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ABSTRACT 
 

Characterising a Novel Endonuclease in Trypanosoma brucei – Samuel E Shelley, BSc 

Biochemistry, September 2019 

This Thesis is submitted for the degree of Master of Biomedicine 

In 2012 the World Health Organisation published their Neglected Tropical Diseases Roadmap 

outlining 17 diseases which cause a significant burden across the world, namely in those areas 

stricken by poverty. The evidence outlined therein explained how with greater surveillance and 

management of these diseases, as well as increasing access to healthcare in the affect areas, 

should see these diseases brought under control, if not eradicated completely. One such disease 

is Human African Trypanosomiasis - or Sleeping Sickness – a parasitic disease caused by 

Trypanosoma brucei. Causing fevers joint pains and rashes at first, the disease progresses to 

cause a variety of neurological symptoms, before leading to a coma and eventually death. This 

parasite is able to evade the immune system by expressing an interchangeable coat of Variable 

Surface Glycoproteins coded by a vast library of different genes, allowing members of the 

parasite burden to escape immune detection long enough to be passed on to the next patient. To 

switch between these different genes, T. brucei relies on a series of different mechanisms, 

several of them underpinned by the process of homologous recombination. This report aims to 

explore the burden caused by this parasitic disease, the biology of the parasite itself and the 

mechanisms that underpin its pathogenicity. Furthermore, with previous studies having 

identified an enzyme with homology to the human FEN1 protein (an endonuclease responsible 

for cleaving the 5’ flaps generated during DNA replication and repair), this report aims to 

examine the structure and function of this putative TbGEN1 in homologous recombination and 

VSG-switching, and explore how this may help combat this disease. The research carried out 

for this report found that the putative TbGEN1 showed minimal Holliday junction cleavage 

activity but was far more effective at cleaving flap junctions. Through site-directed 

mutagenesis, a total of 9 substitution mutants were identified that lost all 5’-flap cleavage 

activity, with 7 specific residues (D34, D90, E164, D183, D185, G235, and D237) being 

implicated as key to TbFEN1’s activity. Furthermore, localisation studies carried out in vivo in 

procyclic trypanosomes would support this hypothesis, as the fluorescent tagged protein was 

not observed outside the nucleus, although this also raised further questions about the exact role 

of the target protein. The findings of this report demonstrate that there is still much we do not 

know about the fine workings of this parasite’s biology, but that with further research the 

possibility of finding a druggable target in T. brucei is very real.   
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1. LITERATURE REVIEW: 

1.1. INTRODUCTION 
As healthcare and medical research has improved in western More Economically Developed 

Countries (MEDCs) to the point where many life-threatening infectious diseases are controlled 

if not eradicated, organisations such as the World Health Organisation (WHO) and the Centres 

for Disease Control & Prevention (CDC) have directed researchers’ attention to combating 

health concerns in the wider world, particularly Neglected Tropical Diseases. One specific 

example, and the focus of this study, is Human African trypanosomiasis (HAT), or African 

Sleeping Sickness, a tropical disease caused by the obligate parasitic protist Trypanosoma 

brucei. This review will cover the biology of trypanosomatids, the symptoms and epidemiology 

of African Sleeping Sickness, and how these parasites evade immune destruction, specifically 

via antigenic variation and the mechanisms that underpin this. 

 

1.2. AFRICAN SLEEPING SICKNESS 

1.2.1. CAUSES 
Human African Trypanosomiasis (HAT), is a parasitic disease prevalent in Sub-Saharan Africa, 

where it is transmitted by the tsetse fly vector. The disease is caused by a blood-borne parasite, 

Trypanosoma brucei, which is found in two forms, typically localised to East and West Africa, 

roughly separated by the Great Rift Valley. The first, the slow progressing and chronic form, is 

caused by the subspecies Trypanosoma brucei gambiense and is localised to Central and West 

Africa. It is endemic in a total of 24 countries and accounts for around 98% of reported cases. 

This form exhibits anthroponotic transmission and can last up to 3 years. The second form, 

which exhibits a much faster – acute – progression, is caused by Trypanosoma brucei 

rhodesiense and is localised instead to East and Southern Africa. Responsible for a far smaller 

proportion of the disease prevalence (only 2% of reported cases), it is found in only 13 countries 

and is transmitted zoonotically. By comparison, patients with this form normally only live for 

a few weeks or months after contracting the parasite (Checchi, et al., 2008). 



Characterising a Novel Endonuclease in Trypanosoma brucei - Samuel Shelley – March 2020 

11 

 

 

1.2.2. SYMPTOMS 
Both forms of HAT progress through two distinct stages as the parasites move throughout the 

body. The early stage, referred to as the haemolymphatic stage, is characterised by T. brucei 

being present in the bloodstream and lymphatic system. The first symptom at this stage is a 

chancre, or painless ulcer, at the site of the tsetse fly bite. While this symptom can be seen in 

both forms, it is most observed in patients infected with T. brucei rhodesiense, while it is 

comparatively rare in T. brucei gambiense infections. Far more common in this form is the 

swelling of lymph nodes as the parasite migrates from the blood stream into the lymphatic 

system, especially along the back of the neck – posterior cervical lymphadenopathy. Other 

symptoms of this early stage are high fevers, swelling of the spleen, anaemia and inflammation 

of the heart tissue or even cardiac failure (Kennedy, 2004). 

 

FIGURE 1.2-1 – GEOGRAPHIC DISTRIBUTION OF HUMAN AFRICAN TRYPANOSOMIASIS INFECTIONS 

REPORTED BETWEEN 2010-2014 

T. B. GAMBIENSE IS LOCALISED TO CENTRAL AND WEST AFRICA AND IS THE CAUSATIVE AGENT OF THE 

CHRONIC FORM OF HAT. T. B. RHODESIENSE IS LOCALISED TO EAST AND SOUTHERN AFRICA AND IS THE 

CAUSATIVE AGENT OF THE ACUTE FORM OF HAT. FIGURES FOR REPORTED INFECTIONS ARE FROM THE 

WHO ATLAS OF HAT. ‘EXPORTED CASES’ ARE PLOTTED AT THEIR ESTIMATED PLACE OF INFECTION. THE 

PREDICTED DISTRIBUTION OF TSETSE FLIES IS FROM THE PROGRAMME AGAINST AFRICAN 

TRYPANOSOMIASIS.  

ADAPTED FROM (BÜSHER, ET AL., 2017) 



Characterising a Novel Endonuclease in Trypanosoma brucei - Samuel Shelley – March 2020 

12 

 

As the disease progresses into the late stage, or meningoencephalitic stage, and the parasites 

begin to break down the blood-brain barrier (BBB) and cross into the central nervous system, 

the pattern of symptoms changes. Firstly, patients begin to develop anorexia, lassitude and a 

number of minor neurological symptoms, e.g. tremors, partial limb paralysis, speech disorders, 

and fasciculations. As the disease progresses further a number of more severe symptoms may 

become apparent including hallucinations & delirium, hemiparesis, and akinesia.  Most notably, 

and where the disease gets its name, is the dysregulation of the circadian rhythm leading to 

fragmentation of the sleep cycle. Finally patients fall into a coma, may contract concurrent 

infections due to a weakened immune system, and eventually die (Lundkvist, et al., 2004). 

While these symptoms vary a little between the two forms, as stated it is mainly the rate of 

progression that differentiates the two (MD, 2013). 

 

1.2.3. EPIDEMIOLOGY 
As previously stated, T. brucei parasites are transmitted by the bite of the tsetse fly, a blood 

sucking insect found throughout tropical Africa. Before the 19th century tsetse flies were 

comparatively rare in Sub-Saharan Africa, as they require extensive vegetation to reproduce, 

and the cattle that the myriad African tribes farmed would prevent grass and seedlings growing 

too high due to their grazing – effectively limiting tsetse population growth. However, in 1887 

Italian explorers in Eritrea accidentally introduced the cattle virus rinderpest to Africa, which 

swept through the continent’s ox and cattle at an extreme rate, and by 1898 an estimated 5.5 

million cattle had died from the disease. Not only did this devastate the continent’s 

infrastructure so that it was easy for colonists to take control in the subsequent years, but with 

the cattle gone the pasture was soon overgrown into the ‘wild bush’ we know today – a breeding 

ground for the tsetse flies. Furthermore, after the rinderpest epidemic had ended the wild animal 

populations grew much faster than that of the pastoral animals, not only providing an animal 

host for the tsetse fly, but the increased incidence of HAT, humans and the cattle they kept were 

prevented from re-grazing the bush  (Pearce, 2000). 

 

Since then, sleeping sickness epidemics have been classically associated with breakdowns in 

civil infrastructure, such as those during the second world war and during the civil unrest from 

the 1970s to the late 1990s (Figure 1.2.3-1). This is likely due to a combination of factors 

including relaxation of control measures, reduced awareness, and breakdowns in infrastructure 

(hygiene, medical care, refugee camps). Indeed, in the early 20th century, colonists concerned 

with the problems posed by HAT set up a number of successful control measures, reducing the 

transmission to only 4,435 new cases by the mid-1960s. However, this led to the false belief 

that HAT was on the decline and slowly surveillance and control efforts were reduced, leading 

to the disease making a resurgence by the end of the 20th century (Franco, et al., 2014). This 

process of control, surveillance and relaxation has been repeated time and again, and as 

previously stated is often linked with political and civil strife (Ford, 2007). 

 

This century, 53 million people are expected to be at risk of infection from gambiense HAT 

(period 2012-2016) – with between 7000-10,000 cases reported annually, and 4 million at risk 

from rhodesiense HAT (period 2012-2016) – with a few hundred new cases reported annually 

(Franco & Priotto, 2018) (Centers for Disease Control and Prevention, 2012). In recent years 

however the number of new cases has been falling, and between 2000 and 2012 the incidence 

dropped by 73%. This reduction in the number of new cases has continued since then, with only 

2804 cases reported in 2015, 84% of which can be attributed to the Democratic Republic of the 
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Congo. The WHO tropical diseases roadmap has targeted HAT for elimination as a public health 

problem by 2020 (WHO, 2018). 

  

FIGURE 1.2-2 (I) SLEEPING SICKNESS EPIDEMICS AND MAJOR POLITICAL EVENTS IN 

UGANDA, 1905-2000 

CASES FROM 1936 ONWARDS INCLUDE SOUTH-EASTERN UGANDA ONLY. ADAPTED FROM 

(FORD, 2007). 

(II) TOTAL NUMBER OF NEW CASES OF HUMAN AFRICAN TRYPANOSOMIASIS REPORTED TO 

THE WORLD HEALTH ORGANISATION, 1940-2013 

ADAPTED FROM (FRANCO, ET AL., 2014). 

I) 

II) 
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1.2.4. CONTROL MEASURES 
With T. brucei contributing to three major diseases (two human and one veterinary) in the 

developing world, major efforts are undertaken to control its spread and impact. In the past, a 

lack of coordination of such efforts and scientific understanding has led to repeated outbreaks 

and epidemics – such that these efforts were branded as a “failure of both science and public 

health” (Molyneux, et al., 2010). In more recent years, greater communication between 

scientific bodies and major funding from philanthropic bodies such as the Bill and Melinda 

Gates Foundation has finally made the possibility of eliminating neglected tropical diseases like 

HAT possible (Parker & Kingori, 2016). The zoonotic T. B. rhodesiense HAT has been the 

main focus of preventative measures, as its reliance upon animal reservoirs for tsetse 

transmission means that controlling either or both of the animal hosts exposure to the parasite 

or teste vector population has proved an effective, if complex, means to combat the disease’s 

spread. The anthroponotic T. b. gambiense HAT prevention measures have instead largely relied 

upon diagnosis and treatment of the disease, and following plans of the WHO to eliminate 

gambiense HAT as a public health problem by 2020, the combined efforts of WHO, Sanofi-

Aventis, Bayer and multiple nongovernmental organisations, have led to a reduction in the 

number of cases to only 1442 in 2017, and the goal to have sustainable elimination (zero cases) 

by 2030 (Aksoy, et al., 2017). 

Due to the variant nature of T. brucei’s surface coat (covered in section 1.3.4.) the development 

of vaccines and other prophylactic treatments have been especially difficult, and thus, control 

has instead relied upon controlling the tsetse fly vector and the effective diagnosis and treatment 

of the disease within the population. Bayer and Aventis have however committed to 

manufacturing and freely providing the drugs necessary to treat HAT to the WHO, however 

with the high toxicity of current drugs, a correct and detailed diagnosis is paramount to effective 

treatment (Simarro, et al., 2012). Even diagnosis of HAT is costly and difficult however, as it 

relies upon the results of a lumbar puncture to determine the trypanosome subspecies and 

disease progression. Other molecular diagnostic tests do exist, but they have largely remained 

within research setting rather than being readily available to patients or governments for control 

of the disease. Serological diagnostic test are in development and could provide an affordable 

and effective method to test large proportions of the population, but further research is still 

needed in this field to increase the specificity and reliability of these devices (Matovu, et al., 

2017) (Jamonneau, et al., 2015).  On limiting transmission of the disease, the CDC advise steps 

to reduce the likelihood of tsetse fly bites. These include wearing medium-weight clothing that 

covers as much as the body as possible, and in neutral colours – as tsetse flies are attracted to 

high contrasting colours; avoiding bushes and other brush where the tsetse flies may reside; and 

using insect repellent and netting (CDC, 2012). 

The lack of readily available means to test if patients have contracted HAT, combined with the 

logistics and expense (in training medical staff and in actual drug delivery) required to provide 

even free chemotherapy in the form of les toxic eflornithine, has meant that melarsoprol (which 

has a 5% drug induced death rate, as it causes reactive encephalopathy) has remained in 

widespread use (Burri, 2010). Even with the WHO providing kits containing the necessary 

materials for eflornithine administration, the slow-acting nature of the drug, complicated 

delivery and short-half life in vivo presents a problem of incomplete compliance to the full 

course of treatment and thus growing trypanosome resistance to the drug. Between 2003 and 

2008, a huge clinical trial was carried out to determine if a combination therapy of eflornithine 

and nifurtimox may help combat some of these issues, and it concluded that the combination 

treatment was of a similar safety and efficacy to treatment with eflornithine alone, but with  a 

reduced dose and treatment time. WHO once more developed medical kits to allow easy access 

to this combined treatment, with the two drugs provided again by Bayer and Aventis, and this 
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has proven to be an effective treatment against second stage gambiense HAT (Simarro, et al., 

2012).  

The drugs against the first stage of trypanosomiasis (Suramin for both forms of the disease, and 

Pentamidine for gambiense HAT) have been in use for the last 70 years and thankfully have 

raised little to no safety or efficacy concerns. For second stage rhodesiense HAT however, 

melarsoprol continues to be the only effective drug treatment. Thus, with growing resistance 

concerns and safety issues surrounding anti-trypanosomal drugs, there is still a great need to 

develop treatments for this collection of diseases. 

1.3. TRYPANOSOMA BRUCEI 

1.3.1. WHAT ARE THEY? 
Trypanosomatids are a family of single-celled obligate parasites belonging to the Kinetoplastea 

taxonomic class. They are distinct from other protists, in their possession of an organelle 

referred to as a “kinetoplast”, which contains the mitochondrial genome of these organisms. 

There are three different trypanosomatids that cause significant disease in humans: various 

species of Leishmania, which are transmitted by sand flies and cause leishmaniasis; 

Trypanosoma cruzi which is transmitted by triatomine bugs in the Americas and causes Chagas 

disease; and Trypanosoma brucei which is transmitted by tsetse flies in Africa and causes HAT. 

As the causative agent of HAT, this review focuses on Trypanosoma brucei. 

 

Trypanosoma brucei is a heteroxenous blood-borne parasite, spending part of its life cycle in 

the tsetse fly vector and the other in the mammalian host. This single celled parasite exhibits a 

highly polarised cell architecture, with the vast majority of single organelles concentrated 

towards the posterior end of the cell. The cytoskeleton is all arranged uniformly, with the 

majority of microtubules in the subpellicular corset running from the anterior to the posterior 

of the cell (- to + ends). At the very rear of the cell is the flagellar pocket, an invagination at 

which the parasite’s flagellum exits the cell while also acting as the sole site for endo and 

exocytosis, and particularly VSG recycling and coat clearance as a result. This single motile 

axonemal flagellum is responsible for cell movement and adhesion, and is associated with a 

dense bundle of filament proteins known as the paraflagellar rod, which has been implicated in 

flagellar beat frequency and strength (Portman & Gull, 2010). 

 

1.3.2. LIFE CYCLE 
Infection commences when a tsetse fly carrying the parasite in its salivary gland bites the patient 

to take a blood meal, injecting some of its saliva into the patient to prevent coagulation. At this 

point T. brucei is in the metacyclic trypomastigote stage of its life cycle, such that the parasites 

have already begun to express a surface coat of variable surface glycoprotein (VSG), and are 

unable to reproduce. Upon entering the blood stream, cells begin to transform into their 

bloodstream trypomastigote form, growing in length and gaining the ability to proliferate by 

binary fission, producing short stumpy daughter cells (Matthews, et al., 2004). While in long 

slender forms, the parasite continues to evade the host immune system by a combination of 

surface coat clearance and VSG switching – detailed below. This form is also able to burrow 

through the thin endothelium of the hosts blood vessels, gaining access to the lymphatic and 

central nervous systems (Langousis & Hill, 2014).  The cells reproduce by binary fission, 

producing a new cell that is a clone of the original. 
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Eventually, a tsetse fly bites the host organism and takes a blood meal, taking up the short 

stumpy bloodstream trypomastigotes into its midgut. Here T. brucei again transform, this time 

into procyclic trypomastigotes. Their VSG coat is replaced by a dense coat of procyclins, a 

number of proteins with high numbers of glutamic acid and proline repeat units (EP repeats) 

and pentapeptide glycine, proline, glutamic acid, threonine repeats (GPEET repeats) at the C-

terminus. While proteolytic enzymes within the fly’s midgut can breakdown the N-terminus, 

these repeats at the protein’s C-terminus, along with the heavily glycosylated GPI-anchor, are 

resistant to protease attack, and likely act as a protective barrier for other T. brucei proteins. 

While in the procyclic form in the tsetse midgut, T. brucei can continue to multiply by binary 

fission (Vickerman, 1985). 

As the T. brucei cells migrate towards the salivary gland they transform from trypomastigotes 

to epimastigotes, such that the kinetoplast and basal body have migrated past the nucleus 

towards the anterior of the cell, and the flagellum begins in the middle of the cell, projecting 

out in front of it. While in the salivary gland, the trypanosome’s flagellum fulfils a secondary 

function, by allowing the parasite to attach to the fly’s epithelium while they continue to 

proliferate. Finally, the attached epimastigote transform into metacyclic trypomastigotes which 

live freely within the salivary gland, ready to infect another animal when the tsetse fly next 

takes a blood meal (Sharm, et al., 2008) (Langousis & Hill, 2014). 

 

FIGURE 1.3-1 – LIFE CYCLE OF T. BRUCEI PARASITES 

ADAPTED FROM (CENTERS FOR DISEASE CONTROL AND PREVENTION, 2018) 
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1.3.3. CELL CYCLE 
In both the human and tsetse fly host, T. brucei parasites must multiply in number to reach a 

sufficient parasitaemia to guarantee a continued cycle of infection. As mentioned above, 

trypanosomes rely on a form of cell division known as binary fission (figure 1.3.3-1). Firstly, 

the basal body duplicates and a new flagellum begins to form, before the mitochondrial DNA 

within the kinetoplast is copied and the kinetoplast also divides, allowing the two basal bodies 

to separate. The nuclear DNA then also undergoes duplication prior to nuclear division, while 

the new flagellum grows alongside the existing one. Finally the nucleus divides in two, before 

the new daughter cell splits from the older cell by cytokinesis, starting at the anterior of the cell 

(Hammarton, 2007). 

 

 

 

 

1K1N 

Basal Body 

Segregation and 

formation of the new 

flagellum 

2K1N 

Nuclear Division 

2K2N 

Formation of Two 

Daughter Cells 

FIGURE 1.3-2 – CELL CYCLE DIVISION IN T. BRUCEI 

ADAPTED FROM DIAGRAM BY RICHARD WHEELER, 
2006. 
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1.3.4. IMMUNE EVASION 
In order to survive within their animal hosts, parasites like T. brucei must be able to evade their 

host’s immune system. Many blood borne parasites evade immune detection and destruction by 

hiding within their host cells or in immune privileged tissues, such as the central nervous system 

(CNS) or the eye. Others actively dysregulate the host’s immune response, secreting molecules 

that may mimic normal host molecules to misdirect or hinder the immune response (Schmid-

Hempel, 2009). T. brucei cells however, are free-living within the host’s bloodstream and 

tissues, and so must evade destruction by the immune system another way. To do so, T. brucei 

is covered in a dense coat of Variant Surface glycoproteins (VSGs) that is central to parasite 

immune evasion.  Trypanosomes possess two core mechanisms that allow the parasite 

population to persist long enough within the host to be re-ingested by a new tsetse fly and 

continue the cycle of infection: surface coat clearance; and VSG switching. Both these 

mechanisms rely heavily upon the dense VSG coat to protect the cell from immune destruction, 

but they utilise it in different ways. 

1.4. VARIABLE SURFACE GLYCOPROTEINS 

1.4.1. STRUCTURE 
Variable surface glycoproteins cover the entirety of the bloodstream form T. brucei cell, with 

approximately 107 proteins on each cell resulting in an electron dense shield across the surface 

membrane. Each VSG projects around 12-15 nm out from the cell’s phospholipid bilayer where 

they are attached by a glycosylphosphatidylinositol (GPI) anchor on their C-terminus. Each 

VSG is composed of two identical dimerised subunits, each around 60 kDa in mass. They can 

be divided into two clear domains, the larger N-terminal domain (350-400 amino acid (aa) 

residues) which is highly variable and includes a 20 aa signal sequence; and the smaller C-

terminal domains (20-40 residues), of which there are often more than one and are responsible 

for GPI-anchor interaction. The two domains are joined by flexible regions that act as linkers 

(Bartossek, et al., 2017) (Hutchinson, et al., 2003). 

 

Although the sequence of amino acids can vary hugely between different VSGs, with the 

variable N-terminal domains sharing approximately 13-30% sequence homology, there is a 

conserved tertiary structure (Figure 1.4.1-1) (Schwede, et al., 2015). There are consistently 2 

antiparallel α-helices present – linked by a short turn – which are then surrounded by a number 

of other secondary structures including 7 shorter α-helices and a 3-stranded β-pleated sheet, 

joined by a number of short loops and a longer loop towards the top of the molecule. So 

conserved is this structure that despite the vast differences in different VSGs sequences, 

molecules have been shown to be approximately 60% superimposable (Blum, et al., 1993). 

 

Within both the N and C-terminal domains there are a number of conserved cysteine residues – 

which are involved in forming disulphide bridges between the monomers. These residues have 

been shown to occur in distinct patterns across different VSGS, 3 alternative patterns in the N-

terminal domain and 6 in the C-terminal domain, which are referred to as Types A-C and 1-4 

respectively. In the C-terminal domain, types 2, 4 & 5 all contain only 4 cysteine residues, while 

1, 3 & 6 contain 8 cysteines, presumably arranged into 2 subdomains of 4 residues each. 

