
Abstract—Recently, various fault diagnosis methods 
based on domain adaptation (DA) have been explored to 
solve the problem of discrepancy between the source and 
target domains. However, given complex industrial 
scenarios, DA-based methods usually fail when the 
working conditions of machines are unseen, i.e., target 
data are unavailable during model training. In this work, a 
generic domain-regressive framework for fault diagnosis, 
namely, adversarial domain-invariant generalization (ADIG), 
is proposed. ADIG leverages multiple available domain 
data to exploit domain-invariant knowledge through 
adversarial learning between the feature extractor and the 
domain classifier. Simultaneously, the fault classifier 
generalizes the knowledge from the source-related domain 
to diagnose the unseen but related target domain signals. 
Moreover, customized strategies of feature normalization 
and adaptive weight are proposed to promote diagnosis 
performance. Comprehensive case studies show that ADIG 
achieves satisfactory diagnosis accuracy and robustness 
under unseen conditions, indicating that ADIG is a 
remarkably potential diagnosis tool for real-case industrial 
machines. 

Index Terms—Cross-domain fault diagnosis, Domain 
generalization, Adversarial learning, Rotating machinery. 
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I. INTRODUCTION
odern industries are moving toward informatization and 
intelligentization in the fourth industrial revolution era 

[1], and modern machinery and equipment are widely used in 
various fields, such as construction, aviation, electric power, 
and metallurgy. Given the inevitable faults of mechanical 
devices, health management has been studied for economic 
benefit and personnel security [2]. In recent years, researchers 
have studied several techniques, such as signal processing [3], 
to reveal fault information. Intelligent techniques, including 
machine learning [4] or deep learning [5], have also been 
introduced to achieve satisfactory health monitoring systems. 

As a major and crucial mechanical component [6], bearings 
often operate under variable working conditions. Therefore, 
cross-domain fault diagnosis [7] was proposed to transfer 
knowledge from the source domain to the target domain. In 
industrial scenarios, however, independent and identically 
distributed assumption may often be violated. In other words, 
training data of source domain with sufficient labels have 
similar but different distributions from the unlabeled testing 
data of the target domain. The discrepancy between the source 
and target domains causes a domain shift through the different 
working conditions, where the performance of the diagnostic 
model degenerates when the model is trained by the source 
domain but is used as an inference engine in the target domain. 

Researchers therefore attempted to use domain adaptation 
(DA) to solve the problem. DA can be regarded as a special 
case of transfer learning, which aims to transfer shared 
knowledge across different but related domains. In general 
study, the distances of distribution, such as maximum mean 
discrepancy (MMD) [8], correlation alignment (CORAL) [9], 
and joint MMD (JMMD) [10], are utilized to narrow the 
domain shift. Xiao et al. [8] reduced the distribution mismatch 
between source features and target features through the MMD 
loss term. Wang et al. [9] developed a hierarchical deep DA 
approach for fault diagnosis by the multiple CORAL loss. 
JMMD was used by Liu et al. [10] for a deep autoencoder with 
joint distribution adaptation. To extract the invariant features 
between the source and target domains, researchers introduced 
ensemble learning and adversarial training into DA. Li et al. [11] 
used different kernel MMDs and weighted voting mechanism 
to construct an ensemble transfer diagnosis model. Han et al. 
[12] utilized adversarial learning as a regularization method to
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boost the generalization ability of convolutional neural 
networks (CNNs). Jiao et al. [13] presented an unsupervised 
method called adversarial adaptation network, which uses the 
maximum classifier discrepancy to learn class-separable and 
domain-invariant features.  

However, DA methods still suffer from some obstacles in 
solving the cross-domain fault diagnosis problem. First, the 
industry has difficulty in collecting sufficient samples in the 
target domain, which is a prerequisite of existing DA methods. 
For this reason, partial DA [14] and few-shot learning [15] are 
introduced into fault diagnosis. In the paradigm of partial DA, 
target data may never have the same health states collected in 
source data. Therefore, target label space becomes a subset of 
source label space that may cause negative transfer. The partial 
DA could leverage domain-asymmetry weight learned by the 
domain discriminator to train models under the share label 
spaces [16], [17]. In the paradigm of few-shot learning, limited 
target training may degenerate the conventional diagnosis 
model. To acquire a robust diagnosis model with limited data, 
meta-learning [18] and continual machine learning [19] could 
learn or transfer prior knowledge through multiple auxiliary 
tasks. However, when the issues worsen, i.e., the diagnosis 
model training has no access to target domain data, the methods 
above cannot be conducted directly. Second, traditional DA 
models can only generalize the knowledge from a single source 
domain to a specific target domain. These models could 
inevitably overfit on a single domain and thus may degenerate 
the generalization ability of the diagnosis model. Thus, it is 
necessary to exploit generic diagnosis knowledge across 
multiple domains [20], which have not been fully researched. 

