last twenty years, the use of statistical and econometric methods for ana-

lyzing high-frequency data has increased substantially. This growth has been driven by

an increase in the availability of intraday data and technological advancements. High-

frequency data provides a �ner characterization of the elements comprised in asset prices;

for instance, it makes it possible to discriminate jumps from the di�usive component.

However, the most notable contribution of high-frequency data is the Realized Volatility

(RV), which is estimated as the sum of all squared intraday returns. The RV is a consis-

tent estimator (as ∆n → 0) of the true latent volatility process, and as such it enables to

treat volatility as �quasi�-observable. Whereas in the absence of jumps, the RV converges

to the integrated variance, in the presence of jumps it converges to the quadratic variance,

i.e. the sum of the integrated variance and integrated jumps.

However, since RV is only a proxy for the true latent volatility process, this measure

is, of course, subject to estimation error. There are many potential sources yielding

RV to be an imperfect measure. Nevertheless, the most relevant one is that we work

with limited samples, which makes RV a less e�cient estimator. While this issue can

be mitigated by increasing the sample size, there are well-known high-frequency features

that spoil this alternative. The most notable cases are the presence of microstructure

noise and intraday periodicity.1 Therefore, the parameter estimates of the econometric

1Whereas intraday periodicity does not impact the realized variance, as it integrates to 1, it does
impact other realized measures that are essential for estimating jumps, and higher-order moments.

1



models based on realized measures are subject to the error-in-variables problem.

Accurate estimates and forecasts of both univariate and multivariate volatility play a

central role in many �nancial economic applications. Examples include the comparison

of total risk of two portfolios measured by their volatility and, of course, the estimation

of portfolio weights. Besides that poor out-of-sample forecasts of the volatility leads to

poor �nancial decisions, inaccurate forecasts of the covariance matrix generally lead to

extreme positions that increase both transaction costs and the risk of the portfolio. Thus,

an investor may end up with a riskier portfolio with smaller expected return.

Another important issue related to modelling and forecasting asset price volatility

resides in understanding the underlying component of high-frequency data. Jumps are

the main culprit of the extreme variations and the fat-tails observed in asset prices. The

current evidence suggests that jumps are unpredictable and have di�erent sizes and signs.

Therefore, it is imperative to underscore the information content of these di�erent types

of jumps, and also evaluate whether assets with distinct levels of liquidity share similar

underlying components.

This dissertation focuses on the aforementioned issues, and therefore we split the

contribution into two main parts. The �rst part examines the impact of estimation error

in the modelling and forecasting of both univariate and multivariate volatility, and their

impact on portfolio choice. The second part evaluates the underlying components of

high-frequency data, and explores the predictive information content of di�erent types

of jumps and the role of systematic jumps to, respectively, modelling and forecasting

realized variances and covariances.

A summary of each chapter is as follows. Chapter 2 examines the impact of intraday

periodicity on forecasting realized variance using a heterogeneous autoregressive (HAR)

model framework. We show that intraday periodicity in�ates both the unconditional

and conditional variance of the realized variance, and therefore biases the autoregressive

parameter estimates and jump estimators. This combined e�ect adversely a�ects fore-

casting. To overcome this issue, we propose a periodicity-adjusted model, HARP, where

predictors are built from periodicity-�ltered data. We demonstrate empirically �using 30
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stocks and the SPDR S&P 500 ETF� and via Monte Carlo simulations that the HARP

models produce signi�cantly better forecasts. We also show that our results are robust to

various sources of intraday periodicity estimation error and to a `possibly� time-varying

feature of the intraday periodicity.

Chapter 3 proposes a dilution bias correction approach to deal with the error-in-

variables problem observed in realized volatility (RV) measures. Given that the weekly

and monthly measures of the RV are less prone to measurement error, we show that

the absolute di�erence between the daily and monthly RV is proportional to the relative

magnitude of the estimation error. Therefore, in implementing the latter metric, and

in allowing the daily autoregressive parameter to vary as a function of the error term,

the result is more responsive forecasts with greater persistence (faster mean-reversion)

when the measurement error is low (high). Empirical results indicate that our models

outperform some of the most popular HAR and GARCHmodels across various forecasting

horizons.

In chapter 4, we model and forecast realized (co)variances using a factor-structure,

which suggests that (co)variances are formed by the sum of systematic and idiosyncratic

components. First, we show that idiosyncratic volatility is the main driver of total realized

volatility. Given the evidence that assets with a high level of idiosyncratic volatility

su�er from low predictability, (co)variance forecasts of these assets are likely to have

higher forecasting errors. To take this issue into account we incorporate the market factor

information, and show signi�cant improvements in the in- and out-of-sample performance

of the models. We evaluate these forecasting gains using statistical loss functions and

global minimum variance portfolios. We create 100 random portfolios of 5 and 10 assets,

and show that the proposed models not only improve statistically upon their benchmark

models, but also economically, in that a risk-averse investor is willing to sacri�ce up to

157 annual basis points to obtain greater forecasting accuracy that translates in more

informed �nancial decisions.

Chapter 5 examines the underlying components of high-frequency data using novel

theoretical tests that the presence of: a) Brownian motion; b) jumps; c) �nite vs. in�nite
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activity jumps. Given that the asymptotic distribution of most of these procedures has

been derived under the assumption of noiseless prices, we �rst evaluate the �nite sample

properties under di�erent types of microstructure noise such as Gaussian, t-distributed

and Gaussian-T mixture noise. The Monte Carlo results show that 1-min data provide

a good trade-o� between bias and enough statistical power. Using 100 stocks and SPY,

we �nd that both a Brownian and a jump component characterize the 1-min data, and

jumps should allow for both �nite and in�nite activity. We also �nd evidence of time-

varying rejection rates, such that more jump days are usually associated with an increase

of in�nite jumps vis-à-vis �nite jumps.

Chapter 6 proposes a novel approach for disentangling realized jumps measures by

activity (in�nite/�nite) and by sign (positive/negative). It also provides noise-robust ver-

sions of the ABD jump test (Andersen et al., 2007b) and realized semivariance measures

for use at high-frequency sampling intervals. The volatility forecasting exercise involves

the use of di�erent types of jumps, forecast horizons, sampling frequencies, calendar and

transaction time-based sampling schemes, as well as standard and noise-robust volatility

measures. We �nd that in�nite (�nite) jumps improve the forecasts at shorter (longer)

horizons; but the contribution of signed jumps is limited. Noise-robust estimators, that

identify jumps in the presence of microstructure noise, deliver substantial forecast im-

provements at higher sampling frequencies. However, standard volatility measures at

the 300-second frequency generate the smallest MSPEs. Since no single model domi-

nates across sampling frequency and forecasting horizon, we show that model-averaged

volatility forecasts �using time-varying weights and models from the model con�dence

set� generally outperform forecasts from both the benchmark and single best extended

HAR model.

Finally, Chapter 7 proposes a robust framework for disentangling undiversi�able com-

mon jumps within the realized covariance matrix. Simultaneous jumps detected in our

empirical study are strongly related to major �nancial and economic news, and their

occurrence raises correlation and persistence among assets. Our application shows that

common jumps and directional common jumps substantially improve the in- and out-
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of-sample forecasts of the realized variance at the day-, week- and month-horizon. This

�nding is corroborated via Monte Carlo simulations. Applying these new speci�cations to

minimum variance portfolios results in superior positions from reduced turnover. Thus,

investors willingly sacri�ce up to 100 annual basis points in switching to those strategies.
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Part I

The Impact of Estimation Error for

Modelling and Forecasting Univariate

and Multivariate Volatility
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Chapter 2

The Impact of Intraday Periodicity in

the Autoregressive Regression

Estimates and the Identi�cation of

Jumps

2.1 Introduction

Leading from the seminal work of Andersen and Bollerslev (1998a), realized volatility

(RV) and related measures were developed as proxies for the daily observed volatility

of all �nancial securities for which intraday price observations were available. The shift

in volatility from latent to quasi-observable1 meant forecasting could now rely on simple

autoregressive models. Corsi (2009)'s heterogenous autoregressive model (HAR) emerged

as the standard in forecasting univariate realized volatility.

In this paper, we show that the periodicity of intraday volatility impacts realized

volatility forecasts based on autoregressive models through two channels. The �rst and

most important channel is by distorting the variance of the realized volatility, which in

turn contributes to biasing the coe�cients of the forecasting models. The second channel

1The use of the term quasi here is due to the fact that all realized measures are estimates.
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is via the realized jumps regressors that appear in some predictive models and can also

be biased in the presence of intraday periodicity.

To address the observed impact of periodicity, we propose a new class of models for

forecasting the realized variance, HARP, where the predictors are based on data from

which periodicity is �ltered out. We compare the forecasting performance of the HARP

models to several HAR models existing in the literature. To this end, we perform a

simulation exercise, followed by an empirical application based on high frequency data

for the SPDR S&P 500 ETF (SPY) and 30 S&P 500 constituents, observed over the

period 2000-2016.

Our analysis attests the superiority of HARP models across all forecasting horizons,

with greater gains for the 1-day to 1-week ahead forecasts. Speci�cally, for SPY, we

observe improvements of over 10% for HARP models at the 1-day ahead horizon. For the

average stock, depending on the model speci�cation, �ltering data reduces the forecast

losses by approximately 2% to 4% at the 1-day horizon, and up to 5% at the 1-week hori-

zon. At the 1-day horizon, the highest improvements are for models with realized jumps

in their speci�cations, where data �ltering yields better proxies for the jump regressors.

These results are con�rmed when using a time-varying window to estimate periodicity.

Finally, we explore how our results are impacted by the error in estimating periodicity,

showing that the presence of jumps widens the distribution of forecast losses at high

frequencies.

Andersen et al. (2003) were the �rst to propose autoregressive models to forecast

realized volatility. They document the presence of long memory in the time series of log-

arithmic realized volatilities and suggest a fractionally integrated autoregressive approach

in modelling. Inspired by the heterogeneous autoregressive conditional heteroskedastic-

ity (HARCH) model featured in Müller et al. (1997) and Dacorogna et al. (1997), Corsi

(2009) proposes the HAR model which regresses realized volatilities on past daily, weekly

and monthly realized volatilities. This model can replicate the high levels of persistence

observed in the series of daily realized volatilities, without relying on fractional integra-

tion. Given its simple linear structure and ease in estimation, the HAR has become the
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most popular option in forecasting realized volatilities.

The daily quadratic variation includes a continuous component and a jump part,2 with

the former component featuring a high level of persistence, while the jump component

shows little or no persistence. To account for the di�erent levels of persistence in the two

components, Andersen et al. (2007a) propose adding the lagged realized daily squared

jump as an extra explanatory variable to the HAR regression, leading to the HAR-J

model. They also propose the HAR-CJ model, which uses as predictors daily, weekly and

monthly estimates of the integrated variance and integrated squared jumps. They �nd

that accounting for jumps generally leads to an increase in the explanatory power. This

�nding is also con�rmed by Corsi et al. (2010), who perform a more exhaustive forecast

exercise.

Corsi and Renò (2012) add negative returns to the previous HAR speci�cations, in

order to account for a potential leverage e�ect. They show improved accuracy in forecast-

ing the S&P 500. Bollerslev et al. (2016) argue that all realized measures used in HAR

models are bound to include measurement errors, which should be taken into account in

modelling. The new model, abbreviated HAR-Q,3 performs well in environments of high

variability of the measurement error.

The impact of periodicity on the dynamic properties of high frequency returns was

�rst examined by Andersen and Bollerslev (1997). They model intraday volatility as a

product between two components: a deterministic periodic component and the actual

volatility, i.e. a stochastic component re�ecting variability in the fundamental value

of the �nancial security. Such speci�cation has become the literature standard and is

also considered in our analysis. Andersen et al. (2001a) and Bollerslev et al. (2000)

employ similar speci�cations in modelling intraday volatility in the FX market and the

US Treasury bond market.

While the periodicity component does not impact the realized variance, by integrating

2See, for instance, Barndor�-Nielsen et al. (2006a); Barndor�-Nielsen and Shephard (2004b, 2006);
Barndor�-Nielsen et al. (2006b) Mancini (2004, 2009), Christensen and Podolskij (2007), Andersen et al.
(2012) and Corsi et al. (2010).

3�Q� comes from the fact that the realized quarticity, as the estimated asymptotic variance of the
realized variance, is included in the speci�cation.
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to 1 over the trading day, little is known on its impact on other realized measures.

Andersen et al. (2018) propose a statistical test for time-varying intraday periodicity in

high frequency data and associated realized measures. Christensen et al. (2018) develop

a test for the hypothesis that time-variation in intraday volatility is caused solely by

intraday periodicity. Dette et al. (2016) examine the e�ect of periodicity on the realized

bi-power variation, its variance and covariance with the realized variance, as well as on the

realized quarticity under a constant volatility data generating process (DGP hereafter).

Intraday periodicity has also been shown to impact the jump detection ability of the

intraday jump tests proposed by Andersen et al. (2007b) and Lee and Mykland (2008),

where high levels of periodicity can increase the probability of type 1 error (Ander-

sen et al., 2007b). This highlights the confounding impact of jumps and periodicity on

the price process and related functions. Boudt et al. (2012, 2011) recommend applying

intraday jump tests on returns from which periodicity is �ltered out. They propose non-

parametric and parametric methods to estimate periodicity that are robust to jumps in

prices and time-varying volatility.

There are a few other contributions in the literature that account for intraday peri-

odicity when forecasting volatility. In most cases, the periodicity component is removed

before modelling and forecasting the intraday returns. Then, the �nal intraday forecasts

are obtained by adding back the estimated periodicity. Martens et al. (2002) forecast in-

traday volatility using various GARCH models. Deo et al. (2006) propose a long memory

stochastic volatility model to forecast intraday returns which are further aggregated to

obtain the forecast realized variance. Chortareas et al. (2011) compare daily aggregates of

intraday volatility forecasts from a FI-GARCH model to the realized volatility forecasts

from an ARFIMA. Frijns and Margaritis (2008) use the estimated periodicity function

and the volatility level at the beginning of the trading day to forecast end-of-trading-day

volatility. While these contributions model and forecast intraday data, our models apply

to daily volatility.

The rest of the paper is structured as follows. Section 2.2 provides the theoretical

background on de�ning and forecasting the realized variance and estimating the intra-
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day periodicity component of the spot volatility. Section 2.3 presents the empirical and

simulated datasets used to generate results throughout the paper. Section 2.4 discusses

the impact of the intraday periodicity on modelling and forecasting the realized variance.

Section 2.5 presents the simulation and empirical results that compare the forecasts of

the HARP and HAR models. Section 2.6 concludes the paper.

2.2 Theoretical Background

Let Xt denote a logarithmic asset price at time t belonging to a special class of

semimartingales with jumps:

dXt = µt dt+ σt dWt + dLt, t ∈ [0, T ] (2.1)

where µt is a continuous and locally bounded drift term, σt is the spot volatility which

is adapted and càdlàg. Wt is a one-dimensional standard Brownian motion, while Lt

is a jump process. Without loss of generality, we assume T to be integer, representing

the number of trading days over which we perform the analysis. All integers in [0, T ]

mark the end of a trading day. The volatility at time t over the past day is given by the

integrated variance, IVt =
∫ t
t−1

σ2
u du.

Within each trading day, there are n observations, equally spaced such that the time

interval between any two consecutive observations is equal to ∆n = 1
n
.4 Let ∆n

iX,

i = 1, ..., n, be the i-th intraday return during the one-day interval (t − 1, t], such that

∆n
iX = Xi∆ −X(i−1)∆. In the absence of jumps, the integrated volatility is consistently

estimated by the realized variance (Andersen and Bollerslev, 1998a; Andersen et al.,

2003), de�ned as:

RVt =

b1/∆nc∑
i=1

|∆n
iX|2.

If the price contains jumps, RVt is no longer consistent for the integrated variance,

converging to the quadratic variance of the price process,
∫ t
t−1

[σ2
u + L2

u] du. To estimate

4Note that de�ning realized volatility does not require equally spaced observations. We make this
assumption here for simplicity.
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the integrated variance, one needs to rely on a robust to jumps estimator, such as the

realized bipower variation of Barndor�-Nielsen and Shephard (2004b) given by:

BVt =
n

n− 1
µ−2

1

b1/∆nc∑
i=2

|∆n
iX||∆n

i−1|, (2.2)

where µp ≡ E[|Z|p], Z ∼ N (0, 1), p > 0. We de�ne the intraday volatility periodicity,

ft, as a multiplicative component to the actual spot volatility, st, as in Andersen and

Bollerslev (1997, 1998b); Andersen et al. (2001a); Boudt et al. (2011):

σt = stft, (2.3a)

such that
∫ t

t−1

f 2
u du = 1, (2.3b)

so that intraday periodicity has no impact on the integrated variance, i.e.
∫ t
t−1

σ2
u du =∫ t

t−1
s2
u du. In practice, as we observe a discrete number of observations, the condition in

equation (2.3b) can be written using the following Riemann integral:

∆n

b1/∆nc∑
i=1

f 2
i = 1, (2.4)

where fi is the i-th value of the function f(·) observed during a trading day. Clearly,

when ∆n approaches 0, the Riemann sum converges to the integral in (2.3b).

The two components of spot volatility de�ned above in (2.3a) di�er greatly. The

periodic component is a deterministic function of intraday time and re�ects intraday

trading patterns. The actual spot volatility st is a stochastic process which varies over

time re�ecting the available information on the asset.

To estimate the intraday periodicity, we use the non-parametric approach proposed

by Boudt et al. (2011), which is robust to the presence of jumps in the price process. Let

∆n
iX =

∆n
i X√

∆nBVt
, i = 1, . . . , n, t = 1, . . . , T be the standardized intraday returns, with

BVt given in equation (2.2). For a certain intraday time, i, we observe T standardized
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intraday returns, which are sorted in increasing order, as follows:

∆n
(1),iX ≤ ∆n

(2),iX ≤ · · · ≤ ∆n
(T ),iX.

Given the above ordered set, we de�ne the subsets containing half (κ ≡ bT/2c+ 1)

contiguous observations:
{

∆n
(1),iX, . . . ,∆

n
(κ),iX

}
, . . . ,

{
∆n

(T−κ+1),iX, . . . ,∆
n
(T ),iX

}
. The

shortest half scale estimator is the shortest length of these subsets:

ShortHi = 0.741 min
(
∆n

(κ),iX −∆n
(1),iX, . . . ,∆

n
(T ),i −∆n

(T−κ+1),iXX
)
.

The shortest half scale periodicity estimator is given by:

f̂ShortHi =
ShortHi

∆n

∑b1/∆nc
j=1 ShortH2

j

, ∆n ≡ 1/n.

Finally, the weighted standard deviation intraday periodicity estimator is de�ned as:5

f̂WSD
i =

WSDi√
∆n

∑n
j=1WSD2

j

(2.5)

WSDi =

√√√√1.081

∑T
l=1 χl,i

(
∆n
l,iX

)2∑T
l=1 χl,i

,

for all i = 1, . . . , n, where WSDi is the weighted standard deviation (WSD) and χl,i,

l = 1, . . . , T are weights computed using the shortest half scale periodicity estimator

which are de�ned as:

χl,i = χ
(

∆n
l,iX/f̂

ShortH
i

)
,

χ(z) =


1, if z2 ≤ 6.635

0, otherwise.

5The ShortH is highly robust to jumps, but it has only 37% e�ciency under normality of returns.
For this reason Boudt et al. (2011) propose the use of a weighted standard deviation, where the threshold
corresponds to the 99% quantile of the χ2

1. The WSD has a 69% e�ciency under normality.
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The periodicity-�ltered returns are de�ned as:

∆n
iX

f =
∆n
iX

f̂WSD
i

. (2.6)

We can further de�ne periodicity-�ltered realized measures, such as the �ltered realized

variance RV f
t =

∑b1/∆nc
i=1 |∆n

iX
f |2, the �ltered realized bipower variation BV f

t = n
n−1

µ−2
1∑b1/∆nc

i=2 |∆n
iX

f ||∆n
i−1X

f | and so on.

In the present analysis, we rely on four models to forecast realized volatility: the HAR

model proposed by Corsi (2009), the HAR-J and HAR-CJ models by Andersen et al.

(2007a), and the HAR-Q model by Bollerslev et al. (2016). In addition, we introduce a

new class of models, HARP, where the predictors rely on data from which periodicity is

�ltered out (hence the �P� in HARP stands for periodicity-�ltered). Naturally, all HAR

models can be transformed into HARP models by simply using �ltered data, ∆n
iX

f , to

compute all regressors. Note that unlike most HAR models,6 HARP models are not

autoregressions.7

Let h be the forecasting horizon, measured in days. Then, RVt,t+h−1 is the forecasted

realized variance over the next h days (starting from day t). Below, we present the

forecasting regressions for the four HAR models and their HARP counterparts.

HAR and HARP

Let RVt−1 be the �rst lag of the (daily) realized variance, RVt−5,t−1 the average realized

variance over the past week and RVt−22,t−1 the average realized variance over the past

month. In a similar way, we de�ne RV f
t−1, RV

f
t−5,t−1 and RV f

t−22,t−1 as the periodicity-

�ltered one-day, one-week and one-month lagged realized variances. Let εt+h−1 be the

6The HAR-CJ model is also not an autoregression.
7The HARP models resemble autoregressions where the dependent variable is measured with errors.

As the dependent variable includes periodicity, it will have a conditional distribution with the same mean
as the the periodicity-free RV, but a di�erent variance, which is similar to having measurement errors in
the dependent variable.
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forecasting error for the HAR, while εft+h−1 is the forecasting error for the HARP model.

HAR RVt,t+h−1 = β0 + βdRVt−1 + βwRVt−5,t−1 + βmRVt−22,t−1 + εt+h−1, (2.7)

HARP RVt,t+h−1 = β0 + βdRV
f
t−1 + βwRV

f
t−5,t−1 + βmRV

f
t−22,t−1 + εft+h−1, (2.8)

where β0 is the regression constant term, while βd, βw and βm are the coe�cients corre-

sponding to the one-day, one-week and one-month lagged values of the realized variance.

HAR-J and HARP-J

Andersen et al. (2007a) de�ne the contribution of jumps to the daily quadratic vari-

ation of the price as Jt = max(RVt − Ct, 0), for t = 1, . . . , T , where Ct is a consistent

estimator of the integrated variance. Similarly, we can de�ne a jump regressor based

on periodicity-�ltered returns, Jft . The HAR-J and HARP-J models are obtained by

including Jt−1 and Jft−1, respectively, in the forecasting regression:

HAR-J RVt,t+h−1 = β0 + βdRVt−1 + βwRVt−5,t−1 + βmRVt−22,t−1 + βJJt−1 + εt+h−1,

(2.9)

HARP-J RVt,t+h−1 = β0 + βdRV
f
t−1 + βwRV

f
t−5,t−1 + βmRV

f
t−22,t−1 + βJJ

f
t−1 + εft+h−1.

(2.10)

HAR-CJ and HARP-CJ

In this model, past lags of the estimated continuous and discontinuous components

of the quadratic variation are considered in the forecasting regression, as follows:

HAR-CJ RVt,t+h−1 = β0 + βCdCt−1 + βCwCt−5,t−1 + βCmCt−22,t−1 + βJdJt−1+

βJwJt−5,t−1 + βJmJt−22,t−1 + εt+h−1,

(2.11)

HARP-CJ RVt,t+h−1 = β0 + βCdC
f
t−1 + βCwC

f
t−5,t−1 + βCmC

f
t−22,t−1 + βJdJ

f
t−1+

βJwJ
f
t−5,t−1 + βJmJ

f
t−22,t−1 + εft+h−1,

(2.12)
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where Ct−1, Ct−5,t−1 and Ct−22,t−1 are the one-day, one-week and one-month lagged esti-

mates of the integrated variance, and Jt−1, Jt−5,t−1 and Jt−22,t−1 are the one-day, one-week

and one-month lagged estimates of the jumps' contribution to the quadratic variation. In

equation (2.12), all these regressors are computed on periodicity-�ltered returns, hence

the f superscript. In computing Ct and Cf
t , we employ the method in Andersen et al.

(2007a): Ct = RVt · It(no jumps) + BVt · It(jumps), for t = 1, . . . , T , where It(·) is the

indicator function for whether jumps were identi�ed on day t or not.

HAR-Q and HARP-Q

As Bollerslev et al. (2016) indicate, the variance of the realized volatility measure-

ment error is a function of the integrated quarticity,
∫ t
t−1

σ4
u du, t = 1, . . . , T . Their

main forecasting model accounts for the error in measuring the one-day lagged realized

variance,8 as follows:

HAR-Q RVt,t+h−1= β0 + (βd + βdQRQ
1/2
t−1)RVt−1 + βwRVt−5,t−1 + βmRVt−22,t−1+

εt+h−1,

(2.13)

HARP-Q RVt,t+h−1 = β0 + (βd + βdQ(RQf
t−1)1/2)RV f

t−1 + βwRV
f
t−5,t−1 + βmRV

f
t−22,t−1+

εft+h−1,

(2.14)

where RQt = n
3

∑b1/∆nc
i=1 |∆n

iX|4 estimates the integrated quarticity using un�ltered data,

while RQf
t its counterpart estimate is based on periodicity-�ltered data.

2.3 Data

8Authors explain that measurement errors for the one week and one month realized volatilities do
not have a signi�cant impact on forecasting.
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2.3.1 Empirical Data

We use intraday price data from the TickData database for the SPDR S&P 500 ETF

(SPY) and 30 individual stocks in the S&P 500 basket. We observe a total of 4,277 trading

days between 2000 and 2016. Data is aggregated down from tick level using previous tick

interpolation and is further sampled every 5 minutes. This sampling frequency is standard

in the literature, motivated by the trade-o� between bias and variance (for more details,

see Aït-Sahalia et al., 2005; Hansen and Lunde, 2006).

The intraday periodicity function is generally assumed not to vary from one day to

another and is estimated as described in section 2.2.9 Figure 2.1 plots the estimated

periodicity for SPY and the average estimated periodicity for the 30 S&P 500 stocks

considered. Both plots reveal the characteristic U-shape for the estimated curve.

Table 2.1 reports, for each ticker in our sample, the minimum, maximum and median

values of the realized variance, the number of jumps detected and the estimated propor-

tion of the continuous component relative to the total RV. The left (right) panel of the

table reports these statistics for the un�ltered (�ltered) return data.

For SPY, we detect 353 jumps for un�ltered data, meaning that we identify jumps

on 8.25% of days. When data is �ltered, the number of jumps drops to 281, suggesting

that 6.57% days had jumps. Results for individual stocks show high variability in the

number of jumps identi�ed for both �ltered and un�ltered data. On average, we observe

646 jumps for the un�ltered data, which decreases substantially after �ltering to 416. As

shown in section 2.4.3 below, the presence of intraday periodicity can lead to spurious

jump detection.10

2.3.2 Simulated Data

Here, we introduce the stochastic volatility processes from which we simulate data

throughout the paper. We start from the one- and two-factor stochastic volatility models

9For SPY, in section 2.5.2 below, we also show results where periodicity is estimated on a past rolling
window of varying size.

10Additional results on jump identi�cation based on the test by Andersen et al. (2012) are reported
in Table 2.8 of Section 2.C.2.
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previously analyzed by Huang and Tauchen (2005) and given in equations (2.15a) and

(2.15b) below.11 For the intraday periodicity function, f(t), we employ the speci�cation

in Andersen et al. (2012) and Hasbrouck (1999).

One volatility factor (SV1F) (2.15a)

dp(t) = 0.03 dt+ f(t)ν(t)
(
−0.62 dWν1(t) +

√
0.6156 dWp(t)

)
,

ν2(t) = exp{0.125ν2
1(t)},

dν2
1(t) = −0.1ν2

1(t) dt+ dWν1(t).

Two volatility factors (SV2F) (2.15b)

dp(t) = 0.03 dt+ f(t)ν(t)
(
−0.3 dWν1(t)− 0.3 dWν2(t) +

√
0.82 dWp(t)

)
,

ν2(t) = s-exp{−1.2 + 0.04ν2
1(t) + 1.5ν2

2(t)},

dν2
1(t) = −0.00137ν2

1(t) dt+ dWν1(t),

dν2
2(t) = −1.386ν2

2(t) dt+
(
1 + 0.25ν2

2(t)
)

dWν2(t).

f(t) = 0.88929198 + 0.75e−10t + 0.25e−10(1−t), (2.15c)

where W 's are correlated standard Brownian motions, and s-exp denotes the exponential

function with a polynomial spline at high values to avoid explosive behavior.

For the SV1F model, volatility is predictable and moderate and does not lead to a

large number of extreme returns. In fact, in this set-up, the only way to generate a

reasonable number of extreme returns is by adding jumps to the price process. Jumps

arrive with constant intensity λ = 0.4 and have sizes drawn from N (0, ι2), where ι2 =

1.284, accounting for approximately 30% of the quadratic variation in the SV1F model.12

In the SV1F model without with jumps, dependence in the second order moment of the

returns is unrelated to the occurrence of extreme returns. By contrast, the SV2F model

generates jointly extreme volatility and extreme returns. This is possible because this

model allows for larger levels of dependence in volatility, as well as dependence in the

volatility of volatility.13

11Abbreviations for the two models are as in Huang and Tauchen (2005).
12ι2 is set to equal exp(0.125)2, where the value 0.125 is the coe�cient multiplying the volatility factor

in equation (2.15a) for the SV1F model.
13Figure 2.12, in section 2.C.1, plots returns simulated from both stochastic volatility models.
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The SV1F model corresponds to periods of tranquility, when the occasional new infor-

mation on the traded security is rapidly incorporated into the price via an added jump,

followed by a return to the status quo. The SV2F model corresponds to turbulent peri-

ods when extreme returns and volatility are likely followed by more extreme returns and

volatility.

Simulations are generated using an Euler scheme based on 23,400 initial data points

(corresponding to seconds). We further aggregate data up to the following lower sampling

frequencies: 5 seconds (4680 observations), 30 seconds (780 observations), 1 minute (390

observations), 1.5 minutes (260 observations), 2 minutes (195 observations), 2.5 minutes

(156 observations), 5 minutes (78 observations), 10 minutes (39 observations), 15 minutes

(26 observations) and 30 minutes (13 observations). We simulate a total of 1,000 sample

paths of length 1,000 days.

Figure 2.2 plots ν(t), f(t) and f(t)ν(t) simulated during the course of a trading day for

the two stochastic volatility models speci�ed in (2.15a) and (2.15b). At the start and end

of the day, periodicity is higher than 1, leading to values for the spot volatility, f(t)ν(t)

higher than in the absence of periodicity (ν(t)). At the same time, in the middle of the

day, as periodicity is lower than 1, spot volatility is lower when periodicity is present in

the data. This e�ect is less obvious for the SV2F model, which features larger variability

in ν(t), making variations due to periodicity relatively smaller.

2.4 Periodicity and the Forecasting Regression

To illustrate the impact of periodicity on the forecasting regression, we �rst consider a

simple DGP and compare the coe�cients of the forecasting regression in the presence of

intraday periodicity to the coe�cients obtained in the absence of periodicity. We further

perform this comparison for more complex DGPs using both simulations and real data.

Finally, we consider the impact of periodicity on jump-type predictors.
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2.4.1 The Simple AR(1) Model

We assume the daily integrated variance evolves according to an AR(1) process.

IVt = Θ + ΦIVt−1 + εt, (2.16)

where t ∈ {1, 2, ..., T}, Θ > 0, |Φ| < 1, and εt is i.i.d. with Var(εt) = σ2
ε . In addition,

within each trading day, the actual spot volatility remains constant at a level equal

to a fraction of the daily integrated variance, ∆nIVt. If we also account for intraday

periodicity, the spot volatility for the i-th ∆n-length window during a trading day equals

∆nIVtf
2
i . Assuming no drift, the i-th return is ∆n

iX =
√

∆nIVtfiwi, where wi is i.i.d.

N (0, 1) and independent of present and past values of s(·). Suppose one attempts to

forecast volatility using the following AR(1) model for the realized variance:

RVt = θ + φRVt−1 + ut, (2.17)

with φ equal to the well-known formula:

φ =
cov (RVt, RVt−1)

Var (RVt)
. (2.18)

In the above equations, as RVt is only a proxy for the integrated variance, it is subject

to measurement error, leading to an attenuation bias in the estimate of φ (Bollerslev et al.,

2016). Below, we show that periodicity further increases this bias, resulting in a further

reduction - in absolute value - in the φ estimate.

To assess the impact of periodicity on the value of φ, we compute the numerator

and denominator in equation (2.18) in the presence/absence of periodicity. The required

derivations are enclosed in section 2.A of the appendix. While the auto-covariance remains

una�ected by periodicity, we obtain the following variance formulae for the case in which

periodicity is present (equation (2.19a) below), compared to the case when it is absent
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(equation (2.19b)):14

Var(RVt) =
σ2
ε

1− Φ2
+ 2∆2

n

b1/∆nc∑
i=1

f 4
i

[
σ2
ε

1− Φ2
+

(
Θ

1− Φ

)2
]
, (2.19a)

Var(RVt)
NP =

σ2
ε

1− Φ2
+ 2∆2

n

1

∆n

[
σ2
ε

1− Φ2
+

(
Θ

1− Φ

)2
]
, (2.19b)

Proof. See Appendix 2.A.

The main di�erence between the above formulae resides in the term
∑b1/∆nc

i=1 f 4
i . From

equation (2.4), we know that
∑b1/∆nc

i=1 f 2
i = ∆−1 > 1. Then,

∑b1/∆nc
i=1 f 4

i >
∑M

i=1 f
2
i =

∆−1, so that Var(RVt) > Var(RVt)
NP . As we sample at lower frequencies,

∑b1/∆nc
i=1 f 4

i

becomes smaller, as it sums up fewer positive terms than at higher frequencies. This e�ect

is counterbalanced by a bigger ∆n, making ∆2
n

∑b1/∆nc
i=1 f 4

i in equation (2.19a) bigger and

bigger in comparison to its counterpart term in equation (2.19b), ∆2
n

1
∆n

= ∆n. As a result,

the gap between Var(RVt) and Var(RVt)
NP will be bigger at lower sampling frequencies

than at higher frequencies, as periodicity in�ates the bias due to measurement error.

The established inequality Var(RVt) > Var(RVt)
NP implies that φ, as given in equa-

tion (2.18), is lower �in absolute value� than the corresponding coe�cient for the case

of no periodicity. Thus, φ understates the true correlation coe�cient, Φ, for two rea-

sons. First, the presence of measurement error leads to the variance distortion in (2.19b),

pushing φ downwards from Φ. Second, as shown in equation (2.19a), the presence of peri-

odicity generates a further increase in the variance of realized volatility, further reducing

φ.

2.4.2 Simulation and empirical evidence

The analytic results in the previous section were facilitated by the simple DGP consid-

ered. Extending such results to a more complex DGP can be achieved via Monte Carlo

simulation. In this section, we rely on data simulated from the two-factor stochastic

volatility model, given in equation (2.15b) above.

14The superscript NP above stands for �no periodicity�.
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We start by illustrating the impact of periodicity on the variance of the realized volatil-

ity. Let V ar(RV unf
t ), V ar(RV ft

t ) and V ar(RV WSD
t ) be the variances of the realized

volatility estimators based on, respectively, un�ltered returns, returns �ltered by the true

periodicity, and returns �ltered with the weighted standard deviation method as shown

in section 2.2. Figure 2.3 shows the histograms of the ratios V ar(RV unf
t )/V ar(RV ft

t )

and V ar(RV WSD
t )/V ar(RV ft

t ) computed on simulated returns. We consider two sam-

pling frequencies: 1-second, the frequency at which data is generated, and 5-minute, the

standard sampling frequency used in applications.

Both plots on the left show that when periodicity is present, the distribution of

V ar(RV unf
t )/V ar(RV ft

t ) is almost entirely shifted to the right of 1, suggesting that the

realized volatility variance increases substantially when periodicity is present. The plots

on the right show that �ltering out periodicity using the weighted standard deviation

method is on average bene�cial, as the distributions of V ar(RV WSD
t )/V ar(RV ft

t ) for

both sampling frequencies are centered around 1.

We further explore the impact of periodicity on the estimated coe�cients of the more

complex HAR forecasting model, de�ned in equation (2.7). Figure 2.4 plots, for SV2F,

the three coe�cients of the model applied on un�ltered (HAR) and �ltered (HARP)

returns across decreasing sampling frequencies.15 From left to right, the �rst panel of

the �gure corresponds to βd from (2.7), the middle panel to βw, while the last panel to

βm. The straight line in each panel represents the corresponding estimates on the daily

quadratic variance. These are referred to as �true� coe�cients.

Results in Figure 2.4 show that all coe�cients are closer to their true values once

periodicity is �ltered out, for all sampling frequencies. At the same time, the un�ltered

coe�cients are closer to 0 in comparison to �ltered coe�cients. This �nding is in line

with general textbook results on errors in variables in OLS regression, where coe�cients

are biased towards 0.

We further rely on real return data to capture the impact of periodicity on the variance

of the realized volatility. For a generic DGP, the asymptotic variance of the realized

15Section 2.C.1 shows results for the case when a simple AR(1) model is used in forecasting, as well
as results for HAR(P)-J models.
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volatility can be estimated via the realized quarticity, de�ned in section 2.2. Figure 2.5

plots the SPY realized variance and its 95% con�dence bands across time for a 10-days

window, starting on 2008-09-30, di�erentiating again between un�ltered- and �ltered -

based estimates. Con�dence intervals obtained on the un�ltered returns are generally

wider than con�dence intervals obtained for �ltered data.

2.4.3 Impact on Detected Jumps

Two of the most popular HAR models, HAR-J (equation (2.9)) and HAR-CJ (equation

(2.11)), use the estimated daily squared jumps as predictors. These estimates depend on

the outcome of jump tests that decide whether jumps have occurred during a particular

trading day. The most familiar test for jumps is that proposed by Barndor�-Nielsen

and Shephard (2006), which relies on a comparison between RV and the jump robust

realized bipower variation, BVt, de�ned in section 2.2. Throughout the paper, most

results involving jump identi�cation are based on this test.16

To examine the impact of intraday periodicity on spurious jump detection, we rely

on data generated from the one-factor stochastic volatility model (SV1F) plus jumps, as

described in section 2.3.2. The moderate levels of volatility for this model make jumps

easier to identify. Figure 2.6 illustrates the proportions of spurious jumps detected with

the Barndor�-Nielsen and Shephard (2006) jump test on both the original return data and

periodicity-�ltered data. The left hand panel of the �gure shows results for a signi�cance

level α = 1% and the panel on the right for a signi�cance level of α = 5%.

The �gure shows that the number of spurious jumps detected is higher for un�ltered

returns, result that remains valid across all sampling frequencies.17 This suggests that

jump regressors in models HAR-J and HAR-CJ are likely to be a�ected by estimation

error, which can further impact the forecast of the realized variance.

16The test statistics for this test and for an alternative jump test are presented in section 2.A.1 of the
appendix.

17This result is veri�ed when applying the jump test proposed by Andersen et al. (2012). See Fig-
ure 2.15 in Section 2.C.1.
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2.5 HARP Forecasting Performance

In this section, we compare the forecasting performance of the HARP models to

that of the HAR models, using both simulated and empirical data. We demonstrate that

considerable forecasting gains can be attained by using periodicity-�ltered data, especially

at short and medium horizons.

To evaluate the forecasting performance of the two classes of models, we use two

distinct loss functions, the mean squared error (MSE) and the quasi-likelihood (QLIKE)

loss, de�ned in equation (2.20) below:

MSE(RVt, Ft) = (RVt − Ft)2

QLIKE(RVt, Ft) =
RVt
Ft
− log

RVt
Ft
− 1,

(2.20)

where Ft denotes the out-of-sample forecast of the realized variance.

For forecast horizons beyond 1-day, both HARP and HAR models are adapted to

the new time scale by replacing the daily RVs on the left-hand-side with the weekly

and monthly RVs. Thus, separate models are �tted for each forecasting horizon. For the

analysis based on empirical data, we perform both in-sample and out-of-sample forecasts,

while the results for simulated data involve only the latter.18

2.5.1 Simulation Results

We estimate HAR and HARP models on data simulated from models SV2F (2.15b)

and SV1F (2.15a) with jumps, both de�ned in section 2.3.2. For each 1000-day simulated

path, we re-estimate the models each day on a rolling window of 350 days.19 For each

forecasting model introduced in section 2.2 and each forecast horizon, we compute the

ratio of forecast losses for the HARP version of the model versus the HAR model. A

ratio below one signals the superiority of the model based on �ltered returns.

In the case of the SV2F model, Figure 2.7 plots the median and the 5% and 95%

quantiles of the ratios of the forecast losses from the HARP model versus the HAR

18When forecasting out-of-sample, we re-�t the models each day.
19The rolling window length is equivalent to 35% of the length of the dataset.
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model against the sampling frequency. All three forecasting horizons (1-day, 1-week and

1-month) are included.20

The distribution of the loss ratio is similar across sampling frequency, forecasting

horizons and loss functions under consideration. The median is always below 1 and dis-

tributions are skewed to the left of 1 in all cases and uniformly across sampling frequency.

At frequencies below 5 minutes (78 observations), we observe slightly wider distributions.

For such frequencies, forecasts become more uncertain because they rely on less pre-

cisely estimated realized variances. Overall, for this DGP, where volatility is high and

persistent, �ltering for periodicity always improves forecasting results.

Figure 2.8 below plots, for the SV1F model with jumps, the median and the 5% and

95% quantiles of the one-day ahead forecast loss ratios against the sampling frequency.21

Generally, the distributions of the loss ratios are more dispersed at higher sampling

frequencies. This mainly re�ects the impact of periodicity estimation error, which is rel-

atively larger at higher frequencies due to the presence of jumps. For models including

jumps in their speci�cation, this e�ect is less visible. Medians are always below 1, indi-

cating that the distributions are shifted to the left of 1. Section 2.5.3 below discusses in

more detail the impact of jump-related estimation error on our analysis.

2.5.2 Empirical Results

In-Sample Forecasting Results

Tables 2.2, 2.3, 2.4 and 2.5 report the regression results for all HAR and HARPmodels,

estimated on the entire sample, for SPY and a stock average.22 Estimated standard errors

are robust to heteroscedasticity and autocorrelation, as we allow for serial correlation of

up to orders 5, 10 and 44 for the 1-day, 5-days and 22-days models, respectively. We

compute both in-sample and out-of-sample R-squared coe�cients, reported as R2
is and

R2
oos, where the computation of R2

oos is based on Campbell and Thompson (2007) and

20Figure 2.16, in Section 2.C.1, reports similar results for the HARP-Q and HAR-Q models.
21Section 2.C.1 reports results for the 1-week and 1-month forecasting horizons.
22Table 2.9 in Section 2.C.2 also reports results for the Rivers and Vuong (2002) test, comparing the

in-sample performance of HARP and HAR models for SPY. Results indicate HARP models generally
outperform their HAR counterparts.
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uses over 3,000 observations.23

All tables show that for SPY, R2
is and R2

oos from HARP models are higher in the

majority of cases, irrespective of the forecasting horizon. In addition, the coe�cients'

standard errors for 1-day ahead models are generally lower following �ltering, across all

model speci�cations considered, suggesting that at short horizons, HARP models tend

to be better speci�ed than HAR models. Finally, averaging results across stocks leads to

similar �ndings, with HARP models consistently outperforming HAR models.

All tables report for SPY β̂d + β̂w + β̂m (β̂Cd + β̂Cw + β̂Cm for the HAR-CJ model),

which represents the level of persistence when the models are autoregressions (all HAR

except HAR-CJ). For HARP models, this number gives some indication on the level of

persistence in an autoregressive model where the dependent variable is measured with

error, due to the presence of periodicity. As HARP models are not nested in the HAR

class, comparisons of persistence levels between the HARP and HAR models should be

interpreted with caution. While all models show a very high degree of persistence, we

observe lower levels of persistence for all HARP models over all horizons. At the same

time, the levels of persistence in the residuals of the estimated HARP models are much

lower than for the HAR models. This con�rms that HARP models are generally better

speci�ed and explains why these models outperform HAR models in forecasting.

For SPY, the in-sample R-squared has similar values for the HARP and HAR 1-day

ahead models, while for the 5- and 22-days ahead models, this coe�cient is higher when

the forecast is based on �ltered data. In terms of out-of-sample R-squared, the HARP

model outperforms the HAR model uniformly across all horizons. In addition, for the

1-day ahead model, �ltering data leads to a decrease in the standard errors of coe�cients

β̂0 and β̂d, while the standard error of β̂w remains unchanged. The in-sample R-squared

averaged across stocks is higher for the HARP models for all forecasting horizons, while

in terms of average out-of-sample R-squared, we observe higher values for the 1-day and

5-days ahead HARP models.

In the case of the HAR-J and HARP-J models, β̂Jd is always negative, in line with the

23Section 2.C.2 reports, as a robustness check, the results obtained for the HAR(P)-J and HAR(P)-CJ
models where the Andersen et al. (2012) test is used to identify jumps.
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existing literature (see Andersen et al., 2007a). For the HARP-J, β̂Jd is larger in absolute

value and has smaller standard errors compared to the HAR-J model. As �ltering out

periodicity reduces the number of detected spurious jumps (see section 2.4.3), the jump

predictor for the HARP-J model is less a�ected by measurement error and, as a result, it

is more informative. In addition, in the case of the 1-day ahead model, we observe lower

standard errors after �ltering for almost all other coe�cients, i.e. β̂0, β̂d and β̂w.

For SPY, the in-sample R-squared coe�cients are higher for the HARP-J models in the

case of the 5- and 22-days horizons, while the out-of-sample R-squared is higher for these

models across all horizons. In particular, for SPY, the out-of-sample R-squared features

the highest increase post �ltering for this class of models compared to all other HARP

models. The most extreme change occurs for the 1-day ahead model, where the out-of-

sample R-squared increases from 0.417 for HAR-J to 0.480 for HARP-J. Average results

for stocks show higher average in-sample R-squared coe�cients for HARP-J models across

all horizons. In the case of the average out-of-sample R-squared, the superiority of �ltered

data is preserved for the 1-day and 5-days ahead models.

In line with our �ndings for the HARP-J model, for the HARP-CJ model, we notice

an important reduction in the standard errors for the coe�cients of all realized jumps

regressors across all forecasting horizons in comparison to the un�ltered model. For the

1-day ahead model, the standard errors of β̂0, β̂Cd and β̂Cw also feature a substantial

decrease after �ltering.

The HARP-CJ models generally show higher in-sample and out-of-sample R-squared

for SPY and on average across all stocks. A particularly high change following �ltering is

observed for the 1-day ahead model for SPY, where the out-of-sample R-squared increases

from 0.407 for HAR-CJ to 0.468 for HARP-CJ.

For the HARP-Q model, standard errors for β̂Q, the estimated coe�cient forRQ1/2
t RVt,

as illustrated in equation (2.13), are lower than for the HAR-Q model. As seen in section

2.4, periodicity impacts the RV variance and thus, its estimated asymptotic RV variance,

RQt, leading to additional distortions to results for this model. Pre-�ltering data dimin-

ishes the periodicity-related bias in RQt and thus leads to more precise estimates of βQ.
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For the 1-day ahead model, we also observe lower standard errors of β̂0, β̂d and β̂m for

the HARP-Q model. Moreover, �ltered models outperform un�ltered models in 4 out of

6 cases, for SPY, and 5 out of 6 cases on average across stocks.

Out-of-Sample Forecasting Results

We re-estimate all HAR and HARP models on rolling windows of 1000 days and

compute out-of-sample forecast losses.24 The ratios of the losses from HARP versus

HAR models for the 1-day, 1-week and 1-month horizons are reported in Table 2.6. For

each forecasting horizon, the top panel shows results for the SPY and the average across

all stocks. We apply the Diebold and Mariano (1995) test to assess the signi�cance of the

forecasting gains attained for the HARP models relative to the HAR models. Let εt+h−1

be the errors from one of the HAR models in equations (2.7), (2.9),(2.11) and (2.13) and

εft+h−1 the errors from these models' HARP counterparts. Further, let L(·) denote one

of the loss functions in (2.20) and dt = L(εft+h−1) − L(εt+h−1). Then, the Diebold and

Mariano (1995) test statistic is de�ned as:

DM =
1
T

∑T
t=1 dt√

V̂ar
(

1
T

∑T
t=1 dt

) → N (0, 1), (2.21)

where V̂ar
(

1
T

∑T
t=1 dt

)
is a consistent estimator for the variance of the dt sample mean.

We run a two-tailed test, where rejection when DM < 0 means that the average loss

from HARP models is lower than the average loss from HAR models. In Table 2.6, we

use starred numbers to indicate this at a 5% signi�cance level, while numbers with a

diamond superscript indicate that HAR models signi�cantly outperform HARP models.

For each forecasting horizon, the last three rows show the results of the Diebold and

Mariano (1995) test for the 30 stocks in our sample. For each entry, the �rst value

indicates the number of stocks for which HARP models outperform HAR models at

5% signi�cance level, while the second value shows the number of stocks for which the

opposite is true. For the models including jumps, we present results relying on both tests

24The rolling window length is equivalent to approximately 30% of the length of the dataset.
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for jumps considered in this paper, the classic Barndor�-Nielsen and Shephard (2006)

test, based on the realized bipower variation (BV columns), as well as the Andersen et al.

(2012) test, relying on the median realized variance (MedRV columns).

In the case of the 1-day ahead forecasts (h = 1), all except one loss ratios take values

below 1 for SPY, with the MSE ratios ranging just above 0.89. For both loss functions, the

lowest ratios are observed for the models with realized jumps in their speci�cations (last

four columns). This is in line with the in-sample results for SPY in section 2.5.2, where

we observed lower standard errors at 1-day ahead and higher R-squared coe�cients for

the HARP-J and HARP-CJ models in comparison to their HAR counterparts. As shown

in section 2.4, periodicity impacts HAR models with jumps via two channels: distortions

in the higher moments of the integrated variance estimators and measurement error in

the jump regressor. Filtering out periodicity addresses distortions via both channels and

leads to better speci�ed models and improved forecasts.

When using the MSE loss criterion, the Diebold and Mariano (1995) test indicates a

signi�cant gain (at 5% signi�cance level) from forecasting the SPY RV based on �ltered

data for all but one models. When using the QLIKE loss criterion, we �nd a signi�cant

gain for all but one models with jumps in their speci�cation.

The average loss ratios for all considered stocks and all models are below 1, indicating

that �ltering periodicity helps to improve forecasting. Between 8 and 11 stocks feature

a signi�cantly lower HARP MSE, and between 10 and 20 a signi�cantly lower HARP

QLIKE loss. By comparison, the number of stocks for which HAR losses are signi�cantly

lower than HARP losses ranges between 0 and 2, equalling 0 most of the times.

For the 1-week ahead forecasts (h = 5), all loss ratios are below 1 in the case of

SPY. Moreover, the Diebold and Mariano (1995) test shows that the �rst four MSE

losses are signi�cantly lower for HARP models. For the QLIKE loss criterion, we observe

signi�cantly lower losses for the HARP-Q model and both HARP-CJ models (BV and

MedRV) relative to the benchmark HAR models.

Across all models, the average loss ratios for all stocks under consideration are below

1, indicating, just as for the 1-day ahead forecasts, that �ltering periodicity is bene�cial
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for the majority of stocks. Between 7 and 10 stocks feature a signi�cantly lower HARP

MSE, and between 8 and 13 a signi�cantly lower HARP QLIKE loss. By comparison,

HAR models outperform HARP models for a number of stocks between 0 and 3.

For the 1-month ahead forecasts (h = 22), all but one ratios are below 1 for SPY.

The exception occurs for the MSE loss ratio HARP-Q/HAR-Q, but even in this case, the

ratio remains close to 1. The Diebold and Mariano (1995) test indicates that the MSE

is signi�cantly lower for HARP and HARP-CJ based on the realized bipower variation

when these models are compared to their HAR counterparts. The QLIKE loss is signi�-

cantly lower for HARP, HARP-CJ based on both jump tests, and HARP-J based on the

Andersen et al. (2012) test.

The stock average MSE ratio is lower than 1 in all cases except for HARP-Q/HAR-Q,

while the stock average QLIKE loss ratio is lower than 1 in only one case. Furthermore,

MSE is signi�cantly lower in the case of HARP models for a number of stocks ranging

between 3 and 6, while the HARP QLIKE loss is signi�cantly lower for a number of stocks

ranging between 3 and 8. While these numbers are lower than the numbers reported for

the 1-day and 1-week ahead forecasts, we generally observe more stocks with signi�cantly

lower HARP losses than with signi�cantly lower HAR losses.

To account for the fact that the periodicity function might be time-varying, we perform

the out-of-sample analysis for SPY using periodicity estimates obtained on time windows

of varying length. For each day, we use W past days to compute the periodicity function,

where W varies from 22 trading days, i.e. 1 month, to 1008 days, equivalent to a 4-year

long window. Results are shown in Table 2.7.