Meanwhile in the N-terminal domain, Type A domains have 4 residues, Type B have 8, and 

Type C have 6 (Carrington, et al., 1991). 
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Associated with the base of the N-terminal domain is an N-linked oligosaccharide, which is 

likely involved in folding efficiency – acting as a substrate for the unfolded glycoprotein 

glucosyltransferase enzyme, which adds glucose to a terminal mannose residue on unfolded 

proteins, targeting them for correct folding prior to release from the endoplasmic reticulum 

(ER). This ensures that only correctly folded VSGs are expressed on the cell surface, 

presumably to ensure homogeneity across the entire surface. Some larger oligosaccharides may 

too be involved in extra shielding for the invariant proteins beneath the VSG canopy (Schwede, 

et al., 2015). 

 

 

 

FIGURE 1.4-1 (A) 3-DIMENSIONAL STRUCTURE OF A VSG221 

ILLUSTRATING THE CONSERVED STRUCTURE OF A VSG PROTEIN. 

A RIBBON DIAGRAM SHOWING THE VARIOUS SECONDARY STRUCTURES 

AND OVERALL TERTIARY STRUCTURE OF VSG221. ONE N-TERMINAL 

DOMAIN MONOMER IS SHOWN IN BLUE, AND THE OTHER IN GREY. C 

TERMINAL DOMAINS ARE SHOWN IN PURPLE, AND N-LINKED 

OLIGOSACCHARIDES IN RED.  

(B) SPACE-FILLING MODEL OF VSG221 IN 3 PLANES: X, Y, AND Z. 

THE PREVIOUS RIBBON DIAGRAM IS SUPERIMPOSED OVER A SPACE-
FILLING MODEL TO ILLUSTRATE THE SIZE AND SHAPE OF THE VSG221 

PROTEIN, AND THE MODEL ROTATED 90° TO BE VIEWED IN ALL 3 PLANES. 
WIDTH MEASUREMENTS ARE DISPLAYED BELOW, AND AN ELLIPSE 

REPRESENTING APPROXIMATELY 28 Å2 IS SHOWN OVER THE TOP-DOWN 

VIEW. 

ADAPTED FROM (SCHWEDE, ET AL., 2015). 
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1.4.2. FUNCTION 
Projecting approximately 14 nm from the cell surface, VSG proteins form a canopy across the 

entire membrane, hiding the majority of invariant cellular membrane proteins beneath from 

immune detection, such that the only valid target is the VSG. Furthermore, this dense coat of 

proteins also prevents the formation of the complement membrane attack complex, a collection 

of proteins that are assembled to form a pore in pathogen’s cell membranes and thus disrupt the 

osmotic balance of the cell, causing cell lysis. 

Some membrane proteins, including those translated from expression site-associated genes 

(ESAGs) and invariant surface glycoproteins (ISGs) may occupy a greater 3D space than the 

VSGs within the membrane topology and thus extend outside the VSG coat, meaning they could 

still be detected by the immune system. Equally, IgG has been shown to have some ability to 

penetrate the VSG coat, although it is mostly only as far as the base of the N-terminal domain 

(the widest part of the VSG) due to the density of VSG packing upon the cell surface. In fact 

VSGs each take up around 28 nm2, and due to their high copy number only have between 28 

nm2 and 35 nm2 available to them, such that at most there can only be approximately 7 nm2 

unoccupied space between them (Schwede, et al., 2015). Thus, due to the sheer ubiquity of 

VSGs, these invariant proteins are less readily detected by the immune system. Even when some 

are recognised, the antigen-antibody complex would then be subject to the same hydrodynamic 

flow as recognised VSGs, and thus also removed by surface coat clearance, which is explained 

below (Engstler, et al., 2007) (Mugnier, et al., 2016). 

 

As the host immune system recognises the foreign VSG protein, the antigen is presented to the 

body’s lymphocytes by various antigen presenting cells (such as dendritic cells and 

macrophages). These lymphocytes in turn seek out the targeted antigen for immune destruction. 

B lymphocytes in particular raise antibodies (Ab) against the target foreign epitope allowing for 

complement formation or destruction by macrophage cells. In order to escape this fate, the 

VSGs and other surface membrane proteins are continuously recycled through the 

trypanosomes’ flagellar pocket, along with any bound Ab complexes (Rudenko, 2011). As the 

cell swims through the mammalian bloodstream, the hydrodynamic forces acting upon VSG-

Ab complex causes it to move backwards along the cell surface, towards the flagellar pocket 

where it can be internalised by endocytosis and the antibody destroyed. It has been proposed 

that the rapid rate of antibody clearance is due to the complexes acting as molecular sails, as 

they project out from the sheer VSG coat, experiencing a higher drag force as the parasites pass 

through narrow blood vessels, with these increased hydrodynamic forces sweeping the complex 

backwards along the plasma membrane and recycling the entire membrane roughly every 12 

minutes (Engstler, et al., 2007) 

 

Not only does the VSG coat shield cell surface proteins from immune recognition, but VSG 

fragments released by dying trypanosomes may act to downregulate or misdirect the immune 

system as previously hidden epitopes are exposed upon release and denaturing of VSG dimers. 

These new epitopes are recognised by antigen presenting cells, directing lymphocytes to search 

for an epitope they will not find on live trypanosomes. Chemical messengers released as a result 

of the early infection and detection of these released VSG fragments can activate M2 

suppression macrophages and actually downregulate the T-lymphocyte response against the 

VSG proteins (Mansfield & Paulnock, 2005). 
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While the concentration of anti-VSG antibodies in the hosts bloodstream and tissues remains 

low surface coat clearance is sufficient to prevent the T. brucei population from being destroyed 

by the immune system. However, as the infection persists and the immune response grows 

stronger, the concentration of antibodies eventually grows too great for coat clearance alone to 

be sufficient. This is where the second mode of immune evasion comes in: VSG Switching. 

While each individual T. brucei cell’s VSGs are all identical, within their genome the parasites 

have a vast repertoire of VSG genes and pseudogenes, which can be randomly swapped out for 

the currently expressed gene, changing the phenotype and thus the detectable epitopes of that 

trypanosome. Thus, the immune system must once again go through the process of raising a 

new immune response of sufficient titre against this new VSG (Rudenko, 2011). The exact 

mechanisms of VSG switching are detailed in the next section. 

 

1.5. ANTIGENIC VARIATION 

1.5.1. VSG GENE EXPRESSION 
Within T. brucei’s genome there are approximately 2000 VSG genes and pseudogenes, allowing 

for a huge cellular repertoire of VSG proteins. However, despite this tremendous number of 

distinct VSG-coding genes, individual parasites express only a single VSG at a time. VSGs can 

only be expressed from specific subtelomeric transcription units, which are highly polymorphic 

and found across several megabase chromosomes. These polycistronic sites are referred to as 

bloodstream expression sites (BESs), and alongside different VSG genes, they also contain 

different expression site-associated genes (ESAGs) which encode various proteins such as 

transferrin receptors that are transcribed alongside the VSG (Sima, et al., 2019). Transcription 

of these BESs by RNA Polymerase I (RNA Pol-1) produces a single polycistronic RNA 

molecule, before the individual genes have the capped splice leader trans-spliced ligated onto 

each gene to produce the final transcripts (Pays, 2005). Since the ESAG repertoire differs 

between different BESs, this allows T. brucei to better adapt to its environment by altering the 

proteins it expresses (Hertz-Fowler, et al., 2008). The number of BESs varies between different 

T. brucei subspecies and strains, but regardless of the exact number, parasites must express only 

a single VSG at a time for the VSG coat to prove effective. Allelic exclusion is assured by 

maintaining a discrete privileged Expression Site Body (ESB), outside the nucleolus, where 

RNA Pol-1 normally transcribes ribosomal RNA (Horn, 2014) (Navarro & Gull, 2001). 

 

With such a huge collection of alternate VSG genes and pseudogenes, subsets of the T. brucei 

population within a patient are able to avoid immune clearance simply by expressing a different 

VSG protein to the one targeted by the immune system. When the host has generated a 

sufficiently robust immune response, characterised by a high antibody titre against the VSG 

molecule, the majority of the parasites in the population are destroyed. However, a small 

number of T. brucei cells within the population will have switched VSG expression and are 

unaffected by the host immune response, persisting within the host. This process is constantly 

occurring at random within the population and so at any one time a number of different VSGs 

are active within the population (Figure 1.5.1. – 1) (Mugnier, et al., 2016). The mechanisms by 

which T. brucei switches VSG expression are critical to understanding the immune evasion 

process and are explained in the next sections. 
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1.5.2. TRANSCRIPTIONAL SWITCHING 
The first method of switching between the expression of different VSGs is that of transcriptional 

switching (or in situ switching), and it is perhaps the more straightforward method of VSG 

switching. Put simply, it is the termination of transcription of one BES and associated VSG and 

the activation of transcription at another site, and thus a new VSG. Since transcriptional 

switching not only allows a new VSG protein to be expressed but also a new set of ESAGs, this 

A) 

 

 

 

 

 

 

 

 

 

B) 

FIGURE 1.5-1 CHANGES IN VSG EXPRESSION ACROSS THE TRYPANOSOME POPULATION OVER THE 

COURSE OF INFECTION 

A) GENERAL CHANGES IN PARASITAEMIA WITHIN THE HOST OVER THE COURSE OF INFECTION, AND 

EFFECT OF HOST IMMUNE RESPONSE. VSG PHENOTYPE SHOWN AS DIFFERENT COLOURS, WITH 

CORRESPONDING ANTI-VSG ANTIBODIES SHOWN ABOVE. AS THE ANTIBODY TITRE AGAINST THE 

RED VSG BECOMES MORE CONCENTRATED, THE PARASITAEMIA BEGINS TO PLATEAU AND THEN 

FALL AWAY. HOWEVER, WHEN VSG SWITCHING OCCURS AND THE NEW GREEN VSG PHENOTYPE 

ARISES, THE HOST ANTIBODY TITRE MUST REACH A SUFFICIENT TITRE ALL OVER AGAIN. (HORN, 
2014). 

B) INDIVIDUAL VSG EXPRESSION WITHIN THE TOTAL PARASITE POPULATION. WHILE THE FIRST 

GRAPH PROVIDES A GOOD SIMPLISTIC VIEW OF HOW VSG SWITCHING HELPS THE PARASITE 

OVERCOME THE CHALLENGES PRESENTED BY THE HOST IMMUNE SYSTEM, IT PRESENTS A FALSE 

IDEA THAT ONLY ONE NEW VSG PHENOTYPE ARISES AT A TIME. IN REALITY, EACH WAVE OF 

PARASITAEMIA IS COMPOSED OF HUNDREDS, IF NOT THOUSANDS DIFFERENT VSG PHENOTYPES. 
(MUGNIER, ET AL., 2016) 
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allows T. brucei parasites greater adaptability to their environmental conditions. However, little 

to no multiallelic phenotypes are observed in vitro, so the expression of different BESs must be 

more tightly controlled than simply switching on and off expression at different sites. When 

these double-expression cells do arise, they appear to be highly unstable in vitro, occurring 

extremely rarely in culture (∼10-7 per trypanosome). Furthermore, in the absence of selection 

pressures this double-expression phenotype is gradually lost (∼12-15 cell doublings). Thus, 

mechanisms must act upon the transcriptional switching between different BESs to couple the 

activation of one site to the deactivation of another to allow long-term allelic exclusion (Chaves, 

et al., 1999). 

 

While the availability of a single privileged expression domain might be sufficient to ensure 

allelic exclusion, the ability to temporarily house two expression sites simultaneously would 

undermine this hypothesis. Instead, evidence has shown that ES activation is more than likely 

controlled on an epigenetic level, through a number of mechanisms regulating RNA Pol-1 

activity at different BESs, chromatin remodelling or telomere positioning. Molecules such as 

CIFTA (class I basal transcription initiation factor A) and SUMO proteins (small ubiquitin-like 

modifier) have both been demonstrated to play a role in RNA Pol-1 recruitment to the ES, while 

TDP1 (Trypanosome DNA binding protein 1) may be involved in maintaining an accessible 

chromatin structure at the active ES by histone depletion. Similarly, studies have shown that 

modifications to the chromatin structure to deplete an ES of nucleosomes will result in its 

activation, and that silent ESs have enriched histones H1, H2A, H3 or H3V (Maree & Patterton, 

2014). A 6th nitrogenous base, β-ᴅ-Glucopyranosyloxymethyluracil (Base J), has been shown 

to be enriched at the telomeres and silent ESs, but was absent at active ESs, and has been shown 

to at least inhibit RNA Pol-2 transcription. Finally, many molecules have been identified that 

play a role in telomere location and integrity, and whose dysregulation (either through knockout 

or hyper-expression) can also affect either VSG switching or expression, e.g. Telomeric repeat 

binding factor (TRF), mini-chromosome maintenance-binding protein (MCM-BP), and nuclear 

peripheral protein-1 & 2 (NUP-1/-2) (Cestari & Stuart, 2018). Other molecules and mechanisms 

may be involved, but this is still being researched and is outside the scope of this report. 

 

1.5.3. SWITCHING VIA RECOMBINATION PROCESSES 
The remaining mechanisms for VSG switching all involve exchanging DNA from within the 

active BES with DNA from elsewhere in the trypanosome’s genome, utilizing a process called 

homologous recombination. There are in fact three different mechanisms by which T. brucei 

can change VSG expression that involve homologous recombination: duplicative gene 

conversion, telomere exchange, and segmental gene conversion. This recombination of DNA 

from elsewhere in the genome is made possible by homology between the varied number of 70-

bp repeats upstream of the donor and BESs, and the conserved 3’ ends of VSG sequences 

(Taylor & Rudenko, 2006). Both telomere exchange and duplicative gene conversion introduce 

a different VSG gene into the active BES from elsewhere in the genome, while segmental gene 

conversion actually generates entirely novel VSG genes by combining a mosaic of DNA from 

pseudogenes throughout the genome. 
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The first means of introducing new VSG genes to the BES is telomere exchange. This involves 

exchanging the telomeric VSG gene from an inactive BES with the VSG gene in the active ES, 

via a cross-over event between two telomeres. This leaves the previous VSG gene intact and 

the new VSG gene transcribed along with any previous ESAGs. Duplicative gene conversion - 

by comparison to telomere exchange - is a destructive process, eliminating the previously active 

VSG gene from the genome as the new VSG gene is copied into the active BES from the vast 

libraries of VSG genes within chromosomal internal locations. While it may overwrite the 

previous VSG gene, this method of switching allows any potential VSG to be expressed from 

within the genome, rather than only those already present within ESs – vastly increasing the 

repertoire available to the T. brucei cell. Finally, segmental gene conversion uses the same 

mechanism as duplicative gene conversion, except that segments from a number of different 

genes and pseudogenes are recombined into a novel chimeric VSG gene. While this has the 

potential to create an entirely non-functional VSG, such cells would be quickly selected against 

by the immune system, meanwhile another novel VSG has the greatest chance of being entirely 

unrecognised by the host immune system (Rudenko, 2011). As discussed above, a key part of 

the puzzle for combatting T. brucei’s ability to cause persistent infection lies in preventing its 

A      B       C         D 

FIGURE 1.5-2 VSG SWITCHING MECHANISMS 

MECHANISMS FOR VSG SWITCHING. EACH VSG GENE IS COLOUR CODED AND THE EXPRESSED VSG 

PHENOTYPE IS DEMONSTRATED BY THE COLOUR OF THE BOX SURROUNDING EACH SCENARIO.  

A. DUPLICATIVE GENE CONVERSION 

B. SEGMENTAL GENE CONVERSION 

C. TELOMERE EXCHANGE 

D. TRANSCRIPTIONAL SWITCHING 

 (VINK, ET AL., 2012) 
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continued evasion of the immune system, especially its ability to switch VSG coats via the 

mechanisms detailed here – and to do so, it is necessary to understand the process of 

homologous recombination. 

 

1.6. HOMOLOGOUS RECOMBINATION 
Although homologous recombination (HR) plays an important role in VSG switching, HR’s 

role extends far beyond this specialised function and is an essential process operating in all 

organisms that acts to maintain genome stability and promote genetic diversity.  The first model 

proposed to describe the mechanism of homologous recombination became known as the 

Holliday model as it was proposed by Robin Holliday in 1964, to account for discrepancies in 

the expected products of meiosis in fungi. A key intermediate in the Holliday model is the 

Holliday junction, a structure in which the DNA molecules participating in recombination are 

linked by a pair of exchanged DNA strands. Several models for mechanisms of homologous 

recombination have been developed since 1964, a key feature of these models is that 

recombination is initiated by the programmed introduction of a double-strand break (DSB). 

Many of them, most notably the double-strand break and repair model for homologous 

recombination, propose a key role for Holliday junction containing intermediates (Figure 1.6.1-

1) (Haber, et al., 2004) (Szostak, et al., 1983). 
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FIGURE 1.6.1-1 HOMOLOGOUS RECOMBINATION MECHANISMS AND HOLLIDAY JUNCTION RESOLUTION 

A) DIAGRAM DEMONSTRATING THE PROCESS BY WHICH A DOUBLE STRAND BREAK CAN BE REPAIRED BY 

HOMOLOGOUS RECOMBINATION (SAKOFSKY, ET AL., 2012) 

B) RESOLUTION OF DOUBLE HOLIDAY JUNCTIONS TO PRODUCE EITHER CROSSOVER OR NON-
CROSSOVER PRODUCTS (VAN GOOL, ET AL., 1999) 

 

2. 3. 

4. 

A 

B 
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1.6.1. VSG GENE STRUCTURE 
To understand the role homologous recombination plays in VSG switching, it is key to first 

look at the structure of the VSG genes and the arrays they are located in. Of the thousands of 

VSG genes and pseudogenes encoded within the trypanosome’s genome, most are located in 

subtelomeric gene arrays of T. brucei’s 11 megabase chromosome pairs, while individual 

genes are located within about 30% of the one hundred or so minichromosome subtelomeres. 

In both the megabase chromosomes and the minichromosomes at least half of all VSG genes 

and pseudogenes are preceded by a 70 base pair repeat (which can be even longer in the 

expression sites). Furthermore, each VSG gene has an invariant motif of 14-bp 

(GATATATTTTAACA) in the untranslated region at the 3’ end of the sequence, and both 

minichromosome and ES-linked genes have the downstream telomere repeats  (Li, 2015). It is 

therefore presumed that these repeat sequences serve as areas of homology for recombination 

into the expression sites from elsewhere in the genome (Boothroyd, et al., 2009). 

The first step in initiating this homologous recombination is the introduction of the DSBs that 

underpin this form of DNA repair. Firstly, it has been observed that the 70-bp repeated 

sequences that sit upstream of many VSG genes contain a large number of TTA repeats, 

which are known to cause instability during plasmid transcription and could form DNA motifs 

that are digested by a T. brucei endonuclease (Li, 2015) (Ohshima, et al., 1996). Studies using 

ligation-mediated PCR have in fact shown that DSBs occur naturally within the 70-bp repeat 

sequences during DNA replication, and with a frequency about 100 times greater than the rate 

of VSG-switching (Glover, et al., 2013). This would suggest that while there are plenty of 

DSB occurring that could result in homologous recombination induced VSG switching, not all 

DSBs cause VSG switching to occur. Indeed research by Glover, et al has shown that the 

precise location of DSB within the subtelomere can influence not only the probability of VSG 

switching but the mechanism by which it occurs (Glover, et al., 2013). Interestingly, work by 

Jehi, et al. into a novel T. brucei telomere protein has shed light on the regulation of VSG 

switching, as depletion the TRF-Interacting Factor 2 (TbTIF2) protein they studied was shown 

to increase DSBs and VSG switching, and that together with TbRAD51 may play a role in 

VSG-switching regulation (Jehi, et al., 2014). This would suggest therefore that the 

appearance of DSBs around the active ES VSG gene is a passive and random process, and it is 

only in the active repair of these double strand breaks by proteins such as TbRAD51 and the 

potential TbFEN1 discussed in this report, that the process of VSG switching is initiated. How 

this repair process leads to the introduction of a new VSG gene into the active ES is discussed 

below. 

 
 

1.6.2. RECOMBINATION IN DNA REPAIR 
Today, HR is recognised as referring to a number of different pathways that use homology 

between two different DNA molecules to repair damaged DNA. Recombination may be 

initiated at a DSB occurring as a result of damage, or at a DSB introduced enzymatically as part 

of a programmed recombination event. For example DSBs are introduced by Spo11 during 

meiosis to deliberately initiate recombination that ensures correct segregation of chromosomes 

and generates diversity in meiosis (Keeney, 2011). DNA damage occurs in all cells as a result 

of replication errors and exposure do both endogenous and exogeneous damaging agents.  

Endogenous DNA damage has been estimated to be as high as 70,000 lesions a day (Lindahl & 

Barnes, 2000). The repair of DNA damage is crucial to continued cell function, as the damaged 

DNA can block transcription; replication of the damaged DNA can lead to  errors, which may 

be ‘fixed’ into  harmful mutations upon a further round of replication; or replication of damaged 

DNA can convert damage affecting only one DNA strand into a DSB.  It is estimated that DNA 
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damage affecting one strand is converted to a DSB at a rate of approximately 50 DSBs/cell/cell 

cycle (Vilenchik & Knudson, 2003).  DSBs can be especially harmful if not repaired faithfully, 

as inaccurate repair may lead to major genome rearrangements. 

 

1.6.3. DOUBLE STRAND BREAK REPAIR AND THE DOUBLE HOLLIDAY 

JUNCTION PATHWAY 
Regardless of the exact mechanism, HR acts to repair the DSB at the point before the cell 

undergoes mitosis, immediately after DNA replication, such that the sister chromatids are 

readily available, as these are identical copies of each other. Before the DSB can be repaired, 

the molecular machinery involved must gain access to the damaged DNA, and thus unpack the 

target strand from the dense chromatin by remodelling its structure and modifying the histone 

proteins. In the case of T. brucei this is likely where a number of the molecules noted in Section 

1.5.2. come into play, unpacking the chromatin at the site of both the current and replacement 

VSG, to allow HR to take place, however the exact mechanics of this remodelling are outside 

the scope of this review. 

 

With the chromatin unpacked, the damaged DNA is exposed to the machinery necessary to 

repair it. In all recombination-based models for DSB repair the first step is to resect the DNA 

DSB, removing a small section of each 5’ strand to form two 3’ extended single stranded DNA 

tails. Research into human HR has shown that the MRN complex plays a pivotal role in end-

resection, by binding DSBs, signalling for the cell cycle to pause while repair is carried out, 

identifying and selecting the required pathway and aiding the subsequent repair, e.g. tethering 

the broken sugar-phosphate backbones in place (Yuan & Chen, 2010). Work by Genois et al. 

has since identified MRN complex homologs in both trypanosomes and Leishmania that suggest 

this mechanism is conserved in trypanosomatids (Genois, et al., 2014). Following resection, the 

3’ single-stranded tail is bound by a recombinase (Rad51 in eukaryotes), which initiates 

homologous pairing and strand invasion by the 3’ ss ends into an intact homologous DNA 

molecule. This creates a short region of heteroduplex DNA and displaces the complementary 

strand of the intact duplex into a D-loop (Bärtsch, et al., 2000) (Gupta, et al., 1997). 
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Following formation of heteroduplex, the invading DNA strand can prime new DNA synthesis, 

from its 3’ end with new DNA being synthesised according to the sequence on the intact DNA 

molecule (Fig 1.6.3-1). The D-loop generated in the undamaged DNA molecule can then return 

to its original conformation of helical ds-DNA with the newly synthesised DNA annealing to 

the 3’ end of the ssDNA tail originating from processing the damaged DNA on the other side 

of the initial DSB.  This mechanism is termed synthesis-dependent strand annealing (SDSA) 

(As seen in mechanism 3 of Figure 1.6.1-1) (Cox & Battista, 2005) (McMahill, et al., 2007). 