For this motivation, this study introduces domain 
generalization (DG) [21] into cross-domain fault diagnosis 
problems to remove the dependency on target domain data. The 
diagnosis idea based on DG raises a key question, i.e., how to 
learn a generalized fault feature representation by multiple 
available source domain data for the unseen target domain. 
Here, the unseen condition means that the target data are 
unavailable and have no contribution during the model training 
process. 

In this study, we focus on DG-based cross-domain fault 
diagnosis and propose a generic domain-regressive framework 
named adversarial domain-invariant generalization (ADIG). 
The neural network in ADIG consists of three modules: feature 
extractor (E) with instance normalization (IN) strategy, fault 
classifier (C), and domain classifier (D) with spectral 
normalization (SN) strategy. During model training, C 
continually learns diagnosis knowledge, whereas E exploits 
shared representation from multiple domains. Instead of 
distinguishing source or target domain as a binary classification 
[12], D performs multiclassification to learn the difference 
among domains. In the stage of adversarial training, E and D 
play an adversarial game through a gradient reversal layer 
(GRL) [22] to learn fault-related and domain-invariant features. 
To balance the multitask loss dynamically, a weight coefficient 
learner is proposed in this work to achieve adaptive weights. 
Furthermore, model selection is performed on the basis of the 
validation set in the source domain. 

The contributions of this work can be summarized as 
follows:  

1) A novel domain-regressive framework ADIG is provided to
diagnose faults under variable and unseen working
conditions to fulfill cross-domain generalization. By
multiple source domains adversarial learning, the ADIG can
fully exploit domain-invariant knowledge to remove the
dependency on target domain data, which is crucial but
rarely researched.

2) Customized IN and SN strategies achieve cross-domain
feature normalization to promote domain generalizability.
Besides, an adaptive weight strategy achieves weight
self-learning during multitask learning to improve
performance.

3) Comprehensive experiments based on two case studies are
conducted to evaluate the performance of ADIG. The results
reveal that ADIG could be a paradigm facing unseen target
condition diagnosis.

The rest of this paper is arranged as follows: Section II
presents the preliminaries of this work. Section III provides the 
details of the proposed ADIG framework. Section IV presents 
the experimental results. Section V draws the conclusions. 

II. PRELIMINARIES

A. Domain adaptation
The definitions of domain and task are given below.
The domain  = {, P(X)} includes a data space  and the

marginal distribution P(X) in the data space. Given a source 
domain , ( }{ )

S S S
P X   and a target domain 

, ( }{ )
T TT

P X  , S ≠ T  or (and) P (XS) ≠ P (X T) lead to S 
≠ T, where the subscripts S and T denote the source and target 
domains, respectively. 

The task  = [, C(·)] includes the label space  and the 
predictive function C(·). C(·) can be regarded as a conditional 
distribution description P(Y|X). Thus, S ≠ T or (and) CS (·) ≠ 
CT (·) lead to S ≠ T. 

As shown in Fig. 1, DA aims to learn a predictive function 
()C   by using the knowledge in the source domain when 

S T
  . The source task and target task must be the same, and 

the unlabeled target data must be available in the model training. 
In a DA method, ~

S S
L   means the labeled source dataset is 

drawn from source domain, where 
1

{( , )} snj j
S s s j

L x y  consists of 

the sn  data samples and their corresponding labels, and 
~

T T
U   means that the unlabeled target dataset is drawn from 

the target domain, and the dataset 
1

={( )} tnj
T t j

U x   consists of 

tn  data samples in the target domain. 
Reference [23] stated that the target generalization error of a 

classifier h can be bounded by the following formula: 

( )1( ) ( ) ,
2T S T Sh h d λ∆≤ + +     , (1) 

where   is the hypothesis space, and T , S are the target and 
source generalization error of any classifier h   , 
respectively. The second term d ∆   is the    distance 
between the source and target domains, 
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In Eq. (1), λ  is the error under an ideal joint hypothesis *h , 

( ) ( )* *
S Th hλ = +  , (3) 

* arg min ( ) ( )S T
h

h h h
∈

= +


  . (4) 

The general DA methods attempt to estimate and reduce the 
source generalization error and the    distance, which can 
be approximated by MMD. 
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Fig. 1. Idea of knowledge transfer from DA to DG. 

B. Domain generalization
DG is a methodology to learn knowledge from various

related domains, which can help transfer the knowledge to an 
unseen target domain. The major differences among DG, DA, 
and general empirical risk minimization (ERM) are listed in 
Table I.  