Irrespective of the forecasting model and the window length for estimating periodicity,

the vast majority of loss ratios are below 1, indicating that HARP models dominate in

performance. This is further con�rmed by the results for the Diebold and Mariano

(1995) test, based on which HARP models signi�cantly (at 5%) outperform HAR models

in most of the cases, while the opposite is true for just a few cases when using the QLIKE

criterion for the HAR-Q model when h = 1. All results in Table 2.7 are dispersed around

the values obtained when estimating periodicity on the full sample (see Table 2.6), with
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some estimation window sizes outperforming, while others under-performing the general

case.

In terms of changes in results with the varying of the length of the periodicity esti-

mation window, we �nd no clear pattern pointing towards an optimal window length. In

general, the 1-month window seems too short, as we tend to attain better performance

for longer windows. The results remain qualitatively similar to the general case using the

full sample size for �ltering.

In summary, evidence from both Monte Carlo simulations and empirical data sup-

ports that �ltering periodicity leads to superior forecasting performance at the 1- and

5- days forecasting horizons. For the longer horizons, we argue that distortions due to

intraday periodicity are mostly negligible and that HAR and HARP models forecasting

performance is similar.

2.5.3 Sensitivity and validity analysis

This section acts as a robustness check for our results. It explores how various sources

of estimation error in the intraday periodicity estimates can impact our �ndings. We

ultimately show that our results hold even in the presence of such errors. The estimation

error in disentangling periodicity has two main sources: the number of days used to

estimate periodicity is too short and the jumps in the price interfere with periodicity

estimation, especially at higher frequencies.

A time-varying periodicity function (see Andersen et al., 2018) calls for estimating

periodicity over shorter windows of time. As shorter estimation windows can lead to less

reliable periodicity estimates, Figure 2.9 explores the sensitivity of our results on fore-

casting RV to the length of the periodicity estimation window. We plot the distribution

of the HARP/HAR loss ratios obtained at the highest sampling frequency for the SV2F

model against the length of the periodicity estimation window. At very high sampling

frequencies and in the absence of jumps, the impact of measurement error emanating

from any other source than the length of the estimation window is insigni�cant.

The distribution of the loss ratios does not change much with the length of the esti-
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mation window for periodicity. The median is always below 1, con�rming that �ltering

improves the forecasting performance. The distribution of the QLIKE ratios is slightly

more dispersed than the distribution of the MSE ratios for shorter estimation windows.

We further consider the impact of the jump-related periodicity estimation error on our

analysis. To this end, we compare the HARP forecast loss for the �ltered SV1F process

with jumps to the forecast loss for the �ltered SV1F model to which we add jumps only

after applying the periodicity �lter. Speci�cally, for the latter forecast loss, we apply the

periodicity �lter at di�erent sampling frequencies before adding the jumps also sampled

correspondingly. The �rst forecast loss is impacted by jump-related periodicity estimation

error, while the second loss is not. The distributions of the ratios of the two losses for

di�erent forecasting horizons are plotted against the sampling frequencies in Figure 2.10.

The �HARP fj� notation indicates the HARP model where �ltering (�f �) occurs on data

with jumps (�j�), while the �HARP fnj� denotes the forecasting model where �ltering

(�f �) occurs on data with no jumps (�nj�).

At high frequencies, the distribution of the loss ratio shifts above 1 and is more dis-

persed than at lower frequencies. This shift is mostly visible for the 1-day and 1-week

ahead forecasts, where all three quantiles are located above 1 for sampling frequencies

higher than 30 seconds. For the one-month ahead forecasts, the median and the 95%

quantile at high frequency are above 1, indicating an upwards shift, but the distribution

is a lot more dispersed, with the 5% quantile well below 1. In this case, aggregation of

data over long horizons makes the impact of jump-related estimation error less clear in

terms of direction, but still very much visible in terms of dispersion. For all forecast-

ing horizons, the impact of jump-related estimation error gradually decreases with the

sampling frequency.

Finally, we examine whether excessive or insu�cient �ltering impacts our results. We

rely on the SV2F 5-minute data and employ the forecast loss de�nition used in presenting

the Diebold and Mariano (1995) test in section 2.5.2. Let L(εWSD
t+1 ) and L(εunft+1 ) be,

respectively, the HARP and HAR model forecast losses computed using the MSE loss

function. LetRV ft
t andRV WSD

t be the realized variance estimators based on, respectively,
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returns �ltered by the true periodicity, and returns �ltered with the weighted standard

deviation method outlined in section 2.2. We de�ne excessive �ltering the situation for

which RV WSD
t < RV ft

t and insu�cient �ltering when RV WSD
t > RV ft

t . In Figure 2.11,

we plot the loss di�erential L(εWSD
t+1 ) − L(εunft+1 ) against RV WSD

t − RV ft
t . The surface

of the plot is split in four quadrants based on the criteria: RV WSD
t − RV ft

t ≶ 0 and

L(εWSD
t+1 )− L(εunft+1 ) ≶ 0. In each quadrant, we also report the average loss di�erence per

quadrant, ∆Lt+1, as well as the percentage of points.

Overall, �ltering leads to forecast gains, as more than 75% of the points in the scatter

plot are situated below the line L(εWSD
t+1 ) = L(εunft+1 ), where loss di�erentials are also

higher in absolute value. Over 67% of the points are to the right of the RV WSD
t = RV ft

t

line, out of which 51% are in the fourth quadrant, where L(εWSD
t+1 ) − L(εunft+1 ) < 0 and

RV WSD
t −RV ft

t > 0. This quadrant also features the most extreme points of the scatter

plot and the highest loss di�erence in absolute value. The second quadrant, de�ned by

L(εWSD
t+1 ) − L(εunft+1 ) > 0 and RV WSD

t − RV ft
t < 0, also contains some extreme points,

showing that excessive �ltering can have adverse e�ects. This is not worrisome though,

as this quadrant has the lowest percentage of points and a relatively low loss di�erential

in absolute value.

2.6 Conclusion

The contribution of this paper is twofold. Firstly, we document the impact of volatil-

ity intraday periodicity on forecasting the realized variance using heterogenous auto-

regressive (HAR) models. While periodicity has no impact on the realized volatility itself,

it distorts its variance, leading to biases in the coe�cients of the forecasting models. We

derive the variance and the 1-lag auto-correlation coe�cient for the realized variance in

the case of a very simple DGP and show that periodicity arti�cially in�ates the variance

and has a decreasing impact on the autocorrelation. For a more complex DGP, we provide

simulation evidence showing that the estimated coe�cients of the forecasting regression

are closer to their true values when predictors are built from periodicity-�ltered returns.
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In addition, we also document that periodicity leads to spurious jumps detection.

Secondly, we introduce a new class of forecasting models for the realized variance,

HARP, where predictors rely on data from which periodicity is �ltered out. We provide a

thorough set of in-sample and out-of-sample forecasting comparisons between the HARP

and HAR models, relying on both simulated and empirical data. Our analysis encom-

passes the HARP versions of the most common HAR models in the literature, the HAR

model by Corsi (2009), the HAR-J and HAR-CJ models by Andersen et al. (2007a), and

the HAR-Q model by Bollerslev et al. (2016). Our dataset includes intraday observations

for the SPDR ETF and 30 S&P500 constituents for the period 2000 to 2016. The sim-

ulation and empirical evidence indicates that pre-�ltering the data for periodicity leads

to forecasting gains for all model speci�cations when forecasting 1-day to 1-week ahead.

At the 1-day ahead horizon, the HARP-J and HAR-CJ models show the greatest im-

provements following �ltering, owing to lower distortions in the jump predictors. At the

1-month horizon, results show little to no gains from �ltering periodicity, as the increase

in the forecasting error at this horizon is likely to dilute the impact of periodicity. Finally,

for robustness, we examine the impact of time varying periodicity using SPY data and

the impact of measurement error using simulated data. Our results are robust to the

various lengths of the periodicity estimation window and the di�erent sources of error in

estimating periodicity.
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Appendix 2.A Some Proofs for the Simple AR(1) Model

Under the assumptions of section 2.4.1, RVt =
∑b1/∆nc

i=1 |∆n
iX|2 = ∆nIVt

∑b1/∆nc
i=1 f 2

i w
2
i .

E(RVt) = ∆n E(IVt)

b1/∆nc∑
i=1

f 2
i =

Θ

1− Φ
,

where we used the fact that E(w2
i ) = 1 and E(IVt) = Θ

1−Φ
given the DGP for IVt in

equation (2.16).

Proof of equation (2.19a).

E
(
RV 2

t

)
= ∆2

n E(IV 2
t )E

b1/∆nc∑
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f 4
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2
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2
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For comparison purposes, we compute the same variance in the absence of periodicity,

where the superscript NP below stands for �no periodicity�.:
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Proof of equation (2.19b).

Var(RVt)
NP = ∆2

n E(IV 2
t )E
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w4
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2

∆n

+
1

∆2
n

)
+ 2∆n

(
Θ

1− Φ

)2

=
σ2
ε

1− Φ2
+ 2∆n

[
σ2
ε

1− Φ2
+

(
Θ

1− Φ

)2
]
.

Let wi, i = 1, . . . , n be a sequence of i.i.d. standard normal variables entering the

intraday returns on day t and w∗i , i = 1, . . . , n another sequence of i.i.d. standard normals,

independent of wi, entering returns on day t− h, h ≥ 1. The auto-covariance of lag h is

obtained below.
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Auto-covariance derivation.

cov (RVt, RVt−h) = E (RVtRVt−h)− E (RVt) E (RVt−h)

= ∆2
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2.A.1 Jump Tests

In this paper, we identify jumps relying mostly on the test proposed by Barndor�-

Nielsen and Shephard (2006) and further developed by Huang and Tauchen (2005). The

test statistic, ZBV
t , is given by:

ZBV
t =

1−BVt/RVt√
0.61n−1 max(1, TPQt/BV 2

t )
∼ N (0, 1)
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where TPQt is the realized tripower quarticity, that consistently estimates the integrated

quarticity in the presence of jumps and is de�ned as:

TPQt = n1.74
n

n− 2

b1/∆nc∑
i=3

|∆n
iX|4/3|∆n

i−1X|4/3|∆n
i−2X|4/3

p−→
∫ t

t−1

σ4
u du.

The above test is widely used in empirical work due to its simplicity and reasonable

size and power properties under various scenarios (see Dumitru and Urga, 2012). As

documented in the introduction to this paper, there are several other tests for jumps in

the literature. In this paper, we also employ the test proposed by Andersen et al. (2012)

to make sure our results are robust to the choice of the jump test. This test relies on

the median realized variance to estimate the integrated variation and is shown to have

better �nite sample properties than the original test by Barndor�-Nielsen and Shephard

(2006). The test statistic is given below:

ZMedRV
t =

1−MedRVt/RVt√
0.96n−1 max(1,MedRQt/MedRV 2

t )
∼ N (0, 1),

with

MedRVt =
n

n− 2
1.42

b1/∆nc−1∑
i=2

med(|∆n
i−1X|, |∆n

iX|, |∆n
i+1X|)2 p−→

∫ t

t−1

σ2
u du

and

MedRQt =
n2

n− 2
0.92
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i=2

med(|∆n
i−1X|, |∆n

iX|, |∆X
i+1|)4 p−→
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u du.
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Appendix 2.B Tables and Figures

Table 2.1: Realized variance minimum, maximum and median, realized number of jumps and the estimated pro-
portion of integrated variance in the quadratic variation for SPY and 30 stocks

Un�ltered Filtered

Stock Ticker Min RV Max RV Median RV # Jumps %QV Min RV Max RV Median RV # Jumps %QV

SPDR ETF SPY 0.013 59.863 0.485 353 98.153 0.012 52.663 0.486 281 98.580

3M MMM 0.082 91.955 1.008 518 95.776 0.083 86.331 0.995 234 98.529

AK Steel AKS 0.872 559.611 10.585 952 91.433 0.874 417.332 10.446 808 92.756

Arconic Inc. ARNC 0.339 291.089 3.070 460 96.811 0.275 205.826 2.996 318 98.406

Brown-Forman BFB 0.074 240.414 1.152 963 87.573 0.101 39.181 1.144 799 93.046

BT Group BT 0.100 59.568 1.162 1386 81.165 0.109 44.555 1.170 1466 79.768

China Mobile CHL 0.082 65.965 1.063 1040 89.395 0.086 66.370 1.055 907 91.155

Citigroup C 0.137 975.858 2.110 449 96.535 0.117 967.488 2.087 206 98.210

Coca-Cola KO 0.046 58.808 0.836 591 94.356 0.063 62.583 0.811 271 97.908

DUKE Energy DUK 0.051 189.935 1.182 668 95.262 0.056 197.569 1.130 401 97.892

eBay EBAY 0.202 236.419 2.782 469 97.037 0.210 352.784 2.729 200 98.806

General Dynamics GD 0.081 63.282 1.281 582 94.066 0.064 60.334 1.255 331 96.701

General Electric GE 0.108 180.389 1.303 465 96.230 0.099 139.389 1.299 257 98.033

Halliburton HAL 0.229 265.432 3.579 429 95.756 0.207 374.087 3.545 198 98.101

Home Depot HD 0.156 103.477 1.573 449 96.361 0.155 96.538 1.565 208 98.606

Honeywell HON 0.104 268.331 1.609 506 95.204 0.103 158.574 1.581 235 97.447

Humana HUM 0.240 157.529 2.609 750 88.447 0.300 302.448 2.509 468 90.376

Intel INTC 0.154 89.885 2.038 489 97.437 0.154 91.724 2.002 223 98.739

LVLT LVLT 0.242 1159.384 10.917 1010 91.358 0.258 1368.049 11.047 781 93.825

McDonald's MCD 0.087 161.156 1.090 557 93.287 0.086 103.808 1.068 238 97.868

Microsoft MSFT 0.083 62.386 1.416 490 96.654 0.054 61.070 1.377 224 98.767

ONEOK OKE 0.160 411.055 1.668 957 86.341 0.161 147.493 1.622 800 89.533

P�zer PFE 0.150 62.697 1.382 520 94.356 0.140 61.198 1.370 252 97.889

Procter & Gamble PG 0.101 79.549 0.766 538 94.281 0.090 125.615 0.771 176 97.195

Southern Co. SO 0.092 97.041 0.937 633 93.667 0.109 82.402 0.914 336 96.547

Travelers C. Inc TRV 0.102 263.929 1.186 675 92.856 0.105 224.417 1.185 371 96.849

United Health UNH 0.129 225.956 1.745 548 94.628 0.144 135.120 1.753 266 97.645

UPS UPS 0.081 216.939 0.851 571 94.446 0.060 117.387 0.856 299 97.545

Verizon VZ 0.122 102.221 1.162 544 94.670 0.130 100.391 1.144 254 97.897

Vodafone VOD 0.110 70.936 0.926 391 97.419 0.076 79.999 0.922 355 97.671

Xerox XRX 0.299 276.588 2.864 772 92.101 0.345 346.125 2.814 594 95.305

Avg. Stocks 0.160 236.260 2.195 646 93.497 0.160 220.540 2.172 416 95.967

Note: This table reports the descriptive statistics for the RV of the 30 individual stocks and the SPY estimated at the 300 second frequency. The

%QV is estimated as %QV =
∑T
t=1 Ct∑T

t=1(Ct+Jt)
, while # Jumps indicates the total number of days with jumps estimated at the 1% signi�cance level using

the Barndor�-Nielsen and Shephard (2006) procedure.
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Table 2.2: Estimated 1-, 5-, and 22- day ahead HAR(P) models for SPY and stocks
average.

HAR HARP

h = 1 h = 5 h = 22 h = 1 h = 5 h = 22

β̂0 0.095∗ 0.148∗∗ 0.288∗∗∗ 0.097∗ 0.148∗∗∗ 0.289∗∗∗

s.e. (0.054) (0.059) (0.058) (0.053) (0.058) (0.060)

β̂d 0.246∗∗ 0.184∗∗∗ 0.103∗∗∗ 0.217∗∗ 0.147∗∗∗ 0.089∗∗∗

s.e. (0.099) (0.052) (0.021) (0.089) (0.054) (0.026)

β̂w 0.422∗∗∗ 0.347∗∗∗ 0.322∗∗∗ 0.435∗∗∗ 0.392∗∗∗ 0.343∗∗∗

s.e. (0.142) (0.102) (0.108) (0.142) (0.110) (0.124)

β̂m 0.238∗∗ 0.323∗∗∗ 0.290∗∗∗ 0.239∗∗ 0.302∗∗∗ 0.273∗∗∗

s.e. (0.097) (0.097) (0.085) (0.102) (0.103) (0.095)

R2
is 0.512 0.629 0.562 0.511 0.635 0.568

R2
oos 0.426 0.590 0.496 0.484 0.617 0.523

β̂d + β̂w + β̂m 0.906 0.854 0.716 0.891 0.842 0.705

Average Stocks

R
2

is 0.455 0.595 0.582 0.471 0.608 0.587

R
2

oos 0.344 0.548 0.499 0.351 0.563 0.497

β̂d + β̂w + β̂m 0.891 0.845 0.740 0.861 0.815 0.710

Note: This table reports the regression coe�cients, standard errors in parentheses,

and in- and out-of-sample R-squared for the HAR and HARP models based on

various horizons, estimated on SPY data. The standard errors are estimated using

the Newey-West HAC estimator. The bottom panel shows the stock average in- and

out-of-sample R-squared obtained for HAR and HARP models of various horizons.

∗, ∗∗ and ∗∗∗ denote signi�cance at 10%, 5% and 1% respectively.
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Table 2.3: Estimated 1-, 5-, and 22- day ahead HAR(P)-J models for SPY and stocks
average.

HAR-J HARP-J

h = 1 h = 5 h = 22 h = 1 h = 5 h = 22

β̂0 0.096∗ 0.149∗∗ 0.288∗∗∗ 0.098∗ 0.149∗∗∗ 0.289∗∗∗

s.e. (0.054) (0.058) (0.058) (0.053) (0.057) (0.061)

β̂d 0.250∗∗ 0.189∗∗∗ 0.107∗∗∗ 0.223∗∗ 0.153∗∗∗ 0.093∗∗∗

s.e. (0.104) (0.053) (0.023) (0.091) (0.056) (0.027)

β̂w 0.421∗∗∗ 0.345∗∗∗ 0.321∗∗∗ 0.431∗∗∗ 0.388∗∗∗ 0.340∗∗∗

s.e. (0.145) (0.103) (0.107) (0.142) (0.109) (0.122)

β̂m 0.239∗∗ 0.325∗∗∗ 0.291∗∗∗ 0.242∗∗ 0.304∗∗∗ 0.275∗∗∗

s.e. (0.097) (0.097) (0.084) (0.102) (0.103) (0.094)

β̂Jd −0.243 −0.274 −0.181 −0.313 −0.308 −0.211

s.e. (0.270) (0.195) (0.176) (0.227) (0.191) (0.167)

R2
is 0.512 0.630 0.551 0.511 0.635 0.568

R2
oos 0.417 0.598 0.508 0.480 0.614 0.514

β̂d + β̂w + β̂m 0.910 0.858 0.719 0.895 0.845 0.708

Average Stocks

R
2

is 0.460 0.599 0.584 0.473 0.610 0.588

R
2

oos 0.348 0.552 0.498 0.354 0.562 0.496

β̂d + β̂w + β̂m 0.904 0.855 0.742 0.865 0.818 0.708

Note: This table reports the regression coe�cients, standard errors in parentheses,

and in- and out-of-sample R-squared for the HAR-J and HARP-J models based on

various horizons, estimated on SPY data. The standard errors are estimated using

the Newey-West HAC estimator. The bottom panel shows the stock average in- and

out-of-sample R-squared obtained for the HAR-J and HARP-J models of various

horizons. ∗, ∗∗ and ∗∗∗ denote signi�cance at 10%, 5% and 1% respectively.
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Table 2.4: Estimated 1-, 5-, and 22-days ahead HAR(P)-CJ models for SPY and
stocks average.

HAR-CJ HARP-CJ

h = 1 h = 5 h = 22 h = 1 h = 5 h = 22

β̂0 0.098∗ 0.149∗∗∗ 0.284∗∗∗ 0.101∗ 0.152∗∗∗ 0.290∗∗∗

s.e. (0.054) (0.053) (0.055) (0.052) (0.053) (0.058)

β̂Cd 0.241∗∗ 0.172∗∗∗ 0.100∗∗∗ 0.218∗∗ 0.142∗∗∗ 0.088∗∗∗

s.e. (0.105) (0.051) (0.022) (0.092) (0.053) (0.026)

β̂Cw 0.448∗∗∗ 0.399∗∗∗ 0.350∗∗∗ 0.440∗∗∗ 0.412∗∗∗ 0.350∗∗∗

s.e. (0.149) (0.098) (0.117) (0.142) (0.102) (0.123)

β̂Cm 0.235∗∗∗ 0.306∗∗∗ 0.262∗∗∗ 0.247∗∗ 0.307∗∗∗ 0.275∗∗∗

s.e. (0.087) (0.091) (0.089) (0.099) (0.100) (0.096)

β̂Jd 0.255 0.379 0.100 0.107 0.280 0.051

s.e. (0.246) (0.329) (0.142) (0.201) (0.326) (0.119)

β̂Jw −0.961 −2.368∗∗ −0.941 −0.542 −1.917∗ −0.570

s.e. (0.603) (1.179) (0.790) (0.493) (1.134) (0.549)

β̂Jm 0.522 1.520 2.010 0.163 0.873 0.567

s.e. (1.735) (2.054) (2.051) (1.460) (1.806) (1.708)

R2
is 0.514 0.641 0.554 0.512 0.643 0.570

R2
oos 0.407 0.589 0.485 0.468 0.615 0.526

β̂Cd + β̂Cw + β̂Cm 0.924 0.878 0.712 0.905 0.862 0.714

Average Stocks

R
2

is 0.462 0.604 0.592 0.475 0.613 0.595

R
2

oos 0.312 0.554 0.508 0.338 0.565 0.507

β̂Cd + β̂Cw + β̂Cm 0.897 0.839 0.725 0.857 0.802 0.693

Note: This table reports the regression coe�cients, standard errors in parentheses,

and in- and out-of-sample R-squared for the HAR-CJ and HARP-CJ models based

on various horizons, estimated on SPY data. The standard errors are estimated using

the Newey-West HAC estimator. The bottom panel shows the stock average in- and

out-of-sample R-squared obtained for the HAR-CJ and HARP-CJ models of various

horizons. ∗, ∗∗ and ∗∗∗ denote signi�cance at 10%, 5% and 1% respectively.
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Table 2.5: Estimated 1-, 5-, and 22-days ahead HAR(P)-Q models for SPY and
stocks average.

HAR-Q HARP-Q

h = 1 h = 5 h = 22 h = 1 h = 5 h = 22

β̂0 −0.029 0.072 0.218∗∗∗ −0.002 0.077 0.228∗∗∗

s.e. (0.055) (0.064) (0.061) (0.052) (0.064) (0.062)

β̂d 0.658∗∗∗ 0.436∗∗∗ 0.334∗∗∗ 0.578∗∗∗ 0.407∗∗∗ 0.311∗∗∗

s.e. (0.097) (0.116) (0.101) (0.083) (0.105) (0.077)

β̂w 0.306∗∗ 0.275∗∗∗ 0.257∗∗∗ 0.305∗∗ 0.299∗∗∗ 0.264∗∗∗

s.e. (0.127) (0.101) (0.091) (0.137) (0.112) (0.115)

β̂m 0.129 0.257∗∗ 0.230∗∗ 0.159 0.244∗∗ 0.224∗∗

s.e. (0.116) (0.112) (0.101) (0.102) (0.109) (0.101)

β̂Q −0.010∗∗∗ −0.006∗∗∗ −0.005∗∗∗ −0.008∗∗∗ −0.006∗∗∗ −0.005∗∗∗

s.e. (0.002) (0.002) (0.002) (0.001) (0.001) (0.001)

R2
is 0.539 0.644 0.578 0.535 0.653 0.585

R2
oos 0.544 0.628 0.466 0.561 0.665 0.463

β̂d + β̂w + β̂m 1.093 0.968 0.821 1.042 0.950 0.798

Average Stocks

R
2

is 0.472 0.610 0.596 0.485 0.622 0.603

R
2

oos 0.375 0.551 0.495 0.399 0.567 0.489

β̂d + β̂w + β̂m 0.977 0.910 0.793 0.937 0.887 0.774

Note: This table reports the regression coe�cients, standard errors in parentheses,

and in- and out-of-sample R-squared for the HAR-Q and HARP-Q models based on

various horizons, estimated on SPY data. The standard errors are estimated using

the Newey-West HAC estimator. The bottom panel shows the stock average in- and

out-of-sample R-squared obtained for the HAR-Q and HARP-Q models of various

horizons. ∗, ∗∗ and ∗∗∗ denote signi�cance at 10%, 5% and 1% respectively.
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Table 2.6: Out-of-sample forecast losses

(a) h = 1

BV MedRV

HARP/ HARP-Q/ HARP-J/ HARP-CJ/ HARP-J/ HARP-CJ/

HAR HAR-Q HAR-J HAR-CJ HAR-J HAR-CJ

SPY
MSE 0.898∗ 0.962 0.891∗ 0.897∗ 0.894∗ 0.896∗

QLIKE 0.998 1.317� 0.995 0.988∗ 0.985∗ 0.985∗

Avg. Stocks
MSE 0.983 0.963 0.987 0.972 0.978 0.973

QLIKE 0.964 0.956 0.975 0.978 0.974 0.973

Diebold & Mariano Test � Individual Stocks

MSE 9 : 2 9 : 0 8 : 2 11 : 0 8 : 0 8 : 0

QLIKE 20 : 0 18 : 0 18 : 0 10 : 0 17 : 1 15 : 1

(b) h = 5

BV MedRV

HARP/ HARP-Q/ HARP-J/ HARP-CJ/ HARP-J/ HARP-CJ/

HAR HAR-Q HAR-J HAR-CJ HAR-J HAR-CJ

SPY
MSE 0.934∗ 0.904∗ 0.961∗ 0.937∗ 0.936 0.921

QLIKE 0.994 0.932∗ 0.998 0.968∗ 0.983 0.951∗

Avg. Stocks
MSE 0.964 0.961 0.980 0.976 0.969 0.953

QLIKE 0.978 0.983 0.985 0.993 0.984 0.980

Diebold & Mariano Test � Individual Stocks

MSE 10 : 0 10 : 0 10 : 1 7 : 1 10 : 1 11 : 1

QLIKE 13 : 0 12 : 0 12 : 1 8 : 3 12 : 1 13 : 3

(c) h = 22

BV MedRV

HARP/ HARP-Q/ HARP-J/ HARP-CJ/ HARP-J/ HARP-CJ/

HAR HAR-Q HAR-J HAR-CJ HAR-J HAR-CJ

SPY
MSE 0.947∗ 1.006 0.988 0.921∗ 0.971 0.967

QLIKE 0.970∗ 0.999 0.994 0.971∗ 0.977∗ 0.973∗

Avg. Stocks
MSE 0.995 1.006 0.995 0.998 0.999 0.999

QLIKE 1.002 1.014 1.002 1.017 1.004 0.998

Diebold & Mariano Test � Individual Stocks

MSE 6 : 0 3 : 0 4 : 0 6 : 4 5 : 1 6 : 2

QLIKE 8 : 6 3 : 3 7 : 5 6 : 5 7 : 3 8 : 4

Note: This table reports the ratio of the losses from HARP versus HAR models for various fore-

casting horizons. ∗ (�) indicates that the losses of the HARP (HAR) models are signi�cantly lower

compared to the HAR (HARP) model at the 5% signi�cance level based on the Diebold and Mar-

iano test. The entries of type �xx : yy� summarize the results of the Diebold and Mariano test

for the 30 stocks considered. The �rst number, �xx� shows the number of stocks for which the

HARP model signi�cantly outperforms the HAR model, while the second number, �yy� indicates

the number of stocks for which the opposite is true.
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Table 2.7: Results for SPY assuming Time-Varying Periodicity

W = 22 W = 44 W = 126 W = 252 W = 504 W = 1008 W = 22 W = 44 W = 126 W = 252 W = 504 W = 1008

HARP/HAR HARP-Q/HAR-Q

MSE
h = 1

0.958∗ 0.915∗ 0.914∗ 0.916∗ 0.910∗ 0.917∗ 0.970∗ 1.066 0.973∗ 0.959∗ 0.964∗ 0.965∗

QLIKE 0.991 0.972∗ 0.984∗ 0.991 0.992 0.997 1.519� 1.521� 1.341� 1.247� 1.310� 1.358�

MSE
h = 5

0.979 0.983 0.995 0.942∗ 0.933∗ 0.935∗ 0.952∗ 0.945∗ 0.974 0.977 0.975 0.978

QLIKE 0.998 0.986 0.993 0.971 0.972 0.976 0.953∗ 0.962∗ 0.970 0.971 0.970 0.964∗

MSE
h = 22

0.951∗ 0.905∗ 0.898∗ 0.896∗ 0.939∗ 0.937∗ 0.964∗ 0.940∗ 0.940∗ 0.985 0.936∗ 0.968

QLIKE 0.973 0.949∗ 0.951∗ 0.950∗ 0.966 0.969 0.985 0.971 0.989 1.006 1.013 1.008

HARP-J/HAR-J HARP-CJ/HAR-CJ

MSE
h = 1

0.947∗ 0.906∗ 0.909∗ 0.910∗ 0.905∗ 0.911∗ 0.932∗ 0.925∗ 0.913∗ 0.917∗ 0.913∗ 0.921∗

QLIKE 0.980∗ 0.958∗ 0.984∗ 0.988 0.990 0.994 0.977∗ 0.970∗ 0.977∗ 0.982∗ 0.981∗ 0.988

MSE
h = 5

0.891∗ 0.846∗ 0.912∗ 0.866∗ 0.857∗ 0.859∗ 0.892∗ 0.853∗ 0.922∗ 0.934∗ 0.886∗ 0.890∗

QLIKE 0.952∗ 0.942∗ 0.948∗ 0.928∗ 0.930∗ 0.934∗ 0.918∗ 0.899∗ 0.937∗ 0.927∗ 0.916∗ 0.930∗

MSE
h = 22

0.949∗ 0.969 0.905∗ 0.929∗ 0.958∗ 0.970 0.919∗ 0.948∗ 0.888∗ 0.939∗ 0.971 0.935∗

QLIKE 0.946∗ 0.951∗ 0.934∗ 0.940∗ 0.946∗ 0.957∗ 0.964∗ 0.965 1.000 1.016 1.004 0.996

Notes: This table reports the loss ratio across di�erent size windows used to estimate the intraday periodicity. ∗ (�) indicates that the losses of the HARP

(HAR) models are signi�cantly lower compared to the HAR (HARP) model at the 5% signi�cance level. The �rst row shows the length of the window

used to estimate the intraday periodicity, given in number of trading days.
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Figure 2.1: Intraday estimated periodicity for SPY (left) and average periodicity for all
stocks (right).
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Note: The panel on the left shows the estimated periodicity for SPY, while the panel on the right
shows the average estimated periodicity for the 30 S&P 500 stocks considered. Periodicity was
estimated using all available data and a 5-minute sampling frequency.

Figure 2.2: The impact of periodicty on intraday volatility

Note: The �gure plots one trading day simulations of the periodicity function (f(t)), the actual spot
volatility (ν(t)) and the �nal spot volatility including periodicity (f(t)ν(t)) for the SV1F and SV2F
models. Data frequency is 1 second.
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Figure 2.3: Impact of Periodicity on the Unconditional Variance of RV

Note: This �gure plots the distributions of the ratios V ar(RV unf
t )/V ar(RV ft

t ) and
V ar(RV WSD

t )/V ar(RV ft
t ) for simulated returns sampled every second and every 5 minutes.

V ar(RV unf
t ), V ar(RV ft

t ) and V ar(RV WSD
t ) are the variances of the realized volatility estima-

tors based on, respectively, un�ltered returns, returns �ltered by the true periodicity, and returns
�ltered with the weighted standard deviation method as shown in section 2.2. Data is generated
from the SV2F model.
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Figure 2.4: HARP and HAR coe�cients
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Note: This �gure compares the estimates of the HARP (squared marker) and HAR (diamond
marker) models against the true estimates across di�erent sampling frequencies. Data is generated
from the SV2F model. The number of observations on the x axis corresponds to the following
sampling frequencies: 1 second (23400), 5 seconds (4680), 30 seconds (780), 1 minute (390), 1.5
minutes (260), 2 minutes (195), 2.5 minutes (156), 5 minutes (78), 10 minutes (39), 15 minutes
(26) and 30 minutes (13).

Figure 2.5: Un�ltered versus �ltered con�dence bands for the SPY realized variance
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The �gure plots the realized variance and its 95% con�dence intervals for SPY based on un�ltered data
(left plot) versus �ltered data (right plot) for 10 consecutive days, starting with 2008-09-30.
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Figure 2.6: Proportion of spurious jumps by sampling frequency for �ltered and un�ltered
data
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Note: This plot graphs the proportion of spurious jumps across sampling frequencies. Jumps were
detected using the Barndor�-Nielsen and Shephard (2006) jump test evaluated at the 1% and 5%
signi�cance level. Data is generated from the SV1F model plus jumps. The number of observations
on the x axis corresponds to the following sampling frequencies: 1 second (23400), 5 seconds (4680),
30 seconds (780), 1 minute (390), 1.5 minutes (260), 2 minutes (195), 2.5 minutes (156), 5 minutes
(78), 10 minutes (39), 15 minutes (26) and 30 minutes (13).
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Figure 2.7: Loss ratio for the simulated SV2F model
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Note: The �gure plots the median and the 5% and 95% quantiles for the MSE and QLIKE loss
ratios, for the HARP versus the HARmodel. All forecasting horizons are included: one-day (h = 1),
one-week (h = 5) and one-month (h = 22). The dashed horizontal line corresponds to the value 1.
Data is generated from the SV2F model. The number of observations on the x axis corresponds to
the following sampling frequencies: 1 second (23400), 5 seconds (4680), 30 seconds (780), 1 minute
(390), 1.5 minutes (260), 2 minutes (195), 2.5 minutes (156), 5 minutes (78), 10 minutes (39), 15
minutes (26) and 30 minutes (13).
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Figure 2.8: One-day ahead loss ratio for the simulated SV1F model with jumps
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Note: The �gure plots the median and the 5% and 95% quantiles for the MSE and QLIKE loss
ratios, for HARP versus HAR models. The dashed horizontal line corresponds to the value 1.
Data is generated from the SV1F model plus jumps. The number of observations on the x axis
corresponds to the following sampling frequencies: 1 second (23400), 5 seconds (4680), 30 seconds
(780), 1 minute (390), 1.5 minutes (260), 2 minutes (195), 2.5 minutes (156), 5 minutes (78), 10
minutes (39), 15 minutes (26) and 30 minutes (13).
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Figure 2.9: The impact of the length of the periodicity estimation window on the perfor-
mance of HARP models
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Note: The �gure plots the median and the 5% and 95% quantiles for the MSE and QLIKE loss
ratios, for the HARP versus the HAR model against the length of the time window over which
periodicity was estimated. Simulations are based on the SV2F model and shown results are for a
sampling frequency equal to 1 sec.
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Figure 2.10: The impact of the jump-related periodicity estimation error on the perfor-
mance of HARP models
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Note: The �gure plots the median and the 5% and 95% quantiles for the MSE and QLIKE loss
ratios, for the HARP fj model, for which �ltering is applied to data containing jumps, versus the
HARP fnj model, for which �ltering is performed before adding jumps to the data. Simulations
are based on the SV1F model plus jumps. All forecasting horizons are included: one-day (h = 1),
one-week (h = 5) and one-month (h = 22). The number of observations on the x axis corresponds
to the following sampling frequencies: 1 second (23400), 5 seconds (4680), 30 seconds (780), 1
minute (390), 1.5 minutes (260), 2 minutes (195), 2.5 minutes (156), 5 minutes (78), 10 minutes
(39), 15 minutes (26) and 30 minutes (13).
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Figure 2.11: One-day ahead loss di�erential as a function of the amount of �ltering
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Note: The �gure depicts the loss di�erential for HARP versus HAR models, L(εWSD
t+1 ) − L(εunft+1 ),

against the previous day di�erence between the �ltered and no periodicity realized volatilities,
RV WSD

t −RV ft
t . The loss function considered is the MSE. Each quadrant reports the average loss

di�erence, ∆Lt+1, as well as the percentage number of points in that quadrant (red ink). Data is
generated from the SV2F model.
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Appendix 2.C Additional Results on Simulated and Em-

pirical Data

2.C.1 Additional Results on Simulated Data

Figure 2.12: Simulated returns for the two stochastic volatility models
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Note: The plot shows the dynamics of simulated 1-second returns over 1000 trading days for the
one-factor stochastic volatility model (SV1F) and the two-factor stochastic volatility model (SV2F).
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Figure 2.13: Filtered vs. un�ltered AR(1) coe�cients for the SV2F model
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Note: This �gure plots the true coe�cient of an AR(1) model versus the estimated coe�cient
based on un�ltered (diamond marker) and �ltered (squared marker) data across di�erent sampling
frequencies. Data is generated from the SV2F model, outlined in section 2.3.2 of the paper. The
number of observations on the x axis corresponds to the following sampling frequencies: 1 second
(23400), 5 seconds (4680), 30 seconds (780), 1 minute (390), 1.5 minutes (260), 2 minutes (195),
2.5 minutes (156), 5 minutes (78), 10 minutes (39), 15 minutes (26) and 30 minutes (13).

56



Figure 2.14: HARP-J and HAR-J coe�cients for the SV1F model with jumps
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Note: This �gure compares the estimates of the HARP-J (squared marker) and HAR-J (diamond
marker) models against the true estimates across di�erent sampling frequencies. Data is generated
from the SV1F model plus jumps, as outlined in section 2.3.2 of the paper. The number of
observations on the x axis corresponds to the following sampling frequencies: 1 second (23400), 5
seconds (4680), 30 seconds (780), 1 minute (390), 1.5 minutes (260), 2 minutes (195), 2.5 minutes
(156), 5 minutes (78), 10 minutes (39), 15 minutes (26) and 30 minutes (13).
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Figure 2.15: Proportion of spurious jumps by sampling frequency for �ltered and un�l-
tered data-Med-RV test
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Note: This plot graphs the proportion of spuriously detected jumps across sampling frequencies
using the jump test by jump test by Andersen et al. (2012), evaluated at the 1% and 5% signi�cance
level. Data is generated from the SV1F model plus jumps. The number of observations on the
x axis corresponds to the following sampling frequencies: 1 second (23400), 5 seconds (4680), 30
seconds (780), 1 minute (390), 1.5 minutes (260), 2 minutes (195), 2.5 minutes (156), 5 minutes
(78), 10 minutes (39), 15 minutes (26) and 30 minutes (13).

58



Figure 2.16: HARP-Q/HAR-Q loss ratio

23400 4680 780  390  260  195  156  78   39   26   13   

0.87

0.95

1.04

1.12

23400 4680 780  390  260  195  156  78   39   26   13   

0.87

0.94

1.02

1.10

23400 4680 780  390  260  195  156  78   39   26   13   

0.93

0.97

1.00

1.04

23400 4680 780  390  260  195  156  78   39   26   13   

0.90

0.97

1.03

1.10

23400 4680 780  390  260  195  156  78   39   26   13   

0.94

0.97

1.01

1.04

23400 4680 780  390  260  195  156  78   39   26   13   

0.92

0.97

1.01

1.06

Note: The �gure plots the median and the 5% and 95% quantiles for the MSE and QLIKE loss
ratios, for the HARP versus the HARmodel. All forecasting horizons are included: one-day (h = 1),
one-week (h = 5) and one-month (h = 22). The dashed horizontal line corresponds to the value 1.
Data is generated from the SV2F model. The number of observations on the x axis corresponds to
the following sampling frequencies: 1 second (23400), 5 seconds (4680), 30 seconds (780), 1 minute
(390), 1.5 minutes (260), 2 minutes (195), 2.5 minutes (156), 5 minutes (78), 10 minutes (39), 15
minutes (26) and 30 minutes (13).
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Figure 2.17: One-week ahead loss ratio for the simulated SV1F model with jumps
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Note: The �gure plots the median and the 5% and 95% quantiles for the MSE and QLIKE loss
ratios, for HARP versus HAR models. The dashed horizontal line corresponds to the value 1.
Data is generated from the SV1F model plus jumps. The number of observations on the x axis
corresponds to the following sampling frequencies: 1 second (23400), 5 seconds (4680), 30 seconds
(780), 1 minute (390), 1.5 minutes (260), 2 minutes (195), 2.5 minutes (156), 5 minutes (78), 10
minutes (39), 15 minutes (26) and 30 minutes (13).
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Figure 2.18: One-month ahead loss ratio for the simulated SV1F model with jumps
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Note: The �gure plots the median and the 5% and 95% quantiles for the MSE and QLIKE loss
ratios, for HARP versus HAR models. The dashed horizontal line corresponds to the value 1.
Data is generated from the SV1F model plus jumps. The number of observations on the x axis
corresponds to the following sampling frequencies: 1 second (23400), 5 seconds (4680), 30 seconds
(780), 1 minute (390), 1.5 minutes (260), 2 minutes (195), 2.5 minutes (156), 5 minutes (78), 10
minutes (39), 15 minutes (26) and 30 minutes (13).
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2.C.2 Additional Results on Empirical Data

Table 2.8: Realized number of jumps and the estimated proportion of integrated
variance in the quadratic variation using the jump test by Andersen et al. (2012)

Un�ltered Filtered

Stock Ticker # Jumps %QV # Jumps %QV

SPDR ETF SPY 368 97.303 295 97.404

3M MMM 536 94.738 218 97.916

AK Steel AKS 491 94.478 312 96.945

Arconic Inc. ARNC 342 96.660 171 98.882

Brown-Forman BFB 712 89.189 464 95.309

BT Group BT 561 90.807 583 90.271

China Mobile CHL 604 92.477 401 95.365

Citigroup C 380 96.424 148 98.576

Coca-Cola KO 548 94.172 177 98.626

DUKE Energy DUK 522 95.028 205 98.285

eBay EBAY 464 96.433 172 98.756

General Dynamics GD 538 93.426 250 97.177

General Electric GE 389 95.934 177 98.187

Halliburton HAL 389 95.362 144 98.050

Home Depot HD 404 95.855 144 98.892

Honeywell HON 487 94.442 200 97.534

Humana HUM 526 93.730 226 97.521

Intel INTC 399 97.071 167 98.651

LVLT LVLT 528 93.722 254 97.179

McDonald's MCD 474 93.268 150 98.631

Microsoft MSFT 435 96.203 164 98.678

ONEOK OKE 652 88.230 457 92.536

P�zer PFE 469 93.613 154 98.229

Procter & Gamble PG 551 92.869 180 96.772

Southern Co. SO 465 94.757 164 98.590

Travelers Companies Inc TRV 599 91.497 241 96.669

United Health UNH 502 93.415 192 98.288

UPS UPS 561 93.810 203 97.980

Verizon VZ 487 93.912 186 98.021

Vodafone VOD 303 97.503 215 98.408

Xerox XRX 488 93.787 268 97.793

Avg. Stocks 494 94.094 233 97.424

Note: This table reports the total number of jump days using the ABD test at

the 1% signi�cance level and the %QV for �ltered and un�ltered data. The %QV

is estimated as %QV =
∑T
t=1 Ct∑T

t=1(Ct+Jt)
.
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Table 2.9: Results for the Rivers and Vuong (2002) test applied to SPY data

BV Med-RV

HARP/ HARPQ/ HARP-J/ HARP-CJ/ HARP-J/ HARP-CJ/

HAR HARQ HAR-J HAR-CJ HAR-J HAR-CJ

h = 1 0.811 0.129 0.850 0.674 0.003∗ 0.000∗

h = 5 0.039∗ 0.000∗ 0.474 0.439 0.000∗ 0.000∗

h = 22 0.000∗ 0.000∗ 0.040∗ 0.026∗ 0.025∗ 0.006∗

Note: The table reports the p-values for the two-sided Rivers and Vuong (2002) test.

The test evaluates at the 5% signi�cance level whether the in-sample performance of

the HARP (HAR) models is signi�cantly better relative to the performance of the

HAR (HARP) models. Starred values indicate signi�cance for the HARP models,

while a diamond superscript indicates signi�cance in favour of the HAR models.
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Table 2.10: Estimated 1-, 5-, and 22- day ahead HAR(P)-J models for SPY and
stocks average, with jumps detected with the Andersen et al. (2012) test

HAR HARP

h = 1 h = 5 h = 22 h = 1 h = 5 h = 22

β̂0 0.095∗ 0.148∗∗∗ 0.288∗∗∗ 0.094∗ 0.146∗∗∗ 0.287∗∗∗

s.e. (0.054) (0.057) (0.058) (0.051) (0.055) (0.061)

β̂d 0.279∗∗ 0.209∗∗∗ 0.120∗∗∗ 0.297∗∗∗ 0.211∗∗∗ 0.135∗∗∗

s.e. (0.112) (0.054) (0.026) (0.099) (0.058) (0.037)

β̂w 0.396∗∗∗ 0.326∗∗∗ 0.309∗∗∗ 0.379∗∗ 0.348∗∗∗ 0.311∗∗

s.e. (0.149) (0.104) (0.107) (0.151) (0.117) (0.127)

β̂m 0.242∗∗ 0.327∗∗∗ 0.293∗∗∗ 0.232∗∗ 0.296∗∗∗ 0.269∗∗∗

s.e. (0.095) (0.096) (0.085) (0.093) (0.097) (0.092)

β̂Jd −0.405∗∗ −0.311∗∗ −0.204 −0.523∗∗∗ −0.411∗∗∗ −0.303∗∗∗

s.e. (0.177) (0.135) (0.126) (0.140) (0.104) (0.094)

R2
is 0.515 0.632 0.553 0.521 0.644 0.575

R2
oos 0.419 0.588 0.495 0.481 0.614 0.510

β̂d + β̂w + β̂m 0.917 0.862 0.722 0.908 0.855 0.715

Average Stocks

R
2

is 0.461 0.599 0.584 0.474 0.610 0.589

R
2

oos 0.341 0.552 0.497 0.352 0.564 0.494

β̂d + β̂w + β̂m 0.904 0.854 0.743 0.865 0.817 0.710

Note: This table reports regression coe�cients, standard errors in parentheses,

and in- and out-of-sample R-squared for the HAR-J and HARP-J models based on

various horizons, estimated on SPY data. The standard errors are estimated using

the Newey-West HAC estimator. The bottom panel shows the stock average in- and

out-of-sample R-squared obtained for the HAR-J and HARP-J models of various

horizons. ∗, ∗∗ and ∗∗∗ denote signi�cance at 10%, 5% and 1% respectively.
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Table 2.11: Estimated 1-, 5-, and 22- day ahead HAR(P)-CJ models for SPY and
stocks average, with jumps detected with the Andersen et al. (2012) test

HAR HARP

h = 1 h = 5 h = 22 h = 1 h = 5 h = 22

β̂0 0.098∗ 0.150∗∗∗ 0.290∗∗∗ 0.096∗ 0.147∗∗∗ 0.289∗∗∗

s.e. (0.053) (0.053) (0.058) (0.050) (0.052) (0.061)

β̂Cd 0.268∗∗ 0.189∗∗∗ 0.110∗∗∗ 0.270∗∗∗ 0.171∗∗∗ 0.109∗∗∗

s.e. (0.113) (0.052) (0.023) (0.102) (0.053) (0.026)

β̂Cw 0.421∗∗∗ 0.378∗∗∗ 0.332∗∗∗ 0.432∗∗∗ 0.433∗∗∗ 0.364∗∗∗

s.e. (0.154) (0.096) (0.112) (0.162) (0.110) (0.130)

β̂Cm 0.245∗∗∗ 0.321∗∗∗ 0.296∗∗∗ 0.230∗∗ 0.281∗∗∗ 0.265∗∗∗

s.e. (0.095) (0.099) (0.094) (0.098) (0.102) (0.099)

β̂Jd 0.003 0.140 0.037 −0.078 0.015 −0.023

s.e. (0.139) (0.188) (0.080) (0.090) (0.098) (0.041)

β̂Jw −0.213 −0.889 −0.263 −0.230 −0.604∗∗ −0.296∗∗

s.e. (0.238) (0.572) (0.256) (0.147) (0.304) (0.130)

β̂Jm 0.003 0.297 0.075 −0.276 −0.136 −0.174

s.e. (0.780) (0.950) (0.575) (0.300) (0.378) (0.298)

R2
is 0.517 0.640 0.556 0.526 0.657 0.582

R2
oos 0.401 0.581 0.494 0.464 0.614 0.511

β̂d + β̂w + β̂m 0.934 0.888 0.738 0.932 0.885 0.738

Average Stocks

R
2

is 0.464 0.605 0.590 0.476 0.615 0.595

R
2

oos 0.332 0.548 0.504 0.347 0.565 0.505

β̂d + β̂w + β̂m 0.901 0.843 0.732 0.854 0.799 0.689

Note: This table reports the regression coe�cients, standard errors in parentheses,

and in- and out-of-sample R-squared for the HAR-CJ and HARP-CJ models based

on various horizons, estimated on SPY data. The standard errors are estimated

using the Newey-West HAC estimator. The bottom panel shows the stock average

in- and out-of-sample R-squared obtained for the HAR-CJ and HARP-CJ models of

various horizons. ∗, ∗∗ and ∗∗∗ denote signi�cance at 10%, 5% and 1% respectively.
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Chapter 3

A Simple Model Correction for

Modelling and Forecasting

(Un)Reliable Realized Volatility

3.1 Introduction

Asset return volatility plays a crucial role in a number of practical �nancial manage-

ment decisions, for which reason extensive e�orts have been made to provide real-time

estimates and forecasts of current and future volatility. Unlike returns, volatility is not

directly observable, but rather inherently latent. This poses several challenges, where

the most relevant is related to the errors-in-variable problem associated with the mea-

surement of the realization of the forecasted variable. Constructed as the summation

of �nely sampled squared high-frequency returns, the use of so-called realized volatility

(RV) does provide consistent estimates of the true latent volatility, but in �nite samples

the estimates are subject to measurement errors (e.g. Andersen et al., 2005; Andreou and

Ghysels, 2002).1 The additive errors-in-variables problem leads to a dilution bias in the

HAR models, that automatically delivers insigni�cant coe�cients with values decreasing

towards zero. This is because the errors make the RV less persistent than the true la-

1The use of RV as a proxy for the true latent proxy is documented in the work of Andersen and
Bollerslev (1998a); Andersen et al. (2001b, 2003); Barndor�-Nielsen and Shephard (2002a,b), inter alios.
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tent process (e.g. Andersen et al., 2003; Bollerslev et al., 2016). This also produces a

downward bias in the estimates of the R2s (e.g. Andersen et al., 2011; Meddahi, 2003).

In light of the above, this paper proposes an alternative approach to correct the

dilution bias observed in the HAR-type models when RV is unreliable.2 We named

our model DBC-HAR, where �DBC� stands for dilution bias correction. We note that

on days where RV is unreliable, the daily RV is much larger than both the weekly and

monthly RV, with the latter being less prone to errors. Therefore, we rely on the absolute

di�erence between the daily and monthly RV as a metric of the relative magnitude of

the measurement error. By implementing this metric in the DBC-HAR model, we allow

the daily autoregressive parameter to dynamically load more (less) weight to the daily

coe�cient in days with low (high) levels of measurement error. Thereby, the DBC-HAR

model displays stronger persistence during reliable days, and faster mean-reversion during

unreliable days.

Although the literature regarding modelling RV and RV-based forecasting is extensive,

the issue of measurement error has generally been ignored. Hansen and Lunde (2014) and

Andersen et al. (2011) are among the few who propose a remedy for modelling unreliable

RV. Their remedy is to use standard instrumental variables to deal with the errors-in-

variables and an ARMA model to correct the errors in RV. However, they assume that

the errors are homoskedastic. Bollerslev et al. (2016) were the �rst to successfully deal

with the issue of heteroskedastic measurement error. They show that, with errors present,

the RV is equal to the sum of the true latent volatility process and an error term. Thus,

they propose the HAR-Q model that uses the asymptotic distribution of the RV, where

they show that the square root of the Realized Quarticity (RQ) is proportional to the

measurement error. More recently, Cipollini et al. (2020) argue that the square root of

the RQ o�ers a numerical approximation to the RV, and therefore it is more appropriate

to use the RV as the RQ is more sensitive to outliers.3

The speci�cations of Bollerslev et al. (2016) and Cipollini et al. (2020) address the

issue of the measurement error using very similar approaches. The RQ1/2 ≈ δRV , where

2We refer to (un)reliable RV to the case where RV is (less) more precisely estimated.
3Buccheri and Corsi (2019) use a Kalman �lter to forecasting unreliable RV.
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δ is a correction for numerical di�erences, as that RQ and RV rely respectively in fourth

and second order returns. It is well-known (Andersen et al., 2010; Barndor�-Nielsen

and Shephard, 2002a,b) that both the RQ and RV are very sensitive to the presence

of jumps, noise and volatility bursts. This means that the level of the RQ and RV can

increase substantially for reasons other than the degree of the measurement error, sending

a wrong signal to the HAR speci�cation. By contrast, the DBC-HAR model relies in the

di�erence between the daily RV and monthly RV, as the latter averages 22 daily RVs, the

measurement error issue is very small. Thereby, in the absence (presence) of measurement

error the average di�erence of these two measures is expected to be (much greater) zero,

while when jumps and volatility bursts are present, they impact both measures providing

a more robust metric for the measurement error than just using the RQ1/2 or RV.