Alternatively, continued DNA synthesis from the invading strand can move the D-loop along 

the intact DNA molecule such that the displaced DNA is able to anneal to the 3’ ssDNA tail 

generated from the other side of the DSB gap. This generates an intermediate containing two 

Holliday junctions – referred to as a double Holliday Junction.  Holliday junctions, as shown in 

figure 1.6.2-2, are X-shaped DNA confirmations that arise from 4 incoming dsDNA strands that 

share sequence homology, with a nearly square planar confirmation.  From here, the remaining 

DNA is synthesised on the 3’ ends to fill the gaps on both DNA molecules. Recombination 

intermediates are then resolved into products by introduction of a pair of nicks across each of 

TABLE 1.6.3-1  MECHANISM OF SYNTHESIS DEPENDENT STRAND ANNEALING 

(COX & BATTISTA, 2005) 
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the Holliday junctions. Recombination is completed by ligating the remaining nicks to generate 

intact DNA molecules (Haber, et al., 2004) (Punatar, et al., 2017). In summary it is clear that 

Holliday Junctions are a central intermediate in homologous recombination, and potentially to 

the recombination mechanisms that ultimately allow T. brucei to substitute new VSG genes into 

the BES. 

 

1.6.4. HOLLIDAY JUNCTIONS 
As stated above, Holliday junctions (HJ) were first proposed by Robin Holliday in 1964, as part 

of his model for homologous recombination, to explain how apparently linked genes can end 

up segregated independently (Holliday, 1964). When two Holliday junctions arise together – as 

with the dHJ pathway – their resolution can either lead to non-crossover products (NCOs) or 

full crossover products (COs) (Figure 1.6.4-1). In the case of NCOs, the final DNA products 

remain ultimately unchanged from their original, undamaged state, with only a small ‘patch’ of 

DNA exchanged. COs, by comparison, can lead to the exchange of entire chromosome regions 

and while this is potentially harmful in somatic cells, it is key to the introduction of genetic 

variation during meiosis, as it creates new combinations of genes on the same chromosome 

(Heyer, 2004). If recombination occurs between two identical replicated sister chromatids (i.e. 

after replication) then regardless of whether NCOs or COs would be formed, there is no new 

genetic material exchanged. However, when COs occur between non-sister chromatids in 

mitotic cells (i.e. chromatids from replicated homologous chromosomes – one from each 

parent), then this can result in loss of heterozygosity depending upon how the new genetic 

material is segregated into daughter cells (Colavito, et al., 2010) (Swuec & Costa, 2014). This 

is crucial to eukaryotic cell survival, as loss of heterozygosity can decrease the individual’s 

genetic variation and ability to survive future mutation events. But in T. brucei, the resolution 

FIGURE 1.6.3-2 MOLECULAR STRUCTURE OF A HOLLIDAY JUNCTION 

((ZEPHYRIS), 2007) 
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of dHJs to produce COs can provide a useful mechanism to introduce new VSG genes into the 

active BES, and thus are key to VSG switching. So how do they occur? 

 

Double HJs can be processed in a further two ways after their formation during DSBR, either 

by dissolution or resolution. Dissolution will always lead to the critical NCOs and thus maintain 

heterozygosity between sister chromatids. It relies upon the BLM-TopoIIIα-RMI1-RMI2 

(BTR) complex to catalyse the migration of the 2 HJs together to form a hemicatenane, before 

separating the linked DNA. The other method of processing dHJs is by resolution, and it is only 

through this path that cross-over events can occur – depending upon the conformation of the 

nicks made by the Holliday junction resolvase enzyme (Fig 1.6.4-1) (Wyatt & West, 2014) 

(Chan & West, 2015). These enzymes act to cleave 2 of the 4 involved strands with symmetrical 

nicks in either a horizontal or vertical axis, where cleavage in the same plane produces the 

‘patched’ NCO events as it leaves the parent DNA strands covalently linked to one another. 

Cleavage in different planes (one cut in the horizontal plane and one vertical) meanwhile results 

in CO events, as the DNA from originally different strands is left covalently bonded together, 

and thus is ligated to form recombinant products (Heyer, 2004) (Oxford Academic, 2014). As 

TABLE 1.6.4-1 DOUBLE HOLLIDAY JUNCTION RESOLUTION CAN FORM 

CROSSOVER OR NON-CROSSOVER PRODUCTS 

(WYATT & WEST, 2014) 

 



Characterising a Novel Endonuclease in Trypanosoma brucei - Samuel Shelley – March 2020 

32 

 

stated, it is the role of a number of HJ resolvase enzymes found throughout all domains of life, 

including viruses, to tightly control this process to ensure genetic material, and thus information, 

is safely preserved. 

 

1.7. HOLLIDAY JUNCTION RESOLVASES 
The family of enzymes responsible for cleaving Holliday Junctions to form 2 separate duplex 

DNA strands are collectively known as Holliday Junction Resolvases. As discussed above, they 

introduce symmetrical nicks in one of either 2 conformations to produce recombinant or non-

recombinant products upon resolution. In the 1990s, work by a number of scientists first 

identified RuvC as a Holliday junction resolvase (Iwasaki, et al., 1989) (Connolly, et al., 1991) 

(Dunderdale, et al., 1991). RuvC is composed of 2 identical 19-kDa subunits which together 

form two DNA binding clefts, approximately 30 Å apart. Binding HJs then allows the 2 

diametrically opposed nicks to be introduced into the bound DNA strands, which occurs 

preferentially (although not conditionally) at 5’-A/TTTG/C-3’ sequences (Punatar, et al., 2017). 

Subsequent to characterisation of prokaryotic HJ resolvases, eukaryotic HJ resolvase activity 

was simultaneously identified in yeast and in humans, associated with the Yen1 and GEN1 

proteins respectively (Ip, et al., 2008). While these two enzymes were functionally similar to 

RuvC, they belong to a separate family of enzymes known as the XPG/Rad2 family, while 

RuvC is related to the retroviral integrase superfamily (Tsutakawa, et al., 2011) (Gorecka, et 

al., 2013). Since then, a two further HJ resolvases have been identified in human cells – the 

non-canonical SLX-MUS complex (SLX1-SLX4-MUS81-EME1), and the non-canonical BTR 

complex (BLM-topoisomerase IIIα-RMI1-RMI2) (Sarbajna & West, 2014). The BTR complex 

however acts to resolve dHJs by dissolution and so is outside the scope of this review. 

Unlike the BTR complex, GEN1 and the SLX-MUS complex are both structure-selective 

endonucleases and both follow the resolution pathway of HJ cleavage. Importantly the SLX-

MUS complex cleaves HJs asymmetrically – such that short sections of single stranded (ss) 

DNA left forming gaps and flaps, requiring further downstream processing - while GEN1 

performs symmetrical cleavage. Patients with Bloom’s Syndrome who are deficient in the BTR 

complex thus show an increase incidence of sister chromatid exchanges due to SLX-MUS and 

GEN1 being the only available enzymes for HJ resolution (Sarbajna & West, 2014). 

Furthermore, while scientists are still working to determine the precise differences between the 

cellular roles of these two enzymes, it is clear they are of paramount importance to proper DNA 

maintenance since their depletion is lethal to cells – while they must occupy different niches 

since GEN1 can only moderately compensate for loss of SLX4 in vivo (Wechsler, et al., 2011) 

(Wyatt, et al., 2013) (Garner, et al., 2013). 

 

1.7.1. XPG/RAD2 FAMILY, GEN1 
As stated, GEN1 belongs to the XPG/Rad2 enzyme family, a group of 5’-flap endonucleases 

found throughout a number of eukaryotic kingdoms, which contains the two eponymous 

enzymes: xeroderma pigmentosum complementation group G protein (XPG) from humans and 

Rad2 from Saccharomyces cerevisiae – however these enzymes are primarily involved in 

nucleotide excision repair in response to DNA damage, rather than HJ resolution. In fact, the 

family consists of 4 different subclasses of enzymes that fulfil different roles: I) Nucleotide 

excision repair endonucleases, II) Replication flap endonucleases, III) Recombination/repair 

exonucleases, and IV) Holliday junction resolvases. With such a range of different 

functionalities, the group is largely characterised by three domains conserved across all its 

members. Firstly, the N-region, located at the extreme N-terminus of the protein, consisting of 
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the first 95-105 amino acids. Secondly, an internal domain (I-region) of approximately 140 

residues. And finally a helix-hairpin-helix domain located just along from the I-region, which 

is implicated in catalysis and DNA binding (Figure 1.7.1-1) (Ip, et al., 2008) (Rass, et al., 2010). 

The importance of this family of enzymes has been demonstrated in that a lack of XPG in 

humans can lead to xeroderma pigmentosum, or Cockayne syndrome, whereby patients exhibit 

microcephaly, impaired development of the nervous system, premature aging and a failure to 

grow and gain weight (Zafeiriou, et al., 2001). 

 

 

 

As stated, of particular relevance to the focus of this review is the class IV XPG/Rad2 family 

member, GEN1. The enzyme was first isolated in 2008 by Ip et al. and has orthologues in a 

number of different eukaryotic kingdoms, e.g. D. melanogaster (Ishikawa, et al., 2004) and S. 

cerevisiae (Ip, et al., 2008).  While being allocated to the HJ resolvase class, in vitro 

characterisation of GEN1 has demonstrated it retains its ability to also recognise 5’ flaps, 

replication fork intermediates and ss gaps, and in fact GEN1’s flap cleavage activity is far more 

efficient than its HJ cleavage activity. However, its primary function in vivo would appear to be 

a final measure to remove dHJs and thus conjoined chromatids, prior to cytokinesis. To fulfil 

such a variety of functions, GEN1 has a sophisticated structure consisting of a homodimer 

between two identical subunits, which forms around the HJ to introduce symmetrical nicks, but 

operates as a monomer to cleave flaps (Chan & West, 2015). 

FIGURE 1.7-1 DENDROGRAM DEPICTING RELATIONSHIPS AMONG FEN-1/RAD2 FAMILY 

MEMBERS. ON THE RIGHT ARE DEPICTED PROTEIN STRUCTURES WITH HIGHLY CONSERVED 

DOMAINS (XPG-N AND XPG-1 DOMAINS) HIGHLIGHTED 

(ISHIKAWA, ET AL., 2004) 
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A single GEN1 monomer resembles an open right hand, with the catalytic domain forming the 

palm and the DNA-binding domain located within the ball of the thumb. This catalytic core 

contains both the XPG-N and XPG-I regions, forming a 7-stranded β-sheet surrounded by 9 

helices which harbours the active site. Contained therein are a number of negatively charged 

residues – D30, E75, E134, E136, D155, D157, D208 – which are responsible for catalysis. 

Inserted within the helix-hairpin-helix (α10-α11) upstream of the I-region that forms the 

exonuclease domain (along with hairpins α12- α 13 and α14-α15), is a 78 amino acid insertion 

that forms an additional helix (α12b), which is packed loosely on the end of the ‘fingers’ of the 

protein. The palm and fingers then form 2 characteristic DNA binding surfaces, separated by a 

hydrophobic wedge within the ball of the thumb. Finally a small globular chalice-shaped 

chromodomain is located at the wrist, forming an aromatic cage which is thought to secure the 

DNA-GEN1 complex (Lee, et al., 2015). 
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To cleave HJs, the GEN1 homodimer introduces two symmetrical incisions across the 

intersection of the characteristic X-shape, through the coordinated action of both subunits. The 

first of the 2 nicks is rate-limiting, but the second is almost simultaneous, and the correct 

positioning of the arms of the HJ substrate within the subunits is critical to successful cleavage, 

hence the importance of the novel chromodomain, as this provides another anchorage site for 

 

FIGURE 1.7-2 – ARCHITECTURE OF HUMAN GEN1 

(A) SIMPLE AMINO ACID STRUCTURE AND DOMAINS OF HUMAN GEN1. (B) CATALYTIC 

CORE OF GEN1 PROTEIN BOUND TO HJ DNA. DOMAINS ARE COLOUR CODED TO MATCH 

THOSE IN PART A: INTERTWINING  XPG-N AND XPG-I IN GREEN, 5’->3’ EXONUCLEASE 

C-TERMINAL DOMAIN IN BLUE, CHROMODOMAIN IN PINK, ACTIVE SITE RESIDUES (E134, 
E136, D115, D157) IN ORANGE, AND UNASSIGNED REGIONS IN GREY. THE 

ARCHITECTURE OF THE FOLDED PROTEIN RESEMBLES A DOWNWARD-ORIENTATED RIGHT 

HAND, AS ILLUSTRATED. THE SURFACE MODEL OF THE PROTEIN IS SHOWN IN A SEMI-
TRANSPARENT REPRESENTATION, WITH SECONDARY STRUCTURE UNDERNEATH. THE HJ 

IS OVERLAID WITH DIFFERENT STRANDS SHOWN IN DIFFERING COLOURS. (C) 
ELECTROSTATIC SURFACE POTENTIAL OF GEN1. COLOUR-CODED TO SHOW POTENTIAL 

FROM -5 KT/E IN RED, TO +5 KT/E IN BLUE. THE DNA-BINDING REGIONS AND 

HYDROPHOBIC WEDGE ARE HIGHLIGHTED IN YELLOW. (D) SECONDARY STRUCTURE 

ELEMENTS OF GEN1’S CATALYTIC CORE, COLOUR CODED AS BEFORE. DOTTED LINES 

REPRESENT UNRESOLVED REGIONS IN THE CRYSTAL STRUCTURE. NUMBERING FOLLOWS 

A UNIFIED SCHEME FOR RAD2/XPG FAMILY FOR Α-HELICES, Β-SHEETS AND 310-HELICES 

(Η). 

ADAPTED FROM (LEE, ET AL., 2015). 
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the DNA-binding interface upstream. Of particular note is that analysis of GEN1 structure-

function relationships have suggested that its ability to cleave HJs is far slower than 5’ flaps, 

despite being recognised as a HJ resolvase (Lee, et al., 2015). 

Due to the apparent functional degeneracy with other endonucleases and particularly other the 

HJ resolvases discussed above, determining the cellular role of GEN1 has so far been difficult. 

Thus it has been suggested that GEN1 may simply function as a secondary backup pathway for 

HJ resolution compared to the SLX-MUS complex (Garner, et al., 2013). However other studies 

have suggested GEN1 may occupy a separate niche of specifically resolving nicked HJs 

following their conversion to single intact HJs after the SLX-MUS complex has failed to resolve 

them, as well as being implicated in centrosome maintenance  (García-Luis & Machín, 2014) 

(Gao, et al., 2012). In most cells, the preference for HJ dissolution and thus prevention of CO 

products is enforced by sequestering GEN1 outside the nucleus until M phase, as well as by 

phosphorylation (Matos, et al., 2011). 

 

1.7.2. FLAP ENDONUCLEASE 1 
Another member of the XPG/Rad2 family of note, is the class II flap endonuclease 1, or FEN1. 

This smaller protein has been shown to play a key role in DNA replication during both mitosis 

and DNA repair. As DNA polymerase δ extends primer DNA upon the lagging strand during 

both DNA replication, downstream DNA can be displaced, creating 5’-end flap structures in 

the DNA. FEN1 is responsible for cleaving these 5’-flaps in a sequence-independent manner, 

allowing DNA Ligase to then seal the sugar phosphate backbone (Henneke, et al., 2003).  

Furthermore, FEN-1 also cleaves bifurcated 5’-flap junctions and the single base 3’-flaps 

created during the extension of Okazaki fragments for long-patch base excision repair and 

homologous recombination, as well as playing a role in telomere maintenance in human and S. 

cerevisiae cells (Gary, et al., 1999) (Saharia, et al., 2008) (Parenteau & Wellinger, 2002)  

(Stodola & Burgers, 2016). As such, this critical enzyme (or orthologs thereof) can be found in 

all domains of life, and depletion of FEN1 has been shown to be lethal in both mice and yeast 

(Larsen, et al., 2003) (Parenteau & Wellinger, 1999) (Reagan, et al., 1995).  

A number of studies have revealed that several key regions of FEN1 have been conserved in 

homologues from distantly related organisms, including Methanococcus jannaschii, and 

Pyrococcus furiosus (Hwang, et al., 1998) (Hosfield, et al., 1998). Comparison of these 

structures has demonstrated a strong similarity in the topology of the core structure of this 

enzyme, with a pocket formed of a β-sheet and two α-helices housing the enzymes active site, 

and the seven conserved acidic amino acids which surround two distinct Mg2+ ions – one which 

regulates substrate binding and the other which influences conformational changes in the 

enzyme’s 3D structure – which are key to nuclease function. In addition to this active site, FEN1 

also has a flexible loop region (residues 87-134) containing a helical motif and which is lined 

with positively charged residues. This is thought to form a 8 x 25 Å hole which would 

accommodate single-stranded DNA for flap junction cleavage (Henneke, et al., 2003). Much 

like GEN1, the FEN1 enzyme would seem to envelop the target single stranded DNA within 

this loop domain, and then a ‘thumb’ structure would contain the flap itself, such that the 

cleavage site sits within the active site. Meanwhile interaction with the 3’ nucleotide of the 

upstream strand by a hydrophobic pocket on FEN1 prevents further extension of the DNA by 

Pol δ and thus, prevents any further strand displacement. This interaction may also help to 

stabilise the interaction of FEN1 around the flap junction, allowing for precise and efficient 

cleavage that DNA Ligase can repair (Henneke, et al., 2003) (Storici, et al., 2002).  
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Of particular relevance to this report is the N-terminal 50% sequence homology and 5’-flap 

endonuclease activity shared by FEN1 with the previously discussed GEN1 enzyme (Rass, et 

al., 2010).  

 

1.8. TBFEN1, A NOVEL ENDONUCLEASE IN 

TRYPANOSOMA BRUCEI 
As covered earlier in the review, T. brucei utilises homologous recombination to carry out 

VSG switching - introducing new VSG genes from elsewhere in their genome to the active 

BES, as well as creating novel VSG genes via segmental gene conversion. To do so, they rely 

on the DSBR pathway and the resolution of the arising dHJs to copy VSG genes across into 

the active ES from a number of VSG gene libraries throughout their genome. With 

homologous recombination playing such a key role in the mechanism that underpins VSG 

switching, it presents a major focal point for research into how to potentially interrupt the 

parasites immune evasion and to ideally treat the disease. By studying the proteins involved in 

DNA repair, the DSBR pathway and homologous recombination, and what it is about their 

structure and molecular make-up that allows them to fulfil their roles, it may be possible to 

design drugs or other treatments that inhibit those roles.  

1.8.1. A TRYPANOSOMAL ORTHOLOG OF GEN1 
Previous studies in this laboratory have identified the need for a Trypanosomal ortholog of the 

GEN1 enzyme and attempted to locate such an enzyme within T. brucei’s proteome. Following 

a protein BLAST search using the human GEN1 amino acid sequence, two T. brucei proteins 

with sequence homology were identified: putatively labelled as FEN1 (Tb927.3.930) and Rad2 

(Tb927.9.11760) proteins. However, initial fluorescence studies of Rad2 demonstrated it to 

have poor localisation to the trypanosome nucleus, and so the 45kDa FEN1 (Tb927.3.930) 

(referred to hereafter as TbFEN1) protein was identified as the more likely HJ resolvase enzyme 

for further study (McAllister & Benson, 2015). If TbFEN1could be shown to possess either HJ 

cleavage activity or flap cleavage activity this would prove to be a major steppingstone towards 

designing a drug that could inhibit homologous recombination in T. brucei.  

To this end, work within this laboratory previous to this project has endeavoured to express and 

functionally characterise the TbFEN1 protein. The target TbFEN1 protein was expressed in E. 

coli Tuner cells, and then purified by a two-step purification process with HisTrap and anion 

exchange liquid chromatography (McAllister & Benson, 2015). The purified TbFEN1 was then 

later used in nuclease assays with a number of different novel synthetic DNA substrates to study 

its endonuclease activity compared to RuvC, and T7endonuclease I. The results of these studies 

showed that while the TbFEN1 protein does possess 5’-flap endonuclease activity, little to no 

HJ cleavage was seen under the conditions used in that study (Noblett & Benson, 2017). With 

this new information about TbFEN1’s cleavage activity, the next step in understanding its role 

was to further characterise the mechanism by which it cleaves these DNA structures, so that it 

might be possible to identify possible residues that could be targeted in future drug 

development. 

To continue looking into the role of the TbFEN1 protein in T. brucei, this project aimed to: 

• Investigate whether further TbFEN1 has HJ resolution activity. 

• Compare human FEN1 with TbFEN1 to identify and predict critical catalytic residues. 

• Use site directed mutagenesis to generate E. coli plasmids to express mutant TbFEN1 

proteins containing key residue substitutions. 

