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Abstract In this paper, we break with the traditional approach to classifica-
tion, which is regarded as a form of supervised learning. We offer a method and
algorithm, which make possible fully autonomous (unsupervised) detection of
new classes, and learning following a very parsimonious training priming (few
labeled data samples only). Moreover, new unknown classes may appear at a
later stage and the proposed xClass method and algorithm are able to suc-
cessfully discover this and learn from the data autonomously. Furthermore, the
features (inputs to the classifier) are automatically sub-selected by the algo-
rithm based on the accumulated data density per feature per class. In addition,
the automatically generated model is easy to interpret, is locally generative
and based on prototypes which define the modes of the data distribution. As
a result, a highly efficient, lean, human-understandable, autonomously self-
learning model (which only needs an extremely parsimonious priming) emerges
from the data. To validate our proposal we approbated it on four challeng-
ing problems, including imbalanced Faces-1999 data base, Caltech-101 data
set, vehicles dataset, and iRoads dataset, which is a dataset of images of au-
tonomous driving scenarios. Not only we achieved higher precision (in one
of the problems outperforming by 25% all other methods), but, more sig-
nificantly, we only used a single class beforehand, while other methods used
all the available classes) and we generated interpretable models with smaller
number of features used, through extremely weak and weak supervision. We
demonstrated the ability to detect and learn new classes for both, images and
numerical examples.
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1 Introduction

Machine learning and pattern recognition, including classification are perhaps
at the peak of their development with a sharp interest not only from scientists
and practitioners, but also from the wider public and media. This is, in part,
thanks to the boom surrounding the wider area of artificial intelligence (AI)
and recent successful and widely publicized applications ranging from games
[34,14], driverless cars [33,10], defense and security [1,32,35], home applica-
tions [23,28]. Despite the great success of the standard bearer algorithm in
this area, the so called deep learning in image and speech recognition [18,27],
the underlying concept of machine learning which requires large amount of la-
beled training data remains unchanged. So called reinforcement learning offers
some departure from complete labeling, but still requires user input for each
individual data sample. The most powerful approaches such as deep learning
and support vector machines (SVM) suffer from lack of interpretability [25,5,
30,11], are extremely power-, time- and computational- resources hungry and
are like dinosaurs – unable to adapt and change with agility. They require
complete retraining even for a single or few new data samples.

In this paper we propose a method and algorithm that departs from the
traditional approach and offers a paradigm shift bringing the machine learning,
in general, and pattern recognition and classification, in particular, extremely
close to a fully unsupervised form. In a nutshell, it offers a self-learning locally
generative models that work together and require extremely light supervision
in the form of few data samples. It is able to automatically detect the unknown
and to learn from it. This is in sharp contrast to the traditional approach
where learning is, in essence, only an averaging of the history. The current
approaches struggle to detect changes, dynamical evolution or appearance of
new classes. They also assume a certain number of features (the same for
all classes) provided at the start of the process. This is one of the reasons
traditional approaches struggle to predict or react quickly to sudden changes
in the data pattern, such as the economic crash during 2008 [15], for example.

Methods like eClass [8], FLEXFISClass [20] and other similar ones are
called “evolving” classifiers. They are designed to take into account new com-
ing data samples. However, when talking about new classes (rather than just
new data samples) class label is required which means these methods are su-
pervised learning methods. The proposed method in this paper is unsupervised
in regards to the new data that represent a new class. There are also unsuper-
vised evolving algorithms for clustering [9], but these methods do not deal with
classification as the method proposed in this paper. Another type of methods
that claim to approach similar problems are the so-called zero-shot learning
(ZSL) methods. They have as an objective to transfer a learnt model to un-
known classes with-out the acquisition of new features. However, the main
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problem with this type of technique is the dependence on additional infor-
mation to relate unknown classes to previously trained models. Not always
such information is available or possible to acquire [17]. In this respect, the
ZSL approach is not unsupervised in terms of the new class and not a direct
comparator.

