Carbon-based adsorbents for fluoroquinolone removal in water and wastewater: A critical review

Published in: Environmental Research

Document version: Accepted peer-reviewed version.
Carbon-based adsorbents for fluoroquinolone removal in water and wastewater: A critical review

Ahmed Ashiq¹, Meththika Vithanage¹*, Binoy Sarkar², Manish Kumar³, Amit Bhatnagar⁴, Eakalak Khan⁵, Yunfei Xi⁶, Yong Sik Ok⁷**

¹Ecosphere Resilience Research Centre, Faculty of Applied Science, University of Sri Jayewardenepura, Sri Lanka
²Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom
³Department of Earth Sciences, Indian Institute of Technology Gandhinagar, India
⁴Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130, Mikkeli, Finland
⁵Civil and Environmental Engineering and Construction Department, University of Nevada – Las Vegas, Las Vegas, NV, USA
⁶Institute for Future Environments & School of Earth and Atmospheric Sciences, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4001, Australia
⁷Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Korea

*Corresponding Author: meththika@sjp.ac.lk
**Co-Corresponding Author: yongsikok@korea.ac.kr
Contents:

37

Abstract ... 4

1. Introduction... 5

2. Fluoroquinolone antibiotics: properties and persistence in the environment 8
 2.1. Properties of fluoroquinolone antibiotics ... 8
 2.2. Occurrence and distribution of FQ antibiotics in the environmental matrices 9
 2.2.1. Soil-plant system ... 9
 2.2.2. Water and wastewater .. 10
 2.2.3. Persistence of FQs in the environment ... 15

3. Adsorption of FQs by carbon-based, tailored and other material adsorbent 19
 3.1. Carbon-based adsorbents for FQs removal ... 20
 3.1.1. Activated carbon ... 20
 3.1.2. Biochar ... 26
 3.1.3. Graphene-based adsorbents ... 31
 3.1.4. Carbon nanotubes ... 34
 3.2. Adsorptive removal of FQ antibiotic by clay and tailored adsorbents .. 38
 3.2.1. Clay adsorbents ... 38
 3.2.2. Carbon composites ... 41
 3.2.3. Other nano-based composites ... 43

5. Performance evaluation of FQ removal ... 51

References .. 58
Abstract

This review summarizes the adsorptive removal of Fluoroquinolones (FQ) from water and wastewater. The influence of different physicochemical parameters on the adsorptive removal of FQ-based compounds is detailed. Further, the mechanisms involved in the adsorption of FQ-based antibiotics on various adsorbents are succinctly described. As the first of its kind, this paper emphasizes the performance of each adsorbent for FQ-type antibiotic removal based on partition coefficients of the adsorbents that is a more sensitive parameter than adsorption capacity for comparing the performances of adsorbents under various adsorbate concentrations and heterogeneous environmental conditions. It was found that π-π electron donor-acceptor interactions, electrostatic interactions, and pore-filling were the most prominent mechanisms for FQ adsorption by carbon and clay-based adsorbents. Among all the categories of adsorbents reviewed, graphene showed the highest performance for the removal of FQ antibiotics from water and wastewater. Based on the current state of knowledge, this review fills the gap through methodically understanding the mechanism for further improvement of FQ antibiotics adsorption performance from water and wastewater.

Keywords: Emerging contaminants, clean water and sanitation, green and sustainable remediation, carbon-based adsorbents, sustainable development goals, nanomaterials.
1. Introduction

The availability of clean drinking water is becoming steadily more challenging in many parts of the world, especially in countries in Asian and African countries. Seventy percent of the global economic inputs lies in cities and urban areas where a large number of the population is vulnerable in accessing clean water and sanitation. United Nations’ Sustainable Development Goals (SDG 6 for clean water and sanitation) advocate ensuring access to clean water supply, appropriate sewage and sanitation facilities to all [1]. However, from the past few decades, pharmaceuticals and personal care products (PPCPs) have become an emerging concern because of their pseudo-persistent nature and continuous input to the environment [2,3]. Large quantities of antibiotics are excreted, mainly whose active ingredient remains unaltered after absorption by the human body, leading to exposure to bacteria in the environment, which has resulted in antimicrobial resistance [4,5]. The antibiotics released into the water bodies are of great concern because they: (i) cause water and soil contamination in trace amounts posing risks to human and animal health through entry into the food-chain; (ii) enhance bacterial resistance in the aquatic bodies, and (iii) inhibit or kill certain beneficial bacteria in natural ecosystems [3,6].

Quinolone is a crucial class of antibiotic used to treat both veterinary and human diseases because of its ability to control both Gram (+) and Gram (-) bacterial infections. Derivations of quinolone include fluorination at the 6th-position of the parent compound resulting in fluoroquinolone (FQ) antibiotic, a predominant quinolone type [7,8]. Furthermore, 70% of the FQ consumed is excreted unmetabolized from the body, and is frequently detected at sub-inhibitory concentrations ranging from ng L⁻¹ to μg L⁻¹, which can thereby accumulate and facilitate long-term exposure. Thus, FQ could alter the natural microbial populations in soil and water [9].
The amount of published literature to remediate FQ from aqueous media has increased rapidly since 2011, as shown in Figure 1. Many conventional strategies have been employed to remove FQs from aqueous environments such as biological processes, sand filtration, ultraviolet (UV) radiation, membrane filtration and/or sedimentation (Figure 1) [10–12]. Among these techniques, biodegradation and adsorption have gained momentum in the last few years. The oxidation process generally utilizes UV or strong oxidants with severe operating conditions. Moreover, these methods have not been found to be practical for ionizable and polar contaminants such as FQ antibiotics. Despite numerous studies where conventional methods were carried out to remove FQ antibiotics, remediation of multiple FQ at varying pH values with specialized adsorbents and performance of each of them remains limited [13,14]. Research over the past decades has been dedicated to study the viability of numerous adsorbent materials including activated carbon, carbon nanotubes, clay minerals, ion exchange resins, and biochar for the removal of FQs. However, there is no review dedicated exclusively to FQ antibiotics. A dedicated review on adsorptive removal of FQ-antibiotics is necessary because identifying and categorizing the merits and demerits of various adsorbents are needed [15–19]. This sparked the necessity for using carbon-, nanocomposite-, and clay-based advanced adsorbents to remediate FQs in aqueous media. Thus, in this review, we intend to provide a complete overview of the studied adsorbents for remediating FQ-antibiotics with a comparative description based on the evidence retrieved from the overall performance of each of the adsorbents.

This review will help understand the adsorption phenomena at solid-solution interfaces using the adsorbents, as mentioned earlier, to abate aqueous FQ contaminations. Furthermore, it critically assesses the knowledge gaps and uncertainties concerning the merits and demerits of each type of adsorbent. In addition to adsorption capacity, we use partition coefficient as a performance assessment indicator to obtain a fair and critical comparison of FQ removal.
performances using various adsorbents under different initial conditions. Based on the literature findings, we put forward some future research directions for further technological improvement of FQ removal from water and wastewater.

Figure 1: (a) Pie chart showing the corresponding % of each FQ remediation technique published during the past years (2001-2020), with “Fluroquinolone removal water” and “Quinolone removal water” as qualifiers. (b) Pie chart showing the corresponding % of each FQ studied here accumulated from tables presented in this study. (c) Number of publications on the adsorption of FQs from aqueous media per year since 2001 to 2020 extracted from Scopus with the key words “Fluroquinolone adsorption water” and words “Quinolone adsorption water”.
2. Fluoroquinolone antibiotics: properties and persistence in the environment

2.1. Properties of fluoroquinolone antibiotics

Approximately 25 years ago, the first mono-fluorinated FQ was developed from flumequine, which is a nalidixic acid with a limited antibacterial spectrum. Then, the addition of fluorine in the flumequine resulted in the development of novel FQs depending upon the clinical needs [20]. The novel FQ synthesized had nitrogen at N-1, carboxylic acid at C-3, ketone at C-4 and fluorine at C-6 of the compound’s backbone structure. For some FQs, a unique piperazinyl group at C-7 provides them with unique antibacterial effects [21,22]. The minimum necessary structure for the activity in an FQ antibiotic is a 2-phenyl-4-pyridone-3-carboxylic acid, and the nitrogen can be displaced with other functional groups that must be below the plane of pyridine for optimal antibacterial effects [20].

Most FQs exhibit high chemical stability and are insensitive to degradation by hydrolysis and temperature. However, they can get substantially degraded by UV light. Their antibiotic competency depends on the available fluorine substituents at the 6th carbon position [23,24]. The addition of a fluorine group at C-6 and a piperazinyl group at C-7 makes FQs highly unique compared to other types of quinolone. Intrinsic anti-Gram (-) bacterial activity is shown by all quinolone-type antibiotics; however, FQ has the advantage of increased lipophilicity that gives them a higher tendency for anti-Gram (+) bacterial activity [22,25]. New FQs are being developed based on the chirality of the molecule for enhanced antibacterial activity. Ofloxacin, a tricyclic compound with methyl-group at the C-3 position, is an enantiomer of levofloxacin, which is 8-28 times more potent than ofloxacin. Such FQ was discovered based on the already available type and its mode of response by the receptors such as animals, poultry and fish. In most cases, the newly developed antibiotics are utilized for the treatment of pulmonary, urinary, and digestive infections [22,26]. Enrofloxacin and sarafloxacin are used in veterinary
medicines; ciprofloxacin, norfloxacin, and ofloxacin are used in human medicines.

Ciprofloxacin is one of the most prominently used antibiotics worldwide [27,28].

2.2. Occurrence and distribution of FQ antibiotics in the environmental matrices

Elevated concentrations of FQ antibiotics are present in the environmental matrices and are closely associated with their release from hospital waste effluents, veterinary activities and untreated sludge from pharmaceutical industries [29–32]. Table 1 summarizes the prevalence of FQ antibiotics in soil, water, sludge and few food crops indicating their frequent occurrences and concentrations. From previous studies on the occurrence of FQ in soil, water, sludge and manure in different countries and regions, the antibiotics have been mapped based on the mean values of their occurrences in each country to show the global distribution of FQ (Figure 2).

2.2.1. Soil-plant system

Because of the pseudo-persistent nature of FQ antibiotics in the environment, their fate in the plant and soil systems is complex, and thus, creates a menace in the agroecosystems. Agricultural soils acquire antibiotics from wastewater and offsite runoff, which get bio-accumulated in the plant tissues over time [4,33]. Mechanisms for the translocation of FQ antibiotics in plants depend on multiple factors, mainly soil properties and the nature of antibiotics. The transport of nutrients, water, and other compounds from plant root to shoot occurs through the xylem [34,35]. After being absorbed by plants from soil, FQ antibiotics are converted to zwitterionic species at neutral pH and accumulate in leaves where the pH of vacuoles, xylem cells, and intercellular spaces is around 5 to 6. The ionizing effect of FQ antibiotics varies with changing environments in the contaminated water. Because of the gradient created in the solute, the accessibility of FQ antibiotics towards the rest of the plant system becomes effortless [23,36,37]. However, other antibiotics (e.g., tetracycline and penicillin) do not get transported in plant bodies due to having higher octanol-water partition
coefficient values than FQs (Table 2). Tetracycline and penicillin are detected in the root system only, while FQs are found in different parts of the plants [21,38,39]. Edible plant parts are thus prone to FQ bioaccumulation and aggravate human exposure through food consumption. Chinese white cabbage, spinach, radish and corn crops, irrigated with antibiotic-contaminated wastewater over an extended period, were reported to cause FQ exposure to humans through edible plant parts [37], increasing the ecotoxicity in soil and plant matrices.

