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Abstract

The stable set polytope is a fundamental object in combinatorial
optimisation. Among the many valid inequalities that are known for
it, the clique-family inequalities play an important role. Pêcher and
Wagler showed that the clique-family inequalities can be strengthened
under certain conditions. We show that they can be strengthened even
further, using a surprisingly simple mixed-integer rounding argument.

Keywords: stable set problem; polyhedral combinatorics

1 Introduction

Let G = (V,E) be a (loopless and simple) undirected graph. A set S ⊆ V is
called stable (or independent) if none of the vertices in S are adjacent. Given
a weight vector w ∈ QV

+, the stable set problem calls for a stable set of maxi-
mum total weight. This problem, and other problems that are equivalent to
it, play a key role in integer programming, combinatorial optimisation and
computational complexity theory (see, e.g., [1–3,16,17,25]).

For each vertex v ∈ V , define a binary variable xv, taking the value
1 if and only if v is to be included in a stable set. Then, a vector x ∈
{0, 1}|V | is the incidence vector of a stable set if and only if xu + xv ≤ 1
for all {u, v} ∈ E. The convex hull of the incidence vectors is called the
stable set polytope and denoted by STAB(G) [16]. Many families of valid
and facet-defining inequalities have been discovered for this polytope (e.g.,
[3–5, 16, 23, 24, 27, 30]). These inequalities have been used to good effect
in exact algorithms for the stable set problem and related problems (e.g.,
[1, 21,28,29]).
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This paper is concerned with the clique-family inequalities, which were
introduced by Oriolo [23]. These inequalities played a key role in the cele-
brated paper [10], which gives a complete linear description of STAB(G) for
the case in which G is a so-called quasi-line graph. Nevertheless, there are
cases in which clique-family inequalities do not define facets of STAB(G).
Indeed, Pêcher and Wagler [26] showed how to strengthen the inequalities
under certain conditions.

In this paper, we present some new strengthened clique family inequali-
ties, which dominate those of Pêcher and Wagler. Surprisingly, our inequal-
ities can be derived very easily, using a well-known mixed-integer rounding
argument (see [15,20,22]).

The structure of the paper is very simple. Section 2 reviews the relevant
literature, Section 3 presents the new inequalities, and Section 4 lists some
interesting open questions.

Throughout the paper, given a vertex set S ⊆ V , we let x(S) denote∑
v∈S xe.

2 Literature Review

For reasons of space, we cover only works of direct relevance in this section.

2.1 Some known inequalities for the stable set polytope

Padberg [24] showed the following:

• If S ⊆ V is a maximal clique in G, then the clique inequality x(S) ≤ 1
defines a facet of STAB(G).

• If S ⊆ V induces a chordless odd cycle in G, then the odd hole in-
equality x(S) ≤ (|C| − 1)/2 is valid for STAB(G).

• If S ⊆ V induces the complement of an odd hole in G, then the odd
antihole inequality x(S) ≤ 2 is valid.

• Any odd hole or odd antihole inequality that does not define a facet
of STAB(G) can be strengthened (lifted) to make it facet-defining.

Trotter [30] derived two additional families of inequalities, called web
and antiweb inequalities. We will be interested in the latter. Let p and q
be integers, with q ≥ 2 and p > 2q, and suppose that p is not a multiple
of q. A “(p, q)-antiweb” is a graph with vertex set 1, . . . , p in which, for
i = 1, . . . , p, node i is adjacent to nodes i + 1, i + 2, . . . , i + q − 1 and
nodes i − 1, i − 2, . . . , i − q + 1 (indices taken modulo p). Trotter showed
that, if S ⊆ V induces a (p, q)-antiweb in G, then the antiweb inequality
x(S) ≤ bp/qc is valid for STAB(G). Note that antiweb inequalities reduce
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to odd hole inequalities when q = 2, and to odd antihole inequalities when
p = 2q + 1.

Oriolo [23] introduced the clique-family inequalities. Let p and q be
integers as before, and suppose again that p is not a multiple of q. Let
r = p mod q, and let C = {C1, . . . , Cp} be an arbitrary collection of maximal
cliques. Let V q denote the set of nodes that are contained in at least q of the
cliques in the collection, and V q−1 denote the set of nodes that are contained
in exactly q− 1 cliques. Then the following clique-family inequality is valid:

(q − r)x
(
V q
)

+ (q − r − 1)x
(
V q−1) ≤ (q − r)bp/qc. (1)

Note that antiweb inequalities can be expressed as clique-family inequalities
with V q−1 empty.

