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Abstract—Age of Information (AoI) is a critical metric in
status update systems as these systems require the fresh
updates. This paper investigates the uplink of an Internet-
of-thing (IoT) network where L nodes transmit their infor-
mation packets to a base station. The effects of the arrival
rate of packets at the nodes, the number of nodes in the
system, and queue length of each node have been studied
by devising a discrete time Markov chain (MC) model. This
model helps in predicting the values of AoI and probability
of packet drops in such systems. The notion of first-in first-
out is used for queuing, which transmits the oldest packet
first, resulting in decreasing the overall AoI of the system.
The results show that AoI increases with the increase in
queue length, number of nodes and arrival rate and we
quantify the aforementioned metrics using the MC model.
The results found using the MC model are also validated
using extensive simulations.

Index Terms—Internet-of-thing, age of information,
Markov chain, arrival rate, queuing theory.

I. INTRODUCTION

With the explosive growth of Internet-of-thing (IoT)
systems, real-time status updates have become a crucial
and ubiquitous form of communication. To quantify the
information freshness about these remote systems, age of
information (AoI) has been recently introduced [1]. AoI
is defined as the time elapsed since the generation of the
latest successfully received update about the source sys-
tem. The notion of AoI is different from throughput and
delay because system utilization can be maximized by
allowing the nodes to send the arrived packets as soon
as possible [2]. However, this may result in backlogging
of the communication system. Similarly, the delay can
be reduced by decreasing the number of updates, but
this can result in obsolete packets because of the lack of
fresh updates.

AoI has been studied so far as a concept, performance
metric and a tool [3]. In real-time monitoring of IoT
systems, AoI is crucial to be considered as the stale in-
formation can degrade the system performance in such
systems. For example, in [4], AoI is critical in agricul-
tural monitoring as the latest information is needed for
precision agriculture applications. Precision agriculture
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along with IoT can be used to enhance productivity of
agriculture crops by monitoring soil properties, moisture
level, meteorological behavior, etc [5]. Similarly, [6] mod-
els the problem of real-time scheduling based on AoI in
wireless ad hoc networks by using a scheduling policy
to improve the AoI without sacrificing the feasibility
optimality. A simplified method to evaluate AoI based
on stochastic hybrid system using a finite-state Markov
chain is formulated for a multiple source network shar-
ing a single server [7]. The authors proposed closed
form AoI expressions for simple queues and the results
are compared for different queuing systems but the
lossy queuing systems increase the probability of packet
drops. [8] uses deadlines to drop the outdated packets
in a down-link IoT network updating multiple nodes.
AoI is evaluated using a fixed and random deadlines
and showed the advantages of respective deadlines in
different deadline regimes.

Although recent studies focus on minimizing AoI but
the probability of packet drops in such systems is also
important to discuss. This letter provides a performance
analysis of an uplink IoT system with the help of
Markov chains where the number of nodes and the
queue length in each node is used to quantify both the
AoI and probability of packet drops. Specifically, we as-
sume a first-in first-out (FIFO) queue model where each
information packet carries a distinct information about
a multi-sensory scenario and each information packet
is critical to reach the receiver with minimum AoI. We
use a discrete time BER/G/1/Q queuing model where
the arrivals occur at a time instant with probability λ fol-
lowing a Bernoulli distribution, and a queue length Q as
analyzed in [9] and computes the probability of packet
drops and AoI of the network using the state transition
matrix of Markov chain. The main contributions of this
letter are outlined below.

• We model the AoI and probability of packet
drops using a discrete time Markov chain (MC)
model and study various attributes of network
performance by analyzing the state probability
distribution.

• We quantify the effects of number of nodes, queue
length and arrival rate on AoI and packet drops
using the proposed analytical model.



II. SYSTEM MODEL

Consider the uplink of a wireless network consisting
of a base-station (BS) and L sensor nodes denoted by
the set L = {l1, ..., lL}, having a queue length, Q, each
where each node extracts real-time information from an
environmental source. Each node transmits information
to the BS in the form of packets, where the inter-
arrival times are independent and size of all packets is
considered the same. We consider BER/G/1/Q queuing
model where the arrival process follows a Bernoulli
process with parameter λ.

