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Abstract—The Internet of Things (IoT), in combination with
advancements in Big Data, communications and networked sys-
tems, offers a positive impact across a range of sectors including
health, energy, manufacturing and transport. By virtue of current
business models adopted by manufacturers and ICT operators,
IoT devices are deployed over various networked infrastructures
with minimal security, opening up a range of new attack vectors.
Conventional rule-based intrusion detection mechanisms used
by network management solutions rely on pre-defined attack
signatures and hence are unable to identify new attacks. In
parallel, anomaly detection solutions tend to suffer from high
false positive rates due to the limited statistical validation of
ground truth data, which is used for profiling normal network
behaviour. In this work we go beyond current solutions and
leverage the coupling of anomaly detection and Cyber Threat
Intelligence (CTI) with parallel processing for the profiling and
detection of emerging cyber attacks. We demonstrate the design,
implementation, and evaluation of Citrus: a novel intrusion
detection framework which is adept at tackling emerging threats
through the collection and labelling of live attack data by utilising
diverse Internet vantage points in order to detect and classify
malicious behaviour using graph-based metrics as well as a
range of machine learning (ML) algorithms. Citrus considers
the importance of ground truth data validation and its flexible
software architecture enables both the real-time and offline
profiling, detection and classification of emerging cyber-attacks
under optimal computational costs. Thus, establishing it as a
viable and practical solution for next generation network defence
and resilience strategies.

Index Terms—Intrusion Detection, Machine Learning, Threat
Intelligence

I. INTRODUCTION

THE advancement of technology has paved the way for the
pervasive integration of computers into the lives of many.

The data and resources they hold makes each a potential target
for attackers. Disruption to these systems can incur financial
losses for the operators, and wider consequences for users who
are unable to access resources.

To defend against the growth in unique distributed infec-
tions, the method in which attacks are identified and prevented
have received significant overhaul [1]. The defense mechanism
of choice within modern enterprise networks is typically an
Intrusion Detection System (IDS). An IDS performs classifica-
tion of events within a network into either benign or malicious,
in an attempt to thwart intrusion attempts. These events can be
network based, such as packets or flows traversing a switch,
or host based, such as process utilisation and system logs.
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The decision making process can be categorized as either
misuse or anomaly detection. Misuse detection uses predefined
attack patterns using signatures of known malware. As a result,
novel attacks exploiting unknown vulnerabilities bypass this
approach as no corresponding signature exists [2]. Misuse
detection relies upon a database of known attack signatures,
which is necessarily large and requires constant updates to
keep abreast of developing threats. Anomaly detection tech-
niques leverage a description of normal behaviour which is
learned through observations in training data, and any future
observation which deviates from the normal baseline is labeled
as malicious. Consequently, attacks which were not previously
encountered are still possible to detect. Nonetheless, the task
of profiling normal behaviour is highly challenging due to its
dependency on the establishment of ground truth data which
in many cases are not validated either statistically or even
empirically. Hence, anomaly detection solutions can also be
problematic especially when large volume of information is
processed, analysed, and statistical normality is not thoroughly
assessed.

The requirements distilled by the nature of the emerg-
ing cyber threat landscape demonstrate that attacks are now
conducted on a large scale, thus IDS-based solutions need
to maintain vast quantities of either signatures or training
data used for decision making. Therefore a high through-
put processing framework is required to adequately analyse
the data in a reasonable time. Recently, novel frameworks
have emerged which possess the ability to handle the large
amount of data required for contemporary intrusion detection.
Providing anomaly detection algorithms the ability to scale
with the influx of emerging threats is crucial to overcome the
challenges brought about by the rapid growth of connected
devices, innovative infection techniques, and large volumes of
data [3].

When using supervised statistical algorithms to determine
abnormality in systems telemetry, it is essential to train the
models on data which includes benign and relevant attack
behaviour. There exist challenges with contemporary intru-
sion detection data sets, including containing dated and non-
relevant attacks [4], and manually injected attacks which
do not accurately reflect the current threat landscape [5].
Honeypot telemetry provides improved training data that better
represents the emerging threat landscape [1], as the data
contained within is a partial view of the malicious actions
currently propagating throughout the Internet. Furthermore,
one of the most crucial features in supervised machine learning
algorithms is is the ground truth represented as target labels.
Current data sets do not either include this feature [6], or
engineer it in a non-standard and often problematic manner
[7], [8].
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The main contributions within this paper are:
1) Practical integration of Cyber Threat Intelligence

(CTI) for active network defense: In contrast to many
commercial solutions where CTI is a passive process
involving the offline composition of normal traffic be-
haviour, Citrus is the first to utilise real-time CTI feeds
for ground truth data validation such as to aid towards
accurate online anomaly detection.

2) Real-time anomaly detection: We demonstrate that
Citrus provides a robust data pipeline by exploiting
properties of data and system parallelism satisfying
the data processing requirements for real-time anomaly
detection. Thus, acting as a viable approach for next
generation network defense solutions.

3) Attack data availability: Due to the challenges identi-
fied with current data sets during literature review, Citrus
orchestrates the collection, processing, and analysis of
emerging threat data through the composition of honey-
pots scattered throughout Lancaster University’s public
address space. Citrus then produces an open and reusable
labelled data set suitable not only for the evaluation
of itself, but also for the evaluation of next generation
intrusion detection techniques. The constant nature of
the proposed honeypot telemetry scheme and labelling
approach enables this data set to be updated. Thus,
critically reflecting the various novel threats encountered
in the wild which enables an evolving understanding of
malicious behaviour. To the best of our knowledge, an
updated data set which incorporates attacks captured by
honeypots has not previously been achieved.

The remainder of this paper is structured as follows: Sec-
tion II provides an overview of background and related work
whereas Section III presents the motivating factors behind
Citrus’ design choices. Section IV outlines the architecture
of Citrus, highlighting the frameworks which are integrated.
Section V presents the environment in which experiments are
conducted and the data set used to evaluated Citrus. Section VI
describes the various methodologies employed by Citrus and
scenarios designed to evaluate them. Section VII provides
analysis of the results obtained through these scenarios. Fi-
nally, Section VIII concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Modern Threat Landscape

Networked computer systems are increasingly susceptible
to abuse due to the growing propagation of exploitation and
disruption campaigns orchestrated throughout the Internet.
Motivated by economic and geopolitical gain, these myriad
attacks encompass a large range of techniques and are very
diverse in nature. Ranging from IoT (Internet of Things)
malware initiating large scale DDoS attacks, to targeted and
stealthy intrusions into critical infrastructure leveraging zero-
day exploits as part of a sophisticated attack chain, the
emerging threat landscape remains a challenging problem to
solve.

Multi-stage intrusions are a special type of attack which in-
corporate multiple techniques, tactics and protocols to achieve

a predetermined goal. In this scenario, attackers typically fol-
low an attack life cycle model which details the steps required
by an adversary to infiltrate computer systems. Several of the
stages inherent within this type of attack are used in Section
VII to evaluate Citrus’ capacity to detect emerging threats.

B. Cyber Threat Intelligence

As identified in the previous section, the evolving threat
landscape consists of innovative and large scale attacks. The
monitoring of these attacks is essential to reduce the rate
at which they propagate, a process which utilises sensors
scattered around the Internet to observe bleeding edge ad-
versarial methodology. The information derived from these
sources is known as Cyber Threat Intelligence (CTI), which
in contemporary studies has been used to profile malicious
activity and enhance security mechanisms.

1) Honeypots: Honeypots are systems under observation
which contain components that masquerade as legitimate en-
terprise infrastructure in order to catch unsuspecting adver-
saries leveraging previously unobserved exploits, attack tactics
and patterns used for infiltration [9]. Utilising these honeypots
grants unrestricted access to emerging CTI through extracted
log data, which is otherwise extremely difficult for the wider
community to access due to corporations limiting the exposure
of breaches. Therefore, honeypots are an invaluable asset in
the identification of novel attack vectors. The nature of the
deployed honeypots dictate the types of attacks encountered,
with honeypots deploying a large number of different services
granting observation of more diverse types of attacks and
corresponding CTI data. Yahya et al. [10] deploy a range of
emerging honeypots which emulate a large amount of popular
service. Through the analysis of the captured telemetry, the
authors identify diverse attack techniques such as DDoS
attacks, bruteforce attempts, and exploitation of vulnerabilities
targeting various software implementations.

