
IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. XX, NO. XX, XX 2020 1

A Novel Data-driven Approach to Autonomous
Fuzzy Clustering

Xiaowei Gu, Qiang Ni, and Guolin Tang

Abstract—In this paper, a new data-driven autonomous fuzzy
clustering (AFC) algorithm is proposed for static data clustering.
Employing a Gaussian-type membership function, AFC firstly
uses all the data samples as micro-cluster medoids to assign
memberships to each other and obtains the membership matrix.
Based on this, AFC chooses these data samples that represent
local models of data distribution as cluster medoids for initial
partition. It then continues to optimize the cluster medoids
iteratively to obtain a locally optimal partition as the algorithm
output. Moreover, an online extension is introduced to AFC
enabling the algorithm to cluster streaming data chunk-by-
chunk in a “one pass” manner. Numerical examples based on
a variety of benchmark problems demonstrate the efficacy of the
AFC algorithm in both offline and online application scenarios,
proving the effectiveness and validity of the proposed concept
and general principles.

Index Terms—data-driven, fuzzy clustering, locally optimal
partition, medoids, pattern recognition.

I. INTRODUCTION

CLUSTERING is a commonly-used unsupervised machine
learning technique for statistical data analysis [1]. Its

main objective is to group data into clusters such that data
samples belonging to the same cluster share higher similarity
than those belonging to other clusters. Thus, clustering is a
tool of great importance for disclosing the underlying patterns
and unveiling the natural geometry of data [2]. Due to the
great demand, it has been a hot research area over the past
decades, and a wide variety of clustering algorithms have been
introduced and implemented for real-world applications, such
as data mining [3] and image segmentation [4].

Generally, clustering algorithms mainly utilize the statistical
properties and mutual distances of data for clustering. Differ-
ent algorithms usually produce different partitions for the same
data because of their unique operating mechanisms. Based
on the way data samples are assigned to clusters, existing
clustering algorithms can be broadly divided into two major
categories, namely, 1) crisp clustering and 2) fuzzy clustering
[5].

Crisp clustering algorithms assign each individual sample to
only one cluster. Thus, clusters obtained by these algorithms

X. Gu is with the Department of Computer Science, Institute of Mathemat-
ics, Physics and Computer Science, Aberystwyth University, Aberystwyth,
SY23 3DB, UK, email: xig4@aber.ac.uk

Q. Ni is with the School of Computing and Communications, Lancaster
University, Lancaster, LA1 4WA, UK, email: q.ni@lancaster.ac.uk

G. Tang is with the School of Management Science and Engineering,
Shandong University of Finance and Economics, Jinan, 250014, China, email:
guolin tang@163.com

Corresponding author: G. Tang.
Manuscript received XXXX XX, 2020; revised XXXX XX, 2020.

are mutually exclusive. The majority of existing clustering
algorithms in the literature belong to the first category. The
classical crisp clustering algorithms include, but are not lim-
ited to, k-means [6], k-medoids [7], DBSCAN [8], BIRCH
[9], affinity propagation [10], Gaussian mixture model [11],
mean-shift [12] and density peak [13]. In recent years, many
advanced clustering algorithms of this category have been
proposed in literature, such as Gaussian density distance [14],
local gravitation clustering [15], autonomous data partitioning
[16] and fast density peak [17], etc.

Different from crisp clustering, fuzzy clustering algorithms
assign each data sample to every cluster with a membership
coefficient [18]. Fuzzy clustering algorithms naturally produce
overlapping partitions, and they have shown better capability
in capturing the data structure thanks to this additional flexibil-
ity [19]. The most well-known and widely used fuzzy cluster-
ing algorithm is the fuzzy c-means (FCM) algorithm proposed
by Dunn [20] and Bezdek [21]. There have been many
variants of FCM algorithm introduced in the past decades [22].
For example, the fuzzy c-medoids (FCMdd) algorithm was
developed on the basis of FCM by combining with the idea
of medoids [23]. The kernel FCM algorithm was introduced
by utilizing kernel functions to map original data into a
higher dimensional kernel Hilbert space such that data can be
clustered more easily [24], [25]. A generalized multiple-kernel
FCM algorithm that employs a linear combination of multiple
kernels was proposed in [26]. A regularized FCM method was
presented in [27], which modifies the objective function of
FCM by incorporating a graph regularization term constructed
based on data correlations. The FCM algorithm was modified
in [28] to enhance its ability of handling outliers by involving
a robust loss function and a penalty term adding sparseness to
the memberships of each individual sample with respect to dif-
ferent clusters. A FCMdd algorithm that employs the weighted
sum of pairwise distances per attribute type as the dissimilarity
measure was proposed in [5] for heterogenous data clustering.
By injecting data affinity into fuzzy clustering, a membership
affinity regularized FCM algorithm was proposed in [29] for
handling data with complex distribution. However, similar to
some classical crisp clustering algorithms such as k-means, it
is a challenging task for the FCM algorithm and its variants
to self-determine the optimal number of clusters without prior
knowledge of the problems [19]. Although there have been a
few FCM variants that are capable of estimating the number of
clusters through an iterative searching process, such algorithms
are highly computationally expensive and their performance is
subject to externally controlled parameters [19], [30], [31],
[32]. Very importantly, these algorithms are not applicable

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. XX, NO. XX, XX 2020 2

for streaming data clustering. They have to repeat the entire
clustering process again if new data samples are given.

In this paper, a new data-driven autonomous fuzzy clus-
tering (AFC) algorithm is proposed. The proposed AFC al-
gorithm adopts the well-known partitioning around medoids
(PAM) strategy [33]. It firstly treats every sample in the data
space as a micro-cluster with itself as the cluster medoid. Then,
the algorithm calculates the memberships of each individual
data sample with respect to all the micro-clusters and obtains
the membership matrix. Based on the membership matrix,
AFC selects out a much smaller number of highly represen-
tative samples as cluster medoids. Such samples represent the
local models of data distribution and can be used to achieve a
good initial partition of the data space. The proposed algorithm
then continues to optimize these cluster medoids iteratively to
achieve the locally optimal partition. Furthermore, a critical
extension is introduced to AFC for online application scenarios
by allowing the proposed algorithm to cluster streaming data
on a chunk-by-chunk basis. With this extension, AFC is able
to extract cluster medoids from each individual chunk of the
data streams and fuse them with the cluster medoids identified
from historical chunks together to produce the final outcome.
To achieve more compact data partition, AFC only keeps
the more representative and distinctive cluster medoids during
the fusion process, while other cluster medoids that represent
similar patterns are removed to avoid redundancy.

To summarize, key features that set the proposed AFC
algorithm apart from existing approaches include:

1) a Gaussian type membership function to control the
degree of fuzziness via a self-adjusting kernel width
derived based on mutual distances of data;

2) an approach to self-determine the number of clusters
and achieve high-quality initial data partition without
computationally expensive searching, and;

3) a chunk-by-chunk clustering mechanism that enables the
algorithm to cluster data streams with high computation-
and memory-efficiency.

The remainder of this paper is organized as follows. Section
II describes the technical details of the AFC algorithm. The
extension to streaming data clustering is presented in Section
III. Section IV presents the detailed computational complexity
analysis of the proposed algorithm. Numerical examples with
discussions are given by Section V. Section VI concludes this
paper and gives directions for future work.

II. PROPOSED ALGORITHM

This section describes the proposed AFC algorithm in
detail. First of all, let {x} = {x1,x2, ...,xK} be a static
data set in a real N -dimensional data space, RN , where
xk = [xk,1, xk,2, ..., xk,N]T ∈ RN (k = 1, 2, . . . ,K);
the subscript k stands for the time instance at which xk
is observed. In this paper, the commonly used Euclidean
distance is employed as the default distance measure, namely,

||xi − xj || =
√∑N

n=1(xi,n − xj,n)2.

A. Objective Function
The objective of the proposed algorithm is to partition the K

data samples into C clusters. Note that C is not known a priori.

Each cluster is represented by a medoid, pi (i = 1, 2, . . . , C).
A medoid is an actual data sample at the cluster closest to the
mean. Typically, cluster medoids can provide more intuitive
information about the data than cluster means, which are used
by many clustering approaches. This is because cluster means
usually do not physically exist; meanwhile, cluster medoids
are the most representative samples in the data space.

For data partitioning, the following objective function and
optimization problem is proposed in this paper:

J(U ,P) =

K∑
k=1

C∑
i=1

µ̄i,k||xk − pi||2 (1)

where U = [µ̄i,k]k=1:K
i=1:C is the membership matrix; P =

[pi]i=1:C is the medoid matrix; µ̄i,k is the normalized fuzzy
membership of xk in the ith cluster represented by the medoid,
pi, subject to:

µ̄i,k > 0 and

C∑
i=1

µ̄i,k = 1 (2)

The normalized fuzzy membership, µ̄i,k is obtained using Eqn.
(3).

µ̄i,k =
µ(pi,xk, σG)∑C
j=1 µ(pj ,xk, σG)

(3)

where µ(pi,xk, σG) is the Gaussian type fuzzy membership
defined by Eqn. (4) [34].

