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ABSTRACT 

Drought-induced wildfires are an increasing threat to tropical forests. More frequent and 

intense droughts combined with increasing anthropogenic disturbances are converting 

previously fire-resistant humid forests into fire-prone ecosystems. Understanding the impacts 

of wildfires in tropical forests is critical to maintain the vital role of tropical forests in regulating 

climate and supporting human wellbeing. However, the long-term effects of wildfires on forest 

carbon stocks and emissions are still poorly understood. This thesis addresses this knowledge 

gap by investigating fire-induced changes across 63 Amazonian forest plots and quantifying 

associated carbon emissions. I first assessed long-term changes in biomass stocks and 

dynamics among tree functional groups (chapter 2), showing that a 25% reduction in carbon 

stocks persists for at least 30 years after wildfires. Losses outweighed carbon gains in the short-

term (1-8 years), but although the carbon balance returned to baseline levels over the long-term 

carbon stocks had not recovered to pre-fire levels, even after 30 years. In chapter 3, I quantified 

year-to-year net CO2 emissions from burned forests, based on changes in stem mortality, 

decomposition and vegetation growth. The models I proposed showed that following 

combustion emissions, a large pulse of carbon is released to the atmosphere through 

decomposition, peaking at c. 5 years after the fires, which was responsible for up to 73% of all 

fire-induced emissions over the 30-year period. Post-fire regrowth only offset 35% of all fire-

induced carbon emissions. Finally, my spatio-temporal approach to scale-up immediate and 

long-term CO2 emissions from wildfires in chapter 4 showed that the greatest combustion and 

decomposition emissions occur in forests with the highest biomass. Overall, this thesis 

demonstrates that the effects of fire on forest carbon stocks persist for many years and that 

environmental policies should focus on tackling wildfires in the humid tropics, especially 

where forests are hyper carbon-rich. 

Keywords: humid tropical forests, Amazonia, carbon stocks, fire, tree mortality, post-fire regrowth, CO2 
emissions 
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RESUMO 

Incêndios florestais associados a secas extremas representam uma ameaça crescente em 

florestas tropicais. Secas mais intensas e mais frequentes combinadas á distúrbios causados 

pela ação humana estão alterando florestas húmidas, uma vez resistentes ao fogo, em 

ecossistemas sujeitos a fogo. O entendimento dos impactos de incêndios descontrolados em 

florestas tropicais é fundamental para que seja mantido o papel vital dessas florestas em regular 

o clima e o sustento do bem-estar humano. Entretanto, os efeitos de longo-prazo desses 

incêndios nos estoques de carbono das florestas e as consequentes emissões são ainda pouco 

compreendidas. Essa tese aborda essa lacuna de conhecimento por meio da análise das 

mudanças oriundas do fogo em 63 parcelas em florestas da Amazônia e da quantificação das 

emissões de carbono associadas. Primeiramente eu avaliei as mudanças em longo-prazo nos 

estoques de biomassa e dinâmica ao longo de grupos funcionais arbóreos (Capítulo 2), 

mostrando a persistência de uma redução de 25% nos estoques de carbono por até 30 anos 

depois dos eventos de incêndios. As perdas de carbono extrapolaram os ganhos no curto-prazo 

(1-8 anos), e apesar do balanço do carbono ter retornado aos níveis da linha de base no longo-

prazo os estoques de carbono não recuperaram os níveis anteriores ao distúrbio mesmo após 

30 anos. No capítulo 3, eu quantifiquei ano a ano as emissões líquidas em florestas queimadas, 

com base nas mudanças em mortalidade de fustes, decomposição da madeira morta e 

regeneração da vegetação. Os modelos que propus mostraram que após as emissões por 

combustão há um pulso considerável de carbono liberado para atmosfera através da 

decomposição, atingindo um pico 5 anos após o evento do fogo, responsável por até 73% de 

todas as emissões por fogo ao longo de 30 anos. A regeneração após o fogo neutraliza apenas 

35% de todas as emissões derivadas do fogo. Finalmente, minha abordagem espaço-temporal 

para extrapolar emissões de CO2 imediatas e tardias derivadas de incêndios florestais 

descontrolados, no capítulo 4, mostrou que a maior parte das emissões por combustão e 

decomposição ocorrem em florestas com os maiores estoques de biomassa. De maneira geral, 

essa tese demonstra que os efeitos do fogo nos estoques de carbono persistem por muitos anos 

e que as políticas ambientais deveriam focar em combater os incêndios na região tropical 

húmida, especialmente em florestas com alto teor de carbono estocado. 

Palavras-chave: florestas tropicais húmidas, Amazônia, estoques de carbono, fogo, mortalidade de árvores, 
regeneração pós-fogo, emissões de CO2 
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1.1 TROPICAL FORESTS IN A HUMAN-DOMINATED WORLD 

Tropical forests include a diverse range of humid and dry forest types between the tropics of 

Cancer and Capricorn. Over 90% of tropical forests are confined to the Amazon Basin, Congo 

Basin and Southeast Asia (FAO, 2020). They stand out globally as an exceptional reservoir of 

biodiversity and carbon. Covering only c. 10% of Earth’s surface, tropical forests store 25% of 

the terrestrial carbon and contribute to 33% of global net primary productivity (Bonan, 2008). 

Their role in the global carbon cycle is largely based on the exchange of CO2 (uptake and 

emissions) between forests and atmosphere, and about two thirds of the global carbon sink in 

established forests biomass is due to the permanence of intact tropical forests (Pan et al., 2011). 

These highly productive ecosystems provide habitat for one half of the world’s terrestrial 

species (Dirzo & Raven, 2003) and multiple benefits to mankind, commonly referred to as 

‘ecosystems services’. Briefly, tropical forests help regulate climate by absorbing and storing 

carbon and thus controlling local temperatures, provide freshwater by recycling rainfall, 

mitigate natural disasters by reducing erosion and controlling flooding, improve food security 

by providing goods and services such as pollination and pest control, aid human health by 

providing traditional medicines and preventing infectious diseases, and deliver cultural 

services which have non-material benefits, including aesthetic inspiration and cultural identity 

(Brandon, 2014; Carrasco et al., 2014). The conservation of tropical forests is thus not only 

essential for the persistence of millions of species but also for the maintenance of human well-

being. 

Contemporary and large-scale anthropogenic pressures threaten the health of tropical forest 

ecosystems (Laurance et al., 2012; Malhi et al., 2014; Ganivet, 2020). This is associated with 

the recent human-dominated period marked by accelerated industrial and transportation 

growth, the Anthropocene – a new geological epoch with the greatest human influence on Earth 
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systems functioning (Crutzen, 2002; Steffen et al., 2007). The extent of human-induced 

changes in tropical forests is substantial, and even the most remote areas of forests are affected 

(Malhi et al., 2014). Agriculture is the major driving force, replacing tropical forests across the 

world and accounting for 80% of all deforestation-driven activities (Hosonuma et al., 2012). 

Degradation activities, although less evident, are also extensive (e.g. Bullock et al., 2020) and 

have pervasive effects on tropical forest biota (Barlow & Peres, 2008; Aoyagi et al., 2013) and 

climate (Pearson et al., 2017). With the expected growth of urban populations (Defries et al., 

2010), climate change (Bonan, 2008), and current unbalanced systems where exploitation 

overweight the conservation of natural resources (Foley et al., 2005), the future of tropical 

forests in the Anthropocene is very uncertain. 

1.2 RECENT CHANGES IN TROPICAL FORESTS  

 Deforestation and forest degradation 

Deforestation, defined as forest clearance by the complete removal of vegetation, is prevalent 

across the tropics. Deforestation has increased significantly since the 1990s (Hansen et al., 

2013; Kim et al., 2015) and from 2000 to 2012, it is estimated that 91,400 km2 of forests were 

cleared per year (Hansen et al., 2013). Some of the deforested areas are left to regrow, these 

so-called secondary forests recover carbon stocks at varying rates (Poorter et al., 2016a; Suarez 

et al., 2019), even within the same ecosystem (Elias et al. 2019), and exhibit greatly reduced 

biodiversity values (Gibson et al., 2011). The forces driving the conversion of forests vary in 

their relative importance across the tropics (Houghton, 2012; FAO, 2020). For example, 

contrary to Africa and Asia where subsistence agriculture is the strongest driver of 

deforestation, in South America large-scale commercial agriculture is the main cause of 

deforestation (Houghton, 2012). The trends in forest conversion also vary by region and over 

time — for example, deforestation declined substantially in the Brazilian Amazon from 2004–

2012 and increased up to 2020 (PRODES, 2020), while in other Amazonian countries, large 
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forest clearings have declined over time but small clearings increased  (Kalamandeen et al., 

2018). As deforestation increases, what used to be large continuous forests patches become 

fragmented, creating many smaller isolated patches. Fragmentation result in loss of 

biodiversity, decrease in forest biomass and changes in nutrient cycling, with greatest effects 

in the smallest and most isolated fragments (Haddad et al., 2015). The formation of forest edges 

has adverse effects, such as increased tree mortality and susceptibility to fire (Laurance et al., 

2011; Numata et al., 2011). Finally, deforestation is a climate change force: it alters rainfall 

patterns (Spracklen et al., 2012a) and temperature (Senior et al., 2017), and increases 

atmospheric CO2 concentrations (Malhi & Grace, 2000) 

While deforestation is relatively easy to track in space and time, and has impacts that are 

increasingly well understood, there is growing recognition that degradation can be just as 

important. Forest degradation is defined as “changes in forest condition (often due to logging, 

drought, fire and fragmentation) that result in the reduction of the capacity of a forest to provide 

goods and services” (Parrotta et al., 2012). Degradation types also vary across continents. For 

example, in South America uncontrolled fires are a more prominent driver of degradation than 

in Africa and Asia, where logging is considered more important (Hosonuma et al., 2012). Until 

2012, over 1,43 MKm2 of forest were degraded in the tropics (Tyukavina et al., 2016). In fact, 

forest degradation has even surpassed deforestation in some countries (Matricardi et al., 2020). 

Because degradation is more difficult to detect and monitor, the actual loss of ecosystem 

functioning from degradation tends to be underestimated (Nepstad et al., 1999). 

Forest degradation can occur in multiple forms and at varying intensities, and the resulting 

effects interact and can be intensified by climate change. A growing number of studies report 

the impacts of forest degradation on biodiversity, such as shifts in fauna and flora species 

composition in logged and burned forests (Barlow & Peres, 2004; Bonnell et al., 2011; Mayor 

et al., 2015; França et al., 2020), and consistent changes in forest structure and trees species 
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composition after fire (Barlow et al., 2003a; Van Nieuwstadt & Sheil, 2005; Barlow & Peres, 

2008) and drought-induced disturbances (Muelbert et al., 2019, Phillips et al., 2010). While 

logging, fires and fragmentation are drivers of forest degradation that are directly related to 

anthropogenic activities, climate change related drivers, such as changes in rainfall, increases 

in air temperature and changes in the patterns of extreme climatic events, which are indirectly 

related to human activity, can also lead to forest disturbances (Lewis et al., 2009). Generally, 

human-related and climate-related forest degradation leads to a reduction of the substantial 

carbon stocks (Phillips et al., 2010, Berenguer et al., 2014, de Andrade et al., 2017) and a 

weakening of the carbon sink potential of tropical forests (Brienen et al., 2015, Hubau et al., 

2020). Recently, large swaths of intact tropical forests have shown sensitivity to climate 

change, with their carbon sink potential being reduced over time (Brienen et al., 2015, Yang et 

al., 2018, Hubau et al., 2020). Although an increase in tree growth associated with CO2 

fertilization and increases in air temperature caused a peak in carbon uptake from intact tropical 

forests in the 1990s, in the last two decades, an asynchronous carbon sink saturation has been 

identified in intact Amazonian and African forests, as a result of increases in tree mortality 

(Hubau et al., 2020). These recent findings suggest a directional change is occurring in intact 

forests, even without direct human interference. 

In order to slow the rate of deforestation and degradation in tropical forests and reduce their 

consequences for the global carbon cycle, policy mechanisms such as REDD+ (Reducing 

Emissions from Deforestation and Degradation) have been established (UNFCCC, 2020). 

Additionally, 2021–2030 has been declared the United Nations Decade on Ecosystem 

Restoration, with the aim to halt and reverse ecosystem degradation (FAO, 2020). While these 

initiatives have been showing relative success in some regions, they are currently more 

challenging under recent climate change because forests become more susceptible to natural 

or anthropogenic disturbances (Malhi et al., 2014; Brando et al., 2019a)  
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1.3 FIRE IN TROPICAL FORESTS 

In the last decade, large areas of tropical forest have been affected by wildfires, defined here 

as uncontrolled fires in vegetation (Page et al., 2002) (Alencar et al., 2006; Aragão & 

Shimabukuro, 2010). Over 200,000 Km2 were affected by wildfires in Asia and South America 

during the 1997–1998 El Niño (Cochrane, 2003a). Furthermore, during the 2015–2016 El 

Niño, the strongest on record (Jimenez et al., 2018), wildfires affected c. 40,000 Km2 in 

Amazonia alone (Silva Junior et al., 2019).  Fires in tropical forests are not unprecedented 

(Sanford et al., 1985), but in the past they were very scarce (Cochrane, 2003a; Bush et al., 

2008). For example, pre-Columbian records of localized and patchy charcoal in humid forests 

(Amazon basin) with low frequencies of burned tree phytoliths (silica found in plant tissues 

that persist after plant decaying) suggest occurrences of infrequent low-intensity fires probably 

with no influence on the forest canopy (Bush et al., 2008; McMichael et al., 2012a). As humid 

forests did not evolve with fire, these ecosystems are very sensitive to fire and are probably 

becoming the most vulnerable ecosystems to the recent fire-prone climate conditions (Jolly et 

al., 2015a).  

Fire is an evolutionary force shaping the distribution of global vegetation (Bond et al., 2005; 

Bowman et al., 2009; Staver et al., 2011) but in recent times, humans have altered fire regimes 

world-wide, either increasing or decreasing their frequency and intensity beyond previous 

equilibria (Bond et al., 2005; Krawchuk et al., 2009; Archibald et al., 2012; Andela et al., 

2017). Much of the knowledge about fire characteristics (e.g. intensity, severity and frequency) 

and its complex interactions with vegetation is based on fire-prone ecosystems (Bond & Keeley 

et al., 2005). While in some fire-prone ecosystems, such as boreal forests and savannas, fire 

has been playing a key role in maintaining fire-dependant species by millions of years (Bond 

& Keeley, 2005; Bond et al., 2005; Pivello, 2011), in tropical forests, where excessive moisture 

limits combustion, wildfire is not a natural feature and can cause substantial negative ecological 
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impacts (Cochrane, 2003a; Barlow & Peres, 2004). Yet, although I focus on tropical forest 

wildfires here, there are other types of fire, such as fires in natural and anthropogenic open 

lands (e.g.  Barlow et al., 2019). It is thus important to distinguish forest fires from other fire 

types (e.g. farming and deforestation fires). 

 Ignition sources and wildfire types  

Human-originated ignition is the main way wildfires start in tropical forests, since lightning 

are commonly associated with heavy rainfall and rarely lead to wildfires (Cochrane, 2003a). 

Human fire-associated activities vary according to cultural and political aspects and 

infrastructure, but in general, fires are used to remove unwanted vegetation. For example, cattle 

ranchers burn pastures to remove weeds, smallholders use fires to practice swidden-agriculture, 

and fire is used to clear deforested land by burning felled trees after they were left to dry during 

the dry season (Figure 1.1E). These fires can accidentally escape and spread into adjacent 

forests (Figure 1.1D), and other times, wildfires can be started maliciously. Fires penetrate the 

forest interior through the edges, as these are drier and are usually invaded with flammable 

grasses (Silvério et al., 2019). Forest wildfires can occur at low or high intensity – e.g. low-

intensity wildfires (or understorey fires) burn available fuel on the forest floor (Figure 1.1A), 

moving slowly for days or even months until they are extinguished by rain; and high-intensity 

wildfires (canopy or crown-fires) might occur in more open forests and usually advance from 

an understorey fire (Figure 1B), reaching the forest canopy depending on the drought and wind 

conditions (Cochrane, 2003a). Distinguishing fire types and how they are triggered is 

fundamental for strategic action plans (Barlow et al., 2019). 
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Figure 1.1 Types of forest fires; A) Low-intensity, understorey wildfire in a closed-canopy 

forest in Mato Grosso; B) High-intensity wildfire burning the trunk of a tree and advancing to 

the forest canopy; C) wildfire in an open area burning dried grass close to a forest edge in 

Mato-Grosso; D) The frontier between a still-burning pasture and a completely burned forest 

edge in Para; E) a deforested area in Roraima — the felled trees on the ground were burned 

during the dry season of 2015. Photos taken during field work by Camila Silva, Filipe França, 

Haron Xaud and Paulo Brando. 

 

 Why do humid tropical forests burn? 

Closed-canopy humid forests are generally fire-resistant, but extreme drought conditions can 

transform these forests into flammable systems (Cochrane et al., 1999; Fearnside et al., 1999; 

Brando et al., 2014), and when this occurs, even a single man-made ignition is enough to cause 

forest wildfires. Extreme drought events are usually associated with El Niño in tropical regions 
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and are characterized by an anomalous reduction in rainfall, reaching up to 4 standard-

deviation (Silva Junior et al., 2019). During drought events, humid forests are subjected to 

water stress and become flammable. These flammable conditions occur when air in the forest 

understorey reaches high levels of dryness (vapor pressure deficit (VPD) > 0.75Kpa) and fuel 

moisture content is low (<23%) (Nepstad et al., 1999; Ray et al., 2010; Brando et al., 2019a). 

Moreover, extreme drought conditions increase forest flammability by enhancing 

accumulation of fuel loads, i.e. by increasing leaf and branch fall (Nepstad et al., 2004), and 

tree mortality (Phillips et al., 2010; Rowland et al., 2015).  

Forest flammability is higher in human-modified forests as their canopies are more open, 

leading to drier and hotter understories. There is strong evidence for this from secondary 

forests, logged and/or burned forest, and forests edges (Uhl & Kauffman, 1990; Ray et al., 

2010; Silvério et al., 2019). Some of these forests are also likely to have larger fuel loads on 

the ground, resulting from mortality inputs from a recent disturbance. For example, coarse 

woody debris (CWD) stocks in forests subjected to reduced impact and conventional logging 

in central Amazonia are one-and-a-half and four-fold those of undisturbed forests, respectively 

(Keller et al., 2004). Forest edges, resulting from landscape fragmentation, are especially 

susceptible to fires due to their proximity to ignition sources, i.e. the agriculture lands, pastures 

and roads, and also because they are drier than the forest interior  (Silva Junior. et al., 2018). 

Once burned, previously undisturbed and human-modified forests become more susceptible to 

repeated fires (Barlow & Peres, 2008), as fuel is created by increased litterfall (Brando et al., 

2016a) creating a positive feedback of increasingly intense fires (Nepstad et al., 2001) (Figure 

1.2). In summary, fires in humid tropical forests are a result of multiple interactions between 

climatological drought, human-induced changes to forests, and the increase in ignition sources 

that accompanies deforestation, roads construction, and agriculture. 
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Figure 1.2 Positive feedbacks cycle of flammable disturbed forests and high-intensity wildfires. 

Closed-canopy forests are usually fire-resistant, but the combined effects of drought and 

human-induced degradation (e.g. logging, fragmentation), make these forests susceptible to 

low-intensity wildfires. Once disturbed, forests become more flammable with higher fuel 

stocks and drier understorey microclimate, creating conditions for high-intensity fires.  

 

The 1982–1983, 1997–1998 and 2015–2016 El Niño droughts were the strongest recorded in 

the last four decades (Jimenez et al., 2018), but the more moderate droughts of 2005 and 2010 

also affected extensive forest areas in Amazonia (Aragão & Shimabukuro, 2010; Anderson et 

al., 2018; Silva Junior et al., 2019). The extent and intensity of these droughts varied regionally. 

For example, although 2005 and 2010 were in general less intense, in some regions they were 

more intense than any El Nino drought (Aragão et al. 2007, Lewis et al., 2011, Aragão et al., 

2018a). These patterns are shown to be associated with regional changes in sea surface 

temperatures (Malhi et al., 2014; Aragão et al., 2018a). Worryingly, droughts are projected to 

increase in frequency and intensity in the tropics (Zelazowski et al., 2011; Feng et al., 2013; 

Malhi et al., 2014). For example, in Amazonia, the mean interval of drought return declined 
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from 12 years in the last century, to six years in the first 16 years of this century (Marengo & 

Espinoza, 2016; Silva Junior et al., 2019). Forest responses to droughts include increased 

mortality of large trees (Phillips et al., 2010; Rowland et al., 2015) and reductions in woody 

growth (Rifai et al., 2018), which increases the available fuel for wildfires. Furthermore, 

drought-induced wildfires are expected to become more common in humid tropical forests 

(Krawchuk et al., 2009; Le Page et al., 2017). Although the total burned forest area has seen a 

reduction globally (Andela et al., 2017), an increasing trend has been observed in closed-

canopy forests (Hardesty et al., 2005; Aragão & Shimabukuro, 2010; Aragão et al., 2018a); 

forests that were historically fire-free regions.  

 Responses from humid tropical forests to fire  

The impacts of wildfires on humid tropical forests vary according to fire intensity and forest 

type. Closed-canopy forests are commonly affected by low-intensity understorey wildfires, and 

these fires can be very damaging as they burn for long periods of time (Cochrane et al., 1999) 

(Figure 1.3A). For example, tree mortality rates are higher than 40% even after low-intensity 

fires in Amazonia (Barlow & Peres, 2004) (Figure 1.3B). In Indonesia, wildfires killed 64% of 

trees in lowland rainforest during the 1998 El Niño (Van Nieuwstadt & Sheil, 2005). Rates of 

fire-induced tree mortality can be even higher in previously disturbed forests, which are more 

likely to experience high-intensity wildfires (Cochrane et al., 1999, Brando et al., 2019a). 