2) Cyber Threat Intelligence Services: CTI services pro-
vide organisations insight into relevant threat actors which
aim to infiltrate infrastructure. The greatest majority of CTI
services function in a bespoke manner, and deliver various
types of intelligence. These range from services which sys-
temically scan and profile the entire internet address range,
e.g. Shodan1, to services which maintain historical records of
identified attackers in blacklists such as Maltiverse2.

Another such service which performs profiling of the In-
ternet is Greynoise3. This service claims to maintain a large
number of shifting servers in hundreds of data centers across
the world, and perform omni-directional scanning to uncover
properties about the topology of the Internet. Due to com-
mercial reasons, the true nature behind how these services
operate is not known to the general public. Despite this,
the intelligence offered by these platforms is an invaluable
resource in the analysis and defense of emerging threats.

1https://www.shodan.io/
2https://maltiverse.com/
3https://greynoise.com/
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C. Intrusion Detection
An intrusion can be defined as any activity that causes

damage to information systems [11]. An IDS is a system which
identifies these malicious actions to ensure the security and
integrity of computer systems is maintained. These systems
monitor various activity taking place, and if deemed to be ma-
licious, alerts and remediation procedures are commenced to
mitigate such threats. Flow-based Network-based IDS (NIDS)
methods have become popular in literature as they encompass
measurements from multiple packets in a connection and only
analyse the packet header, not the payload. This is beneficial
since full payload capture is computationally expensive and
can be lead to performance bottlenecks in high-speed networks
[12].

1) Misuse Detection: IDSs can be categorised based upon
the method used to identify attacks. These groupings are
known in literature as misuse based intrusion detection and
anomaly based intrusion detection. Misuse based IDSs typ-
ically leverage a database of known attack signatures to
detect attacks. These systems use pattern matching to identify
whether suspect activity is contained within a known malicious
database.

They also generally grant excellent detection accuracy for
known attacks. However, they struggle against emerging and
novel threats, due to the fact that the signature database must
be updated to reflect the new attacks.

2) Anomaly Detection: Anomaly detection approaches have
drawn immense interest from the research community due
to them alleviating challenges incurred by signature based
systems. Most notably, these include the ability to detect zero-
day attacks as they do not require a known malicious signa-
ture database. In this approach, a model of normal systems
behaviour is created using machine learning, statistical-based
or knowledge-based methods [11]. Any monitored activity
which deviates from this normal behaviour profile is treated as
an intrusion. However, these systems generally suffer from a
greater false positive rate compared to signature alternatives.
This is caused through various means, including a lack of
strong ground truth within training data.

In literature, machine learning based methods have been
shown to be adept in the detection of a variety of malicious
activity. In this approach, machine learning models are trained
using data extracted from intrusion detection data sets. There
are many distinct types of machine learning algorithms that
have been applied to intrusion detection scenarios, such as
decision trees, clustering, neural networks, and genetic algo-
rithms. For example, Sangkatsanee et al. leverage decision
trees to detect a variety of malicious behaviour, including
DDoS and probes, in an online fashion [13]. This approach
verifies the detection capabilities through real attacks orches-
trated against victims, where the network traffic is captured
and accurately classified. However, this approach does not
consider attacks which are sophisticated and emerging in
nature.

3) Intrusion Detection Data Sets: In order to evaluate the
effectiveness of an IDS, the accuracy of the attack detection
procedure is typically used. This process typically assesses the
FP (False Positive) and TP (True Positive) rates of detection.

A data set which contains both benign and attack traces is
necessary to assess this metric. Currently, there still exists
challenges in the collection and release of this data to the
public. Recent studies have shown the most widely adopted
data sets are heavily dated and no longer reflect modern
attack vectors. Moreover, investigations have also discovered
other deficiencies relating to lack of traffic diversity, attack
techniques, and inappropriate features which can affect the
transparency of the IDS evaluation [14].

In the security community there is a lack of public IDS data
sets, with current literature urgently appealing for high quality
labelled attack data [15], [16], [7], [3], [17], [18]. An IDS data
set of high quality must include a comprehensive reflection
of contemporary threats and a range of benign behaviour
spanning multiple protocols, hosts, and applications [14].
Furthermore, an often overlooked aspect is the methodology
behind labelling of the data set. Correct labelling ensures
all observed attacks are identified, thus dictating the reliable
outcome of any IDS [19]. Additionally, labelling enables the
use of supervised machine learning algorithms, which have
been shown to usually provide better detection accuracy than
their unsupervised alternatives [20]. A study conducted by Abt
et al. discovered that the majority of publicly available data
sets are not labelled, assigning the cause to be due to the
labour intensive nature of manual labelling of data sets [8]. The
authors then argue that the “missing labelled data problem”
affects repeatability and comparability of research.

The KDD ’99 data set is one of the first publicly available
IDS data sets and remains the most widely adopted in the
evaluation of anomaly detection methods [16]. The data set
incorporates results from a simulation containing both normal
and abnormal traffic collected from inside a military network.

As identified by McHugh, no attempt was made to ensure
that the injected synthetic attacks were realistically distributed
in the background noise [21]. Furthermore, Tavallaee et al.
claims an inherent problem within the data set is that the
workload of the synthesized data does not reflect traffic in
real networks [22]. These problems highlight the challenges
incurred when utilising synthetic data in the generation of
IDS data sets, heralding innovation in order to capture a high
quality realistic data set. However, the main problem with this
data set resides within the fact that it is extremely dated, with
the attacks no longer being relevant to what is experienced
today.

The Kyoto 2006+ data set was created by researchers at
National Institute of Information and Communications Tech-
nology through the collection of attacks and benign telemetry
spanning from November 2006 until August 2009 [4]. In
their approach, Song et al. utilise honeypots as an attack
capture medium, deploying various enticing systems which
lure adversaries into revealing their techniques. In the same
network, servers conducting benign tasks such as mailing
service and DNS server were also deployed to generate
realistic background traffic resembling legitimate enterprise
infrastructure.

Data Set Labelling In order to successfully label the data
set, the ground truth must be discovered. In literature, there are
only a handful on publicly available data sets which consider
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Name Labelling Mechanism Open Source External Correlation Data Set Released Attack Types
Citrus CTI Yes Yes Yes Various

MAWI [23] Unsupervised AD No No Yes Various
Sperotto et al. [24] Log Correlation No No No Various

Aparicio-Navarro et al. [25] Dempster-Shafer No No No Wireless
B-IDS [26] SVM, RPCL, and Dempster-Shafer No No No Various

TABLE I: Comparison of Citrus and other frameworks which develop a ground truth.

the ground truth and provide corresponding labels. The KDD
’994 ground truth is an example of a data set labelled through
manual anaylsis.

Since the public release of KDD ’99, novel approaches
which provide automated routines to derive ground truth for
intrusion detection data sets have been outlined in literature.
One of the first data sets to incorporate such an approach was
the Kyoto 2006+ data set [4]. In their approach, honeypots
were deployed to attract malicious intrusion attempts. Kyoto
2006+ provides data with partial labels such as to enable the
separation of normal and malicious traffic. Unlike the KDD
data set, the labels do not describe explicit types of attacks.
Much attention has been given to enhancing classification
performance using data with partial labels, such as [27], [28],
due to the less effort required to provide such labels. This
is also true in network security, since specifying the distinct
attack description is often more challenging. In this case,
Kyoto 2006+ provides labels by assigning traffic relating to
honeypots deployed within their architecture as malicious.
Consequently, this approach does not consider legitimate traf-
fic involving honeypots.

As identified by Sperotto et al. in [24], not all telemetry
associated with honeypots are attacks and malicious in nature.
In their work, they identify a number of non-malicious traffic
to and from honeypots which they consider ”side effects”.
More recently, it has also been identified that honeypots are
also targeted by legitimate services which actively probe and
document Internet connected devices, such as Shodan [29]. In
order to differentiate between actual attacks and normal traffic
relating to honeypots, a strong ground truth is required.

The approach taken by B-IDS [26] leverages one-class Sup-
port Vector Machine (SVM) and a Rival Penalized Competitive
Learning (RPCL) network to develop attack ground truth.
These algorithms produce a classification outcome which is
combined with the Dempster-Shafer theory such as to produce
a singular output. Via this approach, the authors are able to
distinguish between normal and attack packets extracted from
real traffic traces with an error rate of around 2%.

