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In the most recent editorial for the The Journal of Social Psychology (JSP), Grahe (2021) 

set out and justified a new journal policy: publishing papers now requires authors to make 

available all data on which claims are based. This places the journal amongst a growing 

group of forward-thinking psychology journals that mandate open data for research 

outputs1. It is clear that the editorial team hopes to raise the credibility and usefulness of 

research in the journal, as well as the discipline, through increased research transparency. 

As this editorial appeared, we had a paper accepted for publication in Behavior Research 

Methods (Towse et al., 2020) that reported empirical data on open data practices across 

psychology. Between 2014 and 2017, we found that public data sharing was uncommon 

(less than 4% of empirical papers; see Hardwicke et al., 2020, for similar data across the 

social sciences). We also observed that when data was publicly shared, the majority of 

datasets were incomplete and had limited reusability. Nearly half were at risk of being 

orphaned due to the lack of a permanent link between data and research paper (for similar 

dataset quality issues, see also Hardwicke et al., 2018; Roche et al., 2015). Although the 

time period for our study already might appear distant there is evidence that, despite 

researchers being encouraged to include open data, the inclusion and quality of datasets 

remains disappointingly low. For example, of 5,905 published articles on COVID19, only 

                                                        
1 See for example, a recent editorial in Behavior Research Methods has also mandated that authors to share 
materials, data and code as part of any submission (Brysbaert et al., 2020).  



13.6% shared their data and only 1.2% shared their data in non-proprietary format such as 

.csv (Lucas-Dominguez et al., 2021). 

This commentary represents a natural and complementary alliance between the 

ambition of JSP’s open data policy and the reality of how data sharing often takes place. We 

share with JSP the belief that usable and open data is good for social psychology and 

supports effective knowledge exchange within and beyond academia. For this to happen, 

we must have not just more open data, but open data that is of a sufficient quality to 

support repeated use and replication (Towse et al, 2020). Moreover, it is becoming clear 

that researchers across science are seeking guidance, training and standards for open data 

provision (Roche et al., 2021; Soeharjono & Roche, 2021). With this in mind, we outline 

several simple steps and point towards a set of freely available resources that can help 

make datasets more valuable and impactful. Specifically, we explain how to make data 

meaningful; easily findable, accessible, complete and understandable. We have provided a 

simple checklist (Table 1) and useful resources (Appendix A) based on our 

recommendations, these can also be found on the project page for this article 

(https:doi.org/10.17605/OSF.IO/NZ5WS). While we have focused mostly on sharing 

quantitative data, much of what has been discussed remains relevant to qualitative research 

(for an in-depth discussion of qualitative data sharing, see DuBois et al, 2018).   

Findable 

The best way to ensure readers can obtain data is by storing it in a third-party data 

repository. Data repositories (see for example, OSF, http://osf.io) provide independent, 

stable and safe online storage where multiple files (not limited to data, but also materials, 

preregistrations, preprints and publications) can be uploaded and managed. A digital object 

identifier (DOI) is provided which can be referenced in related publication(s). This simple 



link provides a quick, easy and enduring route to finding relevant data. It is citable making it 

is easy to claim ownership of the data, credit authors and track use. Additionally, settings 

can be public or private and include files that are read-only or editable. JSP now require an 

Open-Ended Registration which can be provided by the OSF. Not to be confused with pre-

registration, Open-Ended Registration creates a frozen snapshot of a project. All project files 

are thereby locked and time stamped. This preserves the data files at the point of 

publication of the associated research paper. We describe the step-by-step process for 

doing this within the accompanying OSF project (https:doi.org/10.17605/OSF.IO/NZ5WS).  

In reality, Towse et al. (2020) found numerous problematic instances where data 

files were stored on an individual author’s website, on a lab website, or on a publisher’s 

own website. But web addresses change, researchers retire or move institution and journals 

change publisher. In these cases, URLs linking to data cited in research papers became 

obsolete and, in some cases, data were irretrievable. Similarly, whilst many authors claim 

with good faith that ‘data is available on request’, we know that this too can be problematic 

(Savage & Vickers, 2009; Vanpaemel et al., 2015; Vines et al., 2014). None of these options 

are permitted when submitting work to JSP, indeed JSP requires authors to use a data 

repository (see Grahe, 2021, adapted from Nosek et al.’s (2020) Transparency and Openness 

Promotion Guidelines). Each paper requires a public data availability statement which 

provides a link to any data. Such clear data availability statements allow data to easily reach 

a wider audience. A DOI can also be usefully placed in a results or methods section of a 

paper, with submissions to JSP now requiring a data availability statement in the methods 

section. However, it is important to note that DOIs can easily be missed if not carefully 

positioned. Towse et al. (2020) found occasions when links to data in footnotes do not 

appear in every version of a paper (e.g., in a PDF but not a web version).  