Repeatedly burned forests in Amazonia can lose more than 75% or their above-ground biomass 

(Cochrane et al., 1999; Barlow & Peres, 2008). In floodplain forests, such as Amazonian 

flooded forests and the peat-swamp forests of Indonesia, wildfires can have a more pervasive 

effect, killing all trees (Siegert et al., 2001; Flores et al., 2016a). Peat swamps are susceptible 

as they have a characteristic thick layer of decomposing organic matter that, when dried, is a 

potent fuel that increases fire intensity (Brando et al., 2019a). Flooded forests, during the dry 

season, are also particularly susceptible as the fires burn all of the roots that form a dense mat 
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on the forest floor (Flores et al 2016).  In general, post-fire mortality rates in humid tropical 

forests are at least double that of those found in drier forests at the edges of the Amazon 

(Barlow & Peres, 2004). 

The high rates of fire-induced tree mortality provide evidence of the sensitivity of humid 

tropical forest trees to fire, which is mainly associated with their thin bark, which gives little 

protections against heat damage (Barlow et al., 2003b; Brando et al., 2012a). As smaller trees 

tend to have thinner bark, those are the most susceptible to mortality when they burn (Barlow 

et al., 2003b). Although large trees with thicker bark have been shown to survive the direct 

effect of fires (Balch et al., 2011; Brando et al., 2012a), an increased rate of mortality of such 

trees has been detected up to 3 years after the fires (Barlow et al., 2003a) (Figure 1.3C). In 

general, it is expected that in drier climatic regions more trees have thicker bark and thus are 

more likely to survive wildfires (Pinard & Huffman, 1997; Pausas, 2015; Staver et al., 2020). 

Regions with wetter climates are the most vulnerable as the majority of the trees have thin bark 

(Staver et al., 2020), and tree size and bark thickness are shown to be the most important plant 

traits that determine survival (Barlow et al., 2003b; Brando et al., 2012a). 

As humid tropical forests are very sensitive to fire, their recovery after a wildfire can be very 

slow. Some studies show that decreasing fire return-intervals in humid tropical forests change 

species composition and structure (Figure 1.3D) to such a degree that forest recovery to the 

original state will be impeded (Chapman et al., 1999; Flores et al., 2016b; Oliveras et al., 

2017). While succession in humid tropical forests is expected to be slow, taking centuries rather 

than decades to recover structure and diversity to pre-disturbance levels (Chapman et al., 1999; 

Flores et al., 2016b; Oliveras et al., 2017), a suite of factors such as the loss of most old-growth 

primary forest species, the destruction of the seedbank, declines in animal populations that play 

a key role in dispersing seeds, and the climate sensitivity of pioneer vegetation, may slow this 

process even further (Barlow & Peres, 2008). Because frequently burned humid tropical forests 
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change drastically, the term ‘savanization’ is sometimes used to describe the fate of burned 

humid forests (Stark et al., 2020). However, savannas are diverse and important ecosystems in 

their own right, and this term should not be used to describe a species-poor end point of 

degradation that lacks the woody species typical of savannas. The term ‘secondarization’ has 

been suggested instead, as the profound changes in structure and compositions make these 

forests more similar to young secondary regrowth (Barlow & Peres, 2008). However, burned 

forests are also distinct from secondary forests in their composition and their legal status; to 

avoid confusion over terminology it is probably more apt to call them ‘repeatedly burned 

forests’ or ‘heavily degraded forests’.  
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Figure 1.3 Effects of understory wildfires in central Amazonia, fire line in the understorey of 

a closed-canopy forest in Pará state; B) the base of a small tree completely damaged by a long-

lasting low-intensity wildfire ; C) a giant Parkia pendula tree, which died two years after low-

intensity wildfires during the 2015–2016 El Niño in Amazonas state; D) a pioneer-dominated, 

reduced-biomass forest in regeneration three years after a wildfire. Photos were taken during 

field work by Jos Barlow and Aline Pontes-Lopes.  
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 Wildfire impacts on carbon stocks and emissions 

Carbon emissions from wildfires in tropical forest are an important part of the global carbon 

cycle, as these forests store ~ 375 Pg of Carbon (Avitabile et al., 2016). It is estimated that 

burning emissions from deforestation in tropical forests contribute to 326.16 Tg C y-1, which 

corresponds to 15% of all vegetation burning emissions from 1997-2016 (Van Der Werf et al., 

2017). Three main factors determine the carbon emissions from tropical humid forests: the 

extent of the forest area affected by fires, the fuel loads available for combustion, and the rates 

of fire-induced tree mortality (Withey et al., 2018; Brando et al., 2019b). The extent of the 

forest area affected by fires varies significantly across the tropics, and there are many 

uncertainties associated with satellite-derived estimates. Currently there are only two burned 

area datasets spanning the whole tropics, MCD64 (Giglio et al., 2018) and FireCCI51 

(Chuvieco et al., 2018), and both are derived from the MODIS sensor aboard the Terra and 

Acqua satellites. Estimating burned area in closed-canopy tropical forests is challenging, 

because most fires are low-intensity understorey fires, which are difficult or impossible to 

detect with current thermal sensors (Anderson et al., 2005). While the current burned area 

datasets are useful for estimating carbon emissions from open vegetation, emissions estimates 

for fire-affected closed-canopy forests likely have higher uncertainties associated with them 

(Alencar et al., 2006).  

Fuel loads and tree mortality are also highly variable across regions. Combustion-induced 

emissions, which involve the instantaneous release of carbon to the atmosphere, are influenced 

by fuel loads and the combustion completeness of available fuels (Brando et al., 2014). In 

Amazonia, for example, a wildfire event are estimated to consume 20 to 60 Mg C ha-1 (Withey 

et al., 2018; Brando et al., 2019b; Silvério et al., 2019). In Indonesia, it is estimated that the 

1998 El Nino wildfires released 280 Mg C ha-1 from the combustion of peat soils (Page et al., 

2002). Finally, it has been shown that tree mortality rates are higher for up to three years after 
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fires (Barlow et al., 2003a; Osone et al., 2016), with the largest trees taking the longest time to 

die (Barlow et al., 2003a). As these large trees in humid forests store the largest fraction of 

aboveground carbon (Berenguer et al., 2014), also contributing significantly to belowground 

carbon stock (~21% e.g. Saatchi et al., 2011), their death and subsequent decomposition is 

important for the overall tropical forests carbon balance because this decomposition will 

release large amounts of carbon to the atmosphere, which is commonly referred to as 

‘committed emissions’. Committed emissions have been estimated using general estimates for 

tree mortality or biomass loss. For example, Alencar et al. (2011) assumed a 10–50% fire-

induced mortality rate for trees to estimate the carbon emissions from the wildfires during 1998 

in the Amazon, while Anderson et al. (2015a) considered a 30% loss of biomass, but only 

within the first year following the 2010 wildfires in Mato Grosso. 

1.4 STUDY SYSTEM – THE BRAZILIAN AMAZON 

The Amazon forest is the largest extant tropical forest in the world. A recent study showed that 

11 of the remaining 17 mega-fragments of primary forests in the world are in the Amazon 

Basin (Hansen et al., 2020). Amazonian forests store ~ 100 Pg C in live trees (Feldpausch et 

al., 2012; Fauset et al., 2015), and harbour ~25% of the Earth’s terrestrial species (Dirzo & 

Raven, 2003). The value of this biome to global, regional and local communities is 

immeasurable, and Brazil, which retains 64% of the biome in its territory, has a huge role in 

determining the preserving Amazonian ecosystems. The Brazilian Amazon covers an area of 

~ 4M km2 and the human population in the area is c. 20.3 million (IBGE, 2000), including c. 

300 distinct indigenous groups (Aikhenvald, 2012), and many traditional peoples, such as the 

afro-descendants known as ‘Quilombolas’ and mixed-race known as ‘Caboclos’. The 

expansion of agriculture and cattle ranching led to increasing deforestation rates until 2005, 

after which rates decreased with the implementation of a policy to prevent and control 

deforestation (PPCDAM, 2004). Recently, forest degradation became a major threat. It is 
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estimated that up to 2014, the 308,311 km2 that were deforested were surpassed by the 337,427 

km2 of forests that were degraded over the same time period, including logged, burned, edges 

and isolated fragments (Matricardi et al., 2020). These figures do not include the megafires 

associated with the most recent droughts: in the last three decades the region was affected by 

four major drought events (1998, 2005, 2010 and 2015-2016) that led to extensive forest 

wildfires (Marengo & Espinoza, 2016; Jimenez et al., 2018). Fire disturbance is a prevailing 

type of degradation in Brazilian Amazonian forests, as droughts are becoming more frequent 

in the region and large swaths of forest are already degraded (Aragão et al., 2018). 

The present project was carried out across the Brazilian Amazon (Figure 1.4). Data 

were collected in the states of Acre, Amazonas, Mato-Grosso, Roraima and Pará. These are 

five from the nine Brazilian states that comprise the Amazon biome. We focused on specific 

regions from each state where drought-induced wildfires have affected terra-firme forests. 

Although we focused on terra-firme forests, each region has a particular mosaic landscape 

composed of a variety of forest typologies. For example, bamboo-dominated forests are 

common in Acre, whereas lower biomass ‘transitional’ forests are common in Mato-Grosso 

and Roraima. Forest structure varies greatly across Amazonia, in both undisturbed and human-

modified forests, and in this project, we tried to capture most of this variability. For Chapters 

2 and 3 we focused on undisturbed forests affected by the occurrence of a single fire. In Chapter 

4, we aggregated data sampled in undisturbed and human-modified forests affected by single 

and multiple fire events.  
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Figure 1.4 The Brazilian Amazon and the Aboveground Biomass (AGB) of the remaining 

vegetation for the year 2000 (AGB data from Avitabile et al. 2016). The current project is 

focused on burned terra-firme forests, with data collection carried out in the states of Acre 

(AC), Amazonas (AM), Mato-Grosso (MT), Para (PA), and Roraima (RR). 

1.5 KNOWLEDGE GAPS, OBJECTIVES AND THESIS STRUCTURE 

Across the Brazilian Amazonia, most studies have focused on understanding impacts of 

wildfires in humid forests in the short-term (Cochrane et al., 1999; Barlow and Peres, 2008; 

Brando et al., 2014). While these studies have elucidated the magnitude of changes in carbon 

stocks and shifts in trees functional groups in the short-term after fires, we still lack knowledge 

about the long-term ecological consequences of wildfires in humid-forests non-adapted to fire. 

This is the first knowledge gap this thesis aims to address, since shifts in trees communities 

and a lag in the carbon losses caused by fire disturbances can impact the role of tropical forests 

in the global carbon cycle (Barlow and Peres, 2008, Van Nieuwstadt and Sheil, 2005, Brando 
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et al., 2019b). The second knowledge gap this thesis addresses refer to the lack of estimates of 

post-fire carbon fluxes in humid forests at the annual basis. Most studies have focused on 

estimating immediate emissions from combustion or have estimated the committed emissions 

from trees mortality (Barlow et al., 2003, Alencar et al., 2006, Anderson et al., 2015, Withey 

et al., 2018, Aragão et al., 2018), without quantifying the temporal dynamics of post-fire forest 

carbon fluxes. Finally, this thesis addresses a third knowledge gap – the lack of a method to 

scale-up forest fires emissions basin-wide over time. Although global fire emission models 

have attempted to estimate spatio-temporal emissions from vegetation across the humid-tropics 

(Van Der Werf et al., 2017), they underestimate emissions from fires non-associated to 

deforestation (forest wildfires) by not considering long-term carbon deficit in burned forests. 

This thesis focuses on understanding wildfire impacts on carbon stocks and the dynamics of 

Amazonian forests, as well as estimating wildfire-associated carbon emissions. This was 

addressed by the specific aims to: 

(i) Quantify the long-term changes in biomass, mortality, and wood productivity of 

burned forests over a period of 30 years and assess stem mortality and growth 

among functional groups; (Chapter 2 - Drought-induced Amazonian wildfires 

promote long-term disruption of forest carbon dynamics) 

(ii) Develop a statistical model based on measured changes in stem mortality, 

necromass decomposition and vegetation growth to quantify year-to-year net CO2 

emissions from burned forests; (Chapter 3 - Estimating the multi-decadal carbon 

deficit of burned Amazonian forests) 

(iii) Develop a spatial-temporal approach to scale-up immediate and long-term CO2 

emissions from wildfires. (Chapter 4 - A novel spatial-temporal approach to 

estimate CO2 emissions from Amazonian forest fires) 
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This thesis presents three data chapters written for publication: Chapter 2 was published in 

Philosophical Transactions of the Royal Society B; Chapter 3 is in press in Environmental 

Research Letters; and I intend to submit Chapter 4 for review and publication (target journal 

is Global Change Biology). The thesis therefore comprises three stand-alone data chapters, 

with their aims and order reflecting the sequence of the work as it was carried out. Chapter 5 

provides a summary of key findings of each chapter, the insights resulting from the connections 

among the outputs, and future research priorities. Supplementary information is given at the 

end of each chapter and an appendix at the end of the thesis contains other publications that 

have resulted from research to which I have contributed. 
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2.1 ABSTRACT 

Drought-induced wildfires have increased in frequency and extent over the tropics. Yet, the long-term (greater 

than 10 years) responses of Amazonian low- land forests to fire disturbance are poorly known. To understand 

post-fire forest biomass dynamics, and to assess the time required for fire-affected forests to recover to pre-

disturbance levels, we combined 16 single with 182 multiple forest census into a unique large-scale and long-term 

dataset across the Brazilian Amazonia. We quantified biomass, mortality and wood productivity of burned plots 

along a chronosequence of up to 31 years post-fire and compared to surrounding unburned plots measured 

simultaneously. Stem mortality and growth were assessed among functional groups. At the plot level, we found 

that fire-affected forests have biomass levels 24.8+6.9% below the biomass value of unburned control plots after 

31 years. This lower biomass state results from the elevated levels of biomass loss through mortality, which is not 

sufficiently compensated for by wood productivity (incremental growth þ recruitment). At the stem level, we 
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found major changes in mortality and growth rates up to 11 years post-fire. The post-fire stem mortality rates 

exceeded unburned control plots by 680% (i.e. greater than 40 cm diameter at breast height (DBH); 5–8 years 

since last fire) and 315% (i.e. greater than 0.7 g cm23 wood density; 0.75–4 years since last fire). Our findings 

indicate that wildfires in humid tropical forests can significantly reduce forest biomass for decades by enhancing 

mortality rates of all trees, including large and high wood density trees, which store the largest amount of biomass 

in old-growth forests. This assessment of stem dynamics, therefore, demonstrates that wildfires slow down or stall 

the post-fire recovery of Amazonian forests. 

Keywords: post-fire dynamics, stem mortality, wood productivity, long-term recovery, fire disturbance, drought 

 

2.2 INTRODUCTION 

The successful reduction of the deforestation rate in the Brazilian Amazon between 2004-2017 

has not been sufficient to reduce disturbance in the remaining forests (Aguiar et al., 2016). 

Recent studies demonstrate that human-induced disturbances (e.g. wildfires and selective 

logging) can halve the conservation value and significantly decrease the carbon stocks of 

remaining Amazonian forests (Berenguer et al., 2014; Barlow et al., 2016; Longo et al., 2016). 

Moreover, Amazonian forests affected by wildfires are estimated to contribute on average with 

31 ± 21% of the gross emission values from deforestation, with contributions beyond 50% 

during drought years (Aragão et al., 2018b). Yet, there is a critical knowledge gap regarding 

the long-term recovery of carbon stocks  in  forests affected by anthropogenic disturbances 

such as fire (Aragão et al., 2014; Berenguer et al., 2014; Barlow et al., 2016).  

Humid tropical forests are not a fire-adapted ecosystem (Cochrane, 2003b; Power et al., 2008).  

Previous studies suggested that wildfires in the Amazon basin have been rare since the start of 

the Holocene, with fire-return intervals exceeding centuries or millennia (Power et al., 2008; 

McMichael et al., 2012b). However, over the past three to four decades wildfires have become 

increasingly prevalent across humid tropical forests, including Amazonia (Jolly et al., 2015b). 

These tropical fires generally require an anthropogenic source to ignite, which generally comes 

from agricultural practices (Uhl & Kauffman, 1990). The likelihood of wildfires occurrence is 
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also increased by forest disturbance, such as selective logging (Uhl & Buschbacher, 1985), and 

by deforestation that exposes remaining forests to edge effects (Alencar et al., 2015) and 

reduces rainfall (Aragão, 2012; Spracklen et al., 2012b).  In addition, wildfires can be greatly 

exacerbated by extreme drought events (Uhl & Buschbacher, 1985; Alencar et al., 2006; 

Aragão et al., 2008; Gatti et al., 2014; Anderson et al., 2015b; Aragão et al., 2018b). For 

example, during the 2015 El Niño-induced extreme drought 799,293 km2 of the Brazilian 

Amazon experienced positive active fire anomalies (Aragão et al., 2018b). Given that extreme 

droughts are predicted to occur at greater frequency in the Amazon Basin (Malhi & Wright, 

2004), wildfires are likely to become even more pervasive (Silvestrini et al., 2011). 

These wildfires have a major impact on forest carbon stocks, accounting for the mortality of 

up to 36% of tree stems and 67% of the biomass loss in central Amazonian forests three years 

after fires (Barlow et al., 2002; Barlow & Peres, 2006). Fire-affected forests consequently 

become a global important carbon source: based on the 2010 fire season, it was estimated that 

27,555 km2 of old-growth forests burned in the whole Brazilian Legal Amazon, contributing 

to 14.8Tg of C emissions to the atmosphere from direct combustion of organic material 

(Anderson et al., 2015b). Immediately combustible carbon stocks – such as leaf litter and fine 

woody debris – make up only a very small proportion of forests aboveground carbon stock 

(Berenguer et al., 2014) and most emissions are committed (0.001 to 0.165 Pg of C), as they 

are likely to occur years after wildfires as a result of vegetation mortality and its subsequent 

decomposition (Alencar et al., 2006).  

Despite the growing prevalence and importance of wildfires in humid tropical forests, our 

knowledge of their ecological consequences is constrained by the lack of data in three key 

areas.  First, the longer-term effects of wildfires on forest biomass is not known as most studies 

to date have focussed on relatively short-term responses of vegetation to fire (Barlow et al., 

2012; Sato et al., 2016; Numata et al., 2017; Rappaport et al., 2018). For example, a pan-
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tropical assessment suggests there is no recovery of forest carbon stocks within at least five 

years (de Andrade et al., 2017), while a study on flooded Amazonian forests highlight the 

potential for fires to impede forest succession in the first 15 years after fire (Flores et al., 

2016a). Second, most assessments are one off inventories, meaning ecological processes and 

stem dynamics in fire-affected forests are very poorly understood. Extensive field assessments 

in undisturbed Amazonian forests show the importance of repeat surveys, which have enabled 

researchers to link the spatial variation of forest biomass to stem dynamics such as mortality 

and recruitment (Baker et al., 2004; Johnson et al., 2016).  Finally, there is no data linking 

post-fire long-term forest dynamics with functional traits. Plant traits such as bark thickness 

and wood density provide important insights into post-fire changes and the susceptibility of 

forest ecosystems (Pinard & Huffman, 1997; Barlow et al., 2003c; Midgley et al., 2011; 

Brando et al., 2012b; Pausas, 2015), especially as they are directly related to carbon storage 

function (Chave et al., 2014). Recently, an assessment of the impacts of fire and other forest 

disturbances has shown that wood density remains below baseline  conditions for at least 25 

years following disturbance, indicating a slow recovery or impeded succession (Berenguer et 

al., 2018a). Longer term assessments of forest dynamics could provide additional insights into 

the successional trajectories of burned forests, and their ability to recompose carbon stocks. 

We address these knowledge gaps by using a unique large-scale and long-term assessment of 

forest dynamics, which is based on a set of chronosequences and re-census data from burned 

and unburned forests in five distinct regions of the Brazilian Amazon. We ask two main 

research questions:  

i) What are the longer-term effects of wildfires on forest biomass (i.e. up to 31 years after the 

fires)? We address this question by comparing, at the plot-level, the total aboveground biomass, 

and forest dynamics represented by mortality and wood productivity, between burned and 

unburned forests. The balance between tree mortality and productivity defines the ability of 
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these fire-affected forests to recover to pre-disturbance carbon levels and offset carbon 

emissions. 

ii) How do wildfires affect forest growth, recruitment and mortality at stem-level, and what 

insights do key structural traits such as wood density and stem size (Diameter at Breast Height) 

provide into the mechanisms underpinning the changes in biomass? We focus on wood density 

and size because both are important predictors of short-term fire-induced mortality (Barlow et 

al., 2003c; Brando et al., 2012b) and both are linked to stem growth rates and carbon storage 

in undisturbed forests (Baker et al., 2003; Fauset et al., 2015). We divided stems into three 

classes of wood density and size to examine the changes in the probability density functions of 

growth, recruitment and mortality over time since fire degradation.  

Finally, we combine results from both questions to discuss to what extent Amazon forests are 

recovering from fires. 