A comparison of Citrus with other frameworks which pro-
vide automated ground truth development routines are listed in
Table I. In addition, we provide an experimental comparison
with Citrus and B-IDS in Section VII-D to further illustrate
Citrus’ beneficial properties.

4http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

III. MOTIVATION

A. Lack of Emerging Attack Telemetry

During the process of data set creation, it is essential to
identify certain properties that ensure it can be successfully
leveraged by the research community. Małowidzki et al. out-
line several of these facets in [17]. Realism and a holistic
ground truth are among the features which compose a high
quality data set according to Małowidzki et al. In order for an
intrusion detection data set to be as realistic as possible, there
are multiple considerations which need to be made. These
include the composition of network traffic captured from actual
networks instead of simulated network traffic through math-
ematical models [30]. Furthermore, attack telemetry which
is representative of real attacks currently propagating should
also be incorporated. The research conducted by Hindy et al.
surveys the available IDS data sets, and finds that data sets
with dated attacks render IDS ineffective against emerging
attacks or zero days [1].

The nature of honeypots provides an unrestricted view
of malicious activity currently propagating over the Internet,
capturing detailed accounts of attacks likely currently being
encountered by enterprise networks. As a result, honeypots
have recently been identified as a solution to the problems
faced by data sets requiring realistic malicious activity [3].
Motivated by similar approaches leveraging honeypots to
capture a wide variety of contemporary malicious behaviour
(e.g., [4], [24]), such as brute force, worms, and exploits, we
use attack data collected by the deployment of honeypots to
compile a new intrusion detection data set.

B. Significance of Robust Class Labels

Correctly labelling the data set ensures all attacks are
successfully identified, separating the benign traces from the
malicious traces. When taking a supervised ML approach,
these systems require labelled data sets to be trained. More-
over, in more general scenarios the real nature of data set must
be known in order to evaluate the effectiveness of the detection
approach, i.e. to determine the TP/FP rates of detection.

Within typical network conditions, collecting labelled data
sets is impossible. At present, the majority of data sets
are labelled manually by a technician performing forensic
analysis, which is impractical especially when the amount of
data is large, taking considerable amounts of time, thus not
enabling on-line implementation. In the case of the KDD data
set, labels were verified by hand thus resulting to an extremely
labour intensive process [5].

In order to successfully and accurately implement an auto-
matic labelling method, a robust ground truth must be derived.



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 5

A novel approach to labelling is explored in the design of
Citrus, through the correlation with third party CTI services
a fuller understanding of how actors conduct their behaviour
with regards to the general Internet is deducted. Through this
active correlation with diverse sources, the real nature of the
data is discovered, further enhancing the accuracy of real-time
anomaly detection algorithms for network defense purposes.

C. Importance of Real-Time Detection

Intrusion detection frameworks must operate in an online
fashion to provide network administrators timely alerts for
mitigation and remediation purposes. In modern literature, a
great number of implemented systems perform batch process-
ing and offline classification of network telemetry [31], [32].
In these cases, timely remediation is not possible since the
detection process occurs much later than the actual malicious
behaviour. These types of publications typically attempt to
marginally increase detection rates on outdated data sets,
which, as identified in [8], is a current problem facing the
research community.

A practical, online approach to intrusion detection ensures
that attacks are able to be detected in a realistic networked
environment. To achieve this type of intrusion detection,
telemetry must be transmitted to Citrus where it is then
classified in real-time to determine whether malicious actions
have taken place. Recent investigations have revealed that
existing approaches to anomaly detection are not effective
enough, especially upon the consideration of real-time pre-
diction [33]. This is due to the requirement of vast training
data and the sheer amount of data within modern networks
which needs to be assessed. Therefore, in our approach, we
leverage parallelism through a cluster of processor nodes in
order to alleviate the aforementioned challenges.

IV. CITRUS ARCHITECTURE

Fig. 1: The design of Citrus’ architecture.

As illustrated in Figure 1, the Citrus architecture5 is com-
posed of distinct components which interface with services
deployed within the network, as well as remote services
located on the Internet. The southernmost components within

5https://github.com/ruzzzzz/Citrus

Figure 1 represent these services which provide Citrus crucial
input data necessary for its operation. Furthermore, they are
also utilised for output operations, such as saving labelled
telemetry to disk for future dissemination within the research
community.

The northernmost components represent the two modules
implemented to aid CTI gathering and real time anomaly
detection. Clementine is a component within Citrus which
rapidly identifies malicious behaviour occurring within the
local network through the utilisation of machine learning
models. The Tangerine component within Citrus performs
automatic intrusion detection data set labelling through cor-
relation with CTI service providers.

A. Southbound Interface

The Southbound Interface is composed of various modules
that are used to communicate with services located within the
network and on the Internet.

Fig. 2: Overview of the design of the Southbound Interface.

1) Stream Listener: This module solely serves as an input
to Clementine. Clementine uses the Stream Listener input to
gather local telemetry, and perform online flow-based intrusion
detection. As such, the information flowing through it consists
of network flows emanating from devices located within the
network.

This is achieved through integration with Apache Spark’s
streaming library. Citrus utilises Apache Spark6 to underpin
it’s large scale data processing capabilities. The Apache Spark
interface enables structured data processing, machine learning
and structured streaming for incremental computation and
stream processing.

Spark Streaming extends the traditional core Spark API
by providing high-throughput, fault tolerant, and scalable
stream processing of live data. This data can emanate from
a variety of sources. The streaming platform implemented
within Citrus is Apache Kafka7. This platform was chosen due
to its distributed, replicated, and extremely highly performant
nature.

6https://spark.apache.org
7https://kafka.apache.org
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Spark Streaming additionally enables the application of
machine learning algorithms upon such data streams. Spark
provide a high-level abstraction of these streams of data, called
Discretized Streams (DStreams). DStreams are internally rep-
resented of sequences of RDDs (Resilient Distributed data
sets). RDDs represent a collection of elements which can
be operated on in parallel. The sequencing of these elements
structure a streaming computation as a series of micro-batch
computations. This property is leveraged by Citrus to perform
online intrusion detection using machine learning algorithms
on batches of data with small time intervals.

2) Cluster Operation Dispatcher: The Cluster Operation
Dispatcher provides an interface between Citrus and dis-
tributed processing frameworks. This module utilises clusters
of executor nodes deployed within the network to perform par-
allel computation of complex operations. This integration en-
ables highly efficient transformations of vast, high-dimensional
intrusion detection data sets. As mentioned previously, Citrus
utilises high level abstractions from Spark to achieve this.

3) Storage Operations: The Storage Operations module
is responsible for the reading and writing of labelled data
sets and trained models to a distributed file system. As a
result, this also allows Clementine to access labelled telemetry
in an distributed fashion, decreasing loading time as records
are partitioned between executor nodes. Hadoop File System8

(HDFS) was chosen as the storage medium due to it’s high-
throughput access and fault tolerant nature.

4) Historic Flow Collector: The Historic Flow Collec-
tor module provides an interface between Tangerine and a
distributed database. The distributed database stores historic
flow-based telemetry emanating from honeypots, in which
attack traffic occurs, and services deployed privately within
the network, in which benign traffic occurs. Critically, this
module enables Tangerine to read vast amounts of telemetry
from a database, which will then be used to compile a robust
intrusion detection data set.

5) Intelligence Collector: Unlike the other modules dis-
cussed in this section, the Intelligence Collector module pro-
vides an interface between Citrus and remote services located
on the Internet. Through this module, Tangerine is able to
correlate the data derived from honeypot deployments with
various CTI services to gain contextual information regarding
suspect attackers. The CTI services leveraged by Tangerine are
heterogeneous in nature and provide varying information. As
illustrated within Figure 3, the Intelligence Collector module
provides both input and output operations. This is to enable
custom queries (as an output) to each distinct CTI service,
such as providing a list of suspicious hosts, and returning to
Tangerine (as in input) the corresponding response from the
service.

B. Tangerine

This component ultimately outputs a comprehensive flow-
based labelled data set, which is then utilised by the Clemen-
tine module to perform online intrusion detection tasks.
To achieve this functionality, Tangerine initially gathers the

8https://hadoop.apache.org/

telemetry to be labelled from the Southbound Interface. The
telemetry is then pre-processed in preparation for exportation
as a labelled data set. Contextual information is then gathered
through correlation with diverse CTI services.

