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Abstract  

The influences of loading path on the failure of unidirectional (UD) carbon fibre reinforced polymer 
(CFRP) composite laminae IM7/8552 are studied in this study. A 3D representative volume element 
(RVE) based micromechanical model is established using finite element method (FEM) to capture the 
coupled effects of fibres, matrix and fibre/matrix interface on the failure under different multiaxial 
loading conditions. An artificial neural network (ANN) is adopted to identify experimentally difficult-
to-measure micro-parameters of interface, such as interface thickness and stiffnesses, for the 
construction of the high-fidelity RVE. In order to precisely control the loading path with the 
consideration of Poisson’s effects, the RVE is loaded by force at the dummy points instead of using the 
commonly used displacement loading approach. Three different loading paths are compared in each 
case, and the results show that the failure strength and patterns of the RVE under combined transverse 
and out-of-plane compressions as well as in-plane shear are independent of loading paths. 
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1. Introduction 

Due to the lightweight, design flexibility, corrosion resistance, high stiffness and strength and other 
advantages, composite materials are widely applied in aerospace, automotive, wind energy and even 
biomedical engineering, etc [1–3]. In order to accelerate the design process of new composite products, 
reliable and accurate failure criteria for composites have been sought after. For decades, many attempts 
have been made to propose an explicit mathematic form of failure criteria for composites [4–10]. All 
those studies assume the failure surface is determined, which means the failure is independent of loading 
path. It is generally accepted that when an isotropic material remains elastic before failure, its failure 
points are independent of loading path [11], because whatever the loading path is, the energy 
accumulated for failure is the same. However, differing from the isotropic materials, carbon fibre 
reinforced polymer (CFRP) composites consist of at least two phases, i.e., fibre and matrix. Although 
carbon fibres may remain elastic prior to failure, the polymer matrix tends to show extensive plasticity 
after the yielding point, especially subjected to compression and shear loadings [12]. Besides, the failure 
mode of the composites varies under different loading conditions, including fibre breakage, interface 
debonding, matrix cracking and interlaminar delamination [13]. Therefore, it is vital to understand the 
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effects of loading paths on the failure strength and failure modes of composite materials under different 
loading conditions. 

Controlling the loading path with current experimental devices remains challenging. The common tests 
for studying the mechanical response of composites under in-plane shear and transverse 
tension/compression are the off-axis tensile/compressive tests [14,15] and the Arcan tests [16,17], 
where the ratio of stress components is always kept same throughout each test. Alternatively, thin-
walled tubes loaded by axial/torsional testing facility can provide the same loading conditions, but the 
initial defect, buckling and slitting could introduce discrepancy or even errors in the experimental 
results [18]. For samples under biaxial transverse tension/compression, a biaxial linkage [19] can be 
used on a uniaxial testing machine. In the case of triaxial loading tests, Welsh and Adams [20] designed 
an electromechanical triaxial test facility, which can achieve any stress ratio in the triaxial stress space 
(σ1, σ2, σ3). An alternative method is to use the high-pressure facility, in which the triaxial stress space 
(τ12, σ1=σ2=σ3) [21,22] or (σ1, σ2=σ3) [23,24] can be realised. However, these tests can only provide a 
single loading path, which is either radial or pseudo-radial. So as to compare the mechanical response 
of composites under different loading paths, other efforts have been made in previous works. Choo [18] 
used a thin wall hoop wound tubes loaded by servo-hydraulic feed-back controlled multiaxial test rig 
to compare the failure points in stress space (+σ1, -σ2) and (-σ2, τ12) with two loading paths. They found 
that the failure points are independent of loading path for fibre fracture mode. However, in some cases, 
the loading path can influence the failure points in matrix fracture mode. Vogler and Kyriakides [25] 
compared the failure points for two different loading paths under in-plane shear and transverse 
compression on a biaxial test machine, and the results suggested that the loading paths have negligible 
influences on the failure points of composites under such loading condition. Due to limited loading 
paths or stress ratios used in experiments, numerical methods have been adopted in some studies, such 
as the FE-based RVE. RVE is the minimal material volume that contains statistically sufficient 
mechanisms of deformation processes [26], and RVE method is a widely accepted tool to study the 
failure process of composite materials beside the extended finite element (XFEM) [27,28] and the phase 
field model (PFM) [29-32]. Totry, Gonzalez and LLorca [11] used a 2D RVE to predict the failure 
points of a composite laminae under transverse compression and out-of-plane shear, and they found that 
the loading paths (pseudo-radial and orthogonal path) show no effect on the failure locus. Sun et al. [33] 
used a 3D RVE to predict the failure points of a composite lamina under combined transverse 
compression and out-of-plane/in-plane shear biaxial loading, and the results also suggested the failure 
points are independent of the loading paths. In this work, the same stress space (-σ2, τ12) was considered. 
However, another two stress combinations of (-σ2, -σ3) and (-σ2, -σ3, τ12) are also included in this study, 
together with three different loading paths, namely radial, orthogonal and zigzag loading paths. 