2.2.2. Water and wastewater

Quinolones have been detected in surface waters up to 2 µg L⁻¹ with a detection frequency of 15-83% globally. About 4 ng L⁻¹ norfloxacin was detected in the agricultural run-off in Hong Kong [40]. Norfloxacin (NFX), lomefloxacin (LMX), enrofloxacin (EFX), and ciprofloxacin (CPX) were found in tap water samples up to 680 ng L⁻¹ (77.5% frequency) and 2-40 ng L⁻¹ (100% frequency) in Guangzhou and Macao, respectively [40,41]. In New Mexico, ofloxacin ranging from 0.1-0.5 µg L⁻¹ was detected in the effluent wastewater treatment plants with 100% frequency [40]. The transformed metabolites could worsen the ecotoxicity in the effluents of the untreated water treatment plants throughout the course of FQ presence in water [35,42]. Overall, FQs are becoming almost ubiquitous in nature due to their constant release in excreted metabolites from domestic households to the environment [42,43].

The metabolite of enrofloxacin used as an animal drug undergoes a change in the structure through N-dealkylation of the piperazine ring in the animal body to another commonly excreted fluoroquinolone, ciprofloxacin. N-acetyl ciprofloxacin is detected as a metabolite found in the environment along with enrofloxacin N-oxide and diethylene-enrofloxacin for the same parent compound, enrofloxacin [26,44]. Although their consequences in the ecological environment can be less toxic than their parent compounds, they can accumulate in trace amounts [45]. Both
metabolized or un-metabolized FQ antibiotics reach the soil through animal wastes and are easily transported to ground and surface waters.

Ciprofloxacin, norfloxacin and ofloxacin are more predominant in aquatic environments than the other FQs. Norfloxacin and ofloxacin occurred in U.S. wastewater treatment facilities at about 80% detection frequency with concentrations ranging from 400-500 ng L$^{-1}$. Around 600 ng L$^{-1}$ of CPX in wastewater effluents in Spain was reported (Figure 2). In Sweden, reported effluent ofloxacin concentration was 1,000 ng L$^{-1}$, whereas 7,600 ng L$^{-1}$ was the level found in China. In all of these countries, hospital wastewater treatment facilities served as the primary point source of FQs whereas other point sources are from sewage sludges, surface run-offs and from soil, plants and manure.

An extensive study concerning the occurrence of antibiotics in a sewage treatment plant in Qinghe, China, indicated that ofloxacin (1,287 ng L$^{-1}$) and norfloxacin (775 ng L$^{-1}$) were the most prevalent drug species in the wastewater effluent [27]. The wastewater treatment process was inefficient in removing all of the FQs; the final concentrations of ofloxacin and norfloxacin in the final sludge were 1,140 and 610 ng mg$^{-1}$ respectively. Based on previous studies on the occurrences of FQ in soil, water, sludge and manure in different countries and regions, the antibiotics are mapped in Figure 2, in terms of the mean values of their occurrences in each country. As reported by the World Health Organization (WHO), 63 out of 187 countries (~34%) under their survey identified FQs in water bodies, mostly in wastewaters and sludge systems (Table 1) [46–48]. In most areas, low concentrations of FQ antibiotics are undetectable which adds strain to the environment with the consecutive accumulation of the pollutants at unpredictable rates [49]. Although samples from those areas, especially in the developing nation, did not contain parent FQ compounds, their transformed products could occur (due to
changes in the solution chemistry) and currently are not taken into account for toxicity assessment and regulatory measures.
Figure 2: Distribution of FQ antibiotics in the water environments. Numbers denote the concentrations whereas references are given in brackets, *mean value calculated from individual states
<table>
<thead>
<tr>
<th>Concentrated Sample Sources</th>
<th>Class of quinolone</th>
<th>Study location</th>
<th>Maximum Concentration (μg L(^{-1}) except noted below)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sewage sludge</td>
<td>Ciprofloxacin</td>
<td>South Africa</td>
<td>0.12 (mg kg(^{-1}))</td>
<td>[50]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>South Africa</td>
<td>99.2 (mg kg(^{-1}))</td>
<td>[51]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Italy</td>
<td>0.514 (mg kg(^{-1}))</td>
<td>[52,53]</td>
</tr>
<tr>
<td></td>
<td>Ofloxacin</td>
<td>Beijing, China</td>
<td>0.336 (mg kg(^{-1}))</td>
<td>[27,28]</td>
</tr>
<tr>
<td></td>
<td>Norfloxacin</td>
<td>Beijing, China</td>
<td>0.256 (mg kg(^{-1}))</td>
<td>[27]</td>
</tr>
<tr>
<td></td>
<td>Gatifloxacin</td>
<td>Beijing, China</td>
<td>0.066 (mg kg(^{-1}))</td>
<td>[27]</td>
</tr>
<tr>
<td></td>
<td>Ciprofloxacin</td>
<td>USA</td>
<td>40.81 (mg kg(^{-1}))</td>
<td>[54]</td>
</tr>
<tr>
<td></td>
<td>Ofloxacin</td>
<td>USA</td>
<td>58.1 (mg kg(^{-1}))</td>
<td>[54]</td>
</tr>
<tr>
<td>Hospital wastewater</td>
<td>Ciprofloxacin</td>
<td>Ghana</td>
<td>15.733</td>
<td>[34]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>31,000</td>
<td>[55]</td>
</tr>
<tr>
<td></td>
<td>Ofloxacin</td>
<td>Spain</td>
<td>13</td>
<td>[56]</td>
</tr>
<tr>
<td></td>
<td>Norfloxacin</td>
<td>Taiwan, Australia, China</td>
<td>1.15- 6.06</td>
<td>[57,58]</td>
</tr>
<tr>
<td></td>
<td>Ofloxacin</td>
<td>Hyderabad, India</td>
<td>160</td>
<td>[55,59]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spain</td>
<td>13</td>
<td>[56]</td>
</tr>
<tr>
<td></td>
<td>Norfloxacin</td>
<td>Iraq</td>
<td>450</td>
<td>[60]</td>
</tr>
<tr>
<td>Surface water</td>
<td>Ciprofloxacin</td>
<td>Ghana</td>
<td>1.168</td>
<td>[34]</td>
</tr>
<tr>
<td></td>
<td>Enrofloxacin</td>
<td>China</td>
<td>4.24</td>
<td>[61]</td>
</tr>
<tr>
<td></td>
<td>Nalidixic acid</td>
<td>South Africa</td>
<td>23</td>
<td>[51]</td>
</tr>
<tr>
<td></td>
<td>Ciprofloxacin</td>
<td>South Africa</td>
<td>14</td>
<td>[51]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>South Africa</td>
<td>27.1</td>
<td>[51]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>New York</td>
<td>5.6</td>
<td>[62,63]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nigeria</td>
<td>0.9</td>
<td>[64]</td>
</tr>
<tr>
<td></td>
<td>Ofloxacin</td>
<td>Spain, Italy</td>
<td>8.77</td>
<td>[55,56,65]</td>
</tr>
<tr>
<td>Run-off</td>
<td>Levofloxacin</td>
<td>Beijing, China</td>
<td>0.213</td>
<td>[66,67]</td>
</tr>
<tr>
<td></td>
<td>Norfloxacin</td>
<td>Chongqing, China</td>
<td>0.0924</td>
<td>[67,68]</td>
</tr>
<tr>
<td></td>
<td>Moxifloxacin</td>
<td>China</td>
<td>0.64</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ofloxacin</td>
<td></td>
<td>11.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ofloxacin</td>
<td>Vietnam</td>
<td>17.7</td>
<td>[69]</td>
</tr>
</tbody>
</table>
Soil, plants and manure

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>Country</th>
<th>Concentration</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norfloxacin</td>
<td>India</td>
<td>16.4</td>
<td>[9]</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enrofloxacin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ofloxacin</td>
<td>Taiwan</td>
<td>11.8</td>
<td>[66]</td>
</tr>
<tr>
<td>Enrofloxacin</td>
<td>Vietnam</td>
<td>1.2</td>
<td>[70]</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>China</td>
<td>29,590 μg kg(^{-1})</td>
<td>[71,72]</td>
</tr>
<tr>
<td></td>
<td>Japan</td>
<td>12 μg kg(^{-1})</td>
<td>[72,73]</td>
</tr>
<tr>
<td>Enrofloxacin</td>
<td>USA</td>
<td>46,700 μg kg(^{-1})</td>
<td>[72,74]</td>
</tr>
<tr>
<td>Norfloxacin</td>
<td>USA</td>
<td>2,760 μg kg(^{-1})</td>
<td>[63,75]</td>
</tr>
<tr>
<td>Levofloxacin</td>
<td>China</td>
<td>5,530 μg kg(^{-1})</td>
<td>[2,76]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>manure</td>
<td></td>
</tr>
<tr>
<td>Enrofloxacin</td>
<td>China</td>
<td>15 mg kg(^{-1})</td>
<td>[62,77,78]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>chicken feces</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>33 mg kg(^{-1})</td>
<td>pig manure</td>
</tr>
<tr>
<td></td>
<td>Turkey</td>
<td>70 μg kg(^{-1})</td>
<td>cattle manure</td>
</tr>
<tr>
<td>Ofloxacin</td>
<td>China</td>
<td>16 μg kg(^{-1})</td>
<td>[76]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>livestock farms</td>
<td></td>
</tr>
<tr>
<td>Norfloxacin</td>
<td></td>
<td>4.4 μg kg(^{-1})</td>
<td>[40]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.8 ng g(^{-1})</td>
<td>carrot</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21.8 μg kg(^{-1})</td>
<td>cabbage</td>
</tr>
<tr>
<td>Ofloxacin</td>
<td></td>
<td>3.60 g g(^{-1})</td>
<td>celery</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.2.3. **Persistence of FQs in the environment**

The persistence of FQ in the environment is of high significance owing to its extremely slow biotic and abiotic degradation in soil and water. The degradation is mainly governed by the pH of the soil and water matrices. Various functional groups in FQs result in high solubility of FQ species over a wide environmental pH range. For example, FQs contain more than one basic/acidic groups (e.g. -OH, -NH\(_2\) and -COOH) that can persist in soil and water via existing in both charged species as tabulated in Table 2. Transformed species and acidic/basic sites of some predominantly found FQs are also tabulated. Transformation of FQs with the alterations in solution pH makes these antibiotics equally prevalent than their parent counterpart when present in the environment viz., in surface water and groundwater [7,26,43,80].
Numerous studies have demonstrated that FQs are not readily biodegradable in the environment [9,29,81]. EFX and CPX, which are the most prominent FQ antibiotics, can get slowly degraded by brown-rot fungi in the environment. Manganese oxide in the soil facilitates FQ degradation abiotically by providing an interface for the oxidation reactions [82,83]. The piperazine moiety of FQ can be transformed through differently charged species through the process of dealkylation and hydroxylation from the hydrated media. This binds on environmental particles such as soil and sediments and thus, the FQ ring remains intact and the active ingredient remains persistent in the soil [84].

Accumulation of FQs in sewage sludge is also of particular concern because of the dynamic physicochemical nature of the sludge and its further application to soil as a fertilizer [31]. Traces of FQs upon accumulation in the closed sludge system ultimately leads to direct exposure to the soil environment. [30–32,85]. With very low concentrations of FQ antibiotics present in the closed system over a long period, bacteria develop resistance against these compounds. For example, norfloxacin in the sludge exhibited a residence time of about 4-8 days [9].