• Express mutant proteins in E. coli and purify these for use in enzymatic assays to 

determine which residues were critical for TbFEN1 function 
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• Examine TbFEN1 localisation in T. brucei cells 

2. MATERIALS AND METHODS 

2.1. BUFFERS, SOLUTIONS, ANTIBIOTICS AND E. COLI 

STRAINS 

2.1.1. BUFFERS AND SOLUTIONS 
Buffers and media were prepared using Milli-Q water. 

Buffer/Solution Ingredients 

Agarose Gel Agarose low EEO, used at 0.8% w/v with 1x 

TAE 

Dithiothreitol (DTT) Stock solution made at 1M 

Isopropyl β-D-1 thiogalactopyranoside 

(IPTG) 

Stock solution made at 1M 

Luria Broth (LB) Low Salt Agar 20 g/L LB and 10 g/L Agar 

LB Broth 20 g/L LB 

10x Phosphate Buffered Saline (PBS) 1.37 M Sodium chloride, 27 mM Potassium 

chloride, 101 mM Disodium hydrogen 

phosphate, 18 mM Potassium dihydrogen 

phosphate, pH 7.4 

Protein Purification Native – Immobilised-

metal Affinity Chromatography (IMAC) 

Native Lysis Buffer 

0.01% lysozyme in Native Lysis Buffer 

Native Binding Buffer 

0.02% Triton-X, 20 mM Tris-HCl (pH 8), 

500 mM Sodium chloride, 20 mM 

Imidazole, 10% Glycerol 

Native Elution Buffer 

0.02% Triton-X, 20 mM Tris-HCl (pH 8), 

500 mM Sodium chloride, 500 mM 

Imidazole, 10% Glycerol 

Protein Purification – Ion-exchange 

Chromatography (IEX) 

Low Salt Buffer 

20 mM Tris-HCl (pH 8.5), 1mM EDTA, 

10% Glycerol 

High Salt Buffer 

20 mM Tris-HCl (pH 8.5), 1mM EDTA, 

10% Glycerol, 500 mM Sodium chloride 
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Sodium Dodecyl Sulphate Polyacrylamide 

Gel Electrophoresis (SDS-PAGE) – 12.5% 

Gel 

12.5% Resolving Gel 

375 mM Tris-HCl  pH8.8 , 2.5% Acrylamide 

(37.5:1 acrylamide:bis-acrylamide), 0.1 % 

SDS, 0.1% ammonium persulphate, 0.1% 

TEMED 

5% Stacking Gel 

125 mM Tris-HCl pH 6.8. 2.5% acrylamide 

(37.5:1 acrylamide:bis-acrylamide), 0.1 % 

SDS, 0.1% ammonium persulphate, 0.1% 

TEMED 

SDS Loading Buffer 

125 mM Tris-HCl (pH 6.8), 4% SDS, 

0.004% Bromophenol blue, 20% glycerol, 

100 mM DTT 

SDS-PAGE Running Buffer (10x) 

250 mM Tris-base, 1.92 M Glycine, 35 mM 

SDS 

Tris-Acetic acid EDTA (TAE) Buffer (50x) 1 X 40 mM Tris, 20 mM acetate, and 1 mM 

EDTA, pH ~8.3 

Denaturing Urea-PAGE Urea Buffer (5x) 

25% 10x Tris Borate EDTA (TBE), 24% w/v 

Urea 

20% Resolving Gel 

40% Acrylamide/Bis, 5x Urea Buffer, 0.1% 

TEMED, 10% APS 

Formamide Loading Buffer 

10 mg/ml Blue Dextran, 98% deionised 

formamide, 10 mM EDTA 

Native-PAGE Native Loading Buffer 

0.5 M EDTA, 50% Glycerol, 1mg/ml 

bromophenol blue 

10% Resolving Gel 

10x TBE, 30% Acrylamide, 10% APS, 0.1% 

TEMED 

Nuclease Assays Cleavage Buffer (1x) 

50 mM Tris HCl (pH 7.5), 1 mM Magnesium 

chloride, 1 mM DTT 

Stop Buffer (2x) 
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100 mM Tris HCl (pH 7.5), 50 mM EDTA, 

2.5% SDS 

SOC Media 0.5% Yeast Extract, 2% Tryptone, 10 mM 

sodium chloride, 2.5 mM Potassium 

chloride, 10 mM Magnesium chloride, 10 

mM Magnesium sulphate, 20mM Glucose 

Mutagenesis Buffer 5.5% 10x reaction buffer, 11.1% 2 ng µL-1 of 

plasmid pET24a, 1.1% dNTP mix, and 3.3% 

QuikSolution 

Zimmerman’s postfusion medium 132 mM NaCl, 8 mM KCl, 8 mM Na2HPO4, 

1.5 mM KH2PO4, 0.775 mM 

Mg(CH3COO)2, 0.063 mM Ca(CH3COO)2 

Localisation studies Blocking Buffer 

1x PBS, 0.05% Tween-20, 1% Bovine serum 

albumin 

Wash Buffer 

1x PBS with 0.05% Tween-20 

2.1.2. GENERATED PLASMIDS 
Plasmid 

Name 
Specific Mutagenesis of TbFEN1  

pJG04 

TbFEN1 with C-terminal 6 His tag, generated by J. Owen within the Benson 

Lab (Owen, 2015) 

Hereafter referred to as ‘pJG04 TbFEN1’, used as the base sequence for all 

mutagenesis products generated as part of this project 

pSS1 pJG04 TbFEN1 D34A  

pSS2 pJG04 TbFEN1 K47A  

pSS3 pJG04 TbFEN1 R74A  

pSS4 pJG04 TbFEN1 D90A  

pSS5 pJG04 TbFEN1 E162A  

pSS6 pJG04 TbFEN1 E164A  

pSS7 pJG04 TbFEN1 D183A  

pSS8 pJG04 TbFEN1 D185A  

pSS9 pJG04 TbFEN1 G235A  

pSS10 pJG04 TbFEN1 D237A  

pSS11 pJG04 TbFEN1 D34K  
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pSS12 pJG04 TbFEN1 D90K  

pSS13 pJG04 TbFEN1 E162K  

pSS14 pJG04 TbFEN1 E164K  

pSS15 pJG04 TbFEN1 D183K  

pSS16 pJG04 TbFEN1 D185K  

pSS17 pJG04 TbFEN1 G235K  

pSS18 pJG04 TbFEN1 D237K  

pSS19 pJG04 TbFEN1 K47D  

pSS20 pJG04 TbFEN1 K74D  

pSS21 pJG04 TbFEN1 G235D  

pRO1 pJG04 TbFEN1 Q341A  

pRO2 pJG04 TbFEN1 Q341A G342A  

 

2.1.3. ANTIBIOTICS AND DRUG STOCKS 
Antibiotic/Drug Concentration 

Kanamycin Stock solution made at 30 mg/ml diluted in 

Milli-Q. 

Used at 30 µg/ml in LB agar and broth 

Chloramphenicol Stock solution made at 25 mg/ml diluted in 

Milli-Q. 

Used at 25 µg/ml in LB Agar and 12.5 µg/ml 

in LB Broth 

Blasticidin Stock solution made at 10 mg/ml diluted in 

Milli-Q 

Used at 10 µg/ml 

2.1.4. E. COLI STRAINS 
Strain Name Full Genotype 

DH5 α fhuA2 lac(del)U169 phoA glnV44 Φ80' 

lacZ(del)M15 gyrA96 recA1 relA1 endA1 thi-

1 hsdR17 

Tuner™ (DE3) pLacI F-ompT hsdSʙ (rʙ-mʙ) gal dcm lacY1(DE3) 

pLysS (Camʀ) 

XL-10 Gold Competent TetʳΔ(mcrA)183 Δ(mcrCB-hsdSMR-mrr)173 

endA1 supE44 thi-1 recA1 gyrA96 relA1 lac 
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Hte [F´ proAB lacIqZΔM15 Tn10 (Tetʳ) Amy 

Camʳ] 
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2.2. BIOINFORMATICS 

2.2.1. OBTAINING SEQUENCE DATA AND ALIGNMENT 
The amino acid sequence and information about key residues of both the Human FEN1 and 

GEN1 proteins and the Trypanosoma brucei brucei FEN1 protein were acquired from their 

UniProt entries (‘P39748 FEN1_HUMAN’, ‘Q17RS7 GEN_HUMAN’ & ‘Q57WW6 

FEN1_TRYB2’ respectively). The amino acid sequence of these 3 proteins were compared both 

to each other and to the FEN1 proteins a number of other organisms (Fruit Fly (Drosophila 

melanogaster), African Clawed Frog (Xenopus laevis), Chicken (Gallus gallus), Sheep (Ovis 

aries), Gorilla (Gorilla gorilla), Chimpanzee (Pan troglodytes), Dog (Canis lupus familiaris), 

Cattle (Bos taurus), House Mouse (Mus musculus), and Brown Rat (Rattus norvegicus)), using 

the MEGA™ alignment software (Table 2.2.1-1). A second alignment was also performed 

between only the Human and T. brucei FEN1 amino acid sequences. Both alignments were 

performed by ClustalW. 

 

Organism Protein UniProt Accession Number 

T. brucei GEN1/FEN1 Q57WW6 

H. Sapiens GEN1 Q17RS7 

FEN1 P39748 

D. melanogaster FEN1 Q7K7A9 

X. laevis FEN1 P70054 

G. gallus FEN1 Q5ZLN4 

O. aries FEN1 C8BKD0 

G. gorilla FEN1 G3RA03 

P. troglodytes FEN1 H2Q3U7 

C. lupus familiaris FEN1 J9PB88 

B. taurus FEN1 Q58DH8 

M. musculus FEN1 Q8C5X6 

R. norvegicus FEN1 Q5XIP6 

TABLE 2.2.1-1 ORTHOLOGS OF TBFEN1 USED TO ANALYSE CONSERVED SEQUENCE HOMOLOGY 

The aligned sequences were then used to identify conserved residues across the different species 

and study possible evolutionary relationships between the different endonucleases. The 

alignment between human and T. brucei FEN1 was further studied to highlight the differences 

between the two sequences, and to allow direct comparison of key residues. Using the UniProt 

entry for the key amino acids in the human protein, 12 positions were identified that are 

implicated in the function of the human protein (from literature and conserved residues). By 

comparison of these positions in the T. brucei/H. sapiens FEN1 alignment it was possible to 

identify these corresponding residues in the T. brucei protein, and as such select them as targets 

for site-directed mutagenesis. 

 



Characterising a Novel Endonuclease in Trypanosoma brucei - Samuel Shelley – March 2020 

44 

 

2.3. EXPRESSION IN E. COLI 

2.3.1. ROUTINE CULTURE OF E. COLI 
Bacteria were routinely cultured in liquid LB or upon LB agar plates containing antibiotic as 

appropriate, at 37°C (unless stated otherwise) and 200 rpm for shaking liquid cultures. 

 

2.3.2. BACTERIAL TRANSFORMATION 
Plasmid DNA was incubated with competent cells on ice for 30 mins, before the mixture was 

heat shocked at 42°C for 30 seconds and returned to the ice bath. The mixture was then 

incubated in nutrient media for 1 hour at 37°C. Transformants were plated onto LB agar plates 

containing appropriate antibiotics and incubated at 37°C for ~16 hours. Transformant colonies 

were restreaked on selective plates and incubated for a further ~16 hours. The resulting single 

colonies were used to inoculate liquid cultures containing appropriate antibiotics for expression 

studies/plasmid purification. 

 

Throughout the project three E. coli strains were used. DH5α and XL10-Gold strains were used 

for plasmid manipulation, while Tuner (DE3) pLysS was used for expression. Expression 

system works by a gene encoding the T7 RNA polymerase sitting on a defective lambda phage 

(known as DE3) under the control of a lac promoter. The pLysS plasmid carries the 

chloramphenicol resistance gene, so inclusion of chloramphenicol in media selects for the 

presence of pLysS plasmid. It also encodes bacteriophage T7 lysozyme which both inhibits any 

low-level expression of T7 RNA polymerase prior to induction and also helps cells lysis. The 

recombinant plasmid (pJG04) used to express the TbFEN1 protein is derived from the 

kanamycin resistant pET24a vector and expressed the TbFEN1 protein with a C-terminal His 

tag. 

 

2.3.3. SITE DIRECTED MUTAGENESIS 
Using the previously identified key amino acids positions in the T. brucei protein, the Agilent 

primer design program was then used to design oligonucleotide primers to introduce specific 

mutations into the DNA, to change codons within the open reading frame that would result in 

amino acid substitutions upon translation. The key wild type residues were substituted for 

alanine (as a small non-polar amino acid) or an opposing amino acid (basic targets were 

switched for Aspartic Acid, and acidic targets for Lysine). The primers were dissolved in sterile 

water to a concentration of 25ng µL-1, and aliquoted for use in site-directed mutagenesis. 
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Amino Acid 

Substitution 

Primers 

Sequence (5’-3’) Sequence (5’-3’) 

D34A GGCCATGGAGGCAGCGATTGCGATGC

G 

CGCATCGCAATCGCTGCCTCCATGGC

C 

K47A TGACCCTCTTGAAAGCCTGCCATGGC

GATGACGAACTG 

CAGTTCGTCATCGCCATGGCAGGCTT

TCAAGAGGGTCA 

R74A CCTTCATCTATCATTCTTAATGTAGCA

AAAAAAATTCCACTTAAATGAGACGT

AAC 

GTTACGTCTCATTTAAGTGGAATTTTT

TTTGCTACATTAAGAATGATAGATGA

AGG 

D90A GGTGGGCGGCTTACCAGCAAACACGT

ATATAGGACG 

CGTCCTATATACGTGTTTGCTGGTAA

GCCGCCCACC 

E162A CTGGGCTTCTGCCGCAGAGGGTGCTT

G 

CAAGCACCCTCTGCGGCAGAAGCCCA

G 

E164A GCGCACTGGGCTGCTGCCTCAGAGG CCTCTGAGGCAGCAGCCCAGTGCGC 

D183A GCCAGGGCATCCATAGCCTCTGTTCC

TACCG 

CGGTAGGAACAGAGGCTATGGATGCC

CTGGC 

D185A AAACGCCAGGGCAGCCATATCCTCTG

TTCCTAC 

GTAGGAACAGAGGATATGGCTGCCCT

GGCGTTT 

G235A AAATTCTGGGGACGTAATCACAAGCA

AGAAGAATACATAAATCTATG 

CATAGATTTATGTATTCTTCTTGCTTG

TGATTACGTCCCCAGAATTT 

D237A ATGTATTCTTCTTGGTTGTGCTTACGT

CCCCAGAATTTCAG 

CTGAAATTCTGGGGACGTAAGCACAA

CCAAGAAGAATACAT 

Q341A CGCACTTACGAAGAAAACCGCAGGTC

GCTTGGACCAATTT 

GCGTGAATGCTTCTTTTGGGGTCCAG

CGAACCTGGTTAAA 

Q341A 

G342A 

TACGAAGAAAACCGCAGCTCGCTTGG

ACCAATTTT 

ATGCTTCTTTTGGCGTCGAGCGAACC

TGGTTAAAA 

D34K TACGGCCATGGAGGCCTTGATTGCGA

TGCGTCG 

CGACGCATCGCAATCAAGGCCTCCAT

GGCCGTA 

D90K TGGGCGGCTTACCCTTAAACACGTAT

ATAGGACGAAGTCCT 

AGGACTTCGTCCTATATACGTGTTTA

AGGGTAAGCCGCCCA 

E162K GGCTTCTGCCTTAGAGGGTGCTTGAA

CAACAGG 

CCTGTTGTTCAAGCACCCTCTAAGGC

AGAAGCC 

E164K GCGCACTGGGCTTTTGCCTCAGAGGG

T 

ACCCTCTGAGGCAAAAGCCCAGTGCG

C 

D183K CGCCAGGGCATCCATCTTCTCTGTTCC

TACCGC 

GCGGTAGGAACAGAGAAGATGGATG

CCCTGGCG 

D185K CAAACGCCAGGGCCTTCATATCCTCT

GTTCCTACCG 

CGGTAGGAACAGAGGATATGAAGGC

CCTGGCGTTTG 

G235K AAATTCTGGGGACGTAATCACACTTA

AGAAGAATACATAAATCTATGAACTG

ATGCA 

TGCAGCAGTTCATAGATTTATGTATTC

TTCTTAAGTGTGATTACGTCCCCAGA

ATTT 

D237K AATTCCTGAAATTCTGGGGACGTACT

TACAACCAAGAAGAATACATAAATC 

GATTTATGTATTCTTCTTGGTTGTAAG

TACGTCCCCAGAATTTCAGGAATT 

K47D CTGACCCTCTTGAAAGCCATCCATGG

CGATGACGAACTG 

CAGTTCGTCATCGCCATGGATGGCTT

TCAAGAGGGTCAG 

R74D GTCCTTCATCTATCATTCTTAATGTAT

CAAAAAAAATTCCACTTAAATGAGAC

GTAACAT 

ATGTTACGTCTCATTTAAGTGGAATTT

TTTTTGATACATTAAGAATGATAGAT

GAAGGAC 

G235D AAATTCTGGGGACGTAATCACAATCA

AGAAGAATACATAAATCTATG 

CATAGATTTATGTATTCTTCTTGATTG

TGATTACGTCCCCAGAATTT 

TABLE 2.3.3-2.3.3-1 – TABLE OF PRIMERS 

TABLE SHOWING THE FULL LIST OF SITE-DIRECTED MUTAGENESIS TARGETS AND THE FORWARD AND 

REVERSE PRIMERS USED TO INTRODUCE THEM 

The site-specific mutations were introduced into plasmid DNA using the Agilent QuikChange 

mutagenesis kit, and the included instructions were followed in full, with the exception that the 

reactions were scaled down by 50%. For site-directed mutagenesis 2.5 µL of forward and 

reverse primers (Table 2.3.3.-1) were mixed with 5 µL 2ng µL-1 of the plasmid pET24a, 2.5 µL 
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of 10x reaction buffer, 0.5 µL od dNTP mix and 1.5 µL of QuikSolution; before being made up 

to 50 µL with ddH2O. The solution was then cycled according to conditions in table 2.3.3-2, 

along with 0.5 µL of 2.5 U µL-1 PfuUltra HF DNA polymerase. Following thermal cycling, the 

parental dsDNA was digested with Dpn 1 restriction enzyme according to the manufacturer’s 

instructions. 

In order to recover transformants with the desired mutations, 1µL of β-mercaptoethanol mix 

was added to 22.5 µL of ultracompetent cells and incubated on ice for 10 minutes with gentle 

agitation, before addition of 1 µL of the prepared plasmid DNA. The mixture was incubated for 

a further 30 minutes on ice before heat-pulsing the solution at 42°C for 30 seconds and returning 

to ice for at least 2 minutes. The cells were then cultured as detailed in section 2.3.1. 

 

2.3.4. PLASMID PURIFICATION 
Single transformant colonies from the site-directed mutagenesis were inoculated into 5ml of LB 

media with a final concentration of 30 µg ml-1 Kanamycin and incubated overnight as detailed 

in section 2.3.1. Bacteria from these cultures were then pelleted by centrifugation at 3000rpm 

and 4°C for 5 minutes and the supernatant decanted. The plasmids were then purified from 

pelleted bacteria using the Qiagen QIAprep Miniprep kit and plasmid concentration determined 

by measuring absorbance at 260 nm. A sample (typically 10 µL of a 100 ng uL-1 solution) of 

the purified plasmids was sent for sequencing using either the T7 reverse or T7 forward 

sequencing primers as appropriate to the site of the introduced mutation. 

 

2.3.5. DETERMINATION OF SUCCESSFUL TRANSFORMANTS 
The sequencing data from the purified plasmids was compared to the original TbFEN1 sequence 

by first analysing the new sequencing data on Chromas™ to check for the desired point 

mutation to the DNA. The forward and reverse sequences were then assembled into a single 

contiguous sequence using the online CAP3 Sequence Assembly Program 

(http://doua.prabi.fr/software/cap3), and subsequently translated into an amino acid sequence 

using the online ExPASy Translate tool (https://web.expasy.org/translate/). This could then also 

be checked for the desired amino acids substitution before running a Blast search against the 

new sequence to check it was still identical to the original sequence in every other regard. 

 

2.3.6. SMALL SCALE INDUCTION OF PROTEIN EXPRESSION 
An aliquot (25 ml) of fresh LB medium containing selective antibiotics was inoculated with 0.5 

ml of overnight culture and incubated at 37°C with shaking. Samples (0.5 ml) were taken at 1 

hour, and every subsequent 30 minutes, and the optical density at 600nm measured until it 

reached approximately an absorbance of 0.4. IPTG was subsequently added to the remaining 

Segment Cycles Temperature Time 

1 1 95 1 minute 

2 18 95 50 seconds 

60 50 seconds 

68 1 minute/kb plasmid 

length 

3 1 68 7 minutes 

TABLE 2.3.3-2– PCR CYCLING PARAMETERS 

 

http://doua.prabi.fr/software/cap3
https://web.expasy.org/translate/
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culture to a final concentration of 1mM, and the incubation continued. Further 0.5 ml samples 

were taken every hour for the next 3 hours. 

 

Samples were processed by centrifuging at 4000 rpm for 1 minute to pellet the bacteria, before 

discarding the supernatant. The pellet was then resuspended in 50 µL of SDS-Gel Sample 

Buffer (SDS-GSB) and heated to 98°C for 3 minutes to solubilise and denature all the bacterial 

proteins and pulsing the contents to the bottom of the tube. The samples were then stored at 4°C 

for later analysis. After 3 hours the remaining liquid culture was pelleted by centrifuging at 

4000 rpm for 10 minutes, the supernatant discarded, and the pellet frozen at -80°C to allow 

subsequent purification of recombinant protein. 

 

The time-point samples from the induction of expression were run on a 12% SDS-PAGE gel 

for 1 hour at 180 V with a Mark-12 MW marker, before staining overnight in 20 ml InstantBlue. 

The gel was then analysed to determine the efficiency of expression, so as to optimise the 

conditions prior to scaling up. 

 

2.3.7. LARGE SCALE INDUCTION 
Single colonies from agar plates were picked and used to inoculate 5 ml of LB medium, which 

was incubated at 37°for approximately 6-7 hours before making the culture up to 25 ml and 

incubating for a further ~16 hours. An aliquot (16 ml) of the overnight culture was then used to 

inoculate 800ml of LB medium across two 400 ml cultures in 1 litre flasks. The cultures were 

then grown until their OD600 reached 0.4. As with the small-scale induction, a 1 ml aliquot 

removed to be pelleted and resuspended in SDS-GSB, before IPTG was added to a final 

concentration of 1 mM. The cultures were then incubated at 30°C with shaking for 3 hours and 

another 1 ml aliquot removed and frozen. The remaining cultures were recombined in a single 

1 litre centrifuge tube and spun at 4000 rpm for 20 minutes, at 4°C. The supernatant was then 

discarded, and the pellet frozen at -20°C to be lysed and the recombinant protein purified at a 

later date. 

 

2.4. PROTEIN PURIFICATION AND ANALYSIS 

2.4.1. SMALL SCALE LYSIS & PURIFICATION USING NI-NTA SPIN 

COLUMNS 
Small scale lysis and purification was performed the frozen pellet from the earlier induction 

was resuspended in 1 ml of Qiagen Qproteome bacterial lysis buffer by pipetting up and down 

before being incubated on ice for 20 minutes. A 50 µL sample was removed and labelled as the 

Whole Cell Extract, while the remaining sample was transferred to a fresh microcentrifuge tube 

and spun at 13000 rpm for 20 minutes. The supernatant was then transferred to a fresh tube, and 

0.5 ml of supernatant was added to 0.5 ml of 2x Binding Buffer (100 mM Na phosphate pH 8, 

600 mM NaCl, 40 mM Imidazole), before removing a 50 µL sample to a fresh labelled tube as 

the soluble fraction. 

 

A Ni-NTA spin column was prepared by equilibrating with 600 µL of wash buffer (50 mM Na 

phosphate pH 8, 300 mM NaCl, 20 mM Imidazole) and spinning at 2000 rpm for 2 minutes, 

before discarding the flow-through. 600 µL of the soluble extract/binding buffer mixture was 
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then spun through the column, again at 2000 rpm for 2 minutes. The flow through was 

transferred to a fresh microcentrifuge tube labelled as the non-binding E. coli proteins. The 

column was washed 3 times with 600 µL of wash buffer, as above, with each flow through 

sample transferred to clean labelled tubes. The His-tagged TbFEN1 protein was then eluted by 

applying 200 µL of elution buffer to the column and spinning for a further 2 minutes at 2000 

rpm, before transferring the flow through to a clean labelled tube. This final elution step was 

repeated a further time. The samples were then frozen at -20°C for later analysis by SDS-PAGE, 

by addition of 50 µL from each fraction to an equal volume of SDS-GSB. 

 

2.4.2. PREPARATION OF LARGE SCALE LYSATE 
Pellets from large scale induction were thawed on ice for at least 15 minutes before 

resuspending in 16 ml of lysis buffer. The suspension was then sonicated for 3 cycles of 20 

seconds in an ice bath, before being transferred to ultracentrifuge tubes. The sample was then 

spun at 30000 rpm for 1 hour at 4°C in a 45 Ti rotor, and the supernatant transferred to a fresh 

50 ml tube and held on ice. 

 

2.4.3. HIS-TAG CHROMATOGRAPHY 
The large scale cell lysate was loaded into a 50 ml superloop and attached to an ÄKTA-prime 

liquid chromatography system, before purifying His-tagged protein from the sample using a 

HisTrap HP column (GE Healthcare). Protein was loaded, the column washed with a 20 mM 

imidazole wash buffer (20 mM Tris pH 8, 500 mM NaCl, 20 mM Imidazole, 0.02% Triton X, 

10% glycerol), and His-tagged protein eluted with 20 mM-500 mM linear imidazole gradient 

(final elution buffer 20 mM Tris pH 8, 500 mM NaCl, 500 mM Imidazole, 0.02% Triton X,10% 

glycerol). Fractions (1 ml) were collected across the imidazole gradient. Samples of the peak 

fractions were analysed by SDS-PAGE, as below, and assuming minimal contaminants were 

present, the 3 most concentrated fractions pooled for purification by anion exchange. 