2.3 MATERIALS AND METHODS 

 Experimental design for field data collection  

We used tree inventory data collected as part of the Fire-Associated Transient Emissions in 

Amazonia (FATE) network. Since 2009, the FATE network has been monitoring permanent 

forest plots established in burned forests with different times since wildfire occurrence. Here, 

we collected and analysed field data from 64 permanent plots across Amazonia, from which 

we revisited and re-measured 55 All plots are located on old growth non-flooded forests (Terra 

Firme) with 269.3 m median distance from the edge. We examined the terrain elevation and 

slope within 100 m buffer of each plot using a high resolution (12.5m) digital elevation model 

(ALOS PALSAR RTC). There is very small slope across the plots (range: 2.8° – 9.4°).  Plots 

ranged from 0.25 to 1 ha. From a total of 64 plots, 29 are in unburned and 35 plots are in burned 

forests (supplementary material table S1).  
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We selected burned forest sites based on the inspection of Landsat images (1984-2016) 

followed by on-the-ground field confirmation. When we did not find evidence of fire in the 

satellite image for a specific site, but there was charcoal in the ground, we assumed the fire 

event occurred at the time of the earliest image (i.e. 1984). Because of the high intensity of the 

1982-83 El Niño event, when 3.6 million ha were burned in East Kalimantan (Kinnaird & 

O’Brien, 1998), it is likely that several forested areas elsewhere were affected by wildfires 

during this period. To enable pairwise comparisons between burned and unburned control sites, 

both were selected to avoid other anthropogenic disturbances such as selective logging. The 

unburned control plots, moreover, were carefully chosen to encompass a similar range and 

heterogeneity of both soils and topography as the burned sites. Independent proxies of fire 

intensity, such as char height, are not available for plots assessed a long time after fires when 

many of the affected trees will have died and decomposed. Without this additional information, 

we assume that all plots were subjected to low intensity understorey wildfires that are the norm 

in previously undisturbed forests. 

Our 31 years chronosequence dataset captures the effect of wildfires driven by El Niño events 

and North tropical Atlantic warming since the 1980s. The distribution of the FATE plots 

reflects the spatial occurrence of these major wildfire events (e.g. figure 2.1a) and accessibility. 

In order to link drought intensity over the last 40 years with wildfire extent, we used re-analysis 

derived data to calculate Maximum Climatological Water Deficit (MCWD) and satellite 

derived products of burned area (please see detailed methods in supplementary material method 

S.1). The data extracted from each plot location, along the burned area and MCWD time series, 

shows the association between MCWD and burned area at all plots region (figure 2.1b). Figure 

1b also demonstrates when each site was sampled relative to the last fire event.  
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Figure 2.11Tree inventory plots and overlap of Maximum Cumulative Water Deficit (MCWD) 

and Burned area (BA) anomalies (sd) over Brazilian Amazon region. MCWD was derived from 

ERA-Interim and BA derived from MODIS (detailed methods in supplementary material S.1). 

Left panel: MCWD red values representing extreme drought, or negative anomalies (sd) in 

relation to 1979-2016 period; BA red values representing extreme large affected areas, or 

positive anomalies (sd) in relation to 2001-2016 period. Right panel: MCWD and BA variation 

over time extracted from each plots region, year of the tree inventory and year of fire. 

 

 Field inventory and total aboveground biomass 

The inventory was conducted following the RAINFOR network protocol for the establishment 

of permanent sample plots (Phillips et al., 2009a). We estimated aboveground biomass (AGB) 

of 9,836 live trees, palms and lianas with diameter at breast height (DBH) ≥ 10 cm. For both 

burned and unburned forests, total aboveground biomass (TAGB) represent the sum of all trees, 

palms and lianas AGB, and was estimated using a specific allometric equation for each group, 
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following (Chave et al., 2014) for trees, (Goodman et al., 2013) for palms, and (Gerwing & 

Farias, 2000) for lianas. The AGB estimates for palms and lianas were based solely on their 

diameter, whilst for trees DBH and specific wood density values were used as input variables. 

We used the global wood density database  (Chave et al., 2009; Zanne et al., 2009) to match 

specific wood density to each species. For individuals not identified to the species level (~5%), 

we used the mean value for the species belonging to that genus. Similarly, we used the mean 

specific wood density of the family for trees not identified at the genus level (Baker et al., 

2004). When an accurate identification was not achieved, the plot mean specific wood density 

was used.  

 Plot-level assessment of long-term effects of wildfires on forest biomass  

2.3.3.1 QUANTIFICATION OF PLOT-LEVEL FOREST DYNAMICS 

To understand the response of old growth forests to wildfires, we evaluated the long-term shifts 

in forest dynamics at the plot-level. We quantified for all burned and unburned plots the net 

biomass change (Net TAGB), which is a function of wood productivity (Wp) and mortality 

(M) of all stems in the plot (Equation 2.1). 

Net TAGB = ΣWp – ΣM                                                                                    (2.1) 

The term ΣM corresponds to plot mortality (Mg ha-1 y-1), which was calculated as the amount 

of the biomass of all stems recorded as dead within a given census interval. The term ΣWp 

corresponds to the sum of the values of Wp for all measured stems in the plot and can be 

decomposed as (Equation 2.2).  

ΣWp = ΣRecruits + ΣGrowth                                                                               (2.2) 
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Wp (Mg ha-1 y-1) was calculated as the sum of the biomass of stems that recruited during each 

census interval (ΣRecruits) and the sum of the growth in biomass of each stem present in the 

plot (ΣGrowth) during this same census interval.  

Because census interval varied among plots, rates were weighted by the census interval length. 

In order to account for trees that both recruited and died during the census interval and also to 

correct for tree growth prior their death, M and Wp values were corrected at a tree-by-tree 

basis, following methods of (Talbot et al., 2014).  

2.3.3.2 QUANTIFICATION OF DIFFERENCES BETWEEN BURNED AND UNBURNED FORESTS  

To assess if TAGB and dynamics from burned forests recovered to pre-disturbance levels, we 

quantified the percent of difference between burned and unburned forests. For TAGB and each 

dynamic parameter, the proportional difference between each burned plot and the mean of 

unburned plots, was calculated as described below (Equation 2.3):  

%△ X = (XBU(i) – XUB(mean)) 
XUB(mean)

	 100                                                                                      (2.3) 

where X represents the variable of interest (TAGB, M, Wp, and Net TAGB), BU(i) is each of 

the burned plots, and UB (mean) is the local mean of all unburned plots sampled in the same 

region at the same time as the burned plots. The error is presented as standard error of the mean 

(SE). 

2.3.3.3 LONG-TERM TRAJECTORIES OF BURNED FORESTS TAGB AND DYNAMICS 

We used Generalized additive mixed models (GAMM) to assess the trajectories of TAGB, 

mortality, Wp and Net TAGB over the time since last fire chronosequence. We used each 

individual plot measured repeatedly as a random effect. To assess the direction of the difference 

(%) in each variable in relation to the control-unburned forests, we used the local polynomial 
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regression fit (LOESS), choosing the span values based on the minimum residual standard error 

obtained. All statistical analyses were performed in R 3.3.3 using gamm4 and lme4 R packages. 

 Stem-level assessment of growth, recruitment and mortality  

To explore the structural and successional mechanisms driving the long-term changes on 

TAGB of burned forests, we assessed the empirical probability density function of stem 

mortality rate and stem growth in three DBH (cm) classes: 10.0 to 19.9, 20 to 39.9 and >40.0; 

and three specific wood density (g cm-3) classes: 0.1 to 0.49, 0.5 to 0.69 and > 0.7 for both 

burned and unburned plots. Including all plots from all regions, we divided the dataset into four 

categories considering the years since last fire (YSLF): 0.75-4; 5-8; 9-11; 12-31 years. For each 

plot we calculated stem mortality as the exponential mortality coefficient (%y-1) (Sheil & May, 

1996), mean stem growth as the annual mean growth (cm y-1) of all living individuals, and stem 

recruitment as the percentage rate of stems recruited relative to live stems in each census (%y-

1). Stem mortality and stem growth from each plot were stratified by classes of diameter, wood 

density and YSLF. Stem recruitment by plot was stratified by YSLF class, but we only used a 

grouping based on wood density class, as all recruitment falls into the smallest DBH class. The 

probability density functions of the unburned and burned plots were compared using the 

Wilcoxon test for two samples. 
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2.4 RESULTS 

 The long-term effects of wildfires on forest biomass at plot-level 

During the monitoring period, the biomass of unburned forest plots remained generally 

unchanged, with exception of forest plots from southeast and east Amazonia that have 

experienced high mortality in the drought years of 2015 (15.2 Mg ha-1 y-1; n=4) and 2016 (9.9 

Mg ha-1 y-1; n=20) respectively (supplementary material, table S2). In contrast, the biomass of 

burned forest plots changed greatly with time since fire (table 2.1). Immediate fire effects on 

TAGB were smaller, with reduction of -2.1 ± 3.9% up to four years post-fire. From 5-8 years 

since fire, we found a much greater difference in TAGB, with reduction of -22.1 ± 2.9% in 

burned plots compared to unburned controls. The significantly lower biomass persisted up to 

31 years post-fire, when burned plots remained 24.8 ± 6.9 % below the baseline value of the 

control plots (figures 2.2a, 2.2e). 
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Table 2.1 Mean difference in % (±SE) between each burned plot and unburned mean values of 

TAGB, mortality, wood productivity (increment and recruitment values in table S3, 

supplementary material) and Net TAGB. 

YSLF 
categories 

Census 
year 

TAGB Stock TAGB Dynamics 

TAGB 
△% N Mortality 

△% 

Wood 
productivity 
△% 

Net TAGB 
△% N 

(0.75 to 4) 

2009; 
2011; 

2014; 
2015; 

2016 

-2.1(3.9) 42 
199.2 

(43.5) 
4.0(6.9) 

-1308.4 

(263.1) 
17 

(5 to 8) 

2010; 

2011; 
2012; 

2013; 

2016 

-22.1(2.9) 26 
247.4 

(135.6) 
30.0(7.8) 

-26.8 

(212.1) 
26 

(9 to 11) 

2014; 

2015; 

2016 
-17.1(2.9) 12 -8.6 (10.8) 16.7(11.2) -45.5 (57.2) 12 

(12 to 31) 

2010; 
2014; 

2016; 

2017 

-24.8(6.9) 20 
20.7 

(33.7) 
8.9(8.7) 

105.0 

(183.3) 
10 
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Figure 2.2 GAMM fitted models of burned forests pathways by dependent variables: (a) Total 

Aboveground Biomass (TAGB), (b) Mortality, (c) Wood productivity (Wp) and (d) Net 

TAGB; and LOESS fit for percent difference of each variable in relation to unburned forest (e-

h). 
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 Uncertainties 

Across pools, the largest uncertainties (table 1) are associated with mortality, due to the large 

influence exerted by the death of a single large tree. Temporally, and for all variables, there 

were large uncertainties from 16 to 27 years after fire, where data was lacking (Figures 2.2a-

2.2h). It is reassuring that the trajectories predicted along the chronosequence using the GAMM 

model and LOESS fit agree. All GAMM fitted models intercept and smooth component 

(YSLF) are statistically significant (table 2.2). While all models are significant (supplementary 

material, figure S1), residual variability may be associated to the “random” deviations from the 

predicted values that are not due to plots’ specificities and/or YSLF, suggesting possible 

association with fire intensity and environment conditions. Accordingly, the large TAGB and 

mortality variability observed across the plots explains the higher Std. Error found in the 

intercept and slope of TAGB and mortality models.  The fitted model’s effective degrees of 

freedom values consistently show that burned forests TAGB, mortality and Net TAGB 

response to time is non-linear, while Wp is linear. For Wp the effective degrees of freedom is 

equal to 1 meaning linearity for Wp in relation to time.  

Table 2.2 GAMM models output by fixed term for intercept and the smooth term YSLF. 

    TAGB Mortality Wp Net TAGB 
Intercept Estimate  216.2 11.4 8.1 -3.3 

Std. Error 12.5 1.2 0.3 1.3 

Std. dev. 72.8 0 1.3 0 

Pr(>|t|) <2e-16 2.71E-13 <2e-16 0.01 

Smooth term 
(YSLF) 

Estimate  -34.2 -21.4 -1.0 19.7 

Std. Error 17.9 9.6 0.3 9.7 

Std. dev. 102.7 22.5 0 22.6 

edf* 5.2 3.5 1 3.5 

p-value 0.000463 0.0002 0.00064 0.000119 

Residuals Std. dev. 12.3 9.9 1.8 10.2 

* effective degrees of freedom 
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 Mortality, recruitment and growth rates at stem-level 

Wildfires had persistent effects on burned forest dynamics at stem-level: from a total of 48 

comparisons between burned and unburned forests of stem mortality and growth, 16 were 

significant (p < 0.05), and another five were marginally significant at p<0.10 (figure 2.3 and 

2.4). These significant results were distributed across all classes of time since last fire 

disturbance, and all classes of tree size and wood density.  

Stem mortality was skewed towards zero, but still higher in burned forests when compared to 

unburned forests. The significantly higher stem mortality was observed across all tree size and 

wood density classes – but not in all YSLF categories (figure 2.3a, 2.4a). The largest stem 

mortality differences between burned and unburned forests were observed at 0.75-4 YSF. On 

average 22.8 ±2.4 % of trees from small classes of size (i.e. 10-19.9 cm DBH) and 23.8 ±5.0 % 

of trees with the lightest wood density (i.e. 0.1-0.49 g cm-3) died during 0.75-4 YSLF – these 

mortality rates were 341% and 239% higher than the equivalent size and wood density classes 

in unburned controls. However, the larger size stems (i.e. >40cm DBH; 5-8 YSLF) and higher 

wood density classes (i.e. >0.7 g cm-3; 0.75-4 YSLF) were also significantly affected in burned 

forest, being 680% and 315% higher than unburned controls, respectively. Between 9-11 years 

since the wildfires, small size stems (i.e. 10-19.9 cm DBH) and stems from small (i.e. 0.1-0.49 

g cm-3) and medium (i.e. 0.5-0.69 g cm-3) classes of wood density experienced significant 

higher mortality in burned forests – these mortality rates were 74%, 173% and 69% higher than 

unburned controls, respectively.
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Figure 2.3 Probability density function of: a) Stem Mortality (%y-1) and, b) Stem Growth (cm 

y-1) by Size classes (DBH: 10.0-19.9; 29.9-39.9; >40.0 cm) in lines and years since last fire 

(YSLF) classes (0.75-4; 5-8; 9-11; 12-31 years) in columns. Dashed lines represent median, 

red colour for burned and blue for unburned forests. Significance of Wilcoxon text is 

represented by: * p<0.05 and ** p<0.10. 
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Figure 2.4 Probability density function classes of a) Stem Mortality in (%y-1) and, b) Stem 

Growth (cm y-1) by Wood Density (WD: 0.1- 0.49; 0.5-0.69; > 0.7 g cm-3) in lines and years 

since last fire (YSLF) classes (0.75-4; 5-8; 9-11; 12-31 years) in columns. Dashed lines 

represent median, red colour for burned and blue for unburned forests. Significance of 

Wilcoxon text is represented by: * p<0.05 and ** p<0.10. 
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Stem growth followed a normal distribution, and the mean values of burned forests were 

generally higher than those in unburned forests (figure 2.3b, 2.4b). The greatest difference in 

stem growth was observed in the small and medium size classes: when compared to unburned 

controls, mean stem growth was 94.1 and 96.6% higher in burned forests for small size class 

in the 5-8 and 9-11 YSLF categories, respectively, and 54.2% and 27.0% higher in burned 

forests for the medium size classes at 5-8 and 9-11 YSLF categories, respectively. Similarly, 

for the class of low wood density, mean stem growth was 121.1% and 62.1% higher in burned 

forests than in unburned forests in the 5-8 and 9-11 YSLF categories, respectively. For medium 

wood density stems, mean stem growth was 50.0% higher in burned forests than in unburned 

forests at the 9-11 YSLF category. Finally, for high wood density stems, growth was 24.0% 

and 26.0% higher in burned forests than in unburned forests at 5-8 and 9-11 YSF, respectively. 

Stem recruitment was skewed towards zero (supplementary material, figure S2). Overall, mean 

stem recruitment values were generally higher in burned than unburned forests up to 12 years 

since last fire (supplementary material, figure S3). There were no significant differences 

between recruitment in burned and unburned forests when separated by wood density classes. 

2.5 DISCUSSION 

We provide one of the longest post-fire chronosequence assessments of fire-affected 

Amazonian forests, analysing the most extensive dataset to date. Our findings reveal that 

burned Amazonian forests persist in a reduced biomass state for at least 31 years since last fire, 

at which point they store approximately 25% less above-ground biomass than equivalent 

unburned forests. This decrease in biomass is driven by increases in mortality that are not fully 

compensated for by the relatively small changes in recruitment and growth rates (table 2.1). 

The high mortality in burned forests was not exclusively limited to small diameter and light 

wood trees, but also includes the large-stemmed and hardwood trees which contribute most to 
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the carbon stock (Baker et al., 2004; Slik et al., 2013; Sist et al., 2014). In contrast, the positive 

post-fire growth response was predominantly associated with small-medium sized trees and 

lighter or intermediate classes of wood density - groups that contribute relatively little to overall 

above-ground carbon stocks. We examine in more detail these findings to understand how the 

post-fire changes in dynamics rates influence forest biomass in the long-term, and how this is 

underpinned by mortality, recruitment and growth among functional groups. Finally, we 

discuss the prospects of long-term slow recovery of Amazonian fire-affected forests and the 

future of tropical humid forests under the risk of wildfires. 

 Post-fire changes in forest dynamics and consequences for the long-term 

recovery of biomass stocks 

Our data show that long-term reduction on TAGB after fire is persistent, but the uncertainties 

inherent in space-for-time comparisons and delayed mortality of large trees mean it only 

became fully evident after five years of the fire events. After the initial fire-induced mortality, 

wood productivity rates in burned forests were higher than unburned controls probably because 

of the increase in light and nutrients availability to the remaining survivors’ trees. However, 

this initial short-term increase in wood productivity (plot level biomass gain) does not exceed 

mortality (plot level biomass loss), and is insufficient to counteract the total biomass losses 

through mortality along the whole chronosequence. Previous studies have raised the question 

of whether enhanced forest growth, promoted by low-intensity fires, offsets carbon emissions 

due to post-fire tree mortality (Brando et al., 2016b). Our assessment refutes that: although 

burned forests were no longer a net carbon source six years after fires, the lack of biomass 

accumulation from 6-31 years shows they will not recover to pre-fire conditions on decadal 

time-scales. Our findings also emphasize the importance of longer-term and larger-scale 

studies to monitor carbon dynamics in burned forests, which are particularly important for 
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incorporating the variation of mortality and growth rates in C emission models for the growing 

extent of fire-affected tropical forests. 

 Post-fire mortality among functional groups with high contribution to biomass 

stocks 

Wildfires affected the stem mortality rates of small-medium sized trees and all wood density 

classes in the first YSLF category (0.75-4) of the chronosequence. An initial increase in the 

mortality of high wood density trees (315%) compared to unburned forests, combined with a 

late increase in the mortality of large-sized trees (680%), has important impacts upon overall 

aboveground biomass loss. A burned forest that lost its large-size (figure 2.3a) and high-wood 

density stems (figure 2.4a) will inevitably store less biomass that it did prior to disturbance 

(figures 2.2a, 2.2e). As well as corroborating previous studies on the late increase in mortality 

of large trees (Barlow et al., 2002), we also show for the first time that this process can continue 

for up to eight years after fire – suggesting that almost all previous studies will have 

underestimated total biomass loss from fires. 

 Although previous findings show tree mortality decreased as a function of increasing wood 

density (Brando et al., 2012b), we show that all wood density classes are at risk of fire-induced 

mortality, especially in the first 4 years after the burn. It is important to note, our results do not 

show higher susceptibility of high wood density trees compared to lower wood density trees to 

post-fire mortality, instead we show higher stem mortality of high wood density trees in burned 

forests compared to unburned controls. One explanation for this high post-fire mortality across 

wood density classes reflects the fact that the full range of wood densities can be found in the 

small (i.e.10.0-19.9cm DBH) and medium (i.e. 20.0 – 39.9 cm DBH) size classes, which are 

the fire-susceptible groups. Smaller trees are shown to have thinner bark, which in turn are at 

more risk of heat stress and fire-induced mortality(Uhl & Kauffman, 1990; Barlow et al., 

2003c). 
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 Post-fire stem growth and recruitment  

The significant loss of large size and emergent trees is likely to have triggered the increase in 

the growth of light-dependent and fast-growing species. As expected, this increase in wood 

productivity is associated with the stem growth responses of small and medium size trees from 

all wood density classes, and to a lesser extent to stem recruitment.  Although light availability 

is expected to also benefit new recruits (Walker & Moral, 2003), stem recruitment is less 

evident and not significantly higher than undisturbed forest in each individual wood density 

class. However, an ongoing successional process may be occurring within burned forests, as 

components of wood productivity (recruitment + growth) was higher compared to unburned 

forests (supplementary material, table S3, figure S3). Our results suggest that pioneer species 

are colonizing and growing after fire, maintaining a natural forest succession process after 

disturbance. For instance, the late stem mortality of small trees (i.e. 10-19.9 cm DBH; 9-11 

YSLF) and stem growth at mid-long term (i.e. 5-8 and 9-11 YSLF) observed, supports the 

expected post-disturbance forest succession. However, it is expected that recruitment of old 

growth species is limited after fire disturbance which negatively affects the forest’s ability to 

recover to its pre-disturbance functional state (Flores et al., 2016a; Berenguer et al., 2018b). 

Consequently, fire disturbances are likely to shift forest composition and dynamics for much 

longer than 30 years. 