µ(pi,xk, σG) = e
− ||pi−xk||

2

σ2
G (4)

Gaussian kernel function is the most widely used type of
membership functions by existing fuzzy rule-based systems.
Gaussian is more compact and has stronger capability to
neutralize the negative effects of outliers than other commonly
used kernel functions, such as Cauchy and triangular, etc.
Thus, using Gaussian type membership function can effec-
tively improve the robustness of the AFC algorithm. However,
one may choose to use other kernel functions instead as the
best-performing membership function is always different from
case to case depending on the nature of data.

The main aim of AFC is to identify a set of cluster
medoids, P from these empirically observed data samples
by minimizing Eqn. (1). It is worth noting that Eqn. (1) is a
simplified version of the commonly used objective function by
the FCM algorithm [21], [22], [35]. Unlike the conventional
FCM algorithm, which controls the degree of fuzziness by
employing a fuzzy weighting exponent, AFC controls the
degree of fuzziness by adjusting the kernel width. The kernel
width, σG is derived directly from data based on their mutual
distances and the level of granularity (G) controlled by users
[36]:

σ2
g =

1∑K−1
i=1

∑K
j=i+1 wg,i,j

K−1∑
i=1

K∑
j=i+1

wg,i,j ||xi−xj ||2 (5)

where g = 1, 2, . . . , G; G can be any non-negative integer

chosen by users and wg,i,j =

{
1, if ||xi − xj || ≤ σg−1
0, else

.

There is σ2
0 = 2

K(K−1)
∑K−1
i=1

∑K
j=i+1 ||xi − xj ||2.

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. XX, NO. XX, XX 2020 3

 (a) 𝐺 = 1 (b) 𝐺 = 3 (c) 𝐺 = 4 (d) 𝐺 = 5

Fig. 1: Illustration of cumulative membership, λ(x) (blue dots – data samples; red dots – local maxima).

The self-adjusting kernel width, σG represents the radius of
zone of influence around each cluster medoid under the Gth

level of granularity, and it can also be viewed as the maximum
distance between any two neighbouring data samples under the
Gth level of granularity.

The main procedure of the proposed algorithm is described
by the following section. By default, the Gth level of granu-
larity is considered.

B. Algorithmic Procedure

For initialization, the proposed algorithm treats every indi-
vidual sample as a micro-cluster with itself as the medoid. As
a result, there are K micro-clusters in total. Then, the corre-
sponding membership matrix, denoted by Umicro is obtained
by using each micro-cluster medoid, xk to assign memberships
to all the K data samples in the data space (including itself):

Umicro = [µ̄′k,j]
k=1:K
j=1:K (6)

where µ̄′k,j =
µ(xk,xj ,σG)∑K
i=1 µ(xi,xj ,σG)

; µ(xk,xj , σG) is calculated
by Eqn. (4).

Based on Umicro, the cumulative membership of each
micro-cluster medoid, xk is calculated by Eqn. (7) (k =
1, 2, . . . ,K):

λ(xk) =

K∑
j=1

µ̄′k,j =

K∑
j=1

µ(xk,xj , σG)∑K
i=1 µ(xi,xj , σG)

(7)

The cumulative membership, λ(x) is the sum of normalized
membership degrees that each individual cluster medoid as-
signs to all data samples. It has the power to disclose the
natural multimodal structure of data. The cumulative mem-
bership values of all data samples from S1 dataset (available
at http://cs.joensuu.fi/sipu/datasets/) are depicted in Fig. 1 for
illustration, where the level of granularity, G is set to be 1, 3, 4
and 5 for Figs. 1(a)-1(d), respectively. It can be observed from
Fig. 1 that cumulative membership resembles the unimodal
probability mass function if a smaller value of G is selected
by users. In such cases, the cumulative membership discloses
the main pattern of data. In contrast, if a greater G is chosen,
cumulative membership discloses more information about the
local models of data distribution. However, it is worth noting
that the level of granularity can be determined merely based
on users’ preference without prior knowledge.

After this, Condition 1 (Eqn. (8)) is used to identify a
small set of data samples from {x}, denoted by {p}0C as
the local maxima of λ(x), representing local models of data
distribution.

Condition 1: If (λ(xk) > max
||xk−xj ||≤σG;k 6=j

(λ(xj)))

Then (xk ∈ {p}0C)
(8)

where C is the cardinality of {p}0C . The local maxima of λ(x)
identified by Condition 1 are depicted in Fig. 1 as the red dots.

Next, {p}0C are used as the cluster medoids for data parti-
tioning. The algorithm then iteratively optimizes the positions
of cluster medoids by minimizing the objective function,
namely, Eqn. (1). It is worth noting that using the local
maxima, {p}0C identified by Condition 1 as the initial cluster
medoids brings two attractive benefits: 1) the number of
clusters is self-determined by the algorithm based on the
spatial distribution of data instead of asking users to pre-set
based on prior knowledge of the problems; 2) the algorithm
is more robust than the traditional FCM algorithm because it
is free from random initialization. The initial cluster medoids
identified from S1 dataset under the levels of granularity set as
1, 3, 4 and 5 are presented in Figs. 2(a)-2(d), respectively, for
illustration, where dots in different colours stand for samples
of different discovered clusters with transparency proportional
to the respective membership degrees. Note that unless specif-
ically declared otherwise, clustering results presented in this
paper are obtained after defuzzification. It can be seen from
Fig. 2 that a greater value of G helps the proposed algorithm
to identify more cluster medoids in the data space, leading to
finer partitioning result.

To minimize the objective function, {p}0C is firstly refor-
mulated as the cluster medoid matrix, denoted by P 0 and the
corresponding membership matrix, U0 is obtained by Eqn. (3).
Based on P 0 and U0, J(U0,P 0) can be calculated using
Eqn. (1). The proposed algorithm iteratively optimizes the
positions of cluster medoids by repeating the following two
steps (t← 1), which is standard for FCMdd [19], [23].

Step 1. Update P t−1 to P t with fixed U t−1 by Eqn. (9):

pti = arg min
z∈{x}

(K∑
k=1

µ̄t−1i,k ||xk − z||2
)

(9)

http://cs.joensuu.fi/sipu/datasets/

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. XX, NO. XX, XX 2020 4

 (a) 𝐺 = 1 (b) 𝐺 = 3 (c) 𝐺 = 4 (d) 𝐺 = 5

Fig. 2: Obtained initial clustering results (dots– data samples; diamonds – cluster medoids).

 (a) 𝐺 = 1 (b) 𝐺 = 3 (c) 𝐺 = 4 (d) 𝐺 = 5

Fig. 3: Obtained final clustering results (dots– data samples; diamonds – cluster medoids).

Then, update U t−1 to U t with fixed P t by Eqn. (10):

µ̄ti,k =
µ(pti,xk, σG)∑C
j=1 µ(ptj ,xk, σG)

(10)

where i = 1, 2, . . . , C; k = 1, 2, . . . ,K.
Step 2. Calculate J(U t,P t) using Eqn. (1). Then, the

algorithm goes back to Step 1 with t← t+ 1.
The iteration process continues until J(U t,P t) reaches a

locally minimum value. Once the iteration process is termi-
nated, the final cluster medoid matrix, P t and membership
matrix, U t are obtained as the algorithm’s output, re-denoted
by P and U . Following the example given by Figs. 1
and 2, the final cluster medoids obtained after the iterative
optimization process from S1 dataset under different levels
of granularity are presented in Fig. 3. By comparing between
Figs. 2 and 3, one may conclude that the cluster medoids
identified by Condition 1 provide a good initialization for the
later iterative optimization process.

It is worth noting that the robustness of the proposed AFC
algorithm can be further improved by replacing the Euclidean
distance with a robust dissimilarity measure and using a
more robust objective function for optimization. One may find
good examples of robust dissimilarity measures and objective
functions for fuzzy clustering from [33]. Nevertheless, this is
beyond the scope of this paper.

C. Summarization

The algorithmic procedure of the proposed AFC algorithm
for static data clustering is summarized by Algorithm 1.

Algorithm 1 AFC for static data clustering.

inputs: i) static dataset, {x}; ii) level of granularity, G;
outputs: cluster medoid matrix, P ;

obtain the self-adjusting kernel width, σG by (5);
obtain Umicro by (6);
calculate λ(x) by (7);
obtain P 0 by (8) and obtain U0 by (3);
calculate J(U0,P 0) by (1);
t← 1;
while true do

update P t and U t by (9) and (10);
calculate J(U t,P t) by (1);
if (J(U t,P t) converges) then

break;
else
t← t+ 1;

end if
end while
P ← P t;
return P .

III. EXTENSION TO STREAMING DATA CLUSTERING

As many real-world applications concern streaming data
processing, this section introduces an extension to the AFC
algorithm for data stream clustering. This extension enables
the proposed algorithm to continue clustering newly arrived
data samples chunk-by-chunk on top of the original partition

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. XX, NO. XX, XX 2020 5

initialized by a static dataset. To guarantee its memory-
efficiency, AFC discards all the processed historical data
chunks and keeps only the key information in the system.