 

2.4.4. ANION-EXCHANGE CHROMATOGRAPHY 
The pooled fraction from the His-tag purification were diluted at a ratio of 1:10 with the low 

sodium wash buffer (20 mM Tris pH 8.5, 10% glycerol, 1mM EDTA) and loaded onto the 

column. The solution was then run over a MonoQ 5/50 GL column using an ÄKTA FPLC 

system with a 0-100% concentration gradient between the low sodium wash buffer and a 0.5 M 

NaCl elution buffer (20 mM Tris pH 8.5, 10% glycerol, 1 mM EDTA, 0.5 M NaCl), over which 

1 ml fractions were collected. The peak fractions were again analysed by SDS-PAGE. 

 

2.4.5. SDS-PAGE ANALYSIS OF PURIFICATION PRODUCTS 
Purified proteins from both the small and large scale purifications were all analysed by 12% 

SDS-PAGE gel. In each case, 10 µL was withdrawn from the sample and mixed with 40 µL of 

SDS-GSB. The mixture was then heated to 98°C for 3 minutes before pulsing to the bottom of 

the tube. 10 µL of each sample was then loaded into the respective well and the gel was run for 

1 hour at 180 V, along with a Mark-12 MW marker. The gels were then stained overnight in 20 

ml InstantBlue before being photographed under white light in a GelDoc. Band intensity and 

location was used to qualitatively determine those fractions with the highest concentration of 

the desired protein. 
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2.5. CHARACTERISATION OF PROTEIN CLEAVAGE ACTIVITY 

ON DNA SUBSTRATES 
The absorbance readings at 280nm of the 3 most concentrated fractions of each mutant from 

the anion exchange chromatography were used to determine the concentration of each fraction 

and thus to produce 10 µM stocks of each protein by dilution in the low sodium buffer, prior to 

carrying out assays. 

 

All substrates used in this project to assay for endonuclease cleavage were a gift from Dr F. 

Benson and were derived from those previously used to characterise prokaryotic and eukaryotic 

Holliday junction resolvases (Constantinou & West, 2004). In brief, they were prepared by 

annealing a Cy5 5’ labelled 60mer oligonucleotide (Cy5 X26.1) with an excess of partially 

complementary oligonucleotides (Table 2.5-1). The substrates generated were then isolated 

from excess unlabelled oligonucleotides by polyacrylamide electrophoresis, eluted from a 

polyacrylamide gel slice, ethanol precipitated and re-dissolved in 10 mM Tris-HCl pH 8.0, 0.1 

mM EDTA, 100 mM NaCl buffer. Holliday junction substrates with a mobile core (indicated 

by nucleotides in bold in Table 2.5-1) were prepared by annealing Cy5-X26.1 with an excess 

of oligonucleotides X26.2, X26.3 and X26.4; a double-strand DNA marker was prepared by 

annealing Cy5-X26.1 with an excess of oligonucleotide S26.5; and the 5’ FLAP substrate (with 

a Cy5 label positioned at the end of the single-stranded DNA) prepared by annealing Cy5-X26.1 

with an excess of F26.6 and F26.7. A 5’ Cy5 labelled 30-mer oligonucleotide (M30) was used 

as a marker to compare with the products of cleavage of the FLAP substrate. 
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Name Base sequence (5’-3’) 

Fluorescently labelled oligonucleotides 

CY5-X26.1 CY5-

CCGCTACCAGTGATCACCAATGGATTGCTAGGACATCTTTGCCCACCT

GCAGGTTCACCC (60) 

Unmodified oligonucleotides 

X26.2 TGGGTGAACCTGCAGGTGGGCAAAGATGTCCTAGCAATCCATTGTCT

ATGACGTCAAGCT (60) 

X26.3 GAGCTTGACGTCATAGACAATGGATTGCTAGGACATCTTTGCCGTCTT

GTCAATATCGGC (60) 

X26.4 TGCCGATATTGACAAGACGGCAAAGATGTCCTAGCAATCCATTGGTG

ATCACTGGTAGCGG (61) 

S26.5 (ds) GGGTGAACCTGCAGGTGGGCAAAGATGTCCTAGCAATCCATTGGTGA

TCACTGGTAGCGG (60) 

F26.6 (Flap) TGGGTGAACCTGCAGGTGGGCAAAGATGTCTCTATGACGTCAAGCTGTC

TTGTCAATATC (60) 

F26.7 (Short Flap) GATATTGACAAGACAGCTTGACGTCATAGA (30) 

M30. CCGCTACCAGTGATCACCAATGGATTGCT 

TABLE 2.5-1 BASE SEQUENCE (5’ – 3’) OF SYNTHETIC DNA CONSTRUCTS 

2.5.1. ENDONUCLEASE CLEAVAGE ASSAY 
For each assay a 20 µL reaction mixture containing 1 µM of the protein of interest and 200 nM 

Cy5 5’lablled Flap or HJ substrate in 1× Cleavage Buffer (50 mM Tris pH 7.5, 1 mM MgCl2, 1 

mM DTT) was assembled. The solutions were then incubated at 37°C in a water bath for 20 

minutes, before addition of 2 µL of Stop Buffer (100 mM Tris pH 7.5, 50 mM EDTA, 2.5% 

SDS, 10 mg mL-1 proteinase K), and then returned to the water bath for a further 15 minutes. 

The resulting solutions were then split for analysis by either native-PAGE (non-denaturing) or 

Urea-PAGE (denaturing) assays (visualising double and single stranded DNA respectively) 

DNA markers were also prepared by mixing 2 µL of 2 µM DNA substrates (Cy5 labelled 5’-

Flap junction, Double Stranded DNA, or a Cy5 labelled 30mer oligonucleotide) with 2 µL 10x 

Cleavage buffer, and 16 µL of water to give a finally concentration of 200 nM. The double 

strand marker appeared much dimmer than other lanes and so was eventually raised to 4 µL in 

14 µL water and 2 µL 10x Cleavage Buffer, to a final concentration of 400 nM. 

 

2.5.2. NATIVE-PAGE ANALYSIS OF DNA CLEAVAGE 
All native PAGE was performed on neutral 10% acrylamide (37.5:1) gels, at 60 V for 105 

minutes, using 1xTBE as a running buffer. 10 µL of each cleavage reaction and substrate control 

was added to 5µL of native gel loading buffer, before running 10 µL on the gel. The gel was 
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then visualised on the Bio-Rad ChemiDoc™ MP imaging system, looking at the Cy5-labelled 

substrates. 

 

2.5.3. DENATURING UREA-PAGE 
Denaturing Urea-PAGE was performed on denaturing 12% acrylamide (19:1) urea gels, at 42 

W for 2.5 hours, using 1xTBE as a running buffer. The cleavage assay samples were mixed 1:1 

with 10 µL of formamide loading buffer, before being heated to 95°C for 5 minutes. The gel 

was pre-run for 50 minutes prior to loading 10 µL of sample into the appropriate wells. 

Denaturing gels were then visualised using the Typhoon™ FLA biomolecular imager. 

 

2.6. LOCALISATION STUDIES 
Throughout this section of work, procyclic T. brucei (927Smox and S427) were cultured in 

SDM-79 medium supplemented with 10% w/v foetal bovine serum and haemin. 

 

2.6.1. PREPARATION OF TRANSFORMED T. BRUCEI FLUORESCENT-

TAGGED GEN1 
To localise TbFEN1 protein in T. brucei cells throughout the cell cycle, a PCR only tagging 

(pPOT) tagging strategy was used to generate DNA constructs enabling expression of TbFEN1 

fusion proteins in which the open reading frame for mNeon Green was fused in frame at the N-

terminus. 

Component Volume Concentration 

Forward Primer 5 µL 5 µM 

Reverse Primer 5 µL 5 µM 

pPOTv6 mNG template DNA 3 µL 25 µg/ml 

H2O 12 µL  

2 X Pfu High Fidelity PCR Mix 25 µL 1X 

 

Firstly 3 µL of the pPOTv6 mNG blast plasmid DNA was added to 47 µL of PCR Buffer and 

amplified by high fidelity PCR using gene-specific primers. The reaction mixture was then 

cycled according to Table 2.6.1-2. 

 

Number of Cycles Stages Temperature (°C) Time 

1 Initial Denaturation 94 5 mins 

29 Denaturation 94 30 secs 

Annealing 55 30 secs 

Elongation 72 1 min/1Kb 

1 Extension 72 2 mins 

 Hold 4  

TABLE 2.6.1-2 TABLE OF PCR CYCLING PARAMETERS 

TABLE 2.6.1-1 PCR MIX 
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The amplified pPOT DNA was purified using a GeneJET PCR purification kit and transfected 

directly into the T. brucei cells. Each transfection required 3x107 cells ml-1, and so an 

appropriate volume of cell culture (see above) was pelleted by centrifugation at 400 x g for 10 

minutes before being resuspended in 0.5 mL of Zimmerman’s postfusion medium (ZPFM) 

before transferring the sample to 0.4 mm electroporation cuvettes (Bio-Rad) prior to addition 

of the pPOT DNA (5-10 ng). The cell samples were electroporated using a BTX Electro Square 

Porator ECM830, by applying 3 sets of 100 µs pulses at 1700 V with 200 ms intervals. The 

cells were then transferred into 10 ml of SMD-79 media (supplemented with 10% foetal calf 

serum and 0.008 mM Hemin) and left for >16 hours to recover. The cells were then diluted to 

5x105 cells ml-1 in SMD-79 and selected using blasticidin. 

 

2.6.2. SLIDE PREPARATION 
Procyclic trypanosomes expressing the mNG::TbFEN1 fusion protein were centrifuged at 1811 

× g for 3 minutes in a bench top micro-centrifuge. The supernatant was then discarded and 

approximately 500 µL of 1x PBS used to wash the pellet before re-centrifugation at 1811 × g 

for a further 3 minutes. The cell pellet was then resuspended in a further 500 µL of 1x PBS and 

pipetted onto slides before leaving the cells to settle and removing the excess solution. Whole 

cells were then fixed in 100% methanol precooled to -20°C prior to use. 

 

Slides were removed from the 100% methanol and rehydrated in 1x PBS for ∼10 mins, prior to 

1-hour incubation in blocking buffer in a humidified chamber. Excess buffer was removed, and 

the slides incubated in ∼50 µL of appropriate primary antibody to tag the cell flagellum for one 

hour, prior to washing 3 times in wash buffer. The washed slides were subsequently incubated 

with the appropriate secondary antibody in the humidified chamber for 1 hour. Slides were then 

washed a further 3 times in wash buffer, the excess buffer removed, and the slide mounted using 

a single drop of Vectashield Mounting Medium containing DAPI (Vectorlabs). A coverslip was 

placed over the sample and the edges sealed with nail varnish before storing the slides wrapped 

in foil at 4°C prior to use. 

 

 

Antibody Specificity Dilution 

Primary – L8C4 mouse monoclonal 

IgG 

Anti-PFR2 1:25 with 1% BSA 

Secondary – IgG TRITC-

conjugated 

Anti-mouse IgG 1:10000 in 1% BSA 

TABLE 2.6.2-1 - TABLE OF ANTIBODIES 

 

2.6.3. DECONVOLUTION MICROSCOPY 
Cells were imaged using an Applied Precision DeltaVision Deconvolution microscope and 

images processed using SoftWoRx software. Images were captured in a 30 image z-stack (0.15 

µm interval). The resulting files were deconvolved through 10 cycles and finally the sections 

and fluorescent channels merged to produce a final focused image. The final selection of image 

panes was corrected simultaneously, so as to produce the clearest possible image while 

maintaining the same setting across all panes.  
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3. IDENTIFICATION OF KEY AMINO ACIDS 

AND GENERATION OF TARGETED AMINO 

ACID SUBSTITUTIONS 
 

3.1. BIOINFORMATICS 

3.1.1. TBFEN1 SEQUENCE ANALYSIS AND PHYLOGENY STUDIES 
To study how highly conserved TbFEN1 is between species, a BLAST search was carried out 

upon the sequence and a number of sequences from a wide variety of species were selected. In 

particular, the decision was made to focus on species that have been extensively studied by the 

scientific community for various reasons, e.g. D. melanogaster which has often been used in 

biological research into genetics, and life history evolution; and X. laevis which has been used 

in a large amount of molecular and developmental research due to its close evolutionary 

relationship with humans and its experimental tractability. The P. troglodyte and G. gorilla 

sequences were chosen to provide a good comparison for hose conserved the human sequence 

has been compared to other closely related species. Meanwhile, organisms such as O. aries, B. 

taurus and C. l. familiaris were specifically chosen for how distinct they were likely to be from 

T. brucei. 

The amino acid sequences of human GEN1, human FEN1 and T. brucei FEN1 were analysed 

alongside 10 other chosen organisms to study the possible phylogeny of the different 

endonucleases. The sequences were analysed using MEGA7, first by aligning them all by 

ClustalW and then identifying the number of conserved residues – 358/937 variable sites 

(38.2%) and 229/937 singleton sites (24.4%) – although the majority of the alignment length 

was due to the far larger human GEN1 protein, and repeated alignments without HsGEN1 

produced a higher proportion of variable sites (249/423 or 58.9%) and singleton sites (170/423 

or 40.2%). MEGA was then used to produce a maximum-likelihood phylogenetic tree of the 

different endonucleases, shown in Figure 3.1.1-1. 
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As well as assembling a maximum-likelihood phylogenetic tree, the human and D. 

melanogaster GEN1 sequences (UniProt entries Q17RS7 and Q9VRJ0, respectively) were 

aligned with the TbFEN1 sequence in order to take a closer look at how much the different 

domains of the well-studied HsGEN1 protein translated onto the TbFEN1 protein and to study 

the levels of conservation with any areas of homology between the different proteins (figure. 

3.1.1-2). There were a number of conserved and semiconserved residues, especially those that 

were identified as key to human GEN1 from previous research, with areas of homology 

generally clustered around these regions. This would support the hypothesis that these proteins 

occupy similar biological niches, as the conserved domains would likely fold to create areas of 

similar topology, and ultimately create similar 3D structures.  There were, however, also large 

sections of unconserved regions, and indeed both GEN1 sequences were approximately twice 

the length of the TbFEN1 sequence. Of the HsGEN1 domains, TbFEN1 had a large amount of 

homology with HsGEN1 in the areas around the XPG-n domain (resides 2-96 of HsGEN1) and 

the XPG-I domain (residues 122-208), but comparatively little homology was present in the 

areas around the 5’-3’ exonuclease domain (residues 208-384) and the chromodomain (residues 

FIGURE 3.1-1 MOLECULAR PHYLOGENETIC ANALYSIS BY MAXIMUM LIKELIHOOD METHOD 

THE EVOLUTIONARY HISTORY WAS INFERRED BY USING THE MAXIMUM LIKELIHOOD METHOD 

BASED ON THE LE_GASCUEL_2008 MODEL. THE TREE WITH THE HIGHEST LOG LIKELIHOOD (-
3697.7480) IS SHOWN. INITIAL TREE(S) FOR THE HEURISTIC SEARCH WERE OBTAINED 

AUTOMATICALLY BY APPLYING NEIGHBOUR-JOIN AND BIONJ ALGORITHMS TO A MATRIX OF 

PAIRWISE DISTANCES ESTIMATED USING A JTT MODEL, AND THEN SELECTING THE TOPOLOGY 

WITH SUPERIOR LOG LIKELIHOOD VALUE. A DISCRETE GAMMA DISTRIBUTION WAS USED TO 

MODEL EVOLUTIONARY RATE DIFFERENCES AMONG SITES (5 CATEGORIES (+G, PARAMETER = 

1.5321)). THE RATE VARIATION MODEL ALLOWED FOR SOME SITES TO BE EVOLUTIONARILY 

INVARIABLE ([+I], 0.2817% SITES). THE TREE IS DRAWN TO SCALE, WITH BRANCH LENGTHS 

MEASURED IN THE NUMBER OF SUBSTITUTIONS PER SITE. THE ANALYSIS INVOLVED 13 PROTEIN 

SEQUENCES. ALL POSITIONS CONTAINING GAPS AND MISSING DATA WERE ELIMINATED. THERE 

WERE A TOTAL OF 355 POSITIONS IN THE FINAL DATASET. EVOLUTIONARY ANALYSES WERE 

CONDUCTED IN MEGA7. 
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390-464) of HsGEN1. All data for this alignment and subsequent analysis was obtained from 

UniProt 

 

CLUSTAL O(1.2.4) multiple sequence alignment 

 

SP|Q57WW6|FEN1_TRYB2 MGVLGLSKLLYDRTPGAIKEQELKVYFGRRIAIDASMAVYQFVIAMKGFQEGQSVELTNE 60 

SP|Q17RS7|GEN_HUMAN  MGVNDLWQILEP----VKQHIPLRNLGGKTIAVDLSLWVCEAQTVKK-----------MM 45 

SP|Q9VRJ0|GEN_DROME  MGVKELWGVLTP----HCERKPINELRGKKVAIDLAGWVCESLNVVD-----------YF 45 

                     ***  *  :*        :.  :.   *: :*:* :  * :   . .              

 

SP|Q57WW6|FEN1_TRYB2 AGDVTSHLSGIFFRTLRMIDEGLRPIYVFDGKPPTLKASELESRRQRAEDAKHEFEKAKE 120 

SP|Q17RS7|GEN_HUMAN  GSVMKPHLRNLFFRISYLTQMDVKLVFVMEGEPPKLKADVISKRNQSRYGSSG------- 98 

SP|Q9VRJ0|GEN_DROME  V-HPRHHLKNLFFRTCYLIWEQVTPVFVLEGVAPKLKSQVIAKRNELQFRGVK------P 98 

                           ** .:***   :    :  ::*::*  *.**:. : .*.:    .          

 

SP|Q57WW6|FEN1_TRYB2 EGDDEAMEKMSKRMVRVGR----DQMEEVKTLLRLMGIPVVQAPSEAEAQCAELVKKNKA 176 

SP|Q17RS7|GEN_HUMAN  ----------KSWSQKTGRSHFKSVLRECLHMLECLGIPWVQAAGEAEAMCAYLNAGGHV 148 

SP|Q9VRJ0|GEN_DROME  KNSPECTQ-SQPSKGDKGRSRFNHVLKQCETLLLSMGIQCVQGPGEAEAYCAFLNKHGLV 157 

                               .      **      :.:   :*  :**  **. .**** ** *   . . 

 

SP|Q57WW6|FEN1_TRYB2 WAVGTEDMDALAFGSRVMLRHLTYGEAKK-----RPIAEYHLDEILEASGFSMQQFIDLC 231 

SP|Q17RS7|GEN_HUMAN  DGCLTNDGDTFLYGAQTVYRNFTMNTKD------PHVDCYTMSSIKSKLGLDRDALVGLA 202 

SP|Q9VRJ0|GEN_DROME  DGVISQDSDCFAYGAVRVYRNFSVSTQGAQAAAGGAVDIYDMREITSRMDFGQQKIIVMA 217 

                      .  ::* * : :*:  : *::: .           :  * : .* .  .:. : :: :. 

 

SP|Q57WW6|FEN1_TRYB2 ILLGCDYVPR-ISGIGPHKAWEGIKKYGSLEAFI--ESLDG------------------- 269 

SP|Q17RS7|GEN_HUMAN  ILLGCDYLPKGVPGVGKEQALKLIQILKGQSLLQRFNRWNETSCNSSPQLLVTKKLAHCS 262 

SP|Q9VRJ0|GEN_DROME  LLCGCDYCPDGIGGIGKDGVLKLFNKYKETEILDRMRSWRGETDKYNALEIRVDDKSICS 277 

                     :* **** *  : *:* . . : ::     . :   .                        

 

SP|Q57WW6|FEN1_TRYB2 ---------------------TRYVVPEEFNYK--------DA----------------- 283 

SP|Q17RS7|GEN_HUMAN  VCSHPGSPKDHERNGCRLCKSDKYCEPHDYEYCCPCEWHRTEHDRQLSEVENNIKKKACC 322 

SP|Q9VRJ0|GEN_DROME  NCGHIGKTQSHTKSGCSVCRTHKGCDESL--------WKEQ---RLSIKSELTLRRKALL 326 

                                           :                                      

 

SP|Q57WW6|FEN1_TRYB2 ----------RNFFLEPEVTPGEEIDIQFREPDEEGLIKFLVDEKLFSKERVLKGIQRLR 333 

SP|Q17RS7|GEN_HUMAN  CEGFPFHEVIQEFLLNKDKLV--K-VIRYQRPDLLLFQRFTLEKMEWPNHY--------- 370 

SP|Q9VRJ0|GEN_DROME  SPDFPNEEIIAEFLSEPDTIP--NLNLNWRQPNLVKFIKQIGHLLQWPEIY--------- 375 

                                :*: : :     :  :.::.*:   : :   .   : :            

 

SP|Q57WW6|FEN1_TRYB2 DALTKKTQGRLDQFFTITKPQKQVNSEAS----------TAGTKRNRGAV-AL------- 375 

SP|Q17RS7|GEN_HUMAN  ---------ACEKLLVLLTHYDMIERKLGSRNSNQLQPIRIVKTRIRNGVHCFEIEWEKP 421 

SP|Q9VRJ0|GEN_DROME  ---------CFQKFFPILTRWQVQQSK---QEKILIQPHEIIKKRTVKGVPSLELRWHDP 423 

                                :::: : .  .  : :               ..*   .* .:        

 

SP|Q57WW6|FEN1_TRYB2 ----PGVLQRKSS----SGHKKAVKK---------------------------------- 393 

SP|Q17RS7|GEN_HUMAN  EHYAM-------------EDKQHGEFALLTIEEESLFEAAYPEIVAVYQKQKLEIKGKKQ 468 

SP|Q9VRJ0|GEN_DROME  SGIFKGLIPDKQIAEYEAEHPKGIEELYYTIEPLDMLETAYPDLVAAFLKSKEKPAKKTT 483 

                                        . :  :                                    

 

SP|Q57WW6|FEN1_TRYB2 ------------------------------------------------------------ 

SP|Q17RS7|GEN_HUMAN  KRIK---PKENNLPEPDEVMS-FQSHMTLKP--TCEIFHKQNSKLNSGISPDPTLPQESI 522 

SP|Q9VRJ0|GEN_DROME  RKKKTASEEENKENEPNSKPKRVVRKIKAQPEENQPLLHQFLGRKKEGTPVKAPAPQ--- 540 

                                                                                  

 

SP|Q57WW6|FEN1_TRYB2 ------------------------------------------------------------ 

SP|Q17RS7|GEN_HUMAN  SASLNSLLLPKNTPCLNAQEQFMSSLRPLA----IQQIKAVSKSLISES-SQPNTSSH-- 575 

SP|Q9VRJ0|GEN_DROME  -----------RQQCSTPITKFLPSDLESDCDAEEFDMSDIVKGIISNPNAKPALTNHDG 589 

                                                                                  

 

SP|Q57WW6|FEN1_TRYB2 ------------------------------------------------------------ 

SP|Q17RS7|GEN_HUMAN  -NI---SVIADLHLSTIDWEGTSFSNSPAIQRNTFSHDLKSEVESELSAIPDGFENIPEQ 631 

SP|Q9VRJ0|GEN_DROME  HQLHYEPMAEDLSLRLAQMSLGNVNESPKVETKRDLSQVDQLPQSKRFSLEDSFDLLV-- 647 
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SP|Q57WW6|FEN1_TRYB2 ------------------------------------------------------------ 

SP|Q17RS7|GEN_HUMAN  LSCESERYTANIKKVLDEDSDGISPEEHLLSGITDLCLQDLPLKERIFTKLSYPQDNLQP 691 

SP|Q9VRJ0|GEN_DROME  ----------------KGDL----------QKLARTPVERFKMQHRISEKIPTPVKPLD- 680 

 

                                                                               

SP|Q57WW6|FEN1_TRYB2 ------------------------------------------------------------ 

SP|Q17RS7|GEN_HUMAN  DVNLKTLSILSVKESCIANSGSDCTSHLSKDLPG---IPLQNESRDSKILKGDQLLQEDY 748 

SP|Q9VRJ0|GEN_DROME  -----NISYF-------FNQSSDNADVF-EELMNSSLVPQDQEDNAEDEEEDDLVVISD- 726 

                                                                                  

 

SP|Q57WW6|FEN1_TRYB2 ------------------------------------------------------------ 

SP|Q17RS7|GEN_HUMAN  KVNTSVPYSVSNTVVKTCNVRPPNTALDHSRKVDMQTTRKILMKKSVCLDRHSSDEQSAP 808 

SP|Q9VRJ0|GEN_DROME  ------------------------------------------------------------ 

                                                                                  

 

SP|Q57WW6|FEN1_TRYB2 ------------------------------------------------------------ 

SP|Q17RS7|GEN_HUMAN  VFGKAKYTTQRMKHSSQKHNSSHFKESGHNKLSSPKIHIKETEQCVRSYETAENEESCFP 868 

SP|Q9VRJ0|GEN_DROME  ------------------------------------------------------------ 

                                                                                  

 

SP|Q57WW6|FEN1_TRYB2 ---------------------------------------- 

SP|Q17RS7|GEN_HUMAN  DSTKSSLSSLQCHKKENNSGTCLDSPLPLRQRLKLRFQST 908 

SP|Q9VRJ0|GEN_DROME  ---------------------------------------- 

                                                              

 

                                                              

 

 

FIGURE 3.1-2 ALIGNMENT OF HSGEN1, DMGEN1 AND TBFEN1 

T. BRUCEI PUTATIVE FEN1 AMINO ACID SEQUENCE (UNIPROT ID: Q57WW6) ALIGNED BY CLUSTAL OMEGA WITH 

H. SAPIENS GEN1 SEQUENCE (UNIPROT ID: Q17RS7) AND D. MELANOGASTER (UNIPROT ID: Q9VRJ0). GAPS 

IN THE ALIGNMENT ARE DENOTED BY HYPHENS (-). BELOW THE SEQUENCES IS SYMBOL BASED KEY DENOTING 

AREAS OF SIMILARITY, WITH CONSERVED SEQUENCES MARKED BY AN ASTERIX (*), CONSERVATIVE MUTATIONS 

MARKED BY A COLON (:)SEMI CONSERVATIVE MUTATIONS MARKED BY A PERIOD (.) AND BLANK SPACE MARKING 

UNCONSERVED SEQUENCES ( )KEY RESIDUES ARE HIGHLIGHTED IN GREEN. 
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The human FEN1 and T. brucei brucei FEN1 sequences were also compared directly, to 

highlight the variance between them, with 196/394 (49.7%) variable sites, and a pairwise 

distance of approximately 0.5 amino acid differences per site. 