Now suppose that r ≤ q − 2. For k = r + 1, . . . , q − 1, let V k be the
set of nodes contained in exactly k cliques. Pêcher and Wagler [26] showed
that the following inequality (hereafter called a Pêcher-Wagler inequality)
is valid: ∑

0≤j<q−r
(q − r − j) x

(
V q−j) ≤ (q − r)bp/qc. (2)

If V k 6= ∅ for some index k with r + 1 ≤ k < q − 1, then the inequality (2)
is stronger than the clique-family inequality (1).

2.2 Complete descriptions

Chvátal [7] used a result of Edmonds [9] to show that, when G is a line graph,
STAB(G) is completely described by clique inequalities, non-negativity in-
equalities, and one other family of inequalities. Oriolo [23] showed that these
latter inequalities are clique-family inequalities with q = 2 and r = 1.

Line graphs are a special case of quasi-line graphs. Oriolo [23] con-
jectured that, when G is quasi-line, STAB(G) is described by the clique,
non-negativity and clique-family inequalities. This conjecture was proved
in [10].

Quasi-line graphs in turn are a special case of claw-free graphs. It is
shown in [12, 13] that, when G is claw-free and has stability number larger
than 4, STAB(G) is described by the clique, non-negativity and clique-family
inequalities, together with the “geared” inequalities from [11].

2.3 Chvátal-Gomory cuts and mixed-integer rounding

Let P ⊂ Rn+ be a polyhedron, and let αTx ≤ β be a valid inequality for
P , with α ∈ Qn and β ∈ Q \ Z. Chvátal [6] pointed out that the following
inequality is satisfied by all integer points in P :

n∑
i=1

bαicx ≤ bβc.

3



Such inequalities are now called Chvátal-Gomory (CG) cuts, since they ap-
peared implicitly in the earlier work of Gomory [14].

Pêcher & Wagler [27] showed that clique-family inequalities with r ∈
{1, q − 1} can be derived as CG cuts from the clique inequalities. On the
other hand, Oriolo [23] found a quasi-line graph for which STAB(G) has a
facet-defining clique-family inequality that is not a CG cut.

CG cuts can be strengthened as follows [15]. Given a real number t, let
φ(t) denote t− btc, the so-called fractional part of t. Also define the set

T =
{
i ∈ {1, . . . , n} : φ(αi) > φ(β)

}
.

The strengthened CG cut takes the form:

n∑
i=1

bαicxi +
∑
i∈T

φ(αi)− φ(β)

1− φ(β)
xi ≤ bβc.

We will follow Nemhauser and Wolsey [22] in calling these inequalities mixed-
integer rounding (MIR) inequalities.

3 Strengthened Clique-Family Inequalities

This section presents our strengthened clique-family inequalities. The theo-
retical results are in Subsection 3.1. In Subsection 3.2, we give some exam-
ples that may be of interest.

3.1 Theoretical results

As before, let C1, . . . , Cp be an arbitrary collection of maximal cliques, let
q be an integer that does not divide p, such that 2 ≤ q < p/2, and let r
denote p mod q. For each v ∈ V , let µv be the “multiplicity” of v, by which
we mean the number of cliques in the given collection that contain v. That
is,

µv =
∣∣{j ∈ {1, . . . , p} : v ∈ Cj

}∣∣.
Also, for each v ∈ V , let rv denote µv mod q. Our main result is as follows.

Theorem 1 The following “strengthened clique-family” (SCF) inequality

(q − r)
∑
v∈V

⌊
µv/q

⌋
xv +

∑
v∈T

(
rv − r

)
xv ≤ (q − r)bp/qc, (3)

with T =
{
v ∈ V : rv > r

}
, is valid for STAB(G).

proof. Summing together the clique inequalities associated with C1, . . . , Cp,
and dividing the result by q, we obtain:∑

v∈V

(
µv/q

)
xv ≤ p/q. (4)
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Then, for all v ∈ V , we have φ
(
µv/q

)
= rv/q. One can check that the MIR

inequality associated with (4) takes the form:∑
v∈V

⌊
µv/q

⌋
xv +

∑
v∈T

(
rv − r
q − r

)
xv ≤ bp/qc.

Multiplying this inequality by q − r, we obtain inequality (3).

We also have the following result.

