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Abstract. Four sets of necessary and sufficient conditions are obtained for the first-order rigid-
ity of a periodic bond-node framework C in R

d which is of crystallographic type. In particular,
an extremal rank characterisation is obtained which incorporates a multi-variable matrix-valued
transfer function ΨC(z) defined on the product space C

d
∗ = (C\{0})d. In general the first-order

flex space is the closed linear span of polynomially weighted geometric velocity fields whose geo-
metric multi-factors in C

d
∗ lie in a finite set. It is also shown that, paradoxically, a first-order

rigid crystal framework may possess a nontrivial continuous motion. Examples of this phenome-
non are given which are associated with aperiodic displacive phase transitions between periodic
states.

1. Introduction

Let C be a periodic bar-joint framework in R
d, where d ≥ 2, which is of crystallographic

type. The vector space F(C;R) of real infinitesimal flexes, or first-order flexes, is the space of
R
d-valued velocity fields on the joints of C which satisfy the first-order flex condition for every

bar. This space contains the finite-dimensional vector space Frig(C;R) for rigid body motions
and, as in the theory of finite bar-joint frameworks ([3], [15]), the crystal framework C is said to
be infinitesimally rigid, or first-order rigid, if F(C;R) = Frig(C;R). See Owen and Power [24],
for example. There have been a number of recent theoretical accounts of flexibility and rigidity
in infinite periodic structures, such as [10], [21], [23], [30]. Also, in materials science, over a much
longer period, there have been extensive studies of flexibility, stability and phonon modes, such as
[9], [12], [13], [16], [32]. However these accounts generally assume some form of periodic boundary
conditions for the admissible velocity fields and so far there has been no characterisation given
for first-order rigidity per se. In what follows we make no such assumptions and in Theorem 3.4
obtain four sets of necessary and sufficient conditions.

Our analysis is based on spectral synthesis for the flex space F(C;C) in terms of the geometric
spectrum Γ(C) (associated with a periodic structure). This spectrum was introduced in Badri,
Kitson and Power [6] as a subset of Cd

∗ = (C\{0})d which generalises the rigid unit mode spectrum,
or RUM spectrum, Ω(C). Recall that Ω(C) is the subset of the d-torus T

d which underlies
the analysis of low energy phonon modes (mechanical modes) and almost periodic flexes. In
analogy with the Bohr spectrum of an almost periodic function it records the unimodular multi-
phases that are possible in the Bloch theory for these modes [5], [24], [25], [32]. The geometric
spectrum contains the RUM spectrum together with points ω = (ω1, . . . , ωd) in C

d
∗ associated

with unbounded flexes which are similarly periodic modulo the multiplicative factor ω. We
refer to a factor in C

d
∗\T

d, as a nonunimodular factor. The infinitesimal rigidity of a crystal
framework C implies that the geometric spectrum is trivial in the sense of reducing to the point
1 = (1, . . . , 1). Additionally, the space of periodic flexes with respect to a choice of lattice of
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translations, and taken in the flexible lattice sense, must coincide with the space of rigid motion
flexes. We show that these two conditions, stated in condition (iii) of Theorem 3.4, are sufficient
as well as necessary.

We approach the rigidity analysis by viewing the geometric flex spectrum in two other ways.
Firstly, in difference equation terms, it is the set of solutions of the characteristic equations of a
set of linear difference equations, for vector-valued Z

d-indexed sequences (referred to as multi-
sequences), that arises from a choice of periodic structure for C. These solutions are the points of
rank degeneracy of a matrix-valued transfer function ΨC(z) on C

d
∗. In fact ΨC(z) is the extension

of the symbol function ΦC(z), with domain T
d, associated with rigid unit modes. Secondly, in

commutative algebra terms, the geometric flex spectrum and the flex space F(C;C) are related
by a natural duality to the C[z1, . . . , zd]-module generated by the rows of the transfer function.

At the centre of the proof is Theorem 4.1, from Kastis and Power [17], which is a generalisation
of a classical algebraic spectral synthesis result of M. Lefranc [19] for shift-invariant subspaces
of C(Zd). This leads to the fact that F(C;C) is the closed linear span of flexes which are vector-
valued polynomially weighted geometric multi-sequences. Moreover, as stated in Theorem 3.6,
there is a dense linear span of first-order flexes of this type where the associated geometric
multi-factors ω ∈ C

d
∗ of the velocity fields are finite in number. This finiteness derives from the

Lasker-Noether decomposition of a C[z1, . . . , zd]-module for C. We also see that the first-order
flex space F(C;C) is finite-dimensional if and only if the geometric spectrum is a finite set.

Finally, using only direct geometric arguments, we show that, paradoxically, a crystallographic
bar-joint framework may be continuously flexible even when it is first-order rigid. Our examples
in Section 5 are associated with aperiodic displacive phase transitions between periodic states.

2. Preliminaries

A crystal framework C in R
d is defined to be a bar-joint framework (G, p) where G = (V,E)

is a countable simple graph and p : V → R
d is an injective translationally periodic placement

of the vertices as joints p(v). It is assumed here, moreover, that the periodicity is determined
by a basis of d linearly independent vectors and that the corresponding translation classes for
the joints and bars are finite in number. The assumption that p : V → R

d is injective is not
essential although with this relaxation one should assume that each bar p(v)p(w) has positive
length ‖p(v)− p(w)‖.

The complex infinitesimal flex space F(C;C) is the vector space of Cd-valued functions u on
the set of joints satisfying the first-order flex conditions

(u(p(v)) − u(p(w))) · (p(v) − p(w)) = 0, vw ∈ E.

Coordinates for this vector space and the space V(C;C) of all velocity fields may be introduced,
first, by making a (possibly different) choice of d linearly independent periodicity vectors for C,
which we shall denote as

a = {a1, . . . , ad},

and, second, by choosing finite sets, Fv and Fe respectively, for the corresponding translation
classes of the joints and the bars. We refer to the basis choice a as a choice of periodic structure
basis for C while the pair {Fv , Fe} represents a choice of motif for this periodic structure [24],
[25].