 Prospects for forest recovery beyond the time-scale of our data  

Although our data extend to 31 years post-fire, there are reasons to expect slow recovery for 

many decades beyond this timeframe. First, the Net TAGB in burned forests was close to 

unburned forests equilibrium in the long-term of the chronosequence, and did not provide any 

signs of continued recovery. For the recovery to occur gains would need to surpass loss during 

this stage. Second, the fires killed many large-size and high-wood density trees, which will 

take the longest to recover; perhaps unsurprisingly we also found that their re-establishment 
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will take longer than 31 years, and many could take centuries to recover, given the large trees 

age (200 to 1,400 yr) in undisturbed Amazonian forests (Chambers et al., 1998). However, 

other unassessed factors could be important and are worthy of further investigation. For 

example, the destruction of the seedbank by fire and a low seedling survival may act to limit 

stem recruitment, as previously found in Amazonian flooded forest affected by fire in long-

term (Flores et al., 2016a). In addition, remaining seeds from shade-tolerant species have lower 

chances to germinate in larger canopy gaps (Denslow, 1987).  Finally, the reduced biomass 

stock may result from the dominance of early successional species inhibiting emergent and 

shade-tolerant species on decadal time scales (Walker & Moral, 2003). 

 Post-fire forest recovery limitations and the future of tropical humid forests 

under the risk of wildfires 

Forest disturbance from fires may interact with a changing climate. For example, burned forests 

have a more open canopy which allows the entrance of solar radiation. The increasing 

temperature in the interior of burned forests results in the increase of vapour pressure deficit 

and evapotranspiration, further exacerbating soil drying (Cochrane, 2003b; Balch et al., 2008). 

At the same time, the Amazon has seen an increase in drought conditions, limiting water 

availability (Malhi et al., 2009) and potentially limiting the recruitment of trees (Phillips et al., 

2009b). Although Amazonian forests seem to be resilient to dry conditions, it is likely that 

water limitation can limit their recovery from fire-disturbances (Malhi et al., 2009; Bush, 

2017). Whether post-fire succession is permanently arrested or is just occurring at a very slow 

rate is difficult to ascertain based on the temporal scale of our dataset. As we only assessed 

individuals ³10cm DBH within 31 years of since the last fires, we are unlikely to detect longer 

term recovery or the reestablishment of slow growing (high wood density) species. Although, 

assessments of saplings and seed bank on disturbed Amazonian forests indicates a slowdown 

or stalled forest recovery (Flores et al., 2016a; Berenguer et al., 2018a). Nonetheless, it is 
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notable that the stabilisation of recovery after wildfires is in marked contrast to the consistent 

increases in forest biomass observed in the first decades after disturbance in selectively logged 

or secondary forests (Bonner et al., 2013; Rutishauser et al., 2015; Poorter et al., 2016b). 

2.6 CONCLUSIONS 

Considering the increase in frequency and intensity of extreme events, such as the 2015/2016 

El Niño, associated with increasing fire incidence (Aragão et al., 2018b), our findings highlight 

the urgent need to avoid fires in humid tropical forests. Our study provides the largest ground-

based assessment on patterns of post-fire forest recovery, which is particularly important 

considering the role of the Amazon in the global carbon cycle. Moreover, in our effort to cover 

the heterogeneity of once-burned forests subjected to similar fire intensities, our estimates 

describe a general response of Amazonian old growth Terra Firme forests to fire disturbance. 

However, it is important to state that in our study we investigated the effect of a single fire 

event on forest dynamics and biomass stocks through time. Recurrent fires are still somewhat 

rare in the Amazon – in 2010, they only accounted for 16% of all wildfires (Morton et al., 

2013). However, recurrent fires are likely to be increasingly prevalent across the Amazon, 

given the synergies between a drier and hotter climate, the pervasive use of fire in agriculture 

(Carmenta et al., 2013), and the human-induced disturbances such as selective logging that 

turn forests more vulnerable to fires due to changes in the microclimate (Uhl & Kauffman, 

1990; Berenguer et al., 2014). The combination of these factors will also affect the ability of 

forests to recovery from fire disturbance. 
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2.8 SUPPLEMENTARY MATERIAL 

Method S1: Description of methods applied for MCWD and Burned Area anomaly 
calculations in figure 2.1. 

We used re-analysis data and satellite derived products of burned area to characterize the 

association between burned areas and drought affected regions over the Amazonia. To perform 

this analysis we calculated the Maximum Climatological Water Deficit (MCWD) anomalies 

for 2015 based on precipitation and evapotranspiration data from ERA-Interim reanalysis at 1º 

spatial resolution from 1979 to 2016 (Dee et al., 2011). For calculation of burned area 

anomalies for 2015 we used data from MODIS (MCD64A1 product) at 500 m spatial resolution 

from 2001 to 2016 (Giglio et al., 2006). We calculated MCWD as indicated by (Aragão et al., 

2007). Then we aggregated burned area at the MCWD 1º spatial resolution, so we assessed the 

total burned area for each grid-cell of MCWD. Both MCWD and burned area anomalies were 

then calculated for 2015 on a pixel-by-pixel basis, as the deviation from the long-term mean 

calculated from 1979 to 2016 (t) and 2001 to 2016 (t) respectively, normalized by the standard 

deviation (s) as following: 

 

"	#$%&'()	(+, -) 	= 	 !(#,%)	–	!()*)
s(+,)(-,.)   

Along the time series we plotted the data extracted from plots location and observed coincident 

peak of BA on the falls of MCWD at all plots region (figure 2.1). 
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Table S1 Description of permanent sample plots by region with respective Brazilian federal 

state, number of plots in burned (BU) and un-burned (UB) area, period of measurements, 

number of repeated census, Years since last fire disturbance (YSLF), total number of census in 

each region, plot size in hectare. 

 

Region  BU (N) UB (N) Census period Census 
(N) YSLF  Census 

Total 
Plot size 

(ha) 

East (PA) 4 6 2010-2016 3 16-31 30 0.25 

Central (AM) 11 6 2015-2016 2 0.75 – 1.25 34 0.25 

North (RR) 6 3 2015 1 12-17 9 0.25 

Southeast (MT) 4 4 2009-2017 7 4-12 56 0.25 

Southwest (AC) 10 10 2009-2016 3 0.75-11 60 0.25; 1 

Total 35 29 2009-2017 16 0.75-31 189 _ 
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Table S2 Summary of mean values of TAGB stock and dynamics parameters, mortality (M), wood productivity (Wp) and Net TAGB, with s.d. 

values between parentheses for burned and unburned plots.  

Type Plots Region Census 
period 

Census 
(N) YSLF TAGB (Mg 

ha-1) 
M 

((Mg ha-1 y-1) 
Wp 

(Mg ha-1 y-1) 
Net TAGB 
(Mg ha-1 y-1) 

Burned 
plots 

AFL_2a southeast 2009-
2017 7 4-12 226.3 (3.7) 8.4(5.4) 10.3(1.6) 1.8(4.0) 

AFL_2b southeast 2009-
2017 7 4-12 198.0 (11.3) 4.1(5.9) 8.3(1.8) 4.1(6.4) 

AFL_2c southeast 2009-
2017 7 4-12 209.0 (7.5) 5.1(6.2) 7.6(1.5) 2.5(6.2) 

AFL_2d southeast 2009-
2017 7 4-12 161.2 (6.7) 8(6.3) 6.5(1.4) -1.4(6.4) 

BOL_4 southwest 2011-
2016 3 0.75-6 277.2(14.4) 9.4(11.7) 8.1(0.4) -1.2(11.2) 

BOL_5 southwest 2011-
2016 3 0.75-6 113.0(22.4) 12.9(9.8) 3.3(1.3) -9.5(11.1) 

BOL_6 southwest 2011-
2016 3 0.75-6 186.5(12.9) 8.7(9.8) 8.7(0.3) -0.005(10.1) 

HUM_2a southwest 2009-
2016 4 4-11 217.4(10.8) 3.5(2.0) 8.4(1.3) 4.9(3.0) 

HUM_2b southwest 2009-
2016 4 4-11 203.1(5.7) 3.5(4.3) 7.1(2.0) 3.6(5.1) 

HUM_2c southwest 2009-
2016 4 4-11' 179.4(6.4) 9.7(11.4) 7.5(2.2) -2.2(9.6) 

HUM_2d southwest 2009-
2016 4 4-11 190.1(19.7) 19.3(25.0) 8.4(1.9) -10.8(23.5) 

MUC_10 north 2015 1 17 157.5    

MUC_11 north 2015 1 17 203.1    

MUC_13 north 2015 1 12 162    

MUC_14 north 2015 1 12 143.6    

MUC_6 north 2015 1 17 145.3    
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Type Plots Region Census 
period 

Census 
(N) YSLF TAGB (Mg 

ha-1) 
M 

((Mg ha-1 y-1) 
Wp 

(Mg ha-1 y-1) 
Net TAGB 
(Mg ha-1 y-1) 

MUC_7 north 2015 1 17 55.4    

NOC_4 central 2015-
2016 2 0.75-1.25 242.9(13.7) 28.1 9.6 -18.4 

NOC_5 central 2015-
2016 2 0.75-1.25 332.6(7.4) 22 12 -10 

NOC_6 central 2015-
2016 2 0.75-1.25 235.8(17.9) 31.4 7.2 -24.1 

NOC_7 central 2015-
2016 2 0.75-1.25 316.8(9.2) 22.2 9.8 -12.3 

NOC_8 central 2015-
2016 2 0.75-1.25 316.4(11.8) 21.6 5.4 -16.1 

NOC_9 central 2015-
2016 2 0.75-1.25 275.2(2.3) 12.7 10 -2.7 

RCM_4 southwest 2011-
2016 3 0.75-6 198.5(14.7) 13.3(2.4) 9.8(0.8) -3.5(3.2) 

RCM_5 southwest 2011-
2016 3 0.75-6 215.9(3.7) 3.1(2.8) 7.9(5.1) 4.7(7.9) 

RCM_6 southwest 2011-
2016 3 0.75-6 190(24.3) 16.6(7.7) 11.5(3.3) -5.1(11.1) 

TIC_4 central 2015-
2016 2 0.75-1.25 278.1(1.9) 8.8 11.7 2.9 

TIC_5 central 2015-
2016 2 0.75-1.25 173.8(11.7) 27.1 11.5 -15.6 

TIC_6 central 2015-
2016 2 0.75-1.25 185.9(41.9) 64.6 5.7 -58.8 

TIC_7 central 2015-
2016 2 0.75-1.25 204.6(3.3) 12 7.6 -4.3 

TIC_8 central 2015-
2016 2 0.75-1.25 190.2(20.3) 36.6 8.8 -27.8 

TPJ_10 east 2010-
2014 2 12-16 469.9(36) 18.5 6.1 -12.3 
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Type Plots Region Census 
period 

Census 
(N) YSLF TAGB (Mg 

ha-1) 
M 

((Mg ha-1 y-1) 
Wp 

(Mg ha-1 y-1) 
Net TAGB 
(Mg ha-1 y-1) 

TPJ_7 east 2010-
2014 2 25-29 307.9(49.5) 23.3 6.8 -16.4 

TPJ_8 east 2010-
2016 3 25-31 219(3.8) 3.5(3.0) 5.1(2.2) 1.6(0.7) 

TPJ_9 east 2010-
2016 3 25-31 161.3(13.1) 6.3(6.6) 4.9(0.8) -1.4(5.9) 

Unburned 
plots 

AFL_1a southeast 2009-
2017 7  264.3(9) 3.9(1.5) 7(2.1) 3.1(1.8) 

AFL_1b southeast 2009-
2017 7  209.4(15.6) 6.3(8.3) 5.6(1.8) -0.7(8.7) 

AFL_1c southeast 2009-
2017 7  292.5(4.7) 6.1(4) 5.9(1.7) -0.2(4.6) 

AFL_1d southeast 2009-
2017 7  213.6(17.3) 6.8(8.2) 5.4(1.6) -1.5(8.6) 

BOL_1 southwest 2011-
2016 3  141.9(11.6) 1(0.1) 6(0.7) 4.9(0.5) 

BOL_2 southwest 2011-
2016 3  236.1(12.8) 4.7(3.8) 9.4(0.9) 4.7(2.9) 

BOL_3 southwest 2011-
2016 3  249.5(14.4) 1.5(1.2) 6.7(1.2) 5.2(2.5) 

HUM_1a southwest 2009-
2016 4  297.2(7.6) 4.2(5.5) 7.7(1.2) 3.5(6.8) 

HUM_1b southwest 2009-
2016 4  269.9(25.8) 1.4(1.7) 10.4(1.6) 9(2.4) 

HUM_1c southwest 2009-
2016 4  263.4(69.1) 15.2(17.8) 8(4.5) -7.3(20.9) 

HUM_1d southwest 2009-
2016 4  258.5(14.5) 1.9(1) 6.9(2) 5(1) 

MUC_1 north 2015 1  332.8    

MUC_2 north 2015 1  195.3    

MUC_3 north 2015 1  287.9    
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Type Plots Region Census 
period 

Census 
(N) YSLF TAGB (Mg 

ha-1) 
M 

((Mg ha-1 y-1) 
Wp 

(Mg ha-1 y-1) 
Net TAGB 
(Mg ha-1 y-1) 

NOC_1 central 2015-
2016 2  311.1(0.6) 8.7 10 1.2 

NOC_2 central 2015-
2016 2  314.2(5.7) 1.5 9.8 8.3 

NOC_3 central 2015-
2016 2  216.6(2.3) 6 9.4 3.4 

RCM_1 southwest 2011-
2016 3  339.3(13.6) 2(2.7) 10.8(1.7) 8.7(4.4) 

RCM_2 southwest 2011-
2016 3  104.7(7.7) 1.8(0.7) 4.7(0.1) 2.8(0.5) 

RCM_3 southwest 2011-
2016 3  215.5(4.8) 1.1(0.8) 5(0.4) 3.8(1.3) 

TIC_1 central 2015-
2016 2  213.4(3.6) 2.2 7.5 5.2 

TIC_2 central 2015-
2016 2  165.1(3.3) 14.7 10.4 -4.3 

TIC_3 central 2015-
2016 2  163.8(4.4) 12.6 6.5 -6.1 

TPJ_1 east 2010-
2016 3  371.6(30.5) 15.9(9.5) 3.8(0.8) -12.2(10.3) 

TPJ_2 east 2010 1  231.8    

TPJ_3 east 2010-
2016 3  204(10.2) 4.5(2) 8.2(2.8) 3.7(0.7) 

TPJ_4 east 2010-
2016 3  313.1(10.6) 4.6(5) 5(1.2) 0.3(6.3) 

TPJ_5 east 2010-
2016 3  333.7(15.1) 9.8(0.04) 4.9(0.4) -5(0.3) 

TPJ_6 east 2010 1  518.4    
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Table S3 Summary of LOESS model’s parameters 

LOESS model for TAGB ~ Years since last fire 
 

  

Number of Observations: 100  
 

Equivalent Number of Parameters: 4.73  
 

Residual Standard Error: 21.16  
 

Trace of smoother matrix: 5.17  (exact) 
 

  

Control settings: 
 

  span     :  0.75  
 

  degree   :  2  
 

  family   :  gaussian 
 

  surface  :  interpolate   cell = 0.2 

  normalize:  TRUE 
 

 parametric:  FALSE 
 

drop.square:  FALSE  
 

 

LOESS model for Mortality ~ Years since last fire 
 

  

Number of Observations: 65  
 

Equivalent Number of Parameters: 5.34  
 

Residual Standard Error: 452.6  
 

Trace of smoother matrix: 5.86  (exact) 
 

  

Control settings: 
 

  span     :  0.75  
 

  degree   :  2  
 

  family   :  gaussian 
 

  surface  :  interpolate   cell = 0.2 

  normalize:  TRUE 
 

 parametric:  FALSE 
 

drop.square:  FALSE  
 

 

LOESS model for Wood Productivity ~ Years since last 
fire 

 

  

Number of Observations: 65  
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Equivalent Number of Parameters: 5.34  
 

Residual Standard Error: 34.34  
 

Trace of smoother matrix: 5.86  (exact) 
 

  

Control settings: 
 

  span     :  0.75  
 

  degree   :  2  
 

  family   :  gaussian 
 

  surface  :  interpolate   cell = 0.2 

  normalize:  TRUE 
 

 parametric:  FALSE 
 

drop.square:  FALSE  
 

 

LOESS model for Net TAGB ~ Years since last fire 
 

  

Number of Observations: 65  
 

Equivalent Number of Parameters: 5.34  
 

Residual Standard Error: 953.2  
 

Trace of smoother matrix: 5.86  (exact) 
 

  

Control settings: 
 

  span     :  0.75  
 

  degree   :  2  
 

  family   :  gaussian 
 

  surface  :  interpolate   cell = 0.2 

  normalize:  TRUE 
 

 parametric:  FALSE 
 

drop.square:  FALSE  
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Figure S1 The General Additive Mixed Model validation graphs for TAGB, mortality, Wp and 

Net TAGB: Residuals homogeneity, normality and independency. 

 

 

Figure S2 Probability density function of Stem Recruitment (% y-1) by Wood Density classes 

(WD: 0.1 - 0.49; 0.5 - 0.69; > 0.7 g cm-3) in lines and years since last fire (YSLF) classes (0.75 

- 4; 5 - 8; 9 - 11; 12 - 31 years) in columns. Dashed lines represent median, red colour for 

burned and blue for unburned forests. Significance of Wilcoxon text represented by: * p<0.05 

and ** p<0.10. 
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Figure S3 LOESS fit for percent difference of Recruitment and Growth in relation to unburned 

forest. 
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3.1 ABSTRACT 

Wildfires in humid tropical forests have become more common in recent years, increasing the rates of tree 

mortality in forests that have not co-evolved with fire. Estimating carbon emissions from these wildfires is 

complex. Current approaches rely on estimates of committed emissions based on static emission factors through 

time and space, yet these emissions cannot be assigned to specific years, and thus are not comparable with other 

temporally-explicit emission sources. Moreover, committed emissions are gross estimates, whereas the long-term 

consequences of wildfires require an understanding of net emissions that accounts for post-fire uptake of CO2. 

Here, using a 30-year wildfire chronosequence from across the Brazilian Amazon, we calculate net CO2 emissions 

from Amazon wildfires by developing statistical models comparing post-fire changes in stem mortality, 

necromass decomposition and vegetation growth with unburned forest plots sampled at the same time. Over the 

30-year time period, gross emissions from combustion during the fire and subsequent tree mortality and 

decomposition were equivalent to 126.1 Mg CO2 ha-1 of which 73% (92.4 Mg CO2 ha-1) resulted from mortality 

and decomposition. These emissions were only partially offset by forest growth, with an estimated CO2 uptake of 

45.0 Mg ha-1over the same time period. Our analysis allowed us to assign emissions and growth across years, 

revealing that net annual emissions peak four years after forest fires. At present, Brazil’s National Determined 

Contribution (NDC) for emissions fails to consider forest fires as a significant source, even though these are likely 

to make a substantial and long-term impact on the net carbon balance of Amazonia. Considering long-term post-
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fire necromass decomposition and vegetation regrowth is crucial for improving global carbon budget estimates 

and national GHG inventories for tropical forest countries. 

Keywords: wildfires, tropical forests, stem mortality, committed emissions, decomposition, combustion, CO2 

uptake, net emissions 

3.2 INTRODUCTION 

Wildfires, defined here as uncontrolled understory fires affecting forested areas (Barlow et al 

2020), were once absent or incredibly rare in humid tropical forests (Cochrane 2003, 

McMichael et al 2012). However, since the 1980s they have been growing in prevalence due 

to increases in deforestation, forest fragmentation, and widespread use of fire in land 

management (Goldammer and Seibert 1990, Cochrane et al 1999, Mouillot and Field 2005). 

These factors combined with changes in climate, including increased temperatures and drought 

frequency, heighten fire probability (Fernandes et al 2017, Silva Junior et al 2019). It is 

predicted that by 2050, the Brazilian Amazon will have 16% of its extent affected by wildfires 

(Brando 2020). Wildfires can lead to large changes in species composition and forest structure 

(Van Nieuwstadt and Sheil 2005, Balch et al 2011, Oliveras et al 2018, Barlow and Peres 

2008), as well as increasing rates of tree mortality rates by 50% (Barlow et al 2003). This is 

particularly worrying, as in years of extreme drought, emissions resulting from wildfires can 

be greater than those from deforestation (Alencar et al 2006, Anderson et al 2015, Aragão et 

al 2018). Given the recent magnitude of tropical wildfires, refined temporal estimates of their 

associated emissions are crucial for improving national and global carbon budgets. 

Although it is recognized that tropical wildfires can significantly contribute to global climate 

change (Page et al 2002, Nepstad et al 2008, Brando et al 2020), their carbon emissions remain 

absent from most national and global-level accounting systems. For example, the official 

Brazilian System for Registering National Greenhouse Gases (GHG) Emissions (SIRENE, in 

Portuguese) and the Brazilian System for Estimating Emissions of GHG (SEEG, in Portuguese) 
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do not account for wildfire-related emissions (MCTIC 2017, Azevedo et al 2018). There are 

two key knowledge gaps. The first is spatial; despite recent advances in remote sensing 

techniques (e.g. Anderson et al 2015, Hawbaker et al 2017, Chuvieco et al 2018, Reiche et al 

2018) fire-emission datasets such as the Global Fire Emission Database (GFED) (van der Werf 

et al 2010), still rely on burned area products that can underestimate low-intensity understorey 

wildfires in closed-canopy forests by up to 11 times (e.g. see Withey et al 2018). The second 

is temporal; most estimates of emissions focus on immediate emissions from combustion (e.g. 

Withey et al 2018) or estimates of committed emissions from mortality (Barlow et al 2003, 

Alencar et al 2006, Anderson et al 2015), but no studies have yet attempted to quantify the 

dynamics of post-fire forest carbon fluxes in humid tropical forests. This study addresses this 

second knowledge gap. 