Accessible 

An obvious but important accessibility issue is the ability to open the data file itself. 

Some types of data files will be difficult to access due to license restrictions of proprietary 

software (sometimes software versioning even prevents backwards compatibility, so old 

files may not be accessible even with a current software license). Saving data in a simple 

non-proprietary format (e.g., .txt or .csv) provides the flexibility to allow access for all.  In 

addition, it is easy to store multiple files in online data repositories. Given that some 

software enables the storage of rich information that is easy to manipulate, there are clear 

advantages for interested parties who do have access to the licensed software. Therefore, 

we recommend that an author uploads the data both in its original proprietary format and 

also in a separate, more accessible file format.  

Some additional details to take into consideration, which can further enhance data 

accessibility, relate to file layout and language. Simple, but important details like ensuring 

columns are lined up under the correct headings are quick to check and rectify where 

necessary, yet vitally important for the reader to understand the data. Similarly, the 

language used in the data file should match the language used in the published article. Since 

JSP is published in English, an English dataset (or with suitable translations) means all data 

will be accessible.    

Complete  

To ensure datasets make valuable contributions to science, all essential data need to 

be shared. In other words, the minimum requirement should be for all data to be provided 

at a level that allows for any reported analysis to be verified (analytic reproducibility, see for 

example Hardwicke et al., 2018). However, data sharing can be far more functional when 

looking beyond this minimal threshold. The best-case scenario would involve the sharing of 



all raw data. Many datasets require some level of processing before analyses (e.g., an 

average response time across trials) in such cases, as noted above, it is possible to upload 

multiple files where raw data files can sit alongside processed data files (e.g., provide the 

average response time variable but also the trial-by-trial data from which this is derived, or 

the total score from a validated scale but also the item responses) affording the greatest 

transparency and opportunity for re-analysis. 

Imagine a future researcher uncovers a new and theoretically motivated way of 

scoring a psychological scale from individual responses that materially improves its 

psychometric properties and wants to understand whether this might reveal some hitherto 

hidden aspect of a dataset. Or consider the utility of a new statistical model that can 

address data questions that that were simply not fathomable when the work was originally 

published (see for example, Orben & Przybylski, 2019, Shaw et al., in press). Future use of 

deposited data in these cases may depend critically on the decisions made to share data at 

the most detailed level possible. 

Unsurprisingly, common problems encountered with the completeness of a data file 

include missing participants, missing participant details, missing conditions and missing 

values in certain cells. Of course, there are often valid reasons why there may be a missing 

value in a data set (e.g., no response from a participant) but these need to be easily 

identified and explained in a Results section or a readme file (a separate document, saved in 

a non-proprietary format alongside the data, which provides essential details not in the data 

file itself, e.g., expands abbreviations, provides information on units, explains missing data 

or data transformations etc.). These explanations should also mention software specific 

values generated in missing cells (e.g., ‘NA’ in R or ‘99’ in SPSS) not only is this information 

useful for those looking at the data file but is also useful to note in case that convention 



changes over time. Relatedly, Towse et al. (2020) noted that as well as missing participants, 

there were datasets that included too many participants. Within psychology, participants 

are commonly removed before analysis for legitimate reasons (e.g., failure to follow 

instructions), and providing data from excluded participants is a potentially good, 

transparent practice. Yet, if it is not possible to identify which participants are removed 

from the analyses then the data file becomes much less usable.  Therefore, researchers 

need to make clear, either as part of additional documentation, or within marked-up 

analysis code how data has been processed and prepared before analysis. This becomes 

even more important when variables are generated following significant processing or 

during the development of novel methodologies (e.g., Andrews et al., 2015).  Of course, 

there may also be occasions that it is important to omit key elements of the data. We 

address these in sections below on sensitive data and anonymity.  

Well-described  

To have an impact on the research community through data sharing, simply providing or 

explaining why data has been omitted is not enough. The data needs to have clear 

metadata, that is well described within the data file or in a separate readme file. Although a 

column labeled, for example, t22_b might make sense to the authors, it requires the reader 

to make a set of inferences that might not always be correct. Files, columns, rows and any 

other material should all be clearly labelled complete with measurement units and any 

other key information2. Indeed, some variables may need further information to explain 

how they have been calculated (e.g., a mathematical transformation of another variable). 

                                                        
2 It is important to keep in mind that although some proprietary software allows for metadata to be stored 
within the file (e.g., SPSS), it is not always possible to access this information without the software itself. This 
links to the previous point recommending that a version of all files in a non-proprietary and therefore 
accessible format should be stored in a repository 



Ideally, a data file will be described to a standard that it can be understood as a stand-alone 

document. One simple and effective way to achieve well described data is to have a 

separate readme file archived alongside the main dataset that … (see for example, Lynott et 

al., 2019). Including the annotated or commented analysis code can also be highly valuable 

because it helps the mapping between data structure and reported results, as well as 

making explicit data transformations, data wrangling, and data processing operations. 