 

  

TbFEN1 1    MGVLGLSKLLYDRTPGAIKEQELKVYFGRRIAIDASMAVYQFVIAMKGFQEGQSVELTNE  60 

            MG+ GL+KL+ D  P AI+E ++K YFGR++AIDASM++YQF+IA++   +G  V L NE 

HsFEN1 1    MGIQGLAKLIADVAPSAIRENDIKSYFGRKVAIDASMSIYQFLIAVR---QGGDV-LQNE  56 

 

TbFEN1 61   AGDVTSHLSGIFFRTLRMIDEGLRPIYVFDGKPPTLKASELESRRQRAEDAKHEFEKAKE  120 

             G+ TSHL G+F+RT+RM++ G++P+YVFDGKPP LK+ EL  R +R  +A+ + ++A+  

HsFEN1 57   EGETTSHLMGMFYRTIRMMENGIKPVYVFDGKPPQLKSGELAKRSERRAEAEKQLQQAQA  116 

 

TbFEN1 121  EGDDEAMEKMSKRMVRVGRDQMEEVKTLLRLMGIPVVQAPSEAEAQCAELVKKNKAWAVG  180 

             G ++ +EK +KR+V+V +   +E K LL LMGIP + APSEAEA CA LVK  K +A   

HsFEN1 117  AGAEQEVEKFTKRLVKVTKQHNDECKHLLSLMGIPYLDAPSEAEASCAALVKAGKVYAAA  176 

 

TbFEN1 181  TEDMDALAFGSRVMLRHLTYGEAKKRPIAEYHLDEILEASGFSMQQFIDLCILLGCDYVP  240 

            TEDMD L FGS V++RHLT  EAKK PI E+HL  IL+  G + +QF+DLCILLG DY   

HsFEN1 177  TEDMDCLTFGSPVLMRHLTASEAKKLPIQEFHLSRILQELGLNQEQFVDLCILLGSDYCE  236 

 

TbFEN1 241  RISGIGPHKAWEGIKKYGSLEAFIESLDGTRYVVPEEFNYKDARNFFLEPEVTPGEEIDI  300 

             I GIGP +A + I+K+ S+E  +  LD  +Y VPE + +K+A   FLEPEV   E +++ 

HsFEN1 237  SIRGIGPKRAVDLIQKHKSIEEIVRRLDPNKYPVPENWLHKEAHQLFLEPEVLDPESVEL  296 

 

TbFEN1 301  QFREPDEEGLIKFLVDEKLFSKERVLKGIQRLRDALTKKTQGRLDQFFTIT  351 

            ++ EP+EE LIKF+  EK FS+ER+  G++RL  +    TQGRLD FF +T 

HsFEN1 297  KWSEPNEEELIKFMCGEKQFSEERIRSGVKRLSKSRQGSTQGRLDDFFKVT  347 

 
FIGURE 3.1-3 ALIGNMENT OF TBFEN1 WITH HSFEN1 

T. BRUCEI PUTATIVE FEN1 AMINO ACID SEQUENCE (ENTREZ GENE ID: 3656016) ALIGNED WITH H. 
SAPIENS FEN1 AMINO ACID SEQUENCE (ENTREZ GENE ID: 2237). KEY RESIDUES ARE HIGHLIGHTED 

IN GREEN. 
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3.1.2. IDENTIFICATION OF KEY AMINO ACIDS IN TBFEN1 
Following alignment, the UniProt entries of the human FEN1 and T. brucei brucei FEN1 protein 

were used, in conjunction with the previously generated alignment to identify the residues in T. 

brucei equivalent to those within the human FEN1 protein with characterised functional roles 

(Table 3.1.2-1). By identifying those residues that are key to the function of the HsFEN1 

protein, it would be possible to infer that those respective residues were also key to the function 

of the TbFEN1 protein. Therefore, those residues should serve as appropriate targets for 

mutagenesis experiments to determine if any drastic changes to their characteristics had an 

effect of TbFEN1’s cleavage activity. 

3.2. SELECTION OF MUTANTS 

3.2.1. IDENTIFY APPROPRIATE SUBSTITUTIONS AT EACH KEY SITE 
With the key residues identified for mutagenesis, it was decided that each would be substituted 

for a neutral residue – Alanine – and an oppositely charged residue – Lysine in place of any 

Position - 

Human 

Human 

Amino Acid 

Description T. brucei 

Amino Acid 

Position – T. 

brucei 

Supporting 

Experimental 

Data 

34 Aspartic Acid 

(D) 

Metal Binding 

– Magnesium 1 

Aspartic Acid 

(D) 

34 Mutagenesis 

(Shen, et al., 

1996) 

47 Arginine (R) Binding Site – 

DNA Substrate 

Lysine (K) 47 Mutagenesis 

(Qui, et al., 

2002) 

70 Arginine (R) Binding Site – 

DNA Substrate 

Arginine (R) 74 Mutagenesis 

(Qui, et al., 

2002) 

86 Aspartic Acid 

(D) 

Metal Binding 

– Magnesium 1 

Aspartic Acid 

(D) 

90 Mutagenesis 

(Shen, et al., 

1996) 

158 Glutamic Acid 

(E) 

Metal Binding 

– Magnesium 1 

Binding Site – 

DNA Substrate 

Glutamic Acid 

(E) 

162 Mutagenesis 

(Shen, et al., 

1996) 

160 Glutamic Acid 

(E) 

Metal Binding 

– Magnesium 1 

Glutamic Acid 

(E) 

164 Mutagenesis 

(Frank, et al., 

1998) 

179 Aspartic Acid 

(D) 

Metal Binding 

– Magnesium 2 

Aspartic Acid 

(D) 

183 Mutagenesis 

(Shen, et al., 

1996) 

181 Aspartic Acid 

(D) 

Metal Binding 

– Magnesium 2 

Aspartic Acid 

(D) 

185 Mutagenesis 

(Shen, et al., 

1996) 

231 Glycine (G) Binding Site – 

DNA Substrate 

Glycine (G) 235 Mutagenesis 

(Shen, et al., 

1996) 

233 Aspartic Acid 

(D) 

Metal Binding 

– Magnesium 2 

Binding Site – 

DNA Substrate 

Aspartic Acid 

(D) 

237 Mutagenesis 

(Shen, et al., 

1996) 

TABLE 3.1.2-1 KEY AMINO ACIDS IN HUMAN FEN1 AND THEIR EQUIVALENTS IN T. BRUCEI FEN1 

NEGATIVELY CHARGED RESIDUES ARE HIGHLIGHTED IN PURPLE, POSITIVELY CHARGED RESIDUES 

IN GREEN, AND NON-POLAR IN ORANGE. 
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acidic residues, Aspartic Acid for any basic residues and in the case of the 235 Glycine residue, 

substitutions were then made for all of the above cases (Table 3.2.1-1). Using neutral residues 

and oppositely charged residues would hopefully highlight how crucial each target was both on 

its own – since the neutral substitution should simply prevent it from interacting with either the 

DNA or Mg2+ ions – and in the larger picture of the structure-function relationships of the 

protein – since oppositely charged residues should actively disrupt the proteins structure, or at 

the very least work antagonistically to the other key residues. 

Position Original Residue Substituted Residues 

34 Aspartic Acid (D) Alanine (A) 

Lysine (K) 

47 Lysine (K) Alanine (A) 

Aspartic Acid (D) 

74 Arginine (R) Alanine (A) 

Aspartic Acid (D) 

90 Aspartic Acid (D) Alanine (A) 

Lysine (K) 

162 Glutamic Acid (E) Alanine (A) 

Lysine (K) 

164 Glutamic Acid (E) Alanine (A) 

Lysine (K) 

183 Aspartic Acid (D) Alanine (A) 

Lysine (K) 

185 Aspartic Acid (D) Alanine (A) 

Lysine (K) 

235 Glycine (G) Alanine (A) 

Aspartic Acid (D) 

Lysine (K) 

237 Aspartic Acid (D) Alanine (A) 

Lysine (K) 

TABLE 3.2.1-1 RESIDUES TARGETED FOR SITE DIRECTED MUTAGENESIS AND CHOSEN SUBSTITUTIONS 

 

3.2.2. PRIMER DESIGN & MUTAGENESIS 
With the list of mutants prepared, forward and reverse primers were designed using the Agilent 

primer design software for each of the 21 mutants in table 3.2.1-1. The primers were then used 

to introduce the desired mutations via site-directed mutagenesis into the pET24a plasmid with 

the TbFEN1 gene already present from previous studies. The new mutant plasmids were 

transformed into E. coli for amplification and then the purified plasmids sent off for sequencing. 
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3.2.3. CONFIRMING SUCCESSFULLY MODIFIED PLASMIDS 
When the sequencing data was received it was used to determine if the mutagenesis had been 

completely successful, rather than waste time and resources introducing a redundant change to 

the target sequence. The introduced mutation was first located on both the forward and reverse 

sequences by searching for the complementary section to each primer on the Chromas™ 

software (Figure 3.2.3-1). The nucleotide sequence was then converted to the amino acid 

sequence using the online ExPASy translation tool and confirming the presence of the new 

amino acid. Finally, a BLASTP search was carried out on the new amino acid sequence to 

compare it to the wild type sequence and ensure no other mutations had been introduced in the 

process. With the successful mutagenesis confirmed, the plasmids were transformed into Tuner 

cells for expression. In total, 23 mutant TbFEN1 proteins were designed and plasmids created 

for each, with 13 successfully expressed in E. coli. 

  

FIGURE 3.2-1 SEQUENCE ANALYSIS FOR THE TBFEN1 E162A AMINO ACID SUBSTITUTION 

i) A CHROMAS TRACE ILLUSTRATING THE SINGLE NUCLEOTIDE SUBSTITUTION INTRODUCED FROM THE WILD TYPE 

BASE TRIPLET GAG CODING FOR GLUTAMIC ACID, TO THE BASE TRIPLET GCG CODING FOR ALANINE. 

ii) A PROTEIN BLAST SHOWING THAT ALANINE IS ENCODED INSTEAD OF GLUTAMIC ACID AT POSITION 162. 

NUCLEOTIDES ARE NUMBERED ACCORDING TO NUCLEOTIDE 1 REPRESENTING THE ADENINE BASE OF THE START CODON 

ATG, AT THE BEGINNING OF THE TBFEN1 GENE 
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4. EXPRESSION OF MUTANT AND WILD TYPE 

TBFEN1 IN E. COLI 
 

4.1. EXPRESSION OF TBFEN1 PROTEINS IN TUNER CELLS 

4.1.1. SMALL-SCALE INDUCTION AND PURIFICATION 
In order to express recombinant TbFEN1 proteins, expression plasmids with the desired 

mutations were transformed into the E. coli strain Tuner (DE3) pLysS. The pLysS expression 

system works by a gene encoding the T7 RNA polymerase sitting on a defective lambda phage 

(known as DE3) under the control of a lac promoter. The pLysS plasmid carries the 

chloramphenicol resistance gene, so inclusion of chloramphenicol in media selects for the 

presence of pLysS plasmid. It also encodes bacteriophage T7 lysozyme which both inhibits any 

low-level expression of T7 RNA polymerase prior to induction and also helps cells lysis. The 

recombinant plasmid (pJGO4) used to express the TbFEN1 protein is derived from the 

kanamycin resistant pET24a vector and expressed the TbFEN1 protein with a C-terminal His 

tag. 

kDa 

250 
150 

100 

75 

50 

37 

25 

20 

15 

10 

FIGURE 4.1-1 TIME COURSE OF TBFEN1 EXPRESSION IN TUNER CELLS CONTAINING 

PET24A GEN1 OVER 3 HOURS, COMPARED TO TUNER CELLS CARRYING THE PET24A 

VECTOR, FOLLOWING ADDITION OF IPTG 

LANES A BIORAD PRECISION PLUS PROTEIN STANDARD MARKER (PROTEIN SIZES 

INDICATED IN KDA, LEFT). LANES B-E, TIME COURSE CELL EXTRACTS PREPARED FROM 

TUNER CARRYING RECOMBINANT PET24A-TBFEN1 PLASMID. LANES F-I, CELL EXTRACTS 

PREPARED FROM TUNER CARRYING PET24A VECTOR. LANE J, THERMOFISCHER MARK12 

UNSTAINED STANDARD MARKER 

A          B        C      D  E          F        G       H     I  J 
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All mutant proteins were first purified on a small scale to ensure the desired expression 

occurred, as well as providing an opportunity to optimise the induction protocol for the highest 

quantity of soluble protein extract. Samples were taken throughout the induction and 

purification process and visualised on SDS-PAGE gels. Figure 4.1.1. - 1 shows proteins 

visualised from bacterial cell extracts prepared from Tuner cells carrying either vector pET24a 

or recombinant plasmid pET24a FEN1 over a 3 hour period of expression. The presence of the 

TbFEN1 protein can be clearly seen from the increasingly dense bands around 45 kDa, in lanes 

C, D and E. 

 

Following successful demonstration of TbFEN1 expression, the bacterial pellet was collected 

and frozen at the end of the time course and frozen at -80°C. Prior to purification the desired 

pellet was thawed, lysed and pushed over a 45 micron filter, before applying the resulting 

soluble fraction to a QIAGEN Ni-NTA spin column. Following sequential washes with a low 

imidazole buffer to remove proteins binding non-specifically to the Ni-NTA resin, bound 

proteins were eluted using a buffer containing 500 mM imidazole. Samples collected from the 

induced bacterial culture, protein loaded onto the column, and from each wash and elution step 

were analysed by SDS-PAGE. An example of a small-scale purification on a Ni-NTA spin 

column is presented in Figure 4.1.1-2. Analysis of the whole cell extract (lane B) shows the 

presence of an abundant induced protein band with a predicted mass of 45 kDa, confirming high 

level expression of TbFEN1. However, a comparison of the abundance of TbFEN1 in the 

soluble fraction (lane c) with that in the whole cell extract (lane B) indicated that the majority 

of TbFEN1 expressed under these conditions is insoluble. The majority of proteins loaded on 

the column do not bind to the column and appear in the flow through fraction (lane D) or are 

removed with low imidazole (lane E). Some of the His-tagged TbFEN1 is however retained on 

the column and eluted with 500 mM imidazole (lanes H and I). 
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To try and optimise the yield, the effect of changing the temperature of expression conditions 

upon solubility was investigated. Therefore, mutant E164A was expressed again but this time 

at 30°C rather than 37°C as previously (Figure 4.1.1 – 3). Analysis of the whole cell extract 

(lane B) shows that the total expression of TbFEN1 has fallen slightly after lowering the 

temperature of the expression step, but has still remained high enough for this method to be 

effective. However, comparison of the abundance of TbFEN1 in the soluble fraction (lane C) 

with the whole cell extract (lane B), demonstrates that although there is still a significant 

difference, there is a smaller disparity than at 37°C suggesting a greater abundance of soluble 

TbFEN1 at 30°C. Furthermore, the amount of His-tagged TbFEN1 finally eluted from the 

column with a 500 mM imidazole wash appears far greater at this lower temperature. 

  

FIGURE 4.1-2 NI2+NTA SPIN COLUMN PURIFICATION OF TBFEN1 E164A MUTANT 

AT 37°C 

HIS-TAGGED TBFEN1 WAS PURIFIED FROM BACTERIA PELLETED FROM 

APPROXIMATELY 20 ML OF INDUCED CULTURE AS DESCRIBED IN METHOD 1.3.6. 

LANES A & J, MARK 12 MW MARKERS (PROTEIN SIZES INDICATED IN KDA, ON 

LEFT). LANE B, WHOLE CELL EXTRACT FROM TUNER CARRYING RECOMBINANT 

PET24A-TBFEN1 E164A PLASMID AFTER INDUCTION WITH IPTG. LANE C, 
SOLUBLE FRACTION. LANE D, NON-BINDING E.COLI PROTEINS. LANES E-G, WASH 

STEPS. LANES H & I, ELUTED HIS-TAGGED TBFEN1 E164A PROTEIN. 
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4.1.2. LARGE-SCALE INDUCTION & LYSIS 
Having tested His-Tag purification as an effective method of initial purification and determined 

that induction at 30°C produced a higher concentration of soluble protein, the process was 

scaled up to produce sufficient quantities of each mutant for carrying out cleavage assays. This 

was mostly a simple case of scaling up the volume of liquid cultures from 25 ml to 800 ml and 

implementing the optimisation of 30°C induction with IPTG. However, after purifying a first 

batch of wild type TbFEN1, the point was raised that the lysis buffer that the pellets were 

resuspended in contained the endonuclease Benzonase, which may have an adverse effect on 

the perceived activity of the TbFEN1 we were trying to analyse – itself being an endonuclease. 

Although the Benzonase should be purified from the suspension by the subsequent His-tag and 

Anion-exchange liquid chromatography, the decision was therefore made to carry out 

subsequent lysis without adding Benzonase to the lysis buffer to be sure that TbFEN1 was 

responsible for any DNA cleavage in later assays. 

 

FIGURE 4.1.1-3 NI2+-NTA SPIN COLUMN PURIFICATION OF TBFEN1 E164A 

MUTANT AT 30°C 

LANES A & J, MARK 12 MW MARKERS (PROTEIN SIZES INDICATED IN KDA, ON 

LEFT). LANE B, WHOLE CELL EXTRACT FROM TUNER CARRYING 

RECOMBINANT PET24A-TBFEN1 E164A PLASMID AFTER INDUCTION WITH 

IPTG. LANE C, SOLUBLE FRACTION. LANE D, NON-BINDING E.COLI 

PROTEINS. LANES E-G, WASH STEPS. LANES H & I, ELUTED HIS-TAGGED 

TBFEN1 E164A PROTEIN. 
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4.1.3. HIS-TAG PURIFICATION AND POOLING 
Wild type and mutant TbFEN1 proteins were harvested from pelleted expression cultures by 

lysis, centrifugation to remove insoluble material, and subsequent purification by liquid 

chromatography over an immobilised Ni2+ affinity column using the AKTA-prime machine as 

detailed in method 1.4.3. Samples were taken from the whole cell extract, flow through, and 

from those fractions indicated to have the greatest protein abundance by a 280 nm UV trace. 

The collected samples were then analysed by SDS-PAGE according to method 1.4.5. 

As shown in Figure 4.1.3-1, purifying TbFEN1 protein using a Ni2+ column and a linear gradient 

of 20-500 mM imidazole buffer allows for the gradual elution of all the proteins in the cell 

extract, according to how strongly they are bound to the column. The majority of bacterial 

proteins do not bind and are washed off immediately (lane B) or at low imidazole 

concentrations. As the concentration of imidazole in the elution buffer rises the more strongly 

bound proteins begin to elute, which corresponds to a gradual incline on the UV trace. If the 

amount of target protein expressed is sufficient then this will give rise to a peak on the UV trace 

as the protein is finally displaced by the imidazole. However, the UV trace only gives a rough 

idea of which fractions the eluted protein is in. therefore it is necessary to analyse those fractions 

across the peak of the trace using SDS-PAGE (Figure 4.1.3-1). Analysis of the different 

fractions (lanes C-J) shows a gradually increasing band around 45 kDa, corresponding to the 

purified TbFEN1 protein, and specifically that the greatest abundance of TbFEN1 is in those 

fractions corresponding to lanes H, I and J. It is also clear from this figure that while the His-

tag purification was effective in concentrating the protein of interest from 16 ml of cell lysate 

to simply three 1 ml fractions, and in purifying a significant quantity of unwanted E. coli 

proteins from the suspension, there was still a large amount of contaminant protein in these 3 

FIGURE 4.1.3-1 LARGE SCALE PURIFICATION OF TBFEN1 E164A BY NI2+ AFFINITY 

LIQUID CHROMATOGRAPHY 

LANE A, MARK-12 MW MARKER (PROTEIN SIZES INDICATED IN KDA, ON LEFT). LANE 

B, FLOW THROUGH. LANES C-J, FRACTIONS 6-13 COLLECTED ACROSS THE UV PEAK. 
FRACTIONS 11-13 (LANES H-J) WERE IDENTIFIED AS HAVING THE HIGHEST 

ABUNDANCE OF TBFEN1 E164A AND THUS POOLED FOR FURTHER PURIFICATION BY 

ANION EXCHANGE LIQUID CHROMATOGRAPHY. 
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fractions – seen as fainter bands above and below the TbFEN1 bands. It is for this reason that a 

second purification step using anion exchange chromatography was also performed. 