When a packet arrives at the queue of a sensor, it
waits in the queue where each sensor has a queue
length of Q. The waiting time of ith node increases as L
increases because the total transmission time depends
on the number of nodes. Similarly, the waiting time
increases as Q increases hence, with the increase in L
and Q, the information freshness of each node is also
compromised. We assume that every packet is carrying
unique information and when a node has Q packets in
its queue and another packets arrives, the oldest packet
is discarded from the queue to ensure the information
freshness. The discarded packets due to the queue over-
loading are counted as packet drops. We model the AoI
and the probability of packet drops, Pdrops, using Markov
chain, which is described in the next section.

III. PROPOSED MARKOV MODEL

At a certain time n, the state of the system can be
described as the number of packets waiting for trans-
mission in the queues of each sensor and the decision
metric for transmission at the BS. Hence, the state of
system at time n, represented as X(n) is given as

X(n) = {S1(n), S2(n), .., SL(n), D1(n), D2(n), .., DL(n)},
(1)

where Si(n), i ∈ {1, 2, ...L} shows the number of packets
waiting in the queue of the ith sensor at time n and its
value is given as a Q-tuple indicator function, i.e.,

Si(n) =


0 if the node has no packets in queue
1 if the node has one packet in queue

...
Q if the node has Q (maximum) packets in queue.

(2)
Similarly the BS decision for the ith node is also a binary
indicator function such that for ith node and at time n,

Di(n) =

{
0 if the node is not transmitting
1 if the node is transmitting.

(3)

Note that as only one node can transmit at one time,
therefore Di(n) = 1 implies ∑

∀n
f 6=i

D f (n) = 0, i.e., all other

nodes are not transmitting.

( (1/L

1/L1/L

Fig. 1: The state transition diagram of a single node for Q = 2, L = 2

The next state of the system only depends on the
current state and the arrival probability, λ, on all nodes
satisfying the Markovian property. We now divert our
attention on the state transition of the ith node. The
transition of the ith node to state Si(n + 1) given that
the current state is Si(n) depends on Di(n) and λ. For
instance, if the current state of ith node, i.e., Si(n)=1
and Di(n)=1, the next state of the node will be 0 with
a unit probability as the only packet in its queue is
transmitted. Similarly, if Si(n)=1 and Di(n)=0, the next
state of the node will be 2 with probability λ (packet
arrives) or Si(n + 1) = 1 with probability 1− λ as shown
in Fig. 1. When a node is in Q state, the oldest packet
will be replaced by the new arrived packet which are
counted as dropped packets. This implies that, when the
current state is Q, on arrival of a new packet, the oldest
packet will be dropped until any packet is transmitted
to change current state to any state less than Q.

The next state of the ith node given that the node is
in state Si(n) at a time n is given as,

Si(n + 1) =


Si(n) if Di(n) = 0 and no arrival
Si(n) + 1 if Di(n) = 0 and arrival
Si(n)− 1 if Di(n) = 1.

(4)

The total number of states for the Markov chain X given
L and Q is denoted as LS and is given as

LS = L× (Q + 1)L. (5)

Suppose there are two nodes, i.e., L = 2 and queue
length of each sensor is 2 i.e., Q = 2. The BS allocates a
time slot for transmission to the two sensors randomly.
The probability of transmission, in this case, will be
1/2. The total number of transition states will be 18
according to (5). The Ls = 18 states show all possible
number of packets in the queues of each sensor with
all possible decisions the BS makes. Suppose both of
the sensors have a single packet waiting in their queue,
and the first node gets a time slot for transmission. The
current state of the system will be X(n) = 1110, where
the first two digits indicate that both sensors have one
packet in their queues and the last two digits show the
decision BS makes, respectively. If the BS decides to
allow transmission to the first sensor, the next possible
states will be X(n + 1) = 0110 or X(n + 1) = 0101, given



