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Abstract: In this paper, the problem of adaptive closed-loop parameter estimation and tracking
control of a six degree of freedom (6-DOF) nonlinear quadrotor unmanned aerial vehicle (UAV) is
studied. To manage the complexity of the problem, the system dynamics is decomposed into two
subsystems,i.e. translational dynamics and rotational dynamics. A nested control architecture
is adopted to develop both adaptive tracking control and parameter estimation. To stabilize the
outer loop, a virtual control input is proposed using a proportional–derivative (PD) controller
to track the x, y and z positions. The rotational dynamics of UAV contains unknown inertia
parameters appearing in the control structure as well as in a nonlinear dynamic term. An
adaptive tracking scheme is designed using the certainty equivalence principle to handle both
parameter estimation and tracking control in a closed-loop. The idea behind the controller
design is to cancel the nonlinear term in the inner loop by estimating the unknown system
parameters. The stability of the whole closed-loop system is proved with a rigorous analytical
study. Moreover, the performance of the proposed controller is verified with several numerical
analyses.
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tracking control, closed-loop identification, unknown inertia parameters.

1. INTRODUCTION

In recent years, the research outcomes in control for
quadrotor unmanned aerial vehicle (UAV) have provided
significant technological advances. Broad applications of
quadrotor are very useful for mission in various hazardous
environments such as in the military and nuclear de-
commissioning (Montazeri et al. (2020)). Quadrotors also
have found their way in geographical photography, volcano
monitoring, agriculture data collection and so on (Burrell
et al. (2018, 2016); Radoglou-Grammatikis et al. (2020);
Santamarina-Campos and Segarra-Oña (2018)).

To extend the implementation of quadrotor, autonomous
operation and cognition of quadrotors, either as an opera-
tion of a single quadrotor or as a collaborative movement
of multiple quadrotors in a networked environment as a
cyber-physical system is one of the hottest research ar-
eas from the viewpoint of control engineers (Um (2019);
Montazeri et al. (2020)). Many interesting results have
been developed in various scenarios. In general, the main
objective is how to design a proper controller for quadrotor
and realistic for practical implementation.

The presence of nonlinearities in the attitude dynamics is
one of the most essential issues in designing the controller.
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At the beginning of the research, a linear controller for a
quadrotor is designed by linearizing its dynamics. Under
this situation, this technique only can be applied for
limited cases. To solve this issue, a proper nonlinear
controller is required to maintain the UAV movement in
the full nonlinear operational range. Several results have
been presented to tackle the tracking control problem,
especially for rotational dynamics. Feedback linearization
approach is one of the common techniques proposed for
trajectory tracking problem in UAVs as developed in Voos
(2009); Zhou et al. (2010). This approach only can be
implemented if all parameters of quadrotor available for
feedback control design.

In various practical implementations, one or some param-
eters may unavailable for feedback controller. As a result,
a more advanced controller is required. Two common
methods to handle nonlinear function with uncertain pa-
rameters is robust and adaptive control. The idea behind
robust control is to dominate the uncertain nonlinear term.
Some interesting results using robust control can be seen in
Huang and Chen (2004); Lewis et al. (2003); Chen (2015)
for single setting and in Chen and Chen (2016); Zhu and
Chen (2014) for collaborative settings. Adaptive control
is another approach to handle the nonlinearities with un-
known parameters. In this approach, the uncertain non-
linearities term is maintained by estimating the unknown
parameters. Some results using adaptive control can be
found in Narendra and Annaswamy (1989); Anderson et al.



(2005); Astolfi et al. (2007); Hovakimyan and Cao (2010)
for single setting and in Lewis et al. (2013); Imran et al.
(2019, 2020) for collaborative settings.