We evaluate the forecasting improvements a�orded by the DBC-HAR model relative

to the baseline HAR and HAR-Q models. Our analysis begins with a Monte Carlo sim-

ulation, using the two-factor stochastic volatility model.4 Here, the usual features of the

data are incorporated, such as intraday volatility patterns and market microstructure

noise. The empirical analysis comprises the SPDR S&P 500 ETF (SPY) and 12 individ-

ual Dow Jones constituents as traded continuously during the sample period, i.e. from

January 3, 2000 to December 31, 2010. To avoid market microstructure e�ects, we use

data sampled from 2 to 10 minutes.

The main �ndings are summarized as follows. Using Monte Carlo simulations and em-

pirical analyses we show that the time-varying nature of our model provides signi�cant in-

and out-of-sample improvements relative to the HAR model. The improved performance

of the DBC-HAR model is obtained by the dynamic allocation of weights, so delivering

more persistent forecasts during periods where the measurement error is low, and quickly

mean reversion forecasts on periods where RV is unreliable. This �nding is con�rmed

by the greater level of persistence and smaller mean lag value of the DBC-HAR models,

as compared with the HAR model. These forecasting gains are also obtained when us-

ing both longer forecasting horizons and di�erent sampling frequencies. The DBC-HAR

4This model has been normally employed in the literature since it generates both extreme volatility
and extreme returns (e.g. Bandi and Russell, 2008; Bollerslev et al., 2016; Huang and Tauchen, 2005).
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model consistently outperforms the forecasts of the HAR model when the data are split

by regimes (pre-crisis and crisis period). This highlights that our model performs equally

well across periods of low and high measurement error.

The DBC-HAR model generally outperforms the forecasts of the HAR-Q models for

SPY, whereas for the stock average the performance of both models is of similar magni-

tude. By comparison, the DBC-HAR model is always retained by the model con�dence

set of Hansen et al. (2011) for SPY and excluded up to two-times for the individual stocks.

On the other hand, the HAR-Q model is always excluded at h = 1 for SPY and up to

�ve-times for the stock average. This suggests that the DBC-HAR model provides on

average more accurate out-of-sample forecasts than both the HAR and HAR-Q models.

The model correction a�orded by the DBC-HAR speci�cation can easily be incorpo-

rated into more sophisticated HAR models, such as the HAR-J and HAR-CJ of Andersen

et al. (2007a),5 as well as into the continuous HAR (CHAR) model outlined in Bollerslev

et al. (2016). The results con�rm the superiority of our proposed speci�cation, as the

extended DBC-HAR models generally produce signi�cantly smaller QKILE losses than

both the HAR and the standard extended HAR models.

We also study the sensitivity of our metric to the use of di�erent functional forms, such

as the logarithmic and square root functions, and compare the forecasts of the DBC-HAR

model to those of more e�cient noise-robust measures based on a HAR speci�cation.

First, using the square root function to estimate our metric, results in good out-of-

sample performance, albeit the standard metric generally dominates. Second, the DBC-

HAR model signi�cantly outperforms the forecasts of the noise-robust measures across

all forecasting horizons.

Finally, we show that our correction mechanism can be successfully applied to the

GARCH family. Using the GARCH and GJR-GARCH models, we show that taking

into account the measurement error in RV, not only improves the in-sample �tting of

the models and reduces the standard errors, it also increases the out-of-sample forecast

5The HAR-J and HAR-CJ models have been extensively used in the RV-based forecasting literature
(e.g. Busch et al., 2011; Corsi et al., 2010; Duong and Swanson, 2015; Giot and Laurent, 2007, and the
references therein).
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accuracy between 0.8�2 percentage points.

The remainder of the paper is structured as follows. Section 3.2 provides the modelling

framework and outlines the forecasting models. Here, the proposed DBC-HAR model is

described and a new metric for measuring the relative magnitude of the measurement

error is proposed. The forecast evaluation criteria are also presented. Section 3.3 presents

the simulation setup and results, together with the empirical study that reports the in-

and out-of-sample forecasting results for the SPY and 12 individual stocks. Section 3.4

provides a set of robustness checks that: a) study the sensitivity of our measurement

error metric to di�erent functional forms; b) evaluate the out-of-sample performance of

the DBC-HAR models to HAR models based on more e�cient noise-robust measures; c)

evaluate the performance of alternative DBC-HAR models; d) extend the DBC approach

to the GARCH family, showing that GARCH models also improve their performance

after accounting for the errors in RV. Section 3.5 concludes.

3.2 Modelling Framework

Let us assume that the data generating process Xt (log-price) is a real-valued process

that can be included in a standard probability space, in the form of an Ito's semimartin-

gale:

dXt = µtdt+ σtdWt + dJt, (3.1)

where Wt is a standard Brownian motion, µt is a predictable drift, σt is spot volatility

which is both adapted and cádlág. dJt = ktdqt is a jump process where qt is a non-

explosive Poisson process whose intensity is an adapted stochastic process λt, and kt is

the adapted random variable measuring the size of the jump at time t and satisfying,

∀t ∈ [0, T ], P[kt = 0] = 0.

In practice, say, for risk management purposes, we are interested in forecasting the

Quadratic Variation (QV) of the process in equation (3.1), which takes the following
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form:

QVt =

∫ t

0

σ2
sds+

∑
0≤s≤t

(∆Xs)
2, (3.2)

where the time unit is one day. ∆Xs := Xs −Xs− 6= 0, if and only if X jumps at time s.

The QV is not directly observable, but can be proxied using the realized variance de�ned

by the sum of intraday squared returns:

RVt =

b1/∆nc∑
i=1

|∆n
iX|2, (3.3)

where ∆n
i = Xi∆n −X(i−1)∆n is the ∆n-period intraday returns. The RV is a consistent

estimator as ∆n → 0 (see, e.g. Andersen and Bollerslev, 1998a; Andersen et al., 2003).

In the absence of jumps, Barndor�-Nielsen and Shephard (2002a) show that the RV

converges in probability to the Integrated Variation (IV), thereby allowing the asymptotic

distribution of the realized variance to be derived:6

(RVt − IVt)
L−→ N (0, 2∆nIQt), (3.4)

where the IQt, is de�ned as:

IQt =

∫ t

0

σ4
sds. (3.5)

Barndor�-Nielsen and Shephard (2002a) show that the IQt is consistently estimated by

the realized quarticity:

RQt =
1

3∆n

b1/∆nc∑
i=1

|∆n
iX|4. (3.6)

As shown by Andersen et al. (2010), the RQ involves the estimation of fourth order return

moments. This provides a very imprecise estimator, which is highly non-robust in many

6Jacod (2008) derives the asymptotic distribution of RV for Brownian semimartingale processes with
jumps.
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realistic scenarios, even in the absence of jumps. In the absence of market microstructure

noise and jumps, the asymptotic distribution of the RQ is:

(RQt − IQt)
L−→ N

(
0,∆nϑ

∫ t

0

σ8
sds

)
, (3.7)

where ϑ is a known constant and is approximately 10.66.7

3.2.1 Forecasting Models

The HAR Model

The standard HAR model introduced by Corsi (2009) has become the natural bench-

mark for modelling and forecasting realized volatility. As demonstrated by Corsi (2009),

the HAR model captures volatility persistence in a simple and parsimonious way using

daily, weekly, and monthly lags of the volatility series. The HAR model is de�ned as:

RVt,t+h = β0 + βdRVt + βwRVt−5,t + βmRVt−22,t + εt+h, (3.8)

where RVt,t+h = h−1[RVt+1 + RVt+2 + · · ·+ RVt+h] aggregates information between {t+

1, t+ h}.

The HAR-Q Model

As it is only a proxy of the true latent volatility, RV is subject to measurement error.

As shown by Bollerslev et al. (2016), the variance of the RV measurement error is a

function of the IQ; the greater the variance of the measurement error, the less persistent

the observed process. To cater for this, they allow the daily parameter to vary as a

function of the square root of the RQ as follows:

RVt,t+h = β0 +
(
βd + βdQRQ

1/2
t

)
︸ ︷︷ ︸

βd,t

RVt + βwRVt−5,t + βmRVt−22,t + εt+h, (3.9)

7Andersen et al. (2012) show that the minimum and median RQ are less e�cient than the RQt.
However, these estimators are robust to jumps.
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where the interaction between the lagged RV and the lagged RQ1/2 provides a remedy

for the dilution bias, as the daily parameter receives less weight when the value of RQ1/2

is high, provided that βdQ < 0.

The DBC-HAR Model

The proposed Dilution Bias Correction HAR (DBC-HAR) o�ers a simple model ad-

justment for the attenuation bias induced by the additive errors-in-variables problem.

We show that the measurement error is proportional to the absolute di�erence between

the daily and monthly RV. As the monthly RV is constructed using a moving average

of 22 RVs, this estimator is less prone to measurement error. This observation follows

a similar rationale to the sub-sampling estimator of Zhang et al. (2005) and the pre-

averaging method of Jacod et al. (2009). To illustrate, let K be the number of lags

to include, or sometimes called a bandwidth parameter, so if one averages K RVs, i.e.

(RVt + RVt−1 + · · · + RVt−K)/K, the averaged RV is closer to the true latent process,

and it turns out that the variance of the error term is reduced by a factor of 1/K. This

can be shown using a simple example, in which the error term is i.i.d. and the RV follows

the process:

RVt = IVt + ηt, ηt ∼ i.i.d.N (0, ω2), (3.10)

RV t = IV t + ηt, ηt ∼ i.i.d.N (0, ω2/K). (3.11)

To provide a more realistic example, Figure 3.1 plots the empirical distribution of the

measurement error estimated as RVt/IVt − 1 across both sampling frequencies and fore-

casting horizons using the simulation set by equation (3.15).8 Figure 3.1 shows that daily

RV always has greater measurement error, with a distribution that is much more dispersed

and right skewed, than the weekly and monthly RV. The latter is the least a�ected mea-

sure of the three horizons, with most of its values centered on zero. By implication, with

measurement error present, the RV generally overestimates the IV. Hence, the absolute
8As shown in Section 3.3.1, our structure accounts for the main stylized facts observed in asset prices.

These are: leverage e�ect, diurnal e�ect, extreme returns, and microstructure noise. The variance of the
microstructure noise is assumed to be constant throughout a day, but changes from day-to-day.
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di�erence between the daily and monthly RV indicates the relative magnitude of the

measurement error observed in the daily RV.

The HAR model normally assigns greater weights to weekly and monthly RVs, as

these variables are less prone to errors (see, Figure 3.1). Thereby, the HAR model adjusts

slowly to new market information. By contrast, the time-varying allocation allows the

DBC-HAR model to react faster to new information. This is because in periods of

low measurement error, the DBC-HAR model places greater weight on more recent RV,

generating more persistent forecasts.

We de�ne the DBC-HAR model as follows:

RVt,t+h = β0 + (βd + α|RVt −RVt−22,t|)︸ ︷︷ ︸
θd,t

RVt + βwRVt−5,t + βmRVt−22,t + εt+h, (3.12)

where α is expected to be negative. In other words, when the measurement error rises

(RVt � RVt−22,t), the information contained in the current RV decreases, and therefore

θd,t tends to zero. This e�ect is very similar to that produced by the HAR-Q model; when

the daily RV is high (and hence a high RQ) less weight is allocated to the daily lagged RV.

Along these lines, Figure 3.2 illustrates the time-varying dynamics of the DBC-HAR and

HAR-Q models for SPY. These parameters indeed capture the heteroskedastic feature of

the measurement error, where their weights are generally well above the constant daily

estimate of the HAR model. Few di�erences can be drawn between θd,t and βdQ , where

the most relevant is that βdQ becomes largely negative on days with high RQ.

Forecasting Evaluation

We evaluate the out-of-sample performance of the DBC-HAR model in relation to

two benchmarks: the HAR and HAR-Q models. We consider horizons h = 1, 5, 22,

corresponding to one day, one week, and one month. To estimate the models, we use a

rolling window regression of size 1000 days, which is approximately 4 years.

We use the quasi-likelihood (QLIKE) loss function to evaluate the prediction of the

models. The QLIKE has been shown to be robust to noise in the proxy for volatility in
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Patton (2011b).

QLIKE(RVt, Ft) =
RVt
Ft
− log

RVt
Ft
− 1, (3.13)

where Ft is the out-of-sample forecast of the realized variance. We also employ the Model

Con�dence Set (MCS) procedure of Hansen et al. (2011) to identify the (sub)set of models

that signi�cantly outperform the others. LetM denote the set of all the models under

analysis. We de�ne dh,i,j = L(RVt, F
(i)
t )−L(RVt, F

(j)
t ) as the di�erence in the loss of the

model i and the model j, where i 6= j. We use the QLIKE as loss function L and de�ne

the following test statistics:

thi,j =
d̄h,i,j√

Var(d̄h,i,j)
, ∀i, j ∈M, (3.14)

where d̄h,i,j is the average loss di�erence. The MCS test statistics are given by TM =

maxi,j∈M |thi,j| and the null hypothesis, H0, is equal predictive ability. We implement the

MCS using 10,000 bootstrap resamples and a block window of 20 days. Surviving models

are then retained with a con�dence level zα = 0.1.

3.3 Simulated and Empirical Results

3.3.1 Monte Carlo Evidence

A simulation study is undertaken to investigate further the performance of the DBC-

HAR model. Simulations are based on the two-factor stochastic volatility (SV2F) model

as commonly used to generate intraday returns (e.g. Barndor�-Nielsen et al., 2008; Boller-
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slev et al., 2016; Huang and Tauchen, 2005):

dpt = µdt+ σutνt

(
ρ1dW

(ν1)
t + ρ2dW

(ν2)
t +

√
1− ρ2

1 − ρ2
2dW

(p)
t

)
,

ν2
t = s-exp

(
γ0 + γ1ν

2
1t + γ2ν

2
2t

)
,

dν2
1t = α1ν

2
1tdt+ dW

(ν1)
t ,

dν2
2t = α2ν

2
2tdt+ (1 + φν2

2t)dW
(ν2)
t ,

σut = C + Ae−at +Be−b(1−t),

(3.15)

where W (ν1)
t , W (ν2)

t , and W
(p)
t are standard Brownian motions, and s-exp is the usual

exponential function with a linear growth function splined in at high values of its argument

to avoid an explosive behavior.9 The process ν1t is the persistent factor and the process

ν2t is the strongly mean-reverting factor. The persistent factor is initialized by drawing

ν10 ∼ N (0,−1/2α1) and p0 = log(25). Following Huang and Tauchen (2005), we set

µ = 0.03, γ0 = −1.2, γ1 = 0.04, γ2 = 1.5, α1 = −0.00137, α2 = −1.386, φ = 0.25, and

ρ1 = ρ2 = −0.3, where the parameters are expressed in daily units. For the diurnal U-

shape function, we follow Hasbrouck (1999) and Andersen et al. (2012), and set A = 0.75,

B = 0.25, C = 0.88929198, and a = b = 10, respectively. One common feature of high-

frequency data is the presence of market microstructure noise. To account for this feature,

we follow Barndor�-Nielsen et al. (2008) generating i.i.d. noise from ut,i ∼ N (0, ω2
t ),

with ω2
t = ξ2

∫ t
0
ν2
sds, and where ξ is the noise-to-signal ratio. The variance of the

noise is constant during any given day, but changes from day to day. So, we observe a

contaminated process of the form: Yt,i = Xt,i + ut,i.

The simulations are generated using an Euler scheme based on 23,400 intervals for each

of the T = 2000 days in the sample. We then aggregate these prices sparsely sampled

and construct 5 di�erent sampling frequencies, 1-min, 2-min, 5-min, 10-min, and 15-

min which correspond to 390, 195, 78, 39, and 26 intraday observations per day. The

forecasting exercise uses a window size of 700 days,10 updating the coe�cient estimates

9s-exp(x) =

{ exp(x0)√
x0−x2

0+x2
, if x > x0,

exp(x), otherwise.
Where x0 ≡ log(1.5).

10The window size mimics the proportion used in our empirical analysis, i.e. ≈ 35% of the sample
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at every iteration. We use 200 replications for every sampling frequency.

Table 3.1 summarizes the key in-sample and out-of-sample �ndings. In 4 panels, we

report i) the adjusted R2, ii) the out-of-sample QLIKE, which is standardized by the loss

of the HAR model, iii) the mean lag, and iv) the persistence. The mean lag indicates

the location of the lag weights. The lower the mean lag, the greater the weight on more

recent RVs.

The DBC-HAR model always improves on the �t of the HAR model irrespective of

the forecasting horizon or sampling frequency under analysis. Compared to the HAR-Q

model, the DBC-HAR generally delivers a greater R2
adj, where the di�erence narrows as

the time-interval widens. The out-of-sample standardized losses show the DBC-HAR

model to give more accurate volatility predictions, with gains as large as 3 percentage

points observed at h = 1. Whereas the DBC-HAR model normally outperforms the HAR-

Q model across sampling frequencies and forecasting horizons, the gains are narrower than

those observed over the HAR model. This is expected as both models account for the

dilution bias observed in the HAR structure, with the only di�erence being the metric

employed in estimating the measurement error.

The mean lag (third panel) shows the DBC-HAR model placing greater weight on

the daily RV than the HAR model. The smaller mean lag ensures higher daily estimates,

which in turn provide both a faster reaction to new information, and more persistent

forecasts in periods of low measurement error. The greater persistence is con�rmed in

the fourth panel of Table 3.1, where the DBC-HAR model is shown to be more persistent

than the HAR model. With few di�erences between the DBC-HAR and HAR-Q models,

we nevertheless observe slightly bigger persistence in the DBC-HAR model across all

forecasting horizons when returns are sampled every 5 minutes. As shown in panels 3 and

4, the mean lag increases and persistence decreases for all of the models as the number of

observations per day falls (i.e. from 1-min to 15-min). This implies that lower frequencies

generally reduce forecasting performance, because �nite sample problems increases the

level of measurement error. However, the HAR model is most a�ected.

size.
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3.3.2 Empirical Results

Data

Our empirical study uses the S&P 500 ETF (SPY) to represent an aggregate market

index and 12 Down Jones constituents. These stocks were continuously traded during

our sample period, i.e. from January 3, 2000 to December 31, 2010. The aggregate

market index and all the individual stocks are obtained from TickData database, and

the data for each individual stock and aggregate market are aggregated from tick level

using the previous tick interpolation. We retrieve data sampled every 2-, 5-, and 10-

minutes, as equivalent to 390, 78, and 39 intraday observations per day. These sampling

frequencies provide a good variance-bias trade-o� (see, e.g. Aït-Sahalia et al., 2005; Bandi

and Russell, 2006; Hansen and Lunde, 2006), and are standard choices in the literature

when market microstructure noise e�ects are not a subject of interest.

Table 3.2 reports summary statistics for the RV of the SPY and the 12 stocks under

analysis. In addition to the usual summary measures for the RV, we report summary

statistics for the absolute di�erence of the RVt and RVt−22,t (Panel B), and for cases where

this di�erence is positive (RVt − RVt−22,t)
+ (Panel C), and negative (RVt − RVt−22,t)

−

(Panel D). The observed variation demonstrated by the descriptive statistics in Panel A

illustrates the heterogeneity of our data, which is desirable for the empirical analysis.

Panel B shows the absolute di�erence between the daily and monthly RVs. If no

measurement error were present, one would expect the average of this di�erence to be

zero. However, the mean and standard deviation range respectively from 0.669�2.757 and

1.862�7.660. The implied presence of errors in RV, is con�rmed by the maximum value

of this absolute di�erence. Across our sample, AXP shows the biggest RV with a max

RV of 299.968, while the max value of AXP in Panel B is 250.039. This implies that

during this day the RV is less reliable. Figure 3.3 rea�rms this �nding by plotting the

95% con�dence bands for the RV of AXP together with its daily and monthly RV. The

wider con�dence bands on 2008-10-10 con�rms that the RV is less reliable. A similar

conclusion is reached via our metric which also shows the largest di�erence between the

daily and monthly RV to coincide with the 2008-10-10 date.
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Panels C and D split the absolute di�erence by sign, so that Panel C reports positive

values (RVt > RVt−22,t), and Panel D reports the negative di�erence (RVt < RVt−22,t).

For almost two-thirds of the sample data, monthly RV exceeds daily RV, with the biggest

di�erence occurring where RVt > RVt−22,t. On average the largest positive di�erence is 5

times bigger than its negative counterpart. These results are in line with the simulation

result in Figure 3.1, which shows the distribution of the errors in daily RV to be generally

shifted to the right.

In-sample Estimation Results

Table 3.3 reports in-sample coe�cient estimates together with measures of �t, mean

lag, and persistence values for the HAR, HAR-Q, and DBC-HAR models for SPY using

three forecast horizons based on 5 minutes returns; i.e. h = 1 (day), h = 5 (week),

and h = 22 (month).11 Standard errors are estimated using a Newey-West HAC robust

estimator. This allows for serial correlation of up to order 5 (h = 1), 10 (h = 5), and 44

(h = 22), since the random error term in the models is serially correlated at least up to

order h − 1. Starred values indicate the in-sample �t of the models to be signi�cantly

better than that of the HAR model based on the Rivers and Vuong (2002) test at the

5% signi�cance level. The bottom panel of Table 3.3 presents the mean lag, adjusted R2

and persistence level as an average of all the individual stocks.

The estimates of the HAR model are generally signi�cant and more weight is allocated

to the weekly and monthly lags, which is in line with both previous �ndings in the

literature (e.g. Andersen et al., 2007a; Corsi, 2009) and our Monte Carlo exercise. On the

other hand, the DBC-HAR model signi�cantly improves on the �t of the HAR model, and

displays a daily coe�cient almost 3 times higher than the HAR daily coe�cient. These

results hold true across forecasting horizons and sampling frequencies. The α estimate

is consistently negative and strongly signi�cant. This means that α reduces the weight

allocated to the daily estimate when the RV is less reliable (greater measurement error)

reverting quickly to its long term mean while, when the reverse occurs, the DBC-HAR

11In-sample estimates are not reported for other sampling frequencies since the results are qualitatively
similar. They are available upon request.
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model displays stronger persistence than the HAR model.12 In addition, the DBC-HAR

model responds better to changes in information signal since greater weight is assigned

to more recent information, as opposed to the HAR model that gives greater weight to

older information. This �nding is also supported by the mean lags of the DBC-HAR

model which are almost 2 and 1.2 times smaller than those of the HAR model at h = 1

and h = 22, respectively.

Although the DBC-HAR provides a better model speci�cation for modelling and fore-

casting RV than the HAR model, the HAR-Q model of Bollerslev et al. (2016) is a natural

benchmark in that it provides a time-varying structure which addresses the measurement

error based on the level of the RQ. While both models signi�cantly outperform the in-

sample �t of the HAR model, based on the Rivers and Vuong test at the 5% level, few

di�erences can be drawn from the in-sample �t of these two models. Nevertheless, we

�nd that the DBC-HAR (HAR-Q) model improves on the �t of the HAR-Q (DBC-HAR)

model for the stock average (SPY).

To further contrast the dynamics of the time-varying parameters of the DBC-HAR

(θd,t) and HAR-Q (βd,t) models with the constant daily estimate of the HAR model,

Figures 3.4 and 3.5 respectively plot the time-varying and constant daily estimates of

the SPY and IBM. For ten consecutive trading days, both Figures plot the time-varying

parameters (top panel), the daily and monthly RV (middle panel), and the 1-day ahead

�tted values (bottom panel). The plots on the left (right) panel represent days with low

(high) volatility. As shown in Figures 3.4 and 3.5, θd,t and βd,t are of similar magnitude and

well above the daily constant estimate of the HAR model when the level of measurement

error is low. By contrast, the right top panel shows that both time-varying estimates fall

below the daily HAR coe�cient when RVt � RVt−22,t. During less volatile periods, and

therefore low levels of measurement error, the DBC-HAR model provides more accurate

1-day ahead forecasts than both the HAR and HAR-Q models. Conversely, when the

level of measurement error is high, the three models rely heavily in information from

12The sum of the autoregressive coe�cients for the DBC-HAR and HAR-Q models occasionally exceed
unity at h = 1. However, this does not necessarily imply non-stationary, as the temporal variation in the
realized variance measures may induce stationarity (see, for instance, Conley et al., 1997; Nielsen and
Rahbek, 2014, for a discussion of volatility induced stationarity).
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weekly and monthly lags, thereby resulting in similar out-of-sample performance across

these days.

Out-of-sample Forecasts Results

Table 3.4 reports the out-of-sample results for the SPY and for the average of the

individual stocks across all sampling frequencies (2-, 5-, and 10-minutes), and forecasting

horizons (1-, 5-, and 22-day).13 The reported QLIKE losses are standardized by the losses

of the HAR models. This clari�es comparisons since values below 1.0 indicate that the

models outperform the HAR model. We also report the p-values of the Model Con�dence

Set (MCS) of Hansen et al. (2011), which are estimated using 10,000 bootstrap resamples

and a block window of 20 days length. The surviving models are retained using a 10%

con�dence level. The starred values highlight the retained models for the SPY while, for

the average stocks, we report the number of times each model is retained by the MCS.

The smallest and highest p-value are reported in brackets.

For SPY, unlike the DBC-HAR model, the HAR and HAR-Q models are excluded by

the MCS. For instance, the HAR-Q model is excluded at h = 1 across all horizons, while

the HAR model is never retained when returns are sampled every 5 minutes. On several

occasions the DBC-HAR model renders signi�cantly smaller losses than the HAR and

HAR-Q models. We �nd only two cases in which the DBC-HAR model is outperformed:

at h = 5 when sampling every 2 minutes, and at h = 22 when the sampling occurs every

10 minutes.

For average stocks, the DBC-HAR model is generally retained by the MCS. The one

exception is when returns are sampled every 2- and 5-minutes, and there are two excep-

tions when returns are sampled every 10-minutes. In line with the results of the SPY,

the HAR model is excluded 45% of the time across sampling frequency and forecasting

horizon. In general, the DBC-HAR (HAR-Q) model consistently outperforms the HAR-Q

(DBC-HAR) model at h = 1 (h = 22), whereas for h = 5 the results are mixed. These

�ndings con�rm that the speci�cation of the DBC-HAR model is superior to that of the

13The models are estimated using a rolling window of 1000 days.
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HAR model, and it performs equally well as the HAR-Q model.

Figures 3.6 and 3.7 plot the one-day and one-month ahead standardized losses of

the DBC-HAR and HAR-Q models for each individual stock and the SPY against the

standard deviation of our measurement error metric, i.e. std(|RVt − RVt−22,t|). In the

absence or under constant measurement error, the average di�erence between the daily

and monthly RV would be expected to be zero, so reducing the DBC-HAR model to

the HAR model. However, we observe that the biggest forecasting gains are attained for

stocks that display larger variations in the level of the measurement error as estimated

using |RVt−RVt−22,t|. Although this �nding also applies for the HAR-Q model, Figure 3.6

shows that on several occasions the standardized losses of the HAR-Q model are above

1.0.

To further examine the prediction performance of the DBC-HAR model, we partition

the sample data as two sub-samples. The �rst covers the period prior to the sub-prime

crisis, i.e. January 3, 2000 to December 29, 2006; the second covers the crisis period,

i.e. 3, 2007 to December 31, 2010. The two panels of Table 3.5 report the out-of-sample

results for the SPY and the average of the individual stocks.14

In line with the full sample results, during the pre-crisis period (Panel A), the HAR

model is signi�cantly outperformed by both the DBC-HAR and HAR-Q models. This

holds true for the SPY and stock average. For SPY, the MCS excludes the HAR model

across all frequencies and forecasting horizons, except for h = 1 using returns sampled ev-

ery 2- and 5-minutes. The statistics for the stock average con�rm the poor out-of-sample

performance of the HAR model, which is constantly excluded by the MCS irrespective of

the sampling frequency or forecasting horizon under analysis. Whether we refer to the

SPY or the stock average, we �nd that both the DBC-HAR and HAR-Q models are gen-

erally retained by the MCS, and on average across all forecasting horizons and sampling

frequencies, the DBC-HAR model outperforms the HAR-Q model.

The crisis period (Panel B) shows more dispersed out-of-sample results, yet the per-

formance of both the DBC-HAR and HAR-Q models dominate that of the HAR model.

14The models are also estimated using a rolling window of 615 and 350 days for the pre-crisis and
crisis period, respectively. These values represent about 35% of each sub-sample.
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These out-of-sample gains decrease as the forecasting horizon increases, although the

HAR model seldom outperforms its counterparts. In part, this is because less reliable

RVs are often found during periods of �nancial distress. Unreliable RVs make predictions

of volatility less accurate, and the greater levels of measurement error dwarf θd,t and

βd,t towards zero, so that the speci�cations quickly revert to their long-term mean. The

latter behavior is also observed in the HAR model. However, unlike the DBC-HAR and

HAR-Q models, the HAR model lacks the capacity to dynamically update the loading

of the daily estimates, so explaining how the HAR model underperforms the DBC-HAR

and HAR-Q models.

In summary, the out-of-sample results show the superiority of the DBC-HAR model

over the HAR model across both sampling frequencies and forecasting horizons. The

superior in performance is also attained when the sample data are sub-categorized by

pre-crisis and crisis period. During tranquil periods the greater persistence obtained

by allocating more weight to the daily estimate, results in bigger out-of-sample gains.

By contrast, in periods of �nancial turmoil, the time-varying nature of the DBC-HAR

model increases/decreases the weight of the daily estimate as the measurement error

decreases/increases, so rendering more accurate forecasts.

3.4 Robustness Check

3.4.1 Noise-robust Realized Measures

The literature generally advocates the use of 5-minutes returns as a way of mitigating

the impact of market microstructure noise (e.g. Aït-Sahalia et al., 2005; Hansen and

Lunde, 2006). However, following statistical principles, more data are preferred to less,

as more data points contain more information. Based on this principle, the literature has

proposed alternative noise-robust estimators for RV, which are meant to be more e�cient

as they use many more observations relying on pre-averaging or sub-samples techniques to

remove the market microstructure noise e�ects. In this section, we compare the forecasts

of the DBC-HARmodel to those of HARmodels based on more e�cient realized measures,
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which are estimated using 1- and 2-min returns. We consider two of the most common

noise-robust estimators: the Two-Time Scale Realized Variance (TSRV) of Zhang et al.

(2005) and the Pre-averaging Realized Variance (PRV) of Jacod et al. (2009). The TSRV

is outlined as follows:

TSRVt =
1

nk

b1/∆nc−k+1∑
i=1

|Xk+i∆n −Xi∆n|2 −
n

n

b1/∆nc∑
i=1

|∆n
iX|2, (3.16)

where n = (n− k + 1)/k, nk = Nk
n/k
≈ k, Nk represents the number of observations after

using the scale k. k = [cn2/3], c is the bandwidth stated as in Zhang et al. (2005), and n

is the number of intraday observations.

The PRV takes the following form:

PRVt =
n

n− L+ 2

1

LψL2

b1/∆nc−L+1∑
i=0

|∆n
iX
∗|2 − ψL1 ω̂

2
AC

θ2ψL2
, (3.17)

where L = θ
√
n + o(n−1/4), n/(n − L + 2) is a small sample bias correction, while the

right hand side of equation (3.17) aims to remove the residual e�ect of noise that is

not eliminated by the pre-averaging estimator. The variance of the noise is estimated

following Oomen (2006a), ω̂2
AC = − 1

n−1

∑b1/∆nc
i=2 ∆n

i−1X∆n
iX. Finally, the pre-averaging

returns are estimated as follows:

∆n
iX
∗ =

L−1∑
j=1

g

(
j

L

)
∆n
i+jX, (3.18)

where g = (x ∧ 1− x). The constants associated with g are de�ned as:

ψL1 = L
L∑
j=1

[
g

(
j

L

)
− g

(
j − 1

L

)]2

, ψL2 =
1

L

L−1∑
j=1

g2

(
j

L

)
. (3.19)

Table 3.6 reports the out-of-sample results for the alternative HAR models using the

noise-robust measures and the DBC-HAR model using 5-min returns. The QLIKE losses

of the models are standardized by the loss of the DBC-HAR model. To facilitate com-

parison, we also report the results for the HAR-RV and HAR-Q models based on 5-min
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returns. Whether we refer to the SPY or stock average, the DBC-HAR model consistently

outperforms the forecasts of the noise-robust adjusted HAR models across all sampling

frequencies and forecasting horizons, but the HAR-PRV at h = 22. In fact, the noise-

robust forecasts generally fail to outperform the HAR models using 5-min RV across all

the forecasting horizons. This �nding is not surprising, as shown by Liu et al. (2015),

5-min RV is very di�cult to beat. However, we observe a decrease in the out-of-sample

performance of the noise-robust based forecasts as the time-interval increases, which in-

dicates that more data increases the e�ciency of these estimators. Eventually, higher

sampling frequencies might increase their out-of-sample accuracy.

3.4.2 Alternative Functional Forms for the Measurement Error

Metric

An alternative estimate of the relative magnitude of the measurement error is to use a

logarithmic and square root transformation of the daily and monthly RV. Our choice for

using level daily and monthly RV is motivated by the fact that logarithmic and square

root transformations alter the distribution of our variables, reducing their right skewness.

That reduction in skewness decreases the spread between the two variables, which can

make the measurement error look more homoskedastic. However, the square root has a

weaker e�ect than the logarithmic; hence, we should expect the square root to perform

closer to our original metric than its logarithmic counterpart.

The transformed DBC-HAR models are outlined below:

RVt,t+h = β0 + (βd + α| logRVt − logRVt−22,t|)RVt + βwRVt−5,t + βmRVt−22,t + εt+h,

(3.20)

RVt,t+h = β0 + (βd + α|
√
RVt −

√
RVt−22,t|)RVt + βwRVt−5,t + βmRVt−22,t + εt+h,

(3.21)

where the DBC-HAR-log and DBC-HAR-sqrt models use the logarithmic and square root

transformation as shown in equations (3.20) and (3.21), respectively.
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The out-of-sample results for these forecasts are reported in Table 3.7. The QLIKE

losses are standardized by the losses of the DBC-HAR model. Bold numbers highlight the

best DBC-HAR speci�cation, and for comparison we also report the HAR and HAR-Q

models. Although the logarithmic transformation generally fails to outperform the square

root and level version of the metric, the DBC-HAR-log model normally outperforms the

HAR model. The decrease in performance of the DBC-HAR-log model is expected as

the reduction in the spread spuriously mitigates the impact of the measurement error.

On the other hand, the DBC-HAR-sqrt model performs well throughout our analysis,

albeit the DBC-HAR model generally dominates across forecasting horizon and sampling

frequency.

3.4.3 Alternative Forecasting Models

Alternative DBC-HAR Models

Since the DBC-HAR model provides a simple correction based on the absolute di�er-

ent between short-term (daily) and long-term (monthly) volatility, its extension to more

sophisticated models is straightforward. For instance, one can modify the HAR-J model

proposed by Andersen et al. (2007a) and obtain the DBC-HAR-J model as follows:

RVt,t+h = β0 + (βd + α|RVt −RVt−22,t|)RVt + βwRVt−5,t + βmRVt−22,t + βJdJt + εt+h.

(3.22)

Similarly, the HAR-CJ of Andersen et al. (2007a) can be adapted to the DBC-HAR

structure. However the di�erence between the short- and long-term variance is based on

an estimator of the integrated variation rather than the usual RV. The DBC-HAR-CJ

model is outlined as follows:

RVt,t+h = β0 + (βCd + α|Ct − Ct−22,t|)Ct + βCwCt−5,t + βCmCt−22,t+

βJdJt + βJwJt−5,t + βJmJt−22,t + εt+h.

(3.23)
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To identify jumps in the price process we use the jump test proposed by Barndor�-Nielsen

and Shephard (2006), which takes the following form:

Zt =
1−BVt/RVt√

0.61∆n max(1, TPQt/BV 2
t )
∼ N (0, 1), (3.24)

where BVt and TPQt are the respective realized bipower variation and realized tripower

quarticity, which estimate the integrated variation and integrated quarticity.

BVt = µ−2
1

n

n− 1

b1/∆nc∑
i=2

|∆n
iX||∆n

i−1X|
p−→
∫ t

0

σ2
sds, (3.25)

TPQt = nµ−3
4/3

n

n− 2

b1/∆nc∑
i=3

|∆n
iX|4/3|∆n

i−1X|4/3|∆n
i−2X|4/3

p−→
∫ t

0

σ4
sds, (3.26)

where µp ≡ 2p/2Γ((p+ 1)/2)/Γ(1/2), for p > 0. Ct and Jt are estimated as follows:

Ct = RVt · 1(Zt = 0) +BVt · 1(Zt = 1), (3.27)

Jt = (RVt −BVt) · 1(Zt = 1), (3.28)

with 1(·) being an indicator function. The Continuous HAR (CHAR) model extended to

our time-varying set up, which we term DBC-CHAR model, is outlined as follows:

RVt,t+h = β0 + (βCd + α|Ct − Ct−22,t|)Ct + βCwCt−5,t + βCmCt−22,t + εt+h. (3.29)

Table 3.8 reports the 1-day ahead in-sample �t for the alternative DBC-HAR models

and their benchmark counterparts. We observe an increase in the daily estimate which is

almost 3 times bigger than those of their benchmark models. This con�rms that DBC-

HAR models allocate more weight to the daily lag. In addition, the standard errors of the

daily estimates are reduced signi�cantly, implying that the daily coe�cients of the DBC-

HAR models are more informative. This dynamic allocation of weight o�ers a better

model speci�cation, leading to an increase of about 4 percentage points in the adjusted

R2s. Moreover, the Rivers and Vuong test rejects the null of equal predicting ability
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in favor of all the alternative DBC-HAR models, highlighting the substantial in-sample

increments for models accounting for the measurement error.

As reported in Table 3.9, out-of-sample results of the alternative HAR models corrob-

orate the in-sample performance. This means that the DBC-HAR models signi�cantly

outperform their benchmark models. This �nding is supported by the Giacomini and

White (2006) test, which �nds the losses of the alternative DBC-HAR models to be sig-

ni�cantly smaller than those of their benchmark models. Similarly, the MCS usually

retains all the extended DBC-HAR models, while excluding their baseline models. For

instance, the HAR-CJ and CHAR models are always excluded across sampling frequen-

cies, as opposed to the DBC-HAR-CJ and DBC-CHAR models that are always retained

by the MCS.

Alternative GARCH Models

Our implementation is not only limited to autoregressive models. The simple correc-

tion a�orded by our metric o�ers a straightforward extension to other families of volatility

models such as the (G)ARCH family proposed by Engle (1982) and Bollerslev (1986). In

this section, we show that GARCH models improve their in- and out-of-sample perfor-

mance when they account for the measurement error observed in RV. Let σ̂2
t be a realized

measure of the variance such as RV and νt = Et−1[σ̂2
t ] its conditional expectation at time

(t− 1). To simplify notations and comparisons we only consider the (1, 1) speci�cation.

The GARCH model of Bollerslev (1986) is then outlined as follows:

νt+h = ω + βνt + πRVt. (3.30)

Similarly the DBC-GARCH model takes the following form:

νt+h = ω + βνt + (π + αςt)︸ ︷︷ ︸
φt

RVt,

ςt = |RVt −RVt−22,t|.

(3.31)
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The GJR-GARCH model of Glosten et al. (1993) is described as:15

νt+h = ω + βνt + πRVt + γR2
t1 (Rt < 0) . (3.32)

The DBC-GJR-GARCH modi�es the original model as follows:

νt+h = ω + βνt + (π + αςt)︸ ︷︷ ︸
φt

RVt + γR2
t1 (Rt < 0) ,

ςt = |RVt −RVt−22,t|.

(3.33)

We refrain from using the GARCH-X structure motivated by Engle (2002b), who shows

that, when a GARCH-X model is created by adding a realized measure, the ARCH

parameter is close to zero, in consequence of the realized measure subsuming most of

the information. The conditional variances are estimated using a Gaussian quasi log-

likelihood function that is given by:

L = −
T∑
t=1

[
log ht +

σ̂2
t

ht

]
(3.34)

Table 3.10 reports the in-sample estimates of the GARCH and alternative GARCH spec-

i�cations for the SPY along with the log-likelihood, BIC, and 1-day ahead out-of-sample

standardized QLIKE loss. The bottom panel reports the log-likelihood, BIC, and the

standardized QLIKE loss as an average of all the individual stocks. The general pattern

in the results is similar to that found in the DBC-HAR models, where the BIC indicates

that our proposed DBC-GARCH and DBC-GJR improve on the �t of their standard

counterparts. In addition, there is an increase in the persistence level of our models

and a decrease in the standard errors of their parameters. The out-of-sample standard-

ized QLIKE losses indicate that the better in-sample �tting directly translates in more

accurate volatility forecasts, with improvements between 0.8 and 2 percentage points.

15Rt represents the daily returns, which are estimated as Rt =
∑b1/∆nc
i=1 ∆n

i X.
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3.5 Conclusion

We have proposed a simple model correction that successfully accounts for the dilution

bias induced by the errors-in-variable problem of RV-based forecasting models. We have

shown that the absolute di�erence between the daily and monthly RV is proportional to

the relative magnitude of these errors. Therefore, our proposed models improve upon the

in- and out-of-sample performance of standard volatility forecasting models, by allowing

the daily autoregressive coe�cient to vary as a function of the measurement error. This

results in more responsive forecasts with greater persistence on days where the RV is

more precisely estimated, and faster mean-reversion forecasts on days where the RV is

unreliable.

Implementing our model correction in the SPY and 12 individual stocks for an 11-

year period, we were able to show substantial improvements in the �t of the models

together with a decrease in the standard errors of the coe�cients. The better �t of the

models directly translates into more accurate out-of-sample forecasts, which signi�cantly

outperform standard HAR and GARCH speci�cations. These �ndings held true across

various sampling frequencies, di�erent forecasting horizons, and when sub-samples of the

data were used to distinguish between pre-crisis and crisis periods.
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Appendix 3.A Tables and Figures

Table 3.1: Simulation Results

HAR HAR-Q DBC-HAR HAR HAR-Q DBC-HAR HAR HAR-Q DBC-HAR

h = 1 h = 5 h = 22

In-Sample R2
adj

1-min 0.229 0.244 0.245 0.218 0.219 0.221 0.359 0.359 0.360

2-min 0.216 0.239 0.239 0.218 0.219 0.222 0.360 0.360 0.361

5-min 0.212 0.219 0.220 0.206 0.208 0.212 0.343 0.343 0.346

10-min 0.175 0.196 0.192 0.190 0.200 0.202 0.332 0.334 0.334

15-min 0.166 0.177 0.177 0.195 0.199 0.199 0.339 0.342 0.342

Out-of-Sample QLIKE

1-min 1.000 0.973 0.969 1.000 0.992 0.988 1.000 0.988 0.985

2-min 1.000 0.978 0.973 1.000 0.996 0.985 1.000 0.988 0.987

5-min 1.000 0.993 0.983 1.000 0.989 0.986 1.000 0.989 0.987

10-min 1.000 0.982 0.984 1.000 0.992 0.987 1.000 0.988 0.986

15-min 1.000 1.000 0.998 1.000 0.993 0.987 1.000 0.989 0.985

Mean Lag

1-min 6.375 4.810 4.573 9.164 8.672 8.273 10.663 10.632 10.210

2-min 6.499 4.695 4.436 9.322 8.766 8.366 10.672 10.553 10.194

5-min 6.368 5.436 5.107 9.131 8.644 8.068 10.660 10.435 10.031

10-min 6.593 4.930 4.910 9.159 8.037 7.885 10.761 10.311 10.189

15-min 6.850 5.562 5.495 8.971 8.224 8.164 10.765 10.222 10.238

Persistence

1-min 0.755 0.938 0.917 0.644 0.675 0.692 0.598 0.600 0.617

2-min 0.752 0.973 0.940 0.647 0.683 0.698 0.599 0.605 0.620

5-min 0.741 0.834 0.839 0.632 0.661 0.686 0.585 0.595 0.610

10-min 0.714 0.845 0.833 0.618 0.675 0.678 0.576 0.594 0.597

15-min 0.716 0.820 0.808 0.620 0.661 0.659 0.582 0.605 0.602

Note: The table reports the adjusted R2 as a measure of the in-sample �t for the di�erent models,

along with the average out-of-sample QLIKE loss, which is standardized by the loss of the HAR model.

The persistence of the models are estimated as (βd + βw + βm), while the mean lag is estimated as∑22
i=1 ibi/

∑22
i=1 bi, and bi represents the value at each lag; i.e. b1 = βd + βw/5 + βm/22, and b6 = βm/22.
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Table 3.2: Summary Statistics

Panel A: RVt Panel B: |RVt −RVt−22,t| Panel C: (RVt −RVt−22,t)
+ Panel D: (RVt −RVt−22,t)

−

Company Ticker Obs Mean St. Dev. Min Max obs Mean St. Dev. Min Max Obs Mean St. Dev. Min Max Obs Mean St. Dev. Min Max

S&P 500 ETF SPY 2767 1.325 2.678 0.041 59.863 2746 0.669 1.862 0.000 49.432 1066 0.853 2.649 0.000 49.432 1680 -0.553 1.087 -15.049 0.000

American Express AXP 2767 5.497 11.125 0.088 299.968 2746 2.757 7.660 0.000 250.039 1046 3.601 11.087 0.000 250.039 1700 -2.238 4.299 -47.725 0.000

DuPont DD 2767 3.495 4.779 0.100 83.487 2746 1.510 3.053 0.000 66.703 1054 1.936 4.323 0.000 66.703 1692 -1.245 1.820 -22.864 0.000

Disney DIS 2767 3.907 5.920 0.221 145.706 2746 1.726 4.239 0.000 131.016 1020 2.296 6.376 0.000 131.016 1726 -1.390 2.067 -21.554 -0.001

Home Depot HD 2767 4.129 5.644 0.201 103.477 2746 1.825 3.553 0.000 82.872 1060 2.334 4.950 0.004 82.872 1686 -1.504 2.214 -24.340 0.000

IBM IBM 2767 2.597 4.200 0.102 71.293 2746 1.237 2.767 0.000 54.149 1078 1.547 3.874 0.002 54.149 1668 -1.036 1.676 -17.889 0.000

Coca-Cola KO 2767 1.988 2.994 0.046 58.808 2746 0.856 2.022 0.000 50.959 1035 1.112 2.960 0.000 50.959 1711 -0.700 1.095 -12.800 -0.001

McDonald's MCD 2767 2.917 5.164 0.087 161.156 2746 1.408 4.283 0.000 150.089 1017 1.864 6.709 0.000 150.089 1729 -1.140 1.576 -17.221 0.000

3M MMM 2767 2.378 3.809 0.082 91.955 2746 1.101 2.654 0.000 79.198 1066 1.400 3.822 0.001 79.198 1680 -0.912 1.470 -20.425 0.000

Merck MRK 2767 3.151 6.341 0.137 223.255 2746 1.714 5.311 0.000 208.576 978 2.385 8.432 0.000 208.576 1768 -1.343 2.030 -21.198 -0.001

Microsoft MSFT 2767 3.336 4.478 0.083 62.386 2746 1.449 2.775 0.000 48.735 1111 1.756 3.713 0.000 48.735 1635 -1.240 1.861 -19.453 0.000

Procter & Gamble PG 2767 1.862 2.997 0.105 70.015 2746 0.900 2.121 0.000 60.119 1032 1.139 3.084 0.000 60.119 1714 -0.756 1.196 -13.880 -0.001

Exxon Mobil XOM 2767 2.452 4.754 0.155 141.130 2746 1.171 3.470 0.000 119.346 1071 1.483 4.928 0.004 119.346 1675 -0.972 2.029 -29.086 0.000

Note: The table reports the summary statistics for the RV of all the stocks and SPY, along with the summary statistics for the absolute di�erence between the daily and monthly RV, and the summary

statistics for the positive, (RVt −RVt−22,t)
+, and negative, (RVt −RVt−22,t)

−, di�erence between the daily and monthly RV.
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Table 3.3: In-sample Fit SPY and Stock Average

HAR HAR-Q DBC-HAR HAR HAR-Q DBC-HAR HAR HAR-Q DBC-HAR

h = 1 h = 5 h = 22

β0 0.123 −0.015 0.006 0.191 0.107 0.140 0.383 0.320 0.343

s.e. (0.073) (0.077) (0.072) (0.078) (0.079) (0.083) (0.084) (0.082) (0.084)

βd 0.226 0.666 0.592 0.177 0.443 0.335 0.102 0.300 0.225

s.e. (0.105) (0.106) (0.087) (0.055) (0.122) (0.098) (0.022) (0.090) (0.082)

βw 0.452 0.306 0.334 0.372 0.284 0.321 0.353 0.287 0.314

s.e. (0.155) (0.124) (0.128) (0.112) (0.109) (0.109) (0.119) (0.098) (0.099)

βm 0.227 0.104 0.119 0.304 0.229 0.257 0.251 0.196 0.215

s.e. (0.107) (0.123) (0.122) (0.108) (0.118) (0.117) (0.099) (0.112) (0.115)

βdQ −0.007 −0.004 −0.003

s.e. (0.002) (0.001) (0.001)

α −0.013 −0.006 −0.004

s.e. (0.002) (0.002) (0.002)

Mean Lag 4.633 2.583 2.831 5.615 4.113 4.659 5.736 4.359 4.826

Persistence 0.905 1.075 1.044 0.853 0.956 0.913 0.706 0.783 0.753

R2
adj 0.508 0.553? 0.544? 0.631 0.655? 0.641? 0.554 0.571? 0.561?

Average Stocks

Mean Lag 5.983 4.525 4.421 6.117 4.741 4.685 6.391 5.051 5.042

Persistence 0.887 0.986 0.988 0.837 0.907 0.897 0.707 0.768 0.750

R̄2
Adj 0.465 0.492 0.494 0.596 0.620 0.622 0.545 0.562 0.565

Note: The table reports the in-sample parameter estimates and measures of �t for the HAR-RV, HAR-Q and DBC-HAR

models at the h = 1 (day), h = 5 (week), and h = 22 (monthly) horizons using 5 minutes returns. The �rst panel reports

parameter estimates for the SPY with robust standard errors in parentheses, along with the mean lag, persistence and

adjusted R2's. The bottom panel summarizes the measure of �t, mean lag and persistence level as an average across all

of the individual stocks. Starred values indicate that the in-sample losses of the models are signi�cantly smaller relative

to the losses of the HAR model based on the Rivers and Vuong (2002) test at the 5% con�dence level.
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Table 3.4: Out-of-sample Relative QLIKE and MCS p-values

HAR HAR-Q DBC-HAR

QLIKE MCS QLIKE MCS QLIKE MCS

Panel A: 2 minutes Sampling Frequency

SPY

h = 1 1.000 0.309? 1.088 0.071 0.958 1.000?

h = 5 1.000 0.951? 0.997 1.000? 1.016 0.875?

h = 22 1.000 0.021 0.967 0.570? 0.957 1.000?

Avg. Stocks

h = 1 1.000 5 [0, 1] 0.962 8 [0, 1] 0.931 12 [0.3, 1]

h = 5 1.000 6 [0, 0.7] 0.922 12 [0.5, 1] 0.924 12 [0.2, 1]

h = 22 1.000 8 [0, 0.3] 0.956 10 [0, 1] 0.963 11 [0, 1]

Panel B: 5 minutes Sampling Frequency

SPY

h = 1 1.000 0.046 1.018 0.000 0.942 1.000?

h = 5 1.000 0.084 0.956 0.114? 0.928 1.000?

h = 22 1.000 0.000 0.959 0.415? 0.939 1.000?