In the aforementioned works using experimental methods and/or numerical methods, only some biaxial 
loading cases were investigated. However, the effect of loading paths on failure points in other different 
biaxial and triaxial loading cases are still unknown. In view of this, this paper adopts a 3D RVE to 
compare the failure points of composite laminae in stress spaces of (-σ2, -σ3), (-σ2, τ12) and (-σ2, -σ3, τ12) 
obtained from different loading paths. In addition, the RVE in this paper consists of three phases of 
materials, including fibres, matrix and non-zero interface. Periodical boundary condition (PBC) is 
adopted for the micromechanical analysis to ensure the RVE maintains reliable homogenised 
macroscale properties [34]. In order to allow direct control of the loading paths, the RVE is loaded by 
a force loading approach instead of the commonly used displacement loading. Furthermore, previous 
studies only discussed the monotonic loading path, but in reality, the path of loadings upon the 
composite during its service loading lifetime is much more complex. Therefore, this study introduces a 
more complex loading path called zigzag loading path in addition to the radial and orthogonal loading 
paths, in which the new loading path can introduce extra plastic strain during the loading conditions. 



At last, this paper is organised in the following structure. In Section 2, the methodology is introduced, 
including details of the RVE, periodic boundary conditions and loading paths. In Section 3, the failure 
strength and failure patterns of RVE under uniaxial loading, biaxial loading and triaxial loading with 
three different loading paths are compared and discussed. At last, conclusion is presented in Section 4. 

 

2. Methodology  

2.1 RVE based micromechanical FE model  

The computational micromechanical FE model is based on an RVE including random dispersion of 
parallel carbon fibres and polymer matrix, which represents a slice of a UD composite laminae with 
certain thickness in the transversal direction. It was found that 50 fibres with a RVE are enough to 
adequately capture the characteristics of the material microstructure with reasonable computing time 
[35]. Moreover, the average diameter of fibres and their volume fraction within a specific RVE are 
acquired as 7 mm and 60% from experiments, respectively [36]. A discrete element method-based 
approach, combining experimental data and an initial periodic shaking model, is adopted for the 
generation of fibres random distribution in two dimensions [37]. The 3D RVE model of the UD laminae 
is achieved by extruding the 2D model along its fibre direction. The microstructure of the RVE is 
idealised as the dispersion of circular fibres randomly distributed in the matrix. The RVE thickness is 
set to 1 µm in this study which is selected as a compromise between the numerical simulations speed 
and the aspect ratio of the FE mesh, resulting in the size of the RVE to be 50 µm×50 µm×10 µm. An 
identified interface thickness using an artificial neural network is utilised in the construction of the 3D 
RVE model, which will be described in detail in Section 2.2. 

Fibres and matrix in the RVE model are discretised with eight-node reduced hexahedral elements 
(C3D8R) and six-node wedge elements (C3D6), while the interface is meshed with first-order cohesive 
elements (COH3D8), which can be found in in  

. Here in this study, the Abaqus/Explicit is used to construct the FE model considering the convergence 
issue when damage within the RVE occurs. Moreover, a cohesive zone model [38-41], which considers 
the friction between fibres and matrix after the interface fails, will be implemented into the FE model 
using VUMAT, together with the Coulomb friction law in our further work, where around 50,000 
elements are used to balance the result accuracy and computational cost. Periodic mesh is achieved so 
that every node has identical counterparts on the opposite faces regarding plane coordinates to apply 
periodic boundary conditions (PBC). Mass scaling is utilised to accelerate the numerical simulations 
within the scheme of ABAQUS/Explicit. A ratio of the kinetic energy over the internal energy of the 
system is monitored to determine whether the mass scaling has any significant influence on the 
numerical results. The time increment is chosen as 6×10-6 s in this study, so that the ratio is calculated 
below 10%, suggesting the mass scaling has insignificant influence on the simulated results [33]. 



 

Fig 1. Schematic of the three-phase based 3D RVE FE model. 