2.1. Transfer functions and C(z)-modules. Let C[z] = C[z1, . . . , zd] be the ring of polyno-
mials in the commuting variable z1, . . . , zd over the field C. Identify this with the algebra of
multi-variable complex polynomials defined on C

d
∗ and write C(z) for the containing ring of func-

tions on C
d
∗ generated by the coordinate functions z1, . . . , zd and their inverses z−1

1 , . . . , z−1
d . We

refer to this as the the Laurent polynomial ring.
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Let n = |Fv | and m = |Fe|. Borrowing terminology from the theory of difference equations we
now define the transfer function ΨC(z) of C, an m×dn matrix of functions in C(z) determined by
the pair {Fv, Fe}. We label the vertices in V , and hence the joints p(v) of C, by pairs (v, k) where
p(v, 0) = p(v) ∈ Fv and p(v, k), for k = (k1, . . . , kd) ∈ Z

d, is the joint p(v, 0) + k1a1 + · · ·+ kdad.

Also, using multinomial notation, we write z−k for the product z−k1
1 z−k2

2 . . . z−kd
d .

We remark that, henceforth the notation k (resp. z) always denotes the d-tuple (k1, . . . , kd)

in Z
d (resp. (z1, . . . , zd) in C

d), and zk always denotes the product zk11 . . . zkdd .

Definition 2.1. Let C be a crystal framework in R
d with motif {Fv, Fe} and let p(e) = p(v, k)−

p(w, l) be the vector for the bar p(v, k)p(w, l) in Fe associated with the edge e = (v, k)(w, l).
(i) The transfer function ΨC(z) is the m× dn matrix over the Laurent polynomial ring whose

rows are labelled by the edges e for the bars of Fe and whose columns are labelled by the vertices
v for the joints of Fv and coordinate indices in {1, . . . , d}. The row for an edge e = (v, k)(w, l)
with v 6= w takes the form

[

v w

e 0 · · · 0 p(e)z−k 0 · · · 0 −p(e)z−l 0 · · · 0
]

while if v = w it takes the form

[

v

e 0 · · · 0 p(e)(z−k − z−l) 0 · · · 0
]

(ii) The C(z)-module of C, associated with the motif {Fv , Fe}, is the submodule

M(C) = C(z)p1(z) + · · ·+ C(z)pm(z)

of the C(z)-module C(z)⊗C
dn, where p1(z), . . . , pm(z) are the Cdn-valued multi-variable functions

given by the rows of the transfer function.

Figure 1 indicates choices of periodicity bases and motifs {Fv, Fe} for two simple examples,
CZ2 and Ckite, which in fact may be defined by this data. The periodicity bases are both equal
to a = {a1, a2} = {(1, 0), (0, 1)}.

a1

a2

a1

a2

Figure 1. A motif for the grid framework CZ2 , with |Fv| = 1, |Fe| = 2, and the
kite framework Ckite, with |Fv | = 2, |Fe| = 5.

For CZ2 the set Fv is the singleton joint set {(0, 0)} and Fe is the set of bars {p1p2, p1p3} where
p1 = (0, 0), p2 = (1, 0), p3 = (0, 1). However, in our notation we have p1 = p(v1, (0, 0)), p2 =
p(v1, (1, 0)), p3 = p(v1, (0, 1)), according to the labelling of joints by vertices v1, . . . , vn and indices
k ∈ Z

2. The transfer function Ψ(CZ2)(z1, z2) is a 2 × 2 matrix with first row, for bar p1p2 say,
equal to (−1, 0)(1 − z−1

1 ), which is (−1 + z−1
1 , 0). In this way we obtain

Ψ(CZ2)(z1, z2) =

[

−1 + z−1
1 0

0 −1 + z−1
2

]

, for z1, z2 ∈ C\{0}.
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In the case of Ckite we have Fv = {p1, p2} where p1 = (0, 0), p2 = (−0.25, 0.5). The set Fe has 5
bars involving the 4 joints p1 = p(v1, (0, 0)), p2 = p(v2, (0, 0)), p3 = p(v1, (0, 1)), p4 = p(v2, (1, 0)).
Thus the row of the transfer function for the bar p1p4, for example, requires p(e) = p1 − p4 =
(−0.75,−0.5) and takes the form (p(e)z(0,0),−p(e)z−(0,1)) which is

1
4 [−3 −2 3z−1

1 2z−1
1 ]

Returning to the general discussion, for a given periodic structure basis one may rechoose
the set Fv, through an appropriate translation into the positive cone of Rd, so that the multi-
variable vector-valued polynomials pi(z) are replaced by vector-valued polynomials zkpi(z), in
C[z] ⊗ C

dn, for some fixed k ∈ Z
d. Henceforth we assume that this choice has been made. We

may therefore define a C[z]-module, which we denote as M(C)∗, as the submodule of the left C[z]-
module C[z] ⊗ C

dn generated by the vector-valued multi-variable polynomials p1(z), . . . , pm(z).
In particular we have

M(C)∗ = M(C) ∩ (C[z]⊗ C
dn).

We remark that the superscript asterisk notation here is consistent with the usage in Lefranc
[19] and Kastis and Power [17] and will only be used in this sense.

Different choices of Fe for the same periodic structure basis give transfer functions that are
equivalent in a natural way. Specifically, the replacement of a motif edge by an alternative
representative results in the multiplication of the appropriate row by a monomial. Also any
relabelling of the motif joints and bars corresponds to column and row permutations. It follows
that any two transfer functions, Ψ1(z) and Ψ2(z), for a given periodic structure basis satisfy the
equation Ψ2(z) = D1(z)AΨ1(z)BD2(z), where D1(z) and D2(z) are diagonal monomial matrices
and A,B are permutation matrices.

The values z = ω for which the rank of ΨC(ω) is less than dn correspond to finite-dimensional
spaces of complex infinitesimal flexes which are periodic up to the multiplicative factor ω =
(ω1, . . . , ωd). Such flexes are referred to here as factor-periodic flexes since they are characterised
by a set of equations of the form

uk = ωku0 = ωk1
1 · · ·ωkd

d u0,

which relate the (complex) velocity u0 of a joint p(v, (0, 0)) in Fv to the velocity uk of the joint
p(v, k) for k ∈ Z

d. See also [5], [6].

Definition 2.2. Let C be a crystal framework in R
d with a choice of periodic structure basis,

labelled motif and associated transfer function ΨC(z).
(i) The geometric flex spectrum of C is the set

Γ(C) = {ω ∈ C
d
∗ = (C\{0})d : kerΨC(ω

−1) 6= {0}}.

(ii) The rigid unit mode spectrum or RUM spectrum of C is the subset Ω(C) = Γ(C) ∩ T
d.