Avg. Stocks

h = 1 1.000 7 [0, 1] 0.973 9 [0, 1] 0.954 12 [0.6, 1]

h = 5 1.000 5 [0, 1] 0.948 12 [0.3, 1] 0.961 11 [0, 1]

h = 22 1.000 9 [0, 0.7] 0.953 11 [0.1, 1] 0.962 12 [0.3, 1]

Panel C: 10 minutes Sampling Frequency

SPY

h = 1 1.000 0.363? 1.131 0.067 0.965 1.000?

h = 5 1.000 0.006 0.974 0.255? 0.942 1.000?

h = 22 1.000 0.037 0.948 1.000? 0.965 0.510?

Avg. Stocks

h = 1 1.000 7 [0, 1] 0.999 7 [0, 1] 0.971 12 [0.1, 1]

h = 5 1.000 7 [0, 1] 0.964 12 [0.1, 1] 0.950 12 [0.3, 1]

h = 22 1.000 5 [0, 0.5] 0.945 12 [0.4, 1] 0.969 10 [0, 1]

Note: This table reports the out-of-sample QLIKE losses and the p-values of the Model

Con�dence Set (MCS). The losses are standardized by the loss of the HAR model. Each

panel is split in two sub-panels. The top sub-panel reports the relative loss and the MCS's

p-value. The starred values indicates the model(s) that are retained by the MCS. the bottom

sub-panel reports the average relative loss across all of the individual stocks and the number of

stocks for which each model has been retained by the MCS (in squares brackets we report the

lowest/highest pvalue). The signi�cance level of the MCS is set to zα = 10% and use 10,000

bootstrap resamples (with a block length of 20 days).
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Table 3.5: Out-of-sample Results � Regimes

HAR HAR-Q DBC-HAR HAR HAR-Q DBC-HAR

QLIKE MCS QLIKE MCS QLIKE MCS QLIKE MCS QLIKE MCS QLIKE MCS

Panel A: Pre-Crisis Period Panel B: Crisis Period

Sub-panel A.1: 2 minutes Sampling Frequency Sub-panel B.1: 2 minutes Sampling Frequency

SPY

h = 1 1.000 0.230? 0.969 0.966? 0.969 1.000? 1.000 0.603? 1.119 0.603? 0.902 1.000?

h = 5 1.000 0.007 0.960 0.014 0.883 1.000? 1.000 0.006 0.928 1.000? 0.943 0.682?

h = 22 1.000 0.002 0.930 0.112? 0.864 1.000? 1.000 0.756? 0.988 1.000? 1.023 0.411?

Avg. Stocks

h = 1 1.000 5 [0, 1] 0.960 12 [0.1, 1] 0.963 10 [0, 1] 1.000 2 [0, 1] 0.914 11 [0.03, 1] 0.882 9 [0.01, 1]

h = 5 1.000 1 [0, 0.25] 0.908 10 [0.02, 1] 0.914 10 [0, 1] 1.000 4 [0, 0.9] 0.860 12 [0.6, 1] 0.928 8 [0, 1]

h = 22 1.000 2 [0, 0.3] 0.913 9 [0, 1] 0.912 10 [0, 1] 1.000 8 [0.05, 1] 0.958 12 [0.2, 1] 0.983 9 [0.05, 1]

Sub-panel A.2: 5 minutes Sampling Frequency Sub-panel B.2: 5 minutes Sampling Frequency

SPY

h = 1 1.000 0.138? 0.977 0.305? 0.960 1.000? 1.000 0.072 0.881 0.972? 0.879 1.000?

h = 5 1.000 0.001 0.942 0.002 0.848 1.000? 1.000 0.827? 0.957 1.000? 0.975 0.827?

h = 22 1.000 0.000 0.849 0.269? 0.826 1.000? 1.000 1.000? 1.020 0.609? 1.030 0.528?

Avg. Stocks

h = 1 1.000 6 [0, 1] 0.965 12 [0.25, 1] 0.966 11 [0.04, 1] 1.000 7 [0, 1] 0.965 11 [0.01, 1] 0.950 12 [0.13, 1]

h = 5 1.000 2 [0,0.4] 0.915 11 [0.03, 1] 0.922 10 [0, 1] 1.000 8 [0, 1] 0.918 12 [0.3, 1] 0.980 10 [0.04, 1]

h = 22 1.000 1 [0, 0.3] 0.911 9 [0, 1] 0.917 8 [0, 1] 1.000 12 [0.2, 1] 0.987 12 [0.2, 1] 1.015 11 [0.09, 1]

Sub-panel A.3: 10 minutes Sampling Frequency Sub-panel B.3: 10 minutes Sampling Frequency

SPY

h = 1 1.000 0.034 0.955 0.968? 0.960 1.000? 1.000 0.848? 1.021 0.848? 0.966 1.000?

h = 5 1.000 0.002 0.898 0.121? 0.848 1.000? 1.000 0.043 0.912 1.000? 0.915 0.967?

h = 22 1.000 0.000 0.830 0.616? 0.826 1.000? 1.000 0.059 0.929 1.000? 1.097 0.059

Avg. Stocks

h = 1 1.000 6 [0, 1] 0.965 12 [0.22, 1] 0.966 11 [0.02, 1] 1.000 10 [0, 1] 1.050 9 [0.2, 1] 1.001 12 [0.12, 1]

h = 5 1.000 2 [0, 0.7] 0.922 11 [0.02, 1] 0.933 9 [0, 1] 1.000 6 [0, 1] 0.937 12 [0.7, 1] 0.991 10[0, 0.7]

h = 22 1.000 0 [0, 0.08] 0.906 9 [0.01, 1] 0.926 8 [0, 1] 1.000 10 [0.03, 1] 0.967 12 [0.6, 1] 0.997 9 [0.06, 8]

Note: The table report the out-of-sample standardized QLIKE losses and p-values of the Model Con�dence Set (MCS). Each panel is split in three sub-panels

that report results for 3 di�erent sampling frequencies. Starred values in the SPY indicate the retained models by the MCS, while for the average stocks the

MCS column reports the number of stocks for which each model has been retained by the MCS (in square brackets we report the lowest/highest p-value). The

signi�cance level of the MCS is set to zα = 10%, and use 10,000 bootstrap resamples (with a block length of 20 days).

95



Table 3.6: Alternative Noise-robust Realized Measures

h = 1 h = 5 h = 22 h = 1 h = 5 h = 22

Panel A: 1-min Panel B: 2-min

SPY

HAR-PRV 1.261 1.168 1.228 1.379 1.038 0.934

HAR-TSRV 1.263 1.234 1.200 1.627 1.225 0.990

HAR-RV 1.062 1.077 1.065 1.062 1.077 1.065

HAR-Q 1.081 1.030 1.021 1.081 1.030 1.021

DBC-HAR 1.000 1.000 1.000 1.000 1.000 1.000

Individual Stocks

HAR-PRV 1.309 1.203 1.074 1.424 1.298 1.050

HAR-TSRV 1.647 1.480 1.264 2.052 1.564 1.275

HAR-RV 1.051 1.046 1.041 1.051 1.046 1.041

HAR-Q 1.020 0.988 0.991 1.020 0.988 0.991

DBC-HAR 1.000 1.000 1.000 1.000 1.000 1.000

Note: This table reports the out-of-sample forecasts of HAR models using al-

ternative noise-robust realized measures for the SPY and the average of all the

individual stocks. The losses of the models are standardized by the loss of the

DBC-HAR model, and bold numbers highlight the best model speci�cation. The

HAR-PRV and HAR-TSRV models are estimated using 1-min and 2-min on Panel

A and B, respectively. On the other hand, the HAR-RV, HAR-Q, and DBC-HAR

models rely on 5-min returns.
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Table 3.7: Measurement Error Transformations

h = 1 h = 5 h = 22 h = 1 h = 5 h = 22 h = 1 h = 5 h = 22

2-min 5-min 10-min

SPY

HAR 1.044 0.984 1.045 1.062 1.077 1.065 1.036 1.062 1.036

HAR-Q 1.136 0.980 1.010 1.081 1.030 1.021 1.171 1.034 0.982

DBC-HAR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

DBC-HAR-log 1.062 0.966 1.010 1.035 1.028 1.012 1.050 1.070 1.020

DBC-HAR-sqrt 1.245 0.998 0.989 1.010 1.028 1.048 0.963 1.000 1.002

Stock Avg.

HAR 1.077 1.085 1.040 1.051 1.046 1.041 1.033 1.056 1.033

HAR-Q 1.031 0.998 0.994 1.020 0.988 0.991 1.030 1.014 0.976

DBC-HAR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

DBC-HAR-log 1.037 1.032 1.002 1.026 1.017 1.008 1.018 1.033 1.001

DBC-HAR-sqrt 1.002 0.977 1.000 1.000 0.985 1.000 1.010 1.004 0.987

Note: This table reports the out-of-sample forecasts losses for the DBC-HARmodels using alternative metrics

for the measurement error. The losses are standardized by the losses of the DBC-HAR model, and we also

include the HAR-Q model to facilitate the comparison. The bottom panel reports the average standardized

losses for all the individual stocks under analysis. Bold numbers highlight the best DBC-HAR performance.
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Table 3.8: In-Sample Fit SPY � Alternative DBC-HAR Models

HAR-J DBC-HAR-J HAR-CJ DBC-HAR-CJ CHAR DBC-CHAR

β0 0.124 0.004 0.127 0.014 0.127 0.010

s.e. (0.073) (0.072) (0.074) (0.073) (0.072) (0.074)

βd 0.231 0.613 0.224 0.599

s.e. (0.110) (0.089) (0.111) (0.087)

βw 0.450 0.326 0.469 0.350

s.e. (0.157) (0.132) (0.162) (0.138)

βm 0.228 0.118 0.227 0.111

s.e. (0.107) (0.123) (0.108) (0.118)

βCd 0.219 0.599

s.e. (0.112) (0.089)

βCw 0.484 0.365

s.e. (0.162) (0.139)

βCm 0.224 0.118

s.e. (0.097) (0.111)

βJd −0.238 −0.517 0.278 0.159

s.e. (0.269) (0.255) (0.246) (0.283)

βJw −1.125 −1.295

s.e. (0.641) (0.684)

βJm 0.412 −0.101

s.e. (1.779) (1.450)

α −0.013 −0.013 −0.013

s.e. (0.002) (0.002) (0.002)

R2
adj 0.508 0.546? 0.511 0.548? 0.510 0.547?

Note: The table reports the 1-day ahead in-sample parameter estimates with robust

standard error in parenthesis for the alternative DBC-HAR models and their benchmark

counterpart. The last row reports the adjusted R2 of the models and starred values

indicate that in-sample losses of the alternative DBC-HAR models are signi�cantly

smaller relative to their benchmark counterpart based on the Rivers and Vuong (2002)

at the 5% con�dence level.
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Table 3.9: DBC-HAR under Alternative HAR Models

h = 1 MCS h = 5 MCS h = 22 MCS

HAR 1.000 0.541? 1.000 0.282? 1.000 0.034

HAR-Q 1.018 0.541? 0.956 0.282? 0.959 0.555?

DBC-HAR 0.942 0.548? 0.928 0.282? 0.939 0.555?

HAR-J 0.998 0.541? 0.989 0.282? 0.985 0.035

DBC-HAR-J 0.939?? 1.000? 0.923?? 1.000? 0.920?? 1.000?

HAR-CJ 1.087 0.003 1.265 0.000 0.990 0.035

DBC-HAR-CJ 1.006?? 0.262? 1.194?? 0.004 0.950?? 0.555?

CHAR 1.078 0.004 1.161 0.004 1.199 0.000

DBC-CHAR 0.955?? 0.548? 1.075?? 0.282? 1.124?? 0.005

Note: The table reports the QLIKE loss function standardized by the loss of the

HAR model for the SPY across forecasting horizon. The realized measures are

estimated using 5 minutes returns. Bold numbers highlight the best two perfor-

mances. The MCS column shows the p-value for each model, and starred values

indicate the retained models by the MCS. The signi�cance level of the MCS is set

to zα = 10%, and use 10,000 bootstrap resamples (with a block length of 20 days).

Finally, double-starred values indicate that the alternative DBC-HAR models sig-

ni�cantly outperform their counterparts based on the Giacomini and White (2006)

test at the 5% con�dence level.
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Table 3.10: In- and Out-of-sample Performance of Alternative GARCH Models

GARCH(1,1) DBC-GARCH(1,1) GJR-GARCH(1,1,1) DBC-GJR-GARCH(1,1,1)

ω 0.018 0.019 0.018 0.016

(0.000) (0.002) (0.000) (0.000)

β 0.498 0.502 0.587 0.593

(0.037) (0.026) (0.072) (0.034)

π 0.502 0.498 0.343 0.347

(0.027) (0.028) (0.069) (0.027)

γ 0.1192 0.120

(0.001) (0.002)

α -0.008 -0.008

(0.000) (0.000)

L -2127.929 -2125.264 -2098.032 -2094.858

BIC 1.551 1.549 1.530 1.528

QLIKE 1.000 0.992 1.000 0.990

Individual Stocks

L -4786.927 -4778.403 -4740.815 -4738.392

BIC 3.488 3.482 3.455 3.453

QLIKE 1.000 0.980 1.000 0.984

Note: The table reports the 1-day ahead in-sample estimates with robust standard errors in paren-

thesis, the log-likelihood, and the Bayesian Information Criterion (BIC) for both the GARCH and

alternative GARCH speci�cations. The out-of-sample QLIKE loss is standardized by the benchmark

model of each speci�cation, and it is reported at the bottom of the top panel. The bottom panel

reports the results for the individual stocks as an average across all of the stocks. L , BIC, and

QLIKE indicate the average values of the log-likelihood, Bayesian Information Criterion, and the

standardized QLIKE loss.
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Figure 3.1: Estimation Error of Daily, Weekly, and Monthly RV

Note: This �gure plots the simulated distribution RV/IV − 1. The left panel plots the results for
daily RV, while middle and right panels show the results for weekly and monthly RV. The top,
middle, and bottom panels are based on 2-min, 5-min, and 10-min returns, respectively.

Figure 3.2: DBC-HAR and HAR-Q Time-varying Parameters
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Note: This �gure plots the time-varying parameter of the DBC-HAR and HAR-Q models against
their respective metric of the measurement error. The black horizontal line plots the constant
daily parameter of the HAR model.

101



Figure 3.3: 95% Con�dence Bands for AXP along with Daily and Monthly RV
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Note: This �gure plots the RV of AXP using the 95% con�dence bands on the left panel, while
the right panel plots the daily and monthly RV. The period correspond to ten consecutive days
around the day with the largest RV.

Figure 3.4: Time-Varying vs Constant Daily Estimates � SPY
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Note: This �gure illustrates in the top panel the time-varying dynamics of the the DBC-HAR (θd,t)
and HAR-Q (βd,t) daily estimates versus the constant daily estimate of the HAR model (black
dashed line). The middle panel plots the daily and monthly RV, whereas the bottom panel depicts
the 1-day ahead forecasts of the HAR, DBC-HAR and the HAR-Q models compared to the ex-post
RV. The left (right) panels plot ten succesive trading days for the pre-crisis (crisis) period.
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Figure 3.5: Time-Varying vs Constant Daily Estimates � IBM
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Note: This �gure illustrates in the top panel the time-varying dynamics of the the DBC-HAR (θd,t)
and HAR-Q (βd,t) daily estimates versus the constant daily estimate of the HAR model (black dashed
line). The middle panel plots the daily and monthly RV, whereas the bottom panel depicts the 1-day
ahead forecasts of the HAR, DBC-HAR and the HAR-Q models compared to the ex-post RV. The
left (right) panels plot ten succesive trading days for the pre-crisis (crisis) period.
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Figure 3.6: Individual Standardized Losses, h = 1
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Note: This �gure plots the one-day ahead standardized losses of the DBC-HAR and
HAR-Q models for each individual stock and the SPY against the standard deviation of
the absolute di�erence between the daily and monthly RV.

Figure 3.7: Individual Standardized Losses, h = 22
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Note: This �gure plots the one-month ahead standardized losses of the DBC-HAR and
HAR-Q models for each individual stock and the SPY against the standard deviation of
of the absolute di�erence between the daily and monthly RV.
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Chapter 4

Exploiting the Market Factor

Information to Improve (Co)Variance

Forecasts and Financial Decisions

4.1 Introduction

Accurate forecasts of asset covariances play a key role in many �nancial economic

applications, where the most notable implementation is found in portfolio allocation

(Markowitz, 1952). Reducing the errors in the forecasted covariance matrix is a key factor

as practitioners rely on several important properties, such as the positive de�niteness

and well-conditioning to guarantee reasonable portfolio weights. However, the level of

idiosyncratic volatility (IdV) has substantially increased in the last 20 years (Campbell

et al., 2001; Xu and Malkiel, 2003) and, as shown by Ang et al. (2009), assets with a high

level of IdV su�er from low predictability. This issue can further increase the forecasting

errors.

In this paper, we consider a factor-type structure for modelling and forecasting both

univariate and multivariate volatility. We use the SPDR S&P 500 ETF (SPY) to represent

the market factor information. The popular use of observed factors is attributable to their

excellent performance and simple economic explanation (e.g. Fama and French, 1993,

105



1996; King, 1966). The SPY, which is traded at very high-frequency, serves as a useful

high frequency market factor (e.g. Fan et al., 2016; Hasbrouck, 2003). The explanation

for using the market factor is that asset prices are in�uenced by market and industry

factors, which may not be re�ected in the information set of individual asset prices.

Thus, the market factor helps assets react faster to new information, especially those

with low trading volume.

The use of factor models to model returns and allocate portfolios dates back to Sharpe

(1964), who proposed the so-called CAPM model to avoid estimating all the parame-

ters in a covariance matrix (e.g. Lintner, 1965; Treynor, 1962, for similar approaches).

Whereas this structure is generally ignored when the object of interest relates to fore-

casting (co)variances, Fan et al. (2016) show signi�cant improvements in the portfolio

allocation based on covariances estimated using a similar factor structure. The �ndings

of Fan et al. (2016), together with the empirical evidence that assets usually show rel-

atively low levels of correlation during bull and tranquil market periods (Longin and

Solnik, 2001), suggest that the systematic information is not fully absorbed by the in-

formation set of individual asset prices, and therefore speci�cations incorporating said

factor should render more accurate estimates.

The limited multivariate literature, that incorporates factors or exogenous variables

for modelling and forecasting purposes, includes Bauer and Vorkink (2011) who forecast

realized covariances with estimates of latent factors obtained from a pool of realized con-

tinuous and jump measures.1 Unlike the multivariate literature, the univariate literature

has advocated the use of exogenous variables to a much larger extent,2 where implied

volatility (ImpV) is very close to our analysis. Although adding ImpV as an explanatory

variable generally improves the �tting of the model, this is largely irrelevant to the out-

of-sample prediction (e.g. Busch et al., 2011; Giot and Laurent, 2007). This is because

ImpV is shown to be e�cient but biased, and therefore leading to poor out-of-sample

1The use of principal components analysis to extract latent factors in high-dimensional covariances
has also been studied (e.g. Bai and Shi, 2011; Calzolari et al., 2020; Fan et al., 2008, and the list of refer-
ences therein). Although this technique has proved to be very successful, its obscure our understanding
of the relevant variables and di�cult the economic interpretation.

2Previous literature has also employed macroeconomic factors (e.g. Christiansen et al., 2012; Engle
et al., 2007; Paye, 2012) however, the results are not very promising in the out-of-sample exercise.
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performance (e.g. Blair et al., 2000; Canina and Figlewski, 1993; Jorion, 1995).

We rely on high-frequency data to construct the latent volatility and covariance mea-

sures. Even though high-frequency intraday data allows for the construction of more

accurate realized (co)variance measures than lower frequency data (e.g., daily), they are

still estimates and as such subject to measurement error (e.g. Andersen et al., 2005).

To account for this issue, we incorporate the market factor information into the univari-

ate heterogeneous autoregressive (HAR) model of Corsi (2009) and the HARQ model

of Bollerslev et al. (2016). We dubbed these speci�cations, the HAR-M and HARQ-M

models, where �M� stands for the market factor. In a similar fashion, the market factor

is added to the multivariate extensions of the HAR (Chiriac and Voev, 2011) and HARQ

models (Bollerslev et al., 2018). Whereas these proposed multivariate speci�cations con-

sider scalar parameters, by assuming that all the unique elements of the covariance matrix

have the same dynamics, we allow for di�erent dynamics and therefore model each unique

element of the covariance matrix separately.3

Our empirical analysis considers 30 S&P 500 constituents for the period 2000�2016.

We select a very balanced portfolio of assets with heterogeneous levels of liquidity, propor-

tion of IdV and risk exposure. We consider both the univariate and multivariate setting.

For the multivariate setting, we construct 100 random portfolios based on N = 5 and

N = 10 assets, and evaluate their performance using statistical loss functions and global

minimum variance portfolios with and without transaction costs.

The main results can be summarized as follows: We show that idiosyncratic volatility

comprises on average 71% of the total realized variance, which suggests that most of the

price variation is related to idiosyncratic factors. Given that assets with a high level

of IdV su�er from low predictability, we incorporate the market factor information in

the univariate and multivariate speci�cations. Results indicate a signi�cant improvement

in the in- and out-of-sample performance of both univariate and multivariate models.

Although all the �M� speci�cations improve upon their standard benchmarks, irrespective

3Allowing for di�erent dynamics yields to forecasts which may not always be positive de�nite, so in
this paper we correct this issue by using an eigenvalue decomposition as in Hautsch et al. (2015). Please
note that less than 2% of the forecasted covariance matrices experience this problem when N = 10.
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of the forecasting horizon, the HARQ-M model is consistently the best speci�cation. This

result is expected as this model accounts for both the market factor information and the

heteroskedastic measurement error. Using both simulated and empirical data, we show

that the statistical improvements a�orded by the models incorporating the market factor

directly translates in economic gains. These gains stem from two di�erent sources: the

forecasting accuracy and the reduced turnover. Thus, a risk-averse investor is willing to

pay up to 157 annual basis points to use one of our strategies and so obtain more accurate

�nancial decisions.

The rest of paper is structured as follows: Section 4.2 sets up the theoretical back-

ground and describes the forecasting models and evaluation criteria. Section 4.3 presents

the simulation study along with the simulation results. Section 4.4 describes the data

along with reporting the proportion of idiosyncratic volatility and realized betas, and

reports the empirical results of both the univariate and multivariate models. The global

minimum variance results are also reported in this section. Section 4.5 concludes.

4.2 Theoretical Background

We consider a factor-type log-price process, de�ned on some �ltered probability space(
Ω,F , (F)t≥0 ,P

)
, evolving continuously over time:

Yt = βXt + Zt, (4.1)

where Yt is an N -dimensional vector of log-prices, Xt is the observable market factor

process, Zt is the idiosyncratic component, and β is an N × 1 vector of constant factor

loadings.4 Following Fan et al. (2016), we assume that the dynamics of the observable

4The constant β assumption is very common in the literature (e.g. Aït-Sahalia and Xiu, 2017; Bai
and Shi, 2011; Fan et al., 2016), and Reiÿ et al. (2015) �nd evidence supportive of this assumption using
high-frequency data.
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factor and idiosyncratic component follow a continuous Itô semimartingale, that is:

Xt =

∫ t

0

asds+

∫ t

0

ηsdWs, (4.2)

Zt =

∫ t

0

bsds+

∫ t

0

γsdBs, (4.3)

where Ws and Bs are respectively a one- and an N -dimensional vector of independent

Brownian motions. as and bs are locally bounded predictable drift processes, ηs and γs

are the spot volatilities, which are adapted and càdlàg. Both bs and γs are N -dimensional

vectors. Without loss of generality, we set t equal to 1, which represents one trading day.

Therefore, the covariance of Yt has a factor structure of the form:

∫ t

0

csds = β

(∫ t

0

η′sηsds

)
β′ +

∫ t

0

γ′sγsds. (4.4)

The �rst term in the right-hand side of equation (4.4) is the systematic covariance, which

allows for common dynamics among assets. The second term is the idiosyncratic co-

variance which has a diagonal structure, meaning that idiosyncratic information is �rm-

speci�c.

The use of observed factors have an established history in empirical applications. This

is because of their excellent performance and incredibly simple estimation (e.g. Fama and

French, 1993, 1996; Fan et al., 2016; King, 1966, among others ). Although several factors

can be constructed and employed, we rely on the market factor information to capture

the systematic components that are not fully absorbed by the individual asset prices,

as evidenced by their high levels of idiosyncratic volatility (e.g. Ang et al., 2009). For

instance, illiquid or low volume assets usually have a delay in their reaction to new market

information, however, this issue is overcome by the inclusion of a market factor that is

more sensitive to economic and �nancial news. Therefore, we use the SPDR S&P 500

ETF (SPY) as the observable high frequency market factor.

Given that the variance and covariance are latent processes, in this paper we rely

on high-frequency data to consistently estimate the realized variance and covariances
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(Andersen et al., 2001b, 2003; Barndor�-Nielsen and Shephard, 2004a) as follows:

ŝt =

b1/∆nc∑
j=1

(
∆n
j Y
)2
, Ŝt =

b1/∆nc∑
j=1

(
∆n
j Y
)′ (

∆n
j Y
)
, (4.5)

where ∆n
j Y =

(
∆n
j Y

(i)
)
i=1,...,N

, and ∆n
j Y

(i) = Y
(i)
j∆n
− Y (i)

(j−1)∆n
, j = 1, . . . , n, ∆n = 1/n

is the sampling intervals, and n is the number of high-frequency increments per day. Of

course, when N = 1 the realized covariance estimator reduces to the realized variance.

In the sequel, we will refer to the realized variance of the stocks using lower case, ŝt, and

to the realized covariance matrix using upper case, Ŝt. The realized variance of the index

is estimated using the same approach, and we refer to it as ĥt =
∑b1/∆nc

j=1

(
∆n
jX
)2, where

∆n
jX = Xj∆n −X(j−1)∆n .

4.2.1 Forecasting Models and Evaluation Criteria

The most popular method of modelling the quantities outlined in equation (4.5) is

the heterogeneous autoregressive (HAR) model of Corsi (2009), which has emerged as

the standard univariate benchmark for reduced form realized volatility modelling:

ŝt = β0 + βdŝt−1 + βwŝt−5|t−1 + βmŝt−22|t−1 + εt, (4.6)

where ŝt−h|t−1 = 1
h

∑h
i=1 ŝt−i. The most popular extension of the HAR model, is the

HAR-Q model proposed by Bollerslev et al. (2016), which accounts for the measurement

error observed in realized volatility measures:

ŝt = β0 +
(
βd + βdππ

1/2
t−1

)
ŝt−1 + βwŝt−5|t−1 + βmŝt−22|t−1 + εt, (4.7)

where πt = n
3

∑b1/∆nc
j=1

(
∆n
j Y
)4 is a consistent estimator of the integrated quarticity as

shown in Barndor�-Nielsen and Shephard (2002a).

Given the current evidence that idiosyncratic volatility has increased substantially

(e.g. Campbell et al., 2001; Xu and Malkiel, 2003), and that generally stocks with high

idiosyncratic volatility su�er from low predictability (e.g. Ang et al., 2009), we propose

110



simple extensions of the HAR and HARQ models that introduce the daily information

of the market factor, giving rise to the HAR-M and HARQ-M models. The inclusion of

the market factor contributes with additional sectorial and systematic information, which

may not be fully absorbed by the individual asset prices.5 The HAR-M and HARQ-M

models are outlined as:6

ŝt = β0 + βdŝt−1 + βwŝt−5|t−1 + βmŝt−22|t−1 + βhĥt−1 + εt, (4.8)

ŝt = β0 +
(
βd + βdππ

1/2
t−1

)
ŝt−1 + βwŝt−5|t−1 + βmŝt−22|t−1 + βhĥt−1 + εt. (4.9)

Chiriac and Voev (2011) and Bollerslev et al. (2018) have proposed multivariate ex-

tensions of the HAR and HARQ models. Both adaptations, consider a simple scalar

speci�cation for the vectorized form of the covariance matrix. In this paper, we relax the

assumption that all the elements in the covariance matrix share the same dynamics, and

instead consider the case in which each variance-covariance term has its own dynamics.7

Let Ŝt ≡ vech
(
Ŝt

)
, then the vech-HAR and vech-HARQ models are:8

Ŝt = θ0 + θdŜt−1 + θwŜt−5|t−1 + θmŜt−22|t−1 + εt, (4.10)

Ŝt = θ0 + (θd + θdΓ
Γt−1) Ŝt−1 + θwŜt−5|t−1 + θmŜt−22|t−1 + εt, (4.11)

where Γt ≡
√

diag (Πt), and Πt is a feasible estimator of the asymptotic variance of Ŝt

proposed by Barndor�-Nielsen and Shephard (2004a). Speci�cally, we de�ne ∆n
jU ≡

5As mentioned in the introduction, previous literature has advocated the use of implied volatility as
a predictor for future stock volatility. However, the evidence is mixed and suggests that even though the
implied volatility is an e�cient estimator of the future volatility, it is biased and therefore contains little
predictive information content.

6We also tried correcting for the measurement error in the market factor. The results show that
the magnitude of the π parameter for the market factor is negligible and its presence does not improve
neither the in- nor the out-of-sample performance.

7Bauer and Vorkink (2011) use a similar approach, to forecast realized covariance matrices, that rely
on latent factors which are functions of lagged volatility, lagged returns, and other forecasting variables.

8Following Bollerslev et al. (2018), for horizons h = 5 and h = 22, the correction is respectively
applied to the weekly and monthly estimates.
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vech
(
∆n
j Y
′∆n

j Y
)
:

Πt = n

b1/∆nc∑
j=1

(
∆n
jU
)′ (

∆n
jU
)
− n

2

b1/∆nc∑
j=2

((
∆n
j−1U

)′ (
∆n
jU
)

+
(
∆n
jU
)′ (

∆n
j−1U

))
. (4.12)

The multivariate HAR-M and HARQ-M models are therefore outlined as:

Ŝt = θ0 + θdŜt−1 + θwŜt−5|t−1 + θmŜt−22|t−1 + θhĥt−1 + εt, (4.13)

Ŝt = θ0 + (θd + θdΓ
Γt−1) Ŝt−1 + θwŜt−5|t−1 + θmŜt−22|t−1 + θhĥt−1 + εt. (4.14)

The forecasts are evaluated using the Frobenius norm, which results in the mean-square

error (MSE) for univariate forecasts, and the QLIKE loss function:

Frob(Ht, Ŝt) = Tr

[(
Ht − Ŝt

)′ (
Ht − Ŝt

)]
, (4.15)

QLIKE(Ht, Ŝt) = Tr
(
H−1
t Ŝt

)
− log

(∣∣∣H−1
t Ŝt

∣∣∣)−N, (4.16)

where Ŝt is the ex-post (co)variance proxy, andHt denote the �tted (co)variance forecasts.

As shown by Laurent et al. (2013) and Patton (2011b), the ranking produced by both loss

functions based on covariance proxies is consistent with those based on the true latent

(co)variance process.

As shown by Callot et al. (2017); Hautsch et al. (2015) the multivariate forecasts may

render non-positive de�nite matrices. To overcome this issue, we follow Hautsch et al.

(2015) and apply eigenvalue cleaning to every matrix that has eigenvalues smaller than

or equal to 0. The spectral decomposition of the matrix Ht = V ′t ΛtVt, where Vt is the

matrix of eigenvectors, and Λt is a diagonal matrix with the N eigenvalues λi,t on its

diagonal. Let λmp,t = min{λi,t|λi,t > 0}, replace all the λi,t < λmp,t, and de�ne Λ̃t as the

diagonal matrix with the cleaned eigenvalues on its diagonal. Therefore, the regularized

forecast matrix H̃t = V ′t Λ̃tVt is by construction positive de�nite.
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4.3 Simulation Study

Using a factor-type structure based on the one-factor stochastic volatility model as

in Huang and Tauchen (2005), we simulate a d-dimensional process for dYi,t, i = 1, . . . , 5

as:
dYi,t = βidXt + dZi,t,

dXt = bdt+ exp{κυt}dWt,

dυ2
t = αυυ

2
t dt+ dW υ

t ,

dZi,t = exp{γνi,t}dBi,t,

dν2
i,t = ανν

2
i,tdt+ dBν

i,t,

(4.17)

Where W and W υ are one-dimensional standard Brownian motions with E[dWtdW
υ
t ] =

ρdt, B andBν are d-dimensional Brownian motions, for i = 1, 2, . . . , 5, with E[dBi,tdB
ν
i,t] =

ςdt. We choose (b, κ, αυ, γ, αν , ρ, ς) = (0.03, 0.095,−0.15, 0.125,−0.05,−0.4,−0.62) the

value of these parameters follow closely those of Huang and Tauchen (2005).9 The

loading factor or so-called systematic risk follows a uniform distribution as follows:

βi ∼ U [0.45, 1.5] for i = 1, 2, . . . , 5. We use the stationary distribution of ν2
t and υ2

t

to restart the process each day at ν2
i,0 ∼ N

(
0, (−2αν)

−1) and υ2
i,0 ∼ N

(
0, (−2αυ)

−1),
respectively. Employing an Euler scheme, we simulate T = 2, 000 days, and normalize

one second to be ∆n = 1/23400, so that the interval [0, 1] contains 6.5 hrs, i.e. n = 23, 400

observations.

Since the choice of the sampling frequency plays a fundamental role in any study using

intraday returns, we add microstructure noise so that we can evaluate the performance

across various sampling frequencies. We �rst simulate the log-prices of all the assets at

the second frequency, then contaminate the data to simulate the impact of microstructure

noise. As is customary in the literature, we add normal random noise with mean zero and

variance 0.052. We then aggregate the data to lower frequencies such that 5-min, 10-min

9We have calibrated these parameters such that the contribution of idiosyncratic volatility to total
realized variance oscillates between 35%�80%. Although these values are slightly below and above the
range we �nd in our dataset, it allows us to account for any other variation not captured in our sample.
Figure 4.1 displays a realization of the total realized variance and the idiosyncratic volatility across the
2,000 simulated days. In this example, idiosyncratic volatility accounts for approximately 68% of the
total realized variance.
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and 15-min, which are equivalent to 78, 39 and 26 observations per day. The forecasts

are based on a rolling window of 500 days and 1,000 replications.

We report the portfolio turnover de�ned in equation (4.20), as well as the portfolio

standard deviation based on the population covariances,
√
ŵtΣtŵ′t. We also assess the

distance of the estimated weights to the fundamental weights, based on the population

covariances, d
(
ŵ

(i)
t , w

(i)
t

)
=

√∑d
i=1

(
ŵ

(i)
t − w

(i)
t

)2

.

Table 4.1 displays in two panels the portfolio characteristics (Panel A), and the out-of-

sample performance (Panel B) of the HAR-M and HARQ-M models and their standard

counterparts across sampling frequencies. By �rst comparing the results of the models

across sampling frequencies, we observe that the portfolio characteristics based on 5-min

returns are closer to the optimal estimates. This �nding is corroborated by the loss

functions, which show that the forecasts based on realized covariances estimated using

5-min returns produce the least amount of deviations.

Turning our attention to the performance of the models, we clearly observe a consistent

decrease in the losses of the HAR-M and HARQ-M models, which of course stem from

the use of the market factor information. The statistically more accurate covariance

forecasts from adding the market factor information should result in portfolio allocations

closer to the optimal weights implied by the population covariance matrix. Moreover,

models accounting for the attenuation bias should render more stable portfolios and

therefore display a reduced turnover (e.g. Bollerslev et al., 2018). As shown in Panel

A of Table 4.1, the portfolio turnover, standard deviation and the weights are always

closer to the optimal estimates when the market factor information is added into the

model. This result holds true irrespective of the sampling frequency under analysis. As

expected, the HARQ-(M) models render the smallest turnover and standard deviation,

since accounting for the measurement error observed in the realized covariance leads to

more stable portfolios. However, the HAR-M model usually provides as good performance

as the standard HARQ model, although the HARQ-M model consistently outperforms

all the other speci�cations. The superior performance of the HARQ-M model provides

evidence that accounting for the measurement error is important, but further gains can
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be attained when the information content of the market factor is exploited.

4.4 Empirical Results

4.4.1 Data

We use 5-minute returns obtained from Tick Data Inc., spanning a time period be-

tween January 2000 to December 2016.10 The �ve-minute frequency has largely become

the standard in the literature due to the trade-o� between bias and variance (e.g. Hansen

and Lunde, 2006), which is readily shown by the volatility signature plot in Figure 4.2.

We consider 30 S&P 500 assets that traded continuously over the time period, along with

returns of the SPY as the market factor. We evaluate all individual stocks in the uni-

variate setting, while for the multivariate case we evaluate the forecasting performance

of 100 random portfolios based on N = 5 and N = 10 assets.

Table 4.2 reports the descriptive statistics of our dataset. Each panel shows the

mean and standard deviation of the RV, the realized beta (β), the idiosyncratic volatility

and trading volume.11 We consider a balanced panel of assets from di�erent sectors,

various levels of trading activity, and di�erent systematic risk exposures. The idiosyn-

cratic volatility represents about 71% of the total volatility across assets, as shown in

Figure 4.3, whereas the proportion of idiosyncratic volatility to total variance oscillates

between 57.4% to 87.7%, with FTR (Frontier Communications Corp) and GE (General

Electric) displaying respectively the least and highest proportion.

10The multivariate literature, in an attempt to reduce the impact of the Epps (1979) e�ect, sample
prices less frequent than 5-minutes. However, signature plots of the correlation (see Figure 4.2) show
that the 5-minute sampling frequency is as good as 10- and 15-minute returns generally employed.

11The RV and idiosyncratic volatility (IdV) are annualized, and the idiosyncratic volatility is estimated

as IdV =
∑b1/∆nc
j=1

(
∆n
j Y − β∆n

jX
) (

∆n
j Y − β∆n

jX
)′
. The volume is reported in millions.
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4.4.2 Univariate Results

In-sample Results

Table 4.3 reports the parameter estimates as an average across the 30 assets, together

with robust standard errors in parentheses, for all the forecasts horizons. As a measure

of �t, we report the average adjusted R-squares in the last row of Table 4.3. In line

with previous results documented in the literature (Bollerslev et al., 2016; Corsi, 2009),

the autoregressive parameter estimates of both the HAR and HARQ models are strongly

signi�cant, across all forecasting horizons, with the HARQ model a�ording a greater level

of persistence. For the HAR-M and HARQ-M models both the autoregressive and the

market factor estimates are signi�cant irrespective of the forecast horizon. The inclusion

of the market factor decreases the load assigned to the daily coe�cient by approximately

25% and 12% for the HAR-M and HARQ-M models, respectively. On the other hand,

the weekly (h = 5) and monthly (h = 22) estimates are not signi�cantly impacted by

the market factor information.12 This result indicates that the market factor information

helps to react faster to new information that is not always contained in the asset price

information set, and therefore it subsumes a portion of the information contained at the

daily level of past realized variances.

The R-squares rea�rm the relevance of including a market factor, as the HAR-M and

HARQ-M models consistently improve the in-sample �tting of their standard counter-

parts, specially at longer horizons.

Out-of-sample Results

The out-of-sample performance of the univariate models is reported in Table 4.4. The

forecasts are estimated using rolling windows of 1,000 observations, yielding a total of

3,277 out-of-sample forecasts. We report in three panels the losses of the HAR(Q)-M

models standardized by the losses of the HAR(Q) models across all forecasting horizons.

In brackets we report the proportion of assets that are retained by the Model Con�dence

12We also tried adding the weekly and monthly levels of the market factor. Although the results are
improved irrespective of the horizon at which the market factor is added, the results are consistently
superior when the market factor is added at the daily level.
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Set (MCS) of Hansen et al. (2011), at the 10% signi�cance level, which is estimated

using a block bootstrap with 5,000 replications and a block window of 20 days. Starred

values highlight the proportion of assets for which the HAR(Q)-M models signi�cantly

outperform their standard counterparts, based on the Giacomini and White (2006) test,

at the 5% signi�cance level. A single star shows proportions between [0, 0.25), two stars

indicate proportions between [0.25, 0.5), three stars are for proportions between [0.5, 0.75),

and four stars indicate proportions between [0.75, 1.00].

As shown in Table 4.4, irrespective of the loss function under analysis, the HAR-M

and HARQ-Mmodels consistently outperform their standard counterparts. Whereas both

speci�cations bene�t from the market factor information across all forecasting horizons,

we observe bigger out-of-sample gains at the month horizon (Panel C), which is inline

with the in-sample results. As evidenced by the Giacomini and White test, speci�cations

incorporating the market factor in most cases signi�cantly outperform their counterparts

between 0.25�0.50 (0.50�0.75) of the assets based on the MSE (QLIKE).

As expected from the evidence shown by Bollerslev et al. (2016), the models account-

ing for the heteroskedastic measurement error, which is inherent to any volatility mea-

sure, signi�cantly outperform the standard speci�cations. However, we observe further

improvements when we incorporate the market factor. For instance, the MCS always re-

tains the HARQ-M model across all forecasting horizons. On the other hand, the HARQ

model is retained for about 77% and 93% of the assets at h = 1 and h = 22, respectively.

4.4.3 Multivariate Results

The multivariate forecasts are based on 100 random portfolios of dimension N = 5, 10,

where the assets are randomly chosen from our panel of 30 S&P 500 constituents. The

forecasts are generated using the same settings employed for the univariate case (see

Section 4.4.2). We allow for di�erent dynamics in the unique elements of the covariance

matrix, and therefore they are modelled separately. Whereas for the case of N = 5 all

the forecasts are positive de�nite, for the case of N = 10 we �nd that less than 2% of the

forecasted covariance matrices are non positive de�nite. Thus, we employ the eigenvalue
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decomposition as in Hautsch et al. (2015), and replace the eigenvalues which are less

than or equal to zero with the smaller non-zero and positive eigenvalue. See the end of

Section 4.2.1 for more details.

Since the main object of interest is the forecasts of the realized covariances, we focus on

the out-of-sample performance of the multivariate extensions of the HAR-M and HARQ-

M models. These results are reported in Table 4.5. Similar to the univariate results,

we report in three panels the out-of-sample standardized losses at the one-day (h = 1),

one-week (h = 5) and one-month (h = 22) horizon. In brackets, we show the proportion

of portfolios that are retained by the MCS, and the starred values show the proportion

of portfolios for which the HAR-M (HARQ-M) model has signi�cantly outperformed its

benchmark model based on the Giacomini and White test at the 5% signi�cance level.

A single star shows proportions between [0, 0.25), two stars indicate proportions between

[0.25, 0.5), three stars are for proportions between [0.5, 0.75), and four stars indicate

proportions between [0.75, 100].

In line with our results presented for the univariate case, the multivariate HAR-M

and HARQ-M consistently outperform their counterparts irrespective of the forecasting

horizon and whether we consider portfolios of 5 or 10 assets. For instance, for h = 5

and N = 10, the proportion of portfolios for which the HAR-M model signi�cantly

outperforms the HAR model oscillate between 0.75�1.00, while on average the proportion

of portfolios for which the HAR(Q)-M model signi�cantly outperforms its counterpart

ranges between 0.25�0.50.

To assess the performance across all the models, we rely in the MCS of Hansen et al.

(2011). As shown by Bollerslev et al. (2016, 2018), speci�cations taking into account

the heteroskedastic measurement error signi�cantly improve upon the results of standard

speci�cations. Our results show that the HARQ-(M) models are often retained by the

MCS, although the HARQ-M model is the only speci�cation that is never excluded. This

indicates that whereas accounting for the heteroskedastic measurement error improves

the forecasting accuracy of the covariance matrices, the use of the market factor yields

to further improvements and therefore its information content cannot be ignored.
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Economic Value

We assess the economic value of the di�erent models by constructing Global Mini-

mum Variance (GMV) portfolios.13 We employ daily, weekly and monthly rebalancing

frequencies, and in each period the investor solves the following minimization problem:

ŵt = arg min
wt

w′tHtwt,

s.t. w′tι = 1,

(4.18)

where wt is an N × 1 vector of GMV portfolios weights, ι is an N × 1 vector of ones, and

Ht is the N ×N matrix of forecasted covariances from a particular model. The optimal

portfolio weights, ŵt, are given by:

ŵt =
H−1
t ι

ι′H−1
t ι

. (4.19)

Given that models using the market factor information generally render more accurate

forecasts, we also evaluate important portfolio characteristics that underscore the bene�ts

of our models. For instance, it is well-known that inaccurate forecasts lead to both

extreme positions and higher trading costs (e.g. DeMiguel et al., 2014; Han, 2006). Thus,

we report the total portfolio turnover, portfolio concentration and portfolio short position.

The portfolio turnover (TO) is measured by:14

TOt =
N∑
i=1

∣∣∣∣∣ŵ(i)
t+1 − ŵ

(i)
t

1 + r
(i)
t

1 + ŵ
′
trt

∣∣∣∣∣ , (4.20)

This yields a portfolio excess return net of transaction cost, cTOt, of:

rp,t = ŵ
′

trt − cTOt. (4.21)

13As shown by Jagannathan and Ma (2003) and DeMiguel et al. (2009, 2014) mean-variance opti-
mized portfolios do not perform as well as GMV portfolios in terms of out-of-sample evaluations, as the
estimation error in the expected returns tends to distort the positions.

14r
(i)
t =

∑b1/∆nc
j=1 ∆n

j Y
(i) is the daily return of the i-th asset.
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The portfolio concentration is estimated as:

PCt =

(
N∑
i=1

(
ŵ

(i)
t

)2
)1/2

, (4.22)

and the total portfolio short positions:

SPt =
N∑
i=1

ŵ
(i)
t 1{ŵ(i)

t <0}. (4.23)

To evaluate the economic signi�cance of the di�erent forecasting models, we consider

the utility-based framework of Fleming et al. (2001, 2003). We assume that the investor

has quadratic utility with risk aversion γ, therefore the realized utility generated by the

portfolio based on the covariance forecasts from model k is expressed as:

U
(
r

(k)
p,t , γ

)
=
(

1 + r
(k)
p,t

)
− γ

2(1 + γ)

(
1 + r

(k)
p,t

)2

. (4.24)

The economic value of the di�erent models can therefore be determined by solving ∆γ

in:

T∑
t=1

U
(
r

(k)
p,t , γ

)
=

T∑
t=1

U
(
r

(l)
p,t −∆γ, γ

)
, (4.25)

where ∆γ can be interpreted as the return an investor with risk aversion, γ, would be

willing to pay to switch from using the model k to using model l.

The daily, weekly and monthly rebalancing portfolio results are respectively shown in

Tables 4.6, 4.7 and 4.8. We report in two panels the results for the average 100 portfolios

based on N = 5 and N = 10 assets. As portfolio characteristics, we report the turnover,

portfolio short position and portfolio concentration. Since short positions are usually

costly and portfolio concentration provides evidence about extreme positions, these two

characteristics are good indicators to highlight the improved stability and accuracy of

our �nancial decisions. The bottom of each table shows the economic gains of switching

from each standard HAR and HARQ model to the HAR-M and HARQ-M model. We
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consider two levels of risk-aversion γ = 1, 10 and transaction costs c = 0%, 0.5%, where

c = 0% is equivalent to no transaction costs. To assess the economic signi�cance of our

strategies, i.e. whether ∆γ are signi�cantly di�erent from zero, we use the Reality Check

of White (2000). We employ the stationary bootstrap of Politis and Romano (1994),

with 5,000 bootstrap samples and an average block length of 20 days. We highlight

the signi�cance performance using a single star when the proportion of portfolios with

signi�cant economic gains lies between [0, 0.25), two stars indicate proportions between

[0.25, 0.5), three stars are for proportions between [0.5, 0.75), and four stars indicate

proportions between [0.75, 1.00].

The daily rebalancing portfolio strategies based on the HAR-M and HARQ-M mod-

els (Table 4.6) show a consistent decrease in their turnover compared to the standard

strategies. For N = 5 (N = 10), the turnover is reduced up to 11% (5%) for the HAR-M

(HARQ-M) model. This result is in line with the simulation study and corroborate the

statistical gains reported in Section 4.4.3. The portfolio short positions of the models

incorporating the market factor information is bounded by the short positions of the

standard models. In other words, the HAR-M and HARQ-M models display a level of

SP which is either equal or smaller than that of their benchmark. On the other hand,

the portfolio concentration is always smaller for the HAR-M and HARQ-M models. This

shows evidence that the market factor leads to more accurate forecasts of the covariance

matrix, which therefore reduces the extreme positions that are usually associated with

poor out-of-sample predictions.

Given that the gains come from two di�erent sources: forecasting accuracy and re-

duced turnover, we �rst ignore transaction costs, so that we can evaluate the gains

stemmed from the former. The total gains for N = 5 range between 9 and 49 annual

basis points, whereas for N = 10 the gains range between 11 and 21 annual basis points.

In both cases we �nd that the proportion of portfolios with signi�cant gains usually oscil-

lates between 0�0.25. Since the HAR-M and HARQ-M models result in lower turnover,

these gains rise to 122 to 156 for N = 5 and to 55 to 142 for N = 10 when c = 0.5%.15

15Increasing the transaction cost levels from 0.5% to, say, 1% or 2% will always increase the perfor-
mance of the HAR-M and HARQ-M models.
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The increase in the economic gains is accompanied by an increase in the signi�cance of

these gains, where the proportion of portfolios with signi�cant gains lies usually between

0.5�0.75.

The weekly and monthly rebalancing portfolio results, Tables 4.7 and 4.8, show qual-

itatively similar �ndings than those based on daily rebalancing portfolios. The turnover

of the HAR-M and HARQ-M models is reduced up to 11% and 14% for respectively

weekly and monthly rebalancing strategies. The portfolio short positions and portfolio

concentration are also improved in favor of the models using the market factor, with the

HARQ-M model displaying the best overall results. The total economic gains, in the ab-

sence of transaction costs, for the weekly rebalancing oscillate between 4 to 30 for N = 5

and 10 to 15 for N = 10, whereas for the monthly rebalancing the total gains range

between 5 to 34 for N = 5 and 7 to 15 for N = 10. When transaction costs are added, we

�nd smaller gains relative to the daily strategies, nonetheless all the ∆γ's remain positive

and statistically signi�cant for all levels of risk-aversion.

The reduction in the performance fee observed at the weekly and monthly horizon

is explained by that: i) weekly and monthly strategies are cheaper as we incur in less

transaction costs; ii) the level of measurement error is smaller for weekly and monthly

realized covariances, and therefore the portfolio weights estimated based on these realized

covariances are more stable than those based on daily measures.

4.5 Conclusion

This paper proposes to model and forecast both univariate and multivariate realized

variances using the information of the market factor. The use of a market factor is moti-

vated by: i) the fact that asset prices are also in�uenced by market and industry factors,

which cannot be assumed to be contained in the individual asset price information set.

Thus, adding the market factor information makes the models react faster to new market

information; ii) the low predictability found in assets with high levels of idiosyncratic

volatility (see Ang et al., 2009).
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When both the univariate and multivariate versions of the HAR and HARQ models

are adapted to incorporate the market factor information, the result is more accurate and

signi�cant in- and out-of-sample performance of the models, across all forecasting hori-

zons. In particular, we �nd that the HAR-M and HARQ-M models render signi�cantly

bigger out-of-sample gains, and are generally retained by the MCS. These �ndings hold

true using both simulation and empirical data.