Fig. 3: Overview of the design of Tangerine.

1) Driver: The Driver component is the entry point of
Tangerine, and is additionally responsible for the orchestration
of all stages within the labelling process. The Driver receives,
as an input, flow based telemetry collected from honeypots and
benign servers deployed within the network, which is delivered
through the Southbound Interface.

Upon the telemetry being successfully cleaned, contextu-
alised, and labelled, the Driver is able to produce a flow-based
labelled intrusion detection data set. This output is destined for
storage within a distributed file system.

2) Data Cleaner: The Data Cleaner component is respon-
sible for the transformation of telemetry into an appropriate
format. All telemetry gathered from honeypots and benign
servers deployed within the network is processed through this
component to prepare the relevant features required for an
intrusion detection data set. As a result, the Data Cleaner
plays a critical role in delivering the telemetry in a format
appropriate for the evaluation of Intrusion Detection Systems.

Hence, this component receives from the Driver raw teleme-
try in the form of network flow measurements. The Data
Cleaner transforms the raw telemetry and returns it to the
Driver in a standard format, preparing it to be output as a data
set.

3) Intelligence Orchestrator: The Intelligence Orchestrator
component coordinates requests for Cyber Threat Intelligence
(CTI) data. It achieves this through the instantiation and
governing of Intelligence Service Applications, custom appli-
cations built specifically for communication with a certain
CTI service. As such, this component plays a critical role
in enabling extensibility and flexibility for future integration
with new and evolving CTI services. Upon the receipt of a
list of hosts extracted from raw network telemetry by the
Driver, this module begins its operation. Consequently, when a
successful response is received from the Southbound Interface,
the Intelligence Orchestrator then instructs each Intelligence
Service Application to parse the response.
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Name Entity Type Description
Apility Blacklist Provides the capability to query IP addresses against a diverse range of blacklists.
Censys Service Search engine for Internet connected devices.

GreyNoise Service Search engine for Internet connected devices.
Hybrid Analysis Malware, C&C Servers Scans uploaded samples and provides access to several extracted IoCs.

Maltiverse Blacklist Provides querying of multiple blacklists.
OTX Blacklist Provides access to custom blacklist by Alienvault.

Shodan Service Search engine for Internet connected devices.
ZoomEye Service Search engine for Internet connected devices.

TABLE II: The CTI services used to correlate data points and provide a ground truth.

4) Intelligence Service Application: Intelligence Service
Applications are developed within Tangerine which contain the
functionality required to query and parse responses from CTI
services. As these services are heterogeneous in nature, there is
no standard method in which to construct a query and parse the
corresponding response. As a result, to enable communication
between Tangerine and specific CTI service, a corresponding
application must be instrumented which contains this distinct
functionality. These applications provide their procedures to
the Intelligence Orchestrator which further coordinates the
intelligence gathering process.

The Intelligence Service Applications are implemented in
a manner which promotes extensibility, and currently support
a diverse range of CTI services. These are further detailed in
Table II.

5) Ground Truth: The Ground Truth component is respon-
sible for the identification of supernodes inherent within a
graphical relationship of suspected attackers. These supern-
odes represent nodes which are highly connected to malicious
entities. The nodes within the graph are deduced through the
active CTI correlation performed by the Intelligence Service
Applications discussed above. Hence, intelligence is passed to
this module by the driver in the form of dictionaries on a daily
basis.

By virtue of various integrated libraries, this module con-
tains the ability to create graphs and perform clustering. In
detail, these libraries include networkx9 and scikit-learn10

Python libraries. Networkx provides support for graph data
structures including directed graphs and multigraphs, as well
as graph algorithms such as PageRank. The scikit-learn library
is used for the provided k-means algorithm.

Based upon this approach for supernode identification, the
telemetry associated with each node within the graph can be
labelled. Upon the successful calculation of graph features
and identification of supernodes, the Ground Truth component
provides a list of labels to the Driver.

C. Clementine

The Clementine component within Citrus, as illustrated
in Figure 4, performs online intrusion detection of flows
emanating from devices within the network. These network
flows are transmitted to Clementine through the Southbound
Interface using streaming frameworks. This component adopts
a machine learning approach to intrusion detection. In this

9https://networkx.github.com
10https://scikit-learn.org/stable/

Fig. 4: Overview of the design of Clementine.

approach, supervised classification models are trained on the
labelled flow-based data set output by Tangerine. Both the
initial training data set and the streaming flows are input to
Clementine through the Southbound Interface.

As motivated by contributions within the research com-
munity, Clementine integrates with Spark’s machine learning
library (MLLib) which performs efficient computation of ma-
chine learning algorithms on distributed nodes within a cluster.

1) Driver: The Driver within Clementine fundamentally
coordinates all stages within the intrusion detection process.
Initially, this component receives, as an input, a flow-based la-
belled data set from the Southbound Interface. It subsequently
instructs the Model Training and Prediction component to
build a trained classification model from this data set. Upon
successful training of the model, Clementine is ready to begin
predicting whether streaming flows emanating from devices
within the network are of a benign or malicious nature.

To begin this operation, the Driver starts to receive and
process network flows transmitted through the Southbound
Interface. Every network flow is then sent to the Data Cleaner
module in the form of an RDD. Relevant features are then
prepared from the raw telemetry and returned for further
classification. Instructions are then given to the Model Training
and Prediction component to predict the label associated with
the flow.

2) Model Training and Prediction: The Model Training and
Prediction component provides the machine learning capa-
bilities used by Clementine to perform Intrusion Detection.
This component performs two critical tasks in the intrusion
detection process: the training of a machine learning model
on a flow-based data set containing both benign and malicious
traces, and the prediction of streaming flows emanating from
devices within the network. Both of these tasks require features
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of flows to be sent from the Driver. Upon the receipt of these
features, training and prediction operations are executed on a
cluster of worker nodes.

This is implemented through leveraging high level abstrac-
tions provided by Spark. A critical abstraction leveraged by
this module is the ML Pipeline. The ML pipeline specifies
a ML workflow through the chaining of Transformer and
Estimator algorithms. A Transformer is an abstraction which
converts one partitioned collection of elements to another,
typically used to append columns such as feature vectors.
An Estimator abstracts learning algorithms which train on
data. This abstraction ultimately produces a model. The ML
Pipeline enables the appropriate sequencing of stages required
to perform online intrusion detection.

V. EVALUATION ENVIRONMENT & DATASET DESCRIPTION

A. Evaluation Environment

In order to evaluate Citrus, a suitable network environ-
ment is required. A research facility located within Lancaster
University, the Cyber Threat Lab [34], is used for this pur-
pose. Consisting of multiple inter-connected components, the
Cyber Threat Lab grants access to a plethora of malicious
data garnered by a large variety of sources. This facility is
physically composed of five servers, each containing an Intel
Xeon E5-2620 v3 processor and 128GB RAM. The VMWare11

hypervisor is used to manage virtual machines within this
environment.

Fig. 5: The architecture of the Cyber Threat Lab.

Citrus requires various services to be deployed within the
network. A range of these services are instantiated by the
authors within the Cyber Threat Lab which support Citrus
and the work in this paper in general. Notably, Citrus requires
telemetry which incorporates malicious and benign activity.
A variety of different honeypots are deployed which emulate
various vulnerable services, including the recently released
TPot12. TPot is composed of a number of medium interaction
container based versions of popular honeypots which span

11https://vmware.com
12https://github.com/dtag-dev-sec/tpotce

multiple protocols. Consisting of over fifteen honeypots in
total, TPot enables the capture of a wide variety of emerging
attack telemetry, including attacks targetting IoT and ICS
devices.

The telemetry associated with every deployed honeypot is
captured by Cisco’s Joy13 tool. Joy provides a libpcap14 based
software solution for the extraction of data features from live
network traffic. This is achieved using a flow oriented model,
and is represented as JSON. This telemetry is transferred to
a distributed database located within the Shared Infrastructure
network segment. The database deployed within the Cyber
Threat Lab is Elasticsearch15. Elasticsearch also provides a
convenient agent, Logstash16, which is used to transfer all
telemetry from the honeypots to a database instance.