Further considerations 

It would be nice to think that all that is needed is a carefully curated data file 

uploaded to a repository. In many cases this is true. Sometimes, though, there are more 

complex considerations. In the following sections, we provide thoughts on sharing sensitive 

data, ethics and the ongoing challenges associated with new and emerging forms of data. 

Sharing sensitive data 

JSP publishes important research that involves, in the majority of cases, data that 

should be straightforward to share in full. However, we recognize that social psychology can 

also involve more sensitive data where there may be commercial, legal, medical, ethical or 

other constraints over the sharing or use of data (e.g., Joel et al., 2018). There may also be 

cases where, because of the nature of the research or how it is funded, other companies, 

organizations or individuals may exercise the right to control the data. Simply talking to 

some of these parties about the importance of open data and how it can be done sensitively 

and/or anonymously may alleviate their concerns. The time at which these conversations 

take part may be key. If data sharing discussions occur at the start, there is an intention to 

share data openly and it can be a point of negotiation with the funding body or research 

participants.  



Accordingly, start from the default position that there are usually ways to share 

sensitive data. It is possible to use synthetic data whereby an artificial dataset is created 

that mimics the properties of the raw data (Quintana, 2020). Use of a mediating process is 

another potential solution. As Joel et al. (2018) point out, creating a “Shiny App” allows 

researchers to specify and run analyses on a dataset without having direct access to it (see 

for a recent example, Shaw et al., in press). Datasets can be licensed so that researchers can 

specify how the data are used (e.g., Carroll, 2015).  Alternatively, restricting data access or 

requiring end-user agreements mitigate the potential harm of inappropriate use, however 

this of course qualifies the notion of public data-sharing. Even partial data sharing, where 

only less sensitive elements are shared whilst shielding other elements, is better than no 

data sharing. Identifying data as sensitive should be the start of a reflection or conversation 

about data sharing, not the point of abandonment.  

Ethics and Emerging Forms of Data  

Ethics forms should always state how data will be stored and shared and it is 

straightforward to include a statement about open data. Evidence suggests that participants 

are not discouraged from taking part in a study when informed that their anonymized data 

will be shared openly (Eberlen et al., 2019). We suggest including a copy of the ethics form 

in a project repository to provide everyone accessing the archive clarity about permissions. 

Clear licensing of the dataset will help users understand relevant rights and restrictions. 

There are cases where, despite anonymizing aspects of the data, individuals may still 

be identified from the content of the data (e.g., geolocation data, indirect identifiers). In 

some interconnected settings, the privacy of one individual can also be affected by the 

decisions of others, giving rise to interdependent privacy (Olteanu et al., 2016). In these 

instances, researchers may be reluctant to openly share the data in order to protect their 



participants. As recommended above when discussing sensitive data, it may be possible to 

share sections of data that obscure any identifying features. However, this is an area that 

continues to evolve especially when it comes to new and emerging forms of data. For 

example, the power of individual or combinations of new variables often only becomes clear 

long after the data has been collected. In these instances of intensive data collection that 

involves new digital systems or devices, some researchers have suggested that participants 

should be able to remove their data from researchers’ repositories at any point (even after 

is has been collected) (Dennis et al., 2019a). This raises a number of challenges concerning 

data access for researchers (who would need access to data via differential privacy systems 

that ensured participants were not identifiable) while simultaneously allowing participants 

to access their own data at any time and make decisions concerning any future use.  

Different solutions have implications for open science practices including 

transparency and ease of replication as data sets like these could change at any time after 

publication (Dennis et al., 2019b). This makes version control important. Similar to software 

development where features are added or removed, if a dataset is updated (e.g., additional 

columns added, new data or corrections), then it is important to know when this happened 

and what exactly has changed because it can affect aspects of future analyses. This can be 

done, for example, within an OSF project page. Researchers can upload an amended file 

with the same name in the same location and this will replace but not overwrite the 

previously stored file - which therefore remains accessible. We recommend that any file 

changes should be explained in a separate readme file.  

Ideally, social psychology should be at the heart of opportunities and challenges that 

emerge from existing as well as new and emerging forms of data. Our recommendations 

point towards a future where the field could become more impactful by addressing these 



challenges that are important within and beyond psychological science. For example, 

increasingly diverse data sets that include psychologically relevant variables are being 

championed across central government and can support wider knowledge exchange with 

effective policy collaboration and data analysis3.  

