Barabash, Miraslau L. and Gibby, William A. T. and Guardiani, Carlo and Smolyanitsky, Alex and Luchinsky, Dmitry G. and McClintock, Peter V. E. (2021) Origin and control of ionic hydration patterns in nanopores. Communications Materials, 2: 65. ISSN 2662-4443
CM_main_R2.pdf - Accepted Version
Available under License Creative Commons Attribution.
Download (2MB)
Abstract
In order to permeate a nanopore, an ion must overcome a dehydration energy barrier caused by the redistribution of surrounding water molecules. The redistribution is inhomogeneous, anisotropic and strongly position-dependent, resulting in complex patterns that are routinely observed in molecular dynamics simulations. Here, we study the physical origin of these patterns and of how they can be predicted and controlled. We introduce an analytic model able to predict the patterns in a graphene nanopore in terms of experimentally accessible radial distribution functions, giving results that agree well with molecular dynamics simulations. The patterns are attributable to a complex interplay of ionic hydration shells with water layers adjacent to the graphene membrane and with the hydration cloud of the nanopore rim atoms, and we discuss ways of controlling them. Our findings pave the way to designing required transport properties into nanoionic devices by optimising the structure of the hydration patterns.