The main algorithmic procedure for chunk-by-chunk
streaming data clustering is described as follows. By default,
it is assumed that there have been C∗L−1 cluster medoids in to-
tal, denoted by {p}∗L−1 = {p∗L−1,1,p∗L−1,2, . . . ,p∗L−1,C∗L−1

},
identified from the L− 1 historical data chunks.

A. Algorithmic Procedure

Given the Lth data chunk, denoted by {x}L =
{xL,1,xL,2, . . . ,xL,KL} (KL is the size of {x}L), the algo-
rithm firstly updates the self-adjusting kernel width, σG using
Eqn. (11):

σ2
G =

∑L
l=1Klσ

2
G,l∑L

l=1Kl

(11)

where σG,l is the kernel width calculated from {x}l (l =
1, 2, . . . , L) using Eqn. (5); Kl is the corresponding chunk
size. The algorithm then extracts a set of cluster medoids from
{x}L, denoted by {p}L = {pL,1,pL,2, . . . ,pL,CL} using
Algorithm 1. Note that different data chunks do not necessarily
need to be of the same size.

After this, the main task is to merge {p}L and {p}∗L−1
together to produce {p}∗L. However, combining them together
directly is not the best solution because {p}L may contain a
portion of cluster medoids that represent similar patterns to
some of cluster medoids identified from the previous chunks
before. To achieve a more compact and concise data partition,
the following two-step approach for cluster medoid selection
is proposed:

Step 1. Extract the most distinctive cluster medoids from
both {p}L and {p}∗L−1 and combine them into {p}∗L;

Step 2. Select out the more representative cluster medoids
from the rest of {p}L and {p}∗L−1 to join {p}∗L.

Firstly, Eqn. (12) is employed to split {p}L into two subsets,
namely, {p}1L and {p}2L:{
{p}1L ← {p}1L ∪ {pL,j}, if minp∗∈{p}∗L−1

(||p∗ − pL,j ||2) ≥ σ2
G

{p}2L ← {p}2L ∪ {pL,j}, else
(12)

where j = 1, 2, . . . , CL. Similarly, Eqn. (13) is used to split
{p}∗L−1 into {p}∗1L−1 and {p}∗2L−1, where i = 1, 2, . . . , C∗L−1.{
{p}∗1L−1 ← {p}∗1L−1 ∪ {p∗L−1,i}, if minp∈{p}L(||p− p∗L−1,i||2) ≥ σ2

G

{p}∗2L−1 ← {p}∗2L−1 ∪ {p∗L−1,i}, else
(13)

Note that {p}∗1L−1 and {p}1L are the sets of cluster medoids
that are spatially distant from each other with no overlap in
their areas of influence. Therefore, cluster medoids of the two
sets are more discriminative and will be kept as a part of
{p}∗L: {p}∗L ← {p}∗1L−1 ∪ {p}1L. In contrast, cluster medoids
of {p}∗2L−1 and {p}2L are spatially closer to each other and
could represent the same local models of data distribution.
Thus, they need to be closely examined to avoid redundancy.

Then, Condition 2 (Eqn. (14)) is employed to identify the
more representative cluster medoids from {p}∗2L−1 and {p}2L
to join {p}∗L.

Condition 2: If (λL(pi) > max
||pi − pj || ≤ σG;

pj ∈ {p}∗2L−1 ∪ {p}2L

(λL(pj)))

Then ({p}∗L ← {p}∗L ∪ {pi})
(14)

where pi ∈ {p}∗2L−1 ∪ {p}2L; λL(pi) is the cumulative
membership of pi calculated with {x}L by Eqn. (15):

λL(pi) =

KL∑
j=1

µ̄i,j =

KL∑
j=1

µ(pi,xL,j , σG)∑ML

k=1 µ(pk,xL,j , σG)
(15)

where µ̄i,j =
µ(pi,xL,j ,σG)∑ML
k=1 µ(pk,xL,j ,σG)

; ML is the cardinality of

{p}∗2L−1 ∪ {p}2L. After this, the current processing cycle is
finished, AFC is ready for the next data chunk (L← L+ 1).

The main aim of Condition 2 is to identify these cluster
medoids with higher cumulative membership values than their
neighbours locally. According to Eqn. (15), only the cluster
medoids that describe the local models of the current data
distribution the best can have the highest cumulative member-
ship values. Thus, these cluster medoids satisfying Condition
2 can better represent the patterns of the current data chunk
than others in {p}∗2L−1 and {p}2L and will be kept in {p}∗L.
Other cluster medoids that represent similar patterns to these
selected ones but with lower descriptive ability are removed
from the data space to avoid overlapping.

With the proposed extension, AFC can effectively handle
both the concept shifts and drifts in the data streams [37].
During each learning cycle, out-of-date cluster medoids will
be replaced with the more representative ones to self-adapt to
concept drifts, namely, gradual changes of data patterns. At the
same time, new cluster medoids that represent emerging data
patterns of the data streams will be added to the clustering
output when concept shifts, namely, abrupt changes of data
patterns are detected. Therefore, AFC is suitable for clustering
both stationary and nonstationary data streams.

However, to avoid the loss of valuable knowledge mined
from data streams before, AFC will maintain all the cluster
medoids identified from historical data chunks as long as
they are distinctive and can well represent the local patterns
of historical data. Nevertheless, one may choose to remove
these cluster medoids that could not represent the latest data
patterns of the current chunk from the clustering outputs to
further enhance the capability of AFC to handle nonstationary
streaming data.

An illustrative example is given in Fig. 4 using S1 dataset,
where the dataset is split into two chunks evenly, and the
level of granularity is selected as G = 4. Fig. 4(a) shows the
identified cluster medoids from the first chunk; Fig. 4(b) gives
the identified cluster medoids from the second chunk; cluster
medoids from the data chunks are plotted together in Fig. 4(c);
and the final clustering result after merging the two sets of
cluster medoids are given in Fig. 4(d), where all historical
data samples are included in the final clustering outcome for
better visualization.

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. XX, NO. XX, XX 2020 6

 (a) Clustering result on chunk 1 (b) Clustering result on chunk 2 (c) Identified clustering medoids from two chunks (d) Final clustering results

Fig. 4: Chunk-by-chunk streaming data clustering with G = 4 (dots – data samples; diamonds – cluster medoids).

B. Summarization
The algorithmic procedure of the proposed AFC algorithm

for chunk-by-chunk for streaming data clustering is summa-
rized by Algorithm 2.

Algorithm 2 AFC for streaming data clustering.

inputs: i) data chunks, {x}1, {x}2, ..., {x}L;
ii) level of granularity, G;

outputs: cluster medoid matrix, P ;

while ({x}L is available) do
obtain {p}L from {x}L using Algorithm 1;
if (L = 1) then
{p}∗L ← {p}L;

else
update σG by (11);
split {p}L to {p}1L and {p}2L by (12);
split {p}∗L−1 to {p}∗1L−1 and {p}∗2L−1 by (13);
{p}∗L ← {p}∗1L−1 ∪ {p}1L;
expand {p}∗L with {p}∗2L−1 and {p}2L by (14);

end if
end while
PL ← {p}∗L;
return PL.

IV. COMPUTATIONAL COMPLEXITY ANALYSIS

The computational complexity of the proposed AFC algo-
rithm is analysed in this section.

For static data clustering, AFC firstly treats every sample as
a micro-cluster and calculates the membership matrix, Umicro.
The complexity for this is O(K2). Then, AFC identifies C
cluster medoids, {p}0C using Condition 1. The computational
complexity of calculating cumulative membership and iden-
tifying cluster medoids is O(K). After this, AFC iteratively
optimizes these cluster medoids to minimize the loss function,
J(U ,P) to produce the ultimate data partition. Assuming
that J(U ,P) converges to the local minimum value after H
iterations, the computational complexity for this optimization
process is O(HCK). Therefore, the overall complexity of
AFC is O(K2 +HCK).

For streaming data clustering, since the computational com-
plexity is dynamically changing, the analysis is assumed to be

conducted at the time instance when AFC receives the Lth

data chunk, {x}L. The computational complexity for AFC
to partition {x}L and extract CL cluster medoids, {p}L is
O(K2

L + HLCLKL), where HL stands for the number of
iterations before J(U ,P) converges. To merge {p}L with
the identified cluster medoids from historical chunks, {p}∗L−1,
AFC firstly split {p}L and {p}∗L−1 into {p}1L, {p}2L, {p}∗1L−1
and {p}∗2L−1, respectively, based on their mutual distances, and
the computational complexity for this is O(CLC

∗
L−1). The

complexity for selecting out the more representative cluster
medoids from{p}2L∪{p}∗2L−1 using Condition 2 is O(KLML).
Therefore, the complexity for AFC to process the Lth data
chunk is O(K2

L +HLCLKL + CLC
∗
L−1 +KLML).

Based on the above analysis, the overall computational
complexity for AFC to cluster a data stream composed of L
chunks is O(

∑L
i=1(K2

i + HiCiKi + CiC
∗
i−1 + KiMi)), and

there are C∗0 = 0 and M1 = 0.