As one of the requirements of Citrus is to perform intrusion
detection by leveraging machine learning algorithms, it is
also necessary to capture benign telemetry. This provides a
profile of benign behaviour, which is used by such algorithms
to correctly identify flows which do not pose a threat. This
known benign traffic is captured from internally accessible
VMs located within the Shared Infrastructure. In a similar vein
to the approach taken by Song et al. [4], these VMs perform
two main pieces of functionality, acting as a DNS server and a
data node. Fundamentally, all traffic related to these network
services are regarded as benign as there were no observed
attacks within this controlled environment. A Spark cluster
consisting of four nodes is also provisioned with 4 vCPU cores
and 32GB RAM.

B. Data Set

The telemetry captured and labelled using Citrus is com-
piled to create a flow-based intrusion detection data set with
a robust ground truth. In this section, the properties of all
telemetry captured within the operational period is presented.

The operational period, in which automatic network teleme-
try collection and labelling is conducted, initiated in June
2020. Due to the automatic nature of this process, there is
no fixed end date. As a result, the intrusion detection data set
compiled from this telemetry will receive periodical updates
for the foreseeable future. However, the analysis performed in
this paper uses data captured until October 2020. This novel
intrusion detection data set is named LUFlow ’20. LUFlow ’20
is released to the general public through a GitHub repository17.
This release anonymises IP addresses to alleviate privacy
concerns.

Number of flows Mean flows per day
Total 101,116,515 849,718

Benign 53,921,369 453,120
Malicious 36,810,141 309,328

Outlier 10,385,005 87,268

TABLE III: Distribution of flow labels within LUFlow ’20.

13https://github.com/cisco/joy/
14https://www.tcpdump.org/
15https://elastic.co
16https://www.elastic.co/logstash
17https://github.com/ruzzzzz/LUFlow
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1) Dataset Overview: During this current period of obser-
vation, there has been a total of 101,116,515 flows captured
within the Cyber Threat Lab. Of which, 53,921,369 flows are
known to be benign. As previously discussed, we regard all
traffic relating to privately accessible internal network services
as benign. The telemetry captured through the composition
of honeypots within the Cyber Threat Lab is subject to
Tangerine’s labelling mechanism. The number of malicious
flows labelled in this manner is 36,810,141. The nodes iden-
tified as having no association with malicious entities through
this correlation process, have their corresponding telemetry
labelled as an outlier. The total count of these outlier flows
within LUFlow ’20 is 10,385,005. These flows remain in
the data set to encourage the practice of manual analysis
to determine the true intent behind the unsolicited form of
communication.

Fig. 6: Geolocation distribution of unsolicited traffic.

IP Address Flow Count ASN Country
x.x.x.1 423,777 37963 CN
x.x.x.2 397,955 57678 RU
x.x.x.3 302,137 49877 RU
x.x.x.4 279,090 213371 NL
x.x.x.5 243,113 199264 ET
x.x.x.6 179,851 213371 NL
x.x.x.7 176,472 49877 RU
x.x.x.8 174,738 208666 ET
x.x.x.9 165,861 49877 RU

x.x.x.10 147,132 49877 RU

TABLE IV: The top 10 source IP addresses within ’20.

2) Geolocation Analysis: The results outlined in Table IV
showcase the locations of the top 10 source IP addresses
identified in the telemetry captured by nodes within the Cyber
Threat Lab. The IP addresses of these servers have been
anonymised to consider the privacy of the individuals. Notably,
AS49877 appears in four separate instances within this table.
This AS is associated with a hosting provider serving the
Russian and Moldovan regions.

The geographic distribution of all flows associated with the
deployed honeypots, i.e. malicious or outlier flows, is illus-
trated in Figure 6. In total, there are flows associated with 188

distinct countries within LUFlow ’20. In this investigation, it is
observed that flows relating to servers originating in Vietnam
are the most prevalent. It is also observed that around 50% of
all unsolicited flows captured by honeypot telemetry originate
from five countries: China, Vietnam, United Kingdom, United
States, and Russia.

Fig. 7: Distinct count of source IP addresses per date.

3) Source IP Address Analysis: Figure 7 illustrates statistics
regarding the number of source IP addresses identified within
the telemetry. The purple line represent the occurrence of
unique source IP addresses in each day, while the green line
represents the accumulation, i.e. the cumulative sum, of these
unique IP addresses identified. This overall count is steadily
increasing, with an average number of 1,110 new source IP
addresses being discovered every day.

Fig. 8: Distribution of destination ports.

4) Destination Port Analysis: Figure 8 depicts the various
destination ports which have been used to communicate with
services within the Cyber Threat Lab. These include services
which have been targeted by attackers, as well as network
services are used to profile benign behaviour. The LUFlow
’20 data set contains flows which explore every available
port, ranging from 0 to 65535. As evidenced in the figure,
the destination port 9200 occurs the most commonly within
LUFlow ’20. This port is frequently used to communicate with
the distributed database which stores the telemetry used to
compile LUFlow ’20, and as a result is mainly used for benign
purposes.

The next most prevalent port within the data set is 445,
which is typically used by SMB services. This service has
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# Name Description
1 src ip The source IP address associated with the flow. This feature is anonymised to the corresponding Autonomous System.
2 src port The source port number associated with the flow.
3 dest ip The destination IP address associated with the flow. The feature is also anonymised in the same manner as before.
4 dest port The destination port number associated with the flow.
5 protocol The protocol number associated with the flow. For example TCP is 6.
6 bytes in The number of bytes transmitted from source to destination.
7 bytes out The number of bytes transmitted from destination to source.
8 num pkts in The packet count from source to destination.
9 num pkts out The packet count from destination to source.

10 entropy The entropy in bits per byte of the data fields within the flow. This number ranges from 0 to 8.
11 total entropy The total entropy in bytes over all of the bytes in the data fields of the flow.
12 mean ipt The mean of the inter-packet arrival times of the flow.
13 time start The start time of the flow in seconds since the epoch.
14 time end The end time of the flow in seconds since the epoch.
15 duration The flow duration time, with microsecond precision.
16 label The label of the flow, as decided by Tangerine. Either benign, outlier, or malicious.

TABLE V: The LUFlow ’20 inherent feature set.

recently received patches which aim to fix critical vulnera-
bilities, such as RCE (Remote Code Execution). This investi-
gation has identified a number of these vulnerabilities which
are still being actively exploited in the wild. Most notably,
the infamous Eternalblue (CVE-2017-0144 and CVE-2017-
0145) exploit which caused devastating damage through the
incorporation into malware and botnets such as WannaCry and
Petya. Due to the powerful nature of these exploits, they are
still propagating at an alarming rate, as evidenced by the high
number of requests to this port within LUFlow ’20.

5) Extracted Features: As mentioned previously, each row
within the LUFlow ’20 data set represents a distinct network
flow captured within the Cyber Threat Lab. Each column
within the data set represents a feature which describes a
certain facet of the flow. Inspired by predecessor intrusion
detection data sets, LUFlow ’20 contains a variety of signifi-
cant features extracted from both benign and malicious flows.
These features, which are recorded in Table V, incorporate both
packet-based and flow-based features. Each flow is defined as
a set a packets with common characteristics. In this instance,
the conventional network five-tuple is used: source IP address,
source port number, destination IP address, destination port
number, and protocol. Furthermore, bidirectional flows are
created by combining unidirectional flows which are part
of the same session. Bidirectional flows consist of a pair
of unidirectional flows whose source addresses, destination
addresses and ports are reversed. This enables both inbound
and outbound communication within a single flow. Critically,
LUFlow ’20 provides a ground truth through flow labels. Since
all attacks are real, i.e. they are not injected into the data
set, it is impossible to accurately label each type of attack.
Therefore, the target labels of each flow are considered to be
either benign, outlier, or malicious.

6) Data Set Comparison: A comparative analysis is con-
ducted between LUFlow ’20 and other related IDS data sets
surveyed in recent literature. Only publicly available data sets
which incorporate a ground truth in the form of target labels
are considered in this comparison. Table VI documents the
properties of each these data sets.

In summary, the key differences which separates LUFlow

’20 from the majority of other IDS data sets is the real
nature of network traffic and incorporated attacks which reflect
emerging threats currently propagating. As detailed in Section
IV, the design of Citrus ensures real benign and malicious
traffic are constantly captured, labelled, and published in
periodic releases of LUFlow ’20. The majority of data sets
surveyed in literature are created using simulation tools, which
fundamentally generate synthetic network traces. Additionally,
LUFlow ’20 does not contain any attacks which have been
manually injected into the data set. This ensures that all of the
malicious activity incorporated within is truly representative of
emerging attack vectors.