Numerous adsorption studies over the past few years have been based on the removal of antibiotics by non-engineered and engineered carbon-based adsorbents for enhanced sorption for mitigating a wider range of emerging pollutants. However, details of the mechanistic pathways of adsorbents for FQ antibiotic removal are limited. Thus, a dedicated review on adsorptive removal of FQ-antibiotics necessitates for the identification of merits and demerits of each adsorbents based on performance through revisiting the literatures systematically and at a critical approach.
Table 2: Physicochemical characteristics of commonly found FQs with their transformed species

<table>
<thead>
<tr>
<th>Physicochemical properties</th>
<th>Structures and zwitterionic state</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ciprofloxacin</td>
<td>![Structure of Ciprofloxacin]</td>
<td>[25,86]</td>
</tr>
<tr>
<td>$C_{17}H_{18}FN_3O_3$</td>
<td>Log K_{ow}: -1.70</td>
<td></td>
</tr>
<tr>
<td>Molecular weight: 331.35 g mol$^{-1}$</td>
<td>Solubility: 3.46 mg mL$^{-1}$</td>
<td></td>
</tr>
<tr>
<td>Vapor pressure: 1.3x10$^{-13}$ mm Hg</td>
<td>Log K_{ow}: 3.48</td>
<td></td>
</tr>
<tr>
<td>Enrofloxacin</td>
<td>![Structure of Enrofloxacin]</td>
<td>[44,86,87]</td>
</tr>
<tr>
<td>$C_{19}H_{22}FN_3O_3$</td>
<td>Log K_{ow}: 3.48</td>
<td></td>
</tr>
<tr>
<td>Molecular weight: 359.40 g mol$^{-1}$</td>
<td>Solubility: 0.146 mg mL$^{-1}$</td>
<td></td>
</tr>
<tr>
<td>Vapor pressure: 1.89x10$^{-13}$ mm Hg</td>
<td>Log K_{ow}: 3.48</td>
<td></td>
</tr>
<tr>
<td>Drug</td>
<td>Molecular Formula</td>
<td>Molecular Weight (g mol(^{-1}))</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Ofloxacain</td>
<td>(\text{C}{18}\text{H}{20}\text{FN}_3\text{O}_4)</td>
<td>361.37</td>
</tr>
<tr>
<td>Norfloxacin</td>
<td>(\text{C}{16}\text{H}{18}\text{FN}_3\text{O}_3)</td>
<td>359.396</td>
</tr>
</tbody>
</table>
3. Adsorption of FQs by carbon-based, tailored and other material adsorbent

Tested FQ adsorbents most often include activated carbon, graphene, biochar, carbon nanotubes (CNTs), iron-based adsorbents, and clay-based adsorbents. However, knowledge on the functional relationship between these commonly studied adsorbents and the actual environmental applications is scarce especially in terms of their distinct performances.

The performance of an adsorbent is generally assessed by the equilibrium or maximum adsorption capacity. Since, the experimental conditions such as initial adsorbate concentration, the dosage of adsorbents used, and the contact time between the adsorbate and adsorbent are varied widely among published studies, it is technically more apt to use partition coefficient for the comparison among adsorbent performances. Moreover, partition coefficient gives a normalized value derived from both the equilibrium adsorbate concentration and adsorption capacity, and thus provides an actual performance of the adsorbent that further enables fair comparisons among adsorbents, despite a wide range of initial experimental conditions [90,91].

The partition coefficient is derived from the ratio of the maximum adsorption capacity to the equilibrium adsorbate concentration in the media [90](Eq. 1).

\[
\text{Partition coefficient} = \frac{q_e}{C_e}
\]

where, \(q_e\) is the equilibrium adsorption capacity, and \(C_e\) is the equilibrium adsorbate concentration.

Studies on the adsorption of FQ in aqueous solutions typically examine the adsorption kinetics and isotherms to understand the performance of the adsorbent. The most widely used kinetic model has been the pseudo second-order model, which satisfies chemisorption mechanisms for FQ uptake by various adsorbents. Both Langmuir and Freundlich isotherm models were reported to fit FQ adsorption data (Table 3). Multi-layer adsorption (Freundlich model) of FQ appeared to be the more frequently reported mechanism than the mono-layer adsorption
(Langmuir model) mechanism. The sections below assess the performance of various tailored and natural adsorbents in relation to their physicochemical characteristics and prevailing adsorbate concentrations through the use of partition coefficients.

3.1. Carbon-based adsorbents for FQs removal

Several carbon-based adsorbents have been assessed for the removal of FQs from aqueous media. Adsorptive removal of FQs onto carbon-based adsorbents largely depends on the surface porosity of the adsorbent, tunable chemistry of functional groups on the adsorbents, the specific surface area and dosage of the adsorbent. Prominent interactions for FQ removal by these adsorbents include surface/pore diffusion, electrostatic interaction, van der Waals forces, hydrogen bonding and π-π electron donor-acceptor (EDA) interactions [21,92,93]. Based on the source of carbon precursors and structure of the final products, carbon-based adsorbents can be classified into four groups: activated carbon (AC), biochar, carbon nanotubes (CNTs), graphene, and graphene oxides.

3.1.1. Activated carbon

Activated carbon (AC) is used in a wide range of applications including water and wastewater treatment. It has an amorphous structure with a highly porous interior and large surface area. The pore structures are tunable through various surface modifications, and that is why AC has been widely used for the remediation of antibiotics in wastewater [15,94]. Owing to a planar molecular configuration, FQ antibiotics can enter into the pores of AC and move sideways reaching a high number of adsorptive sites [95].

Activated carbons, developed from different precursors, have been assessed for their removal capacities of FQ antibiotics. AC derived from root-based biomass (e.g., *Eichhornia crassipes*) showed high adsorptive removal of CPX (145 mg g⁻¹) and norfloxacin (NFX) (135.1 mg g⁻¹)
Adsorption equilibrium was reached in 8 h obeying the pseudo-first and pseudo-second-order kinetics for CPX and NFX, respectively. [96]. Similarly, CPX showed a strong affinity to a commercial-grade AC under acidic solution pH [97]. Due to the speciation of CPX, negatively charged carboxylic groups co-exist and the surface charge of activated carbon, which is positive at acidic pHs, provided a high CPX removal capacity of 131.14 mg g\(^{-1}\). Kinetics and isotherm experiments indicated significant removal of both CPX and NFX by commercial-grade AC [98]. Analytical grade AC offered favorable adsorption for CPX based on a partition coefficient of 12.7 [99]. Although the long-root *Eichhornia crassipes* AC had the highest surface area, its performance for the removal of ciprofloxacin and norfloxacin was found to be the lowest, based on the partition coefficient [96] (Table 3).

The surface of AC contains carboxylic acid functional groups that are negatively charged at pH\(>\)\(pH_{PZC}\), and thus, cationic FQ moiety can adsorb with ease on the negatively charged AC. Studies with AC showed chemisorption interactions with FQ. For example, Chowdhury et al. (2019) studied the efficacy of AC derived from industrial paper mill sludge for the sorption of enrofloxacin [100]. The adsorption process was exothermic in nature, and followed the Langmuir isotherm model and pseudo-second-order kinetic model, both suggesting chemical adsorption. The adsorption of FQ on AC could also occur on the outer surface via electrostatic forces. Ciprofloxacin, danofloxacin, and enrofloxacin interact with the AC electrostatically based on the pH of the ambient environment ranging between 6.09 and 9.43 of \(pK_a\) (Table 3).

Adsorption of FQ on AC takes place at a slightly acidic pH (in the range of 5-7) with the interaction of cationic and zwitterionic species of FQs in aqueous media. Interestingly, as reported by Kong et al. (2017) [101], with the increase in the initial concentration of OFX, the adsorption was favorable during the initial loading of the adsorbate on the adsorbent as it attained equilibrium at a much lower concentration of OFX [101]. In another study, a lower
initial concentration showed favorable adsorption and reached a saturation up to equilibrium concentration of 14 mg L\(^{-1}\) for the commercial-grade AC (NC01-125) for the removal of CPX with an optimal adsorption capacity of 230 mg g\(^{-1}\) [102]. This is further supported by the partition coefficient (PC) values obtained for both the studies; 0.717 [101] and 1.179 L g\(^{-1}\) [102], indicating that only the larger surface area does not facilitate the performance of the adsorbents. Despite the amorphous nature of AC and the lack of diverse functional groups for the uptake of antibiotics, adsorbing FQ antibiotics is scarce. However, as reported by Xiang et al. (2019), AC with an enhanced specific surface area (487 m\(^2\) g\(^{-1}\)) shows the maximum adsorption capacity for CPX adsorption. Comparatively, the initial conditions for the adsorption studies are not consistent with the rest of the studies reported in the literature [92]. Therefore, systematic studies are needed, in which the initial loading concentration remains the same for one kind of FQ, thus enabling the adsorption affinity study clearer, which is difficult to achieve otherwise, with the other FQ antibiotics. Figure 3 demonstrates the mechanisms involved for the removal of FQ antibiotics by carbon-based adsorbents. Ofloxacin, norfloxacin and ciprofloxacin were used to explain the predominant mechanism.

Regenerability is a crucial property of an adsorbent from an economical point of view and enables recovery of adsorbents for reuse. Solvent extraction, microwave radiation, chemical and catalytic decomposition are some of the regeneration processes, apart from thermal treatment. Thermal treatment with an inert atmosphere is the usual procedure to recover the adsorbent surface to improve the porosity of the adsorbents. Almost 60% of the adsorbent were restored through thermal regeneration after two saturation-regeneration cycles. Destruction of the porosity and the textural alterations in the AC were observed when heated to more than 600 °C, whereas optimum temperature was maintained between 400 and 600 °C where the surface remained intact up to two cycles [10,103]. Elution studies were conducted for norfloxacin and ciprofloxacin using ethanol, methanol and acetone for adsorption-desorption cycles and
indicated that after five eluents cycles, the performance was high and the acetone exhibited the highest performance efficiency compared to ethanol and methanol [89,104]. About 80% of adsorption capacity can be maintained with five consecutive regeneration cycles. There are only a few studies that explain the desorption mechanism and thus further understanding of the desorption mechanism through thermal regeneration and chemically-assisted regeneration, needs to be better identified through the use of the efficient desorption agent [105–107].
Table 3: FQ adsorption performances, characteristics, mechanisms of activated carbon-based adsorbents with and without composite material(s).

<table>
<thead>
<tr>
<th>Type</th>
<th>Composite</th>
<th>Quinolone</th>
<th>pH_{PZC}</th>
<th>Optimal pH</th>
<th>Q_{max} (mg g^{-1})</th>
<th>PC (L g^{-1})</th>
<th>Specific Surface Area (m^{2} g^{-1})</th>
<th>Best fitted model</th>
<th>Mechanism</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waste tires AC</td>
<td>Polyanalcohol and activation via hydrogen peroxide</td>
<td>CPX</td>
<td>6.7</td>
<td>6.5</td>
<td>93 99 112</td>
<td>0.338 0.360 0.410</td>
<td>-</td>
<td>-</td>
<td>Electrostatic interaction</td>
<td>[104]</td>
</tr>
<tr>
<td>Paper sludge AC</td>
<td>Pristine</td>
<td>EFX</td>
<td>5.7</td>
<td>5.4</td>
<td>44</td>
<td>0.247</td>
<td>-</td>
<td>Langmuir isotherm</td>
<td>Monolayer interactions</td>
<td>[100]</td>
</tr>
<tr>
<td>Luffa fibers AC</td>
<td>Pristine Activation via H_{3}PO_{4}</td>
<td>OFX</td>
<td>4.3</td>
<td>6</td>
<td>132</td>
<td>0.717</td>
<td>-</td>
<td>-</td>
<td>Freundlich isotherm Pseudo-second order kinetics</td>
<td>[101]</td>
</tr>
<tr>
<td>AC (commercial grade)</td>
<td>Pristine Activation via KOH</td>
<td>CPX</td>
<td>5.9</td>
<td>4.7</td>
<td>-</td>
<td>-</td>
<td>852</td>
<td>-</td>
<td>Pseudo-second order and intraparticle diffusion model with Langmuir isotherm</td>
<td>[108]</td>
</tr>
<tr>
<td>AC (NC01-125)</td>
<td>Pristine</td>
<td>CPX</td>
<td>-</td>
<td>5</td>
<td>230</td>
<td>1.179</td>
<td>1231</td>
<td>Langmuir Freundlich isotherm</td>
<td>Electrostatic interactions</td>
<td>[102]</td>
</tr>
<tr>
<td></td>
<td>Pristine</td>
<td>CPX</td>
<td>-</td>
<td>7</td>
<td>140</td>
<td>12.7</td>
<td>-</td>
<td>Freundlich isotherm</td>
<td>Hydrophilic interaction with π-π interactions</td>
<td>[99]</td>
</tr>
<tr>
<td>AC (analytical grade)</td>
<td></td>
<td></td>
<td></td>
<td>Pseudo-first and second order kinetic models</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pristine Activation via KOH</td>
<td>CPX</td>
<td>-</td>
<td>6.2</td>
<td>0.26 mmol g(^{-1})</td>
<td>1075</td>
<td>Freundlich Langmuir isotherm; pseudo-first and pseudo-second order models</td>
<td>(\pi-\pi) electron donor-accepter</td>
<td>[109]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pristine</td>
<td>CPX</td>
<td>-</td>
<td>5</td>
<td>69.4</td>
<td>8.6</td>
<td>990</td>
<td>Pseudo-second order kinetics model</td>
<td>Electrostatic interactions</td>
<td>[110]</td>
<td></td>
</tr>
</tbody>
</table>