The geometric flex spectrum was introduced in Badri, Kitson and Power [6] in connection
with the existence and nonexistence of bases of localised flexes which generate the entire space of
infinitesimal flexes. From our earlier remarks it follows that the sets Γ(C),Ω(C) depend only on
the choice of periodic structure basis. For the grid framework with its standard periodicity basis,
as indicated in Figure 1, the determinant of the 2× 2 transfer function is z−1

1 z−1
2 (z1 − 1)(z2 − 1)

and so
Γ(CZ2) = {1} × C∗ ∪C∗ × {1}, Ω(CZ2) = {1} × T ∪ T× {1}.

On the other hand it can be shown that Γ(Ckite) consists of (1, 1) and one other point, ω =
(−2,−1). This point corresponds to an ω-periodic flex eω,h for which the 4-jointed kite subframe-
works rotate infinitesimally in an alternating fashion and for which the velocity magnitudes for
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the joints p(v2, k), p(v4, k) increase geometrically in the positive x-direction and are of constant
magnitude in the y-direction.

2.2. Velocity fields and forms of rigidity. All variants of infinitesimal rigidity depend on a
choice of vector space of preferred velocity fields. In this section we define such vector spaces
and the resulting forms of periodic and aperiodic infinitesimal rigidity. We first describe a space
of exponential velocity fields which plays a key role in our main results.

Let a be a vector in C
dn which is in the nullspace of ΨC(ω

−1). Then the function

u : Zd → C
dn, k → ωka

defines a factor-periodic velocity field which is an infinitesimal flex [5], [25]. In this coordinate
formalism a complex velocity field for the framework C is given by a function (or vector-valued
multi-sequence) u in C(Zd;Cnd) where u(k) is a combined velocity vector for the n joints which
are the translates of the motif joints by the vector a(k) = k1a1 + · · · + kdad. Explicitly, with
Fv = {v1, . . . , vn}, we have

u(k) = (u(p(v1, k)), . . . , u(p(vn, k)))

where u(p(vi, k)) is the velocity vector at the joint p(vi, k) = p(vi) + a(k), and where we have
introduced notation (vi, k) for the vertices of the underlying graph G.

We now introduce terminology for factor-periodic velocity fields and related velocity fields.
Let ω ∈ C

d
∗ and write eω ∈ C(Zd) for the geometric multi-sequence given by eω(k) = ωk, for

k ∈ Z
d. More generally, a polynomially weighted geometric multi-sequence, or pg-sequence, is

a multi-sequence in C(Zd) of the form eω,q : k → q(k)ωk, where q(z) is a polynomial in C[z].
Define Vexp(C;C), the space of exponential velocity fields, to be the subspace of V(C;C) formed

by the linear span of the velocity fields eω,q ⊗ a, for all ω in C
d
∗, all polynomials q(z) in C[z] and

all vectors a in C
dn. By a standard roots of unity argument it can be shown that this space does

not depend on a choice of periodic structure basis. However, we do not need this fact.
An infinitesimal flex in Vexp(C;C) is referred to as an exponential flex and these vectors de-

termine a subspace, denoted Fexp(C;C). That is,

Fexp(C;C) = Vexp(C;C) ∩ F(C;C).

We say that C is Vexp-rigid, or exponentially rigid if Fexp(C;C) = Frig(C;C).
We next recall various forms of periodic rigidity, each of which is associated with a subspace

of Vexp(C;C).
Given a choice of periodic structure basis for C define Vper(C;C) to be the associated vector

space of periodic velocity fields and write Fper(C;C) for the subspace of periodic first-order flexes.
When there is a possibility of confusion these flexes are also referred to as strictly periodic flexes,
with the periodic structure understood. The periodic flexes are the factor-periodic flexes for the
multi-factor ω = 1 = (1, . . . , 1). The framework C is said to be periodically rigid, or Vper-rigid, if
Fper(C;C) ⊆ Frig(C;C). The inclusion here is proper since infinitesimal rotations are not periodic
infinitesimal flexes. The terms fixed lattice rigid, fixed torus rigid, strictly periodically rigid and
forced symmetry rigid (for translation symmetries) are also used for this notion of rigidity.

A weaker form of periodic rigidity, known as flexible lattice periodic rigidity (and also termed
flexible torus rigidity or simply periodic rigidity) is associated with a larger space of velocity
fields u ∈ C(Zd;Cnd) which have the form

u(k) = u(0) + (Xk, . . . ,Xk), where X ∈ Md(C),

and Md(C) is the space of d × d complex matrices. These velocity fields form an (nd + d2)-
dimensional space of velocity fields which are periodic modulo an affine correction in which the
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n joints in the kth-cell each receive an additional velocity Xk. We write this space as Vfper(C;C).
In fact we have a direct sum

Vfper(C;C) := Vper(C;C)⊕ Vaxial(C;C)

where Vaxial(C;C) is the space of the axial velocity fields, u : k → (Xk, . . . ,Xk).
An infinitesimal rotation flex of a crystal framework is an exponential velocity field. To see this

for the framework CZ2 with the simple periodicity basis of Figure 1, consider ω = 1 = (1, 1) ∈ T
2

and h1(z1, z2) = z2, h2(z1, z2) = z1. Then the velocity field u given by

u = eω,h1
⊗ (1, 0) + eω,h2

⊗ (0,−1) : k → (h1(k),−h2(k)) = (k2,−k1),

is an infinitesimal rotation flex.

Lemma 2.3. Let C be a crystal framework. Then Vrig(C;C) ⊆ Vfper(C;C) ⊆ Vexp(C;C).

Proof. A translational infinitesimal flex u : k → C
nd, associated with the velocity b ∈ C

d, has
the form e1,q ⊗ (b, . . . , b) with q(z) identically equal to 1. In particular it is strictly periodic. On
the other hand let u be the rotational infinitesimal flex associated with the matrix B in Md(R),
let (p1, . . . , pn) be the vector of joints from a motif for the periodic structure basis a, and let
A : k → k1a1 + · · ·+ kdad. Then u(0) = (B(p1), . . . , B(pn)) = (b1, . . . , bn) and

u(k) = (B(p1 +A(k)), . . . , B(pn +A(k))) = (b1 +BA(k), . . . , bn +BA(k)).

The right hand expression is linear in k1, . . . kd and so u may be written in the form
∑

|j|≤1

qj(k)cj =
∑

|j|≤1

e1,qj ⊗ cj

where cj ∈ C
nd and qj(z) is the linear polynomial zj with total degree |j| ≤ 1. From these

observations the inclusions follow. �

Let Ffper(C;C) = F(C;C) ∩ Vfper(C;C). This is the space of flexible lattice periodic flexes
for the given periodic structure basis. It is also referred to as the space of affinely periodic
infinitesimal flexes [10], [26].

