
Estimating feature extraction changes of Berkelah Forest, Malaysia from 

multisensor remote sensing data using and object-based technique 

Syaza Rozali1,  Zulkiflee Abd Latif1, Nor Aizam Adnan1, Yousif Hussin2, Alan Blackburn3, 

Biswajeet Pradhan4 

1Applied Remote Sensing & Geospatial Research Group (ARSG), Centre of Studies for 

Surveying Science and Geomatics, Faculty of Architecture, Planning and Surveying, Universiti 

Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia. 

2Department of Natural Resources, Faculty of Geo-information Science and Earth Observation 

(ITC), University of Twente, 7500 AE Enschede, The Netherlands. 

3Lancaster Environment Centre, LEC Building, Lancaster University, LA1 4YQ U.K. 

4The Centre for Advanced Modelling and Geospatial Information Systems (CAMGIS), School of 

Information, Systems & Modelling, Faculty of Engineering and Information Technology, 

University of Technology Sydney, NSW 2007, Australia 

 

 

 

 

 

 

 

 

 

 



Abstract 

The study involves an object-based segmentation method to extract feature changes in tropical 

rainforest cover using Landsat image and airborne LiDAR (ALS). Disturbance Index (DI) 

derived from Tasseled Cap Transformation and Normalized Difference Vegetation Index 

(NDVI) are the variables for object-based segmentation process. The classification is categorized 

into two classes; disturbed and non-disturbed forest cover using Nearest Neighbor (NN), 

Random Forest (RF) and Support Vector Machine. The result shows overall accuracy ranging 

from 88% - 96% and kappa ranging from 0.79 – 0.91 for each classification method used. 

Mcnemar’s Test p-value (<0.05) is applied to check the classification for each method used 

which is RF 0.03 and SVM 0.01. The accuracy increases when the integration of ALS in Landsat 

image (SpectralLandsat; and and SpectralLandsat + HeightALS) is compared to Landsat image alone. 

The higher resolution image  is useful to detect small changes and help to improve the lower 

resolution imagery. 

Keywords: Object-based segmentation, Airborne LiDAR, Remote Sensing, Random Forest, 

Support Vector Machine  

 

 

 

 

 

 

 

 

 

 



1. Introduction 

The 1960s is the beginning of the commercial logging and leading to cause of the huge depletion 

and degradation of forest lands in Malaysia. A study from University of Maryland revealed the 

condition of Malaysia’s forest between 2000 and 2012. Satellite images are used to record the 

loss and gain of forest (Hansen et al., 2013; Song et al., 2015; Hadi et al., 2018). The result 

shows Malaysia is one of three countries in the world with the highest national rates of 

deforestation which is over 75% canopy has lost with an amount of 4.72 million hectare of 

forests (Yong et al., 2014). 

 Factors that can lead to deforestation and forest degradation can be either direct or indirect 

drivers. Direct causes involve industrial logging, natural forest clearance for other land uses (e.g. 

palm plantation, dams, mining and quarrying industries), urban development or infrastructure 

projects (e.g. roads and highways, building factory, resorts and hilltop bungalows). Indirect 

causes include legislation and policies related to jurisdictions over land and forestry involving 

national and state legal with power from different levels and actors of federal and state (Yong et 

al., 2014).  

 The complexity of forest that provides functional systems of interacting and is 

interdependent biological, physical and chemical component produces a combine of climate, soil, 

tree and plant species distinctive effecting to hundreds of variance forest type around the world 

(Mohd Zaki et al., 2016). Tropical rainforest in Malaysia requires year round high temperature, 

abundant rainfall, dense and lush known as a vital storehouse of biodiversity on the planet and 

can be found near the equator (Latif and Blackburn, 2011), holds the most extensive forest in the 

world with the vast diversity of the tree with layered canopies (Mohd Zaki et al., 2016); and 

crucial role as a carbon sink, which absorbs carbon dioxide from the atmosphere (Mohd Zaki et 

al., 2018). Therefore, remote sensing is an important tool offering information for an 

achievement of sustainable and efficient forest management. Light Detection and Ranging 

(LiDAR) has found useful in various application such as a 3D model of cities, delineation of tree 

crown (Latif and Blackburn, 2011), analyses of vegetation cover (Latif et al., 2012), and deriving 

forest canopy structure (Saeidi et al., 2014). 