In general, there are two typical scenarios of attitude
dynamics with unknown parameters. The first is the
unknown parameter that appears in the nonlinear term
separated from control input structure. The results under
this setting for quadrotor can be found in Nemati and
Montazeri (2018b,a) using sliding mode control and in
Imran and Montazeri (2020) using adaptive control. The
second is the unknown parameter that appears in the
control input structure. The control problem under this
scenario is more complicated. In this paper, the inertia
parameters of quadrotor are unknown for feedback control
design. These unknown parameters appear in control input
structure as well as in the separate nonlinear term in the
attitude dynamics. The main contribution of this paper
is to design an adaptive tracking control for a nonlinear
quadrotor with uncertain inertia parameters.

The remainder of the paper is organized as follows. In
section 2, the system dynamics of quadrotor is presented.
Following that, the outer loop position tracking control as
well as the proposed adaptive tracking attitude control
system is presented in Section 3. To demonstrate the
performance of designed controller, several numerical sim-
ulations are conducted in Section 4. Finally, the paper is
concluded in the last section with some recommendations
for future work.

2. SYSTEM DYNAMICS OF QUADROTOR

In this section, we present the dynamic model of a 6-DOF
quadrotor UAV, including both translational and rota-
tional dynamics. For this purpose, we follow the notations
used in Imran and Montazeri (2020). The translational
dynamics is expressed as

η̈1 = −gze + J1(η2)ze
u

m
− kt
m
η̇1, (1)

where ze = [0 0 1]
T
, g is the gravity acceleration, u is the

thrust force, kt is translational drag coefficient andm is the

mass of UAV. Vector η1 = [x y z]
T

represents the position
vector consisting of forward, lateral, and vertical motions

respectively; Here η2 = [φ θ ψ]
T

represents the orientation
vector consist of roll (φ), pitch (θ) and yaw (ψ) motions.
Matrix J1(η2) is a transformation matrix expressed by

J1(η2) =

[
cos θ cosψ sinφ sin θ cosψ − cosφ sinψ
cos θ sinψ sinφ sin θ sinψ + cosφ cosψ
− sin θ sinφ cos θ

cosφ sin θ cosψ + sinφ sinψ
cosφ sin θ sinψ − sinφ cosψ

cosφ cos θ

]
.

By assuming cosφ and cos θ to be non-zero

J
T

1 (η2) = J−11 (η2). (2)

The rotational dynamics can be represented as

ν̇2 = w1f(ν2) + w2τ, (3)

where

w1 = diag

[
Iy − Iz
Ix

Iz − Ix
Iy

Ix − Iy
Iz

]
f(ν2) = [qr pr pq]

T

w2 = I−1m .

The vector ν2 = [p q r]
T

in (3) is the angular velocity
vectors, IM = diag [Ix Iy Iz] is the inertia matrix and

τ = [τp τq τr]
T

is the torque vector acting on the body
frame. Here, it is assumed that the inertia parameters Ix,
Iy and Iz are unknown for the feedback control design.

By putting (1) and (3) together, we get the dynamic model
of the UAV as an under-actuated systems, in which the
four control inputs are used to control the six system
states. Both translational and rotational dynamics are
highly coupled between the body and inertial frames and
represented by

η̇1 = J1(η2)ν1
η̇2 = J2(η2)ν2, (4)

where ν1 = [u v w]
T

is the linear velocity vector, η2 =

[φ θ ψ]
T

is the orientation vector consisting of roll (φ),
pitch (θ) and yaw (ψ) motions and matrix J2(η2) is a
transformation matrix represented by

J2(η2) =

1 sinφ tan θ cosφ tan θ
0 cosφ sin θ

0
cosφ

cos θ

cosφ

cos θ

 .
The thrust force u is generated by

u =

4∑
ι=1

fι =

4∑
ι=1

kιΩ
2
ι , (5)

where fι is upward-lifting force generated by each rotor, kι
is a positive constant gain and Ωι is the angular speed of
the rotor ι. The thrust force and the torques acting around
the body of UAV have the following relationship

uτpτq
τr

 =


1 1 1 1

l
√

(2)

2
−
l
√

(2)

2
−
l
√

(2)

2

l
√

(2)

2
l
√

(2)

2

l
√

(2)

2
−
l
√

(2)

2
−
l
√

(2)

2
d −d d −d


f1f2f3
f4

 , (6)

where l is the arm length and d is the drag factor.