The proposed approach is prototype-based and learns locally around them
extracting the empirical data distribution called typicality as well as the data
density [6]. The approach is recursive, thus computationally very lean. It is also
non-iterative, non-parametric. This adds to its efficiency in terms of time and
computational resources. From the user perspective, the proposed approach
is clearly understandable to human users since it can be represented in a
linguistic IF...THEN form. It combines reasoning and logic with machine
learning. It can also be presented as a deep neural network. Finally, it also
has a statistical nature and offers an empirical form of the probability density
function (pdf) [7].

In this paper we apply this new principally different type of machine learn-
ing to four challenging problems and demonstrate its significant advantages.
The main challenges that the method proposed in this paper addresses are: i)
to detect when a certain unlabeled (new) data sample is not from a class that
was used in training, i.e. to have class ”Unknown” or ”New”; ii) to learn from
such new unlabeled data in an unsupervised manner. The proposed approach
to address the first issue is based on the drop of the density that represent
the confidence in a decision. The proposed approach to the second issue is by
learning from the data for which the class is ”New”. The proposed approach
further selects prototypes out of the data samples of the ”New” class according
to their density in the same way as for the other/known classes. Because, the
learning in the proposed approach is per class, all new data from a ”New” class
are analysed separately from the data from the known classes. The remainder
of this paper is organized as follows: The method and algorithm section in-
troduces the proposed exploratory approach for extremely weakly supervised
classification. The experimental data employed in the analysis and results are
presented in the results section. Discussion is presented in the last section of
this paper.

2 Material and Methods

2.1 Concept and Basic Algorithm

Traditionally, the pipeline of learning from data includes the following steps:

1)Pre-precessing, which includes different substeps like normalization/standardization,
dealing with missing data, and feature selection [16]. Specifically for image pro-
cessing there are often other stages, such as rotation, augmentation, scaling,
elastic deformation, etc [26]. Even deep learning methods which claims to avoid
handcrafting apply some of the cited steps.
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2)Learning phase, which can be offline, when the full dataset is available;
or it can be done online, when the data arrive in the form of a data stream
(sample-by-sample). Evolving learning, ability of the algorithms to adapt their
parameters and structure according to the non-stationary data streams, is a
more sophisticated form of online learning [3,29].

3)Generating outputs for new unseen data, which is the validation
phase. Different algorithms use different strategies in order to validate the
model generated in the learning phase.

The proposed method also starts with a pre-processing step which involves
mostly the same steps depending on the specific problem. For example, for
image processing we may also apply scaling, augmentation, rotation, etc. Prac-
tically for all problems normalization and standardization is required.

The proposed xClass method uses standardization and normalization as
follows:

Firstly,it standardize the newly observed data sample, xi; where i = 1, 2, ..., n
denotes a time stamp in the current moment. j = 1, 2, ..., n refers to the num-
ber of features of the given x.

x̂i,j =
xi,j − µ(xi,j)

σ(xi,j)
(1)

where x̂ denotes the standardized data sample. Outliers (|x̂| ≥ 3) are ignored
and not used for training. After that, the data is rescaled within the range [0, 1]
to consider them in the same proportion. It is important to highlight that in
the proposed xClass method, the normalization is done upon the standardized
data. Unity-based normalization of the i-th element of the j-th sample is given
by:

x̄i,j =
x̂i,j −min

i
(x̂i,j)

max
i

(x̂i,j)−min
i

(x̂i,j)
(2)

where x̄ denotes the normalized data sample.
The prototype-based learning is the core of the proposed method which

represents local (the prototypes are focal points of locally valid generative
models described by multimodal Cauchy distribution [6]. The meta-parameters
are initialized with the first observed data sample. The proposed algorithm
works per class; therefore, all the calculations are done for each class separately.

P ← 1; µ← x̄i; (3)

where µ denotes the global mean of data samples of the given class. P is the
number of the identified prototypes in total from the observed data samples.

Each class C is initialized by the first data sample of that class:

C1 ← {x̄1}; p1 ← x̄1;

S1 ← 1; r1 ← r∗;
(4)
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where, p1 is the prototype of C1; S1 is the corresponding support (number
of members); r1 is the corresponding radius of the area of influence of C1.

In this paper, we use r∗ =
√

2− 2cos(30o) same as [6]; the rationale is
that two vectors for which the angle between them is less than π/6 or 30o

are pointing in close/similar directions. That is, we consider that two feature
vectors can be considered to be similar if the angle between them is smaller
than 30 degrees. Note that r∗ is data derived, not a problem- or user- specific
parameter. In fact, it can be defined without prior knowledge of the specific
problem or data. The next step is to calculate the data density at x̄i and
pj (j = 1, 2, ..., P ).