that there is no arrival on both nodes. In this example,
the state of the first node becomes 0 as the waiting
packet is transmitted and there can be no arrival on
the first node in this slot as it is in transmission state.
The second node is not transmitting, therefore, there is a
probability of arrival λ on the second node. The state of
the second sensor will be 2 if there is any packet arrival
or will remain to state 1 if there is no arrival. If there is
an arrival on the second node, the next possible states
are X(n + 2) = 0210 or X(n + 2) = 0201. Considering the
above discussions, let the first L digits of the system
state of X(n) are represented by the vector an such that
an ∈ Z+(1×L) where Z+ is the set of positive integers
including zero and the last L digits of the system state
are represented by the vector bn. The purpose is to find
the transition probability of the system from the state
X(n) = {an bn} to the state X(n + 1) = {an+1 bn+1},
where we need the values of α, β and γ, which are found
using Algorithm 1. In the algorithm, first of all the node
which is transmitting is found using the variable index.
γ counts the number of nodes which has full queue i.e.
Q. Similarly, α denotes the number of nodes which has
got arrival. β is the number of nodes which remains in
same state and have less than Q packets in the queue.

Algorithm 1: Finding the arguments (α, β and γ)
of Transition Probability

Input: X(n), X(n + 1), L, Q
Output: α, β, γ
Initialize: α, β, γ=0 , c̃n(m)← 0, m = 1, . . . , L

Extract an & bn from X(n) where, the dimension
of an, bn is [1× L]
Find cn using cn= an − bn
index ← find(cn 6= an)
if an+1(index)==cn(index) then

for i = 1 to L do
if cn(i) == Q then

c̃n(i)← 0
γ← γ + 1
else if cn(i) ≤ 0 then

c̃n(i)← 0
end
else

c̃n(i)← cn(i)
end

end
end
Find ∆ ∈ Z(1×L) using ∆= an+1-c̃n
for j = 1 to L do

if ∆(j) == 1 then
α← α + 1

end
end
Find β = L− α− 1

end

For any pair of X(n) and X(n + 1), to find the transition
probability from X(n) to X(n + 1) the following proposi-
tions are applied:

Proposition 1.
For the states X(n) and X(n + 1), when any element of the
vector ∆ does not belong to {0,1}, P(X(n),X(n+1))|(D(n)) = 0.

Proposition 2.
For the states X(n) and X(n + 1), when all elements of the
vector ∆ belong to {0,1}, the transition probability is given
as

P(X(n),X(n+1))|(D(n)) =
1
L

(
λα(1− λ)β−γ

)
. (6)

The transition to and from all transient states are
incorporated in a transition probability matrix, P, for
which a single entry is given by Proposition 1 or 2.
Please note that the matrix P is sparse owing to the
fact that many transitions are prohibited given the state
space of the system. After the formation of stochastic
matrix, using the property of Markov chain, let v be
the eigenvector of P corresponding to the eigenvalue χ,
then,

(P− χI)v = 0. (7)

The eigenvector v after normalization provides the state
probability distribution of the system φ.

IV. AGE OF INFORMATION MODEL

Consider a packet, p, is generated at a node at time
u(n), we define AoI of that packet as the waiting time
for transmission in the queue. The age of that packet can
be written as

ψp(n) = n− u(n), (8)

where n is the current time instant. AoI of a packet is
incremented by 1 at next time slot if the packet is not
transmitted while it becomes zero if it is transmitted.
Since we are considering the age of a packet till its
successful transmission, therefore, the a time slot re-
quired for transmission is not considered. According to
the above discussion, AoI in the next slot of any packet
which is oldest packet in a node is written as

ψp(n + 1) =

{
0 if Di(n + 1) = 1
ψp(n) + 1 if Di(n + 1) = 0

(9)

following the well known sawtooth pattern introduced
in [1].