A significant number of studies have focused on removing FQs by biochar (BC). The application of BC for the removal of FQ-based antibiotics has been proven challenging because of FQ speciation in the environmental matrices [111]. For the majority of adsorbents used for FQ adsorption, adsorption affinity is favorable within a limited range of solution pH and/or the adsorption decreases with the increase in the negative surfaces of the sorbents with increasing pH. These shortcomings can be resolved by applying BC as a multi-functionality sorbent [112,113]. A thermally synthesized reed straw BC composite with hematite and pyrite was able to remove NFX with the adsorption capacity of 345 mg g\(^{-1}\), which is 2-fold higher than that of the pristine BC suggesting a strong multi-layer adsorptive removal with a good fit with the Freundlich model. Favorable removal was observed at pH 6 to 7 with the pH\(_{PZC}\) at 4 [114]. Similar pH dependency was observed for BC derived from camphor leaves with maximum ciprofloxacin adsorption at pH 5.5-6.0 with pH\(_{PZC}\) at 3.5 [115]. Table 4 summarizes the adsorptive removal of FQ by BC generated from different sources and under different pyrolyzing conditions.

Biochar, ideally, has variable adsorption capacity for organic pollutants because of its heterogeneity in functional groups on the surface. Multi-layer adsorption with electrostatic interactions of hematite-BC composite resulted in NFX adsorption capacity of 325 mg g\(^{-1}\) and a PC value of 11.61 L g\(^{-1}\) [17]. BC derived from cattails containing porous carbon sheets for the remediation of LVX was studied by Yang et al. (2020) [116]. The maximum adsorption capacity was observed for cattail BC produced from the highest temperature (650 \(^{\circ}\)C) at 754.12 mg g\(^{-1}\) [116]. Chemically stable municipal solid waste BC had a maximum CPX adsorption capacity of 286.6 mg g\(^{-1}\), which was about 6-fold higher than those of other BC adsorbents with comparable PCs of around 2.0 L g\(^{-1}\).
Biochar with its diverse functionalities contains oxygen-containing groups such as the carboxyl (-COOH), hydroxyl (-OH), and arene (such as benzene-rings) groups, which are vital for FQ uptake [117–119]. At increased pyrolysis temperatures (up to 500 °C), aromaticity increases accompanied by loss of hydroxyl and carboxyl containing groups. This enables the presence of electron donor and electron acceptor groups on the adsorbent surface, further interacting with the like portions of the FQ antibiotics [120] (Figure 3).

Application of BC produced from vinasse waste for the quinolone decontamination is yet another viable approach. Vinasse waste was treated with co-precipitated Fe and Mn and then pyrolyzed, forming manganese ferrite modified biochar (FMB), which was examined for the adsorption of CPX and pefloxacin (PFX) [121]. At neutral pH, the highest adsorption capacity was 146 mg g$^{-1}$ which might be attributed to the hydrophobic nature of the adsorbent at the near-neutral pH conditions, and this, in turn, showed a positive effect on the decontamination of PFX and CPX [18,122].

In another study, the maximum CPX adsorption capacity of cassava-based BC (produced at 650 °C), was 449.40 mg g$^{-1}$. However, the adsorption capacity of the same BC produced at a lower pyrolysis temperature (400 °C) decreased to 2-fold [115]. More interestingly, Hu et al. (2019) demonstrated that the removal of CPX from aqueous solution was more efficient with the ZnO-BC composite than with the original BC derived from camphor leaves, prepared at the same temperature (500 °C). Moreover, a maximum CPX adsorption capacity (238 mg g$^{-1}$) was reported for BC generated from used tea leaves. The best fits were obtained using Langmuir isotherm and pseudo-second-order kinetic model, suggesting the involvements of monolayer and chemisorption interactions [117]. Modified BC produced at a higher temperature (> 500 °C) tends to offer maximum organic removal. Thus, for choosing the appropriate adsorbent for remediating different FQ, extensive studies needs to be carried out.
Shengze et al. (2016) investigated the desorption rates for levofloxacin from rice husk and wood chip BC (previously used for levofloxacin adsorption) in batch experiments. The result obtained in this study showed that levofloxacin remained on the BC through intra-particle diffusion for higher pyrolysis temperature of BC [123]. Peng et al. (2018) studied the desorption behavior of BC derived from Cassava produced over a wide temperature range of 350-650 °C and higher desorption rates were observed for BC at higher pyrolysis temperatures (650 °C) due to the higher specific surface area and larger micro-pore volume [124]. Desorption facilitates during the first few time intervals when the adsorbates are loaded and the behavior varies when pyrolysis temperatures are altered. It is due to these contributory factors that the solute destabilizes the adsorbent surface and elutes faster, thereby, giving higher regeneration capacity. Moreover, desorption is inversely proportional to the specific surface area, i.e., more regeneration cycle for the same BC having lesser specific surface area. Therefore, while selecting an appropriate BC for remediating particular FQ from water, pyrolysis temperature must be considered for BC synthesis. Thus, batch adsorption studies need to be further extended for each FQ antibiotics onto varied BC-types originating from different sources and pyrolysis temperatures at which BC is being synthesized.
Table 4: FQ adsorption performances, characteristics, mechanisms of biochar-adsorbents with and without composite material(s)

<table>
<thead>
<tr>
<th>Biochar type</th>
<th>Pyrolysis conditions</th>
<th>Composite</th>
<th>FQ</th>
<th>pH<sub>pzc</sub></th>
<th>Optimal pH</th>
<th>Qmax (mg g<sup>-1</sup>)</th>
<th>Specific Surface area (m<sup>2</sup> g<sup>-1</sup>)</th>
<th>Best fitted model</th>
<th>Mechanisms postulated</th>
<th>PC (L g<sup>-1</sup>)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reed Straw</td>
<td>500 °C 5 hours</td>
<td>Hematite and pyrite</td>
<td>NFX</td>
<td>4</td>
<td>7</td>
<td>325</td>
<td>160 55</td>
<td>Freundlich isotherm</td>
<td>Multi-layer with electrostatic interactions</td>
<td>11.61</td>
<td>[114]</td>
</tr>
<tr>
<td>Rice straw</td>
<td></td>
<td>Molybdenum disulfide (MoS<sub>2</sub>)</td>
<td>CPX</td>
<td>3.4</td>
<td>6-8</td>
<td>52.75</td>
<td>610.4</td>
<td>Freundlich isotherm and pseudo-second order</td>
<td>Chemisorption and π-π electron donor interactions</td>
<td>4.34</td>
<td>[125]</td>
</tr>
<tr>
<td>Sugarcane bagasse and ore mix</td>
<td>800 °C</td>
<td>Ferromanganese</td>
<td>LVX</td>
<td>-</td>
<td>5</td>
<td>212</td>
<td></td>
<td>Freundlich isotherm and pseudo-second order interactions</td>
<td>π-π stacking interactions</td>
<td>5.3</td>
<td>[121]</td>
</tr>
<tr>
<td>Potato leaf and stem</td>
<td>500 °C 6 hours</td>
<td>Magnetic composite with humic acid</td>
<td>CPX</td>
<td>-</td>
<td>7</td>
<td>12</td>
<td>98 (pristine)</td>
<td>Langmuir isotherm with pseudo-second order kinetics</td>
<td>Langmuir isotherm with pseudo-second order kinetics</td>
<td>0.5 0.33 0.416</td>
<td>[126]</td>
</tr>
<tr>
<td>Camphor leaves</td>
<td>500 °C 650 °C 800 °C 2 hours</td>
<td>Magnetic ZnO composite</td>
<td>CPX</td>
<td>3.4</td>
<td>5.5</td>
<td>500</td>
<td>915</td>
<td>Langmuir isotherm and pseudo-second order - order kinetic</td>
<td>π-π stacking interactions with electrostatic interactions</td>
<td>22.7</td>
<td>[115]</td>
</tr>
<tr>
<td>Pomelo grapefruit</td>
<td>450 °C 30 minutes</td>
<td>Chitosan and hydrogel beads</td>
<td>CPX</td>
<td>-</td>
<td>76</td>
<td>76</td>
<td>Langmuir isotherm and Pseudo-second</td>
<td>Monolayer heterogenic and hydrogen bonding</td>
<td>4.22</td>
<td>[127]</td>
<td></td>
</tr>
<tr>
<td>Material</td>
<td>Temperature</td>
<td>Treatment/Condition</td>
<td>Adsorbent</td>
<td>Adsorptive Capacity</td>
<td>Adsorption Isotherm</td>
<td>Kinetics</td>
<td>References</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------</td>
<td>---------------------</td>
<td>------------</td>
<td>--------------------</td>
<td>---------------------</td>
<td>----------</td>
<td>------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cassava</td>
<td>500 °C</td>
<td>Pristine with KOH activation</td>
<td>NFX</td>
<td>3</td>
<td>4-7</td>
<td>287</td>
<td>128</td>
<td>π-π EDA interactions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Municipal solid waste</td>
<td>450 °C</td>
<td>Bentonite-biochar composite (450 °C pyrolyzed municipal solid waste)</td>
<td>CPX</td>
<td>5.7</td>
<td>6</td>
<td>286.6</td>
<td>7</td>
<td>Elovich kinetics model and hills isotherm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Used tea leaves</td>
<td>550 °C</td>
<td>Pristine</td>
<td>CPX</td>
<td>3.05</td>
<td>6</td>
<td>238</td>
<td>π-π interactions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cassava</td>
<td>700 °C</td>
<td>Pristine</td>
<td>OFX</td>
<td>-</td>
<td>6</td>
<td>-</td>
<td>Freundlich isotherm heterogenous adsorption</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cattail</td>
<td>900 °C (max adsorption) with acid activation</td>
<td>Pristine</td>
<td>LVX</td>
<td>9.01</td>
<td>5</td>
<td>754</td>
<td>2240</td>
<td>π-π EDA interaction, pore filling, electrostatic interactions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vinasse</td>
<td>800 °C</td>
<td>Activated compositied with co-precipitated Fe and Mn</td>
<td>PFX CFX</td>
<td>7.97 8.31</td>
<td>5</td>
<td>253</td>
<td>133</td>
<td>Pseudo-second-order kinetics and Freundlich model</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Magnetic and electrostatic interactions</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

References:
[128] [17] [116] [18]
3.1.3. Graphene-based adsorbents

Graphene is a highly electron-rich and hydrophobic adsorbent, and has a large surface area, making it appropriate for remediating antibiotics from water [129]. Oxygen-containing functional groups on graphene including hydroxyl, carboxyl, and carbonyl-groups have proven to be a crucial characteristic for organic contaminant removal from aqueous media [92].