 Malaysia’s forest was alarmed by unsustainable logging activities. However, there is no one 

single method to monitor forest degradation at regional to country scales using multi-resolution 

optical, synthetic aperture radar (SAR) and Airborne LiDAR data because of the specific nature 



of the degradation type or process and the timeframe over which it is observed (Mitchell et 

al.,2017). Mapping forest degradation details is more difficult compared to deforestation 

mapping (Herold et al., 2011). Approaches in monitoring forest degradation reviewed by 

Mitchell involve detection and characterization of degradation (e.g. forest disturbance mapping, 

identification of canopy gaps and clearings, proxies) and quantification of carbon stock changes 

(e.g. tracking of secondary forest dynamics, canopy height change, above-ground biomass 

change) (Mitchell et al.,2017).  

 Forest disturbance can be detected by the time series image of satellite remote sensing. 

Recognizing the changes within a time series is the first phase in order to identify the drivers and 

processes (Verbesselt et al., 2012). However, direct estimate changes unable to detect due to the 

attribute of time series (e.g. a combination of seasonal, gradual and abrupt ecosystem changes 

occurring in parallel, noise, residue geometric errors, atmospheric scatter and cloud effects 

(Wolfe et al., 1998; Roy et al., 2002; de Beurs and Henebry, 2005).  Pixel-based Break detection 

For Additive Seasonal Trends (BFAST) monitor is used to detect changes in near real-time with 

statistics and econometrics literature to evaluate the stability of linear regression models (e.g. 

examining exchange rate dynamics. Another approach is a transformation of Landsat satellite 

image is applied to integrate multispectral reflectance measurements and improve the 

disturbance detection. For example, Tasseled Cap transformation (Crist and Cicone, 1984) which 

is provides orthogonal indices such as brightness (B), greenness (G) and wetness (W). This 

technique describes the spectral variation from those indices across the solar reflective spectrum 

measured using Landsat imagery. After the transformation occurred, identification and 

classification of land cover changes and disturbance can be automatically performed by 

thresholding and image arithmetic methods (Healey et al., 2005; Hilker et al., 2009). Disturbance 

Index (DI) is derived from Tasseled Cap transformation and will be used to detect changes in 

tropical rainforest. 

 Classification value will be affected by the sensitivity to changes of the object properties 

(e.g. types or numbers of objects) encountered and the sensitivity to the rates of managing 

needed. Single classification method is used to overcome a limited set of object types but go 

against the simple alterations in the physical characteristics of object (Cain et al., 1989). Since 

1980s, remote sensing classification techniques have developed to produce land use land cover at 

various scales. Image pixel analysis is used as a basic unit which is each pixel is labeled as a 



single land use land cover. Based on the image pixel, unsupervised k-means and ISODATA, 

supervised (e.g. Maximum Likelihood, SVM, RF, decision tree) and hybrid classification have 

been developed (Li et al., 2014). When the technique is performed especially to heterogeneous 

regions, the size of pixel is bigger than the object size. In addition, each pixel contains mixture of 

other types of land use land cover. Therefore, the sub-pixel method had developed such as 

spectral mixture and fuzzy classification and can be applied in forestry application (Adam et al., 

1986; Wang, 1990; Roberts et al., 1998). In the appearance of high quality data (e.g. very high 

resolution, VHR), object based technique had developed (Blaschke, 2010; Oreopoulos, 2013).  

High performance computing systems and efficient software algorithms are able to provide better 

performance for segmentation and feature extraction from multiscale and multispectral remotely 

sensed imagery which are combining raster-based with vector-based task (Blaschke, 2010). 

Image segmentation from object-based method is the process of dividing an image into 

homogenous parts which contains similar pixels and differ to another part of object (Pal and Pal, 

1993; Myint et al., 2011).  

 Therefore, the issues had improved by the appearance of solution such as multisensor or 

multispectral concept in classification (Cain et al., 1989). Object-based image analysis approach 

is used in this study to extract feature from Landsat satellite imagery combine with the ALS 

surface model (ALS-Landsat). In this paper, the objectives are 1) to produce different resolution 

images by resampling Landsat image (30 meter resolution) into 1 meter and 15 meter; 2) to 

extract feature changes by object-based segmentation using multisensor data (CHM, DI, NDVI); 

and  3) to classify the integration of multisensor data by two classes (Disturbed non-Disturbed) 

using NN, RF, and SVM.   