3. PROPOSED CONTROL DESIGN

In this section, the proposed controllers for both transla-
tional and rotational dynamics are presented. A virtual PD
controller is applied to maintain the translational motions
of UAV as presented in Section 3.1.

The presence of nonlinearities in the attitude dynamics
is an essential issue in designing attitude controller. If
all parameters of the dynamics are known for feedback
control design, then the control problem can be simplified
by applying a full feedback linearization to cancel the
nonlinear terms. However, this is not a viable solution
since some parameters are either unavailable or the exact
values are unknown for the feedback control design. As a
result, a full feedback linearization approach does not give
rise to a good performance. The problem becomes more



complicated when the unknown parameters appear in the
control input structure. In Section 3.2, an adaptive control
technique is developed to handle the tracking control of
UAV with inertia parameters Ix, Iy and Iz as unknown
values. These unknown parameters appear in the control
input structure as well as in the nonlinear dynamic terms.

3.1 Translational control design

In this section, the tracking control for translational dy-
namics is designed following the results presented in Imran
and Montazeri (2020). The tracking error of the system can
be defined as

η̃1 = η1 − η1d , (7)

where η̃1 and η1d are the error vector position and the
desired vector position, respectively. The double integrator
dynamics of (7) can be written as

¨̃η1 = −KD
˙̃η1 −KP η̃1. (8)

The control gains KP and KD are selected to be positive
definite, as a result Routh-Hurwitz stability criterion for
system dynamics (8) is satisfied. The dynamics (7) can be
rewritten as follows

η̈1 = η̈1d −KD(η̇1d − η̇1)−KP (η1d − η1). (9)

We define a virtual input U = η̈1 = [U1 U2 U3]
T
. Then by

substituting U to (1), we have

U = −gze + J1(η2)ze
u

m
− kt
m
η̇1, (10)

or

u

m
ze = J−11 (η2)(U + gze +

kt
m
η̇1). (11)

By expanding (11), we have the following relationships

(U1 +
kt
m
ẋ) cos θ cosψ + (U2 +

kt
m
ẏ) cos θ sinψ

−(U3 + g +
kt
m
ż) sin θ = 0, (12)

(U1 +
kt
m
ẋ)(sinφ sin θ cosψ − cosφ sinψ)

+(U2 +
kt
m
ẏ)(sinφ sin θ sinψ + cosφ cosψ)

+(U3 + g +
kt
m
ż) sinφ cos θ = 0, (13)

(U1 +
kt
m
ẋ)(cosφ sin θ cosψ + sinφ sinψ)

+(U2 +
kt
m
ẏ)(cosφ sin θ sinψ − sinφ cosψ)

+(U3 + g +
kt
m
ż) cosφ cos θ =

u

m
. (14)

The fact that cos θ 6= 0. From (12), we can compute θ as
follows

θ = arctan

(
(U1 + kt

m ẋ) cosψ + (U2 + kt
m ẏ) sinψ

U3 + g + kt
m ż

)
. (15)

From (11), we have

(
u

m
ze)

T(
u

m
ze) =

(
J−11 (η2)(U + gze +

kt
m
η̇1)

)T

(
J−11 (η2)(U + gze +

kt
m
η̇1)

)
=

(
U + gze +

kt
m
η̇

)T(
U + gze

+
kt
m
η̇1

)
. (16)

Therefore
u

m
=

(
(U1 +

kt
m
ẋ)2 + (U2 +

kt
m
ẏ)2

+ (U3 + g +
kt
m
ż)2
)1/2

(17)

From (13) and (14), we obtain

u

m
sin(φ) = (U1 +

kt
m
ẋ) sin(ψ)− (U2 +

kt
m
ẏ) cos(ψ) (18)