Definition 2.4. A crystal framework C is said to be flexible lattice periodically rigid, or
Vfper-rigid, if Ffper(C;C) = Frig(C;C).

For a simple illustration let us note that the grid framework CZ2 , with the periodicity basis
given in Figure 1, is periodically rigid, since every periodic velocity field is an infinitesimal
translation. However it is not flexible lattice periodically rigid since the shearing velocity field

u(k) = (k2, 0), k = (k1, k2) ∈ Z
2,

is in Vfper(CZ2) and is an infinitesimal flex.

Let 1 be the point (1, . . . , 1) in Γ(C). A necessary and sufficient condition for periodic rigidity
is that the scalar m× dn rigidity matrix Rper(C) = Ψ(1) has rank dn− d. Borcea and Streinu [8]
have obtained an analogous necessary and sufficient condition for flexible lattice periodic rigidity.
Another derivation of this characterisation is in Power [26]. The rigidity condition requires the
maximality of the rank of a matrix, which we write here as Rfper(C), which is an augmentation
of Rper(C) by d2 columns associated with the entries of the variable matrix X. The maximal
rank condition is then

rankRfper(C) = dn+ d(d − 1)/2.

Although we do not need the form of this scalar matrix in subsequent proofs, for completeness
we include the following definition.
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Definition 2.5. Let C be a crystal framework in R
d with motif {Fv, Fe} and let p(e) = p(v, k)−

p(w, l) be the vectors associated with the bars in Fe corresponding to edges e = (v, k)(w, l). The
flexible lattice periodic rigidity matrix Rfper(C) is the m× (dn+ d2) matrix whose rows, labelled
by the edges e with v 6= w, have the form

[

v w

e 0 · · · 0 p(e) 0 · · · 0 −p(e) 0 · · · (l1 − k1)p(e) · · · (ld − kd)p(e)
]

,

while the rows for v = w take the form

[

0 · · · 0 (l1 − k1)p(e) · · · (ld − kd)p(e)
]

.

3. The main results

We first recall the elementary duality between C(z)-modules and invariant subspaces, where
C(z) is the (multi-variable) Laurent polynomial ring.

3.1. C(z)-modules and invariant subspaces. Let r ≥ 1 and let C(Zd;Cr) be the topolog-
ical vector space of vector-valued functions u : Zd → C

r with the topology of coordinatewise
convergence. Also we write C(Zd) for C(Zd;C). Let e1, . . . , ed be the generators of Zd and let
Wi, 1 ≤ i ≤ d, be the forward shift operators on the space C(Zd;Cr), so that (Wiu)(k) = u(k−ei),
for all k and each i. A subspace A of C(Zd;Cr) is said to be an invariant subspace if it is invariant
for the shift operators and their inverses, or equivalently if WiA = A for each i.

There is a bilinear pairing 〈p, u〉 : C(z) × C(Zd) → C such that, for p(z) =
∑

k akz
k in C(z)

and u = (uk)k∈Zd in C(Zd), 〈p, u〉 =
∑

k akuk. Similarly, considering C(Zd;Cr) as the space

C(Zd) ⊗ C
r, for p = (pi) ∈ C(z) ⊗ C

r and u = (ui) ∈ C(Zd) ⊗ C
r we have the corresponding

pairing 〈p, u〉 : C(z)⊗ C
r ×C(Zd)⊗ C

r → C, where

〈p, u〉 = 〈(pi), (ui)〉 =

r
∑

i=1

〈pi, ui〉.

With this pairing the vector space dual of C(Zd)⊗C
r can be identified with C(z)⊗C

r. Also,
with the same pairing, the dual space of C(z) ⊗ C

r may be identified with C(Zd) ⊗ C
r. Thus

both spaces are reflexive, that is, equal to their double dual in the category of vector spaces.
These dual space identifications also hold in the category of linear topological spaces when each
is endowed with the topology of coordinatewise convergence, simply because all linear functionals
are automatically continuous with these topologies.

For a subspace A of C(Zd)⊗C
r we write B = A⊥ for the annihilator in C(z)⊗C

r with respect
to the pairing. Thus

B = {p ∈ C(z)⊗C
r : 〈p, u〉 = 0, for all u ∈ A}.

Similarly for a subspace B of C(z) ⊗ C
r we write B⊥ for the annihilator in C(Zd) ⊗ C

r with
respect to the same pairing.

The following lemmas provide a route for the analysis of shift-invariant subspaces A in terms
of the structure of their uniquely associated C(z)-modules B = A⊥. Note that it follows from
the Noetherian property that C(z)-modules in C(Zd)⊗ C

r are necessarily closed.

Lemma 3.1. Let A be a closed subspace of C(Zd) ⊗ C
r and let M be a closed subspace of

C(z)⊗ C
r. Then A = (A⊥)⊥ and M = (M⊥)⊥.

Proof. This follows from the dual space identifications and from the Hahn-Banach theorem for
topological vector spaces ([11], IV. 3.15). �
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Lemma 3.2. A closed subspace A in C(Zd) ⊗ C
r is an invariant subspace if and only if A⊥ is

a C(z)-submodule of the module C(z)⊗ C
r.

Proof. For all a ∈ A, b ∈ B = A⊥ and 1 ≤ i ≤ d we have 〈Wia, b〉 = 〈a, zib〉 and the lemma
follows. �

3.2. The main results. We may now consider this duality in the context of the first-order flex
space F(C;C) of a crystal framework C, and we use notation from the previous section.

Definition 3.3. The C(z)-rigidity module Mrig(C), associated with a periodic structure basis

for C, is the annihilator of Frig(C;C) in C(z)⊗ C
dn.

We say that a transfer function ΨC(z) is rank extremal if rankΨC(z) = dn for all z ∈ C
d
∗\{1}

and the rank of ΨC(1) is dn − d. Also we say that Rfper(C) is rank extremal if its rank is
dn+ d(d− 1)/2.

Theorem 3.4. The following statements are equivalent for a crystal framework C in R
d.

(i) C is first-order rigid.

(ii) C is exponentially rigid.

(iii) For a given periodic structure basis, there are no nontrivial factor-periodic flexes or non-
trivial flexible lattice periodic flexes.

(iv) For a given periodic structure basis and motif, the transfer function ΨC(z) and the matrix
Rfper(C) are rank extremal.