In a practical implementation, we assess the economic signi�cance using a global

minimum variance portfolio based on the forecasted covariance matrices. We �nd that a

risk-averse investor is willing to sacri�ce up to 157 annual basis points for switching to one

of the strategies using the market factor information. These gains are obtained from two

di�erent sources: the forecasting accuracy and the reduced turnover. Thus, the model

accounting for the attenuation bias and the market factor information, HARQ-M model,

signi�cantly improves the accuracy of asset pricing models and thus �nancial decisions.
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Appendix 4.A Tables and Figures

Table 4.1: Simulation Based Portfolio Characteristics and Loss Functions

n ∞ 78 39 26

Optimal HAR HAR-M HARQ HARQ-M HAR HAR-M HARQ HARQ-M HAR HAR-M HARQ HARQ-M

Panel A: Portfolio Characteristics

Turnover 0.095 0.098 0.096 0.092 0.094 0.115 0.110 0.109 0.104 0.127 0.118 0.118 0.109

StDev 0.936 0.951 0.946 0.948 0.941 0.958 0.956 0.956 0.951 0.960 0.954 0.958 0.953

d
(
ŵ

(i)
t , w

(i)
t

)
0.000 0.200 0.190 0.190 0.187 0.296 0.285 0.293 0.281 0.376 0.373 0.374 0.373

Panel B: Loss functions

QLIKE 0.253 0.249 0.254 0.247 0.485 0.481 0.468 0.448 0.725 0.723 0.722 0.703

Frob 1.753 1.746 1.747 1.742 2.204 2.199 2.203 2.197 2.576 2.570 2.476 2.457

Note: The table reports the results from a simulation study pertaining to the out-of-sample global minimum variance portfolios and statistical performance of the forecasted

covariance matrix. The covariance matrix forecasts are based on the HAR-M and HARQ-M and their standard counterparts, where the realized measures are estimated with

n intraday observations. These observations correspond to 5-, 10- and 15-min returns, while n =∞ shows the results based on the population covariance matrix. Turnover

is de�ned in equation (4.20). StDev refers to the portfolio standard deviation based on the population covariance. d
(
ŵ

(i)
t , w

(i)
t

)
reports the distance between the portfolio

weights and the weights based on the population covariance matrix.
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Table 4.2: Descriptive Statistics

RV β Idiosyncratic Vol Volume

mean std mean std mean std proportion mean std

ABT 20.727 10.802 0.695 0.360 18.177 9.895 0.784 5.535 3.095

AKS 57.857 26.816 1.613 1.207 52.196 23.608 0.807 5.125 5.229

AMZN 37.549 26.034 1.369 0.568 32.151 23.589 0.762 6.462 5.007

BA 23.548 12.420 0.902 0.344 19.668 10.275 0.695 4.347 2.406

BBY 32.857 19.287 1.048 0.535 28.979 17.757 0.796 6.103 4.373

BFB 19.447 10.283 0.584 0.343 17.532 9.390 0.817 0.875 0.708

C 30.291 27.959 1.229 0.576 24.198 22.814 0.651 16.897 22.306

CVX 20.310 10.952 0.856 0.398 16.175 7.322 0.592 7.188 3.639

DD 23.145 12.656 0.971 0.355 18.430 10.097 0.635 4.519 2.609

DVN 30.082 15.910 0.995 0.741 26.162 12.788 0.732 3.653 2.608

EBAY 33.338 23.012 1.261 0.516 28.132 20.136 0.729 15.869 10.046

EXC 22.382 12.775 0.615 0.373 20.098 10.513 0.775 3.917 2.435

FCX 39.161 22.163 1.225 0.897 34.395 18.870 0.760 15.458 15.092

FTR 31.431 19.483 0.602 0.532 29.382 18.339 0.877 6.017 7.871

GE 22.624 15.788 0.985 0.335 17.393 11.601 0.574 38.656 36.927

HD 24.235 14.118 0.962 0.345 19.784 11.007 0.652 9.746 6.416

HON 24.368 15.038 1.006 0.356 19.401 12.939 0.663 3.884 2.691

KO 17.307 9.686 0.586 0.257 14.959 8.189 0.739 13.275 6.591

MCD 20.027 12.008 0.639 0.307 17.558 10.688 0.775 5.808 3.239

MMM 18.790 10.676 0.821 0.277 14.756 8.636 0.626 3.265 1.813

MRK 21.508 12.251 0.713 0.335 18.689 10.419 0.747 10.259 6.848

MSFT 22.772 12.518 1.015 0.345 17.712 8.954 0.583 54.765 28.667

ORCL 29.646 19.658 1.207 0.494 23.838 15.374 0.636 31.956 19.015

PEG 21.673 12.262 0.613 0.374 19.332 9.875 0.760 2.398 1.369

PFE 21.617 10.977 0.761 0.323 18.563 9.230 0.731 28.672 18.751

SO 18.459 9.941 0.489 0.314 16.734 8.705 0.809 3.203 1.869

TRV 22.120 16.086 0.728 0.373 18.989 13.692 0.733 2.390 1.637

UPS 17.610 10.273 0.698 0.349 14.390 8.176 0.659 3.045 2.079

WFC 24.919 21.525 1.029 0.523 19.663 16.345 0.603 21.680 27.560

WMT 19.500 11.629 0.698 0.298 16.463 9.540 0.702 10.569 6.339

Note: The table reports for each individual asset the averages and time series standard

deviations of their volatilities (annualized) of each individual asset, their estimated realized

betas with respect to the SPY market index, their idiosyncratic volatility (annualized) to-

gether with their proportion to total volatility, and their trading volume. The idiosyncratic

volatility is estimated as IdV =
∑b1/∆nc

j=1

(
∆n
j Y − β∆n

jX
) (

∆n
j Y − β∆n

jX
)′.
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Table 4.3: Univariate Models In-sample Estimates

HAR HAR-M HARQ HARQ-M HAR HAR-M HARQ HARQ-M HAR HAR-M HARQ HARQ-M

h = 1 h = 5 h = 22

β0 0.517 0.480 0.129 0.170 0.692 0.658 0.380 0.417 1.085 1.058 0.845 0.869

s.e. (0.173) (0.180) (0.206) (0.210) (0.211) (0.203) (0.214) (0.215) (0.256) (0.223) (0.212) (0.202)

βd 0.236 0.178 0.566 0.502 0.158 0.110 0.413 0.357 0.091 0.065 0.282 0.249

s.e. (0.079) (0.088) (0.113) (0.116) (0.047) (0.057) (0.098) (0.092) (0.022) (0.037) (0.080) (0.074)

βw 0.345 0.328 0.275 0.265 0.303 0.289 0.250 0.242 0.238 0.230 0.199 0.194

s.e. (0.122) (0.116) (0.108) (0.106) (0.087) (0.084) (0.083) (0.082) (0.077) (0.074) (0.073) (0.071)

βm 0.288 0.251 0.168 0.154 0.361 0.331 0.270 0.258 0.384 0.363 0.316 0.308

s.e. (0.098) (0.090) (0.096) (0.096) (0.106) (0.099) (0.096) (0.096) (0.084) (0.082) (0.086) (0.087)

βh 0.342 0.193 0.299 0.176 0.183 0.106

s.e. (0.187) (0.109) (0.125) (0.101) (0.106) (0.057)

βdπ −0.002 −0.002 −0.002 −0.002 −0.001 −0.001

s.e. (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

R2
adj 0.461 0.470 0.487 0.492 0.575 0.589 0.602 0.609 0.552 0.565 0.574 0.581

Note: The table reports in three panels the parameter estimates for 1-day, 1-week, and 1-month ahead forecasts as an average across all the

individual assets, together with robust standard errors in parentheses. The robust standard errors are estimated using the Newey-West HAC

correction allowing fro serial correlation up to order 5 (h = 1), 10 (h = 10) and 44 (h = 22). The last row reports the adjusted R-squares as

an average across all the individual assets.
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Table 4.4: Univariate Models Out-of-Sample Results

HAR HAR-M HARQ HARQ-M

Panel A: h = 1

MSE 1.000 0.927? 1.000 0.989?

MCS [0.533] [0.633] [0.767] [1.000]

QLIKE 1.000 0.977??? 1.000 0.981??

MCS [0.400] [0.467] [0.733] [1.000]

Panel B: h = 5

MSE 1.000 0.943?? 1.000 0.946??

MCS [0.667] [0.767] [0.900] [1.000]

QLIKE 1.000 0.954??? 1.000 0.978???

MCS [0.500] [0.567] [0.833] [1.000]

Panel C: h = 22

MSE 1.000 0.897?? 1.000 0.920??

MCS [0.667] [0.800] [0.930] [1.000]

QLIKE 1.000 0.952?? 1.000 0.968??

MCS [0.633] [0.733] [0.733] [1.000]

Note: The table reports in three panels the out-of-sample forecast

loss for the di�erent models at the 1-day (Panel A), 1-week (Panel B)

and 1-month (Panel C) ahead. The loss of the HAR-M (HARQ-M)

is standardized by the loss of the HAR (HARQ) model. In brack-

ets we report the proportion of stocks that are retained by the Model

Con�dence Set (MCS) of Hansen et al. (2011) at the 10% signi�cance

level. Starred values indicate the proportion of individual stocks for

which the HAR-M (HARQ-M) model has signi�cantly outperformed

its benchmark model based on the Giacomini and White (2006) at

the 5% level. A single star shows proportions between [0, 0.25), two

stars indicate proportion between [0.25, 0.5), three stars is for propor-

tions between [0.5, 0.75), and four stars indicate proportion between

[0.75, 1.00].
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Table 4.5: Multivariate Models Out-of-Sample Results

HAR HAR-M HARQ HARQ-M HAR HAR-M HARQ HARQ-M

Portfolio N = 5 Portfolio N = 10

Panel A: h = 1

Frob 1.000 0.981??? 1.000 0.991?? 1.000 0.985?? 1.000 0.993?

MCS [0.530] [0.710] [0.840] [1.000] [0.580] [0.630] [0.780] [1.000]

QLIKE 1.000 0.994?? 1.000 0.921??? 1.000 0.996? 1.000 0.849???

MCS [0.200] [0.450] [0.730] [1.000] [0.270] [0.320] [0.630] [1.000]

Panel B: h = 5

Frob 1.000 0.965??? 1.000 0.986??? 1.000 0.970???? 1.000 0.987???

MCS [0.440] [0.650] [0.860] [1.000] [0.170] [0.410] [0.700] [1.000]

QLIKE 1.000 0.985??? 1.000 0.888??? 1.000 0.991? 1.000 0.804???

MCS [0.140] [0.450] [0.790] [1.000] [0.120] [0.240] [0.710] [1.000]

Panel C: h = 22

Frob 1.000 0.973??? 1.000 0.993? 1.000 0.974??? 1.000 0.993??

MCS [0.510] [0.810] [0.900] [1.000] [0.320] [0.800] [0.890] [1.000]

QLIKE 1.000 0.960? 1.000 0.922? 1.000 0.940? 1.000 0.870??

MCS [0.580] [0.760] [0.950] [1.000] [0.240] [0.330] [0.910] [1.000]

Note: The table reports in three panels the out-of-sample forecast loss for the di�erent models at the 1-day

(Panel A), 1-week (Panel B) and 1-month (Panel C) horizons. The left (right) column shows the average

results of 100 random portfolios based on 5 (10) assets. The loss of the HAR-M (HARQ-M) is standardized by

the loss of the HAR (HARQ) model. In brackets we report the proportion of portfolios that are retained by the

Model Con�dence Set (MCS) of Hansen et al. (2011) at the 10% signi�cance level. Starred values indicate the

proportion of portfolios for which the HAR-M (HARQ-M) model has signi�cantly outperformed its benchmark

model based on the Giacomini and White (2006) at the 5% level. A single star shows proportions between

[0, 0.25), two stars indicate proportions between [0.25, 0.5), three stars is for proportions between [0.5, 0.75),

and four stars indicate proportions between [0.75, 1.00].
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Table 4.6: Minimum Variance Portfolios � Daily Rebalancing

HAR HAR-M HARQ HARQ-M HAR HAR-M HARQ HARQ-M

Portfolio N = 5 Portfolio N = 10

TO 0.227 0.202 0.212 0.209 0.402 0.397 0.375 0.358

SP −0.020 −0.018 −0.018 −0.018 −0.108 −0.088 −0.091 −0.090

PC 0.584 0.575 0.617 0.592 0.497 0.495 0.470 0.430

c = 0%

∆1 49.200?? 44.092?? 18.809? 21.329?

∆10 10.762? 8.914? 17.129? 10.745?

c = 0.5%

∆1 141.169???? 156.871???? 119.211??? 142.231???

∆10 121.796??? 147.326??? 55.311?? 68.739???

Note: The table shows the average results for the global minimum variance portfolio (GMV) based

on 100 random portfolios of 5 and 10 assets. We report turnover (TO), portfolio short positions (SP)

and portfolio concentration (PC). The table also reports the economic gains from switching from the

conventional HAR (HARQ) model to the HAR-M (HARQ-M) model in annual basis points, ∆γ, for

cases with(out) transaction cost c = 0.5% (c = 0%). Starred values indicate that ∆γ is signi�cantly

di�erent from zero at the 5%, based on the Reality Check of White (2000) using a stationary bootstrap

with 999 replications and a block window of 20 days. A single star shows proportions between [0, 0.25),

two stars indicate proportions between [0.25, 0.5), three stars are for proportions between [0.5, 0.75),

and four stars indicate proportions between [0.75, 1.00].
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Table 4.7: Minimum Variance Portfolios � Weekly Rebalancing

HAR HAR-M HARQ HARQ-M HAR HAR-M HARQ HARQ-M

Portfolio N = 5 Portfolio N = 10

TO 0.146 0.130 0.123 0.118 0.255 0.246 0.252 0.237

SP −0.016 −0.015 −0.015 −0.012 −0.070 −0.068 −0.067 −0.065

PC 0.577 0.571 0.605 0.596 0.482 0.480 0.471 0.455

c = 0%

∆1 29.861?? 24.530? 11.578? 15.371?

∆10 5.454? 4.118? 10.261? 10.524?

c = 0.5%

∆1 71.151??? 89.026??? 80.445??? 94.762???

∆10 42.673?? 51.689??? 32.792?? 53.737???

Note: The table shows the average results for the global minimum variance portfolio (GMV) based

on 100 random portfolios of 5 and 10 assets. We report turnover (TO), portfolio short positions (SP)

and portfolio concentration (PC). The table also reports the economic gains from switching from the

conventional HAR (HARQ) model to the HAR-M (HARQ-M) model in annual basis points, ∆γ, for

cases with(out) transaction cost c = 0.5% (c = 0%). Starred values indicate that ∆γ is signi�cantly

di�erent from zero at the 5%, based on the Reality Check of White (2000) using a stationary bootstrap

with 999 replications and a block window of 20 days. A single star shows proportions between [0, 0.25),

two stars indicate proportions between [0.25, 0.5), three stars are for proportions between [0.5, 0.75),

and four stars indicate proportions between [0.75, 1.00].
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Table 4.8: Minimum Variance Portfolios � Monthly Rebalancing

HAR HAR-M HARQ HARQ-M HAR HAR-M HARQ HARQ-M

Portfolio N = 5 Portfolio N = 10

TO 0.104 0.089 0.096 0.088 0.177 0.168 0.171 0.161

SP −0.016 −0.015 −0.010 −0.010 −0.067 −0.065 −0.064 −0.066

PC 0.575 0.570 0.579 0.572 0.479 0.478 0.432 0.422

c = 0%

∆1 34.352?? 55.604?? 15.121? 14.264?

∆10 5.632? 11.125? 7.663? 10.844?

c = 0.5%

∆1 57.340?? 71.931??? 45.292?? 53.378??

∆10 29.573?? 38.120?? 25.377? 42.775??

Note: The table shows the average results for the global minimum variance portfolio (GMV) based

on 100 random portfolios of 5 and 10 assets. We report turnover (TO), portfolio short positions (SP)

and portfolio concentration (PC). The table also reports the economic gains from switching from the

conventional HAR (HARQ) model to the HAR-M (HARQ-M) model in annual basis points, ∆γ, for

cases with(out) transaction cost c = 0.5% (c = 0%). Starred values indicate that ∆γ is signi�cantly

di�erent from zero at the 5%, based on the Reality Check of White (2000) using a stationary bootstrap

with 999 replications and a block window of 20 days. A single star shows proportions between [0, 0.25),

two stars indicate proportions between [0.25, 0.5), three stars are for proportions between [0.5, 0.75),

and four stars indicate proportions between [0.75, 1.00].
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Figure 4.1: Simulated Realized and Idiosyncratic Volatility
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Note: The �gure depicts the simulated realized and idiosyncratic volatility across the
2,000 simulated days based on the Monte Carlo set up outlined in Section 3.15.
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Figure 4.2: Signature Plots
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Note: The �gure shows in two panels the correlation and the volatiliy signature plots.
The correlation is the average correlation across every unique element below the main
diagonal of the covariance matrix, i.e. the average of N(N − 1)/2 unique elements, while
the volatility is the average across the 30 assets in our dataset. The x-axis shows the
number of intraday observations for each sampling frequency, i.e. 780 (30-sec), 390 (1-
min), 260 (1.5-min), 195 (2-min), 78 (5-min), 39 (10-min), 26 (15-min) and 13 (30-min).
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Figure 4.3: Average Annualized Realized and Idiosyncratic Volatility
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Note: The �gure depicts the average annualized realized and idiosyncratic volatility across
all the stocks.
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Part II

Identifying the Underlying

Components of High-Frequency Data

and the Predictive Information Content

of Jumps
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Chapter 5

Evaluating the Underlying Components

of High Frequency Financial Data:

Finite Sample Performance and

Microstructure Noise E�ects

5.1 Introduction

Following Bachelier (1900), a general presumption has been that the continuous evo-

lution of asset prices is driven by Brownian motion processes. However, the failure of

Brownian increments to explain heavy-tails observed in the distributions of returns, un-

dermines that presumption. With an alternative approach, Merton (1976) proposes a

�nite-jump di�usion process,1 which successfully mimics empirical continuous and jump

components. As small jumps eliminate the need of a Brownian component, the attraction

of pure jump processes lies with their versatility and �exibility.2

1The �nite-jump di�usion of Merton (1976) considers a compound Poisson process to model the jump
part.

2Some in�nite jump models are the variance gamma model (Madan and Seneta, 1990), the hyperbolic
model of (Eberlein and Keller, 1995), the CGMY Carr et al. (2002), the COGARCH model (Klüppelberg
et al., 2004), the non Gaussian Ornstein-Uhlenbeck-based models Barndor�-Nielsen and Shephard (2001),
the CARMA model (Brockwell, 2001), the normal inverse Gaussian Barndor�-Nielsen (1997); Rydberg
(1997), among others.
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Advances in computer power and the widening access to high frequency data fuel

novel statistical procedures that can test for the properties of the underlying process.

There are tests to identify jumps (e.g. Aït-Sahalia et al., 2009; Barndor�-Nielsen and

Shephard, 2006; Jiang and Oomen, 2008; Lee and Mykland, 2008; Podolskij and Ziggel,

2010). There are tests to evaluate the presence of a Brownian component (Aït-Sahalia

and Jacod, 2010; Cont and Mancini, 2011; Jing et al., 2012a; Kong et al., 2015). There are

tests to examine whether jumps have �nite or in�nite activity (Aït-Sahalia and Jacod,

2011; Cont and Mancini, 2011; Kong, 2019).3 Most of these procedures work best at

ultra high frequencies and assume that microstructure noise is absent. In the main,

that literature has investigated the �nite sample properties of jump tests (Dumitru and

Urga, 2012; Huang and Tauchen, 2005; Maneesoonthorn et al., 2020), yet providing no

guidance on the optimal frequency or the e�ect of microstructure noise on the alternative

procedures (Brownian component and in�nite vs. �nite jump activity tests).

Set against this background, the current paper contributes to the existing literature

by examining the �nite sample properties of test statistics under di�erent types of market

microstructure noise. The paper accommodates temporal heteroskedasticity and depen-

dence, and takes account of bouncebacks typically observed in trade data. We follow

Kong et al. (2015) in evaluating the Brownian motion hypothesis. This procedure im-

proves upon the results of Aït-Sahalia and Jacod (2010) and Jing et al. (2012a), for the

properties of �nite sample in the absence of microstructure noise. To test for �nite and

in�nite activity, we follow Aït-Sahalia and Jacod (2011). To test for jumps, we follow

Podolskij and Ziggel (2010) and employ their standard and robusti�ed versions.4

The asymptotic distribution of most of these procedures have been derived under the

assumption of noiseless prices. However, noisy prices generally skew the distribution of

tests, so raising the likelihood of either type I or type II error. Therefore, microstructure

noise becomes a relevant consideration as ∆n → 0. Thus, it is vital to o�set the impact

3The literature has also employed the use of the Blumenthal-Getoor index to estimate jump activity
however, this estimator serves as an indicator for the presence of �nite/in�nite activity rather than a
formal tool to disentangle these two components, (e.g. Aït-Sahalia and Jacod, 2009; Jing et al., 2012b;
Todorov, 2015; Todorov and Tauchen, 2010).

4The test of Podolskij and Ziggel (2010) along with the test of Aït-Sahalia et al. (2009) can detect
jumps of �nite and in�nite activity.
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of that microstructure noise, as inference about the appropriate model depends on the

sampling frequency and testing technique (see, for instance, Todorov and Tauchen, 2010).

Our paper also examines the underlying components of 100 individual S&P 500 con-

stituents and the S&P 500 ETF (SPY) over 17 years. No clear conclusions have emerged

from papers that investigate appropriate criteria for models of stock prices. To illus-

trate, Andersen et al. (2002) compare several di�usion and �nite-jump di�usion models,

reaching the conclusion that a �nite-jump di�usion model is capable of catching the char-

acteristics of the S&P 500 returns. From a contemporaneous investigation of the same

index, the conclusion reached by Carr et al. (2002) is that a pure jump process is the

most appropriate model.5 As di�erent techniques and/or sampling frequencies might be

the source of such discrepancies,6 the use of test statistics o�ers a uni�ed framework, and

our paper engages in a comprehensive examination of relevant performances to highlight

their advantages and limitations.

From our Monte Carlo experiment, a summary of results is as follows. In the absence of

microstructure noise, all the tests had satisfactory �nite sample properties, which deviate

slowly from the theoretical size and power as the time-interval widened. Conversely, the

presence of microstructure noise biases the distributions of all the tests, except for the

robusti�ed PZ test, which is derived under the assumption of noisy prices. In the presence

of Gaussian noise, the distributions of the tests show bias only at very high frequencies.

In the presence of t-distributed and Gaussian-T mixture noise, the performance of all

the tests is severely adversely a�ected. Sampling sparsely decreases the bias of the tests.

Under Gaussian noise, the tests display satisfactory results when returns are sampled

every 30 seconds. When microstructure noise is t-distributed or Gaussian-T mixture,

sampling every 60 seconds give satisfactory results. However, in the presence of non-

Gaussian noise, the standard PZ test shows severe upward bias even when return are

5While the use of �nite-jump di�usion models dates back to Merton (1976) and Jorion (1988), and
are backed with their link to macroeconomic announcements (see, Dungey and Hvozdyk, 2012), Carr
et al. (2002); Carr and Wu (2007); Cont and Tankov (2004); Daal and Madan (2005); Geman (2002);
Huang and Wu (2004), among others support the use of pure jump processes compared to the classical
mixture models.

6It is well-known that parametric approaches run the risk of incorrect speci�cation for functionals in
their chosen models. This is not the case with the non-parametric approaches employed in this paper.
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sampled every 90 seconds.

In the empirical analysis, as guided by our Monte Carlo experiment, tests were at

a 1% signi�cance level using 1-min returns. The results show strong evidence of the

presence of both a Brownian component and a jump part. On average across sectors,

jumps occurred on one-third of days. For jumps in the SPY, jumps occurred on one-�fth

of days. The smaller proportion recorded for the latter is the result of aggregation. In

reducing idiosyncratic risk, aggregation causes stock speci�c jumps to be `lost'. Although

�nite and in�nite jumps characterize the jump component, �nite jumps contribute more

to the total jump part.7 Finally, we document signi�cant time variation in the rejection

rates, with variations ranging between 12�35%. This suggests that the data generating

process should allow for time variation, where generally an increase in the rejection of no

jumps is accompanied with a decrease in the rejection of in�nite jumps.

The remainder of the paper is structured as follows. Section 5.2 presents the theoret-

ical background and outlines the test statistics. Section 5.3 describes the Monte Carlo

setup and reports the simulated results. The empirical results including a time-variation

exercise are reported in Section 5.4. Section 5.5 concludes.

5.2 Theoretical Background

Let the log-price Xt follow a semimartingale de�ned on some �ltered probability space

(Ω,F , (Ft)t≥0,P)

Xt = x0 +

∫ t

0

bsds+

∫ t

0

σsdWs +Xd
t , (5.1)

where x0 is the initial value, bs is the drift term being continuous and locally bounded, σs

is a strictly positive and càdlàg stochastic volatility process, Ws is a standard Brownian

motion, and Xd
t is a pure-jump component. The Blumenthal-Getoor (BG) index of Xd

t

7We also report the jump activity index estimated, β̂, as in Jing et al. (2012b). β̂ oscillates around
1.0, which con�rms the presence of �nite and in�nite jumps across the individual stocks and SPY.
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measures the degree of activity of small jumps and is de�ned as

β := inf

{
r;
∑

0≤s≤t

|∆Xs|r <∞

}
, (5.2)

where ∆Xs = Xs−Xs− 6= 0 if jumps are present. β serves as an indicator of the activity

of jumps contained in Xd. The larger the β, the more active the jumps. A �nite activity

jump process such as a compound Poisson process has β = 0, whereas a β-stable process

has an index equal to β ∈ (0, 2). Finite variation corresponds to 0 < β < 1 and in�nite

variation to 1 < β < 2.

To construct the tests we de�ne power, truncated power variations (see, Jacod, 2008;

Mancini, 2001, 2009), and the estimator of the continuous part that is robust to in�nite

jump variation (see, Jacod and Todorov, 2014, JT, hereafter).

Let denote the power variation estimator as B(p,∞,∆n)t, which is outlined as:

B(p,∞,∆n)t = np/2−1

b1/∆nc∑
i=1

|∆n
iX|p

P−→


µp
∫ t

0
|σs|pds, (No Jumps),

∞, (With Jumps),
(5.3)

when p > 2, and µp ≡ E[|U |p] = 2p/2√
π

Γ
(
p+1

2

)
, where U ∼ N (0, 1). ∆n

iX = Xi∆n −

X(i−1)∆n , with ∆n = 1/n for 0 ≤ i ≤ n. It is well-known that,

B(2,∞,∆n)t =

b1/∆nc∑
i=1

|∆n
iX|2

P−→
∫ t

0

σ2
sds︸ ︷︷ ︸

Integrated Variation (IVt)

+
∑

0≤s≤t

(∆Xs)
2

︸ ︷︷ ︸
Jump Variation

. (5.4)

We denote the truncated power variation as B(p, νn,∆n)t:

B(p, νn,∆n)t = np/2−1

b1/∆nc∑
i=1

|∆n
iX|p1{|∆n

i X|≤νn}
P−→
∫ t

0

µp|σs|pds (5.5)

where νn = α∆$
n is the truncation threshold and α > 0 is expressed in units of the

standard deviation of the continuous part of the process for a constant $ ∈ (0, 1/2).

When the jump of Xt is a Levy process with the Blumenthal-Getoor index β ∈ [0, 2) (as
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outlined in equation (5.2)), then the required condition is given by $ ≥ p−2
2(p−β)

, for p > 2.

The JT bias-corrected estimator, C(un)nj , takes the following form:

C0(un)nj = 2kn∆n

b1/kn∆nc−1∑
j=0

(
c0(un)nj −

1

u2
nkn

(sinh(u2
nc0(u)nj ))2

)
P−→
∫ t

0

σ2
sds (5.6)

where

c0(un)nj = − 1

u2
n

log

(
L(un)nj ∨

1√
kn

)
L(un)nj =

1

kn

kn−1∑
l=0

cos
(
un(∆n

2jkn+1+2lX −∆n
2jkn+2+2lX)/

√
∆n

)

where the following conditions must satisfy kn∆
1/2
n → 0, un → 0, supn

kn∆
1/2
n

u4
n

< ∞.

Possible choice for kn and un are kn � 1/
√

∆n(log(1/∆n))x and un � 1/(log(1/∆n))x
′
for

0 < x′ ≤ x/4, where x ∈ (0, 1].

5.2.1 Test Statistics

Pure Jump Test

The pure-jump test of Kong et al. (2015, KLJ hereafter) is based on the realized charac-

teristic function and checks whether the underlying process of a high frequency data set

can be modelled as a pure-jump process. In �nite sample terms, this test is superior to

the Brownian test of Aït-Sahalia and Jacod (2010) and the modi�ed version of the latter

proposed by Jing et al. (2012a). The pure jump test is of the following hypotheses,

H0 :

∫ t

0

σ2
sds > 0 v.s. H1 :

∫ t

0

σ2
sds = 0.

The test takes the following form,

Tt =
C0(un)nj − C1(un)nj − γn∆1/2

2I
1/2
n ∆

1/2
n

Ls−→ N (0, 1), (5.7)
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where

In ≡
1

2
(In,0 + In,1)

In,k = 2kn∆n

bt/kn∆nc−1∑
j=0

(
ck(un)nj −

sinh(u2
nck(un)nj )

u2
n(kn − 1)

)2

, k = 0, 1

where γn is some chosen constant satisfying γn → 0, and can be estimated as γn =

c∗/ log(u2
n/∆n), where c∗ = 0.2, when the number of observations is moderate. C0(un)nj

is estimated as in equation (5.6), whereas C1(un)nj can be de�ned as the C0(un)nj , where

∆n
2jkn+2l+1X −∆n

2jkn+2lX is replaced by ∆n
2jkn+2lX −∆n

2jkn+2l−1X, for l = 1, . . . , kn − 1.

Finally, H0 can be rejected if Tt < −zθ where P(N (0, 1) > zθ) = θ for θ ∈ (0, 1).

As the authors do not provide analytical results for cases that include microstructure

noise, our prior is that, in the presence of microstructure noise, the test would be unable

to recognize whether the small and frequent movements are Brownian or pure jump

increments.

In�nite Activity Jump Test

The in�nite activity jump test proposed by (Aït-Sahalia and Jacod, 2011, ASJ, here-

after) evaluates the following hypothesis:

H0 : Ωiβ
T v.s. H1 : Ωf

T ∩ Ωc
T ,

where Ωiβ
T and Ωf

T respectively refer to in�nite and �nite jump activity, and Ωc
T is the

di�usive part. The ASJ test is outlined as,8

SIAt =
B(p′, ϕνn,∆n)tB(p, νn,∆n)t
B(p′, νn,∆n)tB(p, ϕνn,∆n)t

P−→ ϕp
′−p. (5.8)

8The convergence in probability holds only under the stated null hypothesis.
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The CLT of this test takes the following form:9

(SIAt − ϕp
′−p)
/√

σ̂2
t
Ls−→ N (0, 1), (5.9)

where

σ̂2
t = ϕ2p′−2p

(
B(2p, νn,∆n)t

(B(p, νn,∆n)t)2
+ (1− 2ϕ−p)

B(2p, ϕνn,∆n)t
(B(p, ϕνn,∆n)t)2

+
B(2p′, νn,∆n)t

(B(p′, νn,∆n)t)2

+ (1− 2ϕ−p
′
)
B(2p′, ϕνn,∆n)t

(B(p′, ϕνn,∆n)t)2
− 2

B(p+ p′, νn,∆n)t
B(p, νn,∆n)tB(p′, νn,∆n)t

− 2(1− ϕ−p − ϕ−p′) B(p+ p′, ϕνn,∆n)t
B(p, ϕνn,∆n)tB(p′, ϕνn,∆n)t

)
.

We set p = 3, p′ = 4, ϕ = 2, $ = 0.2, and α = 8. As shown by ASJ, this test converges

to ϕp
′−p (1) when the underlying process has in�nitely (�nitely) many jumps. When

microstructure noise dominates, the test also converges to ϕp
′−p. The implication is that

in the presence of microstructure noise, the test cannot distinguish whether jumps have

�nite or in�nite activity. zθ denotes the upper θ-quantile of N (0, 1), that is, P(N (0, 1) >

zθ) = θ, for θ ∈ (0, 1), the test rejects H0 when SIAt < ϕp
′−p − zθ

√
σ̂2
t .

Jump Test

As the di�erence between the two capture the contribution of jumps, Podolskij and

Ziggel (2010, PZ, hereafter) uses the di�erence between power and truncated power vari-

ations to construct their test statistics. The test has the following hypotheses,

H0 : Ωc
T v.s. H1 : Ωj

T ,

where Ωc
T and Ωj

T are respectively the set of a continuous and a discontinuous price path.

We outline the test as,

SJt =
T (∆n

iX, p)t
ρt

Ls−→ N (0, 1), (5.10)

9The convergence in law holds only under the stated null hypothesis.
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where,

T (∆n
iX, p)t = n(p−1)/2

b1/∆nc∑
i=1

|∆n
iX|p

(
1− ηi1{|∆n

i X|≤νn}
)
, p ≥ 2, (5.11)

ρ2
t = Var∗(ηi)B(2p, νn,∆n)t. (5.12)

ηi is a positive i.i.d. random variables with E[ηi] = 1 and E[|ηi|2] <∞. PZ suggest that

ηi can be sampled from the distribution,

P η =
1

2
(δ1−τ + δ1+τ ) ,

where δ is the Dirac measure, and τ = 0.1 or 0.05. $ is chosen such that it satis�es

$ ≥ p−2
2(p−β)

, for p > 2.

PZ are amongst the few that account for microstructure noise.10 Robust jump tests

have been generally ignored by subsequent research (e.g Dumitru and Urga, 2012), al-

though more recently Maneesoonthorn et al. (2020) show evidence that both the Aït-

Sahalia et al. (2012) and Lee and Mykland (2012) tests lose power very rapidly. Given

the evidence that jump tests are very sensitive to microstructure noise e�ects, in this

paper we also study the �nite sample properties of the robusti�ed PZ test.

Let Yt = Xt+ut be a contaminated price, and ut an additive i.i.d. process. We assume

that ut has E[ut] = 0 and E[u2
t ] = ω2

t , and Xt ⊥ ut (⊥ means stochastic independence).

We pre-�lter the data using the pre-averaging method of Jacod et al. (2009), so that the

additive component is eliminated. The pre-averaging returns are de�ned as,

∆n
i Ȳ =

Kn−1∑
j=0

g

(
j

Kn

)
∆n
i+jY,

where Kn/
√
n = Θ + o

(
n−1/4

)
, for some Θ > 0, and a non-zero real-valued function

10Other robusti�ed tests are Aït-Sahalia et al. (2012), Jiang and Oomen (2008), and Lee and Mykland
(2012).
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g(x) = (x ∧ 1− x). The test is outlined as,

SJ
noise

t =
T noise

(
∆n
i Ȳ
)
t√

Γt

Ls−→ N (0, 1), (5.13)

T noise
(
∆n
i Ȳ , p

)
t

= n(p−2)/4

b1/∆nc−Kn+1∑
i=0

|∆n
i Ȳ |p

(
1− ηi1{|∆n

i Ȳ |≤νn}

)
, p ≥ 2, (5.14)

Γt = Var∗ (ηi)n
(p−2)/2

b1/∆nc−Kn+1∑
i=1

|∆n
i Ȳ |2p1{|∆n

i Ȳ |≤νn}, (5.15)

where α > 0, $ ∈ (0, 1/4) and ηi is estimated as described above.11. Both versions of the

test reject H0 when SJt (SJ
noise

t ) > zθ where P(N (0, 1) > zθ) = θ for θ ∈ (0, 1).

5.3 Monte Carlo Study

All the tests but the robusti�ed PZ test are derived under the assumption of noiseless

prices. Therefore, market microstructure noise and �nite sample are likely to a�ect the

performance of these procedures. This section evaluates the performance of these tests

under di�erent types of microstructure noise and across several sampling frequencies. The

aim is to �nd a trade-o� between performance and bias.12

We follow Aït-Sahalia and Jacod (2010, 2011); Jing et al. (2012a) and use a Heston

stochastic volatility model that allows for both �nite and in�nite jumps, while for the

pure-jump process νt ≡ 0, i.e. dXt = θLdLt. The model is described as,

dXt = ν
1/2
t dW

(1)
t + θLdLt

dνt = k(η − νt)dt+ γν
1/2
t dW

(2)
t ,

(5.16)

with E[dW
(1)
t dW

(2)
t ] = ρdt, η = 0.252, γ = 0.5, k = 5, ρ = −0.5, and the pure jump

process is either a �nite activity compound Poisson process or a β-stable in�nite activity
11For more details about the pre-averaging methods employed here, the reader can consult (Podolskij

and Ziggel, 2010, Section 4)
12Another reason to avoid very high sampling frequencies is related to price staleness. Less active

stocks have higher proportions of zero returns, which might distort the �nite sample properties of these
type of tests.
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process. The compound Poisson has intensity λ = 1 and jumps that are uniformly

distributed on ν1/2
t

√
m([−2,−1]∪ [1, 2]), where m = 0.7. When using compound Poisson

Jumps, we set θL = 1.0. We set the following values for β = {1.00, 1.25, 1.50}, and

θL = 0.5.

We add the measurement error, so that we do not observe the true price Xt, but

rather we observe the contaminated price as follows,

Yt = Xt + ut, (5.17)

where Yt and Xt are respectively the contaminated and true log-price processes, and ut

is the measurement error with E[ut] = 0, and E[u2
t ] = ω2

t . We follow Aït-Sahalia et al.

(2012) and consider four settings,

ut =



0, (No noise)

2ν
1/2
t ∆

1/2
n uAt , (Gaussian noise)

2ν
1/2
t ∆

1/2
n uBt

/√
df
df−2

, (T-distributed noise)

2ν
1/2
t ∆

1/2
n

(
uAt + uBt

/√
df
df−2

)
, (Gaussian-T mixture noise),

(5.18)

where uAt and uBt are mutually independent i.i.d. drawn from anN (0, 1) distributed and a

t-distribution with degree of freedom df = 2.5, respectively. The instantaneous standard

deviations of the Gaussian noise and the t-distributed noise are twice that of the di�usive

increment, i.e., (νt∆n)1/2, and allow for temporal heteroskedasticity and dependence in ut.

The t-distributed noise captures the large bouncebacks commonly observed in transaction

data as shown in Figure 5.1. We generate data for 50 days and use 3,000 replications,

which encompass 150,000 simulated days.

Figure 5.2 plots the distribution of the tests using a di�usion process (equation (5.16))

contaminated with di�erent types of microstructure noise. Of course, in the absence of

noise e�ects (Figure 5.2a) all procedures are well-behaved, so giving good �nite sample

properties. When noise is added, there is a decrease in performance in all the tests, but
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the robusti�ed PZ test. Gaussian noise (Figure 5.2b), which is the most popular type

of noise in the literature, produces the least distortions in all the tests statistics. By

contrast, t-distributed (Figure 5.2c) and Gaussian-T mixture (Figure 5.2d) noise severely

a�ect the standard procedures.

By comparison, the standard PZ test is upward biased, which results in a high rate of

type I error. However, the bias induced by Gaussian noise is present only at high sampling

frequencies, while the bias from t-distributed and Gaussian-T mixture noise distorts the

distribution of the test even when returns are sampled every 90 seconds. On the other

hand, the distribution of the robusti�ed PZ test is largely the same whether or not the

underlying process is contaminated with microstructure noise. The KLJ and ASJ tests

are also more a�ected when the noise is non-Gaussian. Nevertheless, the distributions

of both tests under the di�erent types of microstructure noise suggest that sampling

sparsely, and not at very low frequencies, can solve this issue without losing much power.

Figure 5.3 shows the distribution of the tests when the model is an in�nite-jump dif-

fusion process with β = 1.0. The distribution of both versions of the PZ test explodes

to in�nity in the presence of in�nite jumps, which con�rms the ability of these tests to

identify jumps of in�nite variation. The noise does not impact much the �nite sample per-

formance of the PZ tests. This is mainly because the noise-robust version is not a�ected

by any type of noise as shown in Figure 5.2, and the standard PZ test is oversized in the

presence of noise, which does not a�ect the power of the test but increases the spurious

detection of jumps. The distribution of the KLJ test shows a similar behavior to the

jump di�usion case, that is the test is downward biased in the presence of microstructure

noise. This means that the test is unable to distinguish between the null and alterna-

tive hypothesis. As expected, the ASJ test is centered around 2 in the absence of noise,

while in the presence of t-distributed and Gaussian-T mixture noise the distribution is

somewhat shifted to the left of 2, which indicates an increase in the type II error.

The subsequent analysis of this section focuses on the �nite sample properties of these

procedures across di�erent sampling frequencies using a signi�cance level of θ = 0.01.

We sample the simulated data every 5, 30, 60, and 90 seconds, which correspond to
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b1/∆nc = {4680, 780, 390, 260} observations per day.

Pure Jump Test

Tables 5.1, 5.2 and 5.3 report the empirical sizes of the KLJ test given that all the

underlying processes contain a di�usive component. When the underlying model is a

di�usion process (Table 5.1), the KLJ test is slightly upward biased in the absence of

microstructure e�ects. In presence of microstructure noise, as shown in Figure 5.2, the

test shows a downward bias, which worsens when the noise is t-distributed or Gaussian-T

mixture. However, the KLJ test gets closer to the theoretical size around 30 to 60 seconds,

i.e b1/∆nc = 780 and 390, respectively. When the underlying process is a �nite-jump

di�usion process (Table 5.2), results are very similar to those found in Table 5.1, i.e. the

KLJ test is slightly oversized in the absence of microstructure noise, while when any type

of noise is contaminating the true price process, the test is undersized and approaches to

the theoretical size around 30 to 60 second sampling frequency.

Table 5.3 reports the results using an in�nite-jump di�usion process with jump activity

index equal to β = {1.00, 1.25, 1.50}. In the absence of microstructure noise, the KLJ

test is very close to its theoretical size. However, when using a β = 1.50, the test is

downward biased. Our explanation to this �nding is that as β → 2, the increments are

closer to those of a Brownian motion making it di�cult for the test to recognize the

true Brownian increments. When microstructure noise contaminates the true underlying

process, we observe a decrease in the size of the test, which is recovered by sampling more

sparsely, i.e. every 780 to 390 observations.

Table 5.4 reports the power of the KLJ test using a pure jump process. The mi-

crostructure noise is simulated as outlined in equation (5.18), where νt is replaced by the

JT estimator, so that the variance of the noise is constant within a day, but changes from

day-to-day. In the absence of microstructure noise, the power of the KLJ test is close to

the theoretical power, and decreases both as the time interval increases and β → 2. Un-

like the noiseless case, the presence of Gaussian noise marginally decreases the power of

the test when β = 1.0. However, for values of β ∈ [1.25, 1.5] there is a sharp reduction in
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the power of the test, which wanes away as b1/∆nc = 780 or smaller. By contrast, when

the underlying process is contaminated by either t-distributed and Gaussian-T mixture

noise, the KLJ test displays very low power at higher frequencies, which is magni�ed

when β ∈ [1.25, 1.5]. The impact of these types of noise, unsurprisingly, diminishes by

sampling more sparsely, with the power of the test being of similar magnitude to the no

noise case when b1/∆nc = 390.

All in all, the KLJ test displays very good power in the absence of microstructure

noise, and the power increases as ∆n → 0. When microstructure noise is added, the KLJ

test is undersized under the null and increases the type II error under the alternative

hypothesis. Although this is observed for all types of microstructure noise, the Gaussian

noise produces less severe distortions that are only observed at high sampling frequencies

and as β → 2. The distortions of t-distributed and Gaussian-T mixture noise are less

obvious around b1/∆nc = 390, which suggests that sampling returns every 1-min results

in a good trade-o� between bias and performance.13

In�nite Activity Jump Test

Tables 5.1 and 5.2 report the power of the ASJ test, since the data generating process

is a di�usion and �nite-jump di�usion, respectively. In absence of microstructure noise,

the power of the test declines as the time interval increases. For instance, when the

data generating process is a di�usion and a �nite-jump di�usion, the power of the test is

respectively 0.940 and 0.936 using 1-min returns, i.e. b1/∆nc = 390. This suggests that

the loss of power due to sampling more sparsely when prices are noiseless is very limited.

As shown by Aït-Sahalia and Jacod (2011), when microstructure noise dominates, the

ASJ test converges to ϕp
′−p, see also Figure 5.2, which means that the test is unable to

distinguish between its null and alternative hypotheses. Nevertheless, we observe that

irrespective of whether the process is a di�usion or �nite-jump di�usion, all types of

microstructure noise increase the type II error of the test. Whereas the e�ect of Gaussian

13As a robustness-check we also tried the test of Jing et al. (2012a), which is completely oversized for
time intervals lower than 4,680 (5-seconds). Since this comparison is made in Kong et al. (2015) and our
results are in line with theirs, we omit them here for brevity.
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noise declines rapidly after b1/∆nc = 4680, the t-distributed and Gaussian-T mixture

noise's distortions are of bigger magnitude, which are considerably reduced by sampling

from b1/∆nc = 390 onwards.

Table 5.3 reports the size of the ASJ test, i.e. the results when the underlying process

is an in�nite-jump di�usion process. In the absence of microstructure noise e�ects, the

size of the ASJ test is very close to the theoretical size. As β → 2 and the number

of intraday observations decreases, the test increases the type I error, as it is harder

to distinguish between in�nite jumps and Brownian increments. When the underlying

process is contaminated with Gaussian noise and β ∈ [1.0, 1.25], there are few di�erences

with the noiseless case, which become more apparent with β = 1.5. The t-distributed and

Gaussian-T mixture noise considerably increase the spurious number of rejections in the

ASJ test. This is observed irrespective of the value of β, and as the sampling frequency

decreases we observe a reduction in the number of spurious rejections, which bounces

back at b1/∆nc = 260.

To summarize, we �nd that the ASJ test performs relatively well in the presence of

Gaussian noise, but when the noise is t-distributed or Gaussian-T mixture, the type I

error signi�cantly increases. However, sampling sparsely provides a simple remedy at

around 1-min returns, as we �nd that sampling lower than 1-min increases the number

of spurious rejections.

Jump Test

The null hypothesis H0 : Ωc
T is satis�ed when the underlying model follows a di�usion

process, and therefore Table 5.1 reports the size of the PZ tests. When prices have no

noise, the size of both versions of the PZ tests lie close to the theoretical size across all

sampling frequencies. Whereas the noise-robust version of the test performs extremely

well irrespective of the type of noise employed, the standard PZ test is very oversized

under microstructure e�ects. Nonetheless, the standard PZ test seems to be somewhat

robust to Gaussian noise, with a type I error close to the theoretical size, once returns

are sampled every 30 seconds onwards. This highlights the sensitivity of the standard
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version to the presence of microstructure noise, which increases the spurious detection of

jumps making it impossible to identify true jump days.

Tables 5.2 and 5.3 report the results when the underlying process follows a �nite-

and in�nite-jump di�usion, respectively. Given the above results, it is no surprise that

the standard PZ shows power value of 1 across all sampling frequencies. This is mainly

because microstructure noise causes the test to explode to in�nity, so that it is unable

to distinguish between the null and alternative hypotheses. For instance, the size of the

test when b1/∆nc = 780 under t-distributed noise, is 0.744. This suggests that the test

is likely to identify almost every day as a jump day, even though the true process has

no discontinuities. On the other hand, the noise-robust PZ test, SJ
noise

t , is not a�ected

by the microstructure noise e�ects, showing almost identical �nite sample performance

relative to the no noise case.

Despite the capacity of the PZ tests to detect jumps of �nite and in�nite activity, it is

surprising to �nd such a power level when β = 1.50. As β → 2, the in�nite jumps are akin

to Brownian increments, whereby one would expect the tests to struggle in disentangling

the small jumps from the Brownian increments. However, as shown in Figure 5.3, the

distribution of both tests is completely shifted to the right, con�rming their ability to

detect small jumps.

In summary, we �nd that while the Gaussian noise is the least problematic type of

microstructure e�ect for the standard PZ jump test, the t-distributed and the Gaussian-T

mixture noise signi�cantly sully the �nite sample properties of the standard test, increas-

ing the spurious detection of jumps. Conversely, the noise-robust PZ test performs well

irrespective of both the presence and the type of microstructure noise, and succeed in

detecting jumps of �nite and in�nite activity.14

14As a robustness-check we also tried the test of Aït-Sahalia et al. (2009) and their noise-robust version
(Aït-Sahalia et al., 2012). Both tests show a sharp decrease in power after 5-seconds, with the standard
test being badly a�ected by any type of noise. Results are available upon request.
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5.4 Empirical Study

Data

Our empirical application considers 100 individual stocks from the S&P 500 basket

and the SPDR S&P 500 ETF (SPY) for the period January 3, 2000 to December 30,

2016.15 10 representative stocks taken from each sector, vary in terms of liquidity and

market capitalization, so ensuring a heterogeneous representation on each sector. Taking

direction from our simulations, we sample data every 1-min, i.e. b1/∆nc = 390. The use

of the robusti�ed PZ test throughout our empirical analysis is motivated by its excellent

performance both in the absence and presence of microstructure noise, and because the

standard PZ test is very sensitive to non-Gaussian noise even when the data are sampled

every 1-min. The subsequent analysis uses a signi�cance level of θ = 0.01.

Empirical Rejections by Sector and Market Capitalization

Panel A of Table 5.5 reports total number of rejections standardized by the number of

days as an average for all the stocks on each sector and the SPY. Panel B shows the con-

tribution of the continuous and discontinuous component to the total variance estimated

as B (2,∞,∆n)t, and the index of jump activity, β̂, estimated as in Jing et al. (2012b).

We estimate the variables of Panel B as follows: Ct = B (2,∞,∆n)t · 1(no jumps) +

B (2, νn,∆n)t · 1(jumps). Therefore, Jt = B (2,∞,∆n)t−Ct. Finally, CT =
∑
t∈(0,T ] Ct∑

t∈(0,T ] Ct+Jt

and JT =
∑
t∈(0,T ] Jt∑

t∈(0,T ] Ct+Jt
. The contribution of �nite and in�nite jumps to the total jump

component are obtained as FJt = Jt · 1(finite jumps) and IJt = Jt · 1(infinite jumps).

Thus, FJT =
∑
t∈(0,T ] FJt∑
t∈(0,T ] Jt

and IJT =
∑
t∈(0,T ] IJt∑
t∈(0,T ] Jt

.16

The empirical results in Table 5.5 show strong evidence for the presence of a Brownian

component with an average rejection rate in favor of a pure jump process of about 2%.

Although those results are above the theoretical size (θ = 0.01), the values are in line with

our Monte Carlo exercise, which shows that the KLJ test is mildly oversized under the

15Our data is obtained from TickData, Inc. The data provider uses proprietary data �lters. We
sample down to 1-min using the previous tick interpolation.

16The indicator function for jumps and in�nite jumps were obtained using the robusti�ed version of
the PZ test, and the ASJ test, respectively.
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null, for relatively low frequencies such as 1-min. This �nding rules out the theory of a

pure jump process, and con�rms the relevance of the Brownian component for modelling

the di�usive part.

The �rst column of Panel A reports the rejection rates of the robusti�ed PZ test,

which con�rms the presence of jumps in both the SPY and individual stocks across

sectors. Whereas jumps are observed in 32% of the days as an average across the sectors,

the number of days with jumps in the SPY account for only 19% of the sample data. The

low rejection rate in the SPY is due to the fact that aggregation of information reduces

the idiosyncratic risk, whereby stock speci�c jumps are diversi�ed away.

Having established evidence for the presence of a Brownian motion and a jump com-

ponent, we now evaluate whether the jump part is of �nite and/or in�nite activity. The

second column of Table 5.5 reports the rejection rate of the ASJ test for both the SPY

and the individual stocks classi�ed by sector. The ASJ test provides evidence for the

presence of both types of jumps, where the rejection rate for the SPY and the sector

average is 80.1% and 64.2%, indicating stronger support for �nite activity jumps. The

index of jump activity, β̂, oscillates around 1.0 for all the sectors and SPY. This rea�rms

that both �nite and in�nite jump activity characterize the jump component of our 1-min

stock data.

Provided that the alternative hypothesis of the ASJ could mean �nite jumps or just a

Brownian motion, we report on Panel B (Table 5.5) the contribution of these variables to

total variance. The Brownian component contributes about 86% of the total variance as

an average across all sectors and SPY. From the 14% of the jump part, 75% corresponds

to �nite activity jumps. The evidence of both types of jumps is supported such that

�nite jumps are normally related to macroeconomic announcements and stock speci�c

news, which are more likely to produce spillovers. On the other hand, in�nite jumps

can be linked to continuously adjusting market microstructure dynamics, which can be

attributable but not limited to inventory allocation, price-contingent trading, stop-loss

and limit-pro�t orders, among others.

Table 5.6 reports the rejection rates and contribution of the Brownian and jump
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component to total variance, where the stocks are classi�ed by sector and market cap-

italization. In general, big and large cap have the greatest trading liquidity, therefore

our analysis aims to examine the sensitivity of the rejection rates to the size of the com-

pany and level of liquidity. Small cap stocks display a rejection rate for the null of no

jumps and in�nite activity jumps that is about 5% bigger and 4% smaller than big cap

companies. This directly translates in a bigger contribution of jumps to total variance,

which has important implications for asset allocation and risk management. For instance,

a risk averse investor might be expected to avoid investments with large unforeseeable

movements. Furthermore, Jiang and Yao (2013) show that small and illiquid stocks have

higher jump returns to the extent that cross-sectional di�erences in jumps fully account

for the size and illiquidity e�ects.

These �ndings provide new empirical evidence about the frequency of jumps and their

contribution to total variance. Previous studies have generally reported that the propor-

tion of jumps is found to be around 10%, while the contribution to total variance does

not exceed 7% (e.g. Huang and Tauchen, 2005). By contrast, our results indicate that

jumps are not rare events; therefore, the inclusion of both in�nite and �nite jumps a�ords

a better explanation for the excess kurtosis observed in intraday stock data than only

considering compound Poisson jumps. These results shed also light about the appro-

priate speci�cation for modelling stock price data, which has important implications for

empirical asset pricing and equity research, as the di�usive and jump part imply di�erent

hedging strategies (e.g Bollerslev and Todorov, 2011a,b).

Time-varying Rejections

Across the length of our dataset (2000-2016), �nancial markets experienced several

crises periods (dot-com, sub-prime, European sovereign debt) and the Brexit referendum.