 

2. Materials and Methods 

2.1. Study Area 

This study was carried out in the Berkelah Forest Reserve (Figure 1) located at the central part of 

Peninsular Malaysia, Pahang at 3°44’25.73” N , 102°57’35.71” E. This forest is mixed 

dipterocarp lowland forests and a type of evergreen tropical moist forest. Berkelah provide the 

main production of forest where the most areas have been managed for timber production by 

selective felling. 



The sample plot is designed using Landsat OLI satellite image of 26 June 2016 and Google 

Earth. Sample plot coordinate location is recorded using Garmin GPS and will be used in the 

accuracy assessment of Airborne LiDAR point clouds. Differential GPS will be used to measure 

the ground control point (GCP).  

[Figure 1 here] 

[Figure 2 here] 

 

2.2. Landsat NDVI 

Level-1 data products (Table 1) generated from Landsat 4-5 Thematic Mapper (TM) and Landsat 

8 Operational Land Imager (OLI)/Thermal Infrared Sensor (TIRS) are downloaded from the 

USGS server. Level-1 Precision and Terrain (L1TP) corrected data that have well-characterized 

radiometry and considered suitable for time-series analysis. All Landsat data were standard 

terrain corrected, geometrically and atmospherically corrected maintained by the USGS (Frantz 

et al., 2016, Hamunyela et al., 2017). Cloud and cloud-shadows in Landsat-5 and Landsat-8 

images were masked using the Fmask cloud-shadow mask product. 

[Table 1 here] 

Landsat data delivered as digital numbers and are converted to absolute units of radiance or 

reflectance (Young et al., 2017) to obtain radiometric consistency (Griffiths et al., 2013). The 

equation is: 

     L = Gain x DN + BIAS                       (1) 

where, L represent spectral radiance measured over spectral bandwidth of a channel, DN is a 

digital number value recorded, Gain is slope of response function ((Lmax – Lmin)/255), Bias is 

intercept of response function (Lmin), Lmax is radiance measured at detector saturation in mWcm-

2sr-1  and Lmin is the lowest radiance measured by detector in mWcm-2sr-1 (Bruce & Hillbert, 

2006). 

Guyot & Gu, 1994 stated the conversion from DN to a top of atmosphere (TOA) reflectance 

is required for an accurate production of normalized difference vegetation index (NDVI) (Bruce 

& Hillbert, 2006). The equation is: 



    ρλ =  (πd2   Lλ) / (E0λ cosθs)                       (2) 

 

where, ρλ represent the reflectance as a function of bandwith, d is earth-sun distance correction,      

Lλ is the radiance as a function of bandwith, E0λ is an exoatmospheric irradiance and θs is solar 

zenith angle.  

 Plants show high reflectance in Near Infrared (NIR) and high absorption in Red spectrum. 

NDVI value varies from -1 to 1. Therefore, 0.6 to 1.0 represent tropical rainforest or dense 

vegetation. Formula for NDVI is: 

   NDVI = (NIR - Red) / (NIR + Red)                       (3) 

 

2.3. Airborne LiDAR Scanning (ALS) point cloud 

Airborne LiDAR data were acquired on 12 November 2014 using Dornier Do228-101 G-ENVR. 

Leica ALS50-II is used for capturing airborne LiDAR data. This site captured about 20 lines plus 

cross in 3 hours 10 minutes duration. Full-waveform ALS data are provided from Airborne 

Research and Survey Facility (ARSF). The data consists of full-waveform ALS data with total of 

20 flight lines and supplied as Las 1.3 point cloud. In this paper, all the flight lines were 

combined into one LAS dataset in ArCCatalog tools (Bayracki et al., 2015; Kharee et al.,2017).  

Automatic statistics were calculated for all LAS files to identify the returns, attributes and 

classification codes provided. The data have performed basic classification values follow that of 

the American Society of Photogrammetry and Remote Sensing (ASPRS) standard Airborne 

LiDAR point classes. Most points will have default classification (1) but some may have been 

identified as noisy points and given classification of (7). The attributes from the statistics 

indicate the minimum and maximum of return values which is the last return is 4. Therefore, the 

last return values will be used for generating digital terrain model (DTM) represent the ground or 

bare earth elevation model which is excluded vegetation, buildings or non-ground objects and the 

first return values will be used for generating digital surface model (DSM) represents the non-

ground objects or forest cover above the ground layer. 