2.2 Constitutive and damage models of constituents  

Carbon fibres are modelled as transversely isotropic and linear materials, and their material properties 
are found in Table 1. The polymer in this study is modelled as an isotropic elasto-plastic solid. It was 
found that the hydrostatic stress has significant influences on the mechanical behaviour of polymers 
[42], in which two different behaviours were observed experimentally, such as brittle fractures under 
tension while and large plasticity under compression and shear [43]. These characteristics of polymer 
are taken in to consideration in the failure analysis of composite materials under multiaxial stress states, 
with the extended Drucker-Prager (D-P) yield model associated with a ductile damage criterion [44], 
the modified Drucker-Prager plastic damage model [45] and the elasto-plastic with isotropic damage 
constitutive model proposed by Melro et al. [46]. In order to generate numerical data from the RVE 
model efficiently and to avoid changing hardening pattern manually in the extended D-P model at the 
damage mode transition point under biaxial loadings [44], the ABQUS built-in modified D-P plastic 
damage model is adopted. The constitutive model is combined the yield function proposed by Lubliner 
et al. [47] with modifications accounting for damage evolution subjected to tensile and compressive 
loads [48]. The yield surface of the epoxy is expressed by a modification of the Drucker–Prager yield 
function according to, 
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where 𝐼ଵ is the first invariant of stress tensors, 𝐽ଶ the second invariant of deviatoric stress tensors, 𝛼 
the pressure-sensitivity parameter of the Drucker-Prager yield criterion, 𝜎ூ  the maximum principal 
stress, <> the Macaulay brackets and it returns the argument if it is positive and zero otherwise, and 
𝐵 a function of the tensile and compressive yield stresses (𝜎௠௬௧ and 𝜎௠௬௖), which can be defined as,  
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wherein 𝛼 can be determined according to tan 3   from the internal friction angle of the material 

(𝛽), which controls the hydrostatic pressure dependence of the plastic behaviour of the material. 

After onset of damage under tensile loads, the quasi-brittle behaviour of the polymer is controlled by 
an exponential cohesive law, characterised by a single normalized scalar damage variable. While for 
the behaviour of matrix under uniaxial compressive loads, plastic hardening is considered by using the 
experimentally obtained stress-strain data, associated with a damage model, which is illustrated in Fig. 
2(a). Readers can refer to [45] for more details of the constitutive model. 

 

Fig 2. Schematic of the modified Drucker-Prager damage-plastic model for the epoxy matrix. 

The interface is modelled with bilinear traction-separation law based cohesive elements, see Fig. 3(a). 
The linear elastic behaviour of the cohesive elements is controlled by a large penalty stiffness K to 
ensure displacement continuity while avoiding convergence difficulties. Because there is lack of 
experimental data for the stiffness of fibre/matrix interface, in most case the empirical values (i.e., 104 
GPa/mm-105 GPa/mm) are adopted [33,45,49,50]. However, in order to obtain more reasonable and 
specific interface stiffnesses for the IM7/8552 composite lamina, parameter identification of these 
stiffnesses is conducted with an inverse method described in Section 2.3. 

 

Fig 3. Schematic of the traction-separation cohesive law of the interface: (a) uniaxial tension in 
normal direction associated with the damage parameter and (b) representation of a mixed-mode 

damage evolution. 



The interface is modelled using cohesive elements, which are governed by the bilinear traction-
separation law. The separations are denoted by < 𝛿௡ >, 𝛿௦, 𝛿௧ for the normal and two shear directions, 
respectively. The Macaulay bracket (< >) represents that a pure compressive stress state does not initiate 
damage. The original thickness of the element is denoted by 𝑇଴. Therefore, the nominal strains are 
expressed as  
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ழఋ೙வ

బ்
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Then the elastic behaviour of the cohesive elements can be written as follow, 
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where 𝑡௜ (𝑖 = 𝑛, 𝑠, 𝑡) represent the nominal traction stress in the normal and two shear directions. 
Uncoupled behaviour between the normal and shear components is considered for simplicity so that the 
off-diagonal terms in this matrix are set to be zero and two shear stiffnesses are assumed to be same. 

A quadratic failure criterion is chosen for the determination of the damage onset of the cohesive 
elements, and the damage occurs when the criterion involving the sum of nominal stress ratios reaches 
1. The criterion is represented as 
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where 𝑡௡
଴, 𝑡௦

଴ and 𝑡௧
଴ represent the interface strengths in the normal and two shear directions. Damage 

evolution is defined based on the traction separation law, and the dissipated fracture energy is used to 
determine the separation displacement at failure.  

After the damage initiation, the traction stress 𝑡௜  (𝑖 = 𝑛, 𝑠, 𝑡) starts to decrease according to 𝑡௜ =

(1 − 𝐷) 𝑡௜
଴ (𝑖 = 𝑛, 𝑠, 𝑡), and the degradation factor D is controlled by  
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D monotonically increases from 0 (at damage onset) to 1 (at final failure), see Fig. 3. To describe the 
evolution of damage of interface under combined normal and shear loadings, the effective displacement 

𝛿௠  is introduced as 𝛿௠ =  ඥ< 𝛿௡ >ଶ+ 𝛿௦
ଶ + 𝛿௧

ଶ . Therefore,  𝛿௠
௙  is the effective separation at 

complete failure, which is calculated from the fracture energy 𝐺஼  dissipated due to the mix-mode 

failure, 𝛿௠
௙

= 2𝐺஼/𝑇௘௙௙
଴ , where the 𝑇௘௙௙

଴  represents the effective traction at damage initiation. 𝛿௠
଴  is 

the effective separation at damage initiation, and 𝛿௠
௠௔௫ refers to the maximum value of the effective 

separation attained during the loading history. 