TABLE I 
MAJOR DIFFERENCES AMONG ERM, DA, AND DG. 

Methodology Target domain data Training Step Inference Step 

ERM  1L 1U  

DA available, unlabeled 1 1,
s t

L U 1
t

U

DG unavailable, unlabeled 1, sN

s s
L L 1

t
U

ERM-based diagnosis methods have only one domain, and 
the target domain does not exist. The ERM models obey a 
default assumption wherein training data and testing data are 
with the same distribution, and they learn knowledge from 
labeled training dataset 1L   to infer the unlabeled testing dataset 

1U . Conversely, DA-based diagnosis methods avoid the same 
domain/same distribution assumption, and they can take 
advantage of the available but unlabeled target domain dataset 

1
t

U  in the training step to extract domain-invariant features and 
solve the cross-domain fault diagnosis problem. DG is also a 
cross-domain method except that the task of DG is more 
difficult because target domain data are unavailable. However, 
DG is known for its strong ability in generalization from 

multiple source domains 1, , sN

s s
L L  to derive the 

domain-invariant knowledge, which is crucial for industrial 
fault diagnosis with complex working conditions and without 
target domain data. 

In Fig. 1, we illustrate the knowledge transfer from DA to DG, 
which emphasizes the capability of the trained model to 
generalize the knowledge learned from the multiple source 
domains to the unseen target domain. The source domains can 
be denoted as 

1
={ } sNi

S iS   , where s
N  is the number of source 

domains. The datasets of the source domain are denoted as
,

1
,

1
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i
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N

i
L x y d  , where id  is the domain label. The 
unlabeled target dataset drawn from target domain ~

T T
U   is 

unavailable in the model training and model selection process. 
According to the target generalization error bounded by DA, 

we can extend the error and hold it by [24], 

1
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=
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where )(U h  is the error in the unseen target domain, iπ  is the 
weight of source errors, and γ +   is the sum of the    
distance among domains. 

C. Generative adversarial network
Generative adversarial network (GAN) [25] is a generative

model to learn real-world data distribution through adversarial 
training between the generator and the discriminator. The 
generator learns the mapping from the latent space to the 
real-world data space, whereas the discriminator measures the 
discrepancy between real-world data and generated data. The 
two-player minimax game can be formulated as follows: 

~ ( )

~ ( )

min max ( , ) [log ( )]

[log(1 ( ( )))]
data

z

x p xG D

z p z

V D G E D x

E D G z

=

+ −
. (6) 

Recently, researchers have adapted the GAN model to the 
DA methods and called it the GRL [22], [26]. The forward 
behavior of GRL is an identity transformation, whereas the 
backpropagation behavior of GRL reverses the sign, 

         ( )R x x  , (7) 
( )dR x

I
dx

  ,  (8) 

where I is an identity matrix. 

III. PROPOSED METHOD

A. Generic domain-regressive framework.
The framework of the proposed generic domain regression

using ADIG is shown in Fig. 2. 
First, concerning the existence of multiple available source 

domains, the domain label id  of each domain in 
, ,

11 1
{ } {( , , )}{ }

i
ss sni i j i j i

S s
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s s iji
L L x y d     is added into the dataset, 

whereas the target domain data 1
={( )} tnj

T t j
U x   are unavailable 

during the training process. Each data sample is preprocessed 
into a two-dimensional (2-D) image by fast Fourier transform 
and the reshape operation; specially, 1-D input can also be 
integrated into the ADIG framework. In a similar way, the 
validation dataset is constructed for model selection by the 
preprocessing method above. 



Fig. 2. Flowchart of the ADIG framework. 
Second, considering the first two components of the target 

generalization error in Eq. (5), i.e. source generalization error 
( )i

S h  and    distance among all domains, we design three 
modules in the framework, i.e., a fault classifier (C) to reduce 

)(i
S h , a domain classifier (D) to estimate the    distance, 

and a feature extractor (E) that can extract domain-invariant 
features to reduce the estimated    distance.  

In this study, we customize a CNN backbone to realize the 
above three modules. As shown in Fig. 2, the general block in 
the feature extractor is a combination of a 33 convolutional 
layer, an IN layer, and a Leaky ReLU activation function. The 
fault classifier consists of a convolutional layer, Leaky ReLU, 
Dropout, and average pooling, which can supervise the feature 
extractor to learn discriminative and fault-related features. To 
facilitate domain-invariant feature learning, an SN 
convolutional layer is introduced into the domain classifier. 
Similarly, the domain classifier consists of an SN convolutional 

layer, Leaky ReLU, Dropout, and average pooling layer, which 
promotes E to learn the domain-invariant features. The 
backbone in the framework can be adjusted to other CNN 
models, such as ResNet. The adversarial training process 
between E and D can be achieved by the GRL, which can 
reverse the gradient in the backpropagation procedure. 