(v) For a given periodic structure basis, the C(z)-module M(C) agrees with the rigidity module
Mrig(C).

Definition 3.5. Let C be a crystal framework in R
d with a periodic structure basis with n

translation classes of joints. A vectorial pg-sequence for C, for this periodic structure basis, with
geometric index ω ∈ C

d
∗, is a velocity field uω,h : Zd → C

nd of the form

uω,h : k → ωkh(k)

where h(z) is a vector-valued polynomial in C[z]⊗ C
dn.

The term root sequence for some C[z]-module M refers to a choice of roots for a set of distinct
prime ideals P1, . . . , Ps in C[z] with respect to which M has a P -primary decomposition. We
give the formal details of this in Section 4.1. The term appears in our context in the next
theorem. Recall that M(C)∗ is the module for the polynomial ring C[z] obtained from M(C)
by intersection. Also the term closed refers to the topology for coordinate-wise convergence or,
more precisely, the topology of pointwise convergence in the space of velocity fields.

Theorem 3.6. Let C be a crystal framework in R
d with a given periodic structure basis and

associated C[z]-module M(C)∗. Then F(C;C) is the closed linear span of pg-sequences uω,h in
F(C;C) associated with the periodic structure basis. Moreover, if ω(1), . . . , ω(s) is a root sequence
for the Lasker-Noether decomposition of M(C)∗ then F(C;C) is the closed linear span of the pg-
sequences uω,h in F(C;C) with geometric indices ω(1), . . . , ω(s).

It is possible, although unusual, for a crystal framework to have a finite-dimensional first-order
flex space which is strictly larger than the finite-dimensional space of rigid motion flexes, and
we give some examples below. The finiteness of the geometric spectrum is a simple necessary
condition for this phenomenon and we shall show, from the primary decomposition structure of
M(C)∗, that it is also a sufficient condition.
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Theorem 3.7. Let C be a crystal framework in R
d with a given periodic structure basis and

associated geometric flex spectrum Γ(C). Then the following statements are equivalent.
(i) F(C;C) is finite-dimensional.
(ii) Γ(C) is a finite set.

Remark 3.8. In view of the unbounded nature of a pg-flex with nonunimodular geometric
multi-factor it might appear that these results have little relevance to materials science. This
is definitely not the case however since surface modes, associated with a hyperplane boundary
wall for example, arise as bounded restrictions of unbounded flexes of the bulk crystal. See for
example Lubensky et al [20], Power [27], Rocklin et al [28] and Sun et al [31]. Thus the geometric
spectrum in effect identifies free surfaces where one may find bounded surface modes which have
geometric decay directions into the bulk.

The commutative algebra viewpoint also usefully extends the conceptual analysis of crystal
frameworks which, for example, may now be described as primary or properly decomposable
according to whether these properties hold for the C[z]-moduleM(C)∗ associated with a primitive
periodic structure basis.

3.3. Examples. (i) We show that for CZ2 there is a set of vectorial pg-sequences with dense span
in the infinitesimal flex space. This is a universal property, assured by the first part of Theorem
3.6, but we may obtain it for this simple crystal framework by direct module arguments.

Assuming the usual periodicity basis a we may make choose a (translated) motif so that the
transfer function Ψ(z) has 2 row vector functions, p1(z1, z2) = (1− z1, 0), p2(z1, z2) = (0, 1− z2).
The corresponding C[z]-module in C[z]⊗ C

2 is

M∗ = C[z]p1(z) + C[z]p2(z) = (C[z](1 − z1),C[z](1 − z2)).

Let Q∗
1 = (C[z](1− z1),C[z]) and Q∗

2 = (C[z],C[z](1 − z2)). Then M∗ = Q∗
1 ∩Q∗

2. Moreover M∗

is a submodule of N = C[z] ⊗ C
2 and N/Q∗

1 is module-isomorphic to C[z]/(1 − z1)C[z]. Thus,
for p(z) ∈ C[z] the map λp (see Definition 4.4) is injective if (1− z1) is not a factor of p(z) and
is zero otherwise. Thus Q∗

1, and similarly Q∗
2, are primary submodules of N . Also the ideals

P ∗
1 = (1−z1)C[z] and P ∗

2 = (1−z2)C[z]) are prime ideals in C[z], and in fact they are associated
prime ideals in C[z] for Q∗

1 and Q∗
2, respectively, and each Q∗

i is P ∗
i -primary.

We now see that a root sequence {ω(1), . . . , ω(s)}, for M∗, can be any pair {(1, ξ2), (ξ1, 1)}
with ξ1, ξ2 in C∗. Let us take ω(1) = (1, 1), ω(2) = (1, 1). Theorem 3.6 predicts that there is a
set of infinitesimal flexes of the form

k → (h1(k), h2(k)), h1(z), h2(z) ∈ C[z],

whose closed linear span is F(CZ2 ;R). To see, independently, that this is true consider first the
polynomials h1(z) of the form h1(z1, z2) = h(z2), with h(z) a single variable polynomial. The
velocity field

u : k → (h1(k), 0)

is a velocity field which gives a constant horizontal velocity to the joints on each horizontal line.
These are infinitesimal flexes. Moreover it is straightforward to show by direct arguments that the
closed span of these flexes give the space of all infinitesimal flexes with this horizontal constancy
property, including, in particular, the localised translational flexes which are supported on a
single horizontal line of joints. We remark that these localised translational flexes are evidently
not in the (unclosed) linear span of vectorial pg-sequences.

Exchanging the roles of the variables it follows similarly that there are vectorial pg-flexes
whose closed linear span contains the vertically localised flexes. The closed span of the vertically
localised flexes and the horizontally localised flexes is the space of all flexes, since one can
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show that every infinitesimal flex is an infinite linear sum of the line-localised flexes. Thus the
conclusion of the first assertion of Theorem 3.6 is confirmed for CZ2 .

(ii) Another favoured crystal framework example in R
2 is the kagome framework, Ckag, which

is associated with the semiregular tiling of the plane by hexagons and triangles. There are 3
joints and 6 bars in a (minimal, primitive) motif and the C[z]-module M(Ckag)

∗ is a submodule
of C[z] ⊗ C

6. A direct verification of the density of pg-flexes may be obtained, as above, by
exploiting the fact that the line-localised flexes form a generalised basis for the flex space [6].