These along with the development of e�cient trading systems, including electronic plat-

forms and algorithmic trades, have contributed to more frequent and faster reactions to

changes in the market, which could easily generate time variation in statistical proper-

ties. To further investigate this issue, we follow Erdemlioglu et al. (2015) and �t a probit
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model to the daily series of 1% level rejection indicators (0, 1) for the PZ and ASJ test.

We omit the KLJ test, as the low rejection rate refrains any time variation, with �tted

values usually �uctuating less than 5%. We use a sixth order polynomial of time in a

probit model, where regressors are a constant, and time trends up to a sixth power. We

have orthogonalized and standardized them to have unit variance.

Figure 5.4 plots the �tted values of one representative stock from each sector and the

SPY using 1% rejection rates for the robusti�ed PZ and ASJ tests. We �nd signi�cant

time variation in the PZ and ASJ tests, with on average 3 signi�cant polynomial coef-

�cients per regression. There is generally a negative correlation in the evolution of the

time-varying rejections. In other words, an increment in the number of jump days, results

usually in an increase of in�nite jumps vis-à-vis �nite jumps.

The most notorious feature of these series is the increase in the rejection of the null

of no jumps around 2002, 2008 and 2016. These periods experienced the dot-com bubble

with the NASDAQ falling by 78% in October 2002, the 2008 crisis with the Dow Jones

losing 777.68 points in September 2008, and on January 2016 due to crude oil low prices

the Dow Jones fell 565 points.

5.5 Conclusions

This paper examines the sensitivity of novel test statistics to di�erent types of mi-

crostructure noise. These procedures test for the presence of a Brownian motion, jumps,

and whether jumps have �nite or in�nite activity. Knowing the existence of these com-

ponents facilitate the correct modelling of stock price data, which is crucial for option

pricing, risk management, and portfolio allocation. We perform a thorough Monte Carlo

experiment that allows for Gaussian, t-distributed, and Gaussian-T mixture noise, as well

as various sampling frequencies. As most of these tests are not robust to microstructure

e�ects, our simulations exploit their �nite sample properties, providing guidance about

the bias induced by each type of noise and the right choice of sampling frequency.

The Monte Carlo experiment shows that the presence of microstructure noise skews
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the distribution of the test statistics, with the exception of the robusti�ed PZ test, as their

asymptotic distributions are derived under the assumption of noiseless prices. This results

in an increase in the type I or type II error. Speci�cally, we �nd that Gaussian noise

only a�ects the distribution of the tests at very high frequencies, while t-distribution and

Gaussian-T mixture noise completely distort the performance of the tests. These �ndings

do not apply for the robusti�ed PZ test, which performs extremely well under any type

of microstructure noise. Sampling returns every 30- and 60-seconds when the noise is

respectively Gaussian and t-distributed or Gaussian-T mixture reduces considerably the

microstructure noise e�ects.

We apply these tests to 100 individual stocks and SPY using 17 years of data sampled

every 1-min. The empirical results indicate strong evidence for the presence of a Brownian

motion, ruling out the theory of a pure jump process. We also �nd evidence for the

presence of jumps, which are not rare events. For instance, jumps account for one-third

of the days as an average across sectors compared to one-�fth of the days for SPY. The

smaller proportion of jump days in the SPY is because idiosyncratic jumps are diversi�ed

away from the Index. The Jump part is characterized by �nite and in�nite jumps, with

�nite activity jumps comprising about 75% of the total jump component. However, the

contribution of jumps to total variance ranges between 10�22% for the sectors and is

close to 5% for SPY. This suggests that the data are more consistent with both �nite

and in�nite activity jumps, where �nite/in�nite jumps are generally associated to news

releases/continuously adjusting market microstructure dynamics.

We also �nd signi�cant time variation in rejection rates. These variations range

between 12�35%, where generally an increase in the rejection of no jumps is associated

with a decrease in the rejection of in�nite jumps.

Finally, we recommend that the most appropriate speci�cation for modelling stock

price data should allow for a Brownian motion and jumps of �nite and in�nite activity,

with the jump component having time-varying both activity and intensity.
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Appendix 5.A Tables and Figures

Figure 5.1: A Realization of the True and Contaminated Continuous Part of the log-price
Increments
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Note: The �gures depicts a realization of the noisy continuous part of the log price
(Xc

t + ut). From top to bottom, the continuous part is contaminated with no noise,
Gaussian noise, t-distributed noise, and Gaussian-T mixture noise.
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Figure 5.2: Distribution of the Test Statistics using a Di�usion Process with Di�erent
Types of Noise

(a) Xc
t (ut = 0)

(b) Xc
t + ut (Gaussian)

(c) Xc
t + ut (t-distributed, df = 2.5)

(d) Xc
t + ut (Gaussian-T Mixture)

Note: The �gure plots the simulated distribution of the di�erent tests under a di�usion
process (equation (5.16)) with (a) no noise, (b) Gaussian noise, (c) t-distributed noise
with 2.5 degrees of freedom, and (d) Gaussian-T mixture noise. Xc

t denotes the di�usive
component.
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Figure 5.3: Distribution of the Test Statistics using an In�nite Jump Di�usion Process
with Di�erent Types of Noise

(a) Xc
t +Xd

t (ut = 0)

(b) Xc
t +Xd

t + ut (Gaussian)

(c) Xc
t +Xd

t + ut (t-distributed, df = 2.5)

(d) Xc
t +Xd

t + ut (Gaussian-T Mixture)

Note: The �gure plots the simulated distribution of the di�erent tests under a in�nite
jump di�usion process (equation (5.16) and β = 1.0) with (a) no noise, (b) Gaussian
noise, (c) t-distributed noise with 2.5 degrees of freedom, and (d) Gaussian-T mixture
noise. Xc

t and X
d
t denote the di�usive and pure jump components.

159



Figure 5.4: Time Variation in Rejection Rates
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Note: The �gure depicts the time variation in rejection rates predicted by a probit model with
a 6th order polynomial in time. The left (right) y-axis of each subplot denotes the probability
of rejection over time for the ASJ (robusti�ed PZ test).
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Table 5.1: Monte Carlo Rejection Rates under a Di�usion Process

b1/∆nc 4,680 780 390 260 4,680 780 390 260

No Noise Gaussian Noise

Tt 0.028 0.032 0.035 0.038 0.003 0.017 0.025 0.030

SJt 0.012 0.014 0.016 0.015 0.204 0.023 0.019 0.019

SJ
noise

t 0.010 0.009 0.007 0.008 0.010 0.008 0.007 0.009

SSIAt 0.999 0.971 0.940 0.922 0.850 0.977 0.947 0.926

t-distributed Noise Gaussian-T Mixture Noise

Tt 0.005 0.014 0.019 0.024 0.000 0.004 0.009 0.012

SJt 1.000 0.744 0.307 0.163 1.000 0.878 0.388 0.204

SJ
noise

t 0.010 0.009 0.007 0.009 0.009 0.008 0.007 0.009

SSIAt 0.285 0.687 0.912 0.925 0.662 0.817 0.917 0.927

Note: The table reports rejection rates across sampling frequencies for the

four test statistics outlined in Section 5.2.1. Under a di�usion process the

KLJ (Tt) and PZ (SJ
noise

t , SJt ) tests report their empirical size, while the

ASJ test (SSIAt ) reports its empirical power. b1/∆nc represents the number

of intraday observations per day and the signi�cance level is θ = 0.01.
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Table 5.2: Monte Carlo Rejection Rates under a Finite Jump-Di�usion Process

b1/∆nc 4,680 780 390 260 4,680 780 390 260

No Noise Gaussian Noise

Tt 0.028 0.030 0.032 0.035 0.003 0.016 0.023 0.027

SJt 1.000 1.000 1.000 0.999 1.000 1.000 1.000 0.999

SJ
noise

t 0.995 0.971 0.956 0.928 0.995 0.971 0.943 0.910

SSIAt 0.999 0.964 0.936 0.916 0.795 0.954 0.937 0.920

T-Distributed Noise Gaussian-T Mixture Noise

Tt 0.004 0.014 0.019 0.021 0.000 0.004 0.008 0.011

SJt 1.000 1.000 1.000 0.999 1.000 1.000 1.000 0.999

SJ
noise

t 0.995 0.971 0.955 0.928 0.993 0.963 0.945 0.908

SSIAt 0.286 0.684 0.908 0.910 0.560 0.762 0.899 0.908

Note: The table reports rejection rates across sampling frequencies for the

four test statistics outlined in Section 5.2.1. Under a �nite-jump di�usion

process the KLJ test (Tt) reports its empirical size, while the PZ (SJ
noise

t , SJt )

and the ASJ (SSIAt ) tests report their empirical power. b1/∆nc represents

the number of intraday observations per day and the signi�cance level is

θ = 0.01.
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Table 5.3: Monte Carlo Rejection Rates under an In�nite Jump-Di�usion Process

b1/∆nc 4,680 780 390 260 4,680 780 390 260

No Noise Gaussian Noise

β = 1.00

Tt 0.017 0.013 0.013 0.012 0.003 0.010 0.011 0.012

SJt 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

SJ
noise

t 1.000 0.995 0.986 0.977 1.000 0.995 0.987 0.977

SSIAt 0.010 0.015 0.025 0.032 0.018 0.016 0.028 0.039

β = 1.25

Tt 0.012 0.011 0.011 0.011 0.003 0.010 0.010 0.010

SJt 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

SJ
noise

t 0.999 0.985 0.968 0.950 0.999 0.985 0.968 0.950

SSIAt 0.010 0.014 0.023 0.038 0.020 0.023 0.026 0.049

β = 1.50

Tt 0.009 0.004 0.002 0.001 0.001 0.002 0.002 0.001

SJt 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

SJ
noise

t 0.990 0.959 0.935 0.910 0.990 0.959 0.935 0.910

SSIAt 0.025 0.036 0.049 0.068 0.142 0.047 0.040 0.042

t-distributed Noise Gaussian-T Mixture Noise

β = 1.00

Tt 0.004 0.010 0.011 0.010 0.000 0.004 0.007 0.008

SJt 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

SJ
noise

t 1.000 0.994 0.987 0.977 1.000 0.995 0.987 0.977

SSIAt 0.179 0.054 0.030 0.048 0.101 0.067 0.045 0.083

β = 1.25

Tt 0.002 0.008 0.009 0.009 0.000 0.003 0.005 0.007

SJt 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

SJ
noise

t 0.999 0.984 0.969 0.949 0.999 0.984 0.969 0.950

SSIAt 0.195 0.040 0.037 0.049 0.115 0.050 0.036 0.057

β = 1.50

Tt 0.000 0.001 0.001 0.001 0.000 0.000 0.000 0.000

SJt 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

SJ
noise

t 0.992 0.960 0.909 0.909 0.992 0.960 0.908 0.910

SSIAt 0.638 0.083 0.041 0.060 0.535 0.125 0.059 0.067

Note: The table reports rejection rates across sampling frequencies for the four test

statistics outlined in Section 5.2.1. Under an in�nite-jump di�usion process the KLJ

(Tt) and ASJ (SSIAt ) tests report their empirical size, while the PZ tests (SJ
noise

t , SJt )

report their empirical power. b1/∆nc represents the number of intraday observations

per day, β is the jump activity index, and the signi�cance level is θ = 0.01.
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Table 5.4: Monte Carlo Rejection Rates under a Pure Jump Process

b1/∆nc 4,680 780 390 260 4,680 780 390 260

No Noise Gaussian Noise

β = 1.00 0.999 0.980 0.942 0.939 0.984 0.976 0.938 0.937

β = 1.25 0.997 0.946 0.909 0.877 0.854 0.927 0.883 0.861

β = 1.50 0.994 0.901 0.880 0.809 0.307 0.836 0.814 0.764

T-Distributed Noise Mixture Noise

β = 1.00 0.578 0.942 0.927 0.920 0.211 0.883 0.914 0.892

β = 1.25 0.283 0.825 0.816 0.851 0.037 0.646 0.743 0.814

β = 1.50 0.109 0.598 0.666 0.748 0.007 0.265 0.505 0.678

Note: The table reports rejection rates across sampling frequencies for the

KLJ test. Under a pure jump process the KLJ test reports its empirical power.

b1/∆nc represents the number of intraday observations, β is the jump activity

index per day, and the signi�cance level is θ = 0.01.
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Table 5.5: Empirical Test Rejections and Contribution Total Variance by Sector

Panel A: Test Rejections Panel B: Components

SJ
noise

n Sn Tn CT JT FJT IJT β̂

SPY 0.194 0.801 0.021 0.952 0.048 0.702 0.298 1.056

Consumer Discretionary 0.333 0.623 0.027 0.837 0.163 0.775 0.225 0.905

Consumer Staples 0.322 0.616 0.035 0.820 0.180 0.722 0.278 1.151

Energy 0.292 0.655 0.023 0.882 0.118 0.745 0.255 0.794

Financials 0.299 0.666 0.027 0.878 0.122 0.821 0.179 0.831

Healthcare 0.342 0.625 0.031 0.831 0.169 0.743 0.257 1.032

Industrials 0.322 0.643 0.029 0.864 0.136 0.702 0.298 0.956

Information Technology 0.297 0.684 0.025 0.903 0.097 0.784 0.216 0.800

Materials 0.326 0.655 0.024 0.855 0.145 0.790 0.210 0.797

Telecommunications 0.344 0.639 0.021 0.800 0.200 0.767 0.233 0.957

Utilities 0.344 0.612 0.027 0.778 0.222 0.747 0.253 1.267

Note: The table reports in two panels the rejection rates and the contribution of the continuous and

discontinuous part to total variance estimated as B (2,∞,∆n)t. Panel A presents the number of

rejections for each test, which is standardized by the total number of days in the sample data. The

rejection rate is the average across the 10 stocks of each sector. Panel B depicts the contribution

of the continuous and discontinuous part to total variance, as well as the contribution of �nite and

in�nite activity jumps to the total jump component, JT . β̂ is an estimate of the Glumenthal-Gettor

index as in Jing et al. (2012b). Ct = B (2,∞,∆n)t · 1(no jumps) + B (2, νn,∆n)t · 1(jumps).

Jt = B (2,∞,∆n)t − Ct. Hence, CT =
∑
t∈(0,T ] Ct∑

t∈(0,T ] Ct+Jt
and JT =

∑
t∈(0,T ] Jt∑

t∈(0,T ] Ct+Jt
. The contribution of

�nite and in�nite jumps to the total jump component are obtained as FJt = Jt · 1(finite jumps)

and IJt = Jt · 1(infinite jumps). Thus, FJT =
∑
t∈(0,T ] FJt∑
t∈(0,T ] Jt

and IJT =
∑
t∈(0,T ] IJt∑
t∈(0,T ] Jt
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Table 5.6: Empirical Rejection Rates and Contribution to Total Variance Classi�ed by
Market Capitalization and Sector

Panel A: Rejections Panel B: Components

SJn Sn Tn CT JT FJT IJT

Big Market Cap Companies

Consumer Discretionary 0.308 0.649 0.031 0.875 0.125 0.774 0.226

Consumer Staples 0.284 0.650 0.037 0.849 0.151 0.732 0.268

Energy 0.277 0.667 0.026 0.896 0.104 0.722 0.278

Financials 0.287 0.697 0.024 0.898 0.102 0.832 0.168

Healthcare 0.323 0.631 0.035 0.854 0.146 0.688 0.312

Industrials 0.305 0.660 0.030 0.879 0.121 0.683 0.317

Information Technology 0.284 0.692 0.027 0.918 0.082 0.745 0.255

Materials 0.310 0.668 0.024 0.865 0.135 0.778 0.222

Telecommunications 0.294 0.675 0.022 0.845 0.155 0.754 0.246

Utilities 0.329 0.628 0.028 0.834 0.166 0.721 0.279

Small Market Cap Companies

Consumer Discretionary 0.358 0.597 0.024 0.800 0.200 0.777 0.223

Consumer Staples 0.360 0.582 0.032 0.791 0.209 0.711 0.289

Energy 0.310 0.641 0.019 0.864 0.136 0.773 0.227

Financials 0.312 0.635 0.030 0.857 0.143 0.811 0.189

Healthcare 0.361 0.619 0.027 0.808 0.192 0.799 0.201

Industrials 0.340 0.626 0.027 0.849 0.151 0.720 0.280

Information Technology 0.310 0.677 0.023 0.888 0.112 0.822 0.178

Materials 0.343 0.642 0.024 0.845 0.155 0.803 0.197

Telecommunications 0.395 0.603 0.019 0.756 0.244 0.780 0.220

Utilities 0.360 0.596 0.026 0.721 0.279 0.774 0.226

Note: See Notes to Table 5.5. The top (bottom) panel reports the results for the

biggest (smallest) 5 companies of each sector selected by market capitalization.
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Chapter 6

The Contribution of Jump Signs and

Activity to Forecasting Stock Price

Volatility

6.1 Introduction

Modelling and forecasting asset return volatility is central to asset pricing, portfolio

optimization and risk management. The introduction and use of high-frequency data

provide a framework for directly measuring and capturing the main stylized facts of

volatility. Realized volatility (RV), a non-parametric measure calculated as the sum of

intraday squared returns, provides a consistent estimator of the quadratic variation when

the price process contain discontinuities or jumps.1

In relation to volatility forecasting, the seminal work of Andersen et al. (2007a) sug-

gests that the jump component is both highly important and distinctly less persistent

than the continuous component. Thus, treating rough jumps separately results in signif-

icant improvements in out-of-sample volatility forecasts, not least because many signi�-

cant jumps are associated with speci�c macroeconomic announcements. However, recent

empirical evidence that classi�es jumps into �nite and in�nite activity jumps (e.g. Aït-

1Early adoption of RV in modelling and forecasting featured in the work of Andersen and Bollerslev
(1998a), Andersen et al. (2001b, 2003, 2005), inter alios.
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Sahalia and Jacod, 2012), presents a new question as to whether such di�erent types of

jumps are equally important in the prediction of future volatility.2

A large literature examines the role of jumps in volatility forecasting. However, much

of that literature focuses on signed jumps, and does not separate �nite jumps from in�nite

jumps. It also tends to use 300-second returns, rather than higher frequencies such as 5-

or 60-second returns, in order to mitigate the impact of the market microstructure noise.

Whether for jumps or signed jumps, the literature provides mixed evidence regarding

their value added in forecasting. One side of the literature reports gains in forecasting

from incorporating jumps. Andersen et al. (2007a) �nd that separating jumps from the

continuous volatility component improves out-of-sample forecasts. Corsi et al. (2010)

show that the use of a threshold bipower estimator to calculate the jump component af-

fords substantial out-of-sample gains. Patton and Sheppard (2015) argue that volatility

is strongly related to the volatility of past negative returns, and show that models in-

corporating signed jumps lead to signi�cantly better out-of-sample forecast performance.

Duong and Swanson (2015) identify large and small jumps using higher order power vari-

ations, and �nd that small jumps are more important for forecasting volatility than large

jumps.

Another side of the literature �nds that jumps do not signi�cantly improve volatility

forecasts. For instance, Forsberg and Ghysels (2007), Giot and Laurent (2007), Martens

et al. (2009), Busch et al. (2011), Sévi (2014), Prokopczuk et al. (2016) review the use

of jumps and signed jumps to forecast future volatility. Their results suggest that the

inclusion of jumps and signed jumps improves the in-sample �t of models, but generate

no signi�cant out-of-sample forecasting gains.

The current paper contributes to the literature in a number of ways. First, we show

how jumps may be decomposed into signed, �nite and in�nite activity jumps. We identify

the �nite and in�nite jump components using the intersection of the ABD jump test and

the SFA �nite activity jump tests (Aït-Sahalia and Jacod, 2011; Andersen et al., 2007b).

2Other research considering the role of �nite jumps can be found in Huang and Tauchen (2005), Lee
and Mykland (2008), Aït-Sahalia (2004), Aït-Sahalia and Jacod (2009), Dumitru and Urga (2012). For
in�nite jumps see Todorov and Tauchen (2010), Aït-Sahalia and Jacod (2009, 2014), and the extensive
references therein.
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Duong and Swanson (2015) use higher order power variations to decompose jumps into

large and small jumps, and examine their role in predicting the volatility of returns.

By contrast, we use a more robust tests based decomposition of days with signi�cant

jumps into ones with �nite or in�nite activity jumps. As noted by Aït-Sahalia and Jacod

(2014), in �nite samples the estimated jumps based on higher-order power variations

are often poor measure of actual jumps. Second, we develop versions of the ABD test

and realized semivariance measures that are robust to microstructure noise, and perform

well at high-frequency. The noise robust semivariance measures are modi�cations of

the two-scale realized variance measure of Zhang et al. (2005). Third, we present new

empirical evidence showing the contribution of the various types of signed, �nite and

in�nite activity, jumps to improving volatility forecasts at di�erent forecast horizons. We

examine the choice of sampling frequency and sampling scheme, as well as the use of noise-

robust realized measures. Volatility forecasts using transaction-time based measures are

dominated by those using regular clock-time based measures. Fourth, as most jumps

are idiosyncratic, no single forecasting model dominates, so better forecasts are obtained

with simple model averages using 300-second jump measures.

Our application uses high-frequency data from 2000 to 2016. Using extended HAR

models, we forecast the volatility of SPY, the SPDR S&P 500 ETF, as well as 20 con-

stituents of the S&P 100 index which vary by sector and volume. We show that jumps

contribute signi�cantly to the volatility of SPY and the 20 stocks we examine. As ex-

pected, we �nd the SPY volatility forecasts to be more accurate, since aggregation helps

to identify more informative jumps which improves the out-of-sample mean square pre-

diction error (MSPE) performance.

To preview our �ndings, when jumps classi�ed by sign and activity are used as ad-

ditional predictors in HAR models, we �nd signi�cant improvements with both in- and

out-of-sample performance. We focus on the MSPE results from pseudo, out-of-sample

forecasts using rolling window regressions. In terms of our classi�cation of jumps by

activity, in�nite jumps are relatively more important at shorter horizons, whereas �nite

jumps dominate at longer horizons. Adding signed �nite and in�nite jumps to the fore-
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casting model often generates signi�cantly better forecasts than the standard HAR-RV

model. However, no single extended model dominates.

The use of noise-robust estimators substantially improves the out-of-sample perfor-

mance of our extended HAR models, especially at higher frequencies. The gains are

greater for individual stocks than for the SPY index. This is unsurprising since SPY

is the most liquid asset with a low level of microstructure noise. One might have ex-

pected standard volatility measures to deliver more accurate forecasts at the 300-second

frequency, since microstructure noise should be small. However, this only holds true for

SPY. For individual stocks, the forecasting gains are quite similar using noise-robust and

standard volatility measures. In line with Ghysels and Sinko (2011), noise-robust mea-

sures only improve forecasting performance when the level of market microstructure noise

is signi�cant.

The greatest gains in real-time forecasting performance are generally found using

returns sampled at 300-second intervals, rather than at 5- or 60-second intervals, irre-

spective of whether noise-robust or standard volatility measures are used.3 Since the

forecasting performance of no single model dominate across sampling frequency and fore-

casting horizon, we investigate model averaging using the model con�dence set approach

of Hansen et al. (2011) to reduce the set of retained models in the averages. Simple model

averaging, including averages with time-varying weights, generally results in signi�cant

out-of-sample forecasting performance (e.g. Aiol� et al., 2011; Aiol� and Timmermann,

2006; Elliott and Timmermann, 2016; Timmermann, 2006). These gains arise using both

SPY and individual stocks across di�erent horizons. The gains are greatest using the

returns sampled every 300-seconds. We assess the predictive accuracy of model averaging

using the pair-wise test of Diebold and Mariano (1995). The results show that model

averaging produces signi�cantly smaller MSPEs, even at longer horizons of 66 days / 3

months.

These results are in line with Giacomini and Rossi (2010), where the relative fore-

3This result is inline with Liu et al. (2015) who �nd that 300-second/5-min RV is very di�cult to
beat. Across a range of di�erent asset classes, they �nd that 5-minute returns volatilities obtained from
the two-scale realized volatility (TSRV) subsampling approach of Zhang et al. (2005) is the preferred
method of estimating daily volatility.
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casting performance of individual models often changes over time. Here, we identify the

incidence of cojumps in our data using the co-exceedance rule of Gilder et al. (2014). The

cojumps results indicate that the jumps in our data are mainly idiosyncratic, re�ecting

stock speci�c di�erences in the arrival of news and the reaction to that news.4 The fact

that the timing, size and sign of most jumps are stock speci�c is the main reason why no

single forecast model dominates.

As a robustness check, we consider alternative, transaction-time sampled volatility

measures. To the best of our knowledge, only Patton and Sheppard (2015) have consid-

ered an alternative sampling scheme for forecasting and their focus is on signed jumps.

They do not examine the role of �nite and in�nite jumps, nor do they compare their

results with those using the popular clock-time sampling scheme. In the case of SPY, we

�nd that the share of jumps in transaction-time based RV measures is far smaller than for

clock-based measures, and any jumps are predominantly �nite activity jumps. In terms

of forecasting performance, we conclude that forecasts using volatility and jump measures

based on transaction sampling are inferior to the forecasts from clock-based sampling.

The remainder of the paper is as follows. The theoretical background is set out in

Section 6.2. The estimation of signed, �nite and in�nite activity jumps is described in

Section 6.3. Noise-robust volatility measures are also discussed. Section 6.4 sets out

the forecasting framework, including the extended HAR forecasting model and forecast

evaluation criteria. The data used in this study are described in Section 6.5, where

the incidence of various types of jumps is tabulated. The forecasting gains from adding

di�erent types of signed, �nite and in�nite activity jumps to HAR models are documented

in Section 6.6. Model averaging results are presented in Section 6.7. Volatility forecasting

results using transaction-time sampled volatility measures are presented in Section 6.8.

Finally, Section 6.9 summarizes the paper and presents our conclusion.

4Similar qualitative conclusion are obtained using the multijump test of Caporin et al. (2017). The
number of detected cojumps is also similar to the numbers reported in Caporin et al. (2017) and Mukher-
jee et al. (2020).
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6.2 Theoretical Background

Let Xt denote the log-price of an equity or an equity index. We assume X is an

Itô-semimartingale process de�ned on some �ltered probability space (Ω,F , (Ft)t≥0,P),

with the following representation:

Xt = X0 +

∫ t

0

asds+

∫ t

0

σsdWs + Jt, t ∈ [0, T ] (6.1)

where a is a locally bounded and predictable drift term, σ is the adapted, càdlàg spot

volatility, Wt is a standard Brownian motion, and Jt is a pure jump process with �nite

and in�nite activity components, Jt = JFt +J It . The �nite activity J
F
t and in�nite activity

J It jump processes are:

JFt :=

∫ t

0

∫
|x|>ε

xµ(dx, ds), (6.2)

J It :=

∫ t

0

∫
|x|≤ε

x(µ(dx, ds)− ν(dx)ds), (6.3)

where µ is the jump measure of X with compensator ν, and ε > 0 is an arbitrary number.

For more details on Itô-semimartingale processes, see Aït-Sahalia and Jacod (2014) and

the references therein. As Aït-Sahalia and Jacod (2012) note, the continuous part of

the X process captures the normal risk of an asset that can be hedged using standard

methods. The large, �nite jumps capture default risk or big news-related events, while

small jumps capture price moves which impact high-frequency prices but wash out at the

daily level, e.g. the price impact of large transactions.

Since volatility is a latent variable, realized measures are widely employed to give

consistent estimates of the quadratic variation (QV) of the process using high-frequency

data. The QV of the price process is de�ned as:

QVt =

∫ t

0

σ2
sds︸ ︷︷ ︸

Integrated Variation (IV)

+
∑

0≤s≤t

(∆Xs)
2

︸ ︷︷ ︸
Jump Contribution

(6.4)
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where ∆Xs := Xs −Xs− when X jumps at time s. The widely used, realized volatility

(RV) measure converges in probability to the QV as the sampling interval ∆n → 0:

RVt =
n∑
i=1

(∆n
iX)2 p−→ QVt, (6.5)

where the day is split into n = b1/∆nc equally spaced intervals of length ∆n with n,

∆n
iX = Xi∆n −X(i−1)∆n is the log-return in interval i, and bxc denotes the integer part

of x.

To separate the integrated variation component of QV from the jump component, we

use the threshold bipower variation (TBPV) measure proposed by Corsi et al. (2010),

a modi�ed version of the so-called bipower variation measure of Barndor�-Nielsen and

Shephard (2004b). The TBPV, which is robust to jumps in both the stochastic limit and

the asymptotic distribution, converges in probability to the integrated variance as the

sampling interval ∆n → 0:

TBPVt = µ−2
1

n

n− 1

n∑
i=2

|∆n
iX|1{(∆n

i X)2≤ϑi}|∆n
i−1X|1{(∆n

i−1X)2≤ϑi−1}
p−→
∫ t

0

σ2
sds, (6.6)

where µ1 =
√

2/π ≈ 0.7979, n/(n−1) is a small sample correction, and ϑ is the threshold

estimator de�ned as in Corsi et al. (2010, appendix B).

Barndor�-Nielsen et al. (2010) introduced positive and negative realized semivariance

(RS) estimators to capture upside and downside risk:

RS+
t =

n∑
i=1

(∆n
iX)21{∆n

i X>0}
p−→ 1

2

∫ t

0

σ2
sds+

∑
0≤s≤t

(∆Xs)
21{∆Xs>0} (6.7)

RS−t =
n∑
i=1

(∆n
iX)21{∆n

i X<0}
p−→ 1

2

∫ t

0

σ2
sds+

∑
0≤s≤t

(∆Xs)
21{∆Xs<0}. (6.8)
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6.3 Identifying and Decomposing Jumps by Sign and

Activity

To identify days with signi�cant jumps, we employ the intra-day jump test proposed

by Andersen et al. (2007b, ABD). If the largest intra-daily value of the test exceeds

the critical value, we classify the day as a jump day. The Jt indicator for a day with

signi�cant jumps is 1 if maxi
(
|∆n

iX|
/√

∆nTBPV
)
> Φ−1

1−β/2 and 0 otherwise, where Φ−1
(·)

is the inverse of the standard normal distribution function, α is the signi�cance level

and β = 1 − (1 − α)∆n is the �idàk multiple testing correction. Hence, the estimated

continuous and jump components of QV are:

Ĉt = RVt · (1− Jt) + TBPVt · Jt, (6.9)

Ĵt = (RVt − TBPVt, 0)+ · Jt. (6.10)

To identify days with signi�cant �nite and in�nite activity jumps, we employ the SFA

test proposed by Aït-Sahalia and Jacod (2011). The test statistic uses the ratio of two

truncated realized power variation measures to eliminate the large jumps. The truncated

realized power variation B(p, υn,∆n)t =
∑n

i=1 |∆n
iX|p1{|∆n

i X≤υn}, with υn = %∆$
n , % >

0, $ ∈ (0, 1/2), is the sum of truncated absolute returns, |∆n
iX| ≤ υn, raised to the

power p over di�erent sampling frequencies ∆n. The SFA test statistics has di�er-

ent limits depending on whether the jumps in Xt are �nite or in�nite activity jumps:

SFAt = B(p,υn,k∆n)t
B(p,υn,∆n)t

p−→ kp/2−1 in the �nite activity case and 1 in the in�nite activity

case. Under the �nite activity null, the statistic
(
SFAt − kp/2−1

)/√
V̂t

L−→ N (0, 1),

where V̂t = N(p, k)B(2p,υn,∆n)t
B(p,υn,∆n)2

t
. For further details on N(p, k), and other settings, see

Aït-Sahalia and Jacod (2011). We set k = 2 and p = 4, and use the indicator function

Ft = 1

{
SFAt < kp/2−1 − Φ−1

1−α

√
V̂t

}
to identify days with �nite activity jumps.

Our classi�cation of jumps by sign and activity is described below.
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Use Measure Formula

QV Contributions

Finite Activity Jumps F̂ J t = Ĵt · Ft

In�nite Activity Jumps ÎJ t = Ĵt · (1− Ft)

Positive Jumps P̂ J t =
(
RS+

t − 1
2
TBPVt, 0

)+ · Jt

Negative Jumps N̂J t =
(
RS−t − 1

2
TBPVt, 0

)+ · Jt

Forecasting Models

Signed Jumps ŜJ t = P̂ J t − N̂J t

Positive Signed Jumps Ĵ+
t = ŜJ t · Pt

Negative Signed Jumps Ĵ−t = ŜJ t · (1− Pt)

Positive Signed Finite Jumps F̂ J
+

t = Ĵ+
t · Ft

Negative Signed Finite Jumps F̂ J
−
t = Ĵ−t · Ft

Positive Signed In�nite Jumps ÎJ
+

t = Ĵ+
t · (1− Ft)

Negative Signed In�nite Jumps ÎJ
−
t = Ĵ−t · (1− Ft)

We classify jumps by activity using the jump Jt and �nite activity Ft indicators. The con-

tribution of positive and negative jumps to overall QV are based on (RS+
t − 1

2
TBPVt, 0)+ ·

Jt and (RS−t − 1
2
TBPVt, 0)+ · Jt respectively. When forecasting volatility using our ex-

tended HAR models, we use daily (net) signed jumps, ŜJ t, the di�erence between the

positive and negative measures (e.g. Patton and Sheppard, 2015). The corresponding

positive and negative signed jumps are Ĵ+
t = ŜJ · Pt and Ĵ−t = ŜJ · (1−Pt) respectively,

where Pt = 1
{
ŜJ t > 0

}
. Their �nite/in�nite counterparts are identi�ed using the �nite

activity Ft indicator.

6.3.1 Market Microstructure Noise

Market microstructure noise can distort realized volatility measures, and hence the

identi�cation of jumps. We know that the contribution of jumps varies by sampling

frequency (Table 6.3), and that the level of market microstructure noise increases as

the sampling interval ∆n → 0. As a result, standard high-frequency realized volatility

measures tend to be biased, distorting jump test statistics (e.g. Hansen and Lunde, 2006;
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Huang and Tauchen, 2005).5 This suggests that noise-robust volatility measures should be

used at high frequencies (e.g. 5 and 60 seconds), and possibly lower frequencies. Although

Aït-Sahalia and Xiu (2019) suggest that improvements in stock market liquidity mean

that the common practice of treating the 5-minute returns of S&P 100 constituents as

noise-free is a reasonably safe choice for data sampled after 2009, it is problematic before

then. They also suggest that the 5-minute returns of a large portion of the S&P 500

index constituents cannot be treated as noise-free.

We assume that the observed log price process, Yt, is contaminated by additive, mi-

crostructure noise:6

Yt = Xt + ut, (6.11)

where Xt is the process described in equation (6.1), ut is an i.i.d. noise process with

E[ut] = 0 and E[u2
t ] = ω2, and ut |= Xt. Jacod et al. (2009) and Christensen et al.

(2014) propose pre-averaging estimators for the RV and a consistent estimator of the IV.

The pre-averaging returns are estimated as a weighted average of returns within a local

neighborhood of L log-prices:

∆n
iX
∗ =

L−1∑
j=1

g

(
j

L

)
∆n
i+jY, (6.12)

where g = min(x, 1 − x), L = θ
√
n with θ = 1/3 for 5 and 60 seconds return or θ = 1

for 300 seconds returns. With these choices, the noise-robust estimator for the realized

5The bias is due to E[|∆n
i X|] ≤ E[|∆n

i X + ηi|], where ηi = ui− ui−1, and its presence produces poor
measures of the true volatility, as well as induces an attenuation bias in the autoregressive estimates (e.g.
Bollerslev et al., 2016).

6The mechanics of trading generate a diverse array of market microstructure e�ects including bid-
ask spread and corresponding bounce, the gradual response of prices to a block trade, and the strategic
component of order �ow inventory control e�ects (Aït-Sahalia and Jacod, 2014). Additive noise is the
simplest and most common market microstructure model.
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variance and the bipower variation are:7

RV ∗t =
n

n− L+ 2

1

LψL2

n−L+1∑
i=0

|∆n
iX
∗|2 − ψL1 ω̂

2
AC

θ2ψL2
(6.13)

BPV ∗t =
n

n− 2L+ 2

1

LψL2 µ
2
1

n−2L+1∑
i=0

|∆n
iX
∗||∆n

i+LX
∗| − ψL1 ω̂

2
AC

θ2ψL2
, (6.14)

where the leading n/(n− L+ 2) and n/(n− 2L+ 2) terms are small sample corrections,

and the trailing term ψL1 ω̂
2
AC

θ2ψL2
is a bias-correction to remove residual noise not eliminated

by the pre-averaging, and ψL1 = L
∑L

j=1

[
g
(
j
L

)
− g

(
j−1
L

)]2
and ψL2 = 1

L

∑L−1
j=1 g

2
(
j
L

)
are constants associated with g(·) (e.g. Christensen et al., 2014; Jacod et al., 2009,

Appendix A). The unknown noise variance ω2 can be approximated using either the

Bandi and Russell (2006) estimator ω̂2
RV = 1

2n
RVt, or Oomen (2006a) estimator ω̂2

AC =

− 1
n−1

∑n
i=2 ∆n

i−1Y∆n
i Y , the negative of the �rst order autocovariance of (log)-returns.

We use the latter procedure.

The ABD test in Andersen et al. (2007b) can be modi�ed to yield a test that is

robust to the presence of market microstructure noise. To do this we use the asymptotic

distribution of pre-averaged returns (see, for instance Christensen et al., 2014; Jacod

et al., 2009; Podolskij and Vetter, 2009, and the references therein):

n1/4∆n
iX
∗∣∣Fi/n ∼ N (0,

θσ2

12
+
ω2

θ

)
. (6.15)

Thus, we can de�ne a threshold for identifying jumps as follows:

τ =
qβ
n$

√
ψL2 θσ̂

2 +
ω̂2

θ
, (6.16)

where qβ = Φ−1
1−β/2 is the inverse of the standard normal distribution, α is the signi�cance

level, and β = 1− (1− α)∆n is the �idàk multiple testing correction. We use the BPV ∗t

to estimate σ̂2 and ω̂2
AC to estimate ω̂2. We set $ = 1/4 and θ = 1/3. Therefore, we

reject the null of no jumps whenever maxi (|∆n
iX
∗|) > τ .

7We also tried the threshold bipower variation measure proposed by Christensen et al. (2018), but
the di�erences were negligible.
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Noise-robust versions of the realized semivariances, which capture upside and down-

side risk, are constructed by appropriately modifying the two-scale realized variance mea-

sure of Zhang et al. (2005):

TSRS+
t =

1

K

K∑
k=1

RS+
t,k −

n

n̄
RS+

t
P−→ 1

2

∫ t

0

σ2
sds+

∑
0≤s≤t

(∆Xs)
2
1{∆Xs>0}, (6.17)

TSRS−t =
1

K

K∑
k=1

RS−t,k −
n

n̄
RS−t

P−→ 1

2

∫ t

0

σ2
sds+

∑
0≤s≤t

(∆Xs)
2
1{∆Xs<0}, (6.18)

where RS+
t,k and RS

−
t,k are subsample, slower time scale, realized semivariance measures;

RS+
t and RS+

t are the full sample, faster time scale, realized semivariance measures;

n̄ = n−K+1
K

is the average number of observations in the subsamples; K = bcn2/3c and

c is the optimal bandwidth as in Zhang et al. (2005). The two-time scale estimators

average the realized semivariances over K subsamples, and apply a bias correction from

the highest possible frequency.8

6.3.2 Noise-Robust ABD Test and Two-Time Scale Realized Semi-

variance � Monte Carlo Results

We examine the performance of our noise-robust ABD test statistic and two-time

scale realized semivariance estimators using Monte Carlo simulations, where the log-price

X is simulated as:
dXt =

√
νtdWt + θLdLt

dνt = κ(ην − νt)dt+ γνν
1/2
t dBt,

(6.19)

where Wt and Bt are standard Brownian motions with covariance E[dWt, dBt] = ρdt,

and Lt is either a �nite activity compound Poisson process or an in�nite activity Cauchy

process (a β-stable process with β = 1).

Following Aït-Sahalia and Jacod (2011), we set κ = 5, ην = 1/16, ρ = −0.5. The

compound Poisson process has intensity λ, and jumps that are uniformly distributed on

8Aït-Sahalia et al. (2012) develop a noise-robust, pre-averaging, version of the Aït-Sahalia et al.
(2009) jump test, while Li and Xiu (2016) develop general GMM procedures that address measurement
error in realized volatility measures.
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ν
1/2
t

√
m([−2,−1] ∪ [1, 2]). We set m = 0.7 and λ = 1.0 such that there is on average

one jump every day. When jumps are of �nite activity we set θL = 1, while for in�nite

jumps we set θL = 0.5. Following Barndor�-Nielsen et al. (2008), we add noise to the

Xt,i process:

Yt,i = Xt,i + ut,i,

where Y is the noisy, observed log price, ξ is the noise-to-signal ratio used to simulate

market microstructure noise, ut,i ∼ N (0, ω2
t ) and ω

2
t = ξ2

∫ t
0
νsds. With this design, the

variance of the noise is constant throughout the day, but changing from day to day.

The price process is simulated via an Euler scheme where we normalize one second to

be ∆n = 1/23, 400. Thus, the interval [0, 1] contains the usual 6.5hrs of trading activity.

To generate the observed prices, we discretize [0, 1] into a number n = 23, 400 of intervals.

We then contaminate the prices with market microstructure noise and aggregate the

data to the 5-, 60- and 300 seconds, which are equivalent to 4,680, 390 and 78 intraday

observations per day. We simulate 5 trading days and use 5,000 replications.

Table 6.1 shows the results of our Monte Carlo exercise exploring the size and power

of the two versions of the ABD test under �nite and in�nite jumps, with a moderate and

higher level of noise-to-signal ratio. The tests are evaluated at the 5% level. The noise-

robust ABD test is more powerful at higher, 5-second and 60-second, frequencies and

when the noise-to-signal ratio is higher. The standard ABD test is undersized (oversized)

at higher (lower) frequencies, irrespective of the level of noise-to-signal ratio, whereas

the noise-robust test displays very decent size levels which decrease with the sampling

frequency. This result is expected as the level of microstructure noise decreases when the

data is sampled more sparsely and therefore pre-averaged methods are less e�cient.

The second and third panels show the power of the tests under �nite and in�nite

activity jumps. With �nite activity jumps and a small noise-to-signal ratio, both tests

perform quite well with the noise-robust test outperforming (underperforming) the stan-

dard test at higher (lower) frequencies.9 Finally, when jumps are in�nite activity, the

9Maneesoonthorn et al. (2020) show, using a similar data generating process, that the Lee and
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standard ABD test is badly a�ected by the noise-to-signal levels.

Table 6.2 compares the �nite sample MSEs of the realized semivariance and two-time

scale realized semivariance measures. The results show that the realized semivariance

is very sensitive to market microstructure noise, resulting in large MSEs even when the

noise-to-signal ratio is moderate and the sampling frequency is low. On the other hand,

the performance of the two-time scale realized semivariance is very good overall.

6.4 Forecasting Models and Forecast Comparisons

The HAR-RV in Corsi (2009) models current and future RV as a linear function of

lagged daily, weekly and monthly values of RV. Andersen et al. (2007a) originally added

jumps to the HAR-RV model. Our forecasting models extend the HAR-RV model further

by adding signed, �nite and in�nite activity jumps. The benchmark HAR-RV model is

RVt,t+h = β0 + βdRVt + βwRVt−5,t + βmRVt−22,t + εt+h, (6.20)

where h is the forecast horizon, and RVt,t+h−1 = 1
h

∑h
i=1RVt+1−i. We examine nine

di�erent, extended HAR models. The �rst three forecasting models include daily, weekly

and monthly jumps in addition to the daily, weekly and monthly continuous component

of RV. The next three models replace the jump variables in previous models with their

�nite activity counterparts. The �nal three models replace the jump part with their

in�nite activity jumps. We estimate separate models for unsigned, positive and negative

jumps:

Mykland (2012) and Aït-Sahalia et al. (2012) tests �which are also noise-robust versions� have very poor
power at lower frequencies.
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Jumps, Signed and Unsigned Models:

HAR-CJ: RVt,t+h = β0 + βCdĈt + βCwĈt−5,t + βCmĈt−22,t + βJd Ĵt + βJw Ĵt−5,t + βJm Ĵt−22,t + εt,t+h

HAR-CJ+: RVt,t+h = β0 + βCdĈt + βCwĈt−5,t + βCmĈt−22,t + βJ+
d
Ĵ+
t + βJ+

w
Ĵ+
t−5,t + βJ+

m
Ĵ+
t−22,t + εt,t+h

HAR-CJ−: RVt,t+h = β0 + βCdĈt + βCwĈt−5,t + βCmĈt−22,t + βJ−d
Ĵ−t + βJ−w Ĵ

−
t−5,t + βJ−m Ĵ

−
t−22,t + εt,t+h

Finite Jumps, Signed and Unsigned Models:

HAR-CFJ: RVt,t+h = β0 + βCdĈt + βCwĈt−5,t + βCmĈt−22,t + βFJdF̂ J t + βFJw F̂ J t−5,t + βFJmF̂ J t−22,t + εt,t+h

HAR-CFJ+: RVt,t+h = β0 + βCdĈt + βCwĈt−5,t + βCmĈt−22,t + βFJ+
d
F̂ J

+

t + βFJ+
w
F̂ J

+

t−5,t + βFJ+
m
F̂ J

+

t−22,t + εt,t+h

HAR-CFJ−: RVt,t+h = β0 + βCdĈt + βCwĈt−5,t + βCmĈt−22,t + βFJ−d
F̂ J
−
t + βFJ−w F̂ J

−
t−5,t + βFJ−mF̂ J

−
t−22,t + εt,t+h

In�nite Jumps, signed and Unsigned Models:

HAR-CIJ: RVt,t+h = β0 + βCdĈt + βCwĈt−5,t + βCmĈt−22,t + βIJd ÎJ t + βIJw ÎJ t−5,t + βIJm ÎJ t−22,t + εt,t+h

HAR-CIJ+: RVt,t+h = β0 + βCdĈt + βCwĈt−5,t + βCmĈt−22,t + βIJ+
d
ÎJ

+

t + βIJ+
w
ÎJ

+

t−5,t + βIJ+
m
ÎJ

+

t−22,t + εt,t+h

HAR-CIJ−: RVt,t+h = β0 + βCdĈt + βCwĈt−5,t + βCmĈt−22,t + βIJ−d
ÎJ
−
t + βIJ−w ÎJ

−
t−5,t + βIJ−m ÎJ

−
t−22,t + εt,t+h
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The realized continuous and jump measures in the models are estimated using the

formulae outlined in Section 6.3. We also have an additional nine models where all the

right-hand volatility measures are the noise-robust measures discussed in Section 6.3.1.

Although additional variants of these models could be developed and evaluated, we do

not believe that it is worthwhile doing so since model averages should encompass these

variants.

Our primary interest is in the performance of pseudo out-of-sample forecasts. We

consider horizons h = 1, 5, , 22, and 66, corresponding to one day, one week, one month,

and one quarter ahead. We also use rolling window regressions of size 1000, or approxi-

mately four years, to estimate the models. The out-of-sample performance is evaluated

using the mean squared prediction error (MSPE) loss function and, to a lesser extent,

the out-of-sample R2
oos. The MSPE, which has been shown to be robust to noise in the

proxy for volatility in Patton (2011b) is:

MSPE = S−1
h

Sh∑
s=1

(
RV h

s − R̂V
h

s

)2

, (6.21)

where RV h
s and R̂V

h

s are respectively the actual and pseudo out-of-sample forecasts of

RVt,t+h, and Sh is the total number of out-of-sample forecasts from the series of rolling

window models. Additionally, we carry out pairwise tests of the null of equal predictive

ability using Diebold and Mariano (1995, DM,hereafter) tests with a MSPE loss criterion

and HAC standard errors.

The Model Con�dence Set (MCS) procedure of Hansen et al. (2011) is used to identify

the subset of models with signi�cantly lower MSPEs than the other models. We use the

MCS procedure with a quadratic loss function. We denote byM the set of all the HAR

models. We de�ne dh,i,j = L(RV t,t+h, R̂V
(i)

t,t+h) − L(RV t,t+h, R̂V
(j)

t,t+h) as the di�erence

in the loss of model i and model j. We use a quadratic loss function as L. Finally, we
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construct the average loss di�erence, d̄h,i,j, and de�ne the test statistics as follows

thi,j =
d̄h,i,j√

V̂ar(d̄h,i,j)
, ∀i, j ∈M (6.22)

The MCS test statistics are given by TM = max
i,j∈M

|thi,j| and have the null hypothesis, H0

that all models have the same expected loss. The alternative hypothesis is that there

is some model i with a MSPE that is greater than the MSPE's of all the other models

j ∈ M\i. When the null is rejected the worst performing model is eliminated, and

this process is iterated until no further model can be eliminated. The surviving models

denoted byMMCS are retained with a con�dence level α = 0.05. We implement the MCS

via a block bootstrap using a block length of 10 days and 5000 bootstrap replications.10

6.5 Data

For our forecasting exercise, we use the SPDR S&P 500 ETF (SPY) and 20 individual

stocks in the S&P 500 index. The data are for the years 2000 to 2016, a total of 4277

trading days. The 20 individual stocks were chosen based on their jump activity index,

and the relative contributions of �nite and in�nite jumps. The data are sourced from

the TickData database.11 We follow Hansen and Lunde (2006) and use previous tick

interpolations to aggregate the ticks to the required frequency.

Mean daily RV for SPY and the 20 stocks ranges from 1.037 to 8.284, while the

average number of shares traded per day ranges from 0.875 to 98.972 million. Since

we are interested in the role of realized measures using di�erent sampling frequencies

in forecasting realized volatility, we sample returns every 5, 60, and 300 seconds. The

choice of 300 second is standard in high-frequency �nance studies, and is motivated by

10Qualitatively similar results were obtained using di�erent block sizes (20 and 50 days), and additional
bootstrap replications (10,000 and 20,000).

11TickData provides pre-cleaned and �ltered price series. The algorithmic data �lters identify bad
prints, decimal errors, transposition errors and other data irregularities. The �lters take advantage of the
fact that, since we are not producing data in real time, we have the capacity to look at the tick following
a suspected bad tick before we decide whether or not the tick is valid. The �lters are proprietary and
are based upon recent tick volatility, moving standard deviation windows, and time day. For a more
detailed explanation, see the high-frequency data �ltering white paper on the TickData resources page
TickData.
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the trade-o� between bias and variance (see Aït-Sahalia et al., 2005; Bandi and Russell,

2006; Zhang et al., 2005, inter alios for a more detailed discussion).

The contribution of the di�erent types of jumps to total QV are shown in Table 6.3.

The contribution of jumps decreases as the sampling interval increases from 5 to 300

seconds. For SPY, the share of jumps decreases from 43.2% (5 seconds) to 14.3% (300

seconds).12 For the 20 stocks, the average jump share decreases from 67.6% to 29.8%.

In both cases, the decline is mainly due to the drop in the share of in�nite jumps. The

share of in�nite jumps in SPY drops from 32.6% using 5-second returns to 0.1% using

300-second returns, and for the 20 stocks, the average share of in�nite jumps drops from

34.2% to 0.2%. Hence, when returns are sampled every 300 seconds, the vast majority

of jumps in SPY and the 20 stocks are �nite activity jumps. At this frequency, the

small variations that characterize jumps are close to Brownian increments. We �nd little

evidence of asymmetry in the shares of signed jumps. The Blumenthal-Getoor index

or jump activity index (β̂IJA),13 which measures the activity of small increments, are

consistent with the estimated shares of �nite and in�nite jump components. In the case

of SPY, the index is 1.45 using 5-second returns and 0.78 using 300-second returns, which

implies that in�nite jumps are more important at higher frequencies.

Figure 6.1 plots the continuous and jump components of RV for SPY and the three

stocks � AMZN, HD and KO � with the largest, smallest and average RV. The days

with jumps are shown in red, and other days in blue. It is clear that there is consid-

erable heterogeneity in the level and timing of volatility. Although the highest spikes

in volatility occur around the dot-com and sub-prime crises (shaded areas), many other

spikes in volatility are idiosyncratic. The 5- and 300-second autocorrelation functions of

the SPY realized measures based on noise-robust and standard measures are displayed

in Figure 6.2. The SPY RVt and Ĉt measures appear to be long memory processes since

their autocorrelations do not decline exponentially. The ACF of the 5-second RVt and Ĉt

measures (left-panel) lie below their 300-second counterparts (right-panel) � a hint that

12The contribution of jumps to total QV is in line with those reported by Aït-Sahalia and Jacod
(2012), who show that the level of continuous component of the 30 stocks within the Dow Jones Industrial
Average oscillate between 65% to 85%, and between 85% to 95% for the overall index.