B. Feature normalization strategy
1) Instance normalization

IN is known to be a powerful tool in the style transfer task
[27], which can be regarded as distribution alignment. 
Therefore, the IN layer is adopted in the backbone of the 
diagnosis model and is formulated as, 

2
+lm

lm
x

y
µ

ϕ β
σ

 −
=   + 

,  (9) 

where  and   are the weight and bias of the IN layer, 
respectively.   and 2  are the mean and variance of the single 
instance, respectively, with width W and height H. 

1 1

1 W H

lm
l m

x
HW

µ
= =

= ∑∑ ,                         (10) 

( )22

1 1

1 W H

lm
l m

x
HW

σ µ
= =

= −∑∑  , (11) 

2) Spectral normalization
Stable training is a troublesome problem for adversarial

training.  In ADIG, we consider the Lipschitz continuity and 
use the SN layer [28] to control the Lipschitz constant of D by 
the spectral norm, 

2

2
2: 0 1

2

( ) max max
 
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‖‖

‖ ‖
‖ ‖

‖‖h h h
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h
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SN is likewise embedded in the backbone of ADIG by: 
    / ( )   D D D , (13) 

where   is the parameter of the weight or bias in the network. 

C. Optimization of adversarial domain generalization
1) Loss functions with adaptive weight strategy

The detailed optimization is introduced in this subsection. In
the forward propagation, E computes the abstract feature from 
the prepared signal by multiple layers of nonlinear mapping. To 
learn the diagnosis knowledge between deep features and the 
fault types across multiple available domains, C predicts the 
fault pattern as the predicted value. Symmetrically, D builds a 
bond between deep feature and working conditions and predicts 
the domain pattern as the predicted value. Cross-entropy loss 
is chosen to minimize the discrepancy between actual label and 
predicted value, 
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In the formula above, the predicted value is calculated by the 
softmax function, and K is the number of categories. In this 
manner, two optimization objectives, i.e., fault classifier loss 

C
  and domain classifier loss D

  are calculated as follows: 
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where E
 , C

 ,and D
 are the parameters of E, C, and D,

respectively; M is the batch size. Specifically, GRL, which is 
embedded between E and D, can be regarded as an identity 
transformation in the forward propagation rather than reverse 
transformation. Consequently, the optimization loss can be 
formulated as: 

= +  O C C D Dα α ,                           (17) 
where C

  and D
  are the trade-off factors that can be further 

optimized. In the ADIG, the loss function of the diagnosis 
model above can be regarded as a multitask loss. For multitask 
learning [29], the performance of such model is strongly 
correlated with each task’s loss, and these trade-off weights are 
tuned by hand, which is difficult and labor intensive. Thus, in 
this paper, these weights must be automatically set to save labor 
and control the contribution of the two losses in multitask 
learning. In [19], adaptive knowledge transfer was achieved by 
calculating the adaptive weights to constrain the parameter 
updating conditionally, i.e., a serial model learning the 
knowledge task by task. However, the model in our work 
performs multitask learning, which is a paralleled procedure to 
learn diagnosis and domain knowledge simultaneously. 
Therefore, in our method, we add these trade-off weights into 
the learned parameter sets as ={ , , , , }

C D E C D
       to form a 

hyperparametric learning strategy, which is named adaptive 
weight strategy in the ADIG framework. Furthermore, these 
trade-off weights can be learned by the model itself. The final 
loss function is defined as follows: 

1 1ln 1 ln 1
2 2

（ ） （ ）  O C C D D
C D

α α
α α

= + + + + + ,     (18)

where 1ln(1 )
2 Cα

+ is a regulation term with the negative gradient

1
(1 2 )C Cα α

−
+

 when weights are positive, which can avoid the 

weight vanishing to become 0. Likewise, Dα can be restricted 

by its regulation term 1ln(1 )
2 Dα

+ . They are the essential terms

because once the weights become 0, , ,
C D E
    cannot be

updated anymore. 
2) Parameter optimization

Moreover, the parameter optimization of neural networks
can be found through adversarial training by jointly satisfying: 

 ( ) ( ){ }arg min , ,ma ,x 
E E

E C C E C D D E Dθ θ
θ α θ θ α θ θ= ,  (19) 

 ( )arg min ,
C

C C C E Cθ
θ α θ θ= ,  (20) 

 ( )n ,arg mi 
D

D D D E Dθ
θ α θ θ= . (21) 