(iii) A simple 2-dimensional crystal framework which illustrates Theorem 3.7 may be obtained
from CZ2 by adding the diagonal bars (n,m)(n + 1,m + 1), for n + m even. This well-known
structure, which can be viewed as a kite framework where the kite subframeworks are square, is
Example 3 from the gallery of examples in Badri, Kitson and Power [5], and it appears in 2D
slices of cubic perovskites [13]. An explicit primitive motif consists of 2 joints and 5 bars and the
RUM spectrum and the geometric spectrum are equal to the set {(1, 1), (−1, 1)}. One can verify
directly that the first-order flex space is 4-dimensional and is spanned by a basis for the rigid
motion flexes together with a single geometric flex, with ω = (−1, 1), that restricts to alternating
rotational flexes of each diagonalised square subframework.

(iv) For a 3-dimensional illustration of Theorem 3.7, with Γ(C) = {1}, one may take an
infinitesimally rigid crystal framework and attach a parallel copy (with the same period vectors)
by means of parallel bars between corresponding joints. In this case the first-order flex space has
dimension 8.

Remark 3.9. While the geometric flexes alone need not have dense span in the flex space they
may nevertheless be sufficient for restricted classes of first-order flexes with respect to other
closure topologies. This is so for uniformly almost periodic flexes [5]. It would be of interest to
develop further such analytic spectral synthesis and to find spectral integral representations for
other classes of flex spaces.

Remark 3.10. The existence of generalised bases of localised geometric flexes for a crystal
framework is considered in Badri, Kitson and Power [6]. It seems, as in the case of the kagome
framework for example, that such bases give the best way of understanding the first-order flex
space and rigid unit modes in that every such flex is an infinite linear combination of basis
elements. However such crystal flex bases need not exist and the considerations in [6] suggest
that this is typical unless the geometric spectrum has sufficient linear structure.

Remark 3.11. One can also consider forms of rigidity, which one might call persistent rigidity,
with respect to all periodic structures, both in the strict (fixed lattice) case and the flexible
lattice case. The latter form is known as ultrarigidity (see Malestein and Theran [22]) while the
former form we refer to as persistent periodic rigidity. Each may be defined in terms of the vector
space of velocity fields which is the union over all periodic structures of the appropriate spaces
of periodic velocity fields. These rigidity notions are weaker than strict periodic infinitesimal
rigidity but stronger than first-order rigidity.

For a periodic structure basis for C define the rational RUM spectrum Ωrat(C) to be the
intersection of Ω(C) with the points in T

d whose arguments are rational multiples of 2π. Then
it can be shown that a crystal framework C is persistently periodically rigid if and only if the
matrix values of the transfer function on the subset Ωrat(C) have extremal rank. The analogous
characterisation for ultrarigidity, together with detailed algorithmic considerations, is given in
[22].

We also remark that for generic crystallographic frameworks, that is, those for which the joints
in a motif are generically placed, there are combinatorial characterisations of various forms of
periodic rigidity. See for example the survey of Schulze and Whiteley in [14] and the recent
characterisation of Bernstein [7] for flexible lattice periodicity.
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4. The proofs of Theorem 3.4, Theorem 3.6 and Theorem 3.7

The next theorem is the main result from [17] characterising closed shift-invariant subspaces
in the sense of Section 3.1. It provides a key step in the proofs.

Theorem 4.1. Let A be a closed invariant subspace of C(Zd) ⊗ C
r. Then there is a finite set

of geometric indices such that A is the closed linear span of the vectorial pg-sequences in A with
geometric indices in this set.

The following degree reduction lemmas will be used in the proof of Theorem 3.4. The degree
of a multi-variable polynomial p(z) is the maximum, denoted deg p, of the total degrees |k| =
|k1+ · · ·+kd| of the terms akz

k that appear in a reduced sum representation of p(z). The leading
term of p(z) is defined to be the term akz

k of highest total degree where k is first in lexicographic
order on Z

d
+. For a vector-valued polynomial p(z), its degree is defined to be the maximum of

deg pi over the coordinate functions.

Lemma 4.2. Let uω,p : k → ωkp(k) be a vectorial pg-sequence in C[z] ⊗ C
d with degree δ > 1.

Also, let k = (k1, . . . , kd) be the leading term monomial multi-index with |k| = δ and let kj be the
first nonzero entry of k. Then uω,p−Wjuω,p is a nonzero pg-sequence uω,g with deg g = deg p−1.

Proof. We have uω,p−Wjuω,p = uω,p−Sjp where Sj is the shift operator given by the substitution
zj → zj − 1 in each coordinate function of p(z) = (p1(z), . . . , pd(z)). Note that each function
pi − Sjpi has no terms of total degree δ. Also for the pg-sequence uω,g = uω,p −Wjuω,p we have
deg g = deg p− 1. �

The next degree reduction lemma is needed in conjunction with the previous lemma to de-
duce the existence of a nontrivial flexible lattice periodic first-order flex from a higher degree
(nonlinear) pg-flex u1,h.

Let p(x) be a quadratic vector-valued polynomial in the variables x1, . . . , xd which takes values
in R

d and is given by

p(x1, . . . , xd) =

d
∑

l=1





d
∑

i=1

a
(l)
ii x

2
i +

∑

i<j

a
(l)
ij xixj +

d
∑

i=1

a
(l)
i xi + a

(l)
0



 el,

where {el}
n
l=1 is the standard basis for Rd. Also, for i > j, define

(1) a
(l)
ij = a

(l)
ji

for l ∈ {1, . . . , d}. Let qi = p−Wip, whereWi is the forward shift operator on the i-th coordinate.
Then

(2) qi(x1, . . . , xd) =

d
∑

l=1



(2a
(l)
ii xi − a

(l)
ii ) +

∑

j 6=i

a
(l)
ij xj + a

(l)
i



 el.

Consider the linear polynomial qR,b given by

qR,b(x1, . . . , xd) = R







x1
...
xd






+







b1
...
bd







where R is a skew symmetric real matrix and bi ∈ R for each i. This polynomial can be viewed
as a real-valued velocity field on R

d which is an infinitesimal rigid body motion. Also the set of
restrictions of these velocity fields to the joints of a crystal framework C in R

d gives the vector
space Frig(C;R).
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Lemma 4.3. Let p(x) be a quadratic polynomial in x1, . . . , xd taking values in R
d. Then for

some i in {1, . . . , d} the linear polynomial qi = p− Sip does not have the form qR,b.