 

4.1.4. ANION-EXCHANGE PURIFICATION 
Following initial purification of the target TbFEN1 protein from the cell lysate it was still 

necessary to further isolate it from a number of contaminant co-purified E. coli proteins still 

present in the fraction. Therefore, pooled fractions were prepared according to method 1.4.4. 

and loaded on to a MonoQ 5/50 GL column, to be further purified by anion-exchange 

chromatography. Anion exchange chromatography was chosen following previous work within 

the lab by McAllister, et al. which had identified that this method gave a very good separation 

between TbFEN1 and any remaining contaminants, although even this method was not 100% 

effective at completely isolating TbFEN1 (McAllister & Benson, 2015). Bound proteins were 

then eluted using a NaCl concentration gradient. The 280 nm UV trace was again used to 

identify peak fractions and samples analysed by SDS-PAGE (Figure 4.1.4-1) to determine 

which fractions contained the highest concentration of purified target protein. Analysis of the 

eluted fractions (lanes C-I) shows the gradual increase in abundance of the distinctive TbFEN1 

band at 45 kDa. Comparing the lanes on this gel with the greatest abundance of TbFEN1 (lanes 

D, E and F) to those on Figure 4.1.3-1 containing the greatest abundance of TbFEN1 (lanes H-

J), it is clear that the second purification step has been successful in removing many 

contaminants. Comparing lanes D-F to the flow through (lane B) it is apparent that most of 

those proteins greater than 45 kDa in mass have been isolated from the final sample. However, 

there are still multiple bands with smaller mass than TbFEN1 in those samples – these are most 

likely degradation products however. 
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Purified protein fractions were then analysed to determine the concentration of protein in each 

fraction by measuring the absorbance of each fraction at 280 nm compared to a blank elution 

buffer. The absorbance was then used to calculate the protein concentration as detailed in 

section 2.5. The measured concentrations of each protein can be found in Appendix I.  

 

  

FIGURE 4.1-1 LARGE SCALE PURIFICATION OF TBFEN1 E162A BY ANION 

EXCHANGE LIQUID CHROMATOGRAPHY 

POOLED FRACTIONS FROM HIS-TAG PURIFICATION WERE DILUTED 1 IN 10 WITH 0 

M NACL AND RUN THROUGH A MONOQ COLUMN USING THE ÄKTA FPLC 

SYSTEM TO PURIFY THE PROTEIN OF INTEREST FROM ANY CONTAMINANT E. COLI 

PROTEINS.  

LANE A, MARK-12 MW MARKER (PROTEIN SIZES INDICATED IN KDA, ON LEFT). 
LANE B, SAMPLE LOADED ONTO THE COLUMN. LANES C-I, FRACTIONS A14-B11 

(SERPENTINE FRACTION COLLECTION WAS USED). FRACTIONS A15, B15 & B14 

WERE SELECTED FOR USE IN CLEAVAGE ASSAYS 

 A         B       C     D E         F        G      H   I J 

Peak Fractions 

TbFEN1 

E162A 

KDa 

200 
116.3 
97.4 
66.3 
55.4 

36.5 

31 

21.5 

14.4 

 



Characterising a Novel Endonuclease in Trypanosoma brucei - Samuel Shelley – March 2020 

68 

 

5. ASSAYING MUTANT CLEAVAGE 

5.1. NATIVE PAGE 

5.1.1. TBFEN1 AS A HJ RESOLVASE COMPARED TO T7 ENDONUCLEASE 

1 
In order to investigate whether purified TbFEN1 was able to cleave Holliday junctions, a 

synthetic HJ was incubated with a range of concentrations of purified wild type protein, and 

following deproteinization, products and substrates were separated by native PAGE. Substrates 

and products with Cy5 5’ end labels were visualised using the Cy5 channel on a Bio-Rad Gel 

doc system. In parallel with assays using TbFEN1, as a positive control the synthetic Holliday 

junction was incubated with bacteriophage T7 endonuclease 1, which should validate the 

synthetic substrate and provide a comparison for TbFEN1’s cleavage activity (Figure 5.1.1.-1). 

Both enzymes were used at a number of different concentrations to ensure that this was not a 

limiting factor. If TbFEN1 could cleave HJs, then the larger band produced by the HJ substrate 

at the top of the gel should be replaced by a band further down, in line with the dsDNA marker, 

as the HJ was cleaved into two dsDNA molecules, thus confirming TbFEN1s activity which 

should mirror that of known HJ resolvase – T7endo1. 

 

FIGURE 5.1.1-1 NATIVE PAGE ANALYSIS OF TBFEN1 AND T7ENDO1 

HOLLIDAY JUNCTION CLEAVAGE 

SYNTHETIC HOLLIDAY JUNCTION SUBSTRATES WERE USED TO ANALYSE THE 

CLEAVAGE ACTIVITY OF TBFEN1 COMPARED TO KNOWN HJ RESOLVASE 

T7ENDO1. TWO-FOLD DILUTIONS OF THE ENZYMES IN 10X CLEAVAGE BUFFER 

AND WATER WERE USED TO ENSURE THAT A WIDE RANGE OF ENZYME 

CONCENTRATIONS WERE TESTED IN ORDER TO REMOVE THIS AS A POSSIBLE 

LIMITING FACTOR. 

LANE A, 200 NM HOLLIDAY JUNCTION SUBSTRATE. LANE B, 200 NM 

DSDNA SUBSTRATE. ALL OF LANES C-J, CONTAIN 200 NM HJ SUBSTRATE. 
LANE C, 4 µM TBFEN1. LANE D, 2 µM TBFEN1. LANE E, 1 µM TBFEN1. 
LANE F, 0.5 µM TBFEN1. LANE G, 0.25 µM TBFEN1. LANE H, 2 µM 

T7ENDO1. LANE I, 1 µM T7ENDO1. LANE J, 0.5 µM T7ENDO1. 

or 

  HJ    dsDNA 

FEN1 - HJ T7endo1 - HJ 

  A         B       C    D        E        F       G    H        I      J 
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In actuality, the results presented in figure 5.1.1-1 show that the HJ is cleaved efficiently by T7 

endonuclease I to produce products with a mobility similar to that of a 60 bp ds DNA molecule 

(compare lanes H-J and lane B), indicative of symmetrical cleavage across the HJ by a resolvase 

activity. In contrast, although the substrate HJ band appears to decrease with increasing TbFEN1 

protein, this is not accompanied by an appearance of a band consistent with introduction of 

symmetrically placed nicks across the HJ. From this it can be concluded that under the 

conditions used in this assay TbFEN1 is not cleaving HJs. Increased concentrations of TbFEN1 

lead to the increase in a smeared band with an increased mobility compared with the dsDNA 

marker, suggesting some non-specific nucleolytic activity of TbFEN1 on the HJ substrate. As 

expected, the T7endo1 cleaved HJs normally, with greater cleavage seen at higher 

concentrations. However, TbFEN1 showed almost no cleavage of HJs at any concentrations. 

While there appears to be a very minute amount of HJ cleavage into duplex products at the 

highest concentration of 4 µM, it is so minimal as to not be significant. This may suggest that 

ensuring HJ cleavage by TbFEN1 is simply a case of optimising the conditions for cleavage to 

occur, but due to time limitations this was not explored. It is also possible that this faint band is 

simply minor contamination from the duplex marker in the lane next to it. Similarly, the buffer 

conditions here had not been optimised beforehand for the most efficient TbFEN1 cleavage, so 

this may also be a factor. 

 

5.1.2. TBFEN1 AND MUTANTS AS A 5’-FLAP ENDONUCLEASE 
In the absence of robust evidence that the TbFEN1 protein was able to cleave HJs, experiments 

to investigate the cleavage activity on synthetic 5’- flap substrates were initiated, under the 

possibility TbFEN1 may be a more effective Flap endonuclease. Along with the WT TbFEN1, 

a number of the purified mutants were also assayed for 5’-flap nuclease activity. As with the HJ 

cleavage assay, by incubating the TbFEN1 protein (and its mutagenesis products) with a 5’-flap 

junction and running the resulting solution on a gel, it should be possible to observe if the 

junction has been cleaved by the presence (or absence, if cleavage was unsuccessful) of a band 

towards the bottom of the gel, caused by the fluorescent tagged 30mer, compared to the much 

larger tagged flap junction at the top of the gel. 

Firstly, mutants E162A and E164A (glutamic acid residues presumed to be involved in 

magnesium and DNA substrate binding in the wild type) were assayed alongside 2 µM TbFEN1 

on their ability to cleave 5’-flaps (Figure 5.1.2-1). Analysis of TbFEN1’s 5’-flap cleavage 

activity (lane C) shows that 2 µM TbFEN1 is capable of cleaving the substrate to a significant 

degree – with almost no substrate remaining and plenty of cleavage product visible at the base 

of the gel. Analysis of E162A’s activity (lanes D-F) also demonstrates successful 5’-flap 

cleavage across all 3 concentrations, however at 1 µM a significant amount of uncleaved 

substrate can still be seen, and less duplex product is visible than at lower concentrations of the 

enzyme. This unexpected phenomenon remains a mystery, as it was the only time such an event 

occurred, and an overabundance of enzyme should result in more product or at least a faster 

rate. E164A’s cleavage activity (lanes G-I) however seems totally absent, suggesting this 

residue is key to cleavage activity. 
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Upon studying the results from the E162A/E164A assay, the dsDNA marker was very hard to 

visualise and so the decision was made to use 400 µM dsDNA in all future assays. The next 

mutants to be assayed were D90K and D90A (magnesium coordination) (Fig. 5.1.2-2), and 

D185A and D185K (magnesium coordination) (Fig. 5.1.2-3).  All 4 of these mutants showed 

no significant cleavage activity, suggesting that each of the mutated residues is key to TbFEN1’s 

cleavage activity. In both these 2 further assays, 2 µM TbFEN1 cleaves 5’-flap junctions 

significantly, validating the earlier result. Having demonstrated that the synthetic 5’-flap 

substrates could be cleaved by both the wild-type TbFEN1 and E162A TbFEN1, further assays 

were visualised on denaturing Urea-page to provide a greater resolution of the proteins’ 

nuclease activity. 

 

 

 

 

 

   Flap   dsDNA   FEN1 

E162A E164A 

FIGURE 5.1.2-1 TBFEN1, E162A & E164A 5'-FLAP NUCLEASE 

ACTIVITY 

SYNTHETIC 5’-FLAP JUNCTION SUBSTRATES WERE USED TO 

ANALYSE THE CLEAVAGE ACTIVITY OF TBFEN1 AND TBFEN1 

MUTANTS: E162A AND E164A. TWO-FOLD DILUTIONS OF THE 

ENZYMES IN 10X CLEAVAGE BUFFER AND WATER WERE USED TO 

ENSURE THAT A WIDE RANGE OF ENZYME CONCENTRATIONS 

WERE TESTED IN ORDER TO REMOVE THIS AS A POSSIBLE 

LIMITING FACTOR. 

LANE A, 200 NM 5’-FLAP JUNCTION SUBSTRATE. LANE B, 200 

NM DSDNA SUBSTRATE. ALL OF LANES C-J, CONTAIN 200 NM 

5’-FLAP JUNCTION SUBSTRATE. LANE C, 2 µM TBFEN1. LANE 

D, 250 NM E162A. LANE E, 500 NM E162A. LANE F, 1 µM 

E162A. LANE G, 250 NM E164A. LANE H, 500 NM E164A. 
LANE I, 1 µM E164A. 

  A      B        C  D      E      F        G      H     I 
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FIGURE 5.1.2-2 TBFEN1, D90A & D90K 5'-FLAP NUCLEASE ACTIVITY 

SYNTHETIC 5’-FLAP JUNCTION SUBSTRATES WERE USED TO ANALYSE 

THE CLEAVAGE ACTIVITY OF TBFEN1 AND TBFEN1 MUTANTS: D90A 

AND D90K. TWO-FOLD DILUTIONS OF THE ENZYMES IN 10X CLEAVAGE 

BUFFER AND WATER WERE USED TO ENSURE THAT A WIDE RANGE OF 

ENZYME CONCENTRATIONS WERE TESTED IN ORDER TO REMOVE THIS AS 

A POSSIBLE LIMITING FACTOR. 

LANE A, 200 NM 5’-FLAP JUNCTION SUBSTRATE. LANE B, 400 NM 

DSDNA SUBSTRATE. ALL OF LANES C-J, CONTAIN 200 NM 5’-FLAP 

JUNCTION SUBSTRATE. LANE C, 2 µM TBFEN1. LANE D, 1 µM D90K. 
LANE E, 500 NM D90K. LANE F, 250 NM D90K. LANE G, 1 µM D90A. 
LANE H, 500 NM D90A. LANE I, 250 NM D90A. 

 

   Flap   dsDNA   FEN1 

D90A D90K 

A         B      C  D        E       F        G       H        I  

FIGURE 5.1-3 TBFEN1, D185K & D185A 5'-FLAP NUCLEASE ACTIVITY 

SYNTHETIC 5’-FLAP JUNCTION SUBSTRATES WERE USED TO ANALYSE 

THE CLEAVAGE ACTIVITY OF TBFEN1 AND TBFEN1 MUTANTS: D185A 

AND D185K. TWO-FOLD DILUTIONS OF THE ENZYMES IN 10X CLEAVAGE 

BUFFER AND WATER WERE USED TO ENSURE THAT A WIDE RANGE OF 

ENZYME CONCENTRATIONS WERE TESTED IN ORDER TO REMOVE THIS AS 

A POSSIBLE LIMITING FACTOR. 

LANE A, 200 NM 5’-FLAP JUNCTION SUBSTRATE. LANE B, 400 NM 

DSDNA SUBSTRATE. ALL OF LANES C-J, CONTAIN 200 NM 5’-FLAP 

JUNCTION SUBSTRATE. LANE C, 2 µM TBFEN1. LANE D, 1 µM D185K. 
LANE E, 500 NM D185K. LANE F, 250 NM D185K. LANE G, 1 µM 

D185A. LANE H, 500 NM D185A. LANE I, 250 NM D185A 

   Flap   dsDNA   FEN1 

D185K D185A 

A         B        C   D       E        F       G       H         I  
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5.2. DENATURING UREA-PAGE 

5.2.1. ANALYSIS OF 5’-FLAP NUCLEASE ACTIVITY OF TBFEN1 AND ITS 

MUTANTS 
The same 5’-flap cleavage assay was carried out for all the mutants purified by the end of the 

project (TbFEN1. D34A, D90A, E162A, E164A, D185A, D237A, Q341A, Q341A+G342A, 

D90K, D183K, D185K, D237K, G235D), before running each sample on a 12% Urea-PAGE 

gel to denature any DNA products and thus provide a greater resolution, enabling visualisation 

of the cleavage products at a resolution of 1 nucleotide. This would therefore provide a much 

clearer picture of the exact cleavage reaction taking place – and thus rule out if TbFEN1 simply 

cleaves single stranded DNA structures, or specifically cleaves around Flap junctions to form a 

neat nick.  

The samples were diluted in formamide buffer to ensure complete denaturation, and the final 

gel was visualised on a Typhoon™ FLA biomolecular imager (Figure 5.2.1-2). A 5’-CY5- end 

labelled 5’-flap was used this time to allow visualisation of the cleavage products, and a 30-mer 

used as a marker (Figure 5.2.1-1). 

FIGURE 5.2-1 STRUCTURE OF THE SYNTHETIC 5’-CY5-LABELLED FLAP 

SUBSTRATE AND DOUBLE STRANDED DNA SUBSTRATE 

ALL OLIGONUCLEOTIDES WERE SYNTHESISED BY EUROFINS BEFORE BEING 

PREPPED AND PURIFIED BY NOBLETT, ET AL. PRIOR TO THIS PROJECT  (NOBLETT 

& BENSON, 2017). 

A) THE 5’-FLAP STRUCTURE USED WAS BY COMBINING THEIR 60 BP CY5-
X26.1 OLIGONUCLEOTIDE (RED)  WITH A 60 BP 5’-FLAP OLIGO AND A 30 

BP OLIGO WITH A COMPLIMENTARY SEQUENCE TO THE FLAP. THIS 

FORMS A 5’FLAP JUNCTION WITH A 31-BP FLAP. 

B) THE DS-DNA SUBSTRATE WAS PREPARED COMBINING THE 60-BP CY5-
X26.1 (RED) AND 60-BP X26.5 OLIGOS  

 

A) 

 

 

 

 

 

 

 

B) 



Characterising a Novel Endonuclease in Trypanosoma brucei - Samuel Shelley – March 2020 

73 

 

Analysing the Urea-PAGE gels, it is clear that wt-TbFEN1, E162A (magnesium coordination 

and DNA binding), and pip-box mutants Q341A and Q341A+G342A (lanes C and G on Gel 1, 

and lanes C, I and J on Gel 2) were all successful in cleaving the 5’-flap junction. This is 

demonstrated by the decrease or absence of a band at the position of a full length 60-mer at the 

top of the gel, and the appearance of three to five products bands at the base, in line with the 

30-mer marker.  It is certainly not surprising that the PIP box mutants’ cleavage activity was 

unaffected as such mutations should only interfere with their ability to interact with PCNA in 

vivo, rather than affect catalytic activity.  Furthermore, the multiple bands seen in these lanes 

suggest there is some ‘breathing’ at the junction, resulting in products estimated to be 31, 32, 

33, 34 and 35 nucleotides in length. This may go some way to explaining the blurred product 

bands shown on the lower resolution native-page gels. 

Meanwhile mutants D34A (Gel1 – lane D, implicated in magnesium coordination), D90A (Gel1 

– lane E, implicated in ), D90K (Gel1 – lane F, implicated in magnesium coordination), E164A 

(Gel1 – lane H, implicated in magnesium coordination), D183K (Gel1 – lane I, implicated in 

magnesium coordination), D185A (Gel2 – lane D, implicated in magnesium coordination), 

D185K (Gel2 – lane E, implicated in magnesium coordination), G235D (Gel2 – lane F, 

implicated in DNA binding), D237A (Gel2 – lane G, implicated in magnesium coordination 

and DNA binding), and D237K (Gel2 – lane H, implicated in magnesium coordination and 

DNA binding) all failed to cleave the 5’-flap junctions, suggesting these residues are key to the 

TbFEN1 enzymes catalytic activity. Taking the successful cleavage results in conjunction with 

these failed cleavage results validates both the synthetic junctions as viable substrates as well 

as confirming the nuclease activity of those enzymes that appear to cleave 5’-flaps. The results 

from the cleavage assays for each mutagenesis target are summarised in Table 5.2-1. 

Mutagenesis Observations 

D34A Loss of 5’-flap cleavage activity 

D90A Loss of 5’-flap cleavage activity 

D90K Loss of 5’-flap cleavage activity 

E162A No effect on 5’-flap cleavage activity 

E164A Loss of 5’-flap cleavage activity 

D183K Loss of 5’-flap cleavage activity 

D185A Loss of 5’-flap cleavage activity 

D185K Loss of 5’-flap cleavage activity 

G235D Loss of 5’-flap cleavage activity 

D237A Partial loss of 5’-flap cleavage activity 

D237K Loss of 5’-flap cleavage activity 

Q341A No effect on 5’-flap cleavage activity 

Q341A + G342A No effect on 5’-flap cleavage activity 

TABLE 5.2.1-1 SUMMARY OF OBSERVED EFFECTS ON TBFEN1’S 5’-FLAP CLEAVAGE ACTIVITY FROM 

THE 13 MUTAGENESIS EXPERIMENTS COMPLETED IN THIS REPORT 

EIGHT OF THE MUTANT PROTEINS LOST THE ABILITY TO CLEAVE THE SYNTHETIC 5’-FLAP 

SUBSTRATE. ONE MUTANT (D237A) SHOWED PARTIAL LOSS OF CLEAVAGE ACTIVITY. THREE 

MUTANTS (E162A, Q341A AND Q341A + G342A) DID NOT LOSE THEIR ABILITY TO CLEAVE 

THE 5’-FLAP SUBSTRATE 
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FIGURE 5.2-2 DENATURING UREA-PAGE SHOWING 5’-FLAP CLEAVAGE ACTIVITY OF ALL TBFEN1 

MUTANTS SYNTHESISED TO DATE 

TWO 12% UREA-PAGE GELS SHOWING THE NUCLEASE ACTIVITY OF ALL THE TBFEN1 MUTANTS 

SYNTHESISED TO DATE UPON THE SYNTHETIC 5’-FLAP JUNCTION. 1 ΜM OF EACH ENZYME WAS ADDED TO 

200 NM CY5-LABLLED 5’-FLAP JUNCTION IN 2 µL OF 10X CLEAVAGE BUFFER AND MADE UP TO 20 µL WITH 

DH2O. THE REACTION MIXTURE WAS INCUBATED AT 37°C FOR 20 MINUTES BEFORE ADDITION OF 2 µL OF 

STOP BUFFER CONTAINING PROTEINASE K, AND INCUBATED FOR A FURTHER 15 MINUTES AT 37°C.  THE 

SAMPLES WERE THEN DILUTED 1:1 WITH FORMAMIDE LOADING BUFFER, AS WELL AS ADDING 10 µL OF 

LOADING BUFFER TO 2 µL OF 5’-FLAP MARKER AND 4 µL DSDNA MARKER. SAMPLES WERE THEN HEATED 

TO 95°C FOR 5 MINUTES AND 10 µL RUN ON A 12% UREA-PAGE GEL AT 42 W FOR 2.5 HOURS. 

GEL 1: LANE A, 100 ΜM 5’-FLAP SUBSTRATE. LANE B, 100 ΜM DSDNA SUBSTRATE. LANE C-I, 100 ΜM 

5’-FLAP SUBSTRATE AND 1 ΜM ENZYME. LANE C, TBFEN1. LANE D, D34A. LANE E, D90A. LANE F, 
D90K. LANE G, E162A. LANE H, E164A. LANE I, D183K. 

GEL 2: LANE A, 100 ΜM 5’-FLAP SUBSTRATE. LANE B, 100 ΜM DSDNA SUBSTRATE. LANE C-J, 100 ΜM 

5’-FLAP SUBSTRATE AND 1 ΜM ENZYME. LANE C, TBFEN1. LANE D, D185A. LANE E, D185K. LANE F, 
G235D. LANE G, D237A. LANE H, D237K. LANE I, Q341A. LANE J, Q341A+G342A. 

    A      B      C     D     E       F      G       H      I    A      B       C      D     E      F     G     H      I       J     
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6. LOCALISATION OF TBFEN1 IN 

TRYPANOSOMA BRUCEI 
As well as studying the nuclease activity of TbFEN1 in vitro, procyclic T. brucei brucei cells 

expressing mNeon Green-tagged TbFEN1 were generated to study the localisation of TbFEN1 

throughout the cell cycle. 

 

6.1. GENERATION OF T. BRUCEI MUTANTS EXPRESSING 

FLUORESCENT TAGGED TBFEN1 
A PCR only tagging (pPOT) approach was used to generate cell lines expressing mNeon Green 

tagged TbFEN1. DNA sequence encoding the mNeon Green open reading frame and a drug 

resistance cassette was amplified by PCR, using long primers that incorporated 80 nucleotides 

of homology to TbFEN1 and adjacent UTR. Amplicons were generated to allow either N- or 

C-terminally tagged TbFEN1 to be generated. PCR amplicons were subsequently purified and 

used to transfect procyclic T. brucei and recombinant cell lines selected using appropriate drug 

selection (Figure 6.1-1). 