In Amazonia, during wildfire events, the immediate emissions from combustion of leaf litter 

and woody debris are likely to be dwarfed by the committed emissions resulting from tree 

mortality and subsequent decomposition. Tree mortality remains above-baseline levels for at 

least seven years after the fires (Silva et al 2018a). The subsequent decomposition of these 

dead trees will lead to CO2 being emitted over decades later (Chambers et al 2000). These 

longer-term emissions could be partially or completely offset throughout a largely unquantified 

phase of post-fire regeneration, which is initially dominated by pioneers (Berenguer et al 2018, 

Barlow and Peres 2008), but later by slow growth higher wood density tree species (Silva et al 

2018a). Without quantifying these processes, it is not possible to assign CO2 emissions from 

wildfires to specific years, limiting our ability to compare emissions resulting from wildfires 

to those resulting from other sources, such as deforestation. This lack of temporal detail also 

hinders effective tracking of country-level emissions targets under the Paris Agreement 

commitments (UNFCCC, 2016). Furthermore, a better understanding of the temporal 
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progression of wildfire-related emissions would allow us to estimate their influence on the 

fraction of CO2 in the atmosphere, elucidating previously unknown sources and sinks. 

Here, we provide the first evidence-based assessment of the temporal basis of gross and net 

CO2 emissions resulting from Amazonian wildfires. We use a unique field-based dataset of 

trees, palms and lianas in four different regions in the Brazilian Amazon, where stem mortality, 

growth and recruitment have been assessed since 2009. We focused on CO2 fluxes resulting 

from growth and decomposition of woody components, which store the largest Carbon content 

with the longest residence time in the forest. We develop a novel statistical approach to estimate 

year-to-year net CO2 emissions from burned forests. For all four regions, nearby undisturbed 

forests were considered as our baseline for forest dynamics, allowing us to separate the 

marginal influence of fires from confounding drought effects, and other variation across sites. 

We address the following questions: (i) What is the temporal pattern of gross CO2 emissions 

resulting from fire-induced stem mortality and decomposition? (ii) What is the contribution of 

post-fire stem recruitment and growth to long-term CO2 uptake? (iii) What is the multi-decadal 

net CO2 flux of burned forests given the relative contribution of combustion and 

decomposition-related CO2 emissions and post-fire CO2 uptake? To answer question (i), we 

used empirical models (Silva et al 2018a) to describe post-fire stem mortality rates, 

incorporating a decomposition constant rate previously estimated for the central Amazon 

(Chambers et al 2000). For question (ii), we used the Chapman-Richard function to model 

post-fire tree growth and estimate how much CO2 is taken up by vegetation over time. For 

question (iii), we used data from questions (i) and (ii) to model the net CO2 flux following 

Amazonian wildfires over a 30-year period and evaluate the model by conducting an 

uncertainty analysis. Finally, we compare our estimates of decomposition-derived emissions 

with previous estimates of combustion-related emissions  
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3.3 METHODOLOGY 

 Study region and field measurements 

Our dataset was collected in four different regions across the Brazilian Amazonia (figure 3.1), 

with permanent plots (0.25 ha) located in both burned (BF, n = 27) and unburned (UF, n = 24) 

terra firme primary forests (Table S.M. 1). Burned forests were only affected by fire once, 

between 1-30 years prior to sampling. Fire occurrence was checked in Landsat images dating 

from 1970’s and during field work by checking evidence in the ground (e.g. charcoal, charred 

stems) and confirming sites history with local community. Plots in unburned forests were 

located near burned ones (1.3–34.6 km) and sampled at the same time. In all plots, we measured 

all live stems (trees, palms and lianas; 7,527) ≥10 cm of diameter at 1.3m height. Aboveground 

biomass (AGB) were estimated according to Silva et al (2018), using specific allometric 

equations for trees (Chave et al 2014), palms (Goodman et al 2013) and lianas (Gerwing and 

Farias 2000). The AGB was estimated for all live stems in the plots, with the use of specific 

wood density and diameter for trees and only diameter for palms and lianas. We quantified 

plot-level AGB growth by adding the AGB of stems recruited with the AGB gain of live stems 

within censuses. The plot-level AGB losses due to stem mortality were quantified by adding 

the AGB of all dead stems (downed and standing) within censuses. The number of times each 

plot was revisited varied (2–6 times), as well as the time interval between censuses (1–4 years). 

Corrections at the plot level were applied in order to account for stem recruitment and mortality 

not measured between censuses, as well as for stem-level growth prior to mortality, following 

Talbot et al (2014).  
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Figure 3.1Location of our four regions in: Amazonas state where wildfires occurred during the 

2015/2016 El Niño and forest censuses started by the same time (2015), Pará state where the 

latest wildfires occurred in 1998 and the earliest in 1985, and forest censuses started in 2010, 

Mato Grosso state where wildfires occurred during the 2005 drought and forests censuses 

started in 2009, and Acre state where wildfires occurred during the 2005 drought and censuses 

started in 2009. 

 

 Estimating gross CO2 emissions 

3.3.2.1 FIRE-INDUCED ABOVEGROUND NECROMASS PRODUCTION. 

   

Aboveground necromass production (AGNp, Mg ha-1 y-1) is defined as being the same as the 

annual AGB loss due to stem mortality, from all causes, including downed and standing dead 

stems. The fire-induced AGNp (fAGNp) is determined by subtracting the AGNp of the control, 

unburned plots from AGNp of each burned plot after the fires, 

 



 

74 

 

fAGNp(") = AGNp$%(")	–	AGNp&%)))))))))))													(Eq. 3.1) 

where AGNp$%(") refers to annual AGNp of the ith plot of burned forest and AGNp&%))))))))))) refers to 

the average annual AGNp of all unburned forest plots measured in the same region at the same 

time of BF plots. This allows us to exclude the influence from spatial (e.g. soil fertility) and 

temporal (e.g. droughts) drivers on fAGNp. 

We used a non-linear least squares regression and a standard exponential decay function to 

model fAGNp, 

fAGNp(') = fAGNp('()) ∙ e(*+')																(Eq. 3.2) 

where t is years since fire, and k is the rate at which fAGNp reduces over time. The regression 

analysis was done using the nls function from the stats R package (R Core Team 2019), S.M.2. 

 

3.3.2.2 ABOVEGROUND NECROMASS DECOMPOSITION.  

Removing combusted necromass from subsequent decomposition emissions in burned forests 

Combustion during understory wildfires removes c. 73% of forest necromass stocks (Withey 

et al. 2018). The vast majority of this necromass would have been emitted at a later date during 

decomposition. To avoid accounting for this loss twice (as both combustion and 

decomposition), we estimated the decomposition that would have occurred each year over the 

30 years (see supplementary material figure S.M.1). This estimate was based on published 

estimates of the combustion completeness of coarse woody debris (CWD), fine woody debris 

(FWD) and leaf litter stocks in central Amazonia (Withey et al 2018). The decomposition of 

the AGN stocks that were combusted was done by the following equation: 
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cAGNd(') = 	6. cAGN. 7(*,.')							(Eq. 3.3)	 

where b is a constant decomposition rate estimated for unburned forests in central Amazonia 

(Chambers et al 2000), cAGN is combusted necromass stock that would have been emitted by 

decomposition, and t is years since fire. The removal of cAGNd from total decomposition 

emissions is demonstrated in next section Eq. 3.4 

Decomposition of annual necromass inputs 

Over a decadal-time scale, changes in stem mortality mean there is a decreasing amount of 

above-ground necromass being produced in burned forests (fAGNp). After the first year, the 

fraction of AGN that decomposed at each year is added to the fractions decomposed in the 

previous years. Therefore, relative to unburned forests, the total losses by decomposition 

fAGNd (Mg CO2 ha-1 y-1), occurring in burned forests at a given time t is the sum of all 

decomposed fractions (present and previous) minus the cAGNd at a given time t (see Eq. 3.3), 

 

fAGNd(') = (896	. fAGNp(')	. e(*,.'):	) − cAGNd(')					(Eq. 3.4)	
.

.(/
 

with all symbols defined as above. fAGNd was then converted into gross CO2 emissions, using 

0.5 as the biomass to carbon conversion factor (Penman et al 2003) and then by multiplying 

the value obtained by 3.67 (the ratio between C and CO2 molecular weights) as the CO2 

conversion factor. 

 

 Estimating CO2 uptake by stem growth and recruitment 

Aboveground biomass growth (AGBg) is defined as the annual increment in AGB due to stem 

growth plus the AGB of recruited stems. Here, to estimate the fire-induced changes to growth 

rates (fAGBg) we used a similar relationship as Eq. 3.1,  
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fAGBg(") = AGBg$%(")	–	AGBg&%))))))))))																																															(Eq. 3.5) 

where AGBg$%(") is the annual AGBg of every ith plot of burned forest and AGBg&%)))))))))) is the 

average annual AGBg of all unburned forest plots measured in the same region at the same 

time of BF plots. To model the process of post-fire forest growth according to the pattern 

observed in fAGBg over the years since fire, we fitted a Chapman-Richard growth function 

(Richards 1959), which is widely used in forestry to model tree population growth 

(Pommerening and Muszta 2016). We used a non-linear least squares regression to estimate 

the function parameters (S.M.2) as per fAGNp. We used the first derivative of this function to 

model the annual AGB growth rates of forests after the fire, 

fAGBg(') = @ABC ∙ 91 − e	(*1'):
(2*/)

∙ 9D ∙ @ ∙ e(*1')	:																						(Eq. 3.6) 

where gmax is the maximum growth the forest could reach corresponding to the inflection point 

of the cumulative function, g is the mean growth rate, c is a nondimensional parameter 

controlling the curve shape and the location of the inflection point, and other symbols defined 

as above. fAGBg is converted to CO2 uptake as per fAGNd. We use CO2 uptake instead of 

sequestration as the longevity of this sink remains uncertain. 

 

 Net CO2 emissions and the relative contribution of combustion 

Net CO2 emissions were calculated by subtracting the modelled CO2 uptake from the modelled 

CO2 gross emissions. We compared the relative contributions of our estimates of the net and 

gross CO2 emissions (derived just from necromass decomposition) with published estimates of 

immediate CO2 emissions deriving from the combustion of CWD, FWD and leaf litter in 

central Amazonia (Withey et al 2018). We used the cumulative values of each emission 

component to estimate their relative contribution over the 30 years.  
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For all analysis, we quantified and propagated uncertainties throughout the model outputs (see 

supplementary material S.M.4).  

3.4 RESULTS 

 Temporal pattern of gross CO2 emissions from fire-induced stem mortality and 

decomposition 

Immediately after fires, necromass production rates increased by 22.4 ± 4.5 Mg ha-1 y-1 above 

the levels of unburned forests (>4-fold the UF plots’ necromass), and then declined over time 

at a constant rate of 0.32 ± 0.08 yr-1 (Figure 3.2a and supplementary material tables S.M.2 and 

3). Overall, the nonlinear regressions fit the fAGNp field data well (RSE = 6.63 Mg ha-1 y-1; 

df=61). The initial necromass stock was the most important parameter for short-term changes 

in fAGNp, while the contribution from reduction rates (“k” in Eq. 3.2) increased over time and 

was the most important parameter for the long-term changes (supplementary material Figure 

S.M.8). 

One year after fires, the CO2 emissions from necromass decomposition occurred at the rate of 

0.27 ± 1.95 Mg ha-1 y-1, as a result of low necromass stocks. New necromass stocks are 

produced in subsequent years as a result of delayed stem mortality, triggering new 

decomposition processes that will emit CO2 (see supplementary material Figure S.M.2). Gross 

CO2 emissions reached their peak five years after fire (8.13 ± 1.1 Mg CO2 ha-1 y-1), and then 

decreased over time, approaching the baseline levels 30 years after the fire event (Figure 3.2b). 
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Figure 3.2 a) Fitted model for predicting fire-induced necromass production (fAGNp). The 

grey dots are estimated fAGNp from field observations (n = 61) derived from the comparison 

between burned forest plots and locally measured unburned forest plots (Eq.1), black dots with 

bars are the mean ± standard error, and the red shaded area represents the 95% CI of the model. 

The dashed black line represents the necromass baseline in undisturbed primary forests. b) 

Total CO2 gross emissions (solid line) resulting from the sum of previous and present 

emissions per year and the subtraction of cAGN. 

 

 

 Temporal pattern of gross CO2 uptake due to post-fire recruitment and growth  

AGB growth in burned forests increased above baseline levels accumulating the maximum of 

22.5±7.41 Mg ha-1 in 30 years. AGBg slowly declined and reached baseline levels between 20-

25 years after the fire (Figure 3.3). When burned forests AGBg peaked, CO2 was taken up at 

the maximum rate of 5.59 ± 1.33 Mg ha-1 y-1 (Figure 4A).  
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The nonlinear model fit the fAGBg data well (RSE = 2.21 Mg ha-1 y-1; df=50). However, the 

nondimensional parameter related to the time and size of the growth peak (“c” in Eq. 3.6) had 

the greatest variation (17.9 ± 18.4; supplementary material tables S.M.6 and 7). All the three 

parameters in the Chapman-Richard function (gmax, k, c in Eq. 3.6) controlling the forest 

growth had similar contributions (supplementary material S.M.9) at the maximum growth 

(inflection point). 

 

Figure 3.3 Fitted model (Chapman-Richard) for predicting fire-induced biomass growth 

(fAGBg). The grey dots are estimated fAGBg from field observations (n = 50), derived from 

the comparison between burned forest plots and locally measured unburned forest plots (Eq.5), 

black dots and bars are the mean ± standard error, and red shaded area represent the 95% CI of 

the model. The dashed black line represents the baseline growth in undisturbed primary forests. 

 

 Multi-decadal net CO2 flux from burned forests: comparing the contribution of 

combustion and decomposition-related CO2 emissions with post-fire CO2 

uptake 

The balance between gross emissions and uptake results in net CO2 emissions that peaked four 

years after the fire, with the release of 7.51 ± 1.39 Mg CO2 ha-1 y-1 to the atmosphere (Figure 
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3.4a). After that, the net CO2 emissions decline sharply due to increases in CO2 removals. Net 

CO2 emissions converged with baseline levels towards the end of the 30-year period. However, 

when we combined our estimates of CO2 emissions resulting from dead-wood decomposition 

with those from the combustion of woody debris and leaf litter (33.64 Mg CO2 ha-1, see Withey 

et al 2018), both cumulative gross and net CO2 emissions remained above baseline levels 

(Figure 3.4b). We therefore estimate a cumulative gross emission of c. 126.1 Mg CO2 ha-1 for 

30 years after a fire event. Cumulative CO2 uptake only offsets 35% of these emissions (45.0 

Mg CO2 ha-1) within the same timeframe. Decomposition-related emissions account for 

approximately 58% (47.4 Mg CO2 ha-1) of total net emissions. The inclusion of net 

decomposition-related emissions doubles the emission estimates from combustion seven years 

after the fire took place. 
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Figure 3.4 a) CO2 fluxes (Mg ha-1 y-1) from wildfires. Gross emissions (red line) are the total 

emissions derived from necromass decomposition each year after the burn, CO2 uptake (blue 

line) is the CO2 taken up through above-ground biomass growth, and net CO2 (black line) is 

the balance between gross CO2 emissions and uptake. b) Cumulative CO2 (Mg ha-1) emissions 

and uptake over 30 years. Emissions from combustion (dark red) represent a single emission 

during the burn while gross decomposition emissions (light red) are the cumulative 

decomposition from all necromass stocks produced in 30 years, accounting for 73% of total 

gross emissions. Uptake (blue) offsets part (35%) of total emissions resulting in above baseline 

values (81 Mg CO2 ha-1) of net emissions (dashed black). 

 

3.5 DISCUSSION 

 

 Improving emission estimates from Amazonian wildfires 

Our approach provides a calibrated method for integrating Amazonian wildfires into national 

and global emission databases. At present, in humid tropical forests, GFED focuses on 

emissions from deforestation fires and assumes that wildfires are carbon neutral in the long 

term, with regrowth offsetting respiration of woody debris and leaf litter (Landry and Matthews 

2016). Also, the currently omitted CO2 emissions and removals, from post-fire stem mortality, 

growth and recruitment, in SIRENE and SEEG could be resolved by employing the approach 
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proposed here. The omission of wildfire-related emissions is important: for example, while the 

emissions from the 2.6 million hectares of Amazonian forests affected by the 1998 wildfires 

(Alencar et al 2006) would have been ignored by GFED, SEEG and SIRENE, our analysis 

suggests that this single event will have emitted 0.17-0.25 Pg of CO2 to the atmosphere by 

2030, even without considering subsequent recurrent wildfires or deforestation. These are 

equivalent to 18-27% of Brazil’s intended contribution in 2030 (i.e., 0.9 Pg of CO2, see 

UNFCCC 2016) under the Paris agreement. Following these estimates, the CO2 emissions 

resulting from 2010 and 2015-2016 wildfires, if properly accounted for, would have direct 

implications for Brazil’s ability to meet its Nationally Determined Contributions (NDC). 

Furthermore, as these emissions databases can be used for fire representation in dynamic global 

vegetation models, the omissions shown here may significantly impact the carbon budget of 

tropical countries, if complemented by accurate wildfire mapping. 

 

 The importance of avoiding further degradation in burned forests 

Across the 30-year period, burned forests acted as net CO2 source, and cumulative net 

emissions were far higher than uptake. The average net annual emissions of burned forests over 

a 30-year period were 1.52 Mg CO2 ha-1 y-1, which is approximately 36% of the estimated 

annual sink of old-growth secondary forests across tropical American rainforests (Suarez et al 

2019). These long-term positive emissions are also due to the non-recovery of biomass stocks 

to pre-disturbance levels shown in Silva et al (2018). However, despite these emissions, 

regenerating burned forests also remain an important part of any strategy to mitigate carbon 

losses from degradation. Allowing burned forests to regrow offsets 35% of all decomposition- 

and combustion-related emissions over the 30-year period, and, unlike secondary forest, does 

not require expensive tree planting or incur opportunity costs from the abandonment of 

agricultural land. The protection of burned forests from further disturbances and/or clearance 
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may also offer other important ecosystem services, such as maintenance of hydrological 

cycling (Brando et al 2019), as well as providing habitat for biodiversity – albeit at a lower 

level than in undisturbed primary forests (Berenguer et al 2014, Barlow et al 2016, Ferreira & 

Lennox et al 2018, França et al 2020) . Yet, protecting these forests from clearance has recently 

become more challenging — since 2012, deforestation rates have risen 16% on average 

(PRODES 2020) and burned forests are often located at the agricultural frontier where they 

may be more susceptible to clearance. Likewise, protecting burned forests from further 

disturbances is far from straightforward, since burned forests are more vulnerable to 

windstorms (Silvério et al 2019) and are increasingly susceptible to repeated fires (Alencar et 

al 2011, Morton et al 2013, Silva et al 2018b, Cochrane et al 1999), which is likely to be 

exacerbated by climate change (Fonseca et al 2019). If burned forests burn again, the 

consequences for CO2 emissions are likely to be far worse. These recurrent fires are often much 

more intense, leading to much higher levels of tree mortality (Barlow and Peres 2004, Cochrane 

et al 1999), a high turnover of species composition towards pioneer species (Barlow and Peres 

2008), and slower rates of post-fire carbon uptake through regrowth (Balch et al 2013).  

 

 Quantifiable uncertainties 

While we present the first temporal estimate of emissions from Amazonian wildfires, we also 

recognise that many uncertainties remain. These include particularly the uncertainties 

associated with the growth parameters, especially relating to the phase when burned forests 

reach their peak of CO2 uptake relative to unburned forests, where the confidence intervals 

were especially high (“c” in Eq. 3.6; supplementary material table S.M.3). There are many 

reasons for such high uncertainty: post-disturbance growth is a complex process, and post-

disturbance growth rates are known to vary significantly by species (Berenguer et al 2018), 

across regions (e.g. Poorter et al 2016), and can be affected by environmental factors including 
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fire intensity and canopy openness (Brando et al 2019, Balch et al 2013), or even climate 

change or climate anomalies (Phillips et al 2009, Elias et al 2020). Although we tracked 

mortality over time in our burned plots, additional variability could have stemmed from the 

lack of samples in forests before they burned (e.g. França et al 2016). However, these pre-fire 

samples are only achievable by chance or through experimental fires, and the data-spread 

(figure 3.2 and 3.3) suggests our field observations are representative of some of the main 

environmental gradients within Amazonian forests (Johnson et al 2016). Finally, temporal 

limitations in the dataset represent a further source of uncertainty and our estimates of emission 

and regrowth are highly uncertain beyond 15 years since fire. Narrowing this uncertainty 

remains challenging, as many of the sites impacted by 1980’s and 1998 El Nino events have 

either been deforested, selectively logged or burned again (e.g. see Bullock et al 2020). 