In this manner, the fault classifier with available labels 
supervises the feature extractor to learn discriminative and 
fault-related features. Simultaneously, the feature extractor is 
facilitated by the domain classifier to learn domain-invariant 
features through adversarial training. The stochastic gradient 
descent (SGD) is utilized in the adversarial game. Given that 
the GRL layer reverses the sign of the gradient in the 

backpropagation procedure, the optimization objective is 
inversed between E and D. Therefore, the parameter updating 
can be formulated as: 

1 1 1
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where γ is the learning rate of the optimization algorithm. 
Synchronously, the trade-off weights are updated by: 
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The adaptive weights in our work are learned continually by 
SGD. The similar  adaptive weight technique in reference [19] 
utilized iterative equation to fulfill continual learning, which is 
different from our learning strategy. Overall, the ADIG with 
adaptive weight strategy can be summarized in Algorithm 1. 
Algorithm 1：ADIG 
# Training stage 
Input: Multiple source dataset ,

1
,

1{( , , )}{ }
i

ssni j i j i
S s s j

N
iL x y d === . 

Initialization: The module E, C, D with initialized parameter
={ , , , , }

C D E C D
       and other pre-setting hyperparameters.
1: for epoch = 1 to epochs do 
2:   Randomly sample source data from SL  . 
3:   Forward propagation to calculate Eq. (18). 
4:   Backward propagation to update E, C, D by Eqs. (22-24). 
5:   Backward propagation to update ,

C D
   by Eqs. (25-26). 

6: end for 
Return: The optimal E, C, D selected by validation set. 
# Testing stage 
Input: Unseen target dataset 

1
={( )} tnj

T t j
U x 

. 
Model: ADIG with optimal E, C, D. 
Output: Diagnosis result of 

T
U by optimal E and C. 

IV. EXPERIMENT ANALYSIS

A. Case 1: SCU
1) Experiment and dataset description

The bearing vibration data of the first case study are acquired
from a test rig of our lab (SCU). As shown in Fig. 3, the running 
end of the bearing includes a motor, a plum coupling, a healthy 
bearing, a testing bearing (6205-2RS SKF), and an 
accelerometer connected with a NIPXle-1082 data acquisition 
system. In the loading end, a tread-and-nut system is utilized to 
adjust the loading from 0 KN to 3 KN, which can be measured 
by a SGSF-20K dynamometer.  

In this case study, we collect 10 health conditions (one 
normal condition and nine fault conditions) into a dataset with a 
sampling frequency of 10 kHz. These bearing faults through 
wire cutting include outer race fault (O), inner race fault (I), and 
ball fault (B) with 0.2, 0.4, and 0.6 mm fault diameters, 
respectively. Thus, 10 health conditions can be abbreviated as 



Nor, O02, O04, O06, I02, I04, I06, B02, B04, and B06. The 
dataset for each working condition is set by the data of the 10 
health conditions, as well as their fault labels and domain labels. 
Each sample consists of 2048 data points, which can cover the 
fault information. In this work, we perform four DG tasks: T0, 
T1, T2, and T3. In each task, the datasets of the seen source 
domain have three working conditions. For example, task T0 
means the ADIG model generalizes the domain-invariant 
knowledge from available source datasets under working 
condition 1 KN, 2 KN, and 3 KN to the unseen target dataset 
under working condition 0 KN. 
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Fig. 3 Test rig of SCU. 
2) Compared methods

Research on DG-based diagnosis methods to diagnose the
unseen domain fault is relatively rare. Hence, in this work, we 
verify the ADIG framework based on the design of experiments 
and ablation experiments. The details are given in TABLE II. 
The backbone of ADIG is utilized in all compared methods for 
fair comparison. 

In the first part, M1–M6 are designed as compared 
experiments extended from existing DA-based methods to 
show the effectiveness and superiority of the ADIG.  

TABLE II 
COMPARED METHODS 

Method Description 
M1 CNN trained by single source domain data. 
M2 CNN trained by multiple source domain data.  
M3 CNN with JMMD [10] trained by multiple source domain data. 
M4 CNN with MMD [8] trained by multiple source domain data.  
M5 CNN with CORAL [9] trained by multiple source domain data.  
M6 RTN [26] trained by multiple source domain data. 
A1 Remove adaptive weight strategy. Cα is set by 0.1, Dα  is set by 1. 
A2 Remove adaptive weight strategy. Cα is set by 0.5, Dα  is set by 1. 
A3 Remove adaptive weight strategy. Cα is set by 1, Dα  is set by 1. 
A4 Remove IN strategy. 
A5 Remove SN strategy. 
A6 Replace IN strategy by batch normalization (BN). 
A7 ADIG 1-D version. 