Upon completion of the PCR, the final concentrations were 329.44 µg/µL of the C-terminally 

tagged and 100.05 µg/µL of the N-terminally tagged, both in 50 µL, giving a final amount of 

16.5 µg and 5.0 µg respectively. It had been determined previously to this project that optimal 

transfection required between 3-5 µg of PCR product (0.7-0.8% w/v), and so the C-terminally 

tagged construct would need diluting. However after preparing the N-terminally tagged 

construct there was not enough time left to prepare the second construct. 
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FIGURE 6.1-1 LONG PRIMER PCR TAGGING USING PPOTV4 TO CARRY OUT (A) N-
TERMINAL TAGGING (B) C-TERMINAL TAGGING.  

A TAILORED PPOT PLASMID, SUCH AS PPOTV4, (WHICH ACT AS TEMPLATES FOR LONG 

PRIMER PCR, AND CONTAIN AN APPROPRIATE TAG AND RESISTANCE GENE CASSETTE), 
IS AMPLIFIED USING PCR ALONG WITH LONG PCR PRIMERS WITH AN 80 NUCLEOTIDE 5’ 
OVERHANG WITH HOMOLOGY TO THE TARGET GENE AND ADJACENT UNTRANSLATED 

REGION (UTR). THIS PRODUCES AN AMPLICON WITH THE TAG FUSED TO THE TARGET 

GENE, WITH SUCCESSFULLY TRANSFECTED TRYPANOSOMATIDS ABLE TO BE SELECTED 

FOR USING THE CHOSEN RESISTANCE MARKER. 

(DEAN, ET AL., 2015) 
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6.2. ANALYSIS OF EXPRESSION AND LOCALISATION 
The trypanosomes expressing mNG::TbFEN1 were mounted on slides and treated with DAPI 

and probed with L8C4 to detect PFR2, followed by anti-mouse (TRITC-conjugated) secondary 

antibodies to detect the L8C4 – highlighting the genetic material and flagellum respectively.  

The cells were imaged at different stages of the cell cycle, in a 30-layer z-stack used to create a 

single deconvolved image in each channel (Figure 6.2-1). 

 

In cells that are at the 1K1N and 2K1Nphase of the cell cycle, mNG::TbFEN1 is clearly 

localised within the nucleolus, appearing as a dark hole in the blue DAPI staining. Interestingly, 

during nuclear division mNG::TbFEN1 is localised along a line between the two dividing 

nuclei, perpendicular to the cleavage furrow – presumably bound to DNA that is aligned along 

the mitotic spindle. By the time that the cells are at the 2K2N stage of the cell cycle and in 

cytokinesis however, mNG::TbFEN1 has once again localised to the nucleolus of the two 

daughter nuclei. It should be noted that at no point during the cell cycle, was mNG::TbFEN1 

observed to be localised within the kinetoplast.  
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FIGURE 6.2-1 IMMUNOFLUORESCENCE IMAGES SHOWING THE LOCALISATION OF TBFEN1::MNG IN 

PROCYCLIC FORM T. BRUCEI THROUGH THE CELL CYCLE.   

WHOLE CELLS WERE CO-LABELLED WITH THE MONOCLONAL ANTIBODY L8C4, WHICH IS SPECIFIC FOR THE 

PARAFLAGELLAR ROD PROTEIN PFR2 (ORANGE) AND DAPI (BLUE). CELLS WERE VISUALISED BY 

DELTAVISION DECONVOLUTION MICROSCOPY. SCALE BAR = 15ΜM.  
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7. DISCUSSION 
This project aimed to express a novel T. brucei endonuclease, TbFEN1, with potential HJ 

cleavage activity and thus a possible key to understanding the molecular mechanisms behind 

VSG switching. Firstly, the novel TbFEN1 protein was confirmed to share significant sequence 

homology with a number of GEN1 and FEN1 orthologs across different species, validating its 

selection as a potential endonuclease with a role in homologous recombination and VSG 

switching. 

Secondly, TbFEN1, as well as a number of active site mutants, were successfully purified on a 

large scale using an E. coli expression model. Finally, initial studies in this report taken together 

with previous research carried out in this laboratory, have thrown doubt on TbFEN1’s role as a 

HJ endonuclease as little to no significant activity against Holliday Junctions could be 

demonstrated at this time, although only a very limited range of conditions were tested. The 

possibility remains therefore that the optimum conditions required for dimerization and 

simultaneous nick activity were not identified. 

 

Rather than focus on attempting to optimise for the potential HJ nuclease activity, the possibility 

was instead considered that TbFEN1 may in fact be a flap-endonuclease. Subsequent 

experiments therefore focused on studying this 5’-flap nuclease activity in the hopes it would 

provide a better opportunity to characterise the active site of the putative TbFEN1 enzyme using 

the mutants purified earlier. These experiments confirmed that TbFEN1 does in fact possess 

significant 5’-flap cleavage activity akin to that of the GEN1 or FEN1 enzymes. Furthermore, 

the site-directed mutagenesis carried out targeting potential key amino acids in the TbFEN1 

active site were successful in reducing or even wholly eliminating this cleavage activity once 

more, at least partially validating the comparison to the human GEN1 protein from which the 

mutagenesis targets were selected.  

 

Meanwhile, cell-cycle localisation studies of the TbFEN1 enzyme in vivo showed it following 

an interesting pattern of localisation, sequestered within the nucleolus until nuclear division 

whereupon it localised along the mitotic spindle. Furthermore, at no point during the cell cycle 

was mNG::TbFEN1 observed to localise to the kinetoplast – the network of circular 

mitochondrial DNA. 

 

7.1. TBFEN1 AS A HOLLIDAY JUNCTION RESOLVASE 
As stated above, despite sharing significant homology with human GEN1, this study could not 

find significant HJ cleavage activity for the TbFEN1 enzyme in the time available. Taken 

together with previous work within this laboratory it would seem increasingly unlikely that 

TbFEN1 is in fact the sought-after T. brucei HJ resolvase. It is possible that the conditions 

necessary for TbFEN1 dimerization and cleavage were simply not met, as other organism’s 

GEN1 proteins have also been demonstrated to cleave Flap junctions more readily than HJs, 

such as D. melanogaster (Bellendir, et al., 2017). However, it is worth noting that other 

trypanosome endonucleases have also been identified with potential roles as the parasite’s HJ 

resolvase (Jones, et al., 2017). 
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7.2. TBFEN1 AS A FLAP ENDONUCLEASE 

7.2.1. SEQUENCE ANALYSIS 
While the TbFEN1 protein was shown to possess sequence homology to the human GEN1 

protein here, it shared far greater homology with human FEN1 as well as other FEN1 enzymes, 

supporting the hypothesis that the protein of interest is in fact a FEN1 ortholog. FEN1 is 

traditionally implicated in DNA replication through Okazaki fragment maturation, repair via 

base excision or non-homologous end joining, and recombination (in cases were homologous 

DNA molecules have divergent sequences). Therefore, understanding the exact nature of this 

potential structure specific endonuclease may still prove useful in combating T. brucei and 

sleeping sickness. 

 

7.2.2. 5’-FLAP NUCLEASE ACTIVITY 
Having directed study towards charactering the 5’-flap cleavage activity of TbFEN1, a number 

of nuclease assays were carried out using the purified TbFEN1 protein and a selection of 

mutants with substitutions made to amino acid residues believed to be key to the enzymes 

function. These assays were successful in demonstrating TbFEN1’s ability to cleave 5’-flap 

junctions, as well as showing how 9 of the 13 successfully purified mutants were no longer able 

to cleave 5’-flap junctions, validating those amino acids as indeed key to the enzymes function. 

While 4 of the mutants still showed some cleavage activity (E162A, D237A, Q341A, and 

Q341A+G342A), D237A still showed a reduced rate of cleavage compared to wild-type 

TbFEN1 or the other functional mutants, which would also support its status as a residue with 

a key functional role. Furthermore, as Q341A and Q341A+G342A were both mutations made 

to TbFEN1’s PCNA-interacting peptide (PIP box), it would be expected that these mutations 

would not affect the cleavage activity of TbFEN1. Both E162 and D237, meanwhile, are 

expected to be involved in both magnesium cofactor binding and DNA substrate binding, where 

all the other targeted residues were implicated in either one role or another (Table 3.1.2-1).  

 

Furthermore, while it was not possible to purify an E162K mutant during the time available for 

this project, two mutants were prepared with substitutions at position 237. It is noteworthy 

perhaps that while the substitution of the negatively charged aspartic acid at position 237 for 

the neutral alanine residue had no effect upon the enzymes activity, the substitution for a basic 

lysine residue prevented TbFEN1 from cleaving the 5’-flap substrate. Perhaps therefore, while 

the other active site residues may be more strongly involved in binding DNA or Mg2+ such that 

they can carry the strain resulting from the absence of either E162 or D237 – suggesting these 

residues only weakly bind - they cannot make up for the significant opposing forces introduced 

through the addition of the negatively charge lysine. It would certainly be interesting in the 

future to study the 3D confirmation of TbFEN1 and some of the mutants developed here, to see 

exactly how they have affected the enzymes structure and function. 

Equally interestingly, the observation that it is only the E162 and D237 TbFEN1 mutants that 

retained some flap cleavage activity is in direct contrast to results from mutagenesis studies of 

human FEN1, where E158A and D233A HsFEN1 mutants lost both binding and cleavage 

activity of the flap substrate (Shen, et al., 1996). The same study demonstrated that the 

mutagenesis D179A of HsFEN1 retained the same activity as the wild-type, while this project 

found that the TbFEN1 equivalent position, D183, lost 5’-flap cleavage activity, albeit when 

aspartic acid was replaced with lysine, rather than alanine. This stark difference in results could 

be due to a misidentification of the key TbFEN1 residues, differences in reaction conditions of 

the two studies, or simply structural differences between the human and trypanosome FEN1 
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proteins. It would definitely be worth repeating the experiment with both the original and freshly 

expressed TbFEN1 mutants to be sure that the results were reliable. If the opportunity does arise 

in the future to structurally characterise TbFEN1, it would certainly be worth attempting to 

compare how this data compares with the inferred key residues from this project, or if different 

residues appear to play a role in the function of TbFEN1 based on its 3D confirmation. 

7.2.3. LOCALISATION OF TBFEN1 IN PROCYCLIC T. BRUCEI 
The localisation studies demonstrated that mNG::TbFEN1 concentrated within the nucleolus 

during G1, S and G2 phase, but aligned along the mitotic spindle during mitosis due to 

elongation of the nucleolus (Ogbadoyi, et al., 2000). This observation is concordant with T. 

brucei protein potentially being a FEN1 ortholog, as previous studies by Guo et al. (2008) 

showed human FEN1 super-accumulates in the nucleoli of HeLa cells, where it is proposed to 

have a role in maintaining ribosomal DNA by stabilising rDNA replication forks. However, the 

study also reported that human FEN1 migrates out of the nucleolus into to the nucleoplasm in 

response to UV radiation and the ensuing DNA damage, a relocalisation dependent upon 

phosphorylation of a serine residue at position 187. The study suggests that in HeLa FEN1 acts 

to rescue stalled replication forks, or that it may simply be relocalised away from the rDNA 

following damage to arrest replication and allow time for UV damage to be repaired (Guo, et 

al., 2008). FEN1 is also thought to play an important role in DNA replication, where it is 

responsible for processing Okazaki fragments on the lagging strand. However, no localisation 

of our mNG::TbFEN1 protein was observed outside the nucleolus while using the methods and 

imaging systems detailed in this report, including no observed localisation to the mitochondrial 

DNA within the kinetoplast. This is in contrast to yeast and mouse FEN1, which has been 

demonstrated to play a role in mitochondrial DNA maintenance (Kalifa, et al., 2010). The lack 

of localisation of TbFEN1 protein to the mitochondrial DNA in the kinetoplast would therefore 

lend credence to its role as a GEN1 resolvase rather than being FEN1 (Kalifa, et al., 2010). 

There may however be other proteins fulfilling this role in T. brucei, which have yet to be 

identified or characterised. Similarly, after the completion of the practical work for this report, 

upon further literature studies about protein localisation in T. brucei, it has become apparent 

that the protein translocases typically responsible for the transport of proteins across the out and 

inner mitochondrial membranes (TOMs and TIMs, respectively) use N-terminal mitochondrial 

targeting signals to identify proteins for transport. It is possible therefore, that the introduction 

of our fluorescent tag onto the N-terminus of the TbFEN1 protein, could interrupt this 

mechanism, and prevent their transport into the mitochondria. While a search of the TrypTag 

database was carried out to see if there was any existing data on the localisation of TbFEN1 

using either tagging method, no successful tagging on either the C or N terminus of the protein 

had been reported.  Further study of TbFEN1 localisation therefore, should prioritise  generating 

a C-terminally tagged protein seeing if any differences are observed between the C-terminally 

tagged TbFEN1 and the data produced here for mNG::TbFEN1 (Singha, et al., 2012). 

 

Studies of GEN1 enzymes have actually identified that the human protein possesses a nuclear 

export signal that localises it outside the nucleus until the nuclear membrane breaks down 

during mitosis. This is presumed to ensure a minimal frequency of crossover events and 

maintain genome stability until GEN1 is required for processing the persistent HJs prior to 

mitosis, maintain chromosome integrity. Yen1, in yeast however, is actively impaired in its 

resolvase activity by phosphorylation, and by Msn5-mediated nuclear export. It is then 

dephosphorylated by Cdc14 phosphatase and imported back into the nucleus prior to mitosis, 

since the nuclear envelope remains intact throughout yeast mitosis (Chan & West, 2014). 

Furthermore, GEN1 has actually been shown to localise to the centrosomes, where it is 

responsible for maintaining centrosome integrity when it is not utilised resolving HJs. In fact, a 
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depletion of GEN1 was shown to result in centrosome duplication, leading to supernumerary 

centrosomes and an arrest of the cell cycle prior to mitosis, and ultimately an increase in 

apoptosis and multinucleate cells. Furthermore, mutants that had lost their HJ resolvase activity 

could still associate with centrosomes and maintain their integrity (Gao, et al., 2012) (Sun, et 

al., 2014). 

 

Since no localisation of the mNG::TbFEN1 protein outside the nucleus was observed, this 

would support the suggestion that it is instead a FEN1 enzyme, despite the lack of localisation 

to the mitochondrial DNA. It is possible however that mNG::TbFEN1 was present outside the 

nucleolus but was sufficiently disperse as to be below the threshold of detection by our 

equipment. If the protein of interest is a FEN1 enzyme, why does it appear to remain sequestered 

inside the nucleolus during S-phase, when you would expect it to otherwise be assisting in the 

replication of DNA and processing of Okazaki fragments. Furthermore, T. brucei actually 

possesses no centrosomes and relies on the basal bodies as microtubule organising centres 

(MOTCs). However these play no role in spindle assembly and instead trypanosomes rely on a 

chromatin-directed pathway, since they too – like yeast – undergo a ‘closed’ mitosis (Li, 2012). 

This would suggest that, unlike human GEN1, TbFEN1 is stored within the nucleus rather than 

being actively exported, and is instead sequestered in the nucleolus to ensure it does not compete 

with other non-crossover pathways of DSBR until it is necessary. Since trypanosomes possess 

no centrosomes there is no need to export the TbFEN1 protein out of the nucleus to maintain 

them, especially since the lack of nuclear membrane breakdown would mean it would 

subsequently have to be imported back into the nucleus prior to mitosis. 

 

Having shown that TbFEN1 is localised within the nucleolus in a similar manner to FEN1, but 

was not observed to interact with the chromosomal DNA during S-phase, this calls into question 

once again whether this enzyme is a FEN1 or GEN1 enzyme.  The possibility remains that it is 

in fact a Holliday junction resolvase, and the conditions of our HJ cleavage assays were not 

optimised for TbFEN1 activity. Since it is not exported from the nucleus, TbFEN1 may also 

have other molecular regulatory mechanisms acting upon it, in a similar manner to Yen1, which 

have yet to be identified and may help determine its true enzymatic activity, e.g. 

phosphorylation.  This may help explain the observed, but insignificant, Holliday junction 

cleavage demonstrated in this report. 

 

7.3. FURTHER STUDY 
The results obtained during the course of this project would suggest that further study is needed 

before the putative TbFEN1 protein can be ruled out as a potential Holliday junction resolvase 

for T. brucei. Since concluding the laboratory work for this project, further evidence to support 

the theory that TbFEN1 may require very specific conditions to function as a typical GEN1 

enzyme has been identified. Work by Bellendir et al. has shown that GEN1 enzymes can 

actually show far higher cleavage rates for 5’-flaps than Holliday junctions in vitro, and that 

intact HJs are among the slowest DNA repair intermediates to be repaired by human or 

drosophila GEN1 (Bellendir, et al., 2017). Interestingly, in 2007 a paper published by Kanai et 

al. (2007) stated that D. melanogaster GEN1 possessed no HJ cleavage activity at all, which 

has since been shown to be a false statement (Kanai, et al., 2007). It is likely, therefore, that 

different GEN1 enzymes exhibit varying substrate specificity depending upon their reaction 

conditions. This project utilised only one buffer composition and only one type of Holliday 

junction, and so a direction for future study may be to attempt further HJ nuclease assays using 
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the wild type TbFEN1 enzyme under a variety of conditions and using other branched structures, 

including nicked HJs and branched structures.  

The possibility that TbFEN1’s activity is controlled by molecular modifications that may not 

have been carried over in the gene we expressed in E. coli should also be considered. Certainly 

human FEN1 has been demonstrated to be a target for phosphorylation, methylation and 

acetylation in vivo, however these all act to downregulate its activity (Zheng, et al., 2011). 

Therefore, a possible avenue for future research would be to produce crystal structures of the 

TbFEN1 protein and analyse its final post-translational structure, along with any potential 

modifications. This would have the added benefit of providing an opportunity to study the exact 

confirmation of the TbFEN1 active site, and how similar it is to either GEN1 or FEN1 

homologs. Similarly, mass spectrometry is another very useful tool for analysing covalent 

modifications of proteins, as specific shifts in mass and specific fragments can easily be 

attributed to different types of modification, e.g. phosphorylation or acetylation. Indeed it is 

even possible to quantify changes in the amount of post-translational modification occurring, 

or to study the spatial and temporal regulation of these modifications (Witze, et al., 2007). These 

methods could then perhaps be used to see if the post-translational modifications of TbFEN1 

change in response to DNA damage or other stressors.  

If TbFEN1 is indeed as vitally important to T. brucei’s DNA repair or VSG switching 

mechanisms as proposed here, then another avenue for future research might be to use RNA 

interference (RNAi) to inhibit the expression or translation of the TbFEN1 gene. First, a double-

stranded RNA sequence would be generated that is complementary to the TbFEN1 gene 

sequence, synthesised, and introduced it into the trypanosome cell. From here it would be 

recognised as exogenous and cleaved into many small 20-25 bp fragments, called small 

interfering RNAs (siRNAs), by the dicer protein. These siRNAs are integrated into the RNA-

induced silencing complex (RISC) and subsequently anneal to the target mRNA, causing it to 

be cleaved by RISC and thus no longer useable as a template for translation (Ahlquist, 2002). 

Using this technique it would be possible to supress the TbFEN1 gene and observe how this 

effected mechanisms such as DNA repair (by artificially introducing DNA damage using UV 

for example) or VSG switching (by observing changes in expression of a fluorescently tagged 

VSG in a population). If it was therefore, crucial to DNA repair then the cells should not be 

able to survive DNA damage, and similarly, if TbFEN1 is crucial to VSG switching, then a 

decrease in the rate of switching compared to a control population should be observed. 

 

Regardless of determining if TbFEN1 is able to cleave HJs, its role as a 5’-flap endonuclease 

still makes it an important target in T. brucei’s DNA repair machinery. Having identified a 

number of mutagenesis products that lead to a loss of 5’-flap cleavage activity, as well as several 

that maintain it, a possible avenue for future research would be to transfect a T. brucei cell line 

to express one of these mutants to observe its effect upon cell viability and if it does affect VSG 

switching rates. The PIP-box mutants, while still able to cleave 5’-flaps, would also be an 

interesting target for in vivo localisation studies, since the PIP-box is thought to play a role in 

targeting the enzyme to where it needs to be.  Regardless of whether or not those residues 

targeted here indeed play key roles in substrate and metal binding, as this project supposes, the 

experiments carried out here have been successful in demonstrating 7 residues which are key to 

the 5’-flap cleavage activity of TbFEN1. That may be because they do have roles in substrate 

binding and cleavage, or it could simply be that changing these residues drastically effects the 

3D confirmation of the TbFEN1 protein. With this information, it may be possible to begin 

studying compounds that may interact with these different residues to inhibit TbFEN1s activity, 

and thus work towards developing a drug. Through the previously mentioned RNA interference 

studies it may be possible to demonstrate that TbFEN1 is fundamental for T. brucei’s viability 
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within the human host. Equally, if further repeats of the work carried out here can demonstrate 

that, for example, D183 is entirely key for TbFEN1’s activity, but that HsFEN1’s D179 residue 

is not fundamentally key for its function, then this may prove an especially valuable target. This 

would potentially mean that potential drug compounds that interfere with this residue would 

successfully inhibit TbFEN1 without interfering with HsFEN1. As for further study into 

TbFEN1’s potential HJ-resolvase activity, the next best step might be to carry out high-

throughput screening of different buffer conditions for the cleavage assay. Perhaps using a 

microplate system with different conditions and a fluorescence polarisation assay, by adding 

the an appropriately labelled HJ substrate and the TbFEN1 protein to each well and observing 

the increase in depolarization of the fluorescence signal to determine cleavage (McWhirter, et 

al., 2013). This would allow the testing of huge numbers of different conditions (you can get 96 

well plates, 384 well plates, or even 1536 well plates) in a single assay, and thus this may 

provide an avenue to say once and for all if TbFEN1 can cleave HJs or not. 

This project has demonstrates that the putative TbFEN1 protein has clear 5’-flap activity, 

localises to the nucleolus and that at least some of the residues demonstrated in the past to be 

key to the function of other known FEN1 proteins are equally key to this trypanosome protein. 

It has highlighted the need to increase our understanding of the molecular mechanisms that 

underpin T. brucei’s pathogenicity, as well as identifying some potential future avenues of 

research to do so. Finally, with 7 residues (D34, D90, E164, D183, D185, G235, and D237) 

having been demonstrated as being important to TbFEN1 substrate cleavage, this may provide 

a stepping off point for future research into developing a drug to combat HAT and Nagana.  
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8. APPENDICES 
 

Sample Conc. (µg/ml) 

GEN1 G6 4280.282 

GEN1 G7 10172.43 

GEN1 G8 3058.564 

E162A A15 3508.521 

E162A B15 7936.889 

E162A B14 4482.477 

GEN1 C7 555.326 

E164A A15 1067.935 

E164A B15 1062.239 

E164A B14 888.5215 

D90A A15 1697.304 

D90A B15 1540.674 

D90A B14 1102.108 

D185A D2 3967.021 

D185A D1 3827.477 

D185A E1 2221.304 

D237A A14 296.1738 

D237A A15 1497.956 

D237A B15 452.8042 

D34A A15 877.1302 

D34A B15 458.4999 

D34A B14 327.4999 

D237K A13 617.9781 

D237K A14 1703 

D237K A15 1113.5 

Q341A A14 515.4564 

Q341A A15 2543.108 

Q341A B15 991.0432 

G342A A14 253.4565 

G342A A15 2545.956 

G342A B15 1170.456 

D183K B15 1916.586 
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D185K A15 2739.608 

D90K A15 797.3911 

G235D B13 435.7173 
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