Graphene-oxide assembled with chitin was tested for CPX adsorption. Electrostatic attraction and mono-layer interaction between CPX and graphene-oxide, were the predominant interaction along with the surface functional groups of composites which ultimately contributed to a higher PC of 23.78 L g\(^{-1}\) and at optimum adsorption capacity of 282 mg g\(^{-1}\). Furthermore, the removal of CPX from aqueous media by pristine graphene oxide, synthesized by a co-precipitation method, was experimented by Chen et al. (2015) [130]. An adsorption capacity of 379 mg g\(^{-1}\) with a PC of 44.27 L g\(^{-1}\) was obtained. The electrostatic attraction was considered as the dominating mechanism with a strong dependency on the solution pH and the speciation.

CPX adsorption on graphene oxide was high at pH 2 with the carboxylic and amine groups protonated thereby attracting CPX to the graphene oxide surface through hydrogen bonds [131,132]. The effect of ionic strength on CPX adsorption onto graphene oxide was studied by Chen et al. (2015) [130]. Both CaCl\(_2\) and NaCl have been studied and it was found that as the ionic strength increased, the sorption of CPX declined further confirming the electrostatic attraction mechanism. The higher concentration of Ca\(^{2+}\) in the solution also suppressed the CPX sorption, which was explained through the complexation of Ca\(^{2+}\) with the GO surface, thereby declining the viable sorption sites for CPX [130,133]. Among different types of graphene oxide studied, pristine graphene oxide showed the highest efficiency for the removal of CPX and an adsorption capacity of 379 mg g\(^{-1}\) and a PC value of 44.27 L g\(^{-1}\) were reported.
(Table 5). As summarized in Table 5, a significantly high surface area for magnetic modification of graphene oxide was observed compared to its pristine counterpart and was more suitable for the removal of CPX. Owing to the crystalline nature of graphene (Figure 3) and significantly higher specific surface area than BC and AC, there have been studies on its potential as an adsorbent for FQs [134,135]. For these studies, details on surface charge (pH\text{PZC}) were not enough to elucidate the mechanisms that accounted for the high adsorption. Thus, further comparison between different graphene-based adsorbents and their modifications on the performances for the removal of FQ antibiotics was not possible. Graphene offers a rich structural distinction compared with other carbon-based adsorbents and a tunable pore, thus enabling the modification and uptake of FQs, much easier. Yet conclusive information on the mechanism of adsorption with varied graphene structures and FQ antibiotics is scarce and thus, more in-depth studies are needed.

Figure 3: Predominant interactions of FQ-antibiotics with biochar, activated carbon and graphene-based adsorbents
Table 5: FQ adsorption performances, characteristics, mechanisms of graphene-based adsorbents and composite material(s)

<table>
<thead>
<tr>
<th>Graphene-based</th>
<th>Modification</th>
<th>Quinolone</th>
<th>pH_{zpc}</th>
<th>Optimal pH</th>
<th>Q_{max} (mg g$^{-1}$)</th>
<th>PC (L g$^{-1}$)</th>
<th>Specific Surface area (m2 g$^{-1}$)</th>
<th>Best fitted model</th>
<th>Mechanisms postulated</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graphene oxide</td>
<td>Chitin</td>
<td>CPX</td>
<td>5.5</td>
<td>4</td>
<td>282</td>
<td>23.78</td>
<td>-</td>
<td>Langmuir and Freundlich isotherm</td>
<td>Monolayer interactions and Electrostatic interaction, hydrophobic interaction via a salting out effect.</td>
<td>[136]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LVX</td>
<td>-</td>
<td>7</td>
<td>409</td>
<td>-</td>
<td>-</td>
<td>Langmuir isotherm</td>
<td>attractive electrostatic and π-π interactions form functional groups</td>
<td>[137]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CPX</td>
<td>-</td>
<td>5</td>
<td>282.9</td>
<td>12.83</td>
<td>1685.7</td>
<td>Langmuir and Freundlich isotherm with second order kinetics</td>
<td>Electrostatic interaction</td>
<td>[138]</td>
</tr>
<tr>
<td>Magnetic chitosan grafted</td>
<td>Unmodified</td>
<td>CPX</td>
<td>5.6</td>
<td>4</td>
<td>86</td>
<td>9.05</td>
<td>92</td>
<td>Freundlich and Langmuir isotherm with pseudo-first order</td>
<td>Monolayers adsorption with homogenous sites</td>
<td>[139]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LVX</td>
<td>-</td>
<td>5</td>
<td>379</td>
<td>44.27</td>
<td>-</td>
<td>Freundlich and Langmuir isotherm with pseudo-second order kinetics</td>
<td>Electrostatic interaction</td>
<td>[130]</td>
</tr>
</tbody>
</table>

CPX: Ciprofloxacin, EFX: enrofloxacin, NFX: Norfloxacin, OFX: Ofloxacin
3.1.4. Carbon nanotubes

Applications of CNTs for the adsorption of FQ antibiotics have also been examined. A study by Avcı et al. (2020) on the adsorption of CPX hydrochloride by CNTs indicated an optimum adsorption capacity of 1.75 mg g\(^{-1}\) at an initial concentration of 4 mg L\(^{-1}\) and removal of about 90% [140]. Heterogenous surficial adsorption was suggested by the Freundlich model being a good fit, whereas an agreement between the pseudo-second-order model and kinetic data indicated a chemisorption mechanism [19,140]. A study on CPX adsorption onto CNTs indicated that the double-walled CNTs provided a faster adsorption rate [141] and a higher PC, 46.36 L g\(^{-1}\), compared to single-walled CNTs with a PC of 16.56 L g\(^{-1}\) [142] (Table 6). The electronegative entities in CPX, ofloxacin (OFX) and norfloxacin (NFX) compete with the electron-deficient entity of CNTs and enhance the removal of these FQs in aqueous media.

Solution pH influenced the FQ removal and in the case of CNTs with a consistently charged surface, FQ adsorption was more prominent from slightly acidic pH to neutral pH via electrostatic attraction and EDA interactions. For norfloxacin, single-walled CNTs (SWCNTs) exhibited the highest performance (PC value of 46.65 L g\(^{-1}\)) as shown in Table 6. Hydrolyzed multi-walled CNTs (MWCNTs) were tested for OFX and NFX adsorption and the results revealed that both were adsorbed on the CNTs at a similar rate and isotherm data fitted both Langmuir and Freundlich models with EDA as the main adsorption mechanism [143]. However, practical applications of CNTs for the remediation of FQ antibiotics remain challenging because of their higher manufacturing costs and the consequences it pertains due to its high dispersion in different aqueous media [144]. Hence, future research is needed to elucidate mechanisms for its adsorption.

The agglomeration of CNTs in aqueous solutions is one of the limitations which restricts its usage for water and wastewater treatment [145,146]. This causes a reduction in the adsorption
capacity due to the hydrophobic behavior of the CNTs. Several studies have proven that surfactants can help the dispersion of CNTs to aggregate in the solution producing a stabilized suspension and with the help of sonication, CPX can easily be adsorbed on the CNTs. Thus, surfactants with sonication induced adsorption of the FQ antibiotics on CNTs generate active adsorption sites available for the antibiotics. The influence on the adsorption capacity by the surface charge of the CNTs has been studied further by inducing anionic and cationic-based surfactants in the initial solution of the CNTs [144]. The removal of FQ type antibiotics by CNTs is mostly dependent on the speciation of the antibiotics at varying pH, implying the importance of their sorption onto the charged CNTs through electrostatic binding. Overall, CNTs adsorb FQ-based antibiotics through micropore filling and π-π electron donor-acceptor complexes as predominant interactions. Surface bonding with polar entities on the FQ molecule also recurs, with the interchangeable charges on the CNT surface varying with pH. This kind of interchangeable charge-based interaction is via hydrophobic or electrostatic interactions [92,147]. Few modified CNTs showed close to 90% NFX removal, for example, hydroxylation-modification of SWCNTs enhanced adsorption capacity as compared to the pristine SWCNTs [148]. Figure 4 depicts the treatments and modification of the CNTs with the predominant mechanisms demonstrated.

Another significant observation from the CNTs-based studies for the removal of FQs is that the feed concentrations used in the synthetic experiments (10-20 mg L⁻¹) [143] are much higher than the environmentally occurring concentrations (as low as ng L⁻¹ to µg L⁻¹). Based on the mentioned studies, higher concentrations are taken in the synthetic experiments to compensate for any variations of concentration in the environment concentration. However, there is an immediate need for the case of mitigating FQ from natural water where the concentrations of FQs are comparatively lower than that of a synthetic solution used in the laboratory, to further optimize the dosage of CNTs for actual contaminated water. Therefore, more in-depth studies
are suggested for the successful practical application of CNTs for FQ removal. Moreover, the excruciating high cost of CNTs and the capital cost to scale up CNTs-based systems for further pilot research and demonstration cannot be overlooked as it requires much higher dosage [149].

Figure 4: Predominant interactions of FQ-antibiotics with carbon nanotubes
Table 6: FQ adsorption performances, characteristics, mechanisms of pristine and modified carbon nanotubes-based adsorbents

<table>
<thead>
<tr>
<th>Type</th>
<th>Modification</th>
<th>Quinolone</th>
<th>Optimal pH</th>
<th>Qm (mg g⁻¹)</th>
<th>PC (L g⁻¹)</th>
<th>Mechanisms postulated</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWCNT</td>
<td>Pristine</td>
<td>CPX</td>
<td>7</td>
<td>724</td>
<td>39.2</td>
<td>Hydrophobic π–π interactions</td>
<td>[141]</td>
</tr>
<tr>
<td>Double walled CNTs</td>
<td>Pristine</td>
<td>CPX</td>
<td>4</td>
<td>689</td>
<td>46.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MWCNT</td>
<td>Pristine</td>
<td>CPX</td>
<td>4–7</td>
<td>475</td>
<td>25.51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MWCNT</td>
<td>Hydrolyzed</td>
<td>OFX</td>
<td>7</td>
<td>15.3</td>
<td>-</td>
<td>Langmuir and Freundlich isotherm π- π EDA interaction</td>
<td>[143]</td>
</tr>
<tr>
<td>MWCNT</td>
<td>Pristine</td>
<td>CPX</td>
<td>5</td>
<td>1.74</td>
<td>0.217</td>
<td>Freundlich isotherm and pseudo-second order kinetics chemisorption model</td>
<td>[140]</td>
</tr>
<tr>
<td>SWCNT</td>
<td>Graphene oxide, hydrogels and alginate</td>
<td>CPX</td>
<td>5.4</td>
<td>181</td>
<td>46.56</td>
<td>π- π EDA interaction</td>
<td>[142]</td>
</tr>
<tr>
<td>SWCNT</td>
<td>Hydroxylated</td>
<td>NFX</td>
<td>6.7</td>
<td>181</td>
<td>22.62</td>
<td>π- π EDA interactions</td>
<td>[150]</td>
</tr>
<tr>
<td>SWCNT</td>
<td>Carbolized</td>
<td>CPX</td>
<td>7</td>
<td>-</td>
<td>-</td>
<td>Freundlich isotherm model. Electrostatic dictating hydrophobic EDA interaction</td>
<td>[151]</td>
</tr>
</tbody>
</table>

CNT: Carbon nanotube, CPX: Ciprofloxacin, EFX: enrofloxacin, NFX: Norfloxacin, OFX: Ofloxacin
3.2. Adsorptive removal of FQ antibiotic by clay and tailored adsorbents

Many researchers have used other non-carbon-based adsorbents for FQ removal from water, including magnetic nano-sorbents [114], zeolite-based adsorbents [152,153] and metal-based composite sorbent materials. The composition, shape and size of the nano-sorbents affect the mechanisms for antibiotic adsorption [154]. The electrostatic effect, hydrogen bonding, and coordination and hydrophobic effects are some of the significant interactions which have been reported between nano-based materials and antibiotics [155,156].