ADIG The proposed method. 
M1 has different results according to which domain data are 

utilized. Thus, the best one in these results is chosen for 
comparison. M2–M6 are incorporated into the proposed 
generic domain-regressive framework. M2 uses the same fault 
classifier loss C

 . The loss functions with adaptive weights in 
M3–M5 can be calculated on the basis of JMMD

  [10], MMD
  [8], 

and CORAL
  [9], respectively, 
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To show the versatility of the domain-regressive framework 
further, M6 is introduced into our backbone, i.e., a method 
similar with M4 but with a residual block in the fault classifier. 

In the second part, we conduct ablation experiments, i.e., 
A1–A7, to show the necessity and importance of each strategy 
used in the ADIG framework. A1-A3 are used to verify 
adaptive weight strategy, while A4-A6 try to prove the 
effectiveness of normalization strategy. A7 is a 1-D version of 
ADIG with 1-D convolutional layer and 1-D inputs. 
3) Parameter settings

The hyperparameters of ADIG are summarized in Table III.
TABLE III 

HYPERPARAMETER SETTING 
Hyperparameters Value Hyperparameters Value 
Learning rate γ 0.0001 Weight decay 0.0001 

Batch size 128 Dropout Rate 0.5 

  Initialization C: 0.5; D: 1 Epoch 50(Case1);200(Case2) 
These parameters are set in accordance with related works 

and grid search method. For example, grid search experiments 
are conducted to select the best hyperparameters. Specifically, 
the results of C

  and learning rate are shown in Fig. 4. The 
learning rate is searched in the set 
{0.1,0.01,0.001,0.0001,0.00001}, whereas the initialization of 

C
  is searched in the range [0.1,1]. The results show that the 
best selections of the initialization of C

 and learning rate are 
0.5 and 0.0001. Moreover, the initialization of C

 is insensitive 
when the learning rate is set automatically by self-learning. 
Through the same method, D

  is set as 1, and the batch size is 
set as 128. The epoch in case 1 is 50, whereas that in case 2 is 
200 due to the complexity of the problem. In addition, common 
hyperparameters, such as weight decay and dropout rate, are set 
as default referring to [8] and [12]. In all experiments, the 
hyperparameter settings are the same. 

Fig. 4 Grid search experiments for 
C

  and γ  
4) Result discussion

After model training and model selection, the average results
of experiments in ADIG are compared with other methods in 
Fig. 5, and the ablation experiment results are given in Fig. 6. 
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Each experiment had five trials to eliminate contingency. The 
overall diagnosis results are listed in Table IV. It is obvious that 
the proposed ADIG outperforms other methods at the average 
level. Several interesting insights are revealed from the results. 

TABLE IV 
DIAGNOSIS RESULTS IN CASE 1(%) 

Domain-invariant feature learning achieves reliable 
diagnosis under unseen condition by ADIG framework. The 
power of ADIG roots in that D in ADIG learns the distribution 
discrepancy among domains, whereas E learns the feature out 
of the domain distribution by

D
 , resulting in improved 

diagnosis performance in the unseen domain. From the 
perspective of generalization error, minimizing the empirical 
risk by 

C
  cannot generalize the knowledge well to the unseen 

domain, which can be seen from the results of M1 and M2. And 
the great aspect of ADIG to obtain improvement is that 
adversarial training rather than the traditional discrepancy 
metric in M2-M6 can further promote E to learn the 
domain-invariant features to narrow    distance through 
multiple available domains. 

Each strategy and module in ADIG is indispensable and 
has its role in improving diagnosis performance. In Fig. 6, the 
effectiveness of adaptive weight strategy and the IN and SN 
strategies are verified by ablation experiments. Without 
adaptive weight, the diagnosis result worsens, especially in T0 
and T3 tasks. The IN strategy has an advantage in promoting 
the diagnosis accuracy for the normalized first and second 
moments of each instance feature. In this case, A4 cannot fully 
learn the knowledge of the source domain. A5 shows that SN 
limits the Lipschitz continuity to facilitate adversarial training. 
Moreover, ADIG with 1-D and 2-D input have similar results 
when the    distance among domains is narrow. 

Fig. 5 Diagnosis performance comparisons in case 1. 

Fig. 6 Diagnosis performance of the variant ADIG in case 1. 
Multiple domain adversarial training promotes model 

robustness. Comparing M1 with M2 shows that using multiple 
source domains to learn the cross-domain knowledge is a 
feasible way to diagnose unseen faults. Although M1 can 
obtain slightly higher accuracy in T0 and T2, the standard 
deviation (std) in M1 is remarkably higher than the std in M2, 
which validates the better robustness of M2 trained by multiple 
source domain data. In addition, the reason why M1 achieves 
higher accuracy in some tasks is that the source domain with 
best result has the narrowest    distance to the unseen 
domain. In other words, without the domain-regressive 
framework, it cannot be strictly guaranteed that multiple 
domain training is always positive. 