13The jump activity index is estimated as in Jing et al. (2012b).
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volatility forecasts using 300-second realized measures may perform better than ones

using 5-second realized measures.

6.6 Empirical Findings

6.6.1 SPY Forecasting Results

Since we use the HAR-RV model as a benchmark for assessing the forecasting perfor-

mance of our extended HAR models, Table 6.4 sets out the in-sample coe�cients, as well

as the in- and out-of-sample R2s and MSPEs, of the HAR-RV model for four forecast

horizons � h = 1 (day), h = 5 (week), h = 22 (month), h = 66 (quarter), using returns

sampled every 300 seconds. The signi�cance of the coe�cients is evaluated using Newey-

West HAC-robust standard errors, allowing for serial correlation of up to 5 (h = 1), 10

(h = 5), 44 (h = 22), and 132 (h = 66), since the random error term in the models is

serially correlated at least up to order h − 1. In following Andersen et al. (1999) and

Patton and Sheppard (2015), we estimate R2
oos as 1 minus the ratio of the out-of-sample

models-based MSPE to the out-of-sample MSPE from a forecast including only a con-

stant. The MSPE results are based on a pseudo out-of-sample rolling regression forecast

using a 1000 day window.

All the coe�cients in Table 6.4 are signi�cant even at the three month horizon, con-

�rming the high persistence of volatility. The magnitude of the daily and weekly coef-

�cients decrease as we lengthen the forecast horizon. Although, the magnitude of the

monthly coe�cient changes little with the horizons, its relative importance increases at

longer horizons.14

Summary forecasting results for extended HAR-CJ (jumps), HAR-CFJ (�nite jumps),

and the HAR-CIJ (in�nite jumps) models are presented in Table 6.5, also using 300 second

returns. In- and out-of-sample R2s and the MSPEs are presented for unsigned jumps,

positive signed jumps and negative signed jumps. Full results are available on request.

A few points about the coe�cients estimates are worth noting. The restrictions that the
14These results are well-documented in the literature, see Andersen et al. (2007a), Corsi (2009), and

Corsi et al. (2010) among others.
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coe�cients on �nite and in�nite jumps are the same, and that the coe�cients on positive

and negative jumps are the same, are decisively rejected. In line with Andersen et al.

(2007a) and Patton and Sheppard (2015), overall jumps tend to reduce future volatility,

negative jumps tend to increase it and positive jumps to decrease it. Finite (in�nite)

jumps tend to decrease (increase) future volatility.

Unsurprisingly, the in-sample R-squared statistics (R2
is) in Table 6.5 suggest that in-

corporating jumps as predictors results in a better �t for our models, outperforming the

benchmark HAR-RV across the four forecasting horizons under examination. The out-

of-sample R-squared statistics (R2
oos) show that extended HAR models outperform the

benchmark model at one day and one week horizons, and about half the time at longer

horizons. The models with positive jumps have higher R2
oos's at all horizons. Turning to

the MSPE results, the forecasting performance of the extended HAR models is signi�-

cantly better at one day and one week horizons, and better (signi�cantly better) about

half (one quarter) of the time at the one-month and three-month horizons. Note that no

single extended HAR model outperforms all the others, a �nding also reported in Patton

and Sheppard (2009), which suggests that model averages combining the information con-

tained in the di�erent volatility forecasting models may generate further forecast gains.

See Section 6.7 below.

6.6.2 SPY Forecasting Results Using Standard and Noise-Robust

Realized Measures

We know that microstructure noise is important at higher frequencies, and the result-

ing attenuation bias may generate less accurate volatility forecasts than forecasts using

noise-robust measures, such as the ones discussed in Section 6.3.1 above. We examined

this issue in detail. Table 6.6 compares the forecasting performance of SPY extended

HAR volatility models using standard versus noise-robust realized measures identifying

models with signi�cantly lower MSPEs than the benchmark HAR-RV model. The entries

in the top panel are based on forecasts using standard realized jump measures as explana-

tory variables; the bottom panel entries are based on noise-robust measures. The entries
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are relative MSPEs �The ratio of the MSPE of the proposed model to the MSPE of

the corresponding benchmark model� so ratios below one indicate more accurate rolling

regression forecasts.15 Models with signi�cantly lower MSPE than the benchmark model,

based on pair-wise Diebold and Mariano (1995, DM) tests, are starred. The DM tests

show that many of the extended HAR models in Table 6.6 forecast as well as, or bet-

ter, than the HAR-RV models, although there is considerable variation across sampling

frequencies and time horizon.

At the 5 and 60 second frequencies, the forecasts from models using noise-robust

realized jump measures are somewhat more accurate than forecasts based on regular

realized jump measures. Many models using 5 and 60 second standard volatility measures

are excluded from the MCS at longer horizons, con�rming the importance of taking

account of microstructure noise at higher frequencies. Nevertheless, the MSPE numbers

for the benchmark HAR-RV model in the �nal row of Table 6.6 suggest that models

using 300-second volatility measures tend to give better forecast than models using 5- or

60-second returns, irrespective of whether standard or noise-robust volatility measures

are used.

6.6.3 Extended HAR Model Forecasting Results for the Twenty

S&P Stocks

Some results for the 20 S&P 500 stocks are presented in Table 6.7. The relative

MSPE entries (averaged across the 20 stocks) are shown in the body of the table, while

the average MSPEs for the benchmark HAR-RV models using standard realized measures

are shown in the �nal row of the table. The entries for models which are not retained

in the MCS at least 15 times (out of 20) are su�xed with a dagger (†). The relative

MSPE entries are more clustered around one than in Table 6.6.16 In addition, with

the majority of the models retained in the MCS at least 15 times, this indicates that

15The MSPE results are based on pseudo out-of-sample, rolling regression forecast using 1,000 day
window. Most models are retained in the model con�dence set (MCS); the small number of entries for
models that are not retained in the MCS are identi�ed with a dagger (†). The MCS results are generated
using a 10-day block bootstrap and 5,000 replications.

16The entries are also less dispersed, in part because we are reporting averages.
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the improvement in the forecasting performance of extended models with jumps is less

clearcut for the 20 stocks, than it is for the SPY. At the 5 and 60-second frequencies,

the results show that noise-robust volatility measures work best. This is because noise-

robust measures provide more e�cient estimators of the latent volatility process, thereby

reducing the attenuation bias on the autoregressive coe�cients (see, e.g. Andersen et al.,

2005; Bollerslev et al., 2016). However, consistent with the results for SPY, forecasts using

300 second volatility measures are generally better than forecasts using 5 or 60 second-

based volatility measures.17 In addition, the relative MSPEs of the standard volatility

measures are often lower than those of the noise-robust measures.

No single extended HAR model with jumps dominates all the other models � the

main reason being the small number of systematic jumps across the 20 stocks.18 We �nd

that, on average, cojumps only contribute to 9% of the total jump component, which

means that most jumps are idiosyncratic. To illustrate, the left panel of Figure 6.3

shows the returns on May 06, 2010, the day of the so-called Flash Crash, one of the few

days when the stocks jumped together. The movement in returns on that date is very

di�erent from returns on a typical day such as December 23, 2003 (right-panel) in which

only idiosyncratic jumps are present. Since the idiosyncratic jumps are stock speci�c

reactions to news, what it is perceived as negative news for one stock might be positive

news for another stock, so generating jumps of di�erent size and directions. Aït-Sahalia

and Xiu (2016) suggest that co-jumps stem from surprising news announcements that

occur primarily before the opening of the U.S. market. Amengual and Xiu (2018) note

that downward intraday volatility jumps in the S&P 500 index are often associated with

a resolution of policy uncertainty, mostly through statements from the FOMC meetings

and speeches by the chair of the Federal Reserve. Aït-Sahalia et al. (2020) �nd that

idiosyncratic jumps are related to idiosyncratic events such as earning disappointments.

17The improvements of the 300-second based realized measures vis-à-vis 5- and 60-second returns
are due to noise-robust measures are sometimes derived under some (strong) assumptions about the
microstructure noise, and whenever (some of) these assumptions are not met in practice, the estimators
turn out to be inconsistent. Therefore, the 300-second returns o�ers enough statistical power that seems
to avoid distortions that could arise from microstructure noise.

18We identify jumps using the co-exceedance procedure of Gilder et al. (2014), which relies on the
intersection of the univariate jump tests.
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Given the rich information content of the di�erent jump classi�cations and since no single

extended HAR model dominates, the next section focuses on whether model averages

forecasts consistently outperform the forecasts from the benchmark HAR-RV and the

best extended HAR models across sampling frequencies and forecasting horizons.

6.7 The Gains from Model Averaging

Hitherto, we have shown that a variety of extended HAR volatility models, that ac-

count for the nature and sign of jumps, generate signi�cant improvements in forecasting

performance. However, no single speci�cation consistently outperforms the other models

across horizons and frequencies, which suggests that model averaging might generate fur-

ther forecasting gains. Four simple approaches to assigning model averaging weights are

considered.19 The aim of model averaging is to exploit relevant information embedded

in the di�erent forecasts, and produce an ensemble model that outperforms the bench-

mark HAR-RV model and, more importantly, the best single, extended HAR-RV jump

model. Our approaches follow the literature closely (see, e.g. Aiol� et al., 2011; Aiol�

and Timmermann, 2006; Bates and Granger, 1969; Elliott and Timmermann, 2016, and

the references therein).

We present model averaging results for the four sets of weights tabulated below �

weights minimizing the estimated variance of the prediction errors, inverse MSPE weights,

inverse MSPE rank weights and equal weights. In the �rst three cases, the weights are

recalculated every time a new set of rolling forecasts are generated, and we prune the set

of models under consideration by only averaging models that are retained in the model

con�dence set.

19We experimented with more complicated model averaging procedures, but the results were similar
to those presented here. To conserve space, we do not report these experiments, but the details are
available on request.

189



Weight Formula Models

Min. Prediction Error Variance wht = argmin
w

w′Σ̂h
tw s.t. ι′w = 1 MCS

Inverse MSPE wht,i =
(MSPEht,i)

−1∑
i∈MJ

(MSPEht,i)
−1 MCS

Inverse Rank wht,i =
(Rankht,i)

−1∑
i∈MJ

(Rankht,i)
−1 MCS

Equal Weights whi,t = 1
N

All

Note: Σ̂h
t is the estimated, rolling window variance-covariance matrix of the set of

MCS retained horizon h volatility forecasting models at time t. ι is a vector of ones

representing each retained model. MSPEht,i and Rank
h
t,i are the rolling window MSPEs

and MCS Ranks for the MCS retained horizon h forecasting model at time t. Finally,

N represents all the jump speci�cations used in this study.

We present model averaging results for SPY and four individual stocks chosen by the

level of their jump activity. All the stocks have estimated Blumenthal-Getoor index in

the range 0 to 1, so their returns include �nite and in�nite activity jumps, with �nite

jumps dominating. BA and KO with jump activity of 0.58 and 0.91 are the extreme

cases.

The relative MSPEs for the best extended HAR-RV model and the four model averag-

ing approaches are shown in Table 6.8. The MSPEs for each index or stock and forecast

horizon are measured relative to the MSPE of the corresponding HAR-RV model. The

bold entries are model averages with lower MSPEs than the MSPEs of both the HAR-RV

and best extended HAR models. The starred entries denote model averages with signif-

icantly lower MSPEs than the MSPEs of the HAR-RV models. Double starred entries

identify models whose MSPEs are signi�cantly lower than the MSPEs of both the bench-

mark HAR-RV and the best extended HAR model. The four model averages generate

forecasts that typically outperform the benchmark model for the four forecast horizons

examined: h = 1 (on-day), h = 5 (one week), h = 22 (one month), h = 66 (one quarter).

For example, in the case of SPY with 300-second returns, the one-week relative MSPE of

the best extended HAR model is 0.753 as compared with a range of 0.693 to 0.715 for the

four model averages. The largest MSPE reductions are generally found at the one-week
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horizon, followed by the one-month horizon.

We also compare the model averaging results for SPY using 60 and 300 second re-

turns. The 300-second model average forecasts dominate the forecasts using 60-second

returns, generating signi�cantly lower MSPEs. The 300-second forecasts also dominate

the unreported model average forecasts using 5-second returns. These results also hold

for the four stocks reported here, and for the other 16 stocks. The 300-second model

averaged MSPEs are generally lower than the MSPEs of both the benchmark HAR-RV

and best extended HAR models. In about a quarter of the cases, the MSPEs from the

300-second model average are signi�cantly lower than the MSPEs of the best extended

HAR model.

In conclusion, model averaging the forecasts from extended HAR-RV models generally

result in lower MSPEs. Forecasting 300-second returns dominate forecasts using higher

frequency returns. The MCS procedure for pruning dominated models and the use of

time varying weights for the model averages are helpful. Simple weighting schemes, e.g.

the use of inverse MSPES of inverse MSPE ranks, work as well as schemes that are more

complicated (e.g. Patton and Sheppard, 2009).

6.8 A Robustness Check using Transaction-Time Sam-

pled Volatility Measures

In this section, we examine the volatility forecasting performance of alternative jump

measures based on a transaction-based sampling scheme. Relatively few studies have

considered alternative sampling schemes. For instance, Gri�n and Oomen (2008) and

Oomen (2006b) study the properties of alternative RV measures using clock/calendar,

transaction and business time sampling, but they do not consider jumps. To the best of

our knowledge, only Patton and Sheppard (2015) examine the forecasting performance of

jump measures using transaction time sampling, but they do not compare the clock and

transaction time-based volatility components and the forecasting performance thereof.

We contribute to this literature in two ways. Firstly, we decompose clock and transaction-
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based RV measures into their continuous and jump components, including their signed

and �nite/in�nite activity jump components. Secondly, we compare the volatility fore-

casting performance of the clock and transaction time-based measures, using our extended

HAR model averaging frameworks.

For brevity, we only report results for SPY. The transaction-based volatility measures

are calculated using a 78 intraday returns sampling scheme as in Patton and Sheppard

(2015). This is the transaction-based equivalent of the 300-second/5-minute sampling

scheme, which is widely used in the literature. Intraday returns are calculated by �xing

the opening and closing prices, and recording the prices at business time bikc, where

i = 1, . . . , 79, k = N−1
79

, N is the number of unique date stamps per day, and b.c denotes

rounding down to the nearest integer.20

Table 6.9 shows that the transaction-based RV measure is primarily driven by its

continuous part: the contribution of jumps to total QV is about 4.6% versus 14.3% for

the clock-based measures. Almost all the jumps are �nite jumps, the same as for clock

time, and there is little di�erence in the contribution of positive and negative jumps.

Although most jumps are �nite activity jumps, the smaller contribution of transaction

time based jumps to total QV implies a somewhat smaller jump activity index β̂IJA (0.708

versus 0.778).

The relative MSPEs in Table 6.10 suggest that the forecasting performance of ex-

tended HAR models using transaction-based measures is comparable to that of the

benchmark HAR-RV model, in sharp contrast to forecasting performance of extended

HAR models using clock-based measures. Similar to the clock-time results, the MSPEs

of most of the extended models are lower than the MSPE of the benchmark model at

the one-day horizon, although only three forecasts have signi�cantly lower MSPEs. By

contrast, as the horizon increases, we only obtain a handful of statistically signi�cant re-

ductions in MSPEs. Consequently, the model con�dence set now includes all the models;

since the forecasting performance of the models is broadly similar, we cannot identify a

set of superior models.

20Note that clock- and transaction-based RV descriptive statistics for SPY are very similar.
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A comparison of clock- and transaction-time based SPY model averaging results is

presented in Table 6.11. Results are presented for daily, weekly, monthly, and quar-

terly horizons. With transaction-based sampling, simple model averaging procedures

(using MSPE, rank or equal weights) generate statistically signi�cant improvements in

the MSPEs. However, the MSPE improvements are far smaller than those obtained

with clock-based sampling, so the transaction-time based MSPEs are always higher than

their close-based counterparts. Based on these SPY results, as well as results for the 20

stocks that are not reported, we conclude that forecasts using volatility measures from

transaction-based sampling of returns are inferior to forecasts from clock-based sampling.

6.9 Conclusion

We examine the gains in forecasting the volatility of equity prices by decomposing

jumps by activity (�nite/in�nite) and by sign using high-frequency data for SPY and

20 individual stocks. Our key �ndings are as follows. Quadratic variation contains

a signi�cant jump component, even at the 300-second frequency. The contribution of

in�nite jumps is greater than that of �nite jumps at higher frequencies. However, at the

300-second frequency, jumps are mainly of �nite activity.

Extended HAR style models, incorporating a variety of jump activity and sign mea-

sures, generate statistically signi�cant in- and out-of-sample improvements for both SPY

and the 20 individual stock we examined. The use of noise-robust realized measures

improve the forecasts of future volatility at higher frequencies. However, since market

microstructure noise declines as the sampling interval increases, the forecasting advantage

of the noise-robust jump volatility measures also diminishes.

The rolling window, out-of-sample forecast results suggest that the lowest MSPE

forecasts are obtained using returns sampled every 300 seconds, rather than 5 or 60

seconds. This result holds for all of the horizons we examined � a day, a week, a month

and a quarter � irrespective of whether noise-robust volatility measures are, or are not,

used. In terms of MSPEs, there is little to choose between standard or noise-robust
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measures at this frequency.

We also examine the volatility forecasting performance of alternative jump measures

based on a transaction time-based sampling scheme. The transaction-based RV measures

are mainly driven by their continuous component, and �nite jumps dominate in�nite

jumps. Using transaction-based volatility measures, the overall forecasting performance

of extended HAR models is similar to that of the benchmark HAR-RV model. Our con-

clusion is that forecasts using realized volatility and jump measures based on transaction

sampling are inferior to forecasts using clock-based sampling measures. As our �ndings

relate to the role of jumps using transaction time versus calendar time based sampling,

this underscores the importance of the appropriate choice of the sampling scheme.

In the absence of a single dominant forecasting model, we investigate whether various

model averaging procedures generate signi�cant forecasting gains. In many cases, we

prune the set of models using the MCS of Hansen et al. (2011) to eliminate dominated

models. We �nd that simple model averaging procedures generally result in signi�cant

gains in forecasting performance vis-à-vis the single best extended HAR model, which in

turn outperforms the benchmark HAR-RV model. For example, model averaged results

using equal weights, or the normalized inverse MSPE weights in Bates and Granger (1969)

perform as well as model averaged results where the weights minimize the variance of the

prediction error.
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Appendix 6.A Tables and Figures

Table 6.1: Noise-Robust ABD Test � Size and Power Simulations

ξ = 0.01 ξ = 0.1

5-Sec. 60-Sec. 300-Sec. 5-Sec. 60-Sec. 300-Sec.

Size

ABD Noise-robust 0.059 0.047 0.035 0.051 0.021 0.016

ABD 0.030 0.055 0.128 0.029 0.046 0.084

Power � Compound Poisson (Finite Jumps)

ABD Noise-robust 0.999 0.991 0.941 0.963 0.910 0.892

ABD 0.989 0.992 0.988 0.394 0.546 0.622

Power � Cauchy Process (In�nite Jumps)

ABD Noise-robust 0.956 0.815 0.746 0.910 0.717 0.546

ABD 0.736 0.770 0.768 0.482 0.572 0.616

Note: The table reports the empirical size and power of the ABD test of Andersen

et al. (2007b), and our modi�ed, noise-robust version. ξ is the noise-to-signal ratio

used to simulate market microstructure noise. The theoretical size of the tests is

5% (α = 0.05). The models and Monte Carlo settings are laid out in Section 6.3.2

of the paper.
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Table 6.2: Standard vs. Noise-Robust Realized Semivariances � Finite Sample MSE
Performance

ξ = 0.01 ξ = 0.1

5-Sec. 60-Sec. 300-Sec. 5-Sec. 60-Sec. 300-Sec.

RS+ 9.568 0.067 0.003 967.498 6.737 0.274

RS− 9.589 0.069 0.004 968.441 6.801 0.287

TSRS+ 0.001 0.001 0.002 0.112 0.014 0.008

TSRS− 0.001 0.001 0.002 0.113 0.016 0.009

Note: The table entries are the MSEs of the realized and two-scale realized

semivariances in the simulation described in Section 6.3.2 of the paper.

The DGP is a Heston model augmented with a �nite activity, compound

Poisson jumps. ξ represents the noise-to-signal ratio used to simulate the

market microstrcture noise. Second-by-second prices were simulated 5,000

times for 5 days with 6.5 trading hours per day.
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Table 6.3: Estimated Contribution of Signed, Finite and In�nite Activity Jumps to QV

SPY Avg. Stocks AMZN BA BFB CAT CHL COST CVX

5s 60s 300s 5s 60s 300s 300s 300s 300s 300s 300s 300s 300s

Continuous 56.798 88.474 85.725 32.399 65.612 70.198 73.426 72.586 55.143 74.899 62.182 69.525 80.277

Jumps 43.202 11.526 14.275 67.601 34.388 29.802 26.574 27.414 44.857 25.101 37.818 30.475 19.723

Pos. Jumps 21.847 6.450 8.257 33.946 16.535 14.992 15.208 14.362 22.474 12.574 17.978 15.963 9.849

Neg. Jumps 21.355 5.075 6.018 33.653 17.853 14.810 11.366 13.052 22.383 12.527 19.841 14.512 9.874

Finite Jumps 10.602 10.419 14.156 33.394 32.417 29.597 26.410 27.228 44.649 24.852 37.314 30.357 19.576

In�nite Jumps 32.600 1.106 0.118 34.207 1.971 0.205 0.165 0.187 0.208 0.249 0.504 0.118 0.147

Pos. Finite Jumps 5.584 5.941 8.219 17.028 15.539 14.883 15.127 14.248 22.380 12.465 17.681 15.892 9.766

Neg. Finite Jumps 5.017 4.478 5.937 16.366 16.878 14.714 11.283 12.979 22.269 12.387 19.633 14.465 9.810

Pos. In�nite Jumps 16.263 0.509 0.038 16.918 0.996 0.108 0.081 0.114 0.093 0.110 0.296 0.070 0.083

Neg. In�nite Jumps 16.338 0.597 0.080 17.287 0.975 0.096 0.084 0.073 0.115 0.140 0.208 0.047 0.064

β̂IJA 1.454 1.056 0.778 1.455 1.040 0.723 0.461 0.576 0.802 0.621 0.763 0.697 0.748

DOW EXC GILD GS HD JNJ JPM KO OKE PG SO UPS WMT

300s 300s 300s 300s 300s 300s 300s 300s 300s 300s 300s 300s 300s

Continuous 68.881 69.488 63.203 75.979 73.935 70.611 76.122 74.208 59.168 71.147 70.791 68.292 74.102

Jumps 31.119 30.512 36.797 24.021 26.065 29.389 23.878 25.792 40.832 28.853 29.209 31.708 25.898

Pos. Jumps 15.029 15.506 18.911 12.311 13.875 12.919 12.926 12.498 19.059 15.416 14.486 15.477 13.013

Neg. Jumps 16.090 15.006 17.886 11.710 12.190 16.470 10.952 13.294 21.773 13.438 14.723 16.231 12.885

Finite Jumps 30.849 30.400 36.458 23.941 25.940 29.279 23.822 25.519 40.602 28.777 28.642 31.527 25.802

In�nite Jumps 0.270 0.112 0.339 0.080 0.125 0.111 0.056 0.273 0.230 0.076 0.568 0.181 0.096

Pos. Finite Jumps 14.830 15.434 18.670 12.297 13.843 12.832 12.899 12.341 18.982 15.365 14.274 15.373 12.968

Neg. Finite Jumps 16.019 14.966 17.788 11.644 12.097 16.447 10.923 13.178 21.620 13.413 14.368 16.154 12.834

Pos. In�nite Jumps 0.198 0.072 0.241 0.014 0.032 0.088 0.028 0.157 0.077 0.051 0.213 0.104 0.045

Neg. In�nite Jumps 0.071 0.040 0.098 0.066 0.093 0.023 0.029 0.116 0.153 0.025 0.355 0.077 0.051

β̂IJA 0.579 0.725 0.522 0.610 0.665 0.971 0.606 0.913 0.645 0.955 0.878 0.895 0.824

Note: The table reports the estimated percentage contribution of the di�erent jump measures to QV. Results using 5-, 60-, and 300-

second returns are shown for SPY and the average of the 20 stocks. The results for the individual stocks were estimated using 300-second

returns. β̂IJA is the estimated Blumenthal-Getoor index of jump activity (see, Jing et al., 2012b, for more details and settings).
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Table 6.4: HAR-RV Benchmark � SPY, 300 Second Returns

h = 1 h = 5 h = 22 h = 66

β0 0.095∗ 0.148∗∗ 0.288∗∗∗ 0.527∗∗∗

βd 0.246∗∗ 0.184∗∗∗ 0.103∗∗∗ 0.061∗∗∗

βw 0.422∗∗∗ 0.347∗∗∗ 0.322∗∗∗ 0.200∗∗∗

βm 0.238∗∗ 0.323∗∗∗ 0.290∗∗∗ 0.215∗∗∗

R2
(in) 0.512 0.629 0.562 0.337

R2
(oos) 0.443 0.673 0.707 0.470

MSPE 3.102 1.322 0.944 1.262

Note: The table reports the OLS coe�cient estimates

and in- and out-of-sample R-squared for HAR-RV forecast-

ing regressions for SPY RV at the daily (h = 1), weekly

(h = 5), monthly (h = 22) and quarterly (h = 66) hori-

zons. The RV measures are calculated using 300 second

returns. The signi�cance of the coe�cients is based on

Newey-West HAC standard errors, allowing for serial cor-

relation up to order 5, 10, 44 or 132 for horizons h = 1, 5, 22

and 66 trading days. The superscripts ∗,∗∗, and ∗∗∗ denote

statistical signi�cance at the 10%, 5% or 1% levels. The

out-of-sample R-squared, R2
oos, is calculated as one minus

the ratio of the MSPE from the HAR-RV model to the

MSPE from a model that only has an intercept.
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Table 6.5: SPY Extended HAR Regressions Using Total, Positive and Negative Signed
Jumps

h = 1 h = 5 h = 22 h = 66 h = 1 h = 5 h = 22 h = 66 h = 1 h = 5 h = 22 h = 66

HAR-CJ HAR-CJ+ HAR-CJ−

R2
(in)

0.555 0.666 0.572 0.338 0.541 0.668 0.578 0.341 0.523 0.664 0.612 0.362

R2
(oos)

0.493 0.747 0.728 0.465 0.450 0.754 0.739 0.489 0.511 0.724 0.690 0.445

MSPE 2.821? 1.017? 0.872? 1.274 3.059 0.995? 0.840? 1.218? 2.720? 1.110? 0.994 1.318

HAR-CFJ HAR-CFJ+ HAR-CFJ−

R2
(in)

0.555 0.666 0.572 0.338 0.541 0.668 0.577 0.341 0.523 0.665 0.614 0.363

R2
(oos)

0.493 0.747 0.728 0.464 0.449 0.753 0.734 0.478 0.511 0.724 0.684 0.446

MSPE 2.822? 1.018? 0.874? 1.276 3.066 0.998? 0.857? 1.243 2.721? 1.112? 0.994 1.317

HAR-CIJ HAR-CIJ+ HAR-CIJ−

R2
(in)

0.512 0.630 0.563 0.340 0.512 0.630 0.576 0.381 0.512 0.629 0.563 0.339

R2
(oos)

0.511 0.709 0.644 0.452 0.509 0.711 0.652 0.475 0.512 0.712 0.651 0.454

MSPE 2.722? 1.173? 1.151 1.316 2.731? 1.168? 1.125 1.264 2.714? 1.162? 1.121 1.299

Note: See Notes to Table 6.4. Bold in-sample and out-of-sample R-squared entries indicate that the �t of the proposed models

is better than that of the benchmark HAR-RV model in Table 6.4. Bold MSPE entries are lower than the MSPEs of the

benchmark models. Signi�cantly lower MSPE entries at the 5% level are starred. The complete table of coe�cient estimates is

available on request.
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Table 6.6: SPY Relative MSPEs by Frequency � Standard vs. Noise-Robust Measures

h = 1 (day) h = 5 (week) h = 22 (month) h = 66 (quarter)

5 Sec. 60 Sec. 300 Sec. 5 Sec. 60 Sec. 300 Sec. 5 Sec. 60 Sec. 300 Sec. 5 Sec. 60 Sec. 300 Sec.

Panel A: Standard Jump Measures

HAR-RV 1.000 1.000 1.000 1.000 1.000 1.000† 1.000† 1.000 1.000 1.000† 1.000 1.000

HAR-CJ 1.253 0.755∗ 0.909∗ 1.029 0.990 0.770∗ 0.980∗ 1.172 0.924∗ 0.968 1.167† 1.010

HAR-CFJ 0.871∗ 0.752∗ 0.910∗ 1.181 0.992 0.770∗ 1.051 1.178 0.926∗ 1.010† 1.171† 1.011

HAR-CIJ 1.124 1.060 0.878∗ 1.022 1.034 0.888∗ 0.969∗ 1.001 1.220 0.940∗ 0.993 1.043

HAR-CJ+ 0.903∗ 0.993 0.986 1.165 0.969 0.753∗ 1.147† 0.894∗ 0.891∗ 1.074† 0.977 0.965∗

HAR-CJ− 0.848∗ 0.969 0.877∗ 1.124 1.017 0.840∗ 0.841∗ 0.936∗ 1.053 0.917∗ 1.020 1.045

HAR-CFJ+ 0.925∗ 0.993 0.988 1.175 0.971 0.755∗ 1.198† 0.877∗ 0.908∗ 1.096† 0.959 0.985

HAR-CFJ− 0.915∗ 0.969 0.877∗ 1.215 1.035 0.841∗ 0.982 0.959∗ 1.054 1.035† 1.020 1.044

HAR-CIJ+ 0.910∗ 1.055 0.881∗ 1.151 1.020 0.884∗ 1.086† 0.964∗ 1.192 1.136† 0.940∗ 1.002

HAR-CIJ− 0.729∗ 1.059 0.875∗ 0.996 1.030 0.879∗ 1.054† 0.921∗ 1.189 0.939∗ 0.977∗ 1.029

Panel B: Noise-Robust Jump Measures

HAR-RV 0.843∗ 0.907∗ 1.009 0.882∗ 0.976 0.962 0.821∗ 1.031 1.154 0.893∗ 1.013 1.014

HAR-CJ 0.768∗ 0.966 1.015 0.865∗ 1.010 0.962 0.977 1.044 1.145 0.988 0.996 0.906∗

HAR-CFJ 0.775∗ 0.960∗ 1.015 0.867∗ 1.060 0.958∗ 0.987 1.031 1.143 0.921∗ 0.925∗ 1.032

HAR-CIJ 0.791∗ 0.980 1.018 0.890∗ 1.025 0.965 0.803∗ 1.073 1.179 0.875∗ 1.016 0.998

HAR-CJ+ 0.851∗ 0.684∗ 1.015 0.884∗ 0.930∗ 0.960 0.838∗ 0.907∗ 1.145 0.926∗ 1.037 0.991

HAR-CJ− 0.870∗ 0.852∗ 1.013 0.828∗ 0.889∗ 0.953∗ 0.772∗ 0.912 1.135 0.899∗ 0.968 0.997

HAR-CFJ+ 0.866∗ 0.677∗ 1.015 0.895∗ 0.889∗ 0.960 0.861∗ 0.938∗ 1.145 0.919∗ 1.037 0.990

HAR-CFJ− 1.111 0.852∗ 1.013 0.882∗ 0.894∗ 0.953∗ 0.786∗ 0.902∗ 1.135 0.931∗ 0.953 0.753∗

HAR-CIJ+ 0.794∗ 0.972 1.026 0.875∗ 1.005 0.977 0.841∗ 1.166 1.164 0.930∗ 1.038 0.994

HAR-CIJ− 1.009 0.958 1.016 0.793∗ 1.015 0.961 0.794∗ 0.947∗ 1.137 0.852∗ 0.941∗ 1.000

Memo:

HAR-RV MSPE 3.364 4.550 3.102 1.553 1.350 1.322 1.443 1.025 0.944 1.778 1.344 1.262

Note: The relative MSPE ratios are the ratios of the MSPEs of the extended HAR models using standard volatility measures (top panel) or noise-robust

measures (bottom panel) relative to the benchmark HAR-RV models employing standard measures. The starred MSPE entries indicate statistically

signi�cant reductions in the MSPEs at the 5% level. Entries with a dagger, †, denote models not in the MCS. The MSPE and MCS results are

respectively based on rolling regression using 1,000 observations and a 10-day block bootstrap with 5,000 replications.
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Table 6.7: Twenty Stock averages of Relative MSPEs � Standard vs. Noise-Robust Measures

h = 1 (daily) h = 5 (week) h = 22 (month) h = 66 (quarter)

5 Sec. 60 Sec. 300 Sec. 5 Sec. 60 Sec. 300 Sec. 5 Sec. 60 Sec. 300 Sec. 5 Sec. 60 Sec. 300 Sec.

Panel A � Standard Jump Measures

HAR-RV 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000† 1.000 1.000

HAR-CJ 0.999 0.991 0.972 0.950 0.916 0.933 0.929 0.942 0.970 0.928 0.958 0.995

HAR-CFJ 1.057 0.984 0.973 1.048† 0.916 0.934 1.064† 0.943 0.974 1.043 0.952 0.997

HAR-CIJ 1.010 0.973 0.940 0.986 0.955 0.942 1.035 1.010 1.063 1.007† 1.014† 1.037

HAR-CJ+ 1.044 1.000 0.968 1.098† 0.939 0.945 1.203† 0.994 1.038 1.127† 1.004† 1.033

HAR-CJ− 1.063 1.018 0.932 1.038 0.943 0.934 1.144† 0.970 1.026 1.078† 0.997† 1.018

HAR-CFJ+ 1.055† 0.999 0.969 1.153† 0.940 0.945 1.267† 0.994 1.038 1.173† 1.004 1.031

HAR-CFJ− 1.103† 0.984 0.932 1.115† 0.938 0.937 1.228† 0.970 1.030 1.144† 0.997† 1.016

HAR-CIJ+ 1.044 0.979 0.939 1.090† 0.966 0.946 1.189† 1.010 1.080 1.129† 1.004† 1.042

HAR-CIJ− 1.011 0.982 0.947 1.071† 0.960 0.945 1.213† 1.005 1.091 1.137† 1.006† 1.062

Panel B � Noise-Robust Jump Measures

HAR-RV 0.966 0.916 0.969 0.975 1.017 0.998 0.975 1.081 1.138 0.956† 1.050 1.032†

HAR-CJ 0.958 0.935 0.975 0.934 0.975 0.990 0.958 1.077 1.135 0.949 1.040 0.962

HAR-CFJ 0.980 0.939 0.976 0.962 1.003 0.996 0.966 1.082 1.075 0.882 0.963 0.994

HAR-CIJ 0.969 0.926 0.970 0.956 1.022 0.985 0.943 1.064 1.122 0.905 1.042 1.021

HAR-CJ+ 0.955 0.986 0.978 0.962 1.008 0.991 0.981 1.082 1.092 0.956 1.042 1.017†

HAR-CJ− 0.973 0.943 0.961 0.950 0.984 0.994 0.938 1.043 1.126 0.936† 1.030 1.019

HAR-CFJ+ 0.947 0.987 0.980 0.952 1.010 0.993 0.967 1.086 1.091 0.924† 1.044 1.014

HAR-CFJ− 0.963 0.938 0.962 0.962 0.984 0.994 0.948 1.047 1.107 0.945† 1.031 1.024

HAR-CIJ+ 0.972 0.926 0.950 0.957 1.022 0.994 0.966 1.073 1.091 0.952† 1.045 1.008

HAR-CIJ− 0.964 0.935 0.948 0.948 1.025 0.986 0.969 1.061 1.116 0.943† 1.037 1.033

Memo:

HAR-RV MSPE 373.1364 54.8865 22.7444 85.5808 16.9684 9.9258 27.0842 8.8123 6.3931 17.2674 7.9011 6.2917

Note: The relative MSPE entries are the 20 stock average ratios of the MSPEs of the extended HAR models using standard volatility measures (top

panel) or noise-robust measures (bottom-panel) to the MSPEs of HAR-RV models employing standard measures. The entries with a dagger, †, denote

models which were retained in the MCS for fewer than 15 stocks. The MSPE and MCS results are respectively based on rolling regression using 1,000

observations and a 10-day block bootstrap with 5,000 replications.
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Table 6.8: Model Averaging Results � Relative MSPEs at Di�erent Horizons for SPY,
BA, BFB, COST and KO

h = 1 h = 5 h = 22 h = 66 h = 1 h = 5 h = 22 h = 66

SPY � 300 seconds SPY � 60 seconds

Best Extended HAR 0.875∗ 0.753∗ 0.891∗ 0.965∗ 0.752∗ 0.969 0.877 0.940∗

Avg. � Min Var Weights 0.987 0.693∗∗ 0.895∗ 0.966∗ 0.812∗ 0.977 0.940∗ 0.971∗

Avg. � MSPE Weights 0.879∗ 0.706∗∗ 0.862∗∗ 0.919∗∗ 0.875∗ 0.914∗∗ 0.850∗ 0.965∗

Avg. � Rank Weights 0.910∗ 0.715∗ 0.845∗∗ 0.873∗∗ 0.880∗ 0.923∗ 0.846∗ 0.986

Avg. � Equal Weights 0.873∗ 0.712∗ 0.876∗ 0.928∗ 0.877∗ 0.914∗∗ 0.852∗ 0.964∗

Memo: HAR-RV MSPE 3.102 1.322 0.944 1.262 4.550 1.350 1.025 1.344

BA � 300 seconds BFB � 300 seconds

Best Extended HAR 0.981 0.937 0.993 0.864∗ 0.924∗ 0.836∗ 0.822∗ 0.876∗

Avg. � Min Var Weights 0.992 0.905∗∗ 1.083 1.001 0.969∗ 0.845∗ 0.751∗∗ 0.812∗∗

Avg. � MSPE Weights 0.972∗ 0.906∗ 0.915∗∗ 0.959∗ 0.926∗ 0.823∗ 0.814∗ 0.856∗∗

Avg. � Rank Weights 0.976∗ 0.923∗ 0.928∗∗ 0.980 0.936∗ 0.820∗ 0.810∗∗ 0.847∗∗

Avg. � Equal Weights 0.972∗ 0.906∗ 0.919∗∗ 0.961∗ 0.926∗ 0.823∗ 0.816∗ 0.878∗

COST � 300 seconds KO � 300 seconds

Best Extended HAR 0.958∗ 0.879∗ 0.925∗ 0.957∗ 0.814∗ 0.709∗ 0.882∗ 0.939∗

Avg. � Min Var Weights 1.016 0.985 0.881∗∗ 0.950∗ 0.923∗ 0.695∗∗ 0.837∗∗ 0.916∗

Avg. � MSPE Weights 0.962∗ 0.871∗ 0.920∗ 0.958∗ 0.817∗ 0.713∗ 0.888∗ 0.975∗

Avg. � Rank Weights 0.969∗ 0.856∗ 0.907∗∗ 0.945∗∗ 0.811∗ 0.686∗ 0.829∗∗ 0.950∗

Avg. � Equal Weights 0.962∗ 0.873∗ 0.922∗ 0.960∗ 0.817∗ 0.723∗ 0.914∗ 0.983∗

Note: The table reports the relative MSPE, the ratio of MSPE of the model indicated in the �rst column to the MSPE

of the benchmark HAR-RV, in both cases using standard volatility measures as opposed to noise-robust measures. The

best models refers to the min. MSPE model from the set of extended HAR models presented in Section 6.4. The bold

entries are model averages with lower MSPEs than the MSPEs of both the HAR-RV and the best extended HAR models.

The starred entries denote model averages with signi�cantly lower MSPEs than the benchmark HAR-RV models, whereas

doubled starred (superscript ∗∗) entries identify models whose MSPEs are signi�cantly lower than the MSPEs of both the

benchmark HAR-RV and the best extended HAR model.
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Table 6.9: Estimated Contribution of Jumps to QV � Comparison of Clock and Trans-
action Time Sampling Results

Clock Time Transaction Time

Sampling Sampling

Continuous 85.725 95.413

Jumps 14.275 4.587

Pos. Jumps 8.257 2.279

Neg. Jumps 6.018 2.308

Finite Jumps 14.156 4.503

In�nite Jumps 0.118 0.084

Pos. Finite Jumps 8.219 2.232

Neg. Finite Jumps 5.937 2.271

Pos. In�nite Jumps 0.038 0.047

Neg. In�nite Jumps 0.080 0.038

β̂IJA 0.778 0.708

Note: The table reports the contribution of the di�er-

ent realized jumps to QV using 300 second clock and

transaction-based (78 ticks per interval) sampling.

203



Table 6.10: SPY Volatility Forecasting Performance � Transaction-Based Sampling Re-
sults

h = 1 (day) h = 5 (week) h = 22 (month) h = 66 (quarter)

HAR-RV 1.000 1.000 1.000 1.000

HAR-CJ 0.973∗ 1.114 1.030 1.023

HAR-CFJ 0.973∗ 1.114 1.030 1.022

HAR-CIJ 0.981 0.999 1.061 1.017

HAR-CJ+ 1.037 1.119 0.956∗ 0.971∗

HAR-CJ− 0.990 1.003 1.036 1.012

HAR-CFJ+ 1.037 1.119 0.956∗ 0.971∗

HAR-CFJ− 0.990 1.003 1.036 1.012

HAR-CIJ+ 0.981∗ 0.996 1.052 1.011

HAR-CIJ− 0.980∗ 0.997 1.064 1.016

Memo: HAR-RV MSPE 3.724 1.500 1.071 1.349

Note: The Table reports the relative MSPE of the extended HAR SPY volatility forecasting

models at di�erent horizons. The relative MSPEs are the ratio of the MSPEs of the extended

HAR models relative to the benchmark HAR-RV model. The starred entries indicate statisti-

cally signi�cant reductions in MSPE identi�ed by the Diebold and Mariano (1995) test using

a 5% signi�cance level.
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Table 6.11: SPY Model averaging Relative MSPEs � Comparison of Clock and
Transaction-Based Sampling Results

300 second, Clock-Based Sampling Transaction-Based Sampling

h = 1 h = 5 h = 22 h = 66 h = 1 h = 5 h = 22 h = 66

HAR-RV benchmark 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Best Extended HAR 0.875∗ 0.753∗ 0.891∗ 0.965∗ 0.973∗ 0.996 0.956∗ 0.971∗

Avg. � Min Var Weights 0.987 0.693∗∗ 0.895∗ 0.966∗ 1.009 0.995 0.921∗∗ 1.001

Avg. � MSPE Weights 0.879∗ 0.706∗∗ 0.862∗∗ 0.919∗∗ 0.926∗∗ 0.950∗∗ 0.889∗∗ 0.961∗

Avg. � Rank Weights 0.910 0.715∗ 0.845∗∗ 0.873∗∗ 0.969∗ 0.957∗∗ 0.855∗∗ 0.943∗∗

Avg. � Equal Weights 0.873∗ 0.712∗ 0.876∗ 0.928∗∗ 0.937∗∗ 0.954∗∗ 0.914∗∗ 0.963∗

Memo:

HAR-RV MSPE 3.102 1.322 0.944 1.262 3.724 1.500 1.071 1.349

Note: The table compares the forecasting performance of the extended HAR SPY volatility forecasting models at

di�erent horizons h using clock and transaction based realized measures. The clock-based results use 300 second

returns. The relative MSPEs are the ratio of the MSPEs of the models indicated in the �rst column to the MSPE

of the benchmark HAR-RV model. The bold entries are models averages with lower MSPEs than the MSPEs of

both the HAR-RV and the best extended model. The starred entries denote model averages with signi�cantly lower

MSPEs than the benchmark HAR-RV models, whereas doubles starred (∗∗) entries identify models whose MSPEs

are signi�cantly lower then the MSPEs of both the benchmark HAR-RV and the best extended HAR model.
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Figure 6.1: Time Series of Realized Volatility � Jump and Continuous Components

Note: This �gure depicts the elements of the realized volatility for SPY and three individual stocks
estimated at the 300 second frequency. The three individual stocks have the largest, smalles and average
RV. NBER dated U.S. recession are shaded grey.

Figure 6.2: Autocorrelation Function of SPY Realized Measures
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Note: The �gure graphs the autocorrelation of the realized variance and its elements. The autocor-
relations at the 5 and 300 second frequencies were estimated using noise-robust and raw estimators,
respectively.
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Figure 6.3: Systematic versus Idiosyncratic Jumps
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Note: The �gure depicts in two plots the intraday returns of the 20 individual stocks across two di�erent
trading days. The left plot displays the behavior of the stocks during the Flash Crash of May 06, 2010, where
all the stocks jump together, whereas the right panel show a normal day on December 23, 2003, where all
jumps are idiosyncratic.
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Chapter 7

Modelling and Forecasting Realized

Covariances using (Directional)

Common Jumps

7.1 Introduction

Market crashes and sudden reactions to major �nancial news generally trigger the oc-

currence of common jumps in several stocks, thereby raising statistical correlations among

asset prices in consequence of enhanced market-wide information. As this phenomenon

raises short-term predictability, it increases (decreases) the persistence of covariances

when the common jumps are associated with bad (good) news. The high levels of cor-

relation among common jumps, and the changes in the persistence of covariances, shed

light on their rich information content for modelling and forecasting realized covariance

matrices.

This paper proposes a robust non-parametric framework for measuring separately the

common jumps and continuous components of the quadratic covariation matrix. Our

approach builds directly on the theoretical results of Barndor�-Nielsen and Shephard

(2004a) and Mancini and Gobbi (2012) that involve the use of so-called realized and

truncated realized covariation. The divergence between these two estimators leads to a
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matrix of common jumps, as identi�ed with the multi-jump test of Caporin et al. (2017).

By employing the approach of the latter, we are able to detect days where all elements

in the common jump matrix are distinctly di�erent from zero. We then demonstrate

signi�cant forecasting and economic gains at the daily, weekly and monthly horizons,

as attained by models that utilize the information of common jumps. Furthermore,

we construct measures of directional common jumps, and investigate whether the sign

of `news' contains further explanatory power. Metrics are estimated as the di�erence

between the positive and negative realized semicovariances (e.g. Bollerslev et al., 2020).

Common jumps have many implications for portfolio allocation, risk management,

and forecasting. As noted by Das and Uppal (2004) and Longin and Solnik (2001)

the increased correlation, that is associated with a general market crash, reduces the

diversi�cation potential of portfolio and risk managers. Common jumps are also likely to

a�ect the aggregate attitude to risk, with obvious e�ects upon risk premia. For instance,

Bollerslev and Todorov (2011b); Bollerslev et al. (2015) show that the risk compensation

for large jumps is also large and time-varying. Separating the impact of the continuous

and common jumps components is also crucial for forecasting covariances. The di�erent

explanatory factors for these distinct sources of risk have to be considered with di�erent

coe�cients in order to account for the Brownian correlations and common jumps (e.g.

Andersen et al., 2007a; Corsi et al., 2010, for a similar rationale in a univariate framework).

Contrasting with the volatility forecasting literature, where the role of jumps has been

extensively studied (e.g. Andersen et al., 2007a; Busch et al., 2011; Corsi et al., 2010;

Duong and Swanson, 2015; Patton and Sheppard, 2015, inter alios), the literature on

covariance forecasting largely ignores common jumps. To the best of our knowledge, only

Asai et al. (2020) have considered the relevance of common jumps in forecasting bi-variate

volatility. Yet, for asset allocations, it is vital to understand the role of common jumps for

a large set of assets, as the e�ect of common jumps in a pair of assets is negligible in large

portfolios. A related study (Caporin et al., 2017) that focuses on univariate volatility,

�nds common jumps to have a greater impact upon volatility than univariate jumps. The

procedure of that study allows the detection of simultaneous jumps for a large number
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of assets. It thereby demonstrates the multi-jump test to be more powerful than the

co-exceedance rule (e.g. Gilder et al., 2014),1 which fails to identify common jumps that

are realized with small lags, and which su�er from both, the slow incorporation of news

of low volume stocks and the volatility spikes that are generally associated with common

jumps.2

Our empirical application considers 20 individual Dow Jones stocks for the period

2000�2016. A preview of our results is as follows: we �nd common jumps to be strongly

associated with major �nancial and economic news. In particular, we �nd that FOMC

announcements generally trigger simultaneous common jumps, with jump sizes between

0.8�2.0%. Alternatively, �ash crashes are associated with jump sizes between 1.5�5% (see

Figure 7.1). These results are in line with the �ndings of Aït-Sahalia and Xiu (2016),

Dungey and Hvozdyk (2012) and Lahaye et al. (2011), that macroeconomic announce-

ments are su�cient to explain the occurrence of common jumps, as they signi�cantly

change the probability of observing common jumps.

In extending the vech-HAR model of Chiriac and Voev (2011) to account for common

jumps, we propose the vech-HARJ and vech-HARCJ models, which are multivariate

extensions of the HARJ and HARCJ of Andersen et al. (2007a).3 Whereas the HARJ

model augments the vech-HAR by incorporating a daily common jump variable, the

HARCJ model uses the daily, weekly, and monthly levels of the continuous and common

jump variables to model future covariance matrices. The incorporation of common jumps

results in large in- and out-of-sample improvements vis-à-vis the HAR model; but the

HARCJ model delivers larger forecasting gains across all horizons. In general, models

based on directional common jumps, deliver forecasts that improve upon the in- and out-

1The co-exceedance rule identi�es common jumps by intersecting univariate intraday jump tests.
For univariate intraday jump tests see Andersen et al. (2007b); Lee and Mykland (2008), while for daily
jump tests see Andersen et al. (2012); Barndor�-Nielsen and Shephard (2004b, 2006); Corsi et al. (2010),
among others.

2The test of Jacod and Todorov (2009), Mancini and Gobbi (2012) and Bibinger and Winkelmann
(2015) also identify common jumps, but they are limited to a pair of assets. The test of Bollerslev et al.
(2008) identi�es common jumps using an aggregate market index.

3Multivariate GARCH models are popular alternatives available in the literature for modelling and
forecasting covariances (e.g. Bollerslev, 1990; Engle, 2002a; Engle and Kroner, 1995; Noureldin et al.,
2012). However, the curse of dimensionality is of relevant consideration, as the number of parameters to
be estimated grows very rapidly when the number of assets is large.
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of-sample performance of the HAR model. However, their forecasts are inferior to that

of models using common jumps.

To assess the relative economic value of the di�erent models, we construct global min-

imum variance portfolios, which we evaluate using a utility-based approach, as in Fleming

et al. (2001, 2003). The use of common and directional common jumps delivers statistical

improvements, with economic gains arising from the enhanced accuracy associated with

stable covariance matrices. Reduced turnover lowers trading costs: an investor with a

risk-aversion of γ = 6, would be willing to sacri�ce up to 100 annual basis points to switch

to the models that utilize the common or directional common jumps.

Finally, using simulations of realistic price processes that accommodate for the pres-

ence of idiosyncratic and common jumps, we show that our framework successfully dis-

entangles the continuous and common jump parts of the quadratic covariation, and their

use in forecasting signi�cantly outperform the forecasts of the standard multivariate HAR

model.

The remainder of the paper is organized as follows: Section 7.2 presents the theoretical

framework, where the multi-jump test and methodology employed for decomposing the

covariance matrix into its continuous and common jumps parts are outlined. Multivariate

models and the forecasting evaluation criteria are set out in Section 7.3. The Monte Carlo

exercise is described in Section 7.4, and the simulated results are also presented. The data,

occurrence of simultaneous jumps and their link with major �nancial and economic news

are reported in Section 7.5. Here, we also report the in- and out-of-sample performance of

the multivariate forecast models. Section 7.6 reports the incidence of directional common

jumps in forecasting realized covariances. Section 7.7 presents the economic evaluation

of the di�erent models based on a utility-based approach. Section 7.8 concludes.

7.2 Theoretical Framework

Let X =
(
X(i)

)
i=1,...,N

be the log-prices of an N -dimensional vector of assets. We as-

sume that stock prices evolve continuously on a �ltered probability space (Ω,Ft,Ft≥0,P),
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and that dynamics for X are as follows:

Xt = x0 +

∫ t

0

µsds+

∫ t

0

ΣsdWs + dJt (7.1)

where µs is an N -dimensional drift term which is bounded and predictable, Σs ≡ σ′sσs is

the instantaneous covariance, and Ws is an N -dimensional vector of independent Brow-

nian motions. The unit time interval is normalized to a day. The jump component is of

�nite activity of the form J
(i)
t =

∑N
(i)
t

s=1 γτ (i)
s
, for i = 1, . . . , N , where N (i)

t is a non-explosive

counting process and γ(i)
τs are jump sizes at times τ (i)

s . Finally, we assume that jump sizes

are such that ∀s = 1, . . . , we have P
[
γ

(i)

τ
(i)
s

= 0
]

= 0, i = 1, . . . , N .