3.2.1. Clay adsorbents

High porosity and crystallinity are the intrinsic properties of clays that make them suitable sorbents for mitigating antibiotics in aqueous media [157,158]. Montmorillonite (MMT) and kaolinite are two clay minerals that behave differently with various contaminants due to differences in their properties, including surface charge and specific surface area. Furthermore, these clay minerals are 20 times more affordable in cost than commercially available activated carbons [132,159].

Montmorillonite, which is a smectite type swelling clay mineral, has high cation exchange capacity, and high contaminant adsorption capacity [160]. Maximum LVX adsorption on to montmorillonite occurred at pH 7 at which the zwitterionic form of LVX predominated; however, when pH was greater than 7, the adsorption declined due to repulsive forces between the adsorbate and adsorbent [161,162]. The infrared spectrum of the used adsorbent indicated carboxylic groups of the antibiotic interacting with the metal ions present in the clay mineral. The maximum LVX adsorption capacity was 57 mg g⁻¹ [162]. Higher maximum CPX adsorption capacity (128 mg g⁻¹) [163] was reported for MMT compared to kaolinite (14 mg g⁻¹) [97] and the adsorption followed the pseudo-second-order kinetics, suggesting the
involvement of multilayer adsorption (Table 7). Details presented in the above studies were not enough for the calculation of the partition coefficient in order to compare the performance of different clay-based sorbents.

Physical adsorption of both neutral and anionic species of FQs is favorable when the cation concentration in the solution increases [162] (Table 7). Solution pH also governs the adsorption as it dictates the charge of the FQs and the clay minerals. In previous studies, the optimal pH for FQ adsorption on clay minerals was at the ambient environmental pH (~5-7) [162,164]. Si-OH and Al-OH are distinct features on the exposed edges of tetrahedral and octahedral sheets of clay minerals (Figure 5). The interaction of FQ-based antibiotics with these hydroxyl groups is least understood because the charge characteristic of these surface groups can widely vary depending on the pH values of the surrounding media. This suggests a further need for research to investigate the potential of clay minerals for the removal of FQ and to test the plausibility of using them as composite materials via incorporating with bio-based or carbon-based materials. A scheme showing the governing mechanisms for the adsorption of FQ on clay minerals is presented in Figure 5.
Figure 5: Predominant interactions of FQ-antibiotics with clay minerals
3.2.2. Carbon composites

The limitations of carbon-based sorbents including its intrinsic properties such as large surface area, well-developed porous structures and richness in the surface functional groups led to the synthesis of better adsorbents for the removal of antibiotics from aqueous systems [165,166]. Limitations, as mentioned, also existed for adsorption of ionizable compounds as FQ antibiotics. Similar shortcomings are observed for pristine clay adsorbents for the FQ antibiotics removal. Purely carbon-based adsorbents or only clay were not efficient in the complete removal of FQ. These two sets of adsorbents have their unique properties – when they are combined, FQ is removed with a greater performance by exploiting characteristics of both the materials. In our previous study, we explained the simultaneous interactions of CPX with BC derived from municipal solid waste, where the interactions exist between the oxyanions present at the sorbent sites and the CPX antibiotics at pH 6. The sorption affinity increased with the incorporation of clay to the BC [17,120]. This increase is attributed to the structure of the clay incorporated in the BC lattice that enables additional interactions to take place such as intercalation interactions and electrostatic attractions.

Biochar is capable of high dispersion in aqueous media and has the capacity to stabilize foreign materials within its pores such as clays [120,167] and inorganic metal nanoparticles such as nanoscale zero-valent iron (nZVI) [118,168]. Mao et al. (2019) studied the removal of CPX using BC supported nanoscale zero-valent iron (BC-nZVI) and the results demonstrated high CPX degradation at acidic pH 3-5. Hydrogen peroxide modified BC-nZVI enhanced the degradation further [118,169]. Therefore, multi-functional carbon-based composite has been emphasized to mitigate these limitations [170,171].

Naturally occurring adsorbents like clay minerals have been used in the synthesis of composites with biochar for enhanced removal of FQ from aqueous media [172,173]. Natural attapulgite
with potato stem biochar as a composite was tested for norfloxacin removal and offered a maximum adsorption capacity of 5.24 mg g\(^{-1}\) which was almost 2-fold higher than pristine biochar [89] (Table 7). The composite examined [89] exhibited a point of zero charge about 7.55 where the surface was negatively charged at pH higher than the pH\(_{PZC}\) and positively charged at pH lower than pH\(_{PZC}\). Since clay minerals have an intrinsic permanent negative charge, their contribution to the composite could be an added advantage for the removal of FQ antibiotics from water [174,175].

Magnetic carbon-based nanocomposites have a marked advantage for their unique properties for the adsorption of FQ-based antibiotics through having a ferric core particle embedded in the interior surrounded by the carbon particles that have a wide range of functional groups [106,176]. In a study on a magnetic carbon-based nanocomposite, sodium chloride was used for investigating the effect of ionic strength on CPX removal. The maximum adsorption capacity was 90.1 mg g\(^{-1}\), and the adsorption was optimum at pH 6-9. Apart from the electrostatic interaction between the protonated and deprotonated CPX at varying pH on the biochar, electron-donor-acceptor interaction played a role in CPX removal. Fluorine in the CPX has a high electron-withdrawing effect with the benzene ring, thereby attractive to the carboxyl anion group on the adsorbent forming the \(\pi-\pi\) interactions [151,176]. CPX removal efficiency of 87% was achieved with a graphene-oxide-manganese metal-organic framework (MOF) based composite at environmental pH (~5-8) through electrostatic and hydrogen bonding, due to the lower solubility of CPX at this pH range. An optimum adsorption capacity of 1,827 mg g\(^{-1}\) was achieved whereas the PC was as high as 17.63 L g\(^{-1}\) [177].

High CPX adsorption capacities were reported for a magnetic nonporous carbon composite with cobalt; the PC was 70 L g\(^{-1}\), illustrating the best performance. Our previous work involved the adsorption of CPX using a composite consisting of biochar, derived from municipal solid...
waste and bentonite [178]. The bentonite-biochar mixture was synthesized at a mass ratio of 1:5 and pyrolyzed at 450 °C. An optimal adsorption capacity obtained from this composite was 287 mg g\(^{-1}\) which was around 70% more than the pristine biochar [17,179]. Among the different composites used for the removal of FQ antibiotics, magnetic nanoporous carbon (MNPC) showed the best performance based on the calculated PC value. Both MNPC and graphene illustrated higher performance in removing CPX with chemisorption as the main mechanism. Further studies are needed as published studies on applications of carbon-based composites for the removal of antibiotics are quite rare.

3.2.3. Other nano-based composites

Nano-based composites have been assessed for their removal ability of FQ antibiotics. Among them are clay-based, iron nano-particle, and nano-titanium oxide chitosan composites. The primary aim for the preparation of nano-based composites is to enhance the dispersibility of the parent nanomaterial and improve the specific surface area of the adsorbents with increased functionalities. Thus, enhancing a selective route for the adsorption to take place for FQ antibiotics [125,173,180].

The use of metal-organic frameworks (MOFs) has increasingly become prominent in wastewater treatment at laboratory scale studies because of the outstanding properties such as fine porosity, tunability, and large surface to volume ratio [181]. Recently, Chaturvedi et al. (2020) studied the removal of LVX from aqueous streams using iron-based MOFs (MIL-1009Fe). This adsorbent was prepared using a hydrothermal method. The adsorption of LVX obeyed the Freundlich isotherm model and pseudo-second-order kinetic models resulting in multilayer adsorption of LVX and a maximum adsorption capacity of 87 mg g\(^{-1}\). The equilibrium was reached after 8 h at a basic pH with pH\(_{\text{PZC}}\) at 3.2 [182].
Contrary to other intrinsic properties like pHPZC and pH of the solution, adsorption edge data indicated the removal potential of oxytetracycline antibiotic, a tetracycline-type with carboxylic and amide groups similar to that of the FQ molecule and with similar speciation in aqueous media, withhold the same range where the pHPZC lies in the range of 4-7 for the other nano-based composites including MOFs and nano-zerovalent iron. The dominating mechanism involved inner-sphere surface reactions with the existing amide groups present in oxytetracycline [183]. Nano-Fe$_3$O$_4$ also binds with the phenolic portion of the antibiotic, along with both the amide groups in the oxytetracycline antibiotics. The same study tested the removal of CPX from aqueous media and the results obtained were unique compared to oxytetracycline. Apart from the inner-sphere coordination interactions with the carboxylic group of the CPX, a bidentate bridging interaction was reported through the infrared spectrum [184,185]. Due to the magnetic effect on the ketonic group of CPX, it is speculated that the mechanism of adsorption is through electrostatic interactions and inner-sphere complexation [183].