V. NUMERICAL EXAMPLES

In this section, numerical examples are presented for
demonstrating the efficacy of the proposed AFC algorithm.
Numerical experiments are conducted with Matlab2020b on
a laptop with dual core i7 processor with clock frequency
2.6GHz×2 and 16GB RAM.

A. Experimental Setting

For experimental investigation, 16 popular benchmark
datasets are used, which include six synthetic problems, eight
real-world problems and two image recognition problems.
Details of these datasets are listed in Table I, where T , K
and N represent “number of classes”, “number of samples”
and “number of attributes”, respectively. Web links to the 14
datasets are given by Table S1 in the Supplementary Material.

For benchmark comparison, a total of 16 state-of-the-art
clustering algorithms are involved.

1) Fuzzy c-means (FCM) clustering algorithm [38];
2) Kernel FCM clustering algorithm with membership

affinity lasso regularization (MAL) [29];
3) K-means (KM) clustering algorithm [6];
4) DBSCAN (DBS) clustering algorithm [8];
5) Mean shift (MS) clustering algorithm [12];
6) Subtractive (SUB) clustering algorithm [39];

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. XX, NO. XX, XX 2020 7

TABLE I: KEY DETAILS OF BENCHMARK DATASETS
FOR EXPERIMENTS

Dataset Abbreviation T K N
R15 R15 15 600 2

Aggregation AG 7 788 2
S1 S1 15 5000 2
S2 S2 15 5000 2
S3 S3 15 5000 2
S4 S4 15 5000 2

Abalone AB 3 4177 8
Spambase SB 2 4601 57

Cardiotocography CG 10 2126 21
Steel plate faults SPF 7 1941 27
Multiple features MF 10 2000 649

Pen-based handwritten
digit recognition PD 10 10992 16

Wine quality WQ 7 6497 11
Occupancy detection OD 2 20560 5

MNIST MNIST 10 70000 784
Fashion MNIST FMNIST 10 70000 784

7) Nonparametric mode identification (NMI) algorithm
[40];

8) Affinity propagation (AP) algorithm [10];
9) Gaussian density distance (GDD) clustering algorithm

[14];
10) Communication with local agents (CLA) clustering al-

gorithm [15];
11) Local gravitation clustering (LGC) algorithm [15];
12) Autonomous data partitioning (ADP) algorithm [16];
13) Evolving clustering (EC) algorithm [45];
14) Online k-means (OKM) algorithm [46];
15) Evolving local means (ELM) algorithm [47];
16) Online clustering and anomaly detection (OCA) algo-

rithm [15].
The respective parameter settings of these comparative clus-

tering algorithms for numerical experiments are listed in Table
S2 in the Supplementary Material. Among the 16 algorithms,
EC, OKM, ELM and OCA are designed specifically for
streaming data clustering. ADP has two different versions,
namely, the offline version for static data clustering, and the
evolving version for online scenarios. The other 11 algorithms
are designed for static data clustering in offline application
scenarios. The externally controlled parameter settings for
these clustering algorithms are determined based on the rec-
ommendations given by the literature. Note that the parameter
settings of GDD and ADP are hard coded; thus, there is no
need for users to predefine externally controlled parameters.

In order to objectively measure the performance of the
clustering algorithms, the following six criteria are considered
in this paper.

1) Number of clusters (C);
2) Adjusted Rand index (ARI) [41];
ARI is the corrected-for-chance version of the Rand index

for evaluating the accuracy of clustering results. The value
range of ARI is [−1, 1] and, generally, the greater ARI is,
the better clustering result is.

3) Calinski Harabasz index (CHI) [42];
CHI is used to evaluate the optimal number of clusters.

Better clustering results usually have greater CHI values.

4) Davies-Bouldin index (DBI) [43];
DBI is based on a ratio of within-cluster and between-

cluster distances. Better clustering results usually have smaller
DBI values.

5) Silhouette coefficient (SC) [44];
SC is an indication of how well each sample lies within its

cluster. The value range of SC is [−1, 1]. SC should also be
as high as possible.

6) Execution time in seconds (texe).
texe is for measuring the computational efficiency and

should be as lower as possible.
Detailed expressions of ARI , CHI , DBI and SC are given

in the Supplementary Material.
Numerical examples are presented in the following subsec-

tion for evaluating the performance of the proposed algorithm.
It is worth noting that ARI , CHI , DBI and SC may
return abnormal values when the algorithms identify too many
clusters. Such results are meaningless and not interpretable
for human users. Therefore, the clustering results with C >
0.25K are considered as invalid.

In this paper, numerical results of fuzzy clustering algo-
rithms including the proposed one are obtained after defuzzi-
fication. All the reported numerical results are averaged over
five Monte Carlo experiments to allow a certain degree of
randomness.

B. Performance Demonstration

In this subsection, the clustering performance of the pro-
posed AFC algorithm is evaluated. By default, the experiments
are conducted in offline scenarios unless expressly declared
otherwise.

Firstly, the influence of the level of granularity, G on AFC’s
clustering performance is investigated. In this example, the
following six synthetic benchmark datasets, R15, AG, S1, S2,
S3 and S4, are used. The level of granularity, G is set to
be 2, 3, 4, 5, 6 and 7, respectively, during this experiment.
Clustering results obtained by AFC are presented in Table S3
in the Supplementary Material in terms of the aforementioned
six criteria. It can be observed from Table S3 that given a
smaller value of G, AFC focuses more on the main patterns
of data, but it may fail to capture the information of local
data patterns if G is too small. On the other hand, AFC has
greater ability of disclosing local patterns if a greater value of
G is chosen, but the clustering result may contain too many
unnecessary details and become uninterpretable for users if
the value of G is too large. In addition, its computational
efficiency may also decrease due to the higher complexity of
the iterative process for optimizing cluster medoids. Based on
the clustering results evaluated by the four quality measures,
the recommended values of G are 4 and 5. These two values
will be used for the remaining experiments presented in this
section unless specifically declared otherwise. Nevertheless,
it has to be admitted that the most appropriate level of
granularity is determined by the nature of data and would vary
from problem to problem.

Secondly, the proposed algorithm is compared with 12 state-
of-the-art offline clustering algorithms on the six synthetic

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. XX, NO. XX, XX 2020 8

TABLE II: STATIC DATA CLUSTERING PERFORMANCE COMPARISON ON SIX BENCHMARK SYNTHETIC
DATASETS

Algor
ithm

Data
set

Measure Data
set

Measure
C ARI CHI DBI SC texe C ARI CHI DBI SC texe

AFC (G = 4)

R15

15 0.986 4846.116 0.315 0.900 0.013

AG

8 0.736 1365.448 0.701 0.649 0.022
AFC (G = 5) 16 0.974 4682.205 0.414 0.869 0.014 15 0.412 1658.009 0.774 0.610 0.022

FCM 15 0.976 4114.342 0.361 0.873 0.034 7 0.699 1258.777 0.810 0.620 0.030
MAL 12 0.727 1125.451 0.830 0.560 8.388 7 0.855 1201.975 0.667 0.633 3.035
KM 15 0.908 3481.683 0.470 0.826 0.031 7 0.748 1341.712 0.720 0.666 0.031
DBS 15 0.989 4869.330 0.314 0.901 0.029 6 0.875 730.496 0.592 0.536 0.042
MS 1 0.000 NaN NaN NaN 0.010 3 0.528 596.366 0.738 0.512 0.008
SUB 8 0.264 760.074 0.349 0.781 0.188 8 0.806 1262.916 0.694 0.626 0.197
NMI 1 0.000 NaN NaN NaN 0.388 8 0.805 1251.002 0.677 0.612 3.804
AP 15 0.986 4835.129 0.316 0.899 0.684 25 0.260 1606.389 0.806 0.552 1.346

GDD 10 0.480 789.314 0.614 0.533 0.105 5 0.809 754.200 0.625 0.514 0.178
CLA 15 0.989 4842.778 0.315 0.899 0.060 7 0.995 1208.391 0.505 0.645 0.091
LGC 15 0.989 4862.929 0.315 0.900 0.039 8 0.951 1131.303 0.602 0.594 0.050
ADP 15 0.993 4871.983 0.315 0.901 0.033 21 0.313 1638.066 0.793 0.579 0.042

AFC (G = 4)

S1

15 0.986 22675.165 0.366 0.880 0.958

S2

15 0.936 13505.920 0.465 0.801 0.899
AFC (G = 5) 20 0.901 18323.773 0.829 0.731 1.023 18 0.919 11633.442 0.604 0.759 0.882

FCM 15 0.970 21112.554 0.396 0.868 0.163 15 0.919 12345.288 0.508 0.778 0.278
MAL 15 0.884 11891.423 0.740 0.719 298.009 15 0.682 5459.124 1.037 0.443 287.936
KM 15 0.903 14190.740 0.510 0.817 0.035 15 0.905 12221.218 0.522 0.776 0.038
DBS 32 0.932 12395.415 0.783 0.651 0.818 35 0.736 3750.428 1.062 0.390 0.809
MS 4 0.210 2414.677 0.858 0.329 0.031 4 0.235 3233.804 0.861 0.367 0.026
SUB 10 0.708 8360.556 0.573 0.722 0.551 10 0.618 6258.652 0.663 0.616 0.546
NMI 6 0.479 5922.534 0.731 0.635 7.285 4 0.286 3966.144 0.806 0.501 8.625
AP (1911) (0.336) (207.948) (0.742) (0.307) (97.992) (1405) (0.307) (216.999) (0.899) (0.043) (97.539)