Furthermore, LUFlow ’20 is the only recent data set which
receives constant updates. As documented in Table VI, the
MAWILab data set is updated in daily intervals. However,
the labelling mechanism was implemented based upon the
output of the combination of four outdated unsupervised
learning algorithms. During the period between the detector
implementation and present day, there has been a substantial
evolution in the way in which attacks manifest themselves,
which suggests this approach is no longer relevant. As other
researchers have indicated, this approach lacks accuracy for
modern day attack vectors and network traffic in general [38].

Fundamentally, LUFlow ’20 was created with the intention
to constantly capture network traces incorporating real attacks
and benign behaviour with a robust ground truth. The constant
nature of this telemetry capture enables the data set to be
updated. Critically, this allows LUFlow ’20 to reflect novel
threats encountered in the wild, making the creation and
release of future intrusion data sets which aim to capture
modern threat vectors redundant.

VI. METHODOLOGY

A. Establishing Ground Truth

Based upon the restricted ground truth identified in litera-
ture, we have decided to place an emphasis on the creation of
a robust ground truth. Citrus’ Ground Truth module contains
the functionality required to map any identified relationships
relating to remote servers which interact with deployed hon-
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Name No. of networks No. of distinct IPs Simulation Attack Injection Duration Updated
KDD ’99 [5] 2 11 Yes Yes 5 Weeks No

MAWILab [23] 1 Unspecified No No 19+ Years Yes
Kyoto 2006+ [4] 5 4,420,971 No No 2 Years No
ISCX 2012 [35] 4 21 Yes Yes 7 Days No

CTU-13 [36] 2 Unspecified No Yes 6 Days No
UNSW-NB15 [14] 3 45 Yes Yes 16 Hours No
CICIDS2017 [37] 5 500 Yes Yes 1 Week No

LUFlow ’20 4 132,177 No No 4+ Months Yes

TABLE VI: Comparison of IDS data sets.

Fig. 9: Subgraph example of node relationships.

eypots in the Cyber Threat Lab. These relationships are then
used to derive the ground truth.

Initially, the raw flow measurements are collected, and
the unique IP addresses are extracted. CTI services are then
queried, using the IP addresses as parameters. The data col-
lected from these services is then processed, and each record’
s date is compared against the date the captured telemetry
occurred. Records with matching dates are then extracted and
used for plotting within a graph. This process ensures derived
relationships are valid for the suspected attacker on the date
they interact with deployed honeypots.

This network of relationships derived from third party CTI
services is defined as a simple undirected graph, which is
composed of nodes connected by edges. Formally, we define
the graph as G = (V,E), where V is the set of vertices, and
E is the set of edges.

In this instance, the nodes within the graph are the suspected
attackers IP addresses, which are connected through edges
to entities derived from the collected CTI. These connected
entities represent all known associations of a suspect attacker
present on the date of the telemetry capture. Therefore, this
method identifies nodes which have been observed to be
performing malicious actions on the date the telemetry was
captured.

Due to the diversity and heterogeneity resulted by the
variety of CTI services utilised by Tangerine, each service

provides an edge between a suspect attacker, u, and a variable
entity. These entities currently represent blacklists, v, malware
samples, w, Autonomous Systems, x, (through ASNs), and
available services, y. Considering this, we define the set of
vertices in G as:

V = {u1, ..un, v1, ..vn, w1, ..wn, x1, ..xn, y1, ..yn} (1)

and there exists an edge from u to v, w, x, or y if the CTI
collected indicates a connection between them.

Figure 9 illustrates a small sub graph used to highlight the
approach. Blacklists, denoted by red entities, reside in the
centre and are connected to the IP addresses, green nodes,
which are active within the blacklist on the date of telemetry
capture. These nodes are then also connected to an ASN,
yellow entities, and exposed services, blue entities. In order to
identify nodes which belong to a large number of malicious
entities, such as blacklists, features are extracted from the
graph.

The features used in this approach include node degrees
and eigenvector centrality. For a particular node in a graph,
degrees represents the total number of connected edges. High
values of degrees indicate a large number of relationships
to entities. Formally, the maximum degree of a vertex can
be defined by deg(v) = n – 1 ∀ v ∈ G. The rationale
behind using this feature is that if a node is connected to
a large number of entities, the likelihood is that it has been
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identified as performing many malicious actions over the
Internet. Eigenvector centrality is the measure of influence a
node has in a graph. A high eigenvector centrality value means
that the node in question is connected to many nodes who
themselves have a large number of connections. This feature
is used to understand how important a particular node is within
the graph as it gives a clear indication of how connected a node
is, both directly and indirectly. For the graph, G, let A = (av,t)
be the adjacency matrix where

av,t =

{
1 if vertex v is linked to vertex t
0 if vertex v is not linked to vertex t

(2)

The eigenvector centrality score for a given vertex, v, can then
be given as

xv =
1

λ

∑
t∈M(v)

av,txt (3)

where M(v) is the set of neighbours of vertex v and λ is a
constant.

These features are then input to the k-means clustering
algorithm that we utilise in this work. The k-means algorithm
is an unsupervised method which partitions observations into
k clusters, in which each observation belongs to a cluster with
the nearest centroid.

A number of clusters within the graph identify nodes which
are the most highly connected to the entities derived through
CTI collection. Such clusters include potential attacker nodes
which have a very high number of connections to blacklists
and malware samples on the date the telemetry was captured,
and as such they can be treated as supernodes. Any node
in the graph which is not linked to a supernode is labelled
as an outlier. These outliers can be further examined to
deduce the intent behind their communication with a honeypot.
The remaining nodes within the graph that are linked to a
supernode, i.e. there exists an edge, or a series of edges,
between the two nodes, are labelled as malicious. This is due to
the fact that they share a common entity association. To find
every vertex which is linked to a supernode, a breadth first
search is performed. This procedure has a time complexity
of O(|V | + |E|) for each vertex, since all vertices must be
explored in the worst case.

This approach forms the basis of the labelling of honeypot
telemetry. Figure 10 presents a full graph of all node relation-
ships for a certain date as derived through correlation with CTI
services. The nodes which represent IP addresses extracted
from the telemetry are coloured based upon the aforemen-
tioned labelling approach. The nodes labelled as malicious are
coloured red, as they are connected to a supernode, and outlier
nodes are coloured green. The cyan nodes indicate an entity
as derived through CTI.

Validation of the consistency within these clusters of data
is required to ensure the identified supernodes, and derived
ground truth, are accurate. The silhouette metric is used
for this purpose. The silhouette metric shows how similar
an object is to its own cluster, compared to other clusters.
Silhouette measurements range from -1 to +1, where a high
value indicates that the object is very similar to objects its

Fig. 10: Graphical representation of nodes distinguished by
label.

own cluster, and not similar to objects in other clusters. For
any data point i within the cluster Ci let

a(i) =
1

|Ci| − 1

∑
j∈Ci,i6=j

d(i, j) (4)

be the mean intra-cluster distance, where d(i, j) is the distance
between i and j in the cluster Ci. The mean dissimilarity
between i and a cluster, Ck, in which i is not a member can
be defined by

b(i) = max
k 6=i

1

|Ck|
∑

j∈Ci,i6=j

d(i, j) (5)

The silhouette coefficient of i can now be defined by

s(i) =
b(i)− a(i)

max{a(i), b(i)}
, if |Ci| > 1 (6)

These measurements for each data point, i, can be displayed
visually by combining the coefficients into a single plot,
enabling an appreciation of the overall quality of the clusters.
Therefore, the average silhouette value, i.e. width of the plot,
provides an evaluation of clustering validity [39].

B. Detection Performance

The detection performance is demonstrated through lever-
aging the proof-of-concept implementation, Clementine. Two
experiments are conducted which evaluate Clementine’s capac-
ity to detect a variety of emerging attacks using a distributed
processing approach. The performance of each of these algo-
rithms are assessed by comparing the predicted label to the
actual label. This assessment forms a confusion matrix which
describes all possible classification outcomes.