Conclusion 

Authors had previously been encouraged to provide materials and data by a variety 

of journals including JSP (Grahe, 2014). This also allowed authors to earn badges that 

rewarded open scholarship. The new open data policy introduced by JSP (Grahe, 2021) sets 

the scene for a more trustworthy and progressive research environment. Our 

recommendations for high-quality datasets scaffold this process, ensuring that the efforts to 

include data are not wasted and the datasets have the desired impact. Of course, the issues 

highlighted, and recommendations provided are not unique to social psychology, but 

remain essential for all scientific progress. These are summarized in a useful checklist (Table 

1). 

We recognize that researchers’ entry point may vary and we are not able to provide 

definitive guidelines for every aspect of open data. However, our advice can be useful for 

both those preparing to share data for an already written paper and those planning in 

advance for how best to incorporate data sharing into a new research project. Many of the 

suggestions outlined here are good practice for researchers irrespective of data sharing 

requirements. JSP are simply requiring authors to share this information publicly. However, 

we also acknowledge that these recommendations are not exhaustive, they are simple and 

concise based on current observations in psychology and beyond. The accompanying 

                                                        
3 https://re.ukri.org/knowledge-exchange/knowledge-exchange-framework/ 



resources are therefore flagged “at the current point in time” and whilst some things should 

be constant, we expect other things to change given the dynamic nature of data sharing 

processes. Other issues will become apparent with subsequent successes. It’s very tempting 

to think of preparing open data as a static process (use rules A, B, and C) however we need 

to keep in mind that the way data might be re-used or processed can change very quickly 

(Lazer et al., 2020). We will endeavour to add helpful resources to our project page in the 

future (https:doi.org/10.17605/OSF.IO/NZ5WS). As members of a growing and supportive 

community we believe in the usefulness of open data for the advancement of science. 

Indeed, we are reminded of this in a recent paper arguing how open and collaborative 

practices are vital for knowledge generation (Ellemers, 2021). To do this well, we need open 

datasets to be high quality. 
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Table 1. Checklist for good quality data files  
 
 
Is your data file: 
 

• findable? 
o Stored in a permanent repository 

o Settings allow public, read-only access 
o Preferably in OSF with Open-Ended Registration 

o Accompanied with a clear data accessibility statement in the methods 
section 

o Include the DOI for the data 
 

• accessible? 
o Saved in a non-proprietary format (e.g., .txt) 
o Written in the same language as the as the publishing language of the 

journal 
o Accompanied with a consent form (to ensure data is being used in line with 

participants approval) 
 

• complete? 
o All raw data provided  
o All participants (ensuring that any participants removed from the analysis 

are easily identifiable)  
o All variables 
o Missing cells are accounted for and easily identified 
o Analysis code (annotated if necessary)  

 
• well described? 

o Files labelled clearly 
o Metadata included (in same file or separate readme file) 

o Columns/rows labelled  
o Clear measurement units 
o Further explanation where necessary  

o Version details (if/when files have been updated and how) 
 

  

  



 
Appendix A. Further resources. Links active at the time of writing. This list will be updated 
online as more resources are developed: https:doi.org/10.17605/OSF.IO/NZ5WS 
 
Findable 
 
Registry of Research Data Repositories: 
https://www.re3data.org  
 
An overview of OSF: 
Foster, E., & Deardorff, A. (2017). Open Science Framework (OSF). Journal of the Medical 
Library Association, 105(2), 203–206. doi:https://doi.org/10.5195/jmla.2017.88 
 
Complete 
 
Additional analysis of how to treat missing data: 
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0182362 

Providing analysis code: 
Blischak JD, Carbonetto P and Stephens M. Creating and sharing reproducible research code 
the workflowr way. F1000Research 2019, 8:1749 
(https://doi.org/10.12688/f1000research.20843.1) 
 
Well described 
 
R package ‘codebook’ 
https://rubenarslan.github.io/codebook/articles/codebook_tutorial.html 
https://doi.org/10.1177/2515245919838783 
 
creating a codebook in SPSS 
https://libguides.library.kent.edu/spss/codebooks 
https://stats.idre.ucla.edu/spss/modules/labeling-and-documenting-data/ 
 
Collating data for a meta-analysis - dataMaid 
https://cran.r-project.org/web/packages/dataMaid/dataMaid.pdf 
 
Addressing data sensitivity issues 
 
An introduction to data anonymization 
https://www.ukdataservice.ac.uk/manage-data/legal-
ethical/anonymisation/qualitative.aspx 
 
Anonymization in R 
http://psychbrief.com/anonymous-data-r/ 
https://bookdown.org/martin_monkman/DataScienceResources_book/anonymity-and-
confidentiality.html 
 



synthetic data, using R synthpop 
https://www.synthpop.org.uk/get-started.html 
 
synthetic data for SPSS using GRD 
https://www.tqmp.org/RegularArticles/vol10-2/p080/p080.pdf 
 
 

 
 

 

 

 