Decomposition rates are also a source of uncertainty. We propagated the decomposition rate 

uncertainty measured in undisturbed forests, as decomposition rates in burned forests are 

unknown. Yet, the decomposition rates in burned forests may differ due to (1) drier 

microclimate brought on by changes in forest structure and canopy openness (Uhl and 

Kauffman 1990, Barlow and Peres 2008); (2) changes in decomposer community structure, 

including invertebrates (Ashton et al 2019) and microbes, relating to changes in pH and 

microclimate (Carvalho et al 2016); (3) changes in the litter quality, especially as wood density 

negatively affects decomposition rates in undisturbed forests (Chao et al 2009, Chambers et al 

2000), and at least part of the mortality is related to short-lived lower wood density species that 

colonise rapidly after fires (Silva et al 2018a); and (4) stem mode of death, which impacts 

wood decomposition rates because dead stems standing and suspended from the ground have 

much slower decomposition rates than downed stems (Gora et al 2019). None of these potential 

drivers of change in decomposition rates has been previously investigated or quantified in 

burned humid tropical forests.  
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Although vegetation is the most disturbance-sensitive carbon pool in the forest (Berenguer et 

al 2014), uncertainties could also be reduced by evaluating other components of forest carbon 

cycle. For example, FWD and leaf litter, which corresponds to 34% of total NPP in undisturbed 

forests (Malhi et al 2009), is assumed to decompose at the rate of CWD. This makes the decay 

time of FWD and litter in our model longer (5 years) than that expected (6 months – 2 years; 

Malhi et al 2011), causing a delay in the emissions. Moreover, not all carbon from woody 

debris and leaf litter is released as CO2 to the atmosphere; part of it is biologically transformed 

and locked up in the soil or leached to groundwater. The net dissolved organic carbon (DOC) 

export from forest soil is, however, a very small component of the forest carbon cycle (0.003 

– 1.9% of total NPP; Malhi et al 2009). While burned forests’ soil carbon pool does not differ 

from unburned forests (Berenguer et al 2014), increases in DOC may be expected for burned 

forests. Further carbon release can be also expected through CH4 emissions from termite 

activity and anaerobic decay of wood and litter. However, anaerobic activity increase is 

unlikely in free-draining terra-firme forests where oxygen is not limiting, and the production 

of CH4 in terra-firme forests represents a small component of the carbon cycle (0.005 – 0.06%; 

Malhi et al 2009), and the sources have not been identified (do Carmo et al 2006). While 

changes in CH4 emission due to termites is a possibility, this has not been investigated in burned 

humid tropical forests.  

Another important set of uncertainties go beyond our approach and relate to the spatiotemporal 

scaling of our results. For example, wildfires are mostly missed by active fire counts and 

estimates of burned area derived from satellite measures (Anderson et al 2015), meaning that 

we lack a reliable large-scale and historical mapping of fire scar coverage across Amazonia. 

Furthermore, even if fires are mapped with the use of improved techniques (Morton et al 2011, 

Anderson et al 2015, Withey et al 2018), pre-fire forest conditions will play an important role 

in determining fire intensity and mortality (Barlow et al 2012, Brando et al 2016). Forests that 
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have experienced disturbances from logging or fires prior to the satellite era may harbour large 

fuel loads, resulting in more intense fires, albeit with lower initial carbon stocks. However, this 

source of uncertainty may remain unresolved due to the lack of both on-the-ground and remote 

sensing data. Mortality is also likely to be higher near forest edges, where necromass 

accumulation is higher (Brando et al 2019).  

3.6 CONCLUSION 

Most estimates of wildfire-related CO2 emissions account for committed emissions without 

considering the temporal evolution of stem mortality, the time taken for the subsequent 

decomposition of dead biomass, and the amount taken up by regrowth. By incorporating long-

term field-data on biomass gains and losses, we developed an approach that addresses these 

knowledge gaps, showing that decomposition-related emissions make a significant 

contribution to the total CO2 emitted and are only partially offset (~35%) by post-fire forest 

regrowth in 30 years. Our approach allows the scaling-up of the net CO2 emissions resulting 

from wildfires across the Amazon basin, providing a way of incorporating them into both 

national and global carbon budgets and databases. This, however, depends on the enhancement 

of forest fire detection and mapping. 
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3.8 SUPPLEMENTARY MATERIAL 

 

Table SM1 Summary of permanent plots located in burned (BF) and undisturbed (UF) primary 

forests from across four regions in the Brazilian Amazonia. The measurements varied over 

time  

Region Censuses year Fire year BF plots 
(N) 

UF plots 
(N) 

Mean distance 
between BU 
and UN plots 
(Km) 

southeast (MT) 
2010, 2011, 2012, 
2013, 2015, 2017 

2005 4 4 1.3 

east  
(PA) 

2010, 2014, 2016 1985, 1998 4 4 34.6 

southwest 
(AC) 

2010, 2014, 2016 2005, 2010 10 10 2.1 

central  
(AM) 

2015, 2016 2015 10 6 3.0 

 

 

Method SM2 – Description of methods for fitting the nonlinear models  

For fitting the AGNp (necromass) and AGBg (live biomass) nonlinear models, the nls function 

in R required we set the starting values for the regression. For the AGNp model, the starting 

values were fAGNp('())= 40, and k = 0.5, and for the AGBg model they were gmax = 30, g = 

0.3 and c = 10. 
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Figure SM1 Combusted necromass (cAGN) that would have decomposed (green bar) in the 

right y-axis, and the associated CO2 emissions derived from the decomposition (red dashed 

line) in left y-axis. 

 

Method S.M. 4 Description of methods for estimating uncertainties  

 

We assumed the main proportion of errors to come from the estimated parameters rather than 

the independent variable “years since fire”. To quantify and propagate the uncertainties from 

estimated parameters to the model’s output we: (i) used a non-parametric bootstrap approach 

(nlsBoot function from the nlstools R package (Baty et al 2015)) for obtaining bootstrapped 

parameters estimates by fitting the non-linear models on each resampled dataset; and (ii) 

propagated the errors from the parameters and obtained summary statistics (mean, standard 

deviation (sd) and 95% confidence interval [CI]) by doing a Monte Carlo simulation (n = 

100,000) using the function propagate from the R package propagate (Spiess 2018). Each of 

the processes estimated (i.e. necromass production, annual gross emissions, biomass growth, 

annual sequestration, and annual net emissions) have their mean values and 95% CI reported 

accounting for errors propagated from the parameters. To compute uncertainty for gross 

emissions, we ran simulations for each of the emissions curves starting at a different time step, 



 

89 

 

propagating the error from necromass production and the error (0.026 year-1) associated with 

the decomposition rate reported by Chambers et al 2000. Since total gross emissions result 

from summed means of annual emissions at each time step, we computed the total error by 

adding errors in quadrature at each time step, assuming they are uncorrelated and normally 

distributed. Following the error propagation rule, we square-rooted the sum of the squared 

errors and then estimated the 95% CIs. We estimated errors and 95% CIs for net emissions in 

the same manner. Finally, we considered the contribution matrix, rescaled to sum up to 1, for 

assessing each parameter’s contribution to the respective model output. 

 

 

Figure SM2 Fire-induced necromass production (fAGNp) over the years since fire represented 

by grey bars in the right y-axis; and the associated concurrent CO2 emissions derived from 

decomposition represented as red dashed lines in left y-axis. 
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Table SM2 Output summary of estimated parameters in non-linear least square regression 

models 

 Parameters Estimate  Std. Error t value Pr(>|t|) 

fAGNp 
model 

a* 22.39 4.56 4.91 7.17e-06 *** 

b 0.33 0.08 3.98 0.000189 *** 

fAGBg 
model 

gmax 22.47 7.42 3.03 0.00388 ** 

g 0.35 0.14 2.44 0.01837 * 

c 17.92 18.43 0.97 0.33563 

*a is fAGNp at t=0 in Eq.2 
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Table SM 3 Bootstrap statistics for models estimate parameters 

Median of bootstrap estimates and percentile confidence intervals 

  
Median 2.5% 97.5% 

fAGNp model 

a* 22.87 14.95 33.77 

b 0.33 0.20 0.56 

fAGBg model 

gmax 22.99 11.25 57.01 

g 0.37 0.09 0.85 

c 21.60 2.67 489.21 

*a is fAGNp at t=0 in Eq.2 

 

 

Figure SM3 Relative contribution of estimated parameters to necromass model output 
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Figure SM4 Relative contribution of estimated parameters to growth model output 
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4.1 ABSTRACT 

 

Although emissions from Land Use, Land-Use Change and Forestry (LULUCF) are the major source of CO2 

emissions in Brazil, Amazonian wildfires are still not accounted for in global and national systems. A key reason 

for this is the lack of integration between combustion emissions and long-term carbon fluxes (i.e. post-fire 

decomposition emissions and uptake from regrowth). Here, we combined information on Amazonian wildfires 

with a large-scale dataset of carbon stocks from human-modified forests. We developed a spatio-temporal 

approach to quantify CO2 emissions from forest fires based on the carbon stocks of the Amazonian forests within 

a selected landscape in the eastern of Amazonia region. We first developed a combustion model based on the 

empirical relationship between aboveground biomass (AGB) and necromass. We then integrated this into a model 

previously developed for quantifying post-fire emissions. We tested our approach using a high-resolution burned 

area map and quantified the CO2 net emissions from 1987 to 2007 within the selected landscape. By evaluating 

the model’s output, we show: (i) the largest combustion emissions are from burned forests with the largest AGB 

stocks; and (ii) the largest decomposition emissions are from burned forests in the lower and upper range of AGB. 

Forests with high levels of AGB accounted for only 34% of all burned area by 2007, but their relative contribution 

to combustion and decomposition emissions was 57% and 34.5%, respectively. Our results show that by using 

our spatio-temporal approach, total emissions from forests fires could be incorporated into the Brazilian Carbon 

budget. 

Keywords: burned area, combustion emissions, decomposition emissions, upscaling, tropical forest, biomass. 
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4.2 1. INTRODUCTION 

Across the tropics, LULUCF is a major source of greenhouse gases (GHG) emissions. Brazil, 

for example, is the world’s 6th largest emitter of GHG, and c. 40% of those emissions are 

derived from LULUCF (SEEG, 2020).  Most of those emissions are from deforestation and 

degradation of humid tropical forests in the Amazon basin, which store ~100 Pg of carbon in 

biomass and necromass (Feldpausch et al., 2012). The assessments of CO2 emissions from 

these tropical forests are mainly based on annual satellite assessments of deforestation, which 

have been ongoing since the 1980’s (PRODES, 2020). Currently, annual CO2 emissions and 

removals from LULUCF in Brazil are estimated following IPCC guidelines by the environment 

ministry system (SIRENE, 2017) and a parallel independent system developed  by several 

national and international non-governmental institutions  (SEEG, 2020, Azevedo et al., 2018).  

Although both platforms cover national and subnational emissions, neither includes emissions 

from Amazonian wildfires. This is a potentially important omission; the fire crisis in the 

Brazilian Amazon has received increasing attention in recent years (Barlow et al., 2019), and 

forest fires could contribute to more than half of deforestation gross emissions (Aragão et al., 

2018) or even to 57% of global LULUCF in 2010 (Friedlingstein et al., 2010; Aragão et al., 

2018). Moreover, while the prevalence of fires is declining in some parts of the world (Andela 

et al., 2017) it is increasing in humid tropical forests (Jolly et al., 2015; Le Page et al., 2017). 

As rainforest vegetation is not fire-adapted, even low-intensity fires result in very high rates of 

tree mortality (Barlow et al., 2003; Brando et al., 2012).  

Although Earth System models and carbon budgets include fire emissions from global 

databases (GFED, GFAS), both carbon accounting systems underestimate emissions from 

forest fires. Part of the reason for this stems from the challenges of mapping fire extent (Chapter 
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2), but these global fire databases are also unable to estimate the long-term carbon deficit of 

burned forests (Silva et al., 2018). Estimating long-term carbon dynamics in burned forests 

requires integrating emissions from the combustion of necromass with the longer-term carbon 

balance resulting from tree mortality, decomposition, and carbon uptake through regrowth 

(Silva et al., 2020). While recent assessments of burned forest plots in Amazonia have provided 

key estimates of these processes (Withey et al., 2018; Silva et al., 2020), we still lack a mode 

of scaling them up spatially to estimate basin-wide emissions over time. Achieving this requires 

estimating emissions components across the full range of undisturbed and human-modified 

Amazonian forests, which vary greatly in aboveground biomass (AGB) (Baker et al., 2007; 

Quesada et al., 2012; Berenguer et al., 2014).  

Scaling post-fire dynamics as function of forests structure is crucial, since the AGB of forests 

will determine the amounts of CO2 emitted through the relationship of AGB with fuel stocks 

and levels of tree mortality (Chao et al., 2009, Palace et al. 2012, Barlow et al., 2012, Brando 

et al., 2016). This is because combustion emissions will be influenced by pre-fire necromass 

stocks (Cochrane et al., 1999), while post-fire necromass available for decomposition will be 

dependent on pre-fire biomass stocks (Palace et al., 2012; Osone et al., 2016).  Once burned, 

high mortality would be expected in low AGB forests because fire intensity is high in opened 

and dry forests, and in extremely high AGB forests, because the species composition of these 

are particularly sensitive to fire (Cochrane, 2001; Brando et al., 2012). Finally, the post-fire 

susceptibility to mortality of trees would define the amounts of AGB loss across a gradient of 

forests AGB. Larger trees take longer to die after fires than smaller stemmed trees (Barlow et 

al. 2003, Silva et al. 2018), so forests with less AGB are likely to have a lower portion of their 

biomass susceptible to delayed mortality and thus lose less AGB in the long-term. 

In this study, we develop a novel spatial-temporal approach to scale-up immediate and long-

term CO2 emissions from wildfires based on our prior knowledge of the effects of fire on forests 
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structure. Our first objective was to model combustion and decomposition emissions as a 

function of pre-fire AGB. We achieved this in multiple steps by: (i) compiling all the field-

based information known from previous assessments of biomass and necromass in Amazonian 

burned forests to estimate necromass stocks and combustion emissions from the fraction of 

necromass burned; (ii) using a dataset from prior studies detailing biomass loss after forest fires 

to quantify the relationship between initial biomass and emissions one year after fire (iii); 

combining the initial biomass loss (step ii) with post-fire temporal changes in biomass (Silva 

et al. 2020) using the relationships between large tree abundance and plot biomass to determine 

the extent to which a forest is susceptible to delayed mortality; and (iv) offsetting regrowth as 

modelled by Silva et al. (2020). Our second objective was to demonstrate that these combustion 

and decomposition emissions can be applied spatially, we then applied the models to a 21-year 

time-series of burned area in an eastern Amazonian landscape.  

4.3 METHODS 

We developed and tested a spatio-temporal approach which the overview is shown in figure 

4.0. Each step of the development and application of our approach is described in more detail 

in the sections 4.3.1 and 4.3.2. In general, we used field-based datasets from different sources 

(topic b in section 4.3.1), which allowed us to calibrate a linear regression for modelling the 

combustion emissions from pre-fire AGB (topic c), and non-linear regressions to model initial 

AGB loss and the susceptibility to delayed mortality from pre-fire AGB (topics d and f). The 

models developed in topics d and f were used in the adjustment of the necromass equation to a 

wider range of forests (topic e). The adjusted necromass equation was then used in topic g for 

estimating gross CO2 emissions. The CO2 uptake was estimated independently (topic h) of the 

other steps. In section 4.3.2 we show how we applied our approach to a test landscape by using 

three spatial datasets, (burned area, forest cover and AGB), which sources and specifications 

are described in topic b from section 4.3.2. The spatial data processing (topic c in section 4.3.2) 
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involved selecting burned areas in lands covered with forests and applying the models from 

section 4.3.1 using the AGB spatial data as the main variable for estimating the gross CO2 

emissions and uptake over our wildfire time-series of 21 years. 

 

Figure 4.0 Main steps of the development and the application of our spatio-temporal approach 

for estimating CO2 emissions from Amazonian wildfires. Red boxes represent steps associated 

with CO2 emissions estimates and the blue box is an independent step for estimating CO2 

uptake. AGB: Abovegound biomass, RAS: Rede Amazônia Sustentável network, FATE: Fire-

Associated Transient Emissions in Amazonia network  

 The spatio-temporal approach for quantifying the CO2 fluxes of burned forests  

a)  The basis for quantifying net CO2 emissions  
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We integrated two approaches to quantify the emissions from (i) combustion and, (ii) 

decomposition of forest necromass. These two types of emissions occur separately in time and 

depend on different factors (figure 4.1). For example, combustion emissions depend on the 

relative proportions of coarse and fine woody material that constitute necromass stocks, and 

the combustion efficiency of these components during the fires. We quantify combustion 

emissions in section (c) using data from Withey et al 2018. For quantifying the decomposition 

emissions, we used an approach adapted from (Silva et al. 2020), that quantifies post-fire 

woody necromass production by tree mortality, and growth using non-linear models. We 

adapted these models to estimate the CO2 fluxes of burned forests relative to unburned forests. 

The integration of the combustion emissions with the post-fire emissions are described with 

more details in the next section. The carbon emissions and uptakes are reported in CO2 

equivalent unit. 
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Figure 4.1 The changes in forest carbon fluxes (left panel) after wildfires. During wildfires 

(centre panel), large amounts of carbon are released to the atmosphere by the combustion of 

necromass components (coarse wood debris (CWD) and fine wood debris (FWD). The 

combustion completeness of each component determines the amounts of emissions and is based 

on an experiment in pre- and post-uncontrolled fires in central Amazonia (Withey et al. 2018). 

After the fires (right panel), the burned forests carbon fluxes are changed relative to the 

balanced undisturbed forests fluxes (left panel). Fire-induced AGB growth (fAGBg) increases 

wood productivity (Wp) levels, resulting in increased CO2 uptake. Similarly, fire-induced 

aboveground necromass production (fAGNp) increases necromass pools, in turn increasing 

decomposition emissions. Part of the carbon from the necromass decomposition stays in the 

soils as dissolved organic carbon (DOC).  

 

b) Field-based datasets 
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We compiled three sets of forest plots data. The first dataset is a collection of 30 plots from 

unburned and burned sites (one year since fire) from previous studies (Brando et al., 2014, 

Berenguer et al., 2014, Alencar et al. 2011). The second and third datasets are from the existing 

forest plots networks Fire-Associated Transient Emissions in Amazonia (FATE; 26 plots) and 

Rede Amazonia Sustentável (RAS; 268 plots). In total, 324 plots were assessed, among them 

26 plots were sampled before and after fires, 20 plots were sampled in burned forests to be 

compared with unburned control plots (n = 20), and another 258 plots were measured in 

degraded and undisturbed forest. The plots comprised six forest types: undisturbed, secondary, 

once-burned, repeatedly burned, logged and burned, secondary burned. The plot-level AGB 

was quantified by aggregating stem-level AGB following allometric equation for trees Chave 

et al., 2014, palms (Goodman et al., 2013), and for lianas (Gerwing and Farias, 2000). The 

plot-level AGB of the first dataset (30 plots from literature), varied in AGB allometric 

equations as we did not have access to stems-level data. 

c) Modelling combustion emissions by pre-fire AGB 

 

For the analysis described in this section we used a sellection of 107 plots from the RAS 

network dataset where both AGB and necromass stocks were measured. To quantify carbon 

losses from the combustion of necromass on the forest floor we first estimated the relationship 

between both plot-level coarse wood debris (CWD; ³10 cm diameter at one extremity) and fine 

wood debris (FWD; ³ 2 and < 10 cm diameter at both extremities) with AGB (figure 4.2). The 

positive linear relationship between AGB and both woody debris components, CWD and FWD, 

was determined by a null intercept linear regression (R2=0.5, p<0.01; R2=0.65, p<0.01, 

respectively). The estimated coefficient of each regression was then used for quantifying FWD 

and CWD stocks as a proportion of AGB. 



 

106 

 

 

 

Figure 4.2 The relationship between above ground biomass (AGB) and necromass components: 

coarse woody debris (CWD; on the left) and fine woody debris (FWD; on the right) from 107 

plots (Rede Amazônia Sustentável network), allocated in human-modified and old-growth 

forests. A linear model (red line) with null-intercept was fitted to estimate each necromass 

component from AGB stocks. The linear models estimate that CWD is on average 14% of 

AGB and FWD is 1% of AGB.  

 

We used combustion completeness factors from (Withey et al. 2018) to quantify the proportion 

of each component, CWD and FWD consumed by the fires. Finally, we estimated the total CO2 

emissions from combusted necromass (CN) by adding the emissions from FWD and CWD, 

according to: 

CN = (FWD	 ∙ CCf) + (CWD ∙ CCc)               (Eq. 4.1) 

where, CCf the combustion completeness of FWD, and CCc is the combustion completeness 

of CWD. 

d) Modelling initial AGB loss as function of pre-fire AGB 

 



 

107 

 

For the analysis described in this section we used the collection of 30 plots from literature, 26 

from FATE and 10 from RAS network. We modelled the initial (within one year) post-fire 

AGB loss resulting from tree mortality as a function of the forest’s pre-fire AGB, therefore 

capturing variation in the responses of different types of forests (including human-modified 

and undisturbed) to fire. We collated data from all plots where forest AGB was measured 

within one year since the fires, and fitted a linear and a non-linear model, constrained to go 

through the intercept at zero. We fitted the models using the nls and lm functions from the stats 

R package (R CoreTeam, 2019).  The two models were statistically similar in terms of fit (linear 

RSE 48.6; non-linear RSE 47.8) and plausibility (linear AIC = 490.98; non-linear AIC 490.33).  

We chose to focus on the non-linear model as it had a better fit to the data and matched our a 

priori expectations that mortality would be higher at the extremes of the data (low and very 

high biomass forests) (figure 4.3).  

 

Figure 4.3 A non-linear and a linear model for quantifying initial above ground biomass (AGB) 

losses from 5 sites in Brazilian Amazonia (Amazonas (AM), Pará (PA), Acre (AC), Mato-
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Grosso (MT) and Roraima (RR). Both models were fitted to data from 66 plots, of which 26 

were measured before and after fires, and 40 were burned-control pairs from space-for-time 

studies. The dataset is a compilation of all studies that assessed the initial effects of Amazonian 

fires on AGB stocks to our knowledge (Brando et al., 2014, Berenguer et al., 2014, Alencar et 

al. 2011) and plots from FATE and RAS network. The non-linear model showed a slightly 

better fit to the data. 

 

e) Determining longer-term necromass production  

 

This analysis is applied to spatial data and field-based data was not used. The initial AGB loss 

in section (d) was used to determine the longer-term necromass production (AGNp) for beyond 

one year since fire. We used the standard negative exponential decay function from Silva et al. 