In both of these experiments, Clementine is installed on
a VM, which is provisioned with 4 vCPU cores and 32GB
RAM, in an isolated network within the Cyber Threat Lab.
Furthermore, the flows labelled as outliers are removed from
the data set in each experiment, enabling a binary classification
outcome. This is because the true intent of the flow is not
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Fig. 11: Configuration of experimental set-up.

known. In the experiments performed in this evaluation, a
positive prediction is where Clementine produces a label of
malicious. Therefore, a True Positive (TP) refers to a predic-
tion of malicious when in fact the flow in question is malicious,
else it is treated as a False Positive (FP). On the contrary,
a negative result occurs when Clementine predicts a benign
label. As a result, if the flow under scrutiny is not related to
attack traffic and Clementine predicts a benign label, a True
Negative (TN) occurs. Furthermore, if Clementine predicts a
benign label when the flow is related to malicious behaviour,
a False Negative (FN) occurs.

In the first experiment, an offline detection approach is
taken which considers various classification methods. In the
second experiment, online intrusion detection is performed
using live network data, which incorporates injected attacks,
and the classification method which performed the best in the
first experiment. The online evaluation is performed to assess
Clementine’s effectiveness in malicious behaviour detection
using a realistic network environment.

1) Offline Detection: This experiment evaluates the ca-
pacity of machine learning algorithms to detect malicious
activity within LUFlow ’20. A myriad of traditional supervised
learning algorithms are considered and evaluated within this
section. This experiment is intended to verify the validity
of the data set whilst identifying the greatest performing
algorithm to use in the online detection process.

In this experiment, the LUFlow ’20 data set is split
into a training and test data set. The training data set
consists of 30,000,000 randomly sampled records in total,
with 15,000,000 benign records and 15,000,000 malicious
records. The test data set contains 8,000,000 records, split into
4,000,000 malicious and 4,000,000 benign classes.

2) Online Detection: In this experiment, the gradient
boosted tree classifier is used, as it performed the best during
offline detection, to detect malicious behaviour in an online
fashion using live network telemetry. The data used to train the
model consisted of 30,000,000 malicious and benign records
respectively. After having successfully trained the classifier
on this training data, Clementine is ready to begin the con-
sumption of live network telemetry in order to perform online
intrusion detection.

For the purpose of this experiment, additional VMs are

provisioned within the Cyber Threat Lab. An illustration of
how these are connected within the network to detect real
attacks is included in Figure 11. A victim server is instantiated
within the shared infrastructure to allow intrusion attempts
from attack servers located in the other networks. The victim
server performs similar functionality to the benign network
services used to profile benign behaviour within LUFlow ’20,
including coordination with a distributed database amongst
other known benign behaviour. The attack servers attempt to
infiltrate the victim server through various means.

As this telemetry within this evaluation is generated irre-
spective of Tangerine, the labelling process is not the same.
Due to the prior knowledge about the injected attacks, flows
are labelled based upon the IP addresses associated with the
flow. If either the destination or source IP address correspond
to an attack server, the flow is labelled as malicious, otherwise
benign.

In this evaluation, a series of separate experiments are con-
ducted which examine Clementine’s ability to detect emerging
threats in an online fashion using live network telemetry.
Network telemetry is captured and streamed to Clementine
over a period of 10 minutes. At a random point during
this period, the benign telemetry is injected with malicious
behaviour through attacks performed by various attack servers.
The various scenarios used in this evaluation are documented
below.

Scanning: In this scenario, a single attacker host performs
a port scan of the victim machine. The Nmap tool is used
to perform such network scan. Specifically, TCP SYN and
UDP scanning techniques are leveraged to identify thousands
of open ports upon the victim machine.

DDoS: This attack involves flooding the victim machine
with a large amount of TCP-SYN requests to overwhelm its
resources. This is orchestrated by numerous attack machines
located within the same network. These machines initiate
flooding for a period of 2 minutes. This is achieved through
leveraging the hping3 tool.

Brute Force: The use of brute force and dictionary attacks
plague networked systems to this day. Sending rapid amounts
of authentication requests, these attacks can be orchestrated
against remote or local targets to gain a foothold into infras-
tructure and gather sensitive information. In this experiment,
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an MSSQL server is targeted with a large amount of brute
force traffic for a period of 2 minutes. Hydra is used to perform
this attack, further utilising the largely popular ’rockyou.txt’
word list as the attempted passwords.

Multi-stage Intrusion: In this experiment, an attack is
leveraged against a victim machine which consists of a number
of distinct stages. Initially, the EternalRomance exploit (CVE-
2017-0145) is utilised to gain remote code execution privileges
on the victim machine. The payload is composed of shell
code which instantiates a reverse shell on the victim. This
reverse shell provides a covert method of interaction with the
victim, and is further used to perform various actions, such as
downloading sensitive documents to model data exfiltration in
this experiment. These separate stages are designed to emulate
emerging attack patterns encountered in real-world scenarios.

As the EternalRomance exploit leverages Microsoft’s im-
plementation of the SMB protocol, a Windows 8.1 VM was
instantiated within the Cyber Threat Lab to play the role of
the victim. A reverse shell payload is generated using the
msfvenom framework. The exploit is then executed against
the victim, gaining access to the aforementioned reverse shell
through execution of the post-exploitation payload.

C. Classification Performance
1) Model Training: Training machine learning models en-

ables inference and classification of future unknown records.
Each of the machine learning algorithm associated with these
models typically exposes tunable hyperparameters to develop-
ers which adjusts how the algorithm performs internally. For
example, the Radial Basis Function (RBF) kernel in Support
Vector Machine (SVM) algorithms enables the specification of
C and γ parameters. It is not known beforehand which C and
γ are optimal for a given problem, therefore, a grid search
must be performed. The goal of this process is to identify the
values for these parameters which increase prediction accuracy
of unknown data.

In typical embodiments of grid search functionality, a
separate model is trained sequentially for each parameter
value combination specified in the grid search. The best
performing model, i.e. the most accurate, is then selected
for future prediction purposes. The Spark engine provides
an alternative implementation which leverages the power of
cluster computation. In this approach, separate models can be
trained in parallel within executors on nodes in the cluster.

In order to evaluate the performance benefits of this ap-
proach, an experiment is conducted which compares grid
search implementations. The training data used in this experi-
ment is 500,000 randomly sampled records extracted from the
LUFlow ’20 data set.

Measurements are recorded for the total time taken to train
all models, as specified by the parameters, and find the best
performing upon a cluster of varying node sizes. In total,
4 Spark executor nodes, each containing 4 processor cores,
are used to provide a maximum of 16 cores. The number of
nodes in the cluster is used as the independent variable, and
is changed to determine how it affects the total computation
time. The mean of five separate measurements for each node
size is taken to record an average total training time.

2) Streaming: As previously discussed, the Clementine
module within Citrus integrates with Spark’s DStream abstrac-
tion and performs intrusion detection in an online, practical
fashion to detect emerging threats. DStreams enable the receipt
of live input data streams and divides the data into batches,
where it is then processed. The time taken to process and
classify unknown records is of great importance, and should
be as little as possible to rapidly notify systems administrators
that malicious actions have taken place.

This evaluation aims to assess the speed at which a large
amount of data can be streamed, processed, and classified
using the proof-of-concept implementation, Clementine. The
interval of the batches determine the rate at which data is
processed. Therefore, careful consideration should be taken
when choosing this value. The batch interval is used as
independent variable in this evaluation to determine an optimal
value in this instance.

Data containing 100,000 randomly sampled records ex-
tracted from LUFlow ’20 is streamed to Clementine, where it
is then pre-processed and classified, using the gradient boosted
tree classifier, into malicious or benign classes. Five separate
measurements are taken for every batch interval value to derive
the average time taken to process all streamed records.

Fig. 12: Combined silhouette values which are distinguished
by cluster.

VII. CITRUS EVALUATION

A. Ground Truth

This section evaluates the labelling approach used to derive
a ground truth for LUFlow ’20. As previously discussed, the
approach taken performs clustering of graph-based features.

An example plot is presented in Figure 12, which shows
silhouette values for various clusters of graph based features
used to derive a ground truth. In this case, it is visible that
the clusters are dense, well separated and consistent with each
other. This is because the clusters are of similar thickness,
indicating a similar sample size, and contain high silhouette
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values which are all in the region of the silhouette average,
indicated by the vertical red dashed line. This is further
visualised in Figure 13, which shows the clusters more clearly
by plotting the corresponding data points in feature space.