GDD 97 0.796 1139.831 0.566 -0.056 2.557 149 0.101 19.450 0.819 -0.609 2.699
CLA 15 0.987 22591.143 0.367 0.879 1.517 15 0.933 13209.972 0.474 0.793 1.519
LGC 16 0.977 21268.683 0.456 0.846 0.747 19 0.886 11099.194 0.675 0.691 0.801
ADP 15 0.987 22675.254 0.367 0.880 0.540 18 0.910 12109.958 0.615 0.761 0.564

AFC (G = 4)

S3

12 0.609 6775.569 0.667 0.630 0.912

S4

16 0.588 5463.927 0.731 0.632 0.933
AFC (G = 5) 23 0.641 6344.410 0.862 0.600 0.951 36 0.446 4648.732 0.934 0.485 1.125

FCM 15 0.718 7704.313 0.654 0.659 0.284 15 0.637 6181.359 0.650 0.642 0.256
MAL 15 0.444 2344.551 1.607 0.066 261.302 15 0.341 732.992 5.036 -0.046 257.821
KM 15 0.645 6635.234 0.755 0.619 0.042 15 0.597 5728.987 0.705 0.629 0.047
DBS 14 0.001 48.748 1.107 -0.638 0.827 10 0.001 73.739 0.899 -0.492 0.860
MS 1 0.000 NaN NaN NaN 0.029 2 0.009 341.753 0.829 0.231 0.027
SUB 7 0.422 5347.118 0.738 0.535 0.535 7 0.361 4233.038 0.808 0.525 0.547
NMI 15 0.727 7673.618 0.654 0.654 12.578 15 0.637 5806.551 0.692 0.614 15.908
AP (2165) (0.226) (74.298) (0.760) (0.106) (95.359) (2331) (0.192) (33.856) (1.017) (0.100) (94.615)

GDD 203 0.019 3.730 1.163 -0.793 2.546 123 0.038 14.929 0.619 -0.618 2.557
CLA 14 0.700 6815.032 0.652 0.621 1.402 15 0.572 4057.617 0.811 0.464 1.466
LGC 23 0.620 5003.103 0.893 0.523 0.771 22 0.549 3930.612 0.886 0.469 0.803
ADP 24 0.642 6429.828 0.85 0.599 0.547 28 0.555 4944.119 0.839 0.585 0.562

benchmark datasets used before in offline scenarios. Perfor-
mance comparison is conducted under the six measures and
the results are reported in Table II (NaN stands for “not a
number”). To better interpret the results, performances of the
clustering algorithms on each individual dataset are ranked in
terms of the four clustering quality criteria (ARI , CHI , DBI
and SI) individually. Ranks of all the algorithms per dataset
per criterion are given by Table S5 in the Supplementary
Material. Examples of clustering results obtained by AFC
are given by Fig. 5 for better illustration, where the level of
granularity, G is set as 4.

Furthermore, the following eight real-world datasets,
namely, AB, SB, CG, SPF, MF, PD, WQ and OD are used for
performance evaluation in offline scenarios. The performance
of the proposed AFC algorithm is also competed with the same
12 comparative algorithms used before under the same six
measures. The clustering results obtained by AFC and the 12
competitors are presented in Table III (Inf stands for “infinity
value”). Similarly, ranks of these algorithms per dataset per
criterion are given by Table S6 in the Supplementary Material.
For visual clarity, the overall ranks of the offline algorithms
over the 14 benchmark datasets are reported in Table IV.

It can be observed from Table IV that the proposed AFC al-
gorithm with G = 4 is able to obtain the best overall clustering
results over the 14 benchmark datasets. The values of the three
quality indices, namely, CHI , DBI and SI calculated on its
clustering results are ranked the top over all the clustering
algorithms involved in the numerical experiments. On the other
hand, AFC with G = 5 ranks at the sixth place among the 14
algorithms in terms of the overall performance. The reason
for this is that the level of granularity controls the degree
of fineness of the clustering outcome. With a higher level of
granularity, AFC focuses more on the local data patterns and
tends to produce more clusters, but this unfavourably decreases
the values of clustering quality indices calculated from the
partition results.

Next, the synthetic benchmark dataset S4 is used for illus-
trating the online streaming data clustering process of the AFC
algorithm. In this example, S4 dataset is randomly divided
into four chunks evenly, and AFC with G = 4 groups the
data chunk-by-chunk. Evolution of the clustering outcome
over time is visualized in Fig. S2 in the Supplementary
Material. Here, the obtained cluster medoids and all processed
data chunks at the end of each learning cycle are used for

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. XX, NO. XX, XX 2020 9

TABLE III: STATIC DATA CLUSTERING PERFORMANCE COMPARISON ON EIGHT REAL-WORLD DATASETS

Algor
ithm

Data
set

Measure Data
set

Measure
C ARI CHI DBI SC texe C ARI CHI DBI SC texe

AFC (G = 4)

AB

36 0.044 8822.611 0.485 0.709 0.727

SB

184 0.100 22737.403 0.322 0.615 2.795
AFC (G = 5) 83 0.027 9841.226 0.518 0.671 7.413 287 0.044 30434.437 0.322 0.489 3.950

FCM 3 0.133 7379.656 0.605 0.690 0.040 2 0.051 4426.995 0.615 0.900 0.117
MAL 3 0.158 1199.405 3.013 0.114 61.565 2 0.026 45.855 3.089 -0.373 66.385
KM 3 0.099 6692.543 0.616 0.668 0.031 2 0.024 3534.293 0.531 0.951 0.033
DBS 25 0.037 7993.289 0.901 0.711 0.663 1 0.000 NaN NaN NaN 1.238
MS 3 0.000 0.957 0.966 -0.494 0.204 313 -0.007 7.742 3.191 -0.764 1.317

SUB 5 0.099 567.188 3.504 -0.132 0.599 3 0.187 34.160 3.880 -0.758 6.646
NMI 5 0.000 84.941 0.359 0.826 14.05 21 0.032 881.318 0.287 0.842 334.160
AP (3948) (0.005) (12.242) (0.192) (0.956) (66.181) (3912) (0.003) (0.728) (0.527) (NaN) (80.781)

GDD 38 0.042 6860.490 0.576 0.597 3.611 25 0.062 1200.339 0.758 -0.439 16.629
CLA 14 0.039 10369.614 0.694 0.704 1.178 7 0.083 1439.844 1.886 -0.580 1.558
LGC 13 0.039 2668.466 0.895 0.523 0.799 6 0.104 601.683 1.004 -0.543 1.104
ADP 5 0.098 4919.895 0.577 0.639 0.421 12 0.069 3405.017 0.647 0.874 0.538

AFC (G = 4)

CG

47 0.105 234.801 1.290 0.250 0.206

SPF

32 0.064 5355.400 0.436 0.679 0.251
AFC (G = 5) 116 0.057 179.489 1.091 0.253 0.202 59 0.053 8021.374 0.454 0.675 0.260

FCM 10 0.114 618.067 1.825 0.231 0.166 7 0.040 4458.406 0.683 0.582 0.114
MAL 10 0.102 277.281 2.830 -0.082 20.564 7 0.188 11.512 54.231 -0.368 25.827
KM 10 0.131 723.773 1.322 0.355 0.038 7 0.044 4477.523 0.598 0.652 0.035
DBS 14 0.043 64.498 1.352 -0.228 0.218 18 0.078 288.536 1.098 -0.582 0.186
MS (509) (0.053) (47.951) (1.002) (-0.092) (0.200) (892) (0.073) (11.800) (47.825) (-0.249) (0.246)

SUB 165 0.036 80.821 2.152 -0.100 0.576 4 0.034 123.914 3.158 -0.283 0.413
NMI 322 0.076 67.695 0.658 0.170 19.688 9 -0.002 690.336 0.303 0.708 39.175
AP 44 0.064 370.961 1.301 0.290 6.024 (1648) (0.035) (6.113) (0.625) (0.807) (14.545)

GDD 2 0.029 227.020 1.891 0.474 1.731 380 0.073 28.731 0.816 -0.509 1.797
CLA 1 0.000 NaN NaN NaN 0.506 7 0.075 3350.024 0.810 0.498 0.537
LGC 4 0.031 154.850 1.793 0.458 0.214 6 0.053 871.520 0.972 0.185 0.242
ADP 90 0.066 259.834 1.080 0.367 0.173 14 0.061 4509.210 0.717 0.676 0.116

AFC (G = 4)