D(x̄i) =
1

1 + ||x̄−pi||2
(σi)2

(5)

where pj (j = 1, 2, ..., P ) is the set of prototypes, and σi is the standard
deviation.

The reason it is Cauchy is not arbitrary [4]. It can be demonstrated the-
oretically that if Euclidean or Mahalanobis type of distances in the feature
space are considered, the data density reduces to Cauchy type as referred in
equation (5). It can also be demonstrated that the so called typicality, τ , which
is the weighted average of the data density, D, with weights representing the
frequency of occurrence of a data sample [6]. Furthermore, the typicality, τ
can be considered an empirically derived form of the pdf having the same
properties, notably, it integrates to 1 an infinite range.

Density per feature f is obtained according to the equation (5), where Df
i

denotes the density for f -th feature of the x̄i sample.

The cumulative effect across all data samples per feature can be obtained
according to the equation (6).

Λfi =
Σn
i=1D

f
i (x̄fi )

n
. (6)

The cumulative contribution for each feature Λfi can be rank ordered, n

represents the number of samples. The higher, the value of Λfi is for a par-
ticular feature, the more important is the f -th feature. The rationale is that
an interesting feature has higher density than other features - meaning that
it conveys unique, different clear information, and, as a consequence, it con-
tributes more to the classifier’s result because the overlap between data of
different classes is less pronounced for this feature.

Then the algorithm absorbs the new data samples one by one by assigning
then to the nearest (in the feature space) prototype:

n∗ = argmin
j=1,2,...,P

(||x̄i − pj ||2) (7)
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Because of this form of assignment, the shape of the data partitioning is
of the so-called Voronoi tesselation type [21]. We call all data points associ-
ated with a prototype data clouds, because their shape is not regular (e.g.,
hyper-spherical, hyper-ellipsoidal, etc.) and the prototype is not necessarily
the statistical and geometric mean [6].

In case, the following condition [6] is met:

IF (Di(x̄i) ≥ max
j=1,2,...,P

Di(pj)) OR (Di(x̄i) ≤ min
j=1,2,...,P

Di(pj))

THEN (add a new data cloud)
(8)

It means that x̄i is out of the influence area of pj . Therefore, x̄i becomes
a new prototype of a new data cloud with meta-parameters initialized by
equation (9). Add a new data cloud:

P ← P + 1; CP ← {x̄i}; pP ← x̄i; SP ← 1; rP ← ro; (9)

Otherwise, data cloud parameters are updated online by equation (10). It
has to be stressed that all calculations per data cloud are performed on the
basis of data points associated with a certain data cloud only (i. e. locally, not
globally, on the basis of all data points).

Cn∗ ← Cn∗ + {x̄i}; pn∗ ← Sn∗

Sn∗ + 1
pn∗ +

Sn∗

Sn∗ + 1
x̄i;

Sn∗ ← Sn∗ + 1; r2
n∗ ←

r2
n∗ + (1− ||pn∗ ||2)

2
;

(10)

One of the strongest aspects of the proposed approach is its high level of
interpretability which comes from its prototype-based, local generative models
as well as as its ability to be expressed as a set of linguistic IF...THEN fuzzy
rules of the following type:

R : IF (x ∼ p1) OR ... OR (x ∼ pP ) THEN (Class c) (11)

The fuzziness represents the degree of association/similarity to the proto-
types. Indeed, the value of data density, D, equation (5) can be interpreted
as a membership function of the fuzzy set (x ∼ p) [6]. With a maximum 1
when x = p. The continuous typicality, τ given by the equation (12), is an
empirically derived form of probability distribution. The value of τ even at
the point x = pi is much less than 1 the integral of

∫∞
−∞ τdx = 1.

τi(x) =
Di(x)∫

x
Di(x)dx

(12)
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Detect & Learn from Unknown

This is the most innovative part of the proposed algorithm in addition to the
feature selection per class, which wakes it exploratory (we call it xClass) and
allows to detect new data patterns autonomously and learn from them.