The Benzeggath-Kenane criterion is adopted to the fracture energy dissipation during the damage 
propagation of the cohesive elements. The criterion reads, 
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where C
BK  is the BK power exponent, 𝐺௡

஼ and 𝐺௦
஼ are the critical fracture energy release rates in the 

normal and shear directions, respectively. And 𝐺௡, 𝐺௦ and 𝐺௧ are the reciprocal work under mixed 
mode propagation. The response of the cohesive constitutive model under normal, shear and mixed 
mode conditions can be found in Fig. 3(b). Due to the restriction of experimental approaches, the critical 

energy release rate of the interface between fibres and matrix in normal mode, C
nG , cannot be measured 

so it is usually assumed between 2–5 J/m2 [45,46,51]. Therefore, in this study, the energy of 2 J/m2 is 
adopted in the simulations. Besides, because there is no experimental data for interface fracture energies 
in the shear modes of uniaxial laminae IM7/8552, they are set equal to the cracking fracture energy of 
matrix, 100 J/m2, which is similar to the one used in [45,52]. More details of this cohesive zone model 
and its numerical implementation can be found in [44]. It should be noted that in this model, the friction 
between fibres and matrix after interface failure has not yet been considered in the element based 
cohesive zone model, although it shows large effects on the shear hardening under the moderate 
compressive stress. It has insignificant influences upon the failure points of the RVE under multiaxial 
loads since the interface failure does not occur under the moderate compressive stress in all three 
loading paths until the RVE is approaching its final failure.  

2.3 The identification of the interface micro-parameters 

Considering the influences of difficult-to-measure experimentally interface micro-parameters on the 
failure mechanisms of composites, more reliable data are necessarily required. Therefore, an inverse 
method using artificial neural network (ANN), which is proposed in previous our work [53], is adopted 
for the uncertainty identification. First, 1,000 samples are generated, each including different micro-
parameters and corresponding macro-parameters. The micro-parameters are generated with Latin 
hypercube sampling and the corresponding macro-parameters are calculated by ABAQUS, as illustrated 
in Fig 4. Then, samples are used to train an ANN model, of which 80% are used as training set, 10% 
are used as validation set and 10% are used as test set. As shown in Fig 5, the ANN model is built on 
the open-source platform TensorFlow 2.1.0, including an input layer, two hidden layers and an output 
layer. There are 8 neurons in the input layer representing the 8 micro-parameters, 6 neurons in both 
hidden layers, and 5 neurons in the output layer representing the 5 macro-parameters. Specifically, the 
sigmoid function is chosen as the activation function for the hidden layers, and the linear function is 
chosen as activation function for the output layer. Furthermore, binary cross entropy loss function, 
combined with Nadam optimisation algorithm [54], is used for training the ANN model, and L2 
regularisation was adopted for preventing overfitting. After training, the mean squared errors of training 
set and test set are as low as 0.0034 and 0.0044, which proves that this ANN model reaches a high 
accuracy for predicting macro-parameters from micro-parameters. 



 

Fig 4. Micro-parameters (Young’s modulus 𝐸ଵ
௙, 𝐸ଶ

௙, Possion’s ratio 𝜐ଵଶ
௙ , 𝜐ଶଷ

௙  shear modulus 𝐺ଵଶ
௙ , of 

fibre, the thickness 𝑇௜ and stiffness 𝐾௡௡, 𝐾௦௦  of interface ) and macro-parameters (Young’s 

modulus 𝐸ଵ , 𝐸ଶ , Poisson’s ratio 𝜐ଵଶ, 𝜐ଶଷ shear modulus 𝐺ଵଶ, of UD laminae) 

 

 

Fig 5. ANN scheme for fibre and interphase parameters identification 

Then, another 1,000,000 samples are generated by Latin hypercube sampling with the trained ANN 
model. The sample with the highest similarity of macro-parameters compared to the experimental data 
of the target material (IM7/8552 composite) is selected based on Eq. (8). The micro-parameters of the 
selected sample are input into the RVE model in order to predict the five macro-parameters. The 
comparison between the experimental data, ANN and RVE predictions can be found in Table 1, which 
shows excellent agreement between the ANN and RVE predictions and the experimental data. 
Therefore, the experimentally difficult-to-measure micro-parameters are identified for the high-fidelity 
FE RVE model with randomly distributed fibre distributions and non-zero thickness interface.  

The similarity between the macro-parameters of generated samples and material properties of a 
unidirectional lamina of IM7/8552 composite materials is defined by the Euclidean distance function, 
as below: 
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where 1
sE  and 2

sE are the predicted longitudinal and transverse modulus, 12
s  and 23

s  are the predicted 

Possion’s ratio and 12
sG  is the predicted shear modulus. 1E , 2E , 12 , 23  and 12G  are the material 

properties of uniaxial lamina IM7/8552. The material properties and identified parameters can be found 
in Table 1. 