MF

15 0.439 2436.069 1.599 0.358 0.458

PD

45 0.361 1297.889 1.720 0.252 4.504
AFC (G = 5) 74 0.303 873.157 1.881 0.174 0.618 154 0.168 666.815 1.766 0.164 5.124

FCM 10 0.418 3347.672 1.250 0.470 2.962 10 0.391 1800.896 3.493 0.331 0.952
MAL 10 0.140 16.108 8.367 -0.645 12.304 10 0.452 1844.936 2.161 0.254 651.733
KM 10 0.428 3286.262 1.256 0.454 0.126 10 0.556 2678.070 1.342 0.446 0.060
DBS 4 0.042 47.802 2.298 -0.689 0.402 38 0.404 463.082 1.649 0.015 4.490
MS (1994) (0.000) (Inf) (0.000) (1.000) (7.228) 1410 0.382 77.240 0.690 -0.020 9.682

SUB (1994) (0.000) (Inf) (0.000) (1.000) (39.286) 187 0.086 382.627 2.000 0.013 8.979
NMI (2000) (0.000) (NaN) (0.000) (NaN) (886.717) (4316) (0.164) (46.619) (0.497) (0.221) (1643.690)
AP 22 0.461 2098.746 1.470 0.318 7.096 254 0.077 604.713 1.541 0.238 136.345

GDD (1994) (0.000) (Inf) (0.000) (1.000) (43.467) 309 0.001 1.140 1.029 -0.684 39.852
CLA 5 0.317 539.145 2.064 -0.104 3.093 3 0.170 1229.101 2.101 0.087 6.944
LGC 8 0.546 2251.372 1.101 0.394 0.202 18 0.680 1551.212 1.463 0.311 3.584
ADP 54 0.356 1120.389 1.328 0.393 0.812 79 0.347 1057.977 1.326 0.382 2.898

AFC (G = 4)

WQ

22 0.001 6206.402 0.683 0.489 2.541

OD

89 0.126 59096.396 0.536 0.709 35.849
AFC (G = 5) 42 0.002 4518.470 0.681 0.468 2.113 186 0.109 56560.042 0.616 0.673 44.025

FCM 7 0.002 12659.191 0.914 0.513 0.246 2 0.610 31449.037 0.685 0.778 0.066
MAL 7 0.044 970.235 6.049 -0.350 248.948 2 0.015 3240.895 2.027 0.114 157.313
KM 7 0.003 12741.375 0.886 0.525 0.061 2 0.593 31518.959 0.684 0.781 0.036
DBS 17 -0.003 81.231 1.616 -0.754 1.634 208 0.255 4383.688 1.474 -0.489 12.531
MS 12 0.000 10.859 2.113 -0.896 0.697 6 -0.045 1164.777 1.909 -0.424 0.195

SUB 7 0.044 1480.964 3.596 -0.046 1.197 9 0.117 7017.468 5.247 -0.207 5.426
NMI 8 0.000 978.797 0.315 0.355 277.747 15 0.710 10922.511 0.331 0.737 224.019
AP 1421 0.001 115.997 0.355 0.309 160.394 (18598) (0.000) (13.986) (0.525) (NaN) (7084.711)

GDD 10 0.002 14.945 3.299 -0.651 7.036 32 0.245 1046.534 1.615 -0.656 73.256
CLA 2 0.006 1185.590 0.461 0.390 2.574 26 0.195 6458.906 1.281 -0.377 28.515
LGC 3 -0.001 13.113 2.171 -0.535 1.451 19 0.296 14435.057 1.227 -0.151 14.496
ADP 21 0.000 7406.338 0.915 0.482 0.692 15 0.389 34653.493 0.603 0.761 7.577

 (a) R15 (b) AG (c) S2 (d) S4

 Fig. 5: Final clustering results obtained by AFC with G = 4 (dots– data samples; diamonds – cluster medoids).

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. XX, NO. XX, XX 2020 10

TABLE V: STREAM DATA CLUSTERING PERFORMANCE COMPARISON ON EIGHT REAL-WORLD DATASETS

Algor
ithm

Data
set

Measure Data
set

Measure
C ARI CHI DBI SC texe C ARI CHI DBI SC texe

AFC (G = 4)

AB

50 0.035 8947.589 0.475 0.713 0.158

SB

162 0.131 5738.480 1.841 0.614 0.494
AFC (G = 5) 107 0.033 12856.95 0.509 0.650 0.529 252 0.078 5034.233 0.985 0.539 0.542

OKM 3 0.123 1836.795 1.921 0.250 0.405 2 0.000 0.608 1.114 -0.799 0.406
EC 5 0.114 3737.389 0.872 0.302 0.146 12 0.139 247.234 1.191 0.267 0.481

ELM 3 0.009 164.455 1.352 -0.514 0.277 91 -0.021 30.296 5.522 -0.867 4.691
OCA 3 0.131 716.284 2.593 0.078 0.404 4 0.001 25.101 18.593 -0.295 1.616
ADP 27 0.055 6681.103 0.893 0.538 0.319 34 0.112 2030.182 0.779 0.588 0.390

AFC (G = 4)

CG

69 0.114 165.456 0.975 0.266 0.087

SPF

40 0.057 5238.289 0.529 0.613 0.086
AFC (G = 5) 180 0.067 134.953 0.889 0.280 0.096 76 0.049 8721.105 0.548 0.573 0.102

OKM 10 0.119 162.611 4.101 -0.085 1.002 7 0.143 24.965 18.629 -0.378 1.002
EC 10 0.119 422.256 1.912 0.072 0.101 11 0.055 403.337 1.028 0.085 0.109

ELM 21 0.060 55.161 2.292 -0.238 0.791 7 0.011 140.786 5.182 -0.262 0.910
OCA 4 0.030 123.995 11.643 0.043 2.422 4 -0.001 14.595 23.169 -0.124 0.499
ADP 54 0.083 306.065 1.223 0.308 0.182 23 0.068 3482.571 0.668 0.542 0.165

AFC (G = 4)

MF

20 0.432 1992.035 1.476 0.412 0.207

PD

48 0.536 1044.625 1.529 0.354 0.986
AFC (G = 5) 120 0.375 540.966 1.301 0.302 0.322 226 0.351 369.892 1.325 0.240 1.196

OKM 10 0.165 56.009 8.808 -0.281 1.611 10 0.292 1087.244 2.260 0.131 0.212
EC 9 0.237 1447.081 1.622 0.268 1.573 10 0.305 1465.554 1.972 0.175 0.707

ELM (1988) (0.000) (26.181) (0.249) (0.990) (37.776) 17 0.056 367.445 1.794 0.023 3.297
OCA 1 0.000 NaN NaN NaN 0.157 2 0.095 335.773 5.886 0.054 1.037
ADP 12 0.357 2339.414 1.304 0.440 0.268 102 0.285 878.917 1.397 0.314 0.840

AFC (G = 4)

WQ

32 -0.001 4208.644 0.693 0.445 0.362

OD

131 0.121 50120.910 0.622 0.666 6.778
AFC (G = 5) 62 0.001 3718.894 0.756 0.386 0.386 209 0.152 27088.020 0.730 0.543 7.785

OKM 7 0.026 628.519 8.450 -0.192 1.207 2 0.158 7700.005 3.937 0.239 0.421
EC 7 0.009 3977.496 1.391 0.134 0.269 6 0.358 11618.046 1.117 0.376 0.856

ELM 10 0.003 100.751 3.945 -0.546 0.881 4 0.167 5088.854 1.635 -0.134 1.356
OCA 2 0.004 842.100 26.698 0.150 0.620 2 0.063 6642.216 1.257 0.151 1.841
ADP 39 0.003 5446.205 1.043 0.372 0.483 36 0.165 37429.119 0.685 0.679 1.406

TABLE IV: OVERALL STATIC DATA CLUSTERING PER-
FORMANCE RANKS

Algorithm Measure Overall
ARI CHI DBI SI

AFC (G=4) 5.3 3.2 3.8 3.5 4.0
AFC (G=5) 8.2 4.8 6.5 6.4 6.5

FCM 4.9 3.6 6.1 3.6 4.6
MAL 6.6 9.0 11.2 8.8 8.9
KM 5.3 4.1 5.5 3.6 4.6
DBS 7.9 9.6 8.7 10.1 9.1
MS 12.1 12.7 10.8 12.5 12.0
SUB 8.5 9.3 9.6 9.2 9.1
NMI 8.7 9.1 5.4 7.1 7.6
AP 11.8 10.8 11.4 11.4 11.4

GDD 9.2 11.0 7.8 11.0 9.8
CLA 5.1 6.2 6.0 6.7 6.0
LGC 5.6 7.4 6.8 6.8 6.7
ADP 5.8 4.3 5.4 4.3 5.0

TABLE VI: OVERALL STREAMING DATA CLUSTERING
PERFORMANCE RANKS

Algorithm Measure Overall
ARI CHI DBI SI

AFC (G=4) 3.5 2.0 2.1 1.5 2.3
AFC (G=5) 4.4 3.1 1.8 2.5 3.0

OKM 3.1 5.0 5.6 5.6 4.8
EC 2.4 3.0 4.0 4.1 3.4

ELM 5.8 6.3 5.3 6.8 6.1
OCA 5.3 6.2 6.7 5.4 5.9
ADP 3.6 2.4 2.5 2.0 2.6

producing the clustering results. The values of C, ARI , CHI ,
DBI and SI calculated from these clustering results are
reported in Table S8 in the Supplementary Material for better
demonstration.