Drop of confidence (detect the novelty)

Unlabeled data samples become available as soon as the training process with
labeled samples finishes. Then, the eXploratory classifier (xClass) can continue
to learn from these unknown data samples. The unlabeled training samples
are defined as the set {u}, and the number of unlabeled samples is defined as
U .

The first step in the weakly supervised learning process of xClass, is to
extract the vector of confidence/degrees of closeness to the nearest prototypes
for each unlabeled data sample defined as λ(ui), i = 1, 2, ..., U follows:

λ = max
j=1,2,...,P

(x̄, pj), (13)

where λ denotes the confidence degree.
The recursive mean µi of the λmax for the labeled data samples is used to

detect sudden drop of the confidence generated by the xClass classifier when
a new unknown class arrives and can be calculated as follows [2]:

µi =
i− 1

i
µi−1 +

1

i
λmaxi , µ1 = λmax1 . (14)

Then the m-σ rule is applied, for detailed explanation about the m-σ please
refer to [24]. New classes are actively added by the proposed xClass classifier
when the inequality (15) is satisfied and rules are actively created. Otherwise,
if the inequality is not satisfied the newly arrival unlabeled data samples are
used for updating the structure and meta-parameters of the xClass classifier.
Fig. 1 illustrates the drop of confidence of the proposed method when a new a
unseen class arrives. The black line indicates the confidence of xClass. As the
fall is detected, if the inequality (15) is satisfied this indicates that the label
of this data sample is not any of the known to xClass labels. The options are
that: a) This drop is a one off due to outlier, noise, randomness, or b) a number
of such data samples above a drop of confidence is detected are close to each
other in the data space (please note that they may not necessarily arrive one
after the other as in Fig. 1). Otherwise, if the condition given by the inequality
(15) is not met the data sample is used to update the meta-parameters of the
proposed method.

IF λmax(Ui) < (µ̄i −mσ) THEN (Ui ∈ Possible new class detected)

ELSE (Update structure and meta− parameters)
(15)
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Fig. 1 Drop of confidence of the proposed method when a new a unseen class arrives

When the inequality (15) is satisfied, the arrival data sample is denoted as
a potential outlier and temporally saved. When several of potential outliers are
close to each other in the data space, have similar densities, they are denoted as
‘new class 1’, if more than one group is formed than new classes are formed as
well and new labels as ‘new class 2’ are generated. The user can be proactively
asked to (optionally) label with a semantically meaningful identification, for
example, ‘apple’, however, no retraining is required.

One or few labels for new detected classes are provided. The validation
process is done through the ‘winners-take-all’ principle, which is given by,

Label = argmax(λ(x̄)). (16)

The general structure of the proposed xClass approach is illustrated by the
block diagram presented in Fig. 2.
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Fig. 2 General structure of xClass – block diagram

3 Results

In this section we will demonstrate the results obtained by the proposed ex-
tremely weakly supervised classification approach. Computational simulations
were performed to assess the accuracy of the classification methods consider-
ing 4 different benchmark problems. The results from experimentation with
the proposed algorithm aim to demonstrate that it offers:

– high precision as compared with the top state-of-the-art algorithms.
– ability to detect unseen/new data patterns autonomously and learn from

them.
– ability to learn with extremely low supervision (few) labeled data samples

for the newly detected classes.
– ability to autonomously select the most effective features per class.
– highly transparent interpretable model.
– no user- or problem- specific algorithmic parameter (except for feature

selection which can be done by ad hoc decision).
– non-iterative algorithm able to learn continuously.

3.1 iRoads dataset

In the first experiment the iRoads dataset [22] was considered. The convo-
lutional deep neural network VGG–16 was trained with 80% of the available
iRoads dataset; however, images for the ‘Rainy day’ scenario were omitted of
the training phase. After the training phase, ‘Rainy day’ trained images were
presented to the neural network. As the VGG–16 approach was not trained
for the presented situation, and it is not able to adapt its structure for the
newly arrived class, it misclassified the ‘Rainy Day’ scenario with almost 90%
confidence as a ‘Night’ scenario as illustrated by Fig. 3.
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Fig. 3 Wrong classification given by VGG–16 for a new unknown class (Rainy Day).