Learning Low    distance features facilitate diagnosis. 
In case 1, the four DA-extended methods M3-M6 with 
distribution discrepancy loss achieve similar performance, 
indicating that source generalization error rather than    
distance plays a major role, whereas ADIG can further exploit 
domain-invariant features with lower    distance among 
these methods. Additionally, DG is relatively easy to achieve 
when the unseen domain is between several seen domains. The 
evidence is that the tasks T0 and T3 are much more difficult to 
realize in Fig. 5 due to the huge difference in    distance 
between the available source domain and unseen target domain. 

B. Case 2: SDUST
1) Dataset description

To verify the superiority of the ADIG framework, a bearing
fault dataset from Shandong University of Science and 
Technology (SDUST) is adopted [30]; data are collected at 
variable speeds. The experimental setup for data collection is 
shown in Fig. 7. The sampling frequency is set at 25.6 kHz. The 
engine rotates at a speed of 2000 r/min, and the bearing type is 
N205EU. The dataset contains four health states as case 1, i.e., 
normal, inner race fault, outer race fault, and rolling element 
fault. Each fault type has three damage dimensions, specifically, 
0.2, 0.4, and 0.6 mm. Four datasets are collected under different 
speeds, i.e., 500, 1000, 1500, and 2000 r/min. Thus, a domain 
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Method T0 T1 T2 T3 Average 
M1 97.23±3.59 92.40±1.43 97.97±6.48 93.06±3.25 95.17 
M2 97.11±0.82 97.70±0.30 97.47±1.47 95.02±0.79 96.83 
M3 97.05±0.14 98.90±0.41 97.76±0.64 96.73±0.41 97.61 
M4 96.67±0.29 98.61±0.36 97.41±0.77 95.96±0.50 97.16 
M5 97.04±0.52 99.05±0.43 97.97±0.76 96.91±0.59 97.74 
M6 97.50±0.18 98.87±0.32 97.22±1.32 95.98±0.52 97.39 
A1 96.74±0.30 99.01±0.23 97.86±0.78 96.74±0.46 97.60 
A2 96.64±0.30 98.78±0.31 97.83±0.59 97.13±0.42 97.60 
A3 95.57±0.26 98.64±0.33 97.15±0.71 96.03±0.47 96.85 
A4 14.80±3.93 19.33±4.31 23.59±5.18 17.12±4.11 18.71 
A5 97.39±0.32 98.79±0.48 97.71±0.72 96.82±0.53 97.68 
A6 97.91±0.43 98.07±0.37 97.32±0.90 96.50±0.49 97.45 
A7 97.69±0.40 98.86±0.83 97.78±1.69 97.48±0.89 97.95 

ADIG 97.67±0.29 98.89±0.21 97.82±0.76 97.49±0.44 97.97 



dataset has 10 health conditions, and four domain datasets have 
different speeds. 

Fig. 7 SDUST Experimental setup for machinery fault diagnosis. 
In this case study, we perform three DG tasks: T1000, T1500, 

and T2000. For example, task T1000 is to generalize the 
domain-invariant knowledge from the seen source datasets 
under the speeds 500, 1500, and 2000 r/min to the unseen target 
dataset under the speed 1000 r/min. T1500 and T2000 follow 
the same definition. 
2) Result discussion

The diagnosis results are shown in Fig. 8, Fig. 9  and TABLE
V. Some new findings are highlighted beyond case study 1.

TABLE V 
DIAGNOSIS RESULTS IN CASE 2(%) 

Method T1000 T1500 T2000 Average 
M1 48.32±5.73 61.34±10.35 71.74±2.55 60.47  
M2 73.25±4.22 94.71±3.44 81.48±1.89 83.15  
M3 85.94±2.66 92.81±2.08 89.98±3.17 89.58  
M4 76.35±2.37 98.03±1.84 76.92±7.83 83.77  
M5 53.79±3.48 92.06±2.26 69.28±6.08 71.71  
M6 86.05±1.69 91.77±1.97 90.95±3.11 89.59  
A1 85.24±1.33 92.62±2.98 92.59±3.86 90.15  
A2 86.61±3.88 94.45±3.29 87.84±1.78 89.63  
A3 83.94±3.01 93.42±2.95 91.98±4.04 89.78  
A4 69.26±12.65 79.39±21.24 46.92±13.46 65.19  
A5 88.25±4.75 96.46±1.94 92.40±3.83 92.37  
A6 85.30±2.93 91.45±0.86 88.05±3.20 88.27  
A7 82.13±3.21 95.82±1.10 88.01±5.62 88.65  