Then, the online chunk-by-chunk learning performance of
the proposed algorithm is demonstrated based on the eight
real-world benchmark datasets as used for the numerical
example given by Table III. In this example, each dataset
is randomly divided into 2, 3, 4 and 5 chunks evenly. The
obtained clustering results measured by the six criteria are
tabulated in Table S4 in the Supplementary Material. Note
that C is the number of ultimate cluster medoids obtained at
the end of the online chunk-by-chunk clustering process; the
reported values of ARI , CHI , DBI and SI are calculated
based on the defuzzified clustering result obtained by using
these ultimate cluster medoids to partition all historical data
chunks together, namely, the entire dataset. One can see from
this table that a smaller chunk size allows AFC to perform
clustering more efficiently, which is in coincidence with the
computational complexity analysis presented in Section IV.
This is because that a smaller chunk size can significantly
reduce the computational complexity of cumulative mem-
bership calculation as well as cluster medoid optimization.
Nevertheless, a smaller chunk size also increases the sensitivity
of AFC to the changes of data patterns of successive data
chunks. As data patterns may change more rapidly within
smaller data chunks, AFC has to identify more clusters from
each chunk to follow such changes. This would inevitably
result in more clusters in the final clustering outcomes.

For better evaluation, the streaming data clustering perfor-
mance of the proposed AFC algorithm is compared with the

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. XX, NO. XX, XX 2020 11

TABLE VII: PERFORMANCE DEMONSTRATION ON LARGE-SCALE, HIGH-DIMENSIONAL PROBLEMS

Algor
ithm

Data
set

Measure Data
set

Measure
C ARI CHI DBI SC texe C ARI CHI DBI SC texe

AFC (G = 5)
MNIST

28 0.156 878.279 3.896 0.022 173.384
FMNIST

50 0.254 2207.523 2.991 0.090 122.551
AFC (G = 6) 520 0.082 133.916 3.244 0.015 234.361 258 0.199 557.757 2.823 0.062 152.751

ADP 4687 0.025 31.577 2.077 0.065 16234.741 967 0.068 221.144 2.157 0.090 2533.637

aforementioned five well-known online clustering algorithms
on the same eight real-world benchmark datasets. In this
example, L is set as 5 for AFC. The performance comparison
is presented in Table V. For better illustration, the ranks of
these online clustering algorithms per dataset per criterion
are given by Table S7 in the Supplementary Material, and
the overall ranks are tabulated in Table VI. It can be seen
from Table VI that AFC with G = 4 is able to outrank its
competitors in terms of CHI and SI . Meanwhile, AFC with
G = 5 is ranked the top in terms of DB. Very importantly, by
considering all four criteria, AFC is able to rank at the first and
third places with the two parameter settings. This shows that
AFC is capable of obtaining high-quality clustering results on
streaming data in online application scenarios.

In the final numerical example, AFC is tested on MNIST
and FMNIST datasets to evaluate its clustering performance
on large-scale, high-dimensional problems. Images of both
datasets have been converted to vectors prior to the experi-
ments. Due to the very large scale of the two problems, both
datasets are randomly divided into seven chunks with 10000
vectors in each chunk, and the proposed algorithm groups the
data chunk-by-chunk. During the experiments, two different
parameter settings of AFC are considered, namely, G = 5
and G = 6. The evolving version of the ADP algorithm is
used for benchmark comparison thanks to its strong capability
of handling large-scale streaming data problems [16]. The
numerical results obtained by the two clustering algorithms
are reported in Table VII, where it can be observed that the
computational efficiency of AFC is much higher than ADP,
and the quality of its clustering results is far better as suggested
by CHI.

C. Discussions

Numerical examples presented in this section demonstrate
that the proposed AFC algorithm is able to produce high-
quality clustering results on a wide variety of benchmark
problems. The proposed algorithm outperforms its competitors
on a number of benchmark problems in both offline and online
application scenarios (see Tables IV and VI), and its computa-
tional efficiency is also higher than the majority of alternatives.
The numerical results presented in this paper demonstrate
the efficacy of the proposed algorithm, showing the strong
capability of AFC to handle both static and streaming data.

Meanwhile, one may notice that the level of granularity has
a direct impact on the fineness of the clustering outcomes,
which influence both the number of clusters in the clustering
outcome and the computational efficiency of the proposed
AFC algorithm. In general, a greater level of granularity
enables AFC to give more focuses to the local patterns of data

and group data into more clusters, this would also increase the
computational complexity of cluster medoid optimization. If a
lower level of granularity is chosen, AFC tends to focus more
on main patterns of data. As a result, data will be partitioned
coarsely and the clustering outcomes will have less clusters,
but the computational efficiency of the algorithm will be much
higher. In practice, users can start with the recommended
values given by this paper and adjust the parameter setting
based on the specific needs of the problems.

In addition, it has to be admitted that similar to other
algorithms that employ PAM or other similar strategies, such
as KM, FCM and ADP, the proposed AFC algorithm is less
effective in capturing non-convex clusters and low-density
clusters. For such types of clusters, AFC usually breaks them
into multiple smaller ones, which would inevitably increases
the number of clusters in the outcomes. This limitation is
caused by the inherent clustering mechanism. Nevertheless,
one may partially lift this limitation by adjusting the level of
granularity such that data samples of different classes can be
well-separated with the minimum number of clusters.

Finally, it is also worth mentioning that during the numer-
ical experiments, all the clustering algorithms involved for
benchmark comparison use the same experimental settings as
recommended by the literature. Performances of these clus-
tering algorithms may be further improved if their externally
controlled parameters are carefully tuned for each individual
dataset. The main reason for using the same recommended
parameter settings across the experiments is that the majority
of existing clustering algorithms require proper experimental
settings to achieve meaningful results and such experimental
settings can vary a lot from problem to problem. However,
prior knowledge in real-world applications is usually very
limited. Predefining a set of externally controlled parameters
without sufficient prior knowledge is often extremely chal-
lenging. In such cases, the recommended generic experimental
settings play a very important role in helping users to get
the preliminary clustering results. Therefore, the clustering
results obtained by a particular algorithm with the generic
experimental setting can serve as a good indicator of its
efficacy in real-world applications.

VI. CONCLUSION AND FUTURE WORKS

This paper presented a novel data-driven fuzzy clustering
algorithm named AFC. It employs a Gaussian-type member-
ship function with the degree of fuzziness controlled by a
self-adjusting kernel width, which is derived based on the
mutual distances of data and the level of granularity externally
controlled by users. The proposed algorithm firstly identifies
a small number of highly representative samples in the data

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. XX, NO. XX, XX 2020 12

space as cluster medoids for initial partition, and further
utilizes them to achieve the locally optimal partition through
iterative optimization. In addition, an extension is introduced
to the proposed algorithm for chunk-by-chunk data stream
clustering. Numerical examples have demonstrated the efficacy
of the proposed algorithm on a wide range of benchmark
problems in both offline and online scenarios.

There are several considerations for future works. Firstly,
the degree of fineness of the clustering outcomes obtained by
the proposed algorithms is determined by the level of gran-
ularity, which is externally controlled by users. Although the
level of granularity can be determined without prior knowledge
of the problems, it may undermine the meaningfulness of
the clustering results if not set properly. Thus, developing a
fully autonomous approach to self-determine this parameter
based on the ensemble properties of data will be very helpful.
Secondly, similar to other online clustering algorithms, the
proposed algorithm may return different results when cluster-
ing streaming data if the order of observed data samples is
changed. This may lead to different conclusions in real-world
applications. It is possible to address this issue by keeping
all the historical data in the system memory and using them
to optimize the partition, but a more computational efficient
solution will be more helpful. Thirdly, as aforementioned, it
would be very useful to develop a more robust version of the
proposed algorithm capable to neutralize the negative effects
of outliers. Finally, the proposed AFC algorithm is only tested
on benchmark problems in this paper, it is worth using AFC
in solving real-world problems to further test its efficacy.

REFERENCES

[1] A. Saxena et al., “A review of clustering techniques and developments,”
Neurocomputing, vol. 267, pp. 664–681, 2017.

[2] J. Zhou, Z. Lai, D. Miao, C. Gao, and X. Yue, “Multigranulation rough-
fuzzy clustering based on shadowed sets,” Inf. Sci. (Ny)., vol. 507, pp.
553–573, 2020.

[3] P. Maji and S. K. Pal, “Rough-fuzzy c-medoids algorithm and selection
of bio-basis for amino acid sequence analysis,” IEEE Trans. Knowl. Data
Eng., vol. 19, no. 6, pp. 859–872, 2007.

[4] Y. Tang, F. Ren, and W. Pedrycz, “Fuzzy c-means clustering through
SSIM and patch for image segmentation,” Appl. Soft Comput., vol. 87, p.
105928, 2020.

[5] P. D’Urso and R. Massari, “Fuzzy clustering of mixed data,” Inf. Sci.
(Ny)., vol. 505, pp. 513–534, 2019.