2020 (Chapter 3), that describes the reduction of mortality rates up to 30 years after fires: 

JKLM = B ∗ 	O*+                                     (Eq. 4.2) 

where, AGNp is the necromass production by tree mortality, a is the y-intercept, t is the 

time since last fire, and k is the decay constant estimated previously as 0.32 by Silva et al. 

2020. To estimate the y-intercept a of Eq. 4.2 , we replaced our modelled initial AGB loss 

(section d) with the AGNp at t=1. In doing so, the y-intercept a of the AGNp function, and thus 

the long-term AGNp, are dependent on pre-fire AGB. 

f) Susceptibility to delayed tree mortality 

In this analysis we used 264 plots from RAS network dataset. We determined the extent to 

which a burned forest that lost part of its AGB during the first year after a fire is susceptible to 

delayed mortality. To do this we first examined the proportion of plot-level AGB that is 

composed of large trees AGB (> 40cm DBH). We chose >40cm as our cut off as in Chapter 2 

we suggest that stems larger than this show delayed mortality. We used 150 Mg ha-1 as the 
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AGB threshold above which forests would be more susceptible to delayed mortality because 

150 Mg ha-1 was the minimum AGB of the forest plots used for parametrizing the AGNp 

function in Silva et a., 2020. We obtained 52% as the mean proportion of AGB held within 

large trees in > 150 Mg ha-1 plots. We then fitted an asymptotic model, by using the nls function 

from stats R package, to estimate the mean proportion of AGB held within large trees in < 150 

Mg ha-1  plots (figure 4.4). We estimated  the susceptibility to delayed mortality of <150 Mg 

ha-1 forests AGB according to: 

PQ(%) = 1/(0.52/(B − (B)*2∗456))                    (Eq. 4.3) 

where SM (%) is the proportion of forest AGB susceptible to delayed mortality, a is an 

estimated coefficient from the fitted asymptotic model describing the maximum proportion 

(1.04±0.11, p<0.01), and c is an estimated coefficient describing the increase rate of SM 

(0.003±0.0004, p<0.01). The AGNp in a given forest at a given time after fire was limited by 

the SM. 
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Figure 4.4 The asymptotic model (blue line) used for estimating forests susceptibility to fire-

induced delayed mortality of forests with <150 Mg ha-1 (dashed grey line) in Eq 4.3. The model 

was fitted to 264 plots from Rede Amazônia Sustentável network, and estimates the proportion 

of aboveground biomass (AGB) held in large trees (>40cm diameter at breast height (DBH)) 

based on AGB at the plot-level. The model shows that as plot-level AGB increases, a larger 

proportion of AGB concentrated in large trees is expected, and that the relationship is 

asymptotic. 

 

g) Gross CO2 emissions from wildfires 

 

The gross CO2 emissions were estimated by combining the emissions estimated from 

combustion (section c) and from decomposition. We used the model for estimating gross 

decomposition emissions from Silva et al. 2020 (Chapter 3). We summed all decomposed 

necromass fractions (cumulatively) and, to avoid double-counting, we removed the 

decomposition fractions that would have occurred if necromass was not combusted. We 

estimated gross CO2 emissions resulting from combustion emissions from a current fire with 

the additional necromass decomposition from previous fires. 
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h) Post-fire CO2 uptake 

 

The post-fire CO2 uptake was estimated according to Silva et al. 2020 (Chapter 3), and only 

varied over time. As there was insufficient data to modify the parameters (maximum growth 

(gmax), mean growth rate (g), and curve inflection point (c)), the post-fire uptake was fixed for 

the whole range of AGB. The values of growth rates are relative to the growth measured in the 

undisturbed forests plots used for parametrizing the uptake equation in chapter 3. 

 

 Quantifying the total net emissions in an Amazonian landscape 

a) Test landscape 

 

Our test landscape was a single Landsat scene from Pará state in the eastern part of the Brazilian 

Amazon, surrounding the cities of Tailândia and Tome-Açu (figure 4.5).  This region was 

affected by wildfires in 1993, and several studies have focussed on it (Cochrane et al. 1993, 

Cochrane et al. 2001, Alencar et al., 2011). The typical forests in the region are evergreen 

lowland (terra-firme), and the climate is tropical with an annual precipitation of 1500-2000 mm  

and a distinct dry season from July to December . The landscape suffered both large-scale and 

fish-bone patterns of deforestation, resulting in widespread agricultural lands and highly 

fragmented human-modified forests. 



 

112 

 

 

Figure 4.5 Study area in the surroundings of Tailândia, PA, eastern of Amazonia region. The 

fire occurrence from 1987 to 2007 is shown on a scale of 1-7, according to fire frequency by 

yellow to red shading. The range of initial (1987) biomass (Mg ha-1) is show by green shading. 

 

b) Spatial datasets 

For scaling up the wildifres emissions we used three sets of spatial data: (i) burned area maps, 

developed by Alencar et al. 2011 using a routine (CLAS-BURN) that classified wildfires in a 

30-m resolution Landsat scene (path row 223_62) from 1987 to 2007. This fire mapping 

methodology is currently being applied to generate a dataset covering the whole Amazon 

biome (Ane Alencar, personal communication). However, at the time we tested our approach, 

data for the entire basin were still unavailable. (ii) Forest cover maps (FC) derived from the 

Brazilian Annual Land-Use and Land-Cover Mapping project (MapBiomas, 2019), produced 

from a classification of pixel-per-pixel of Landsat satellite images using machine learning 

algorithms. This dataset is available through Google Earth Engine, and covers Brazil’s area 

extent and is available from 1985.  (iii) The 1-km resolution AGB map for the early 2000s 
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developed by Avitabile et al., 2016 covering the pan-tropical region. The pre-processing of the 

spatial data is given in detail in the next section.  

 

c) Spatial data processing  

The processing of spatial data started with the reclassification of the input datasets to obtain 

binary maps. The land cover and burned area maps were reclassified to extract only fires in 

forested areas each year. The AGB map was previously processed (Smith et al., 2020) to infill 

the areas deforested before 2000’s with the mean AGB of the 10 km2 surrounding area. The 

processing was run 21 times, equivalent to the number of years in our time-series. At each step 

(year), input data was pre-processed, and used for producing auxiliary and final outputs (figure 

4.6). After pre-processing inputs, we applied our field-based models to calibrate auxiliary 

outputs: (i) the time since fire (TSF); (ii) the combustion emissions depending on AGB; (iii) 

the necromass produced (AGN) depending on pre-fire updated AGB layer; (iv) the forest AGB 

growth (AGBg) depending on TSF; (v) the updated AGB after removing losses and adding 

gains. The auxiliary inputs were then processed to generate final outputs: (i) the combustion 

layer was added to decomposition (derived from AGN); (ii) the uptake layer was derived from 

AGBg; and (iii) net emissions were produced by combining gross and uptake layers. Hence, at 

each step, forest cover and burned areas were new external inputs, whereas the AGB layer was 

being updated and used as a recycled input.  By the end of processing, we had the time-series 

layers for combustion emissions, gross emissions, uptake and net emissions. 
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Figure 4.6 The processing flow of the spatial data. A time-series of 21 years was processed in 

a loop where at each step (year), new input data for forest cover and burned area was used to 

compute emissions across the extent of forest fires and over time since fire (TSF) . At each 

step, the aboveground biomass (AGB) dataset was updated by deducting mortality (red arrow) 

and adding growth (blue arrow), and used for estimating emissions from combustion and 

decomposition. The functions for estimating aboveground necromass (AGN) and aboveground 

biomass growth (AGBg) are described in sections (e) and (h) from topic 4.3.1. 

 

4.4 RESULTS 

 Evaluating modelled emissions patterns over time and along a gradient of AGB 

stocks  

Combustion emissions only occur in the year of the fire, and increased linearly by 0.2 Mg CO2 

ha-1 with each Mg increase in AGB stocks of burned forests (figure 4.7a,b). This linear function 
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is a simple outcome of the relationship between necromass (FWD and CWD) and AGB in 

human-modified and undisturbed Amazonian forests (Figure 4.3). The post-fire lag in mortality 

and decomposition means that gross and net decomposition emissions vary over time and with 

AGB. Their non-linear relationship with AGB reflects the non-linear pattern of mortality from 

plots across Amazonia (Figure 4.3), and results in decomposition emissions that: i) increase 

with AGB up to c. 90 Mg ha-1; ii) decrease with AGB from >90 to c. 250 Mg ha-1; and iii) 

increase with AGB above 250 Mg ha-1 to the maximum. These three different trajectories are 

explained by the levels of initial post-fire mortality, which are (i) relatively high in forests with 

the lowest AGB stocks; (ii) lowest in forests with AGB ranging from 200-300 Mg ha-1 (iii) and 

highest in forests with AGB >300 Mg ha-1 (Figure 4.4). 

The non-linear relationship means that gross and net decomposition emissions are negative one 

year after the fires in burned forests with AGB stocks ranging from 179 to 388 Mg ha-1 (figure 

4.7a,b). These negative emissions result from the foregone decomposition resulting from 

combustion, which removes a portion the necromass that would have decomposed. In 

subsequent years, gross and net emissions in burned forests are generally positive across the 

gradient of AGB, with the exception of forests with very low pre-fire AGB stocks (<18 Mg ha-

1), where CO2 uptake by growth is larger than emissions by decomposition (figure 4.7b).  Over 

time, cumulative gross and net fluxes (figure 4.7c,d), including combustion emissions, increase 

following a similar pattern as annual emissions. In 30 years, we estimate that the largest 

emissions are from the forests with AGB stocks ranging 50-150 and >350 Mg ha-1. 
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Figure 4.7 Over a period of 30 years since fire (in the colour palette) and across aboveground 

(AGB) stocks (Mg ha-1) the estimated a) Annual gross emissions from decomposition (dashed 

lines) and combustion (black line, shaded grey area is the CI 95%); b) Net emissions from 

decomposition; c) Cumulative gross fluxes with addition of combustion emissions, and d) 

Cumulative net fluxes with addition of combustion emissions.  

 

 Applying the burned forest emissions model to an Amazonian landscape 

 From 1987 to 2007, 2973.9 km2 of forests burned in the test landscape (total area = 27148 

km2; Figure 4.5). From these, 20% burned twice and 6% burned at least three times. We 

estimated that these fires resulted in total net emissions of 16.9 Tg CO2, of which 10.5 Tg CO2 

resulted from combustion. Over the 21-year time series, combustion and decomposition 

emissions were strongly affected by burned area extent, with decomposition emissions showing 

a marked lag (figure 4.8a).  
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a) 

 

b) 

 

Figure 4.8 a) Annual burned area (bars) from the study area, combustion (red line), gross 

decomposition (dashed black line) and total net (orange line) emissions from all forests, low 

AGB (<150Mg/ha) and high AGB (>150Mg/ha) forests; b) Cumulative burned area, and 

respective cumulative emissions by type of forest – all forests, low and high AGB.  

 

Pre-fire AGB stocks were an important determinant of emissions. Overall, a larger area burned 

in low AGB forest (<150 Mg ha-1) than in high AGB forests (>150 Mg ha-1), but high AGB 

forests emitted the largest CO2 amounts by combustion due to their greater levels of necromass. 

For example, by 2007, high AGB forests had emitted 9 Tg CO2, the equivalent to 53% of total 

net emissions within the test landscape (figure 4.9), even though they only contributed 34% to 

the burned area. The relative importance of high AGB forests was marginally higher for 

combustion emissions (57%) than decomposition emissions (34.5%) over this time period.  

Pre-fire AGB of the forests also determined when the peak in decomposition emissions 
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occurred. Low AGB forests were the major CO2 source up until 1997, yet total net emissions 

from high AGB forests increased in their importance after that, from 1999 to 2007. As such, 

some of the emissions from decomposition remained committed (and hence unaccounted for) 

at the end of the time series. 

 

Figure 4.9 Relative contribution of low aboveground biomass (light green) and high 

aboveground biomass (dark green) forests to cumulative (21 years) burned area (bars), 

combustion (red line), gross (dotted black line) and total net emissions (orange line). 

4.5 DISCUSSION 

We propose an approach that integrates a comprehensive synthesis of biomass loss after 

Amazonian wildfires (Figure 4.3), detailed field data on biomass and necromass in human-

modified tropical forests (Berenguer et al. 2014) and temporal assessments of changes in 

biomass over time (Silva et al. 2018, 2020) to simulate combustion and decomposition 

emissions over a spatial-temporal scale.  We show how our novel approach can be scaled up 

using maps of above ground biomass and time series of burned areas. We further discuss the 

impact of Amazonian forest complexities on estimated fire emissions and examine the 

prospects for applying our approach to other landscapes given the uncertainties in our model 
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and the data required to refine it. We finally discuss the implications of our estimates for 

Brazil’s plan on climate change. 

 The implications of pre-fire AGB for net emissions 

The total net emissions from fires simulated in our models were strongly determined by the 

statistical model linking initial mortality model with pre-fire AGB demonstrated in section (d) 

topic 4.3.1.  Thus, according to our models simulations, the highest emissions are expected in 

forests with the greater initial mortality, i.e. the lowest AGB forests (<200 Mg ha-1) and the 

highest AGB forests (>350 Mg ha-1). The high AGB forests have a marked contribution over 

a 30-year period, with cumulative net emissions exceeding 208 Mg CO2 ha-1. While the impacts 

of these emissions are high for even a small area, there are two reasons why fire likelihood is 

lower in high AGB forests. First, high AGB forests are rarer, and represent only c. 12% of all 

forests in Amazonia (Avitable et al. 2016 data). Second, high AGB forests are likely to be 

undisturbed, and their intact canopy means they are more likely to maintain humid understories 

than disturbed (and therefore lower biomass) forests (Uhl & Kauffman, 1990).  

Our model outcomes also suggest that the fires will release lower quantities of CO2 over 30 

years in forests where AGB ranges from 200-350 Mg ha-1. These forests have a broad spatial 

coverage and account for 56% of remaining forests in 2000 (Avitable et al., 2016 data), 

Although these mid-range AGB forests are likely to retain closed canopies and persist in wetter 

and less seasonal regions, (Cochrane et al., 2001, Krawchuk et al., 2009, Brando et al. 2012), 

the existence of data for burned forests in this biomass class of our analysis shows they do burn 

(e.g. figure 3), especially during extreme drought events (Silva et al., 2018, Berenguer et al., 

2018).  

Fire-induced mortality in the Amazon is determined by fire intensity, duration and tree survival 

traits (Cochran et al., 1993). The combination of the highest loads of dry necromass (Chao et 
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al., 2009) and a species composition with the least fire-resistance traits (Barlow et al., 2003; 

Balch et al., 2011; Staver et al., 2020) would reasonably exacerbate combustion and 

decomposition emissions in the forests with the maximum AGB . By contrast, forests with 

intermediate levels of AGB (200-350 Mg ha-1) hold relatively lower necromass stocks and emit 

less by combustion and, if subjected to a shorter fire duration and/or less intense fire, they are 

likely to have increased tree survival rates. A different process may occur in forests with the 

lowest AGB that, even though they have the lowest necromass, burn with severe fire intensity 

because necromass is very dry in more open canopy, resulting in higher mortality and 

decomposition emissions. 

 Caveats and knowledge gaps 

Wildfire net emissions are for the first time scaled up to an Amazonian landscape with 

accurate temporal and spatial data. However, there are a number of caveats that concern the 

scaling of these emissions to the whole of the Amazon basin. Particularly, combustion 

emissions are essentially associated to necromass stocks. We estimated necromass stocks from 

a large sample of plots measured in our studied region. The relationship of necromass with 

AGB was weak, but the statistical modelling could be refined by adding other important 

explanatory variables to the model, such as climate and soil descriptive variables and 

disturbance level and age (Chao et al., 2009, Palace et al., 2012). Applying these combustion 

emissions to other landscapes require adjusting the necromass-AGB relationship, which is 

highly variable (Baker et al., 2007; Chao et al., 2009), especially in disturbed forests (Palace 

et al., 2012,). Although our estimates of necromass have many uncertainties, in our study area 

we suspect our combustion emissions are conservative, as we do not account for accumulated 

necromass from previous fires but instead use the necromass-AGB relationship when fires were 

recurrent (26% of all burned area). Furthermore, in our models we used the only measurements 

of necromass stocks in pre- and post-uncontrolled Amazonian fires (Whithey et al., 2018). 
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However, combustion completeness depends on pre-fire fuel moisture (Ray et al., 2010), which 

is not known across the study region or Amazon. This is a challenging knowledge gap to 

address, as assessments of combustion completeness in uncontrolled fires are only achievable 

by chance, and experimental fires are logistically challenging and would need to be conducted 

across a range of climatic conditions and with differing species compositions.  

The form of the relationship between pre-fire AGB and initial mortality is not totally clear, 

however, the initial mortality is determinant of delayed mortality, and the accuracy of the linear 

or non-linear models needs to be better understood. While our non-linear model estimates high 

mortality in extremely high AGB forests, which represent only 12% of all Amazonian forests 

(Avitabile et al., 2016), the linear model estimates higher mortality in the AGB range (200 to 

400 Mg ha-1) that occupies more than one half of Amazonia (Avitabile et al., 2016). We suspect 

both models result in similar overall outputs, but the implications of using one or the other 

requires further consideration.  

Our analysis attempts to assign emissions to a given year, which means some of the emissions 

resulting from necromass decomposition will remain unaccounted for at the end of a given time 

series. The extended emissions and uptake beyond a given studied period should be considered, 

especially when high forests with AGB stocks are burned, as these are the largest contributors 

to longer-term emissions. To account for the lagged emissions over 30yr time, the estimates in 

Silva et al., 2020 can be used, which shows a total of 92.4 Mg CO2 ha-1 emissions resulting 

from mortality and decomposition in forests > 150 Mg ha-1. 

Estimates of net emissions can be further improved by refining estimates of post-fire regrowth. 

The major CO2 uptake estimated within our approach is attributed to low AGB forests, as these 

have limited delayed mortality. However, we simulated all forests growing at the same rate, 

because the limited information available on post-fire growth of disturbed forests (Barlow & 
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Peres, 2008; Berenguer et al., 2018a; Silva et al., 2020) is not enough to create a statistical 

relationship with pre-fire AGB. Our estimated AGB regrowth rates change over time, but it is 

reassuring that at their maximum (2.9 Mg ha-1 y-1) they are similar to the mean growth rates 

estimated for selectively logged forests (2.6 Mg ha-1 y-1; e.g. Rutishauser et al., 2015) and older 

secondary rainforests in tropical America (2.3 Mg ha-1 y-1; e.g. Suarez et al., 2019). The 

responses of heavily disturbed forests affected by recurrent fires could be very different, and 

as our estimates are from once-burned forests (Silva et al., 2020) we may be overestimating 

the regrowth. Higher intensity fires in disturbed forests kill many more of the original trees 

(Cohrane et al., 2001; Barlow and Peres, 2004) and could impede succession by depleting the 

seed bank of forest species (Flores et al., 2016; Berenguer et al., 2018b). Finally, we excluded 

fire impacts in secondary forests (those regrowing after deforestation) in our simulations; these 

represented just 7% of all burned forests in our study area, but may make a much larger 

contribution across the Amazon – especially if they are more likely to burn, as suggested by 

Ray et al., 2010. While a suite of recent studies have advanced our understanding of the carbon 

accumulation potential of secondary forests (Nunes et al., 2020; Smith et al., 2020; Wang et 

al., 2020), their responses to fires remain largely unquantified. 

 Accounting for forest fire emissions in Brazil’s climate policy 

Amazonian fire CO2 emissions and uptake are an important part of the carbon cycle and should 

be included to the Brazil’s LULUCF accounting systems. The approach we developed 

represents a progress over the current estimates because it integrates all major emissions, from 

immediate and long-term processes, that can be derived from wildfires into high resolution 

burned area data. The application of our approach in the Amazonian landscapes can provide a 

first step for the country to include these emissions in their accounting systems and it would 

allow avoided fires to be integrated into policies promoting payments for ecosystem services, 

such as REDD+.  
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Integrating fire emissions could also assist policy makers and stakeholders to develop better 

strategies for making Brazil’s carbon balance economically efficient.  For example, Brazil 

wants to restore and reforest 12 million ha by 2030 to mitigate carbon emissions and achieve 

its NDC target (MMA, 2017). Pará state alone could contribute over 40% of this target (Pará 

State Law 941, 2020). If these 5 Million ha regrow at an estimated rate of 2.2 Mg C ha-1 y-1 

(Lennox et al., 2018) over the first 30 years, then they would take up 40 Million t carbon from 

the atmosphere. We estimate that the same benefit would be accrued by avoiding forest fires 

across an area  just 2.5 times the size of our test landscape equivalent to our test landscape over 

21 years. The benefits of fire avoidance are likely to be even greater considering the higher 

levels of forest biodiversity in primary forests compared to secondary forest (Barlow et al., 

2007; Lennox et al., 2018), and the very high costs of forest restoration, which are on average 

US$1,500/ha (Imazon, 2017).  

4.6 CONCLUSION 

Until now, there has been no spatially explicit method for incorporating forest fire emissions 

into Brazil’s carbon accounting from LULUCF and assigning those emissions to specific years. 

We develop the first approach with a minimum requirement of spatial data that is already 

available. While the approach is preliminary and requires refinement, we were able to apply it 

to a test landscape, revealing for the first time how fire emissions progress over time across 

disturbed and old-growth forests, and how this is affected by regrowth. Applying our models 

could have important implications for policies in tropical forest countries, by highlighting the 

advantages of reducing forest fires over and above other climate change mitigation approaches.  
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5.1 GENERAL DISCUSSION 

Wildfires in humid tropical forests are one of the most critical environmental problems of this 

century that could define the future of the tropical forest biome and the world’s climate (Jolly 

et al., 2015).  This thesis provides a detailed and multi-scale understanding of the impact of 

forest fires on the carbon balance of humid tropical forests by modelling their effects on 

individual stems, all the way up to their landscape-level effects on the carbon balance of 

Amazonian humid tropical forests. To achieve this, I started by assessing field data from across 

five Amazonian states (Chapters 2 and 3) and then combined this with large-scale field studies 

(Berenguer et al., 2014) and literature assessments of all the studies to date on fires in the 

Amazonian forests, including data from the largest long-term fire experiment in burned forests. 