Proof. We have seen that qi has the form

(3) qi(x1, . . . , xd) =

d
∑

l=1



2a
(l)
ii xi +

∑

j 6=i

a
(l)
ij xj



 el + d(i)

where d(i) =
∑d

l=1(−a
(l)
ii + a

(l)
i )el. Suppose that for each i the function qi is of the form qR,b

with R = Ri. Then for each i we have

Ri







x1
...
xd






=













0 + r
(i)
12 x2 + · · ·+ r

(i)
1dxd

−r
(i)
12 x1 + 0 + · · · + r

(i)
2dxd

...

−r
(i)
1dx1 − r

(i)
2dxd + · · · + 0













.

Since the ith coordinate function of qi has no dependence on xi it follows from equation (3) that

a
(i)
ii = 0 for each i. Also, since the lth coordinate function of qi for any l 6= i has no dependence

on xl it follows from (3), that a
(l)
il = 0 for all l. In view of the skew symmetry of the matrix Ri

we have a
(l)
ij = −a

(j)
il . Also, by equation (1) the element a

(l)
ij is both the lj entry in the qi matrix

and the li entry in the qj matrix. Thus, for every i, j, l we have

a
(l)
ij = −a

(j)
il = −a

(j)
li = a

(i)
lj = a

(i)
jl = −a

(l)
ji = −a

(l)
ij

and therefore a
(l)
ij = 0. This implies that the polynomial p(x1, . . . , xd) is linear, a contradiction

which completes the proof. �

Proof of Theorem 3.4. Note that (v) is equivalent to (i) by the duality assertions of Lemma 3.1.
Also (i) evidently implies (ii). To see that (ii) implies (i) we must show that if there is a first-
order flex which is not a rigid motion flex then in fact there exists an exponential flex which is a
nonrigid motion flex. This conclusion follows immediately from Theorem 4.1 which shows that
in fact there must exist a nonrigid motion flex uω,h.

Assertions (iii) and (iv) are equivalent, by the discussion preceding Definition 2.4, and they
are implied by (i).

It remains to show that (iii) implies (i). Assume that (i) does not hold. We show that (iii)
fails, that is, there exists a nontrivial factor-periodic flex or there exists a nontrivial flexible
lattice periodic flex. Since C is infinitesimally flexible, by Theorem 4.1 there exists a nonrigid
motion infinitesimal flex of the form u = uω,h, for some ω. If ω 6= 1, then applying Lemma 4.2 a
number of times we obtain a nonzero geometric flex uω,g with g a constant polynomial. This is
a factor periodic infinitesimal flex, with ω in the geometric spectrum, and so (iii) does not hold.

On the other hand, if ω = 1 then we must be more careful since a similar full degree reduction
to u = u1,g leaves the possibility that this is a nonzero translation flex and so a negation of (iii)
is not obtained.

Suppose first that deg h = 1, so that the nontrivial flex u has the form

u(k) = u1,h(k) = (h1(0) +X1k, . . . , hn(0) +Xnk) k ∈ Z
d,

where X1, . . . ,Xn are linear transformations which are not all zero. If Xi = Xj for all i, j then
u is a nontrivial infinitesimal flex in Vfper(C), contradicting (iii). We may assume then that

Xs 6= Xt, for some 1 ≤ s, t ≤ n, with Xsej 6= Xtej for some standard basis element ej of Zd.
Performing degree reduction with the Wj shift gives the infinitesimal flex u1,f with f(z) the
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constant (degree 0) polynomial f(z) = −(X1ej , . . . ,Xnej). This is a periodic flex which is not a
translation, contradicting (iii).

Finally, suppose that deg h ≥ 2. By Lemma 4.2 we may assume that deg h = 2 so that for
some 1 ≤ s ≤ n the function p = hs has degree 2. It follows from Lemma 4.3 there is a degree
reduction to an infinitesimal flex, u1,h′ say, which is of degree 1 and is not a rigid motion flex.
Thus we may argue as in the previous paragraph to obtain the desired contradiction. �

4.1. P -primary decompositions. We recall the formal definitions of a root sequence for a
C[z]-module and a P -primary decomposition. The Lasker-Noether theorem states that every
submodule of a finitely generated module M over a Noetherian ring is a finite intersection of
primary submodules. However, a stronger form asserts that M has a decomposition as given in
Definition 4.5, which is known as a P -primary decomposition. Moreover any such decomposition
leads to a reduced P -primary decomposition with distinct primes ideals Pi, and this set of prime
ideals is uniquely determined by M . For more details and discussion see Ash [2], as well as
Atiyah and MacDonald [4], Krull [18] and Rotman [29].

Definition 4.4. Let R be a Noetherian ring, let L be a submodule of an R-module N , and for
p ∈ R, let λp : N/L → N/L be multiplication by p. Then L is a primary submodule of N if L is
proper and for every p the map λp is either injective or nilpotent. If P = {p ∈ R : λp is nilpotent}
then P is a prime ideal and L is said to be a P -primary submodule of N .

Definition 4.5. Let M = Q1∩· · ·∩Qs be a primary decomposition of the C[z]-module M where
Qi is Pi-primary for distinct primes Pi, 1 ≤ i ≤ s. A root sequence for M is a set ω(1), . . . , ω(s) of
points in C

d where for each 1 ≤ i ≤ s the point ω(i) is a root of Pi in the sense that p(ω(i)) = 0
for all p(z) in Pi.

Proof of Theorem 3.6. The first assertion follows from Theorem 4.1. The second assertion re-
counts the detail in [17] that the finite set of geometric indices is a set of roots, in the sense of
Definition 4.5. �

Proof of Theorem 3.7. If Γ(C) is infinite then the flex space is infinite-dimensional since a finite
set of geometric flexes with distinct periodicity factors is linearly independent. On the other
hand if Γ(C) is the finite set ω(1), . . . , ω(s) then the C[z]-module M(C)∗, in C[z] ⊗ C

dn, has a
P -primary decomposition of length s in terms of P ∗

i -primary modules Q∗
i in C[z] ⊗ C

dn with
unique root ω(i), for 1 ≤ i ≤ s. (We remark that the starred notation P ∗

i and Q∗
i can be viewed

purely formally in the rest of the proof. However the notation is natural since P ∗
i = Pi∩C[z] and

Q∗
i = Qi ∩ (C[z]⊗C

dn) for some associated prime Pi in C(z) and associated module Qi which is
Pi-primary in C(z)⊗ C

dn.) Since P ∗
i is prime and has a unique root it is a maximal ideal.

We have

P ∗
i = {a : λa : C[z]⊗ C

r/Q∗
i → C[z]⊗ C

r/Q∗
i is nilpotent},

where r = dn. Fix a value of i. Then for each a ∈ P ∗
i there exists n such that an(C[z]⊗C

r) ⊆ Q∗
i .