 

 



2.4. Canopy Height Model 

The digital surface model (DSM) and the digital terrain model (DTM) are the raster format data 

and the difference between this two raster will derive the canopy height model. The R-statistic 

computational is used to explore CHM value for decision making and presentation of the data by 

producing the boxplot and histogram graph. 

      CHM = DSM – DTM                                         (6) 

[Figure 3 here] 

 
2.5.  Disturbance Index 

Change detection in tropical rainforest land cover is performed using Disturbance Index (DI) 

derived from Landsat Tasseled Cap component (Brightness, Greenness and Wetness). The DI 

keeps the normalized spectral distance of any given pixel from a nominal “mature forest” class to 

a “bare soil” class (Healey et al., 2005). The DI is computed as a linear combination of the three 

normalized Tasseled Cap values (Healey et al., 2005; Hilker et al., 2009): 

             

    DI Landsat = Br – (Gr + Wr)                       (7) 

 

where Br, Gr, Wr are the normalized (Brightness, Greenness and Wetness) with mean and 

standard deviation. 

             

    Br = (B – Bmean) / Bstd                 (8) 

              

    Gr = (G – Gmean) / Gstd                 (9) 

             

    Wr = (W – Wmean) / Wstd                        (10) 

 

2.6 Data Fusion 

LiDAR surface models and Landsat data will be performed fusion technique by Principal 

Componenet Analysis (PCA) to evaluate differences in classification accuracy over a range of 



spatial resolutions. This research carried out classification at different (1 meter, 15 meter and 30 

meter) resolutions. Therefore resampling of Landsat image into 1 meter, 15 meter is performed 

using nearest neighbor (NN) resampling to minimize loss of original pixel values at finer 

resolutions (Raptis et al., 2003; Gardner et al., 2008; Singh et al., 2012). PCA will be performed 

to combine LiDAR surface models and Landsat TM data into different types of composite 

images: 1) SpectralLandsat; and 2) SpectralLandsat + HeightALS. 

 

2.7 Object-based Segmentation   

Images for reference and forest cover changes are obtained from the BFAST model and will be 

used for further segmentation and classification by the object-based method. In object-based 

method by eCognition Developer software, the parameter will be adjusted based on the condition 

of satellite image such as the study area and the segmented object. Multiresolution segmentation 

parameter setting includes the scale, shape, compactness; thematic layer used and image layer 

weight. Segmentation object selection is performed on two fusion model with specific condition 

of threshold in order to establish training sample. Threshold setting for disturbed area is set 

using: DI > 2 (Healey et al.,2005; Masek et al., 2008 ; Hilker et al., 2009), NDVI < 5.0 and H < 

2. 

 

2.8 Change detection of Landsat time series   

There are main steps in classifying changes in each pixel using BFAST method (DeVries et al., 

(2015). A history model of Landsat time series is fitted by calculating the reverse-order-

cumulative sum (ROC or CUSUM) of residuals (Verbesselt et al., 2012). To define the end of 

the stable history period, ROC statistical algorithm perform moving backwards in time, from the 

starting moment of the monitoring period, and evaluates a cumulative prediction error until the 

season-trend model breaks down. The stable history should be long and constant enough to 

detect the changes in forest cover accurately for at least two years with an optimal temporal 

resolution of 16 days (Verbesselt et al., 2012). Moving sum (MOSUM) statistic approach is 

applied to detect breakpoints for monitoring structural change. This method is applied to evaluate 

the stability of the previous observation model when performing the new observations. In this 

case, when the model does not remain stable for new observations, a disturbance is detected. The 



residuals value of MOSUM will be assessed where the value close to 0 indicates that the model 

remains stable while the structural change will be occurred when the values deviated from 0 and 

exceeds 95% confidence interval of the calculated residuals from the history period. 

 

2.9 RF and SVM Regression and Classification 

Training sample for two fusion models is tested using machine learning RF and SVM 

classification algorithm using Rstudio statistical software. Disturbed area will be classified on 

Landsat image selected from BFAST model based on training sample created in during 

segmentation process. Dependent variable of two classes is established as ‘disturbed’ or ‘not 

disturbed’ and act as a factor in RF and SVM model. Training classification model will be used 

to perform prediction to classify all cells in the Landsat imagery. 