Proposition 1 The SCF inequality (3) dominates the inequality (2).

proof. Since the two inequalities have the same right-hand side, it suffices
to compare the left-hand side coefficients. One can check that, when µv ≤
2q − r, the coefficient of xv is the same in (2) and (3). When µv > 2q − r,
however, the coefficient in (2) is only q − r, whereas the coefficient in (3) is
larger than q − r.

We remind the reader that the inequality (2) dominates the clique-family
inequality (1). Thus, SCF inequalities dominate clique-family inequalities
as well.

3.2 Examples

We now give some examples of SCF inequalities that may be of interest.

Example 1: Let G = (V,E) be a (37, 8)-antiweb, G′ = (V ′, E′) a (37, 7)-
antiweb, and let G+ be the graph obtained by joining each vertex j of G
with the vertices j′, (j + 1)′, . . . , (j + 13)′ of G′ (with indices taken modulo
37). One can check that G+ is quasi-line. Giles and Trotter [31] proved that
the inequality

3
∑
v∈V

xv + 2
∑
v∈V ′

xv ≤ 12 (5)

is facet-defining for STAB
(
G+
)
. Oriolo [23] noted that (5) is a clique-family

inequality, obtained with C being the set of the p = 37 (maximal) cliques of
the form {j, j + 1, ..., j + 7} ∪

{
(j + 7)′, (j + 8)′, ..., (j + 13)′

}
, and with q

and r being 8 and 5, respectively. Moreover, he showed that (5) cannot be
derived as a CG cut from clique inequalities.

Now, let G++ be obtained from G+ by adding a clique Q whose vertices
are adjacent to all vertices of G+. We extend each clique in C to a maximal
clique in G++, by inserting all of the nodes in Q. We have µv = 37 for all
v ∈ Q. Thus, the following SCF inequality

3
∑
v∈V

xv + 2
∑
v∈V ′

xv + 12
∑
v∈Q

xv ≤ 12. (6)
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is valid for STAB(G++). �

It turns out that the inequality (6) has some interesting properties.

Proposition 2 The SCF inequality (6) is facet-defining for STAB
(
G++

)
.

It is not a Pêcher-Wagler inequality (and therefore is not a clique-family
inequality either). Moreover, it cannot be derived as a CG cut from clique
inequalities.

proof. The fact that (6) is facet-defining for STAB
(
G++

)
can be shown

easily by taking the inequality (5) and applying the sequential lifting proce-
dure of Padberg [24] to the nodes in Q.

Next, we prove by contradiction that (6) is not a Pêcher-Wagler in-
equality. Suppose that (6) can be written in the form (2). Comparing the
coefficients for the nodes in Q with the right-hand side of (6), we must have
Q = V q and q − r = (q − r)bp/qc = 12. This implies that bp/qc = 1, which
in turn implies that r = p − q and p = 2q − 12. Now, the coefficient of the
vertices of V is q−r−j = 3, which yields j = 9 for those vertices. Moreover,
since each vertex of V has to be covered by q− j cliques of C, |V | = 37, and

each clique of C covers at most 8 vertices of V , we have p ≥ 37(q−9)
8 . Because

p = 2q− 12, this implies that q ≤ 11, contradicting the fact that q− r = 12.
Finally, we construct a vector x∗ ∈ [0, 1]V ∪V

′∪Q by setting x∗i to 1/8
for all i ∈ V , and all other x∗ values to 0. One can check that x∗ satisfies
all clique inequalities. Moreover, the left-hand side of (6), evaluated with
respect to x∗, is 111/8. So x∗ violates (6) by 15/8. Now, it is shown in [18]
that, when the convex hull of feasible solutions to an integer program is full-
dimensional, the amount by which any CG cut is violated by a solution to
the LP relaxation is less than 1. So, given that STAB(G) is full-dimensional,
(6) cannot be a CG cut.

The previous example was obtained by taking a known facet-defining
clique-family inequality and adding a single node. The following example is
obtained more directly.