ADIG 91.09±0.94 96.47±2.60 91.43±3.10 93.00 

Fig. 8 Diagnosis performance comparisons in case 2. 
High    distance degenerates cross domain diagnosis 

performance, while ADIG still achieves best results in case 2. 
The gaps between ADIG and other methods are widened due to 
the higher    distance among domains caused by variant 
rotating speed. For instance, M2 obtains over 80% accuracy by 
learning from multiple domains, whereas M1 obtains only 
60.47%. The     distance could be further narrowed by 
M3–M6, indicating that    distance plays a more important 
role in case 2. When the DG task becomes more difficult, 
negative knowledge transfer inevitably occurs, e.g., CORAL 
loss-based method in M5 is no longer effective for case 2. By 
contrast, significant improvements of ADIG further prove the 

superiority of domain-invariant knowledge learned by 
adversarial learning from multiple domains. The ADIG can 
estimate the    distance by D to avoid the degradation in 
different case studies when facing huge distribution 
discrepancies.  

Fig. 9 Diagnosis performance of the variant ADIG in case 2. 
Given more complex generalization tasks, strategies in 

ADIG still have their effectiveness. Fig. 9 demonstrates that the 
best weight about 

C
  and 

D
 is not constant. The optimized 

weights in different tasks seem to be different; in this case, the 
adaptive weight strategy is of great significance. Compared 
with ADIG and A4, IN improves nearly 28% accuracy, which 
shows a significant attribute of IN when facing a huge domain 
discrepancy. By contrast, A6 performs worse than ADIG, 
which again proves the importance of the IN strategy in the 
generalization problem. Similarly, the result of A5 supports 
that the SN strategy can facilitate diagnosis performance.  

The 2-D input facilities domain-invariant feature learning 
under dramatically changed unseen work condition. 
Compared the results of A7 and ADIG in case 2, it can be found 
that when variant rotating speed enlarges    distance, using 
2-D input can further exploit domain-invariant features to
promote diagnosis performance. In other words, facing more
difficult generalization tasks, ADIG with 2-D can learn features
with lower    distance than 1-D.
3) Visualization of learned representation

To demonstrate the fault feature distribution and explain the
mechanism of ADIG, the high-dimension features extracted by 
E are reduced into a 2-D feature representation by T-SNE [31] 
for improved visual understanding. The feature vectors learned 
under task T2000 are illustrated in Fig. 10 for illustration 
purposes. We only plot four health conditions (Nor, I06, B06, 
and O06). M1 (worst) means the model is trained by the dataset 
under 500 r/min, whereas M1 (best) is the result under 1500 
r/min. 

In Fig. 10, the green marks are the features in the unseen 
target domain, whereas the rest are the features in available 
source domains. ADIG aims to learn the generalized feature 
representations by using the available data in the source domain. 
Specifically, the unseen domain feature representation (the 
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green marks) extracted by the learned model aims to overlap 
with the available source domain feature representation. 

Fig. 10 Feature visualization for task T2000. (a) M1(worst), (b) M1(best), 
(c) M2, (d) M5, (e) M4, (f) M3, (g) ADIG.

A comparison of Fig. 10(a) and Fig. 10(b) reveals that only the
trained domain features are clustered by the learned knowledge 
and that single domain knowledge is difficult to generalize to 
the unseen domain. Given the low     distance, the most 
related domain can more or less be clustered. Thus, the 
knowledge learned by the single domain cannot be generalized 
to other domains well without multiple related domains. Fig. 
10(c) illustrates the feature vectors learned from multiple related 
source domains, whereas the methods in Fig. 10(d)–Fig. 10(f) take 
advantage of the distribution discrepancy loss. In these methods, 
feature distribution biases or domain shifts may still occur 
between the source and target domains, although the model 
learns the knowledge from different source domains. The 
features learned from the related source domain by ADIG are 
clustered better than those by other methods. In ADIG, the fault 
features of three source domains and an unseen target domain 
can be gathered into a cluster, thus proving the effectiveness 
and the domain-invariant feature learning of the proposed 
framework. 

V. CONCLUSION
Three contributions are presented in this study. First, we 

propose a novel insight, generic domain-regressive framework, 
which can diagnose unseen fault patterns in the target domain. 
Second, we propose a novel ADIG fault diagnosis framework 
to diagnose the unseen domain faults with three customized 
modules, i.e., feature extractor, domain classifier, and fault 
classifier. Through adversarial training, domain-invariant and 
fault-related knowledge are learned from multiple domains. 
Third, the adaptive weight strategy together with the 
normalization strategy facilitates training to learn and transfer 
additional domain-invariant features to the target domain. 
Visualization representation manifests the internal feature 

cluster of the proposed method, and comprehensive 
experiments prove that ADIG can generalize the knowledge to 
an unseen target domain, thus proving the superiority of ADIG 
for real industrial applications. 
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