The key findings outlined below can support the development of governmental strategies to 

halt fires in tropical forests and curb carbon emissions. For simplicity, I discuss the outcomes 

from each chapter in terms of carbon, although the results of chapter 2 are reported in biomass 

(Mg ha-1) and chapters 3 and 4, which relate to emissions, are Mg CO2 ha-1. 

 Key findings 

Chapter 2 - The long-term disruption of carbon dynamics in burned forests 

In Chapter 2, I addressed the following questions: 

What are the longer-term effects of wildfires on forest biomass? How do wildfires affect forest 

growth, recruitment, and mortality at stem level, and what insights do key structural traits such 

as wood density and stem size (DBH) provide into the mechanisms underpinning the changes 

in biomass? 

This is a published chapter in which my co-authors and I show that drought-induced wildfires 

reduce above ground carbon stocks by 25% for at least 30 years. These changes in carbon 

stocks result from the major changes in carbon dynamics, including the increases in the 
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mortality of high wood density and large stems that occurs for many years after the fire. We 

also quantified the increase in stem recruitment and woody growth of pioneer species; as these 

are early successional species, then the carbon held within then is likely to have a short 

residence time. Losses outweigh carbon gains in the short-term (1-8 years after the fires), but 

in the long-term, these rates are equivalent to baseline levels, suggesting the forests may have 

returned to a balanced state. However, this long-term carbon balance occurs before the carbon 

stocks has recovered to pre-fire levels, suggesting that forests are unlikely to recover in the 

following decades or longer. 

Chapter 3 - Revealing the magnitude of temporal net carbon emissions after fires  

In chapter 3, the main question was: 

What is the multi-decadal net CO2 flux of burned forests given the relative contribution of 

combustion and decomposition-related CO2 emissions and post-fire CO2 uptake? 

On the basis of findings from chapter 2, in Chapter 3 (in press) my co-authors and I show the 

magnitude of temporal carbon net emissions in burned forests, as the balance between the 

decomposition of dead stems (necromass) and post-fire re-growth. We propose non-linear 

models that show that, following the combustions emissions, there is a large pulse of carbon 

released to the atmosphere through decomposition of dead woody material, with emissions 

peaking at c. 5 years after the fires. We show that after 30 years, the carbon emissions from the 

decomposition of necromass are responsible for up to 73% of all fire-induced carbon emissions 

(including combustion). Post-fire regrowth represents an offset of 35% of all fire-induced 

carbon emissions. We conclude that delayed mortality makes a significant contribution to net 

emissions and that it needs to be incorporated into carbon accounting systems, including carbon 

inventories and Earth System Models. 
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Chapter 4 - A spatial-temporal approach to scaling-up combustion and 

decomposition emissions of carbon 

In chapter 4, I was interested in extending the models developed in chapter 3 to an Amazonian 

landscape context, as preparation for incorporating it into a basin-wide assessment of fire 

emissions. A landscape unit that included undisturbed and human-modified forests was used 

to test a spatial-temporal approach that integrates a combustion model with the net 

decomposition model developed in chapter 3. 

In this chapter, I present a unique approach that could be used by the Brazilian accounting 

systems to incorporate Amazonian forest fires, an unaccounted-for carbon source, in their GHG 

inventories. The approach showed that the largest combustion emissions were released from 

forests with the highest aboveground biomass stocks, as necromass (available fuel to burn) 

increased with biomass. I show that high-biomass forests make a significant contribution to 

decomposition emissions, as biomass loss from tree mortality was greatest at the highest levels 

of forest biomass.  Decomposition emissions were also very important in low biomass forests, 

as the model I proposed predicted high rates of initial tree mortality in these forests.  At the 

landscape level, the relative contribution of high biomass forests to burned area was only 34%, 

but these forests were responsible for 57% of all fire-induced carbon emissions. 

 Implications of research findings to national conservation strategies and 

climate-change policies  

5.1.2.1 THE MAIN CONSERVATION PRIORITY 

Besides the urgency in avoiding deforestation, this thesis findings highlight that avoiding 

wildfires in humid tropical forests, especially in those with high biomass, should be one of the 

main priorities for climate change mitigation – these forests do not recover on decadal time-

scales, and therefore represent an important long-term carbon source (Chapter 4). While the 
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prevention of wildfires in Amazonia represents one of the greatest challenges in the near hotter, 

drier future (Fonseca et al., 2019), strategic actions directed to tackle illegal deforestation-fires 

and support for fire-free methods in agriculture can potentially reduce fire risk (Barlow et al., 

2019; Spínola et al., 2020). In order to achieve this, it is crucial to understand the role of 

different ignition sources, so efforts are directed where they are most needed (Barlow et al., 

2019).  

The use of fire by smallholders in swidden-agriculture can be an important ignition source 

during extreme drought years, and thus alternatives has been suggested, such as tractor-driven 

vegetation management (Davidson et al., 2008) and agroforestry systems (Pollini, 2009). 

However, these are not always viable and there are important social aspects to be considered. 

For example, fire-dependant agriculture has been carried out for millennia, and it only became 

threatening more recently because of increasing flammability of humid forest caused by 

climate-change and increased forest degradation. In order to establish efficient policy 

implementation (Carmenta et al., 2013), inclusive management and financial support is crucial 

(Spínola et al., 2020).   

Directing efforts to control deforestation-fires may be even more critical. In the last two years, 

increased fire detections were mainly associated to increases in deforestation (Alencar et al., 

2019; Barlow et al., 2019), and as most active fire was detected in public lands and large-scale 

deforested areas in private lands, illegal deforestation is suggested to be a major cause (Alencar 

et al., 2019). There is a clear failure in controlling deforestation at the moment (Silva Junior et 

al., 2021), which is worrying not only because of what the forest loss represents directly, but 

also because deforestation fires represent a risk of increasing forest wildfires (Aragão et al., 

2008, Barlow et al., 2019). 

5.1.2.2 A SECONDARY CONSERVATION PRIORITY 



 

133 

 

In chapter 3, I highlight allowing burned forests to recover is important and should be 

additional priority as these represent a significant strategy to mitigate carbon from degradation. 

Yet, avoiding clearance of these forests is challenging, given the current increasing 

deforestation rates (Barlow et al., 2019) and trends in the beginning of this century associating 

burned forests and deforestation (Aragão et al., 2008). Recently, it was estimated that 26% of 

degradation (natural and anthropogenic) and deforestation in the Amazon basin occurred in 

secondary or regenerating forests between 1995 and 2017 (Bullock et al., 2020). Although 

burned forests were not distinguished from other types of degradation, this clearly show a 

significant portion of the carbon sequestered by regenerating forests is not persistent. Bullock 

et al. (2020) also showed that 30% of intact forests subjected to degradation end up being 

degraded one more time before a second phase of regeneration (figure 5.1). 

 

Figure 5.1 The trajectories of intact natural forests subjected to deforestation and degradation 

or natural disturbance (D/ND) in Amazonia from 1995 to 2017. Adapted from Bullock et al. 

2020. 
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Burned forests are susceptible to further disturbances (Cochrane, 2003; Alencar et al., 2011). 

Findings from chapter 4 also support this for the landscape analysed, where the majority (65%) 

of burned forests were low biomass forests, and repeated fires were high (26%). In chapter 4, 

I also show that burned forests with low biomass contribute significantly to carbon emissions 

in the short-term through the mortality and decomposition of trees that died immediately after 

fires. These results reinforce the importance of avoiding further fires in previously disturbed 

forests. 

5.1.2.3  CONSERVATION INITIATIVES AND CLIMATE POLICIES 

Recently, a pilot program for payment for ecosystem services has been instated by the Brazilian 

Government (Floresta +, in Portuguese; MMA, 2018), where c. 96 million USD received from 

the Green Climate Fund (GCF) will be used to pay public and private lands for preserving and 

restoring forests. The GCF funds were allocated based on REDD+ results achieved by Brazil 

in the Amazon biome in 2014 – 2015 (MMA, 2018). The findings from this thesis suggests 

that the success of such program and other REDD+ investments strongly depend on reducing 

forest wildfires. By failing to avoid fire-degradation in Amazonia, Brazil will miss a great 

opportunity to attract more investment in their forests (Aragão & Shimabukuro, 2010). 

However, curbing Amazonian wildfires will require efforts at multiple levels – e.g. globally, 

by mitigating climate-change, nationally, by promoting fire-free productive lands as well as 

curbing illegal deforestation, and locally by effectively managing smallholders fire-use and 

promoting social justice.  

Furthermore, in the proposal Brazil submitted to GCF the set baseline against which to measure 

LULUCF emissions reductions and the reported results from REDD+ were based on gross 

emissions from deforestation (MMA, 2018). Nonetheless, incorporating forest degradation 
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emissions and removals by vegetation regrowth is essential for reducing biases and is likely to 

become more strongly required in the UNFCCC protocols for REDD+ results-based payment. 

The approach proposed in this thesis for incorporating post-fire carbon fluxes in accounting 

systems (chapter 4) could be useful for improving proposals for GCF and reporting results from 

conservation initiatives under UNFCCC requirements. Reducing uncertainties associated with 

forest degradation is a recognized area for future improvement by the Brazilian Working Group 

on REDD+ (WG), and something likely to be required in future from tropical countries seeking 

results-based payment by GCF. Brazil’s WG argue this is complex because of limitations 

associated with assessing changes in carbon stocks, and due to the short time series of its 

degradation mapping system (DEGRAD; MMA, 2018). While mapping degradation is beyond 

the objectives of this thesis, recent advances in remote sensing analysis have made some 

progress (e.g. Bullock et al. 2020, Andela et al., 2020). The results presented here could be 

combined with these novel fire-mapping efforts to provide detailed fire-associated carbon 

fluxes. It is important to note that although forest wildfires are a growing type of degradation, 

the integration of multiple degradation types and the associated emissions is fundamental in 

future.  

 Future research priorities 

In this thesis, I present a general understanding about forest responses to fire (tree mortality 

and growth) using the largest field-based dataset to date, and many additional data sources in 

Brazilian Amazonia. The models proposed in chapter 3 and the spatio-temporal approach tested 

in chapter 4 are also useful for estimating wildfires emissions in other Amazonian countries 

and perhaps in other tropical countries. To apply the spatio-temporal approach there is a 

minimum requirement for ground data, which is plot-level biomass and necromass stocks and 

mortality and growth rates measured in permanent plots. In terms of spatial data, forest cover, 

burned area and aboveground biomass are the minimum data required. Yet, the models 
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proposed in this thesis have limitations for applications to tropical forests more widely. To 

overcome these limitations and be able to apply the models developed in this thesis to the 

Amazon basin and other tropical forest context, future research should prioritize the following 

topics. 

5.1.3.1 IMPROVING OUR UNDERSTANDING AT THE REGIONAL LEVEL OF LONG-TERM 

PATTERNS 

While the general understanding provided in this thesis reduced uncertainty and targeted 

several important knowledge gaps, additional research at the regional level, capturing the direct 

and long-term (decadal) effects of fire on forest structure, would be useful to provide a more 

detailed knowledge on regional biotic and abiotic stressors of recovery pathways. In order to 

achieve that, sampling understorey fires at the regional level is crucial, however, is not simple. 

In this thesis, we relied on chronosequence comparisons at plot-level that were also monitored 

over time, but the most reliable assessments of change use a before-after approach (França et 

al., 2016). This, however, can only occur in two ways: by chance, when  permanent forest plots 

are accidently burned (Berenguer et al., 2018); or by experimental fires which are logistically 

challenging and may not reproduce wildfire conditions that reflect the rest of the Amazon if  

they are conducted in non-drought years (Brando et al., 2016) or too late in the season, after 

the first rains and moisture limit fire spread and intensity (Ray et al., 2010). Chronosequence 

studies have more uncertainties, but are useful when successional trajectory exceeds 

investigator lifespan (Walker et al., 2010). Up to now, a great amount of knowledge about 

humid forests responses to fire has been acquired from short-term studies at the regional level 

(Uhl & Kauffman, 1990; Kauffman, 1991; Barlow et al., 2003; Cochrane, 2003; Barlow & 

Peres, 2004; Balch et al., 2011; Brando et al., 2012; Berenguer et al., 2018). However, field-

based long-term assessments are key, and thus the expansion of permanent-plots network. 

5.1.3.2 THE LONGER-TERM RECOVERY OF FORESTS  
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Supporting other studies (Barlow & Peres, 2008; Flores et al., 2016; Oliveras et al., 2017; 

Berenguer et al., 2018) I show post-fire recovery, even after single understorey wildfires, is a 

slow process that will not occur for decades (chapter 2). Post-degradation forest recovery is of 

much interest, and our knowledge on mortality is more advanced than on regrowth. Although 

several studies have quantified post-degradation regrowth, only few have attempted to measure 

the effects of biotic and abiotic drivers (e.g. Berenguer et al. 2018). There is clear evidence 

that post-fire growth is dominated by low wood-density species (Berenguer et al. 2018 and 

chapter 2). However, a key question still remains: Is the regeneration of slow-growing (high 

wood density) species impeded, or this is this just a slow process that is not captured in our 

studied timeframe? While studying long-lived forest trees is inherently challenging, new 

insights into the recovery of these species, could be gained by evaluating changes in the 

dynamics of small trees, saplings and the seed bank. I highlight growth as being a particularly 

complex process to model (chapter 4), and a better understanding of how this process is 

affected by environmental stressors could greatly improve CO2 uptake models, reducing the 

uncertainties in post-fire net emissions.  

5.1.3.3 UNBURNED BASELINE, COMBUSTION COMPLETENESS, DECOMPOSITION RATES, AND 

OTHER UNCERTAINTIES 

In Chapter 2, estimates of carbon losses and gains in burned forests are presented relative to 

the unburned (or undisturbed) forest baseline. Although I assumed the baseline is static over 

time, based on non-significant changes in most unburned plots, it is important to note that 

recent research, based on a large-scale dataset of permanent forest plots, indicate undisturbed 

forests have changed in recent decades (Phillips et al., 2009, Brienen et al., 2015). These 

changes are highlighted by a decline in the carbon sink of 321 plots in the Amazon forest, and 

are a consequence of both increased mortality and reduced growth rates (Brienen et al., 2015). 

While there is no such long-term data to assess these changes in burned forests, given 
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permanent plots in burned sites date from 2009, it is reasonable to expect burned forests would 

follow at least the same directional change observed by Brienen et al. (2015) in undisturbed 

forests, or present larger increases in mortality (Brando et al., 2014, Brando et al., 2019). This 

means the difference in mortality, estimated in Chapter 2, between burned and unburned 

forests, is unlikely to have reduced over time, as is the case for the difference in woody 

productivity between burned and unburned forests. Consequently, the carbon flux estimates 

presented in Chapter 3 are conservative. The decline in carbon sink strength of undisturbed, 

drought-affected forests since the 1990s (Brienen et al., 2015, Hubau et al., 2020), means the 

recovery of carbon stocks to pre-fire levels may be affected and take longer than previously 

thought. 

In chapter 3 and 4, I show combustion emissions are a critical component of wildfires 

emissions. Combustion completeness from slash-burn experiments is commonly used to 

calibrate the deforestation emissions estimated in burning emissions databases and Earth 

system models (Guild et al., 1998; Van Leeuwen et al., 2014). Yet, combustion completeness 

in slash-burn experiment does not reproduce the conditions of understorey fires, where fuel is 

composed of decomposing dry necromass. Only one study has quantified this in Amazonia 

(Withey et al., 2018), which we used in the estimates produced in chapter 3 and 4, but 

measuring this component in other regions is a critical knowledge gap for future research.  

The decomposition of woody debris is a critical a component of carbon cycle (Chambers et al., 

2000; Keller et al., 2004; Chao et al., 2009; Palace et al., 2012), but this has not yet been 

investigated in burned forests. In chapter 3, I highlight the uncertainties associated with using 

decomposition rates from undisturbed primary forests. Therefore, future research should focus 

on quantifying woody debris decomposition in burned forests and evaluate the importance of 

the multiple factors that affect decomposition rates after fires. In addition to that, it is important 

to also evaluate the fraction of burned wood that remains in the soil as charcoal and have a 
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much lower decomposition rate since its major resistance to microbial degradation (Singh et 

al., 2010).   

Finally, future research could focus on other minor components of the burned forests carbon 

cycle that could influence the fluxes estimates shown in this thesis. For example, small trees 

(e.g. <10 cm in DBH) contributes to 10% of standing biomass (Phillips et al., 1998) and this 

proportion is omitted in our carbon dynamics estimates. Similarly, the FWD and leaf litter NPP 

should be assessed, as well as the alternative carbon pathways such as to soil and groundwater 

and other sources of carbon such as CH4 by termites. 

5.1.3.4 EXTENDING OUR KNOWLEDGE BEYOND WILDFIRES 

The effects of fires in humid tropical forests shown in chapter 2 are possibly much greater than 

those from other type of forest disturbance. However, in many cases fire interacts with other 

types of degradation, for example, most forest edges and logged forests are eventually affected 

by fires (Nepstad et al., 1999; Silva Junior. et al., 2018), and burned forests can be more 

severely affected by windstorms than intact forests (Silvério et al., 2019). In this thesis, we 

assessed the impacts of fire excluding other types of degradation (e.g. logging, multiple fires, 

edge effect, droughts). This brings to attention the importance of investigating degradation 

under the perspective of human-modified forests which contemplate forests under various 

levels of disturbance caused by different degradation drivers (e.g. Berenguer et al., 2014). 

Categorising the different types of degradation is useful. For example, in chapters 2 and 3 we 

focused only in single fire events rather than assessing repeated fires or multiple disturbances. 

This can help estimating the magnitude of specific effects such as resulting emissions, and for 

understanding rates of recovery. However, future field-based research should focus on 

integrating methodologies the promote the understanding of multiple interactive disturbance 

events, their associated impacts and forests recovery rates. For example, secondary forests are 

becoming widespread, and although much is known about their extent (Silva Junior et al., 
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2020; Smith et al., 2020) and growth rates (Elias et al., 2019), little is known about how much 

these forests are affected by fire, or how fires affect mortality and growth rates. The application 

of the models proposed in this thesis require we understand better the recovery of forests under 

different levels of disturbance and secondary forests that are eventually affected by fire.  

5.1.3.5 MAPPING THE EXTENSION OF FIRES AND OTHER FORMS OF DEGRADATION  

Mapping understorey fires in Amazonia is the ultimate prerequisite for adequately quantifying 

associated emissions and thus improving carbon budgets estimates. Achieving that is not trivial 

as processing a large volume of high spatial resolution data (30 m) is required. Additionally, 

mapping understorey fire scars by using high spatial resolution data can be challenging. The 

persistence of changes in the spectral signature of fire-affected forest canopy is variable, and 

in many cases fire scars are difficult to be detected because of cloud cover and fast regeneration 

of pioneers between satellite imaging dates (Alencar et al., 2011). The carbon flux estimates 

presented in chapter 4 are based in a high resolution burned area map, however, it is important 

to note that the map used may also have omission errors, although this is one of the most 

accurate fire maps available. In order to understand the effects mapping limitations might have 

on basin-wide carbon flux estimates, using the approach proposed in chapter 4, it is important 

to consider omissions and commissions errors from the chosen fire map. To date, only few 

maps are available, and none provide a time-series dataset covering the entire Amazon biome. 

For example, GABAM only mapped the 2015 fires (Long et al., 2019); TREES maps do not 

cover the entire biome and only mapped fires from 2006 to 2016 (Anderson et al., 2015); other 

maps cover longer periods but focuses on specific regions (Alencar et al., 2011; Silva et al., 

2018b). More recently the extent of degradation for the Amazon biome was provided (Bullock 

et al 2020), although fire is not explicitly differentiated from other forms of degradation. 

Matricardi et al., (2020) differentiated fires and logging for the Brazilian Amazon, however, 

estimates of large drought-induced wildfires are not evident and the analysis ended in 2014. 
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Advancing remote sensing techniques are essential to improve emission estimates from all 

disturbances. 

5.2 CONCLUSIONS 

This thesis provides a comprehensive evidence-based understanding of the impacts of wildfires 

on stem dynamics and carbon budgets of tropical humid forests. The long-term disruption of 

forest carbon stocks and the long-term increased carbon emissions have significant 

implications for conservation strategies and climate-change mitigation policies. Protecting 

intact old-growth forests, especially those with high biomass, is the main priority for avoiding 

the greatest wildfires emissions (Chapter 4). However, it is important to note that carbon-

focused conservation strategies may fail to protect many species in low-carbon highly diverse 

forests (Ferreira et al., 2018).  Additionally, the protection of burned forests is of great 

importance for mitigating carbon emissions from combustion and decomposition processes.   

The knowledge on carbon emissions from forest fires developed in this thesis was used to 

develop a preliminary bookkeeping approach that can be scaled across the Amazon and 

influence national conservation policies. Although some parts of this approach require further 

improvements, it provides a way of incorporating Amazonia’s wildfires emissions into Brazil’s 

LULUCF budget.  Brazil is a leading country in REDD+ schemes and many countries will base 

their deforestation and degradation carbon accounting on Brazil’s methodology. Incorporating 

forest fires and other forms of degradation emissions, as well as vegetation regrowth removals, 

to tropical countries accounting systems, is vital for adapting climate-change policies and 

meeting the 2ºC threshold agreed in the Paris Agreement. 
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