 

2.10 Accuracy assessment  

DEM appeared as raster surface format. Therefore, DEM were converted into a sample 

containing attributes such as coordinates (X, Y) and elevation in table format using spatial 

analyst tools in ArcMap software. R2 were obtained from the graph between ALS point and 

ground control point. The evaluation will be based on the value of RMSE in equation 7, 

RMSE = √ ( ∑ni=1 (ZLiDARi – ZGCPI)2  / n )                              (11)                            

where n is the number of samples, ZLiDARi is the terrain elevation obtained from the discrete 

and full waveform LiDAR DEM and the ZGCP  is terrain elevation obtained from the field GCP 

(Salleh et al., 2015). Error matrix based on samples is used for segmentation and classification 

accuracy evaluation. Error matrix, total accuracy and kappa statistics report are generated for an 

accuracy assessment. 

2.11 Mcnemar’s Test p-value 

In order to determine the performance of classification used in this research, Mcnemar’s test is 

calculated from error matrices of the two classes based on standardized equation below: 

 



Z = (f12 – f21) / √(f12 + f21)        (12) 

where f12 represents the number of samples that are misclassified by the prediction sample but 

correctly classified by the tested sample, while f21 represents the sample that are correctly 

classified from the tested sample but misclassified from the prediction sample. Accuracy of 

confusion matrices is statistically significant (p < 0.05) if the value of Z more than 1.96 (Foody, 

2004). 

 

3.     Results  

In this study, CHM from ALS will be used as one of the parameter for detecting any disturbance 

appeared on the Landsat image. Figure 4 shows the positive correlation (R2=0.99) between 

elevation point of ALS and elevation point on the ground measurement. Many studies proved the 

effectiveness of ALS data for an accurate estimation of forest attribute. ALS has been used to 

derive precise and accurate information on forest structural characteristics (Maltamo et al., 

2014). For the extraction of canopy height information from image-based point clouds, a high-

quality digital terrain model (e.g. full-waveform ALS) data is highly recommended (White et al., 

2013 & Straub et al., 2013). In forestry, observation of tree height value on a ground 

measurement has proven more difficult in a denser forest area (Birdal et al., 2017). The complex 

forest structure such as a higher density of forest cover, steepness slope and unreachable of the 

study area will provide advantages to the use of ALS data in forestry application. Figure 5 shows 

the image classification of forest land cover generated from ALS raster-based image alone. The 

land use land cover is classified into 3 classes. The values of height are filtered based on 

histogram and boxplot of CHM. The minimum height of canopy is considered above 0 and more 

than 1.3 meter where the grassland and shrubland are identified while the high density of 

vegetation cover is considered above 6 meter. Based on the histogram plot of CHM, values of 

height more than 30 is considered as outliers such as multi-path reflection, moving objects and 

animals, snow, rain, or dust.  

[Figure 4 here] 

[Figure 5 here] 



NDVI of time series Landsat image is derived and will be used for two analyses. Firstly, 

NDVI of time series is applied in BFAST model to predict the existence of breakpoints between 

time series in order to fit the models of changes detection. The ordinary least square residuals 

based moving sum (MOSUM) is applied to check if the breakpoints are happening in the time 

series (Zeileis, 2005). The residuals value of MOSUM where the value close to 0 indicates that 

the model remains stable during year 2007 to 2010 while the structural change is occurred when 

the values deviated from 0. Figure 6 shows the model does not remain stable when the model 

fluctuate away starting in year 2011 which is it represents the appearance of disturbance. Landsat 

time series in the year between 2007 and 2018 has plotted in Figure 7 using NDVI value. Second 

analysis, Landsat image in which breakpoints was detected in year 2011 will be further discussed 

in segmentation and classification analysis to extract the feature changes of Landsat image 

integrate with ALS data. In addition, Landsat image in the year of 2009 is selected as a reference 

image which is the image lies within the stable period detected in BFAST model and also contain 

lower percentage of cloud cover. Based on the prediction model in Figure 8, the period between 

2007 and 2010 is considered to be a stable history period of time. This interval is shown in 

Figure 8 on the left side of the black dotted line. The monitoring period is lied on the right side 

of the graph. The continuous black line represents the historical data. Based on the historical 

data, the blue line describes the prediction of the model. The continuous red line represents a 

new data from the monitoring period. From the prediction of BFAST monitor, changes are 

detected in the year 2011 highlighted by the vertical red dotted line shown in graph Figure 8.  