The convolutional neural network VGG–16 misclassifed with almost 90%
of confidence the ‘Rainy day’ driving scenario as a ‘Night’ scenario as illus-
trated by Fig. 3. This is not surprising because the VGG–16 (same as other
mainstream deep nerual networks) can only recognise what it was trained for
and is not equipped with an exploratory mechanism to enable detection and
learning from unknown data samples. In such new situations mainstream deep
networks require a full retraining in order to correctly classify new classes.
However a full retraining of a deep neural network is usually time consum-
ing, computational expensive, and costly and involves the human for labeling
purposes.

The xClass exploratory mechanism is able to discover new classes as they
arrive to the system due to its mechanism based on the recursive density
estimation [2] and Chebyshev inequality approach [24] as given by Fig. 4. The
blue line indicates the confidence value (Λmax boundary) given by the xClass
classifier, the red line indicates the the recursive density estimation value, the
green line is the 3-σ. The sudden fall of the blue line indicates the moment
when the unlabeled set of images belonging to an unknown class arrive to the
system.

The proposed xClass classifier was trained with 80% of the available iRoads
images of all classes except the ‘Rainy day’ class. Then, the new unlabeled class
was present to the proposed classifier, xClass was able to successfully detect
the suddenly drastic fall in the confidence (Fig. 4) and proactively create a new
class as illustrated by Fig. 5. The prototype-based and non-iterative nature of
the proposed method allowed to detect the fall in the confidence (λmax) in real
time, and differently, from traditional deep learning approaches, no retraining
is required to learn the new class.
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Fig. 4 Sudden drop of confidence due the presentation of new unknown classes.

Rnew: IF (Image ∼ ) THEN ‘New class’

Fig. 5 A new rule is proactively created when a sudden fall in the confidence is detected
through the inequality (13). The proposed xClass classifier is highly interpretable due to its
rule-based nature. This advantage favors human experts analysis as it provides a transparent
structure, differently from the ‘black box’ approaches such as deep neural networks.

The proposed xClass classifier obtained 99.12% classification accuracy for
unlabeled images using the 3-σ approach. The semantically meaningful label
‘Rainy Day Scene’ is optional and requires only one-off involvement by the
human (by default it will stay as ‘new class 1’). The final rule generated for
this new class detected by the proposed xClass classifier is given by Fig. 6.

3.2 Faces-1999 dataset

As a second example, we consider the Faces-1999 dataset provided by Caltech
[12]. For the faces recognition problem, the xClass classifier is trained with just
one type of face, differently from traditional approaches which are primed with
all available classes (20 different types of faces). We used the fully connected
layer of VGG–16 for features extraction. For each image it produces 4096
values that can be considered [to be] abstract features.
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R7: IF (Image ∼ ) OR (Image ∼

) OR

... OR (Image ∼ ) THEN ‘Rainy day scene’

Fig. 6 Final rule given by the xClass classifer for the new detected class. Label is attached
during the validation phase. Differently from ‘black box’ approaches as deep neural networks,
xClass provides highly interpretable rules which can be used by human experts for different
analysis as necessary.

As the traditional approaches are not equipped with exploratory mecha-
nism, they are not able to discover discover new data patterns, and then, they
classify new arrival data samples as the trained class. The, the proposed ap-
proach was presented to the new classes, and it was able to detect these new
types of faces through the drop of confidence as illustrated by Fig. 7. After
the detection of these new classes, an extremely weak supervision (1% training
data labeled) and weak supervision (10% training data labeled) is provided in
order to label these newly arrived. After, the labeling phase, the classification
task was performed. As one can see from Fig. 8 and 9, the proposed xClass
method can surpass its state-of-the-art competitors as they require more la-
beled data to provide good results. With just 1% of training data is clearly
visible the advantage of xClass. On real scenarios the labeling process is very
time consuming and is not always possible. The classification curve is given
by Fig. 9.

Fig. 7 illustrates the sudden drop in the confidence when new unknown
classes are presented to xClass classifier; the xClass uses the drop of confi-
dence based on the density of the data to discover new classes. Traditional
approaches are not equipped with exploratory mechanisms as the proposed
xClass method; therefore, they are not able to detect new data patterns and
adapt their structure to this situation. It is notable that the proposed xClass
classifier can obtain better results without the necessity for huge number of
labeled data, differently from traditional approaches. The performance curve
is given in Fig. 9, as illustrated, with xClass still producing better classification
rates when more training data is provided.
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Fig. 7 Sudden drop of confidence due the presentation of new unknown classes for the
Faces-1999 dataset.