[6] J. B. MacQueen, “Some methods for classification and analysis of mul-
tivariate observations,” in Berkeley symposium on mathematical statistics
and probability, pp. 281–297, 1967.

[7] H. S. Park and C. H. Jun, “A simple and fast algorithm for K-medoids
clustering,” Expert Syst. Appl., vol. 36, no. 2, pp. 3336–3341, 2009.

[8] M. Ester, H. P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm
for discovering clusters in large spatial databases with noise,” in Interna-
tional Conference on Knowledge Discovery and Data Mining, 1996, vol.
96, pp. 226–231.

[9] T. Zhang, R. Ramakrishnan, and M. Livny, “BIRCH: an efficient data
clustering method for very large databases,” in ACM SIGMOD Interna-
tional Conference on Management of Data, 1996, pp. 103–114.

[10] B. J. Frey and D. Dueck, “Clustering by passing messages between data
points,” Science, vol. 315, no. 5814, pp. 972–976, 2007.

[11] A. Corduneanu and C. M. Bishop, “Variational Bayesian model selec-
tion for mixture distributions,” in International Conference on Artificial
intelligence and Statistics, pp. 27–34, 2001.

[12] D. Comaniciu and P. Meer, “Mean shift: a robust approach toward
feature space analysis,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24,
no. 5, pp. 603–619, 2002.

[13] A. Rodriguez and A. Laio, “Clustering by fast search and find of density
peaks,” Science, vol. 344, no. 6191, pp. 1493–1496, 2014.

[14] E. Gungor and A. Ozmen, “Distance and density based clustering
algorithm using Gaussian kernel,” Expert Syst. Appl., vol. 69, pp. 10–20,
2017.

[15] Z. Wang et al., “Clustering by local gravitation,” IEEE Trans. Cybern.,
vol. 48, no. 5, pp. 1383–1396, 2018.

[16] X. Gu, P. P. Angelov, and J. C. Principe, “A method for autonomous
data partitioning,” Inf. Sci. (Ny)., vol. 460–461, pp. 65–82, 2018.

[17] Y. Chen et al., “Fast density peak clustering for large scale data based
on kNN,” Knowledge-Based Syst., vol. 187, p. 104824, 2020.

[18] P. D’Urso, “Fuzzy clustering,” in Handbook of Cluster Analysis, H.
Christian, M. Marina, M. Fionn, and R. Roberto, Eds. Chapman & Hall,
2015, pp. 545–574.

[19] Y. Lin and S. Chen, “A centroid auto-fused hierarchical
fuzzy c-means clustering,” IEEE Trans. Fuzzy Syst., DOI:
10.1109/TFUZZ.2020.2991306, 2020.

[20] J. C. Dunn, “A fuzzy relative of the ISODATA process and its use in
detecting compact well-separated clusters,” J. Cybern., vol. 3, no. 3, 1973.

[21] J. C. Bezdek, “Fuzzy mathematics in pattern classification,” Cornell
University, 1973.

[22] E. H. Ruspini, J. C. Bezdek, and J. M. Keller, “Fuzzy clustering: a
historical perspective,” IEEE Comput. Intell. Mag., vol. 14, no. 1, pp.
45–55, 2019.

[23] R. Krishnapuram, A. Joshi, O. Nasraoui, and L. Yi, “Low-complexity
fuzzy relational clustering algorithms for Web mining,” IEEE Trans.
Fuzzy Syst., vol. 9, no. 4, pp. 595–607, 2001.

[24] D. Q. Zhang and S. C. Chen, “Clustering incomplete data using kernel-
based fuzzy C-means algorithm,” Neural Process. Lett., vol. 18, no. 3,
pp. 155–162, 2003.

[25] D. Q. Zhang, S. C. Chen, Z. S. Pan, and K. R. Tan, “Kernel-based fuzzy
clustering incorporating spatial constraints for image segmentation,” in
International Conference on Machine Learning and Cybernetics, 2003,
pp. 2189–2192.

[26] L. Chen, C. L. P. Chen, and M. Lu, “A multiple-kernel fuzzy c-means
algorithm for image segmentation,” IEEE Trans. Syst. Man, Cybern. Part
B, vol. 41, no. 5, pp. 1263–1274, 2011.

[27] L. Chen, L. Guo, X. Lu, and C. L. P. Chen, “Fuzzy clustering method
with graph-based regularization,” in International Conference on Fuzzy
Theory and Its Applications, pp. 1-6, 2017.

[28] J. Xu, J. Han, X. Kai, and F. Nie, “Robust and sparse fuzzy k-means
clustering,” in International Joint Conference on Artificial Intelligence,
2016, pp. 2224–2230.

[29] L. Guo, L. Chen, X. Lu, and C. L. P. Chen, “Membership affinity lasso
for fuzzy clustering,” IEEE Trans. Fuzzy Syst., vol. 28, no. 2, pp. 294–307,
2020.

[30] M.S. Yang and Y. Nataliani, “Robust-learning fuzzy c-means clustering
algorithm with unknown number of clusters,” Pattern Recognit., vol. 71,
pp. 45–59, 2017.

[31] M. J. Li, M. K. Ng, Y. M. Cheung, and J. Z. Huang, “Agglomerative
fuzzy K-Means clustering algorithm with selection of number of clusters,”
IEEE Trans. Knowl. Data Eng., vol. 20, no. 11, pp. 1519–1534, 2008.

[32] U. Kaymak and M. Setnes, “Fuzzy clustering with volume prototypes
and adaptive cluster merging,” IEEE Trans. Fuzzy Syst., vol. 10, no. 6,
pp. 705–712, 2002.

[33] P. D’Urso and J. M. Leski, “Fuzzy clustering of fuzzy data based on
robust loss functions and ordered weighted averaging,” Fuzzy Sets Syst.,
vol. 389, pp. 1–28, 2020.

[34] X. Gu, Q. Shen, and P. P. Angelov, “Particle swarm optimized
autonomous learning fuzzy system,” IEEE Trans. Cybern., DOI:
10.1109/TCYB.2020.2967462, 2020.

[35] T. C. Havens, J. C. Bezdek, C. Leckie, L. O. Hall, and M. Palaniswami,
“Fuzzy c-means algorithms for very large data,” IEEE Trans. Fuzzy Syst.,
vol. 20, no. 6, pp. 1130–1146, 2012.

[36] X. Gu and P. P. Angelov, “Self-organising fuzzy logic classifier,” Inf.
Sci. (Ny)., vol. 447, pp. 36–51, 2018.

[37] E. Lughofer and P. Angelov, “Handling drifts and shifts in on-line data
streams with evolving fuzzy systems,” Appl. Soft Comput., vol. 11, no.
2, pp. 2057–2068, 2011.

[38] J. C. Bezdek, R. Ehrlich, and W. Full, “FCM: the fuzzy c-means
clustering algorithm,” Comput. Geosci., vol. 10, no. 2–3, pp. 191–203,
1984.

[39] S. L. Chiu, “Fuzzy model identification based on cluster estimation,” J.
Intell. Fuzzy Syst., vol. 2, no. 3, pp. 267–278, 1994.

[40] J. Li, S. Ray, and B. G. Lindsay, “A nonparametric statistical approach
to clustering via mode identification,” J. Mach. Learn. Res., vol. 8, no.
8, pp. 1687–1723, 2007.

[41] L. Hubert and P. Arabie, “Comparing partitions,” J. Classif., vol. 2, no.
1, pp. 193–218, 1985.

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. XX, NO. XX, XX 2020 13

[42] T. Calinski and J. Harabasz, “A dendrite method for cluster analysis,”
Commun. Stat. Methods, vol. 3, no. 1, pp. 1–27, 1974.

[43] D. L. Davies and D. W. Bouldin, “A cluster separation measure,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 2, pp. 224–227, 1979.

[44] P. J. Rousseeuw, “Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis,” J. Comput. Appl. Math., vol. 20, pp. 53–65,
1987.

[45] P. Angelov, “An approach for fuzzy rule-base adaptation using on-line
clustering,” Int. J. Approx. Reason., vol. 35, no. 3, pp. 275–289, 2004.

[46] S. Zhong, “Efficient online spherical k-means clustering,” in Interna-
tional Joint Conference on Neural Networks, 2005, pp. 3180–3185.

[47] R. D. Baruah and P. Angelov, “Evolving local means method for
clustering of streaming data,” in IEEE International Conference on Fuzzy
Systems, 2012, pp. 10–15.

[48] M. Chenaghlou, M. Moshtaghi, C. Leckie, and M. Salehi, “Online
clustering for evolving data streams with online anomaly detection,” in
Pacific-Asia Conference on Knowledge Discovery and Data Mining, 2018,
pp. 508–521.

	Introduction
	Proposed Algorithm
	Objective Function
	Algorithmic Procedure
	Summarization

	Extension to Streaming Data Clustering
	Algorithmic Procedure
	Summarization

	Computational Complexity Analysis
	Numerical Examples
	Experimental Setting
	 Performance Demonstration
	Discussions

	Conclusion and Future Works
	References