[Figure 6 here] 

[Figure 7 here] 

[Figure 8 here] 

In multispectral Landsat (2011 image), downscale process is performed to test the ability 

of different resolution by resampling the 30 meter resolution images into 1 meter and 15 meter 

using interpolation technique. After the process takes place, each of the resolution images is 

combined with ALS image to perform segmentation and preliminary classification; and the 

segmented object is constructed for training sample. When using object-based segmentation, any 

object on the ALS-Landsat image can be clearly identified by the shape generated from multi-

resolution segmentation process. The shape of each object will be segmented based on the user 

interpretation by determine proper scale. In this study, the crown of trees segmented represents 



the forest canopy. The logging track also clearly segmented by this technique compared to pixel-

based which can give mixture information of land use land cover in a single pixel on an image 

(Li et al., 2014). NDVI, DI and CHM are used in this step to assign the class into two categories 

such as forest cover (Undisturbed area) and non-forest cover (Disturbed area).  

 The result in Table 2 represents the overall accuracy and kappa coefficient between two 

types of data condition, 1) SpectralLandsat; and 2) SpectralLandsat + HeightALS. It indicates the result 

of accuracy assessment and kappa coefficient for preliminary classification of NN using different 

resolution of Landsat image after segmentation process takes place. 1 meter fusion data using 

ALS-Landsat produced the highest total accuracy (95%) improving on Landsat alone by 1%. 15 

meter fusion data using ALS-Landsat also perform better in total accuracy (94%) improving on 

Landsat alone by 3% while 30 meter Landsat alone and fusion of ALS-Landsat show an increase 

from 88% to 93%.  The accuracy increases as well as kappa, when the higher or finer resolution 

of image is applied during segmentation. In comparison between spectral Landsat and spectral 

Landsat with Height ALS, the accuracy and kappa also increases. It shows that the lower the 

resolution image, the lower the accuracy of image classification. The 1 meter and 15 meter 

fusion using NN, RF and SVM classifier produce total accuracies more than 85% which is the 

accepted minimum standard for total accuracy in land cover mapping investigations (Anderson 

1976; Rogan et al., 2003; Singh et al., 2012).  

[Table 2 here] 

 The result in Table 3 compared the classification using different machine learning 

algorithm; RF and SVM method. The classification is performed using training sample 

constructed from previous segmented object of 1 meter resolution. The fusion of Landsat and 

ALS approach perform better than Landsat alone in classification accuracy. 1 meter fusion data 

using ALS surface models and RF classifiers produced the highest total accuracy (96%) 

compared to SVM (93%). The RF classifiers performed better than SVM classifier. Mcnemar’s 

test (p-value <0.05) for RF classifier is 0.03 and 0.01 for SVM respectively. The total forest 

cover in the study area (2011) is decreased comparing with reference image (2009) from 83% to 

76% (RF) and 79% (SVM) showing that there are the changes detected between the years (Table 

4). Disturbance map is presented in Figure 9 between 2009 and 2011 of the classification images. 

[Table 3 here] 

[Table 4 here] 



[Figure 9 here] 

 

4. Discussion   

Analysis of NN, RF and SVM classifications produced from ALS-Landsat fusion revealed the 

increasing in accuracy at different resolution and vegetation cover classification. The 

contribution of height information extracted from ALS surface model (CHM) to differentiate the 

vertical feature classes with minimal vertical structure. Based on the omission and commission 

statistic between two classes (forest and non-forest cover), the accuracy of forest cover is slightly 

decreased when ALS is fused with Landsat at all resolution of images. ALS surface model did 

not entirely enhance the forest surface. The accuracy of classification involving ALS will be 

affected by the quality or processing technique involved (Singh et al., 2012). For example, the 

spaces existed between ALS tiles is considered to be a potential cause of error found into fusion 

data. Therefore, misinterpretation in classification may be occurred due to some missing point of 

ALS data.  

 The preference of classifier for any classification process is depend on the type of data in 

order to handle a very big dimensionality and volume of data. Multisource data delivers 

considerable dimensionality with increased volume of data, then, increases the chances of 

Hughes phenomenon which is against the efficiency of classification algorithms use. In 

classification process, the higher number of training sample is required to estimate the classifier 

parameters and avoiding in decreasing the accuracy due to Hughes phenomenon which is the 

number of training sample is lower than the number of input features (Dalponte et al., 2009). 