As we know that the length of vector Si(n) shows the
number of packets currently waiting in the queue of ith

node, we can find the AoI of ith node by summing the
ages of all packets currently waiting in its queue. Let
the length of vector Si(n) at time n be κ and ψp(n) be
the AoI of the pth packet in ith node then,

AoIi(n) =
κ

∑
p=1

ψp(n). (10)



TABLE I: Mean Absolute Error
λ L=3,Q=2 L=3,Q=3 L=4,Q=2 L=5,Q=2

0.1 0.034% 0.040% 0.020% 0.013%
0.3 0.025% 0.038% 0.017% 0.010%
0.5 0.021% 0.037% 0.016% 0.007%
0.7 0.017% 0.023% 0.015% 0.006%
0.9 0.013% 0.015 % 0.012% 0.004%

If the state of the ith node at time n is Si(n), then the
AoI at time n + 1 will be summation of AoI in the current
time slot, i.e., AoIi(n), and the state Si(n) with probability
1− λ when Di(n + 1) = 0. Similarly, when Di(n + 1) = 0,
the AoI at time t + 1 will be summation of AoI in the
current time slot, i.e., AoIi(n), and the state Si(n)+1 with
probability λ. If Di(n + 1) = 1, the AoI at time n + 1 will
be AoIi(n)-Si(n) with unit probability. The AoI for ith

node at BS at time n + 1 can be expressed as,

AoIi(n + 1) =


AoIi(n) + Si(n) if Di(n + 1) = 0 and no arrival
AoIi(n) + Si(n) + 1 if Di(n + 1) = 0 and arrival
AoIi(n)− Si(n) if Di(n + 1) = 1

(11)
As per our assumption above, the BS schedules trans-
mission of each node unbiasedly and the arrival λ on
each node is kept same. Therefore, the AoI at each node
will also be same. When we find the AoI at any random
node, we can also find AoI of the entire system, AoI, at
n + 1 using (11) as

AoI(n + 1) =
L

∑
i=1

AoIi(n + 1). (12)

Similarly, the probability of packet drops (Pdrops) on each
node will also be equal as it is the function of λ and
the state of a node. Pdrops at the ith node can be found
using the state distribution vector of the system φ. The
probability of packet drops on the ith node can be given
as,

Pdrops =
(L− 1)λ

L
×

Ls

∑
j=y

φ(j) (13)

where, y = Q( Ls
L +1)+1
Q+1 . We consider a Rayleigh fading

channel between the nodes and the base station. The
outage probability at a given SNR threshold Γ is given
as, Pout = 1− e−Γ(Pt/σ2). Where, Pt is the transmit power
of nodes and σ is noise power spectral density. Therefore
the effective AoI with fading can be found as, AoIe f f =

AoI
1−Pout

. The AoIe f f is more realistic as it takes outage in
to account.

V. PERFORMANCE EVALUATION AND DISCUSSIONS

This section discusses the performance of the network
in terms of AoI and probability of packet drops for
different queue lengths and the arrival rates on each
node. The results are found analytically using Markov
chain and compared with the simulation results.
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Fig. 2: The state probability distribution of the system for L = 3, Q = 3
and λ = 0.7
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Fig. 3: AoI and Pdrops trade-off for queue length,Q, and L = 3

In Fig. 2, the state probability distribution is shown
for L = 3, Q = 3 and λ = 0.5. The horizontal axis shows
the states of the system which has 27 length for the
given combination of L and Q calculated using Eq. (5)
and vertical axis shows the probability of all states. The
hollow bars show the probability distribution using the
MC model while the filled bars are numerical simulation
results. It can be seen that the proposed analytical model
has a close agreement with simulations, thereby validat-
ing the MC model. As the arrival rate is 0.5 therefore the
graph is not shifted on either side. If the arrival rate is
greater than 0.5, the graph shifts to right side because
the probability of states representing greater number of
packets in the queue increases. Similarly, if the arrival
rate is less than 0.5, the graph shifts on the left side as
the probability of states representing lower number of
packets increases.