Table 1. Material properties of the IM7 fibre and 8552 epoxy, interface parameters and the uniaxial 
laminae IM7/8552. [36,52,55] 

IM7 fibre properties 

  1 GPafE   2 3 GPaf fE E  12
f  23

f   12 GPafG   23 GPafG  

 287 13.40 0.29 0.48 23.8 7 

8552 epoxy properties 

  GPa
m

E  m   MPamyt   MPamyc   2J / mmG  

 4.08 0.38 99 130 100 

Interface properties 
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Uniaxial laminae IM7/8552 

  1 GPaE   2 3 GPaE E  12  23   12 GPaG  

Experiment 162.95 9.0 0.32 0.5 5.17 

Selected 
sample-ANN 

163.0 8.98 0.32 0.5 5.0 

Selected 
sample-RVE 

163.21 8.99 0.32 0.5 5.0 

 

2.4 Periodic boundary conditions and loading approaches  

When an RVE is constructed, periodic boundary conditions (PBCs) [56,57] are necessary to ensure the 
periodic displacement and traction fields of outside of RVE by introducing identical relative 
displacement between the nodes of two corresponding surfaces, and the value of the relative 
displacement could be positive or negative. The unified PBCs are generally written with displacement 

vectors 1U


, 2U


 and 3U


, as below: 
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where L1 (i=1, 2, 3) is the length of the RVE, and iU


 (i=1, 2, 3) are the relative displacement between 

two nodes on the pair of opposite surfaces. Three dummy points are introduced to apply the load, such 
that it is easy to achieve various loading conditions with only modifications of displacements of these 
nodes. Here in this study, the relative formulation [56] is used for constructing the equations of periodic 
boundary conditions, where the vertex A and three edges AE, AB and AD are selected as the local 
coordinate system. The full set of equations to apply PBCs are demonstrated on the one fibre unit cell 
in Fig 6 (a) and written in Table 2, which constrain all the surfaces, edges and vertices of the RVE, 

where 𝑢ො௜
௝
(𝑖 = 1, 2, 3; 𝑗 = 1, 2, 3; i is the main direction and j is the label of dummy points) is the 

displacement of dummy points. Thus, macro-strains εij can be defined by the displacement and the 
corresponding dimensions Li (i=1, 2, 3). 

ˆ
ij

i

i
ju

L
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The equations are sorted in three groups: (i) internal nodes of the surfaces; (ii) nodes at the edges except 
vertices and (iii) vertices. The details of PBC and its implementation in the RVE modelling can refer to 
[44,56]. A schematic of the RVE with PBCs is shown in Fig 6 (b), where the fibres on the edges are 
distributed periodically while the fibres inside are distributed randomly. 

Table 2. Equations in the form of relative formulation for PBCs 

Surfaces Edges Vertices 

3ˆDHGC AEFB
i i iu u u   

3ˆDH AE
i i iu u u   3ˆD A

i i iu u u   

3ˆHG EF
i i iu u u   3ˆH E

i i iu u u   

3ˆCG BF
i i iu u u   3ˆG F

i i iu u u   

3ˆCD AB
i i iu u u   3ˆC B

i i iu u u   

2ˆBCGF ADHE
i i iu u u   2ˆBC AD

i i iu u u   2ˆB A
i i iu u u   

2ˆFG EH
i i iu u u   2ˆF E

i i iu u u   

2ˆBF AE
i i iu u u   

1ˆEFGH ABCD
i i iu u u   1ˆEF AB

i i iu u u   1ˆE A
i i iu u u   

1ˆEH AD
i i iu u u   

 



 

Fig 6. (a) Unit cell for the interpretation of PBCs and (b) Schematic of the RVE with fibres. 

 

In the work conducted by Sun et al. [33], the displacement loading method were adopted to control the 
loading path in the stress space σ2-τ23. However, due to the Poisson’s effect, it is tricky to control the 
loading path in the stress space σ2-σ3. In the stress space σ2-τ12, an orthogonal path can be realised by 
implementing the out-of-plane normal strain ε3 and transverse normal strain ε2 in sequence, see in Fig 
7 (a). But in the stress space σ2-σ3, when the second displacement load is implemented, the second 
segment of loading path will slope. For example, when an orthogonal loading path is chosen, in which 
σ2 is the first segment and σ3 is second segment by means of the displacement loading. When RVE is 
loaded with ε3, the resultant ε2 should change accordingly due to the Poisson effect, however, the strain 
ε2 is fixed in the second step when the σ3 is loaded, resulting in a higher resultant, uncontrollable σ2, as 
shown in Fig 7 (b). 