In particular since zl − ω(i)l is in P ∗
i for each 1 ≤ l ≤ d, there are powers nl such that

(zl − ω(i)l)
nl(C[z]⊗ C

r) ⊆ Q∗
i .

For each vector e of C
r the module Q∗

i contains the submodule J ⊗ ei where J is the ideal
generated by the powers (zl − ω(i)l)

nl , for 1 ≤ l ≤ d. Since J has finite codimension it follows
that Q∗

i has finite dimensional annihilator.
Finally, the annihilator of the moduleM(C)∗ is the closed span of the annihilators of Q∗

1, . . . , Q
∗
s

and so is also finite-dimensional. By Theorem 3.6 this annihilator is equal to the first-order flex
space of C and so the proof is complete. �
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5. First-order rigid and yet continuously flexible

We now consider direct geometric arguments to show that a crystallographic bar-joint frame-
work may be continuously flexible even when it is first-order rigid. This phenomenon is not
possible for finite bar-joint frameworks (Asimow and Roth [3]) since one may use the algebraic
variety structure of the configuration space to show that the existence of a continuous flex implies
the existence of a differentiable flex.

Consider first the semi-infinite periodic strip framework Qright suggested by Figure 2 where
the triples of joints {A,X,Q}, {B,Y, S}, . . . are collinear. We claim that this is first-order rigid.

A B

P

X Y

SRQ

A′

B′

Figure 2. The semi-infinite strip framework Qright. The angle t at APA′ deter-
mines the angle θ(t) at BRB′.

To see this suppose, by way of contradiction, that there exists an infinitesimal flex which is
not of trivial (rigid motion) type. Since the strip subframework determined by the joints lying
on and below the line through PQRS is infinitesimally rigid we may assume, by subtracting a
trivial infinitesimal flex, that u assigns the zero velocity to these joints. Let uX , uY , uZ , . . . be
the velocities of u assigned to the joints X,Y,Z, . . . . One of these velocities must be nonzero
and without loss of generality we assume that uX 6= 0. Thus uB 6= 0, and we note from the
collinearity of B,Y, S that it must be in the direction of the positive x-axis. However, uS = 0
and by this same collinearity we have a contradiction since there is no finite velocity uY such
that uB , uY , uS satisfy the flex conditions for the edges BY and Y S.

We claim that for a suitable choice of geometry the framework Qright is continuously flexible.
We do this by showing that each finite stretch of the framework, from AP to another vertical
bar, has a unique continuous flex parametrised by the angle t for the inclination angle of the bar
AP , where the parameter t ranges over a fixed finite interval. The important point here is that
the finite interval does not depend on the stretch.

Assume that |XQ| < |QR| and |QB| > |XB| > |RB| and consider the finite subframework,
G say, supported by the labelled vertices and the four vertices below P,Q,R, S. Consider the
joints P,Q,R, S as fixed and note that there is a continuous flex of G in which AP rotates at
constant speed through a clockwise angle parameter t > 0. In this motion the bar XQ rotates
continuously clockwise to achieve a horizontal position corresponding to final parameter value
t = t1 say. The induced angular positions θ(t) of BR in this motion increases first to a local
maximum, θmax, when QX and XB are collinear, and then decreases through positive values to
a final value θfin = θ(t1). Assume next that,

|XB| ≥
√

|BR|2 + (|RQ| − |RX|)2

so that θfin > 0. Then the range of the continuous function θ : t → θ(t), for 0 ≤ t ≤ t1, is
included in the range of its argument t. Thus, the continuous flex π(t) of G, with flex parameter
0 ≤ t ≤ t1, is uniquely extendible to a continuous flex t → p(t), 0 ≤ t ≤ t1, of any finite stretch,
and so defines a nontrivial continuous flex the semi-infinite framework Qright, as desired. We
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remark that the inverse function s → θ−1(s) is defined on a suitable interval [0, δ]. Since it is
right differentiable at 0, with derivative 0, we may view the continuous flex as having infinite
initial velocity at the joint B.

Let Q be the two-sided periodic strip associated with Qright. The continuous flex p(t), with
full parameter range 0 ≤ t ≤ t1, does not extend to a continuous flex of Q. Indeed the maximum
possible positive angular deviation of the bar BR, is limited by the colinearity position of bars
QX and XB. However, we claim that Q is continuously flexible, with the angular motions of all
the vertical bars taking place within the range [0, θmax].

To see this consider again the angle propagation function θ : t → θ(t). Let t = tfix be the
positive solution of θ(t) = t and note that tfix < tmax. (We remark that the angular motion of
the n-th vertical bar of Qright is governed by the iterates of θ and it follows that as t tends to tfix
the inclination of each vertical bar converges to tfix.) We claim that the continuous motion of G,
parametrised by 0 ≤ t ≤ tfix, can be extended to the left strip of Q, and so defines a nontrivial
continuous flex of Q.

To see this consider once more the subframework G linking AP and BR, but with BR providing
the driving angular displacement, with angular parameter s ≥ 0. The leftward angle propagation
function is the inverse function s → θ−1(s). This is a smooth decreasing function which is well-
defined for the range 0 < s ≤ θmax, with derivative 0 at s = 0. It follows by simple iteration,
that this continuous flex of G extends to the left hand side of Q and so the claim follows.

It is now straightforward to construct a crystal framework in R
2, which is continuously flexible

and first-order rigid, by taking parallel copies of the strip framework Q and rigidly connecting
their rigid base subframeworks in a periodic manner.

5.1. Aperiodic phase transitions. The continuous flex t → p(t) of the two-way periodic strip
framework Q adopts aperiodic positions for each intermediate value of t, with 0 < t < tfix, while
the terminal position, for t = tfix, is a periodic strip framework which we denote as Q1. Thus Q1

is a tilted placement of Q and we can view the motion as an aperiodic phase transition between 2
periodic states. By varying the initial geometry, so that in the initial periodic position A,X,Q are
not collinear, one can also construct strip frameworks with aperiodic phase transitions which are
smooth paths. By embedding strip frameworks such as these in higher dimensional constructions
one can obtain 3D periodic frameworks with similar aperiodic phase transitions between crystal
states. It would be interesting to discover if such locally chaotic transitions between periodic
states could serve as a model for abrupt transitions in material crystals, such as martensitic
changes of state. (See Anwar et al [1] for example for such a transition.)
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