In order to fully evaluate how similar every supernode and
outlier clusters are to each other, the average silhouette value
is calculated for every graph used to label telemetry relating
to LUFlow ’20. As previously discussed, a graph is created
for every date telemetry is captured to compile LUFlow ’20.
A time series of these values, ranging from June to October
2020, is presented in Figure 14, which displays an average
silhouette value for variable cluster size, n.

As shown, the lowest average silhouette value is greater
than 0.55, indicating clear cluster consistency in general.
Figure 15 illustrates a box plot representing the distribution
of silhouette values for varying number of clusters. Evidently,
we can deduce that significant differences exist between the
distribution of silhouette values based upon the size of the
clusters chosen. The mean silhouette value for a cluster size of
six is µ6 = 0.7868, and the standard deviation is σ6 = 0.0727.
When the cluster size is at the lowest, a value of two, the mean
silhouette value is µ2 = 0.7572, and the standard deviation is
σ2 = 0.0731. Hence, it can be concluded that nodes within
the supernode and outlier clusters truly belong in those clusters
due to the absence of any negative silhouette metrics.

Fig. 13: Clusters plotted in feature space.

B. Detection Performance

1) Offline Detection: The results of the offline detection
approach is outlined in Figure 16. Each model listed within
this figure has been trained using a grid search to identify
the optimal parameters for this classification problem. As
shown, the worst performing supervised classification algo-
rithm was Naive Bayes. On the contrary, the algorithm which
performed the best was the gradient boosted tree classifier,
which obtained 99.98% precision, as well as high accuracy,

Fig. 14: Average silhouette value time series.

Fig. 15: Box plot depicting distribution of silhouette values
for varying cluster sizes.

recall and F-score. Gradient boosting is a machine learning
approach suitable for regression and classification problems
which produces a model which is an ensemble of sequentially
made weak prediction models. Due to the efficiency of the
gradient boosted tree classifier to accurately detect both benign
and malicious behaviour within LUFlow ’20, it is chosen to
perform online intrusion detection.

Fig. 16: Statistical metrics observed from offline detection.

2) Online Detection: Scanning: As shown in Figure 17,
these metrics showcase Clementine’s high accuracy, 97.46%,
and extremely high recall, 99.70%. This demonstrates the
ability of Clementine to detect scanning attempts using live
telemetry.

DDoS: The performance metrics associated with the clas-
sification is illustrated in Figure 17. As shown, Clementine
performs extremely well under a DDoS attack; demonstrating
a low number of FPs and FNs and over 99% in all calculated
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Fig. 17: Performance metrics obtained from online classifica-
tion of live telemetry.

metrics.
Brute Force: As shown in Figure 17, Clementine is able

to successfully distinguish between benign flows and flows
relating to brute force attempts with extremely high precision,
accuracy, and, recall.

Multi-stage Intrusion: As illustrated in Figure 17, Clemen-
tine classifies network flows under this attack scenario with
very high accuracy, over 99%, with all other metrics achieving
above 90%. Critically, flows associated with the Meterpreter
reverse shell are correctly classified as malicious. As previ-
ously discussed, the malicious telemetry captured to create
LUFlow ’20 emanates from medium-interaction honeypots.
Therefore, this specific attack does not exist in training data
as payloads are captured but not executed, and can be treated
as a novel attack vector.

C. Classification Performance

Fig. 18: Comparison of model selection using grid search and
variable cluster size.

1) Model Training: As illustrated in Figure 18, scikit-
learn’s grid search implementation takes the longest time,
979 seconds, to find the optimal parameter combination. As
previously discussed, this is because each model is trained
sequentially. The parallel processing capabilities Spark pro-
vides are evident even on a single node cluster. Spark is able
to leverage the 4 cores on a single machine, training models
independently and reducing the total time taken compared to
traditional approaches. This reduction in model training and
selection is further evidenced in clusters of larger node sizes.
Within a 4 node cluster, the average computation time is 243
seconds, a 75% reduction when compared to the baseline. This

clearly demonstrates the performance benefits gained from
leveraging Spark and a cluster of nodes to train and search
for optimal model parameters.

Fig. 19: Evaluation of classification efficiency using variable
batch interval.

2) Streaming: As illustrated in Figure 19, the batch interval
value has a significant impact upon the total processing time.
In general, as the batch interval increases, the processing
time decreases. For example, specifying a batch interval of
1 second separates the data into multiple mini-batches, all
of which incur scheduling overheads. On average, the 1
second batch interval took µ1 = 5.32 seconds to classify all
100,000 records. In comparison, a batch interval of 60 seconds
took an average of µ60 = 1.2 seconds. This is because, in
this case, all of the input data can be streamed within the
batch interval, ensuring only a single batch to be processed.
However, this interval means at least 60 seconds transpire
before any classification occurs, and therefore does not allow
near real-time results.

In order to further investigate the distribution of processing
times, we perform additional analysis on these measurements.
Figure 20 displays a Cumulative Distribution Function (CDF)
plot for measurements taken with a batch interval of 2, 5,
and 20 seconds. Notably, there exist differences between the
distribution of the measurements with respect to the batch
intervals. The mean processing time with a batch interval of
2 is µ2 = 3.780 seconds, and has a standard deviation of
σ2 = 0.691. When the batch interval is 5 seconds, the mean
processing time is µ5 = 1.96, and has a standard deviation of
σ5 = 0.268. The mean processing time for an interval of 20
is µ20 = 1.34, and has a standard deviation of σ20 = 0.389.
Despite the large difference in interval times, it is apparent
that intervals of 5 and 20 seconds exhibit similar statistical
properties. In this instance, we recommend an interval of 5
seconds due to the lesser waiting time.

These results are extremely positive since they demonstrate
Citrus’ ability to rapidly process large amounts of data, and
pave the way towards the composition of real-time detection.
Due to this, we conclude Citrus can be leveraged to detect
emerging threats in large-scale networked environments.
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Fig. 20: Cumulative Distribution Function (CDF) for process-
ing time distinguished by batch interval.

Fig. 21: Comparison of computational cost to label varying
number of samples.

D. Experimental Comparison

Citrus establishes data ground truth through an unsupervised
clustering approach. In contrast to supervised classifications
methods which have been traditionally used in a multitude of
systems (e.g., [13]), there is no requirement of costly training
procedures. In order to demonstrate Citrus’ advantages, an
experimental comparison is performed between Citrus and a
similar data set labelling framework, B-IDS [26].

We note that a single day of telemetry capture, comprised of
one million records, is used in this evaluation to compare the
approaches. We labelled this telemetry using the unsupervised
and supervised approaches on the same hardware. The su-
pervised B-IDS method was implemented using open-source
software and was configured according to the specifications
provided in [26].

Classification metrics were calculated for the online detec-
tion scenarios, outlined in Section VI-B, using the telemetry
labelled by both Citrus and B-IDS. Evidently, the results show
that Citrus outperforms the supervised alternative, and has an
increased F-score metric by 1%. Due to F-score representing
the harmonic mean between recall and precision, we conclude
that Citrus’ labelling methodology is superior in regards to
enhancing detection mechanisms.

Furthermore, the experimentation has also demonstrated that
Citrus has a more optimal computational cost when compared
to the alternative. Figure 21 illustrates the time taken to
label a number of samples using both approaches. As shown,
there exists similar computational cost for the lower number
of samples. However, when considering larger sample size,
Citrus performs much better, indicating clear supremacy in this
regard, and further supports its real-time detection pipeline.

VIII. CONCLUSION

This paper presents the design, implementation, and evalu-
ation of a practical solution for real-time intrusion detection,
Citrus. Citrus provides contributions to real-time detection
through a novel unsupervised labelling method and a robust
data pipeline which exploits properties of parallelism.

Citrus contains the Tangerine component which establishes
data ground truth to automatically provide accurate target
labels for the compiled data set, LUFlow ’20. This data set is
released to the general public through a GitHub repository in
an attempt to aid further research efforts. An evaluation of the
labelling approach is conducted to ensure the accuracy of the
identified attack supernodes.

Furthermore, the Clementine component leverages this data
set to provide practical intrusion detection capabilities using
Spark’s streaming abstraction. The work outlined in this paper
showcases the accuracy of the detection capabilities, and
demonstrates the efficiency of parallel computation through the
evaluation and comparison of model training implementations.
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