 

Fig 7. Loading paths for the RVE with displacement loading 

 

In this case, the force loading method [56, 57] is used in this paper, in which the macro-stress σii can be 
controlled by the concentrated forces Fi at the dummy points, 

i
ij

j

F

A
  , (11) 



where Aj is the area of surface subjected by loads. Besides, because the force loading method does not 
constrain the displacement of boundary, the Poisson’s effect can be involved in deformation. 

2.5 Loading paths 

Three different loading paths are considered in this paper, namely the radial path, the orthogonal path 
and the zigzag path, which are illustrated in a 2D case (σi-σj) in Fig 8. The radial path is most commonly 
used in experiments, in which all loads increase simultaneously with a certain displacement ratio until 
the failure occurs, such that the failure point can be obtained. The orthogonal loading path is adopted 
in this study to investigate the absence of stress coupling which exists in the radial loading path on the 
determination of failure point. In the orthogonal loading path, the stresses (converted from equivalent 
loads applied on the dummy points) are applied to the surfaces of the RVE in two sequential steps. The 
first stress increases from zero until the corresponding component of the failure point obtained in the 
radial path, and remains constant; then the second stress increases from zero until the RVE fails, such 
that the orthogonal path and its failure point can be determined. The zigzag path is designed to study 
the effect of extra plastic deformation on the failure points, and this is highly likely in real working 
condition for composite. In this loading path, the first applied stress reaches region between the failure 
point of the RVE with uniaxial loading and the failure point in radial path, which bring extra plastic 
deformation for this case and then decreases, in the meantime the second stress increases simultaneously 
at a specific ratio to ensure the loading path passes through the failure point obtained from the radial 
loading path, such that the zigzag path and its failure point can be obtained.  

 

Fig 8. Three loading paths in 2D σi-σj case 

 

3. Verification of the force loading method 

In this section, numerical results of the RVE subjected to uniaxial force and displacement loads are 
presented to verify the equivalence between the force loading method and the displacement loading 
method for the RVE. Besides, different from the displacement loading, in which the failure point can 
be clearly determined when the resultant stress drops, the applied stress in the force loading method 
increases monotonically. Therefore, the commonly used approach in the displacement loading to 
determine the failure point when the resultant stress drops cannot be directly used in the force loading 
method. Here in this study, a new approach is proposed to determine the failure point of the RVE 
subjected to force loadings.  



The stress-strain and stress-energy curves for the RVE under transverse compression stress σ2 or in-
plane shear stress τ12, defined in Eq. (10) and Eq. (11), using both displacement and force loading 
methods are shown in Fig 9 and Fig 11, respectively. It is found that when the RVE is applied with 
displacement loading, the stress witnesses a reduction when it reaches the peak value at the failure point. 
Besides, the stress-strain curves of two loading methods are in good agreement before failure point, but 
for displacement loading method, some fluctuations can be observed before the peak. This is because 
that the matrix in some regions fails and enters into a soften stage before final failure of the RVE, 
resulting in the fluctuation of macro-stress in the stress-strain curves. However, no such reduction can 
be observed in the RVE applied by force loading, which is due to the fact that the applied stress is 
controlled by force loading directly. In order to identify the failure point of the RVE with force loading, 
the kinetic energy is considered. When the RVE is loaded with forces, the force loading can surpass the 
load carried by the RVE at failure, such that extra work due to the failure transfers into the kinetic 
energy, which can result in a dramatic growth of kinetic energy. In Fig 9 and Fig 11, when displacement 
loading is adopted, the predicted uniaxial strengths are σ2=-242.8 and τ12=74.7 MPa; when force loading 
is adopted, the kinetic energy soars from σ2=-248.0 MPa and τ12=81.6 MPa, which are very close to the 
former ones. The uniaxial strength values from experiment are σ2=-257 and τ12=100 MPa [58], which 
means the RVE show a good accuracy for the strength prediction and specially the force loading method 
shows an even higher accuracy. Besides, the contours of equivalent plastic strains (PEEQ) for transverse 
compression and in-plane shear cases at the failure point in Fig 10 and Fig 12 show similar plastic strain 
distributions and shear bands. In addition, RVEs under σ2 see a shear band at approximately 52º, which 
is in good agreement with [35]. Therefore, based on the findings from these two uniaxial loading cases, 
it can be concluded that the force loading method and displacement loading method for the RVE are 
almost equivalent in the transverse compression and in-plane shear loading cases with regard to failure 
identification, and similar conclusions also works for the meso-scale RVE of braided textile composites 
[59]. The failure points can be identified by analysing the kinetic curves and PEEQ contours when the 
RVE is applied with force loadings. In this study, following cases under biaxial and triaxial loads are 
applied by force loading. 

 

Fig 9. The strain-stress curve and energy for RVE under σ2 

 



 

Fig 10. PEEQ for RVE at failure point under σ2 realised by (a) displacement loading and (b) force 
loading.  