Adsorption of CPX from aqueous system in the presence of nano-sized Cu$^{2+}$ by magnetic graphene oxide was studied by Li et al. (2019) [134]. The dispersion of Cu$^{2+}$ nanoparticles and graphene oxide in aqueous media enhanced the adsorption by 10-fold [134]. Iron-based nanoparticles are also used for adsorption and can be produced biologically using a plant-based material. Biosynthesized iron nanoparticles were produced by adding the extract of Euphorbia cochinensis leaves, abundantly found in Fujian, China; into FeSO$_4$ solution at 2:1 ratio by volume. Dark particles obtained were further dried and identified as iron-based nanoparticles [186]. Weng et al. (2020) studied the simultaneous decontamination of OFX and EFX using these biosynthesized iron-based nanoparticles and obtained around 92% removal of both contaminants [187].
<table>
<thead>
<tr>
<th>Adsorbents</th>
<th>Quinolone</th>
<th>pH_{pzc}</th>
<th>Optimum pH</th>
<th>Q_{max} (mg g^{-1})</th>
<th>PC (L g^{-1})</th>
<th>Specific Surface area (m^2 g^{-1})</th>
<th>Best fitted model</th>
<th>Mechanisms postulated</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clay-based Adsorbents</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MMT</td>
<td>CPX</td>
<td>-</td>
<td>7</td>
<td>128</td>
<td>5.43</td>
<td>72.2</td>
<td>Pseudo second-order kinetic and Temkin isotherm</td>
<td>Electrostatic interaction</td>
<td>[158]</td>
</tr>
<tr>
<td>Sepiolite</td>
<td>EFX</td>
<td>-</td>
<td>7.5</td>
<td></td>
<td></td>
<td>350</td>
<td>Sigmoidal isotherm</td>
<td>Sub-surface interaction</td>
<td>[164]</td>
</tr>
<tr>
<td>MMT</td>
<td>LVX</td>
<td>-</td>
<td>7</td>
<td>57</td>
<td>0.92</td>
<td></td>
<td>Langmuir, Freundlich and Dubinin-Radushkevitch isotherm fits</td>
<td>Surface complexation with electrostatic interaction</td>
<td>[162]</td>
</tr>
<tr>
<td>MMT</td>
<td>CPX</td>
<td>-</td>
<td>7.5</td>
<td>128</td>
<td>0.5</td>
<td></td>
<td>Electrostatic interaction for surface optimized interactions</td>
<td></td>
<td>[158]</td>
</tr>
<tr>
<td>Red mud</td>
<td>CPX</td>
<td>-</td>
<td>-</td>
<td>19</td>
<td>0.06</td>
<td>22</td>
<td>Freundlich isotherm and pseudo-second order kinetics</td>
<td>Electrostatic interaction with multi-layers adsorption</td>
<td>[188]</td>
</tr>
<tr>
<td>Kaolinite</td>
<td>CPX</td>
<td>8.3</td>
<td>5.5</td>
<td>26.6 mmol kg^{-1}</td>
<td>-</td>
<td>-</td>
<td>Pseudo second-order kinetic</td>
<td>Electrostatic interaction with surficial intercalation</td>
<td>[97]</td>
</tr>
<tr>
<td>MMT</td>
<td>CPX</td>
<td>-</td>
<td>5.7</td>
<td>37</td>
<td>0.24</td>
<td></td>
<td>Electrostatic interaction at zwitterionic state</td>
<td></td>
<td>[189]</td>
</tr>
<tr>
<td>Composites</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graphene oxide composite with manganese-based MOF (Mn-PBA)</td>
<td>CPX</td>
<td>-</td>
<td>7</td>
<td>1826.64</td>
<td>17.63</td>
<td></td>
<td>Langmuir isotherm</td>
<td>hydrogen bonding, hydrophobic surface interaction, electrostatic</td>
<td>[177]</td>
</tr>
<tr>
<td>Adsorbent Description</td>
<td>Model Type</td>
<td>CPX</td>
<td>Temperature (°C)</td>
<td>Adsorption (mg/g)</td>
<td>Kinetic Order</td>
<td>Interaction Type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------------</td>
<td>-----</td>
<td>------------------</td>
<td>-------------------</td>
<td>---------------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graphene oxide with soy protein</td>
<td>CPX</td>
<td>4</td>
<td>500</td>
<td>12.34</td>
<td>119.17</td>
<td>Langmuir and Temkin isotherm models</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rice straw biochar with molybdenum disulfide (MoS2)</td>
<td>CPX</td>
<td>3.4</td>
<td>6-8</td>
<td>52.75</td>
<td>4.34</td>
<td>Freundlich isotherm and pseudo-second order</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnetic nonporous carbon (MNPC) with Co</td>
<td>CPX</td>
<td>3.6</td>
<td>5</td>
<td>1644</td>
<td>69.68</td>
<td>Liquid-film diffusion model pseudo-second order kinetic model fits with Langmuir isotherm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochar derived from potato stem, pyrolyzed at 500 °C with Attapulgite</td>
<td>NFX</td>
<td>7.75</td>
<td>4</td>
<td>5.24</td>
<td>0.446</td>
<td>Pseudo-second order kinetics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrothermal treated glucose and urea with magnetic iron composite</td>
<td>CPX</td>
<td>7.3</td>
<td>6-9</td>
<td>90.1</td>
<td>9.61</td>
<td>Langmuir isotherm and pseudo-second order kinetic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Municipal solid waste biochar pyrolyzed at 450 °C for 30 min with Bentonite</td>
<td>CPX</td>
<td>5.7</td>
<td>6</td>
<td>286.6</td>
<td>2.01</td>
<td>Elovich kinetic model and Hills isotherm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other adsorbents</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Functionalized magnetic fullerene nano-composite (FMFN)</td>
<td>CPX</td>
<td>6.4</td>
<td>6</td>
<td>-</td>
<td>-</td>
<td>Pseudo-first and second-order kinetic with intra-particle diffusion</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Interaction types include hydrogen bonding, π-π electron donor interactions with chemisorption, chemisorption and π-π electron donor interactions, liquid-film diffusion model pseudo-second order kinetic model fits with Langmuir isotherm, chemisorption interactions with particle diffusion and liquid-film diffusion, monolayer formation when the solid surface reaches saturation and via electrostatic interaction, Langmuir isotherm and pseudo-second order kinetic, Electrostatic interaction and π-π interactions, Elovich kinetic model and Hills isotherm, Hydrogen bonds with π-π electron donor interactions and electrostatic attractions, and Chemisorption with film diffusion.
<table>
<thead>
<tr>
<th>Material</th>
<th>Method</th>
<th>Constant</th>
<th>Contact</th>
<th>M (g)</th>
<th>B (L/g)</th>
<th>Q (mol/g)</th>
<th>Qmax (mol/g)</th>
<th>t (min)</th>
<th>Model</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron nanoparticles (nano-Fe₃O₄)</td>
<td>CPX</td>
<td>6.5</td>
<td>6</td>
<td>0.04</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Freundlich isotherm with pseudo-second-order kinetics</td>
<td>Inner sphere complexation involved with the changes in the ions [183]</td>
</tr>
<tr>
<td>Red mud Fe₃O₄ nanoparticles</td>
<td>CPX</td>
<td>8</td>
<td>6</td>
<td>111.11</td>
<td>5.76</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Freundlich isotherm with pseudo-second-order kinetics</td>
<td>Electrostatic interactions at heterogenic surfaces [192]</td>
</tr>
<tr>
<td>Nitrilotriacetic acid-functionalized magnetic graphene oxide</td>
<td>CPX</td>
<td>7</td>
<td>8</td>
<td>230.57</td>
<td>2.01</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Freundlich isotherm with the pseudo-second-order model</td>
<td>Electrostatic and π-π interactions with a bridging mechanism with hydrogen bonds [193]</td>
</tr>
<tr>
<td>TiO₂ nanotube/reduced graphene oxide hydrogel</td>
<td>CPX</td>
<td>-</td>
<td>7</td>
<td>181.8</td>
<td>3.56</td>
<td>138.2</td>
<td>-</td>
<td>-</td>
<td>π-π bond and hydrogen bond</td>
<td>-</td>
</tr>
<tr>
<td>Iron-based MOFs: MIL-100(Fe)</td>
<td>LVX</td>
<td>3.2</td>
<td>9</td>
<td>87.34</td>
<td>5.58</td>
<td>110.49</td>
<td>-</td>
<td>-</td>
<td>Freundlich isotherm and pseudo-second-order</td>
<td>Electrostatic interaction [195]</td>
</tr>
<tr>
<td>Nano-zerovalent iron (NZVI) through reduction with polyethylene glycol and supported on zeolite</td>
<td>NFX</td>
<td>3.47</td>
<td>4</td>
<td>54.67</td>
<td>2.74</td>
<td>37.41</td>
<td>-</td>
<td>-</td>
<td>Temkin isotherm</td>
<td>Chemisorption with pollutant competing effects. [195]</td>
</tr>
<tr>
<td></td>
<td>OFX</td>
<td>28.88</td>
<td>2.56</td>
<td>26.48</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>pseudo-second-order and Elovich competing kinetics models</td>
<td>-</td>
</tr>
<tr>
<td>Iron nanoparticles</td>
<td>LVX</td>
<td>-</td>
<td>5.8</td>
<td>6.848</td>
<td>0.591</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Pseudo-second order model and Langmuir isotherm</td>
<td>Chemisorption, exothermic and spontaneous [196]</td>
</tr>
<tr>
<td>Fe₃O₄@SiO₂</td>
<td>LVX</td>
<td>-</td>
<td>4</td>
<td>90.91</td>
<td>-</td>
<td>16.385</td>
<td>-</td>
<td>-</td>
<td>Langmuir isotherm and pseudo-second-order</td>
<td>Interfering ions compete and thus mono-layer [197]</td>
</tr>
<tr>
<td>Red mud</td>
<td>CPX</td>
<td>-</td>
<td>-</td>
<td>19</td>
<td>0.06</td>
<td>22</td>
<td>Freundlich isotherm and pseudo-second order kinetics</td>
<td>Electrostatic interaction with multi-layers adsorption</td>
<td>[188]</td>
<td></td>
</tr>
</tbody>
</table>

MMT: montmorillonite, CPX: Ciprofloxacin, LVX: Levofloxacin, EFX: enrofloxacin, NFX: Norfloxacin, OFX: Ofloxacin
4. Mechanisms of adsorptive removal of FQs

Proposed adsorption mechanisms of FQ antibiotics by adsorbents include electrostatic interactions, van der Waals, hydrogen bonding and \(\pi-\pi\) EDA interactions [21,93,127]. These interactions are plausible due to the presence of functional groups such as -COOH, -OH, -NH\(_2\) in FQ as well as a variety of functional groups present on the surface of adsorbents.

In the case of carbon-based adsorbents, a strong electron-withdrawing capability is directed towards the electronegative fluorine group of the FQ, by which the electron-rich phenyl group of FQ as \(\pi\) electrons acceptors [98,198]. The available oxyanions on the surface of adsorbents like AC or biochar contribute to the physisorption interaction. Electron donor-acceptor interactions occur in the case of AC. Interaction with the functional groups at varying pH, is seen as a predominant mechanism in the presence of carbonium anions on the AC, as studied by Carabineiro et al. (2012) [100,102]. In a study by Hu et al. (2019), modified biochar with ZnO nanoparticles (loaded at different ratios) and biochar derived from camphor leaves were synthesized at different pyrolysis temperatures and used for CPX removal [115]. It was found that at varying solution pH, the sorption affinity of CPX removal is optimal at the zwitterionic state through electrostatic interactions and through \(\pi-\pi\) stacking from the electron-deficient-rich interactions between the FQ and biochar [127]. The biochar composite contains aromatic rings that have the ability to donate charges leading to cation-\(\pi\) interactions between CPX and biochar with an optimal adsorption capacity of 450 mg g\(^{-1}\) at pH 5 [115] (Table 4).

Carbon-based structures described in this review show a higher adsorption affinity due to the larger \(\pi\)-plane and quite intricate porous structure, where LVX gets easily accommodated onto the adsorption sites and higher mass transfer takes place [199]. LVX has a higher electron density, and this adds an advantage as a \(\pi\)-electron-acceptor unit due to the presence of the electron-withdrawing effect coming from the fluorine of the LVX. This is further supported by
the x-ray photoelectron spectroscopy and the Fourier transform infrared results suggesting that the adsorption is attributed mainly to micropore filling and $\pi-\pi$ electron donor-acceptor interactions [116].

For clay-based adsorption of FQs, the swelling capability of MMT is an added advantage, due to the presence of hydroxyl groups on the surface, and the adsorption was enhanced in the presence of cations in the crystalline structure. The net negative charge is induced through the imperfection in the crystal lattice that leads to the adsorption of FQ. The presence of the interlayers of the clay materials provides an additional void to accommodate FQ within the lattices. For these reasons, clay as an adsorbent has been known for the following interactions: cation exchange, cation bridging, and hydrogen bonding along with electrostatic attraction. These interactions are the main mechanisms for the removal of FQ antibiotics by montmorillonite [200,201].

The solution pH also plays an important role in the sorption of FQ antibiotics as it influences the surface charge of the sorbents and the speciation of FQ. In most cases, the amount of FQ uptake increased with increasing pH up to pH 7-8 and showed a plateau or a declination thereafter (pH 9-11). Through the studies reviewed here, adsorption behavior was dominated by speciation in FQ along with the changes in the surface charge through zeta potential before and after adsorption [140,202]. At pH $< \text{pH}_{\text{pzc}}$, the surface is positively charged while at pH $> \text{pH}_{\text{pzc}}$ the surface is negatively charged [203]. As studied by Yang et al. (2012), NFX exists as a cation when pH $< \text{pH}_{\text{pzc}}$ (4.8); the adsorption is minimal due to the repulsive interactions between the surface and NFX [89,204,205].

For both carbon and clay-based adsorbents, the adsorption is dominated by mostly electrostatic interactions and/or hydrophobic attractions at the environmental pH. The occurrence of anionic and cationic charged species through speciation at the environmental pH facilitates the FQ to be more hydrophobic to the adsorbents which thereafter, have a higher tendency for lower
water solubility and high lipophobicity of FQ at pH 7; thereby, lowering affinity with water [206]. The carboxyl-group and piperazinyl group of FQ antibiotic are the proton-binding sites with dissociation constants (pKₐ) around 6.0 and 8.0, respectively, providing a higher affinity for the adsorption of these species onto the adsorbents. Carbon-based adsorbents containing rich aromatic groups provide hydrophobic sites for interaction of FQ molecules facilitating the adsorption process. A detailed scheme for carbon and clay-based adsorbents and their major interactions with FQ antibiotics is depicted in Figure 6.