Random Forest classification for land cover analysis shows that these techniques perform better 

with a large number of training samples (Kulkarni and Lowe, 2016). In addition, overall 

accuracy of mapping for ALS-Landsat using NN, RF, and SVM classifier improved with 

increasing spatial resolution and number of input bands without data dimensionality issues. SVM 

and RF shows a similar performance (Ghosh et al., 2014) when ALS-Landsat fusion with higher 

spatial resolution image is used. However, in a spectral resolution context, SVM classifier are 

able to interpret non-linear discrimination function using the real passages than the reduced of 

spectral resolution (Dalponte et al., 2009) due to their effectiveness in working with high 

complexity of the decision boundary and its high robustness to the original spectral passages 



(e.g. outliers and signal-to-noise ratio). Random Forest methods have been proved to improve 

classification accuracy (Gislason et al., 2006). For a computational time, both RF and SVM 

classifier are flexible and competent to manage higher dimensional data with minimum 

processing time. 

In detecting changes in time series Landsat using BFAST model, a disturbance is 

detected when the model remain unstable when a prediction is observed. However, the accuracy 

of the simulation model in predicting the time of disturbance was not evaluated due to the 

previous research study purposes such as the simulation has been developed to be a fast system, 

a variety of uses, useful to function as a disturbance alert system within recently obtained time 

series observations data and the objective of case study to analyze the effect of ongoing drought 

on vegetation changes (Verbesselt et al., 2012). For the stable history period in time series data, 

the ROC is an automated technique only to detect a structural change. BFAST was not directly 

produce information of the disturbance sources. However, the detected disturbances of NDVI 

time series can be described by using DI. When the structural change was detected, the history 

period is determined (image Landsat 2007 - 2010). The 2011 image Landsat is considered as a 

disturbed image and will be used to detect feature changes using DI. DI has provided a useful 

method to determine the spatial extent of changes in land cover (Healey et al., 2005). The studies 

from (Healey et al., 2005 and Masek et al., 2008) proved this technique is an effective tool for 

mapping changes in land cover and disturbance of forest (Hilker et al., 2009). Automatic 

detection of disturbance using this algorithm can be effectively used in masking cut blocks but 

require further modifications (Coops et al., 2006; White et al., 2007). When using the coarser 

spatial resolution imagery (Hilker et al, 2009) in raster based detection algorithm, the detection 

of disturbance area occurred in pixelated mode compared to the original images of Landsat with 

the DI map, it shows intense delineation of disturbed events. The image contrast when using DI 

for two forest conditions (disturbed and undisturbed) is differ from ecosystem to ecosystem. 

Forest scenes having bright contrast possibly contain a large hardwood or ground component. It 

indicates smaller spectral change when cleared than darker conifer stands (Figure 10). Spectral 

distance between cleared and non-disturbed forest is smaller when the structure of forest are 

relatively open.     

[Figure 10] 



4.     Conclusion 

The finer spatial resolution provides better performance to detect changes in fusion ALS-Landsat 

image. Then, a different resolution images produce by resampling Landsat image (30 meter 

resolution) into 1 meter and 15 meter is required in order to identify the suitable approach that 

can be applied for change detection analysis.  Extracting feature changes using multi-sensor data 

(CHM, DI, NDVI), object-based segmentation is a useful technique in extracting the feature on 

an image before and after fusion of ALS-Landsat. The number of training sample constructed 

must be larger and enough to apply into a classifier. In classifying the integration of multi-sensor 

data by two classes (Disturbed non-Disturbed), NN technique provide acceptable standard of 

total accuracy. Machine learning regression and classification such as RF and SVM also provide 

effective algorithms to classify the training sample of segmented object.  Disturbance area can be 

identified using time series of satellite image. The period of time to be tested must be in a long 

period for better detection of any structural changes occurred within the selected time. Satellite 

image (e.g. Landsat) can be utilized in detecting changes in a smaller scale of a large coverage 

area. However, to detect feature changes of a larger scale in a small particular study area, a 

higher spatial and spectral resolution image is required to produce better quality of classification 

map. Future work to replace the Landsat image with different sensors which contain higher 

resolution of data is considered.  
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