 

Fig 11. The strain-stress curve and energy for RVE under τ12 

 

Fig 12. PEEQ for RVE at failure point under τ12 realised by (a) displacement loading and (b) force 
loading at failure point 
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4. Effects of loading path on the final failure under biaxial and triaxial loads 

4.1 Effects of loading path on failure point under biaxial compression 

Fig 13 shows the failure points obtained from the RVE subjected to biaxial compression, the transverse 
compression stress σ2 and out-of-plane compression stress σ3, with three different loading paths. In the 
radial path, the values of biaxial compression increase simultaneously, and the RVE fails at the point 
CC1 (σ2=-419.5MPa, σ3=-83.9MPa). In the orthogonal path, σ3 increases to -83.9MPa in the first step 
and remains constant. Then in the second step σ2 starts to increase until the failure of the RVE, where 
the failure occurs at the point CC2 (σ2=-417.1MPa, σ3=-83.9MPa). In the zigzag path, σ3 increases to -
160MPa in the first step to introduce extra plastic deformation, and then it reduces as σ2 starts to increase 
simultaneously in the second step. The failure point of the RVE is at CC3 (σ2=-439.9MPa, σ3=-
79.8MPa). These three failure points are very close to each other, with σ2 having the largest difference 
of 5.5% (between CC2 and CC3).  

 

Fig 13. Three loading paths for the RVE under biaxial compression 

 

In Fig 14, it is noticed that the PEEQ distributions of RVE with three different loading are very similar 
to each other. Besides, an interesting phenomenon observed from this case is that the compressive 
strength is significantly improved with all three loading paths under biaxial compression loading 
compared to the strength under transverse compression σ2 or σ3. This is because that the high stiffness 
of fibres leads to a high hydrostatic pressure in the matrix when the RVE is applied by biaxial 
compression. Before the failure occurs, the matrix and fibres are bonded by the interface, such that the 
strain of the matrix in fibre direction caused by Poisson effect is constrained by the interface. Due to 
the high stiffness of fibre and constraints of the interface, the strain of matrix in fibre direction is less 
than the strain caused by Poisson effect, which is manifested by the compressive stress in the matrix 
along the fibre direction (see Fig 15), resulting in a higher yielding strength and a higher failure strength. 



`  

Fig 14. PEEQ for RVE at failure point under biaxial compression. (a) Radial path, (b) Orthogonal 
path, (c) Zigzag path. 

 

Fig 15. Normal stress in matrix along fibre direction for RVE at failure point under biaxial 
compression with radial path. 

Three different loading paths for the RVE under σ2 and τ12 with compression dominated failure are given 
in Fig 16. As can be seen, the failure points in three loading paths are in an excellent agreement, and 
the largest difference among these three failure points is 0.6% (between σ2 of CS1C and σ2 of CS3C). 
Fig 17 shows that the equivalent plastic distributions of the RVE at each failure point for three loading 
paths have a similar pattern. However, differences can still be observed in the zigzag loading path from 
the others as its maximum PEEQ is 11% larger than the other two cases, and the plastic strain in the 
fibre rich region is also slightly larger, which are due to the introduced extra plastic deformation. 

 

Fig 16. Compression dominated failure points for RVE under σ2 and τ12 in three loading paths. 

(c) (b) (a) 



 

Fig 17. PEEQ for RVE at failure point under σ2 and τ12 with compression dominated failure at the 
failure point. (a) Radial path, (b) Orthogonal path, (c) Zigzag path. 

Fig 18 shows the comparison of the failure points obtained from the RVE subjected to σ2 and τ12 with 
shear dominated failure using three different loading paths. Similarly, these three failure points are very 
close to each other, with the largest difference of 4.2% (between τ12 of C1SP1 and τ12 of C1SP3). 
Meanwhile, the three loading paths in this case show identical PEEQ distributions in Fig 19, and their 
failure patterns are similar to the one under in-plane shear in Fig 11, except the shear band being closer 
to the edge. 

 

Fig 18. Shear dominated failure points for RVE under σ2 and τ12 in three loading paths 

 

Fig 19. PEEQ for RVE at failure point under σ2 and τ12 with shear dominated failure: (a) Radial path, 
(b) Orthogonal path and (c) Zigzag path. 
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4.2 Effects of loading path on failure point under triaxial loading 