We estimate the realized covariance (e.g. Barndor�-Nielsen and Shephard, 2004a) of

the process as follows:

RCt =

b1/∆nc∑
j=1

(
∆n
jX
)′ (

∆n
jX
) P−→

∫ t

0

Σsds+
∑

0≤s≤t

(∆Xs)
′ (∆Xs) , (7.2)

where ∆n
jX =

(
∆n
jX

(i)
)
i=1,...,N

is an N -dimensional vector containing the jth intraday

return, and ∆n
jX

(i) = X
(i)
j∆n
− X(i)

(j−1)∆n
, where j = 1, . . . , n, ∆n = 1/n is the sampling

interval, and n is the number of high frequency increments per day. ∆Xs denote the

N -dimensional vector of jumps occurring at time s, if a jump occurred, and set to zero if

no jump occurred at time s.4

In presence of only idiosyncratic jumps the matrix of common jumps has a spherical

form with (some) non-zero diagonal elements representing the univariate jumps of each

stock. By contrast, when stocks co-jump, the matrix of common jumps is formed by non-

zero elements. We estimate the integrated covariation (IC) using the threshold realized

covariance estimator of Mancini and Gobbi (2012). This estimator is the multivariate

extension of the so-called threshold realized variance (e.g. Jacod, 2008; Mancini, 2001,

4To illustrate, if in a portfolio, comprised by three assets, all the assets jump jointly, we have that

∆Xs = ∆X
(1)
s ∆X

(2)
s ∆X

(3)
s = γ

1(23)
τs γ

2(13)
τs γ

3(12)
τs ∆nN

123
t .
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2009):

TRCt =

b1/∆nc∑
j=1

(
∆n
jX · 1{|∆jX|≤υn}

)′ (
∆n
jX · 1{|∆jX|≤υn}

) P−→
∫ t

0

Σsds, (7.3)

where υn =
(
υ

(i)
n

)
i=1,...,N

= α(i)∆$
n , for α

(i) > 0 and $ ∈ (0, 1/2).5 The multivariate

jump matrix can then be obtained as the di�erence between the realized covariance and

the threshold realized covariance as follows:

MJt = RCt − TRCt
P−→
∑

0≤s≤t

(∆Xs)
′ (∆Xs) . (7.4)

Since we are interested in cases where all the elements of MJt are di�erent from zero, i.e.

presence of common jumps, we employ the test of Caporin et al. (2017) to identify only

the common jumps that are signi�cantly di�erent from zero.

7.2.1 Multi-jump Test

The multi-jump test of (Caporin et al., 2017, CKR, hereafter) is de�ned in the fol-

lowing sets:

ΩMJ,N
t =

{
ω ∈ Ω

∣∣∣ N∏
i=1

∆X(i)
s 6= 0

}

Ω
N

t = Ω\ΩMJ,N
t .

The set ΩMJ,N
t contains all the trajectories with multi-jumps among all N assets, whereas

the complementary set Ω
N

t contains trajectories without multi-jumps in N stocks. How-

ever, it can contain jumps and multi-jumps up to N − 1 stocks. Therefore, the null and

5As it is customary in the literature (e.g. Aït-Sahalia and Jacod, 2014; Todorov and Boller-

slev, 2010; Todorov and Tauchen, 2014, among others), we choose α(i) = 3

√
BV

(i)
t and $ = 0.49.

BV
(i)
t = µ−2

1
n
n−1

∑b1/∆nc
j=2 |∆n

jX
(i)||∆n

j−1X
(i)| is the so-called bipower variation of Barndor�-Nielsen

and Shephard (2004b), and µ1 ≡ E[|N (0, 1)|] =
√

2/π.
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alternative hypotheses are:

H0 : (Xt(ω))t∈[0,t] ∈ Ω
N

t v.s. H1 : (Xt(ω))t∈[0,t] ∈ ΩMJ,N
t .

The CKR test is based on two jump-robust integrated variance estimators, which gener-

alize the truncated realized variance estimator of Mancini (2001, 2009), and are named

smoothed realized variance (SRV). The �rst SRV takes the following form:

SRVt =

b1/∆nc∑
j=1

|∆n
jX

(i)|2 ·K

(
∆n
jX

(i)

H
(i)
j∆n,n

)
, (7.5)

where X(i) and H(i) are the respective i-th component of the vectors X and H. K(·) is

kernel estimator,6 and Ht,n is the bandwidth de�ned as:

H
(i)
t,n = hn · σ̂(i)

t

√
T

n
, (7.6)

where σ̂(i)
t is a point estimator of the local standard deviation of the i-th stock, i =

1, . . . , N . hn is the bandwidth parameters, where its role is to gauge the largeness of

high-frequency returns with respect to the local volatility.7

The second SRV is outlined as:

S̃RV
N

t =

b1/∆nc∑
j=1

|∆n
jX

(i)|2 ·

(
K

(
∆n
jX

(i)

H
(i)
j∆n,n

)
+

N∏
k=1

(
1−K

(
∆n
jX

(k)

H
(k)
j∆n,n

)))
. (7.7)

Returns in the above estimator are smoothed twice. Whereas the �rst term, K
(

∆n
jX

(i)

H
(i)
j∆n,n

)
,

has the same e�ect as in the �rst SRV, the second term,
(

1−K
(

∆n
jX

(k)

H
(k)
j∆n,n

))
, leaves the

corresponding return similar to the raw returns when all multivariate returns are big.

Although both smoothing procedures are meant to eliminate jumps, the smoothing in

6As pointed out by the authors, when the kernel function isK(x) = 1|x|≤ε this estimator is equivalent
to the truncated realized variance of Mancini (2001, 2009).

7We follow the authors and use the same hn across all the stocks, as the normalization is respect to
each stock volatility. As pointed out by Caporin et al. (2017), the advantage of replacing the indicator
function with a kernel is that it provides an estimator that depends smoothly on the bandwidth, which
stabilizes the procedure in small samples.
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the second SRV allows multi-jumps to survive.

The test statistic is based on the di�erence between the two SRV estimators. In

the absence of multi-jumps, this di�erence tends to zero, while under the alternative of

multi-jumps this di�erence becomes large and positive. However, the authors need to

randomize one of them to obtain a non-degenerate limit distribution under the null. To

do so, they apply the wild bootstrap technique suggested in Podolskij and Ziggel (2010),

and replace the �rst SRV by the smoothed randomized realized variance (SRRV):

SRRVt =

b1/∆nc∑
j=1

|∆n
jX

(i)|2 ·K

(
∆n
jX

(i)

H
(i)
j∆n,n

)
· ηij, (7.8)

where
(
ηij
)

1≤i≤N,1≤j≤n is an N × n matrix of independent and identically distributed

(i.i.d.) draws with E[ηij] = 1 and Var[ηij] = Vn < ∞. In our application we follow the

authors by allowing ηij to take values in {1 + τ, 1 − τ} with equal probability, so that

Vn = τ 2. We set τ = 0.05 so that, in practice, SRRV is virtually indistinguishable from

SRV.

The test statistics to detect multi-jumps is described as:

SNt =
1

Vn

N∑
i=1

(SRRVt,i − S̃RV
N

t,i)
2

SQXt,i

, (7.9)

where:

SQXt =

b1/∆nc∑
j=1

|∆n
jX

(i)|4 ·K2

(
∆n
jX

(i)

H
(i)
j∆n,n

)
, i = 1, . . . , N. (7.10)

The authors show that if
(
ηij
)

1≤i≤N,1≤j≤n is pairwise independent, as n → ∞, it holds

that: 
SNt

d−→ χ2
N , on Ω̄N

T ,

SNt
d−→ +∞ on ΩMJ,N

T

, (7.11)

where χ2
N denotes the χ-square distribution with N degrees of freedom.
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7.2.2 Disentangling the Continuous and Discontinuous Compo-

nent

The common jump estimator in equation (7.4) provides consistent estimates of the

multivariate jump component as ∆n → 0. In practice, the di�erence between the realized

and threshold realized covariance can be non-zero owing to �nite sample problems. As we

are interested only in cases where the full multivariate jump matrix is non-zero, we use

the multi-jump test (de�ned above), to disentangle signi�cant common jumps as follows:

ICt = (1− Zt) ·RCt + Zt · TRCt,

CJt = RCt − ICt,
(7.12)

where Zt = 1
(
SNt > zθ

)
and P(χ2

N > zθ) = θ, for θ ∈ (0, 1). In this paper we use θ = 0.01,

and hn = h0 + c
N
, where h0 = 1.4 and c = 9.57.8 The matrix ICt is equal to the realized

covariance when there are no common jumps on day t, while in the presence of common

jumps ICt is equal to the threshold realized covariance (e.g. Andersen et al., 2007a, for

a similar approach in a univariate framework). We ignore the impact of idiosyncratic

jumps,9 as they have a negligible e�ect in large portfolios. This is because a speci�c

non-major �nancial news might be perceived as either good or bad news across some

stocks, resulting in respective positive and negative jumps, whose impact is o�set in large

portfolios.

7.3 Forecasting Models and Evaluation Criteria

Following Chiriac and Voev (2011),10 we use the vector heterogeneous autoregressive

(vech-HAR) model to estimate and forecast the realized covariance matrix. This model

extends the so-called HAR model of Corsi (2009), so that realized covariance is expressed

8Those values are recommended by the authors as conservative choices.
9Aït-Sahalia et al. (2020) �nd that idiosyncratic jumps are related to stock speci�c events, such as

earning disappointments.
10Similar to the HAR model (Corsi, 2009), the vech-HAR model approximates long-memory in a

parsimonious way. The model involves a �xed number of parameters regardless of the number of assets,
which makes it very easy-to-estimate. This model features in the work of Bauer and Vorkink (2011);
Bollerslev et al. (2018); Hautsch et al. (2015), inter alios.
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as a linear combination of past daily, weekly and monthly covariances:

St+h = θ0 + θdSt + θwSt−5|t + θmSt−22|t + εt+h, (7.13)

where St ≡ vech(RCt) denote the N∗ = N(N + 1)/2 dimensional vectorized version of

the realized covariance matrix of interest RCt. St−h|t = 1
h

∑h
i=1 St−i denote the vectorized

version of the h-day realized covariance matrix. The intercept θ0 is an N∗×1 dimensional

vector, while θd, θw and θm parameters are all assumed to be scalar. This simply and

extremely parsimonious speci�cation ensures that the covariance matrix forecasts are

positive de�nite.11

The standard vech-HAR formulation in equation (7.13) does not distinguish between

Brownian correlation and common jumps. In order to capture those di�erent sources

of risk, they must be separately modelled, so that the distinct explanatory factors have

their own coe�cients. To achieve this, we propose two simple modi�cations in the spirit

of Andersen et al. (2007a). The �rst speci�cation extends the vech-HAR model by in-

corporating a daily measure of the common jumps, this speci�cation is the vech-HARJ

model:

St+h = θ0 + θdSt + θwSt−5|t + θmSt−22|t + θJdJt + εt+h. (7.14)

The second speci�cation uses the continuous and multi-jump parts of the realized co-

variances as shown in Section 7.2.2. This structure fully incorporates both Brownian

correlation and common jumps, because the information content of idiosyncratic jumps

remaining in the continuous part is negligible when the number of assets is large. The

11A generalization of the vech-HAR model considers that each variance-covariance term has its own
dynamics. Therefore, each element in the covariance is estimated separately, which increases the number
of parameters from 4 to 4 × N∗. As a result, these models yield to forecasts which are not positive
de�nite, and most of the time lead to worse forecasting performance, especially when the number of
assets is large.
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vech-HARCJ model is outlined as follows:

St+h = θ0 + θCdCt + θCwCt−5|t + θCmCt−22|t + θJdJt + θJwJt−5|t + θJmJt−22|t + εt+h,

(7.15)

where Jt ≡ vech(CJt) and Ct ≡ vech(ICt).

We evaluate the forecasting capability of models based on the Frobenius distance, LFt ,

which extends the mean squared error loss function to the multivariate space, and the

Euclidean loss function, LEt , computed by equally-weighting all the unique elements of

the forecast error matrix:

LFt =

√
Tr

[(
Ŝt −RCt

)(
Ŝt −RCt

)′]
, (7.16)

LEt =

√
vech

(
Ŝt −RCt

)′
vech

(
Ŝt −RCt

)
, (7.17)

where Ŝt denote the �tted covariance matrices, and RCt is the ex-post realized covari-

ances. As discussed in Laurent et al. (2013) and Patton (2011b) the ranking produced

by both loss functions based on covariance proxies is consistent with those based on the

true latent covariance matrix.

We employ the conditional predictive ability (CPA) test of Giacomini and White

(2006), to identify models whose losses are signi�cantly smaller than those of the vech-

HAR model. Although this approach was developed to asses forecasts in the univariate

setting, it directly translates into a multivariate setting when the loss function generates

a scalar measure.
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7.4 Monte Carlo Evidence

Using the setup of Barndor�-Nielsen et al. (2011), we simulate a multivariate factor

stochastic volatility model for Xi,t, i = 1, . . . , 10 as:

dX
(i)
t = µ(i)dt+ σ

(i)
t

(
ρ(i)dB

(i)
t +

√
1− (ρ(i))

2
dWt

)
+ dq

(i)
t J

(i)
t + dktL

(i)
t

σ
(i)
t = exp

{
β0 + β1ν

(i)
t

}
,

dν
(i)
t = αν

(i)
t dt+ dB

(i)
t .

(7.18)

The elements of B(i)
t are independent standard Brownian motions and are also inde-

pendent of Wt. Following Barndor�-Nielsen et al. (2011), we set the parameters to

(µ, β0, β1, α, ρ) = (0,−5/16, 1/8,−1/40,−0.83). The true spot correlation of X(i)
t and

X(k) is constant and equals
√(

1− (ρ(i))
2
)(

1− (ρ(k))
2
)
for i 6= k. The leverage between

X
(i)
t and ν

(i)
t is ρ(i). The fact that ρ is set equal for all i leads to an equicorrelation

structure with common correlation of 0.31.12 The stationary distribution of νt is used to

restart the process each day at ν(i)
0 ∼ N

(
0,
(
−2α(i)

)−1
)
.

The idiosyncratic jumps are modelled as independent compound Poisson processes,

dq
(i)
t , with intensity λJ = 0.2, and jump sizes N (0, 0.628). The common jumps are

determined by a unique compound Poisson process, dkt, with jump intensity λL = 0.1

and jump sizesMN (0,Π), where Π = diag(%)Γ diag(%). Γ is an equicorrelation matrix

with common correlation of 0.75, where % is the diagonal matrix containing the standard

deviations, which are equal to 0.756. The idiosyncratic and common jump intensities are

chosen such that all discontinuities account for about 30% of the sample. As we simulate

T = 2, 000 days, there are approximately 600 jumps in total, from which about 200 are

common jumps. The jump sizes are set to account for about 30% of the total quadratic

variation of each asset, with common jumps contributing up to 10% (out of the 30%).

The price process is simulated via an Euler scheme, and we normalize one second to

be ∆n = 1/23400, so that the interval [0, 1] contains 6.5 hrs. In generating the observed

12This level of correlation among assets is similar to that found across the asset used in our empirical
analysis.
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price, we discretize [0, 1] into a number n = 23, 400 of intervals. The prices are then

aggregated to the 5-min, which is equivalent to 78 observations per day.13 The forecasts

are based on a rolling window of 500 days and 1,000 replications.14

Table 7.1 reports the simulated daily, weekly and monthly in- and out-of-sample

forecasts of the HAR, HARJ, and HARCJ models. The results of Panels A and B are

based on common jumps; and those in Panels C and D are based on directional common

jumps (see Section 7.6 for details about the estimation of directional common jumps).

As shown in Panels A and B, the incorporation of common jumps not only improves the

in-sample �ts of the realized covariances, but also the out-of-sample forecast accuracy.

The use of directional common jumps also improves on the in- and out-of-sample forecasts

of the HAR model irrespective of the forecast horizon.

Across all forecast horizons, the HARCJ model consistently outperforms both the

HAR and HARJ models, with forecasting gains increasing slightly as the horizon length-

ens. This result suggests that separating out these two sources of risk increases the

persistence of the models relative to that of the HAR model. Hence, the inference that

models explicitly accounting for the presence of common jumps provide more accurate

predictions of covariance matrices at longer horizons.

7.5 Empirical Results

7.5.1 Data

We consider 20 individual Dow Jones stocks from the period 2000�2016. The data are

sourced from the TickData database. We use the previous tick interpolation to aggregate

the data down to the required sampling frequency. We sample returns every 5-minutes,

which results in 78 observations per day. This sampling frequency is customary in the

high-frequency literature, as it provides a trade-o� between achieving enough statistical

power and avoiding distortions that may arise from microstructure noise (e.g. Hansen and
13Monte Carlo results for 10- and 15-min are qualitatively similar to those obtained at the 5-min

sampling, and therefore not reported here.
14The rolling window size in our simulation represents 25% of the full sample size (T = 2, 000), which

is equivalent to the rolling window size used in our empirical study.
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Lunde, 2006; Patton, 2011a). To validate the latter statement, we perform the Hausman

test for the presence of market microstructure noise of Aït-Sahalia and Xiu (2019). We

use the third test (H3,n) proposed by the authors as this test is robust to jumps, and as

a robustness check we employ the �rst-order autocorrelation in log-returns test (ACn).15

The last two columns of Table 7.2 report the proportion of rejections of both H3,n and

ACn across all individual stocks. The average proportion of rejections is respectively

0.025 and 0.017 for H3,n and ACn, suggesting that the level of microstructure noise in

our dataset is negligible at the 5-minutes sampling frequency, and therefore we can treat

our dataset as noise-free.

Table 7.2 reports the descriptive statistics of the 20 individual stocks together with

the number of identi�ed common jumps and their contribution to the total variance. The

second panel shows the descriptive statistics of the common jumps � based on days where

the null of no simultaneous jumps is rejected. American Express (AXP) and JP Morgan

Chase (JPM) display the highest average (co)jump size, with peaks detected during the

global �nancial crisis. The contribution of common jumps to the total variance, displayed

in the last column of Table 7.2, shows values ranging between 1.4�5%, with an average of

2.2%. Previous �ndings in the literature document a contribution of jumps to the total

variance of about 6% (Huang and Tauchen, 2005), which means that common jumps

make up a signi�cant portion of the total jump part.

Table 7.3 displays in the lower (upper) triangular section, the correlations of the com-

mon jumps (continuous component) across all the individual stocks. Unlike idiosyncratic

jumps, the simultaneous arrival of common jumps triggered by the wide-market economic

information results in highly correlated jump measures, with an average correlation of

0.67. Surprisingly, the level of correlation found in common jumps is slightly higher than

that of the continuous component whose average correlation is 0.65. This �nding is in

line with Das and Uppal (2004) and Longin and Solnik (2001) who note that the increase

in correlation, after a collective crash, is mainly explained by the occurrence of common

jumps.

15These two tests are recommended by the authors, however our results are qualitatively similar under
the alternative Hausman tests proposed by Aït-Sahalia and Xiu (2019).
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7.5.2 Common Jumps and Major Financial and Economic News

Over 149 days, our empirical results show stocks to have jumped simultaneously.16

Our results indicate that over 85% of these common jumps are strongly associated with

major �nancial and economic news. However, days with common jumps account for

less than 5% of the total major �nancial and economic news available for the period

under analysis. For instance, FOMC meetings are scheduled every 6 weeks, which means,

between 2000�2016, at least 136 meetings took place.17

To illustrate some of these �ndings, Figure 7.1 lists 6 days when the CKR test detected

simultaneous jumps: i) May 06, 2010 � in a �ash crash (aka the crash of 14:45 hrs) US

stocks lost one trillion dollar in 36 minutes, with the Dow Jones losing 998.5 points or 9%.

However, the loses were rapidly recovered; ii) April 23, 2013 � a �ash crash was associated

with a false report of White House explosions. This news triggered a 143-point fall in

the Dow Jones. However, the fake tweet was immediately corrected, allowing the stock

market to recover the big losses within minutes; iii) February 03, 2016 � US stock market

indices gains re�ected an 8% rise in oil prices as Russia and OPEC cut production. This

e�ort translated in 183 points gained by S&P 500 index; iv) November 06, 2002 � The

Fed cut both the target federal reserve funds rate, and overnight bank lending rate, by

half a percentage point to 1.25 percent, a new 40-year low; v) August 09, 2011 � large

stock market gains followed the Fed announcement that interest rates would remain low

until 2013; vi) January 27, 2016 � as disappointing quarterly reports renewed concerns

over economic growth the Dow Jones Industrial average closed lower by 222 points.

In line with Lahaye et al. (2011) and Dungey and Hvozdyk (2012), we �nd that

macroeconomic announcements are generally su�cient to produce simultaneous jumps,

with returns jumping between 0.8�2.0%. The resulting sign of the simultaneous jumps

triggered by these type of news is often negative. This result is consistent with that

of Amengual and Xiu (2018), as they �nd that downward intraday volatility jumps in
16Using di�erent bandwidth settings, Caporin et al. (2017) identify between 20�101 simultaneous

jumps.
17Other important news are, among others, the Consumer Price index (CPI), Producer Price Index

(PPI), Manufacturing Composite Index (MCI) and employee on non-farm payrolls, all released monthly,
while DGP-related news are released quarterly. For a full list of the scheduled macroeconomic announce-
ments, the reader can consult Lahaye et al. (2011).
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the S&P 500 index are often associated with a resolution of policy uncertainty, mostly

through statements from the FOMC meetings and speeches by the chair of the Federal

Reserve. Our results also indicate that simultaneous jumps are realized within 30 minutes

around the schedule time.18 On the other hand, �ash crashes or market sell-o�s usually

spark bigger simultaneous jumps, with sizes between 1.5�5%.19

7.5.3 In-Sample Estimates

Table 7.4 reports the in-sample parameter estimates with robust standard errors in

parentheses. The last three rows report the goodness-of-�t measures for the di�erent

models across three forecast horizons: one-day (h = 1), one-week (h = 5) and one-

month (h = 22). As expected, the daily, weekly and monthly parameter estimates of

the realized covariance and its continuous component are strongly signi�cant across all

forecasting horizons. The magnitudes of the parameters are similar across all the models;

however, the HAR-J and HAR-CJ give greater weight to the daily and weekly estimates,

and thus those forecasting models react faster to new information.

In respect of jump variables, for the HAR-J model the jump estimate is generally

negative and signi�cant across all forecasting horizons. This result is in line with the

�ndings obtained in the univariate framework (e.g. Andersen et al., 2007a; Corsi et al.,

2010). Contrasting with the results for the univariate literature, where most of the

jump estimates of the HARCJ model are negative and insigni�cant (e.g. Andersen et al.,

2007a), common jumps estimates in the multivariate HARCJ model are generally positive

and strongly signi�cant across all forecasting horizons. This supports the view that

the information that is implicit from common jumps (increasing both correlation among

assets and the persistence of stock (co)variances) can improve the accuracy of multivariate

forecasts. The greater persistence from the HARJ and HARCJ directly translates into

`better �ts' for in-sample models.

18The manufacturing report released on July 1, 2011 is an example of another macroeconomic an-
nouncement that triggers simultaneous jumps at the released time (10:00 hrs), with returns jumping
more than 1%.

19Other relevant stock market sell-o� identi�ed in our sample are on August 18 and 24 and 25, 2015
due to fear of a lack of liquidity in the market, and on Jun 24, 2016 due to the Brexit Referendum.
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7.5.4 Out-of-Sample Forecasts

Out-of-sample results across three di�erent forecast horizons are shown in Table 7.5.

Bold numbers indicate losses of the HARJ and HARCJ models outperforming those of the

HAR models. Starred p-values of the CPA test of Giacomini and White (2006) indicate

that losses of the HARJ and HARCJ models are smaller than those from HAR model at

the 5% signi�cance level.

As with the in-sample results, and as con�rmed by the CPA test, the HARJ and

HARCJ models consistently outperform those of the HAR model irrespective of the loss

function and forecast horizon considered.20 For instance, the null of equal predictive

ability is rejected across all forecasting horizons for the HARCJ and at the one-month

horizon for the HARJ model.

The bigger forecasting gains from the HARCJ model are in line with the univariate

forecasting literature (e.g. Andersen et al., 2007a; Duong and Swanson, 2015). The asso-

ciated rationale is as follows: As the HARCJ model relies upon full decomposition of the

covariance matrix (continuous and common jumps), it captures the two distinct sources

of risk and their di�erent dependencies across various horizons. Moreover, some �nancial

and economic news might have a longer impact in the stocks, and therefore the inclusion

of the weekly and monthly common jumps variables increase the predictability of covari-

ance matrices, as the coe�cients of these measures capture this residual information.

7.6 Directional Common Jumps

This section investigates the incidence of directional common jumps in forecasting

realized covariance matrices. Bollerslev et al. (2020) show that the realized covariance

matrix may be decomposed into four distinct elements: two based on concordant signs

20This �nding is also corroborated by our Monte Carlo experiment in Section 6.3.2.
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and two based on discordant signs as follows:21

Pt =

b1/∆nc∑
j=1

p
(
∆n
jX
)′
p
(
∆n
jX
)
, Nt =

b1/∆nc∑
j=1

n
(
∆n
jX
)′
n
(
∆n
jX
)
,

Mt =

b1/∆nc∑
j=1

(
p
(
∆n
jX
)′
n
(
∆n
jX
)

+ n
(
∆n
jX
)′
p
(
∆n
jX
))
,

(7.19)

where p(x) ≡ max{x, 0} and n(x) ≡ min{x, 0} denote the component-wise positive and

negative elements of the real vector x. Therefore, Pt and Nt correspond to the positive

and negative realized semicovariance matrices, while Mt is the sum of the two discordant

elements. In the presence of jumps, these three elements contain both di�usive and jump

covariation components. As shown in Bollerslev et al. (2020, Section 2), the limiting

behavior of Pt and Nt, derived for a pair of assets, only di�ers in the jump component:

Pt
P−→
∫ t

0

φj,sφk,sψ(ρjk,s)ds+
∑

0≤s≤t

p (∆Xs)
′ p (∆Xs) , (7.20)

Nt
P−→
∫ t

0

φj,sφk,sψ(ρjk,s)ds+
∑

0≤s≤t

n (∆Xs)
′ n (∆Xs) , (7.21)

Mt
P−→ −2

∫ t

0

φj,sφk,sψ(−ρjk,s)ds+
∑

0≤s≤t

(
p (∆Xs)

′ n (∆Xs) + n (∆Xs)
′ p (∆Xs)

)
, (7.22)

where φi,t = Σ
1/2
ii,t is the spot volatility of asset i, ρik,t = Σik,t/(φj,tφk,t) denotes the spot

correlation coe�cient between assets i and k, and ψ(ρ) = (2π)−1
(
ρ arccos(−ρ) +

√
1− ρ2

)
.22

Given that the di�usive component of the positive and negative semicovariances is the

same, the intuition that these measures carry distinct economic information about the

good and bad news over each day resides only in their jump component. Therefore, the

directional common jumps are estimated as follows:23

DCJt = Pt − Nt
P−→ p (∆Xs)

′ p (∆Xs)− n (∆Xs)
′ n (∆Xs) . (7.23)

21The realized semicovariances proposed by Bollerslev et al. (2020) can be seen as a multivariate
extension of the realized semivariance pioneered by Barndor�-Nielsen et al. (2010).

22ψ(ρ) corresponds to E[Z1, Z21{Z1<0,Z2<0}] bivariate standard normally distributed with correlation
ρ.

23Signi�cant directional common jumps are identi�ed by intersecting this measure with the indicator
function of the CKR test as, DCJt · Zt.
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To illustrate the impact of common jumps in the positive and negative semicovariances,

Figure 7.2 depicts the intraday returns on the day of the common jumps, and the positive

and negative semivariances for a �ve-day trading period around the date of the common

jumps. Two subplots (top panel) show the intraday returns (left) on June 29, 2006

together with the positive and negative semicovariances (right) between 26 and 30 June

2006. On June 29, the Fed raised the short-term rate by a quarter-percentage point.

There followed a positive jump in the S&P 500 of about 0.7% intraday and a daily

change of 2.2%. This positive simultaneous jumps is fully absorbed by the positive

semicovariance, and therefore its magnitude is much bigger than that of the negative

semicovariance.

The bottom panel plots the intraday returns (left) on August 5, 2014, and the concor-

dant elements of the realized covariance (right) during the week beginning on August 4,

2014. On August 5, 2014, Russian troops were reported lining on the borders of Ukraine.

This news triggered a negative simultaneous jumps, which is completely absorbed by the

negative semicovariance as shown in Figure 7.2. This evidence suggests that the informa-

tion content and dynamic dependencies of the directional common jumps might improve

the forecasting accuracy of realized covariance matrices.

7.6.1 In-Sample Estimates

Table 7.6 reports in-sample parameter estimates (robust standard errors in parenthe-

ses) for daily (h = 1), weekly (h = 5) and monthly (h = 22) forecasts, together with the

respective measures of �t. As with the results in Table 7.4, the parameter estimates of

the realized covariance and its continuous component are strongly signi�cant across all

forecasting horizons. However, directional common jumps show a di�erent pattern to that

of common jumps. The estimates are generally signi�cantly negative across all horizons.

As negative/positive common jumps are fully absorbed by the negative/positive semico-

variances, their di�erence re�ects the direction of the common jumps, and therefore the

negative estimates indicate that common jumps increase the persistence and future level

of the (co)variance. This �nding corroborates those of Patton and Sheppard (2015), that
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negative semivariances are more important than their positive counterparts for modelling

and forecasting in the univariate framework.

The measures of �t (Table 7.6, last 3 rows) indicate that the use of directional com-

mon jumps increases the in-sample �tting of realized covariance matrices. Larger im-

provements are at longer horizons, with the HARCJ model achieving the best in-sample

performance.

7.6.2 Out-of-Sample Forecasts

Out-of-sample forecast results using directional common jumps are reported in Ta-

ble 7.7. The losses of the HARJ and HARCJ models (indicated by bold numbers) are

smaller than those of the HAR models. For the CPA test p-values (Giacomini and

White, 2006), starred values indicate (at the 5% signi�cance level) signi�cantly smaller

losses than those of the HAR model. This is wholly consistent with our analysis. The

biggest out-of-sample gains are attined by the HARCJ models, which outperform both

the HAR and HARJ models irrespective of the forecast horizons and loss function under

analysis. However, the CPA test indicates that only the losses of the HARCJ model, at

the one-day (h = 1) and one month (h = 22) horizons, are signi�cantly smaller than those

of the HAR models. Whereas at the one-week (h = 5) horizon the losses of the HAR

model are signi�cantly smaller (10% level) to those of the HAR model, the HARJ model

fails to outperform the HAR model across all horizons. This suggests that, although

directional common jumps improve the predictability of the realized covariance matrices,

their contribution is more limited than that of common jumps.

7.7 Minimum Variance Portfolios

This section assesses the economic value of the di�erent models by constructing Global

Minimum Variance (GMV) portfolios. The GMV approach relies solely upon returns

covariances, which makes it a `clean' framework for evaluating the merits of the di�erent

covariance forecasts. This is because the estimation errors in sample means are large
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and the corresponding portfolios perform poorly compared to the GMV portfolio (e.g.

DeMiguel et al., 2009; Jagannathan and Ma, 2003). We employ daily, weekly and monthly

rebalancing frequencies, and in each period the investor solves the following minimization

problem:

w∗t = argmin
wt

w′tŜtwt,

s.t w′tι = 1,

(7.24)

where wt is an N × 1 vector of GMV portfolio weights, ι is an N × 1 vector of ones, and

Ŝt is the N ×N matrix of forecasted covariances from a particular model. The optimal

portfolio weights, w∗t , are given by:

w∗t =
Ŝ−1
t ι

ι′Ŝ−1
t ι

. (7.25)

It is well-known that inaccurate estimates of the covariance matrix lead to worse portfolio

performance, with higher turnover and trading costs (e.g. DeMiguel et al., 2014; Han,

2006). Thereby, we incorporate these features in our analysis and de�ne the total portfolio

turnover from day t to day t+ 1 as:

TOt =
N∑
i=1

∣∣∣∣∣w∗(i)t+1 − w
∗(i)
t

1 + r
(i)
t

1 + w∗
′
t rt

∣∣∣∣∣ . (7.26)

The portfolio excess return net of transaction cost is therefore:

rpt = w∗
′

t rt − cTOt, (7.27)

where c is the transaction cost.

We follow Fleming et al. (2001, 2003), and evaluate the economic signi�cance of the

di�erent strategies using a utility-based framework, in which the investor has quadratic

utility with risk aversion γ. The realized daily utility generated by the portfolio based

on the covariance forecasts from model k is:

U
(
r(k)
pt , γ

)
=
(
1 + r(k)

pt

)
− γ

2(γ + 1)

(
1 + r(k)

pt

)2
. (7.28)
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The economic value of the di�erent models can be determined by solving:

T∑
t=1

U
(
r(k)
pt , γ

)
=

T∑
t=1

U
(
r(q)
pt −∆γ, γ

)
, (7.29)

where ∆γ can be interpreted as the return an investor with risk-aversion γ is willing to

sacri�ce to switch from using model k to using model q.

The GMV strategies, using a risk-aversion γ = 6 and a transaction cost c = 0.5%,

for the di�erent models based on daily, weekly and monthly rebalancing are reported in

Table 7.8. We use a dagger (†) to di�erentiate the HARJ and HARCJ models that utilize

the directional common jumps, and the starred values indicate that ∆6 is signi�cantly

di�erent from zero.24

The results in Table 7.8 show that separating common jumps from the continuous

component not only increases the accuracy of the forecasted covariances, but leads to

substantial gains in portfolio performance. This is because the increased accuracy of

the forecasted covariances leads to more stable portfolio strategies, thereby reducing the

trading costs. Although the HARJ and HARCJ strategies, using both common and

directional common jumps, improve on the performance of the HAR model, the portfolio

gains of the HARCJ strategy are signi�cantly di�erent from zero across all horizons.

In line with our previous results, common jumps provide superior performance than

directional common jumps.

7.8 Conclusion

We propose a robust non-parametric framework that builds on the recent theoretical

developments of Barndor�-Nielsen and Shephard (2004a), Mancini and Gobbi (2012),

and Caporin et al. (2017), and provide an easy-to-implement approach for measuring

separately the multivariate continuous and common jumps components of quadratic co-

variation matrices. We further investigate the incidence of directional common jumps,

24To evaluate the performance of our strategies, we follow Bandi et al. (2008) and Engle (2002a) and
create a null hypothesis that examines whether the performance is equal to zero, i.e. H0 : ∆6 = 0 and
H1 : ∆6 > 0. Therefore, we apply a one-sided t-test with a robust variance-covariance estimator.
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which are estimated as the di�erence between the positive and negative semicovariances.

The sign of the directional common jumps depends upon the direction of the simultane-

ous jumps, as the latter are fully absorbed by the positive or negative semicovariances

(e.g. Bollerslev et al., 2020).

Applying the theory to 20 individual stocks for a period of 17 years, we �nd that com-

mon jumps are strongly associated with major �nancial and economic news. As common

jumps are highly correlated, their occurrence generally increases both the dependence

across stocks and the persistence of stock (co)variances.

The inclusion of the continuous and common jumps in a vectorized heterogeneous

autoregressive (vech-HAR) model results in signi�cant in- and out-of-sample forecasting

gains, which are attained at the daily, weekly and monthly horizons. When the continuous

and the common jumps variables are entered separately in the vech-HAR model, common

jumps estimates are generally positive, and lead to an increase in future covariances. On

the other hand, estimates of directional common jumps are usually negative, which means

that negative (positive) common jumps increase (decrease) the persistence and future level

of (co)variances.

Finally, by using a utility-based approach to assess the economic value of the forecasted

covariance matrices, we �nd that the improved accuracy of the HARJ and HARCJ models

yields cheaper portfolio allocations, as the more stable portfolio strategies lead to lower

trading costs.
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Appendix 7.A Tables and Figures

Table 7.1: Simulated In- and Out-of-sample Forecast Results

HAR HARJ HARCJ HAR HARJ HARCJ HAR HARJ HARCJ

h = 1 h = 5 h = 22

Panel A: In-Sample Forecasts (Common Jumps)

R2
adj 0.336 0.350 0.365 0.622 0.646 0.674 0.695 0.718 0.746

LF 2.813 2.770 2.677 1.968 1.921 1.810 1.649 1.599 1.498

LE 2.376 2.302 2.274 1.666 1.621 1.543 1.442 1.397 1.330

Panel B: Out-of-Sample Forecasts (Common Jumps)

LF 2.827 2.767 2.758 1.977 1.908 1.892 1.657 1.595 1.554

LE 2.387 2.340 2.316 1.672 1.616 1.577 1.448 1.401 1.376

Panel C: In-Sample Forecasts (Directional Common Jumps)

R2
adj 0.336 0.337 0.365 0.622 0.623 0.674 0.695 0.695 0.746

LF 2.813 2.793 2.704 1.968 1.965 1.829 1.649 1.618 1.513

LE 2.376 2.346 2.297 1.666 1.650 1.559 1.442 1.412 1.344

Panel D: Out-of-Sample Forecasts (Directional Common Jumps)

LF 2.827 2.802 2.786 1.977 1.979 1.910 1.657 1.659 1.583

LE 2.387 2.365 2.339 1.672 1.673 1.591 1.448 1.449 1.385

Note: The table reports the in- and out-of-sample results for the di�erent models

based on daily (h = 1), weekly (h = 5) and monthly (h = 22) horizons. LF and

LE denote the Frobenius and Euclidean loss function, respectively. The results are

generated using the Monte Carlo simulation outlined in Section 6.3.2.
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Table 7.2: Descriptive Statistics

Name Ticker Variance Common Jumps Common Jumps Hausman Test

Mean St. Dev. Mean St. Dev Identi�ed to Total Variance H3,n ACn

American Express AXP 4.020 9.195 2.619 5.495 149 2.178 0.022 0.015

Boeing BA 2.812 3.900 1.592 2.961 149 1.879 0.029 0.024

Catterpillar CAT 3.239 4.889 2.081 3.512 149 2.133 0.022 0.016

Disney DIS 2.966 5.015 1.973 4.462 149 2.177 0.030 0.023

Dow DOW 3.976 7.353 2.601 6.061 149 2.080 0.023 0.019

Dupont DD 2.761 4.076 1.554 2.814 149 1.843 0.024 0.016

Home Depot HD 3.121 4.938 2.101 5.592 149 2.188 0.022 0.015

IBM IBM 2.026 3.527 1.454 4.845 149 2.434 0.019 0.014

Intel INTC 4.075 5.754 1.867 4.564 149 1.511 0.018 0.015

Johnson & Johnson JNJ 1.385 3.482 2.047 14.222 149 5.010 0.031 0.019

JP Morgan Chase JPM 4.615 10.848 4.231 11.760 149 2.937 0.024 0.014

Coca-Cola KO 1.561 2.535 0.781 1.389 149 1.685 0.027 0.017

MacDonald MCD 2.164 4.333 0.943 1.850 149 1.417 0.036 0.024

Merck and Co. MRK 2.431 5.227 1.570 4.004 149 2.219 0.028 0.015

3M MMM 1.853 3.216 1.297 3.647 149 2.307 0.026 0.017

Microsoft MSFT 2.679 3.854 1.279 2.014 149 1.630 0.021 0.015

Procter & Gamble PG 1.492 2.907 1.106 3.332 149 2.445 0.027 0.017

United Technologies UTX 2.300 3.793 1.497 3.009 149 2.191 0.025 0.017

WalMart WMT 2.045 3.277 0.992 2.001 149 1.609 0.026 0.018

Exxon Mobil XOM 1.987 3.955 1.424 3.720 149 2.379 0.020 0.014

Note: The table reports the descriptive statistics of the variance and common jumps together with the contribution of the

common jumps to total variance. The latter is estimated as the ratio of sum of the common jumps (of stock i) to the sum of

the total variance (of stock i). The descriptive statistics of the common jumps only considers the days with signi�cant common

jumps, depicted in the third column. The last two columns report respectively the proportion of rejections of the Hausman

test for the presence of market microstructure noise and �rst-order autocorrelation in log-returns test proposed by Aït-Sahalia
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Table 7.3: The Correlation of the Common Jumps and Continuous Components

AXP BA CAT DIS HD IBM INTC JNJ JPM KO MCD MRK MMM MSFT PG UTX WMT XOM DD DOW

AXP � 0.699 0.822 0.693 0.792 0.752 0.633 0.662 0.802 0.686 0.555 0.539 0.796 0.681 0.610 0.715 0.653 0.802 0.791 0.554

BA 0.554 � 0.754 0.745 0.795 0.742 0.697 0.743 0.639 0.727 0.540 0.491 0.776 0.737 0.616 0.798 0.689 0.727 0.761 0.492

CAT 0.722 0.854 � 0.686 0.773 0.774 0.632 0.692 0.717 0.758 0.528 0.561 0.820 0.721 0.671 0.777 0.682 0.808 0.846 0.593

DIS 0.603 0.820 0.845 � 0.755 0.715 0.696 0.704 0.629 0.679 0.556 0.467 0.740 0.705 0.586 0.751 0.666 0.702 0.695 0.489

HD 0.678 0.517 0.611 0.541 � 0.809 0.740 0.757 0.716 0.774 0.584 0.537 0.820 0.769 0.662 0.796 0.776 0.785 0.800 0.505

IBM 0.833 0.531 0.630 0.538 0.570 � 0.821 0.728 0.688 0.766 0.566 0.506 0.798 0.829 0.697 0.755 0.806 0.755 0.779 0.504

INTC 0.496 0.877 0.773 0.810 0.431 0.573 � 0.679 0.604 0.705 0.532 0.433 0.692 0.848 0.620 0.677 0.776 0.600 0.679 0.474

JNJ 0.299 0.253 0.280 0.280 0.858 0.193 0.192 � 0.635 0.769 0.583 0.519 0.751 0.724 0.665 0.746 0.728 0.753 0.734 0.485

JPM 0.802 0.635 0.722 0.556 0.658 0.765 0.427 0.276 � 0.629 0.501 0.500 0.674 0.652 0.530 0.622 0.594 0.680 0.692 0.553

KO 0.760 0.667 0.842 0.682 0.739 0.580 0.469 0.443 0.821 � 0.583 0.559 0.775 0.737 0.717 0.772 0.775 0.756 0.770 0.476

MCD 0.700 0.558 0.756 0.676 0.847 0.544 0.486 0.669 0.626 0.819 � 0.384 0.598 0.542 0.519 0.572 0.590 0.602 0.560 0.331

MRK 0.498 0.850 0.831 0.827 0.668 0.430 0.824 0.521 0.506 0.665 0.711 � 0.541 0.482 0.458 0.498 0.480 0.560 0.555 0.396

MMM 0.426 0.866 0.817 0.814 0.411 0.411 0.865 0.233 0.420 0.537 0.526 0.898 � 0.762 0.717 0.837 0.749 0.854 0.833 0.528

MSFT 0.677 0.676 0.667 0.592 0.819 0.623 0.631 0.662 0.606 0.689 0.718 0.674 0.544 � 0.663 0.733 0.762 0.699 0.753 0.496

PG 0.631 0.667 0.705 0.636 0.870 0.570 0.594 0.767 0.612 0.708 0.781 0.822 0.701 0.820 � 0.668 0.706 0.672 0.688 0.425

UTX 0.639 0.833 0.863 0.779 0.624 0.589 0.691 0.276 0.800 0.810 0.686 0.771 0.686 0.605 0.617 � 0.741 0.773 0.787 0.504

WMT 0.761 0.567 0.775 0.607 0.737 0.712 0.542 0.462 0.677 0.782 0.857 0.630 0.556 0.704 0.739 0.671 � 0.697 0.748 0.443

XOM 0.527 0.860 0.861 0.857 0.499 0.476 0.838 0.310 0.496 0.663 0.653 0.917 0.939 0.596 0.739 0.709 0.615 � 0.802 0.481

DD 0.613 0.910 0.883 0.805 0.523 0.524 0.780 0.219 0.707 0.747 0.607 0.804 0.792 0.644 0.622 0.876 0.554 0.818 � 0.570

DOW 0.542 0.790 0.743 0.713 0.722 0.479 0.779 0.607 0.489 0.583 0.645 0.853 0.757 0.810 0.812 0.633 0.552 0.760 0.750 �

Note: The table reports in the lower (upper) triangular matrix the correlation of the common jumps (continuous component) across the 20 individual stocks using

the full sample size.
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Table 7.4: In-Sample Estimates using Common Jumps

HAR HARJ HARCJ HAR HARJ HARCJ HAR HARJ HARCJ

h = 1 h = 5 h = 22

θ0 0.087 0.084 0.092 0.133 0.130 0.139 0.241 0.240 0.242

s.e. (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.008) (0.008) (0.008)

θd/θCd 0.255 0.294 0.268 0.170 0.207 0.195 0.097 0.102 0.111

s.e. (0.018) (0.023) (0.023) (0.006) (0.007) (0.007) (0.004) (0.005) (0.005)

θw/θCw 0.377 0.357 0.431 0.326 0.308 0.341 0.267 0.264 0.238

s.e. (0.023) (0.024) (0.027) (0.016) (0.016) (0.020) (0.018) (0.018) (0.020)

θm/θCm 0.281 0.275 0.204 0.371 0.365 0.310 0.396 0.395 0.402

s.e. (0.014) (0.014) (0.015) (0.015) (0.015) (0.016) (0.018) (0.018) (0.020)

θJd −0.285 0.119 −0.267 −0.018 −0.033 0.022

s.e. (0.030) (0.016) (0.015) (0.016) (0.021) (0.007)

θJw −0.487 −0.170 0.490

s.e. (0.055) (0.062) (0.077)

θJm 1.443 1.450 0.436

s.e. (0.148) (0.182) (0.113)

R2
adj 0.517 0.520 0.525 0.643 0.647 0.651 0.609 0.609 0.610

LF 14.998 14.978 14.861 11.509 11.491 11.429 11.584 11.580 11.553

LE 11.867 11.852 11.761 9.188 9.174 9.127 9.190 9.186 9.165

Note: The table reports the in-sample parameter estimates with robust standard errors in parentheses, along

with measures of �t for the di�erent models estimated using forecast horizons equal to one-day (h = 1),

one-week (h = 5) and one-month (h = 22). LF and LE denote the respective Frobenius and Euclidean loss

function. The standard errors are computed using methods that are robust to model misspeci�cation.
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Table 7.5: Out-of-sample Forecast Results using Common Jumps

HAR HARJ HARCJ HAR HARJ HARCJ HAR HARJ HARCJ

h = 1 h = 5 h = 22

LF 13.481 13.472 12.782 10.720 10.703 10.427 11.705 11.443 11.354

CPA � 0.237 0.001? � 0.746 0.021? � 0.041? 0.035?

LE 10.548 10.543 10.011 8.428 8.416 8.205 9.044 8.841 8.783

CPA � 0.252 0.001? � 0.773 0.014? � 0.042? 0.030?

Note: The table reports the out-of-sample forecast loss for the di�erent models, along with the p-value of

the CPA test of Giacomini and White (2006) based on a 5% signi�cance level. Bold numbers indicate that

the forecast losses are smaller than that of the HAR model, while starred numbers highlight the forecasts

whose losses are signi�cant smaller relative to the HAR model.
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Table 7.6: In-Sample Estimates using Directional Common Jumps

HAR HARJ HARCJ HAR HARJ HARCJ HAR HARJ HARCJ

h = 1 h = 5 h = 22

θ0 0.087 0.087 0.068 0.133 0.132 0.106 0.241 0.238 0.216

s.e. (0.007) (0.007) (0.008) (0.008) (0.008) (0.009) (0.007) (0.007) (0.008)

θd/θCd 0.255 0.255 0.272 0.170 0.171 0.189 0.097 0.099 0.101

s.e. (0.018) (0.019) (0.023) (0.008) (0.008) (0.010) (0.007) (0.007) (0.008)

θw/θCw 0.377 0.377 0.423 0.326 0.327 0.370 0.267 0.268 0.285

s.e. (0.023) (0.023) (0.028) (0.017) (0.017) (0.023) (0.018) (0.018) (0.022)

θm/θCm 0.281 0.281 0.278 0.371 0.371 0.377 0.396 0.395 0.434

s.e. (0.014) (0.014) (0.016) (0.016) (0.016) (0.019) (0.016) (0.016) (0.019)

θJd −0.026 0.144 −0.071 0.242 −0.201 0.058

s.e. (0.026) (0.019) (0.022) (0.022) (0.023) (0.019)

θJw −0.257 −1.121 −0.950

s.e. (0.071) (0.103) (0.107)

θJm −1.477 −1.437 −1.198

s.e. (0.182) (0.203) (0.174)

R2
adj 0.517 0.517 0.523 0.643 0.643 0.655 0.609 0.610 0.612

LF 14.998 14.998 14.707 11.509 11.506 11.132 11.584 11.556 11.030

LE 11.867 11.867 11.662 9.188 9.186 8.916 9.190 9.168 8.774

Note: The table reports the in-sample parameter estimates with robust standard errors in parentheses, along

with measures of �t for the di�erent models estimated using forecast horizons equal to one-day (h = 1),

one-week (h = 5) and one-month (h = 22). LF and LE denote the respective Frobenius and Euclidean loss

function. The standard errors are computed using methods that are robust to model misspeci�cation. The

jump variable used to generate these models is the directional common jumps estimated as in equation (7.23).

To ease the notation we prefer not to change the name given to the speci�cations.
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Table 7.7: Out-of-sample Forecast Results using Directional Common Jumps

HAR HARJ HARCJ HAR HARJ HARCJ HAR HARJ HARCJ

h = 1 h = 5 h = 22

LF 13.481 13.464 12.904 10.720 10.716 10.552 11.705 11.649 10.355

CPA � 0.446 0.011? � 0.930 0.056 � 0.162 0.037?

LE 10.548 10.533 10.129 8.428 8.424 8.328 9.044 9.001 8.013

CPA � 0.422 0.015? � 0.975 0.097 � 0.156 0.034?

Note: The table reports the out-of-sample forecast loss for the di�erent models, along with the p-value of

the CPA test of Giacomini and White (2006) based on a 5% signi�cance level. Bold numbers indicate that

the forecast losses are smaller than that of the HAR model, while starred numbers highlight the forecasts

whose losses are signi�cant smaller relative to the HAR model.
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Table 7.8: Minimum Variance Portfolios

Daily Rebalancing Weekly Rebalancing Monthly Rebalancing

∆6 TO ∆6 TO ∆6 TO

HAR 0.733 0.524 0.302

HARJ 39.810? 0.711 8.131 0.518 7.291 0.297

HARCJ 96.709? 0.669 54.092? 0.490 100.256? 0.254

HARJ† 11.978 0.729 4.895 0.521 3.071 0.301

HARCJ† 74.038? 0.700 23.711? 0.514 50.681? 0.267

Note: The table reports the results for the global minimum variance (GMV)

portfolio using daily, weekly and monthly rebalancing. The results show the

average turnover (TO) and the annual basis points (∆6) that an investor is

willing to sacri�ce to switch from the HAR model to one of the models that

utilize the common jumps or directional common jumps. The dagger (†) denote

the use of directional common jumps, and starred values indicate that ∆6 is

signi�cantly di�erent from zero using a one-sided test. The analysis uses a risk-

aversion γ = 6 and transaction cost c = 0.5%.
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Figure 7.1: Intraday Returns on Days with Simultaneous Jumps

10:00:00 12:00:00 14:00:00 16:00:00

-5.0%

0.0%

5.0%

10:00:00 12:00:00 14:00:00 16:00:00

-1.5%

-1.0%

-0.5%

0.0%

0.5%

1.0%

1.5%

10:00:00 12:00:00 14:00:00 16:00:00

-1.0%

-0.5%

0.0%

0.5%

1.0%

1.5%

10:00:00 12:00:00 14:00:00 16:00:00

-3.0%

-2.0%

-1.0%

0.0%

1.0%

2.0%

3.0%

10:00:00 12:00:00 14:00:00 16:00:00

-3.0%

-2.0%

-1.0%

0.0%

1.0%

2.0%

10:00:00 12:00:00 14:00:00 16:00:00

-1.5%

-1.0%

-0.5%

0.0%

0.5%

1.0%

1.5%

Note: The �gure depicts the 5 minutes intraday returns of the 20 individual stocks on 6 di�erent days
where simultaneous jumps where identi�ed in our sample. The dates correspond to well known Flash
Crashes, FOMC meetings and the surge of the WTI oil price which increases by 8% in a single day.
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Figure 7.2: Semicovariance and Directional Common Jumps
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Note: The �gure depicts the 5 minutes intraday returns of the 20 individual stocks and the positive and
negative realized semicovariances between MSFT and JPM for two di�erent days. The top (bottom)
panel shows results based on June 29, 2006 (August 5, 2014).
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