Figure 6: Mechanistic scheme showing the possible interactions between clay-carbon composite adsorbents and FQ antibiotics in aqueous media

5. **Performance evaluation of FQ removal**

Partition coefficient values are employed in this review to assess the performance of adsorbents more fairly by reducing the bias in adsorption capacity and removal efficiency with the changes in the initial contaminant concentrations [91,207]. Therefore, a comparison of the PC values is
made to understand the true potential of the adsorbents. The PCs of the adsorbents reviewed are illustrated in (Figure 7). Higher PC values indicate enhanced adsorption affinity and ability. The highest PC value was observed for graphene-based adsorbents with an adsorption capacity of 380 mg g-1 [130]. A Fe\textsubscript{3}O\textsubscript{4}/C composite, studied by Mao et al. (2016), showed a lower potential and a lower adsorption capacity than that obtained from graphene with 90.1 mg g-1 as adsorption capacity for CPX removal. This removal with a PC value of 9.61 L g-1 is attributed to the strong electrostatic interactions between the anionic moiety of CPX and electron-deficient biochar or any other carbon-based adsorbents surface. Moreover, a municipal solid waste biochar-bentonite composite showed an optimum adsorption capacity of 286.6 mg g-1 with a lower PC value of 2.01 L g-1 compared to the above study [17]. Thus, when considering an adsorbent for decontaminating CPX in aqueous media, as a rule of thumb, the composites outperformed their pristine counterparts and more specifically the Fe\textsubscript{3}O\textsubscript{4}/C composite exhibits better removal among the composites reviewed here.

Another high performer for the adsorption of FQs is carbon composite with Co [106], which offers a PC value of 69.68 L g-1. This is the highest PC value for the adsorbents reviewed. However, many other factors are required to consider when choosing the adsorbents apart from the manufacturing and the operational cost for actual applications. Table 8 indicates the other aspects of the different adsorbents used for removal of FQ from aqueous systems based on the techno-economical characteristics of each. Commercial activated carbon showed a high CPX adsorption capacity of 131.14 mg g-1 but a low PC of 0.661 L g-1 [98]. Out of the 7 classes of adsorbents for the removal of FQs antibiotics, the performance based on the PC values is in the following order: graphene > carbon nanotubes > biochar > carbon composite > nano-sorbents > activated carbon > clay-based sorbents.

The performances of different adsorbents are fairly compared based on the PC values for the adsorption of FQ under varying experimental conditions. The difference in the initial...
conditions utilized in each of the adsorption studies was compensated for comparative purposes, to evaluate the best adsorbents for the removal of FQs. Adsorbents in the studies reviewed here with their PC values could dictate the performance with the FQ antibiotic and should be further evaluated for practical applications including the production costs, economic feasibility, practicability and competitiveness of the adsorbents with the other materials used for the removal of FQ antibiotics from water and wastewater.
Figure 7: Summary of partition coefficient (L/g) values for the adsorbent categories reviewed.

Note: bars are not to the scale.
Table 8: Techno-economic characteristics of different types adsorbents for the remediation of fluoroquinolones in aqueous media

<table>
<thead>
<tr>
<th>Adsorbents</th>
<th>High pH dependency</th>
<th>High specific area</th>
<th>Multi-functionality</th>
<th>Optimal equilibria</th>
<th>Low production cost</th>
<th>Regeneration</th>
<th>Multi-faceted mechanisms</th>
<th>Laboratory scale application</th>
<th>High chemical cost</th>
<th>Handling difficulties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pristine adsorbents</td>
<td></td>
</tr>
<tr>
<td>Paper sludge</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Activated carbon</td>
<td></td>
</tr>
<tr>
<td>Biochar</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Variable</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Carbon nanotubes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Variable</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Graphene-oxides</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Variable</td>
<td>No</td>
<td>Variable</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Kaolinite</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Variable</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Montmorillonite</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Modified/Composites</td>
<td></td>
</tr>
<tr>
<td>Modified Activated carbon</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Clay-biochar composite</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>NS</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Magnetic biochar</td>
<td>Variable</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>NS</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Activated biochar</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Protein modified graphene</td>
<td>No</td>
<td>No</td>
<td>Variable</td>
<td>Variable</td>
<td>No</td>
<td>NS</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Graphene with magnetic chitosan</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>----</td>
</tr>
<tr>
<td>Graphene with sodium alginate</td>
<td></td>
</tr>
<tr>
<td>Single-walled carbon nanotubes with graphene</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>NS</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Multi-walled carbon nanotubes with hydrolyzed treatment</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>NS</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Note: NS is Not studied for the particular property, variable is varying with different fluoroquinolone studied
6. Conclusions and future perspectives

Adsorbents ranging from biochar to complex materials such as carbon nanotubes are critically analyzed in this review based on their interaction with the FQ antibiotic. Carbon-, nano- and clay-based sorbents are reviewed in great detail and each of them has promising features as well as shortcomings for adsorption of different FQ antibiotics. A very handful of research has been conducted and reported on the performance of these adsorbents through the use of PC as a tool. Therefore, this review detailed out and went further in comparing the performance of adsorbents based on various experimental conditions.

The π-π EDA interactions, electrostatic interactions, and pore-filling are the prominent mechanisms for the adsorption of FQs. However, the mechanisms are dependent on other factors, such as the solution pH, and adsorbent dosage and properties, which also affect the extent of FQ antibiotic adsorption. Carbon-based adsorbents such as activated carbon, graphene, and carbon nanotubes are more homogenous in terms of their structural morphology. Whereas compared to biochar, which is more source-specific, is made of so many different raw materials and thus, the extent of adsorption is dependent on production conditions such as the pyrolysis temperature, yield and activation.

This review categorized the different types of adsorbents and detailed the adsorption process, postulated mechanisms, adsorption studies and adsorbent characteristics for the remediation of FQ antibiotics from aqueous media. Among all various adsorbents discussed here, graphene and CNTs are the best performers and proven to be a proper candidate to adsorb FQ antibiotics from aqueous solutions. Despite being analyzed and reported at a laboratory scale, most of the adsorbents reviewed, except AC, are not applied practically for FQ antibiotic removal at water and wastewater treatment plants due to the lack of reusability studies. Therefore, further investigations over the physical and chemical properties of the materials reviewed here, are
required to fill the gap that leads to field operations for a diversified range of antibiotics including FQ from water and wastewater.

Previous studies did not take into account the complexity of actual environmental scenarios where FQ antibiotics are bounded on different substrates. Several of these interactions are possible apart from electrostatic interactions with carbonaceous adsorbents, clay-based, or composites, making it more challenging to interpret results from different ranges of pH and ions present in the solution. Thus, more studies are needed with systematic experimental approaches that lead to predicting parameters usable for extrapolating the fate of FQs across different pHs and ionic strengths. The surface chemistry of the adsorbents under diversified environmental conditions needs to be elucidated.

Acknowledgments

This work was carried out with the support of Cooperative Research Program for Agriculture Science and Technology Development (Project No. PJ014758), Rural Development Administration, Republic of Korea and the Research Council (ASP/01/RE/SCI/2017/83), Faculty of Applied Sciences, University of Sri Jayewardenepura, Sri Lanka. BS was supported by the Lancaster Environment Centre project.

References

[3] M. Kumar, T. Chaminda, R. Honda, H. Furumai, Vulnerability of urban waters to emerging contaminants in India and Sri Lanka: Resilience framework and strategy,

C. Roose-Amsaleg, A.M. Laverman, Do antibiotics have environmental side-effects?

[40] M. Pan, L.M. Chu, Adsorption and degradation of five selected antibiotics in

https://doi.org/10.1021/jf503850v.

https://doi.org/10.1016/S0731-7085(96)02033-X.

J. Wilkinson, P.S. Hooda, J. Barker, S. Barton, J. Swinden, Occurrence, fate and transformation of emerging contaminants in water: An overarching review of the field,

A.L. Batt, I.B. Bruce, D.S. Aga, Evaluating the vulnerability of surface waters to antibiotic contamination from varying wastewater treatment plant discharges, Environ.
J.P. Oliver, C.A. Gooch, S. Lansing, J. Schueler, J.J. Hurst, L. Sassoubre, E.M.

[74] H. Su, J. Sun, S. Fang, Y. Wei, R. Zheng, Y. Jiang, K. Hu, Effects of lactic acid on drug-metabolizing enzymes in Chinese mitten crab (Eriocheir sinensis) after oral

https://doi.org/10.1016/j.envpol.2010.05.023.

[77] R. Wei, F. Ge, S. Huang, M. Chen, R. Wang, Occurrence of veterinary antibiotics in animal wastewater and surface water around farms in Jiangsu Province, China, Chemosphere. 82 (2011) 1408–1414.

https://doi.org/10.1016/j.chemosphere.2010.11.067.

https://doi.org/10.1016/j.agee.2018.01.026.

https://doi.org/10.1021/es1030799.

[81] J. Wang, S. Wang, Removal of pharmaceuticals and personal care products (PPCPs)

https://doi.org/10.1016/j.jpha.2019.01.003.

https://doi.org/10.1016/j.etap.2017.02.005.

1211 https://doi.org/10.1080/19443994.2013.842504.
1213 https://doi.org/10.1016/j.ijheh.2018.08.009.
1215 https://doi.org/10.1016/j.molliq.2018.08.104.

[122] X. Peng, F. Hu, T. Zhang, F. Qiu, H. Dai, Amine-functionalized magnetic bamboo-

https://doi.org/10.1016/j.scitotenv.2017.10.177.

https://doi.org/10.1007/s11783-019-1218-0.

https://doi.org/10.1016/j.scitotenv.2019.06.287.

https://doi.org/10.1016/j.jhazmat.2005.03.005.

https://doi.org/10.1021/acssuschemeng.6b02178.

[158] B. Gulen, P. Demircivi, Adsorption properties of fluoroquinolone type antibiotic
ciprofloxacin into 2:1 dioctahedral clay structure: Box-Behnken experimental design,

Curry, J. Gardea-Torresdey, J.C. Noveron, Biomass conversion of saw dust to a
functionalized carbonaceous materials for the removal of Tetracycline,
Sulfamethoxazole and Bisphenol A from water, J. Environ. Chem. Eng. 6 (2018)

[160] Q. Wu, Z. Li, H. Hong, K. Yin, L. Tie, Adsorption and intercalation of ciprofloxacin
https://doi.org/10.1016/j.clay.2010.08.001.

[161] C. Gu, K.G. Karthikeyan, Sorption of the antimicrobial ciprofloxacin to aluminum and
https://doi.org/10.1021/es051109f.

[162] Y. Liu, C. Dong, H. Wei, W. Yuan, K. Li, Adsorption of levofloxacin onto an iron-
pillared montmorillonite (clay mineral): Kinetics, equilibrium and mechanism, Appl.

[163] B. Gulen, P. Demircivi, Adsorption properties of fluoroquinolone type antibiotic
ciprofloxacin into 2:1 dioctahedral clay structure: Box-Behnken experimental design,

Zema, Removal of fluoroquinolone contaminants from environmental waters on

[165] R. Zhang, C. Chen, J. Li, X. Wang, Preparation of montmorillonite@carbon composite
and its application for U(VI) removal from aqueous solution, Appl. Surf. Sci. 349

[179] M. Vithanage, A.U. Rajapaksha, M.S. Bootharaju, T. Pradeep, Surface complexation...

https://doi.org/10.1016/j.colsurfa.2014.09.003.

https://doi.org/10.1021/es061921y.