Fig. 8 Accuracy for extremely weak supervision classification for the Faces-1999 dataset.
red bars illustrate the results obtained by state-of-the-art approaches when just one class is
provided during the training phase. The blue bars indicate the results when all the classes
are provided.
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Fig. 9 Classification curve for different number of training samples for the Faces-1999
dataset.

3.3 Caltech-101 dataset

As a third case, we consider the Caltech-101 dataset [13]. As in the other ex-
periments the proposed xClass classifier was primed with 80% of data samples
from the first class for training, and then, used its exploratory mechanism
to discover the other classes autonomously and learn from them based on the
data density according through the drop of confidence as detailed in Fig. 10; as
illustrated in Fig. 11, traditional approaches are not able to detect new data
patterns after the training phase (traditional approaches were trained with
just 1 class), and then, tend to produce results with low accuracy. Unlike su-
pervised methods which are data hungry, the proposed xClass approach could
obtain high classification accuracy with extremely weak supervision (Fig. 11),
in order word, with less training data as possible. The acquisition of labeled
data requires enormous human efforts and it is very time consuming. Fig. 12
gives the evolution of the performance of the proposed exploratory classifier as
more training samples are provided. As it is illustrated by Fig. 12, the xClass
classifier is able to produce better results in terms of accuracy, demonstrating
its efficiency to detect and learn from unknown effectively.

The Caltech-101 dataset is constituted of 101 different classes. However, in
the experiment only 10 classes were used. Supervised methods such as Deci-
sion tree, k-nearest neighbors (KNN), Adaboost, and SVM require information
about all the available classes beforehand, in order to produce better results
(the red bars in Fig. 11 illustrate the results obtained when just one class is
used in the training phase). In comparison, the proposed extremely weakly
supervised approach requires just the knowledge about one class beforehand
as illustrated by Fig. 10 as the other classes are discovered through its ex-
ploratory mechanism. The blue bar in Fig. 11 illustrates the classification
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Fig. 10 Sudden drop when new unknown are classes are presented to the xClass method –
Caltech-101 dataset.

results when just 1% of labeled training data is provided for all classes. The
proposed exploratory xClass classifier could obtain almost 90% of classification
accuracy. State-of-the-art approached have the necessity for labeled training
data to produce acceptable results as illustrated in Fig. 12. Even when more
labeled training data is provided, the proposed xClass classifier still produce
better results in terms of accuracy than its competitors. Furthermore, the ZSL
method proposed by [19] was reported to provide 57% accuracy for the same
problem which is significantly poorer result than the one obtained by the pro-
posed xClass method. In addition to the significantly higher accuracy than the
ZSL method, the proposed xClass method also has the advantage of allowing
human inspection of the decision-making process (explainable).

3.4 Vehicles dataset

In the fourth case, we consider the vehicles dataset [31], which is a non-image
based dataset. xClass is, firstly, trained with just one sample of the first class,
and then, it has to autonomously detect the other classes based on the empir-
ically observed data and the sudden drop of confidence (Fig. 13). The inner
parallel feature selector of the proposed approach selected 7 out of the 18
original features differently for each class. This is helpful to improve the in-
terpretability of the proposed classifier. Results obtained by xClass and its
competitors are given in Fig. 15. It is important to highlight that SVM, KNN,
Decision Tree, Adaboost, Long short-term memory (LSTM) are all supervised
methods, and they were trained with all available classes beforehand (red
bars in Fig. 14 illustrate the results obtained by the traditional supervised ap-
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Fig. 11 Accuracy for extremely weak supervision classification for the Caltech-101 dataset.

Fig. 12 Classification curve for different number of training samples for the Caltech-101
dataset.

proaches if just one class is used in the training phase). However, the proposed
xClass approach could obtain better results in terms of accuracy even though
it uses an extremely weak supervision (Fig. 14).