The mean absolute error between the analytical and
simulation results are computed in Table I for various
values of L, Q and λ and it can be seen that the proposed



model is valid for a variety of parameter combinations.
Fig. 3 shows the trade-off between AoI and probability

of packet drops. The y-axis on left side of the graph
shows the probability of packet drops, while y-axis on
the right side denotes AoI without introducing fading
and queue lengths are plotted on the x-axis. It is depicted
that increase in the queue length increases the AoI while
it decreases probability of packet drops. The results are
shown for arrival rates 0.3 and 0.7 and also validated
using simulation result. For a given L, the AoI increases
with the increase in Q because with increase in queue
length, the stale information packets will reside in the
queue for longer time instead of dropping with queue
overloading in smaller queue length. Similarly, for a
constant queue length, when L increases, the AoI also in-
creases because with the increase in L, the transmission
probability of a node decreases. Increase in Q, decreases
packet drops because there will be more space for the
packets in the queue. It also depicts that the packet drops
decrease with the increase in queue length for a given
number of nodes.

In Fig. 4, the evolution of AoI with the time steps
is shown for different number of nodes and different
queue lengths for λ = 0.5. For each L and Q pair, the
results are compared for different SNR thresholds i.e., no
outage, Γ = −10dB and Γ = −5.2dB for operating SNR=0
dB. It is shown that initially with the increase in number
of steps, AoI is increasing and after some steps it gets the
steady state and becomes constant. The result indicates
that AoI increases with increment in queue length and
number of nodes. The results show that with the increase
in Γ, the outage probability increases which results in
increasing AoI. it is also revealed from the graph that
the AoI gets its steady state later for larger number of
nodes and similarly the steady state is attained later for
larger queue length for a given number of nodes. When
the number of nodes and/or queue length increases, the
number of states increases therefore, the steady state is
attained after more time steps.

Similarly, Fig. 5 shows the evolution of AoI with the
number of time steps for different arrival rates. The
results are simulated for L = 3 and Q = 3 for different
arrivals and outage values at SNR operating at 0 dB.
The results indicate that AoI increases with the arrival
rate because when arrival rate increases the number
of packets in the queue becomes large as compared to
the lower arrival rate and thus AoI increases. Likewise,
when the Γ is increased, the outage probability is also
increased incrementing AoI.

VI. CONCLUSION

This paper investigated the effects of the arrival rate
of packets, queue length, and the number of nodes in
an up-link IoT system on AoI and probability of packet
drops using discrete time Markov chain. We considered
first-in first-out queuing system which processes the
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oldest packet first, thereby, decreasing the overall AoI.
The accuracy of the approach is evaluated using mean
absolute error between the probability distribution of
the proposed MC and simulation results. The results
showed that the probability state distribution, AoI and
probability of packet drops are function of arrival rate,
queue length and number of nodes in the system. The
trade-off between AoI and probability of packet drops is
also shown and quantified using the proposed analytical
model.
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Hassan, Syed Ali and Zaidi, Syed Ali Raza and Iqbal, Naveed,
“Precision agriculture techniques and practices: From considera-
tions to applications,” Sensors, vol. 19, no. 17, p. 3796, 2019.

[6] N. Lu, B. Ji, and B. Li, “Age-based scheduling: Improving data
freshness for wireless real-time traffic,” in Proceedings of the Eigh-
teenth ACM International Symposium on Mobile Ad Hoc Networking
and Computing, 2018, pp. 191–200.

[7] R. D. Yates and S. K. Kaul, “The age of information: Real-time sta-
tus updating by multiple sources,” IEEE Transactions on Information
Theory, vol. 65, no. 3, pp. 1807–1827, 2018.

[8] J. Li, Y. Zhou, and H. Chen, “Age of information for multicast
transmission with fixed and random deadlines in iot systems,”
IEEE Internet of Things Journal, 2020.

[9] V. Tripathi, R. Talak, and E. Modiano, “Age optimal information
gathering and dissemination on graphs,” in IEEE INFOCOM 2019-
IEEE Conference on Computer Communications. IEEE, 2019, pp.
2422–2430.