Example 2: Let G = (V,E) be a (32, 5)-antiweb, G′ = (V ′, E′) a (32, 9)-
antiweb, and let G+ be the graph obtained by joining each vertex j of G
with the vertices j′, (j + 1)′, . . . , (j + 12)′ of G′ (with indices taken modulo
32). Observe that G+ is not claw-free. Now, consider the SCF inequality
obtained with C consisting of the p = 32 (maximal) cliques of the form
{j, j+1, . . . , j+4}∪

{
(j+4)′, (j+5)′, . . . , (j+12)′

}
, and with q and r being

5 and 2, respectively. We have µi = 5 for i ∈ V and µi′ = 9 for i′ ∈ V ′. The
resulting SCF inequality is therefore:

3
∑
i∈V

xi + 5
∑
i′∈V ′

xi′ ≤ 18. (7)
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One can check (either by hand or with the help of a computer) that this
SCF inequality defines a facet of STAB

(
G+
)
. One can also show (using the

same method as for Example 1) that it is neither a Pêcher-Wagler inequality
nor a CG cut. �

The next example shows that an SCF inequality can define a facet even
if some cliques appear in C more than once.

Example 3: Let G be an odd hole on 7 nodes. Add an eight node, along
with the edges {1, 8}, {4, 8} and {5, 8}. Let C consist of the cliques {1, 2},
{1, 7}, {1, 8}, {3, 4}, {5, 6}, together with the following cliques counted twice
each: {2, 3}, {6, 7} and {4, 5, 8}. Set p to 11, q to 3 and r to 2. We
have µi = 3 for i = 1, . . . , 8, and therefore the SCF inequality is simply∑8

i=1 xi ≤ 3. This inequality defines a facet of STAB(G), as one can see by
taking the odd hole inequality and lifting on node 8. (It also happens to be
both a clique-family inequality and a CG cut.) �

One can check that the graphs in Examples 1 to 3 contain claws. A
natural question is whether SCF inequalities can define non-trivial facets
for graphs that are claw-free. This is indeed the case.

Example 4: Consider the fish graph F whose complement is depicted in
Figure 1. Giles & Trotter [31] introduced F and noted that it is claw-free.
One can check that the following two inequalities define facets of STAB(F ):

x1 + x2 + 2x3 + 2x4 + x5 + x6 + x7 + x8 + 2x9 + 2x10 ≤ 3,

2x1 + 2x2 + x3 + x4 + x5 + x6 + x7 + x8 + 2x9 + 2x10 ≤ 3.

These inequalities are not clique-family inequalities (since it is impossible
for q − r to be 2 and (q − r)bp/qc to be 3 simultaneously). One can also
show (using the same method as for Example 1) that they are not Pêcher-
Wagler inequalities either. On the other hand, they can be derived as SCF
inequalities. Indeed, for the first one, it suffices to let C contain the 7 cliques
{3, 4, 6, 8}, {2, 3, 7, 8}, {1, 2, 7, 9}, {3, 4, 6, 10}, {3, 4, 9, 10}, {1, 5, 9, 10} and
{4, 5, 9, 10}, and then let p = 7, q = 2 and r = 1. (One can check that they
are also CG cuts.) �

4 Some Open Questions

There are three open questions that we find interesting. The first is whether
it is possible to devise an effective (exact or heuristic) separation algorithm
for the SCF inequalities. We remark that one cannot simply use an exist-
ing separation algorithm for MIR inequalities, such as the ones in [8, 20],
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Figure 1: The graph F̄ , complement of the fish graph introduced in [31].

due to the fact that the number of maximal cliques in a graph is typically
exponential in the number of nodes.

The second open question is whether there exist SCF inequalities that
define facets for claw-free graphs, yet are neither clique-family inequalities
nor CG cuts. We have checked the “geared” inequalities from [11] and they
are not SCF inequalities. Together with results from [12, 13], this implies
that, if an SCF inequality of the above-mentioned type exists, it can only be
found in a claw-free graph with stability number 3. Unfortunately, we could
not produce facet-defining inequalities of this type from the fish examples
of claw-free graphs with stability number 3 provided in [19].

Finally, recall that a graph G is circular interval if its vertices can be
mapped on a circle C so that the cliques of G correspond with intervals of
C. (Note that antiwebs are circular interval, and circular interval graphs are
quasi-line.) Let us say that a graph G = (V,E) is a knit if its vertices can be
partitioned in two subsets, V1 and V2, such that: i) the induced subgraphs
G[V1] and G[V2] are circular interval graphs with circles C1 and C2, respec-
tively; ii) the neighborhood in G2 of each vertex of V1 corresponds to an
interval of C2; iii) the neighborhood in G1 of each vertex of V2 corresponds
to an interval of C1. We pose the following conjecture:

Conjecture 1 Let G be a knit. Then STAB(G) is completely described by
clique, SCF and non-negativity inequalities.

We remark that the graph mentioned in Example 2 is a knit.
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