Fig. 13 illustrates the drop of confidence when new unseen classes are
presented to the proposed classifier. Differently from traditional approaches
which require the knowledge of all available classes beforehand, the proposed
xClass uses its exploratory mechanism to autonomously discover this new class
with basis just on the empirical data. Red bars on Fig. 14 shows the results
obtained by state-of-the-art methods if just one class is presented during the
training phase, as they are not able to detect new arrivals data patterns and
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adapt they structure to this scenario, they wrongly classify the new arrived
data samples as the known class. Different types of supervision (extremely
weak, weak, full) is provided during experiments, in all cases the proposed
method could provide better results in terms of classification performance than
its competitors as illustrated by Fig. 15. It is possible to note through Fig. 14
that the results obtained for extremely weak supervision with xClass surpass
its competitors in more than 25% in terms of classification performance, which
indicates the efficiency of the proposed method.

As given by Fig. 15, xClass is able to improve its results if more training
data and all classes are provided. For validation purposes, 20% of the data
samples were used in all cases and labels for newly detected classes by xClass
are attached during this phase. The AnYa fuzzy rule [6] for the newly identified
class Rnew can be written as follows:

Rnew : IF (x ∼



104
41
66
10
23
635
73


) THEN ‘NewClass1′

where x is the set of selected features given by the density-based feature se-
lector. x can be written as follows:

x =



COMPACTNESS
CIRCULARITY

PR. AXIS ASPECT RATIO
MAX. LENGTH ASPECT RATIO
PR. AXIS RECTANGULARITY
SCALED V ARIANCE MINOR
SKEWNESS ABOUT MAJOR



During the validation stage labels are attached to the newly identified rules.
The final format for the first newly identified rule is given as follows:

R2 : IF (x ∼



104
41
66
10
23
635
73


) OR (x ∼



90
34
55
6
17
224
65


) OR...OR (x ∼



113
53
62
11
24
688
72


) THEN ‘SAAB′
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Fig. 13 Sudden drop of confidence due the presentation of new unknown classes – Cars
dataset.

Fig. 14 Accuracy for extremely weak supervision classification for the Cars dataset.

4 Conclusion

In this paper, we break with the traditional approach to supervised classifica-
tion. We offer a new fully autonomous extremely weakly supervised approach
(xClass) which is able to learn from just a single class and a handful of labeled
data samples. Then, as new classes, unknown to the human user the trained
classifier appear at a later stage, the proposed xClass method is able to suc-
cessfully discover this and learn from the data autonomously as demonstrated
in the results section. Furthermore, the features (inputs to the classifier) are
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Fig. 15 Classification curve for different number of training samples for the Cars dataset.

automatically sub-selected by the algorithm based on the accumulated data
density per feature per class. Results demonstrated that the proposed approach
offers a high precision as compared with the top state-of-the-art algorithms.

The proposed xClass approach could surpass its competitors in terms of
accuracy for all experiments using extremely weak supervision, as well as, full
supervision. Moreover, the proposed algorithm produced highly transparent
interpretable results, which are helpful for human experts analysis. No user- or
problem- specific algorithmic parameter (except for feature selection which can
be done by ad hoc decision) are required which is also an advantage provided
by the proposed xClass classifier.

To validate our proposal we tested it on four challenging problems, in-
cluding adversarial autonomous cars scenarios classification, imbalanced faces
detection, and objects detection. Not only we achieved higher accuracy (in
one of the problems outperforming by 25% the other methods), but, more
significantly, we only used the knowledge of just a single class beforehand and
extremely weakly labeled data and we generated interpretable models with
smaller number of features used. Furthermore, the proposed xClass method
demonstrated the ability to learn from unknown without retraining, which is
one of the biggest problems of deep learning based on neural networks. As il-
lustrated the convolutional deep learning misclassified an unknown class with
high confidence, on the other hand, the proposed approach was able to detect
a sudden drop in the confidence and learn from this unknown data, then it
was able to proactively create a new class for this new scenario. The proposed
method is applicable to a wide range of problems, especially for problems with
unknown dimension and for problems for which the concept changes over time.

As a future work, we will investigate the occurrence of more than one
unknown class at the same time. Furthermore, we will also explore highly
dynamic problems such as video and other forms of data streams and address
the time needed to learn online.
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