Fig 20 shows compression dominated failure points for the RVE under σ2, σ3 and τ12. In the radial path, 
the absolute values of σ2, σ3 and τ12 are increased simultaneously, and the RVE fails at point CCS1C 
(σ2=-390.0MPa, σ3=-78.0MPa, τ12=55.8MPa). In the orthogonal path, σ3 increase to -78.0 MPa in the 
first step and reduces as τ12 starts to load until reaching 55.8 MPa; then σ2 starts to load in the third step 
until the RVE fails at CCS2C (σ2=-400.0 MPa, σ3=-78.0 MPa, τ12=55.8 MPa). In the zigzag path, σ3 
increases to -160MPa in the first step to introduce extra plastic deformation and reduces to -78.0MPa 
as τ12 starts loading until reaching 66.0MPa in the second step to introduce extra plastic deformation; 
then τ12 reduces and σ2 starts to load in the third step; the RVE fails at CCS3C (σ2=-377.2MPa, σ3=-
78.0MPa, τ12=56.1MPa). These three failure points are very close to each other with the largest 
difference of 5.7% (between σ2 of CCS2C and σ2 of CCS3C). The PEEQ distributions of RVE for three 
loading path shown Fig 21 are also identical to each other, and their failure pattern are similar to the 
one under σ2 in Fig 14. 

Fig 20. Compression dominated failure points for RVE under σ2, σ3 and τ12 in three loading paths 

 

Fig 21. PEEQ for RVE at failure point under σ2, σ2 and τ12 with compression dominated failure: (a) 
Radial path, (b) Orthogonal path and (c) Zigzag path. 

In Fig 22, three different loading paths for the RVE with shear dominated failure under σ2, σ3 and τ12 
are given. Apparently, three failure points are very close, with the largest difference of 2.9% (between 

(a) (b) (c) 



τ12 of CCS1S and τ12 of CCS3S). The PEEQ distributions in Fig 23 are also identical, and the failure 
patterns are similar to the RVE with in-plane shear as shown in Fig 19. 

Fig 22. Shear dominated failure points for RVE under σ2, σ2 and τ12 in three loading paths. 

 

 

Fig 23. PEEQ for RVE at failure point under σ2, σ2 and τ12 with shear dominated failure: (a) Radial 
path, (b) Orthogonal path and (c) Zigzag path. 

To sum up, the failure strengths and failure patterns at the failure point for RVE under the above loading 
cases are very close for all three different loading paths. It is surprising that even the zigzag path, 
introducing extra plastic deformation in the RVE, show a negligible difference in the predicted failure 
strength. This implies that the failure in composite is more related to the plastic deformation in the 
direction that failure happens. For example, in Fig 20, the failure happens in the direction of ε2, and the 
zigzag path introduces extra plastic deformation in ε3 and ε12, so the failure point in zigzag path is 
identical to other two paths. The same happen in all other cases. 

 

5. Conclusions  

In this paper, the influence of three different loading paths on the failure strength and failure pattern of 
the UD CFRP composite laminae under combined transverse compression, out-of-plane compression 
and in-plane shear is studied. This is achieved by means of a 3D RVE FE model based on the UD lamina 
microstructure. The RVE includes the fibre, matrix and interface to capture the mechanical behaviour 



of each constituent and an elastoplastic constitutive model, modified Drucker-Prager plastic damage 
model, is used to capture the mechanical response of RVE.  

Three different loading paths are compared, including the radial path, the orthogonal path and the zigzag 
path which introduces extra plastic deformation. In order to control the loading path precisely, the force 
loading method, instead of the commonly-used displacement loading method, is used in RVE. Such that 
the failure of the RVE can be identified from the monitoring of kinetic energy. The force loading method 
and displacement loading method are compared in transverse compression and in-plane shear cases, 
which shows that both are equivalent in failure determination. Afterward, three loading paths are 
compared in biaxial loading cases and triaxial loading cases. The results suggest that the three loading 
paths show negligible effects on the final failure strength and the failure pattern of UD composite 
laminae under combined transverse compression, out-of-plane compression and in-plane shear loading. 
The main advantage of this approach is that the high-fidelity FE model consists of three phases, 
including fibres, matrix and non-zero thickness interface, in which the matrix is modelled as an isotropic 
elasto-plastic solid considering the influence of hydrostatic stress. On the other hand, the fibre/matrix 
interface properties (stiffness and thickness) which are difficult to be measured by experiments are 
identified by artificial neural network (ANN), rather than simply using the empirical values. 

Together with the previous findings in literature [11,18,25,33] for other biaxial loading cases, it 
therefore suggests that it is reasonable to use the failure criteria without considering the loading path to 
assess the matrix dominated failure of UD composite laminae. Although this paper draws the same 
conclusion as these previous works, some substantial improvements have been achieved. First, a high-
fidelity FE model was established with three phases, i.e., fibres, matrix and non-zero thickness interface, 
in which the experimentally difficult-to-measure parameters are identified with artificial neural network. 
Second, it extended the previous works, which only consider combined transverse and in-plane shear 
loadings, into biaxial compression cases and triaxial loadings cases that are common, real service 
loading conditions. In addition, it applied a force loading approach instead of the displacement loading 
to precisely control the loading path, allowing the realisation of any kind of loading paths. Finally, it 
introduced extra plastic deformation to study its influences on the failure of composites. 
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