We can compute the φ by substituting (17) to (18) as

φ = arcsin

(
((U1 +

kt
m
ẋ) sinψ − (U2 +

kt
m
ẏ) cosψ)(

(U1 +
kt
m
ẋ)2 + (U2 +

kt
m
ẏ)2

+ (U3 + g +
kt
m
ż)2
)1/2)

. (19)

By following similar arguments, thus we can generate φd
and θd as expressed by

φd = arcsin

((
(U1 +

kt
m
ẋd) sinψd − (U2 +

kt
m
ẏd)

cosψd
)(

(U1 +
kt
m
ẋd)

2 + (U2 +
kt
m
ẏd)

2

+ (U3 + g +
kt
m
żd)

2
)1/2)

(20)

θd = arctan

(
(U1 + kt

m ẋd) cosψd + (U2 + kt
m ẏd) sinψd

U3 + g + kt
m żd

)
.

(21)

The total thrust u is generated from (14), as expressed by

u = m
(

(U1 +
kt
m
ẋ)(cosφ sin θ cosψ + sinφ sinψ)

+ (U2 +
kt
m
ẏ)(cosφ sin θ sinψ − sinφ cosψ)

+ (U3 + g +
kt
m
ż) cosφ cos θ

)
. (22)

3.2 Attitude control design

In this section, an adaptive scheme for attitude dynamics
of UAV with unknown inertia parameters is developed.
The main objective of the adaptive controller is to stabilize
the closed-loop system so that not only the tracking error
is going to zero but also to estimate the inertia parameters
of the system simultaneously. By defining the desired

trajectory ν2d = [pd qd rd]
T

and the tracking error as
e = ν2 − ν2d , the tracking error dynamics can be written
as

ė = −ν̇2d + w1f(ν2) + w2τ. (23)



The tracking controller is deemed to be successful if

lim
t→∞

e(t) = 0. (24)

Before presenting the main results, we define

E = diag(e),

F (ν2) = diag(f(ν2)),

N2d = diag(ν2d).

The main result of the proposed controller for attitude
dynamics is presented in Theorem 3.1.

Theorem 3.1. Consider the attitude dynamics (3). The
objective of the tracking error (24) is achieved by selecting
the controller

τ = −ŵ2 (αe+ ŵ1f(ν2)− ν̇2d) , (25)

with adaptation law
˙̂w1 = γ1F (ν2)E,

˙̂w2 = γ2E(αE + ŵ1F (ν2)−N2d), (26)

where α, γ1 and γ2 are some positive constants.

Proof: The dynamics error of closed-loop system (3) under
control input (25) can be calculated as follows

ė = −ν̇2d + w1f(ν2)− w2

(
ŵ2(αe+ ŵ1f(ν2)− ν̇2d)

)
= −ν̇2d + w1f(ν2)− w2(w̃2 + w−12 )(αe+ ŵ1f(ν2)− ν̇2d)

= −ν̇2d + w1f(ν2)− w2w̃2(αe+ ŵ1f(ν2)− ν̇2d)

− αe− ŵ1f(ν2) + ν̇2d
= −αe− w̃1f(ν2)− w2w̃2(αe+ ŵ1f(ν2)− ν̇2d), (27)

where w̃1 = ŵ1 − w1 and w̃2 = ŵ2 − w−12 .

We select the Lyapunov function of dynamics (23) to be

V (e, w̃1, w̃2) =
1

2
eTe+ tr

( 1

2γ1
w̃2

1 +
1

2γ2
w2w̃

2
2

)
. (28)

Direct calculation shows that the time-derivative of
V (e, w̃1, w̃2 along the closed-loop system (3)+(25)+(26)
is

V̇ (e, w̃1, w̃2) = eTė+ tr
( 1

γ1
w̃1

˙̂w1 +
1

γ2
w2w̃2

˙̂w2

)
= eT

(
− αe− w̃1f(ν2)− w2w̃2

(αe+ ŵ1f(ν2)− ν̇2d
)

+ tr
( 1

γ1
w̃1

˙̂w1

+
1

γ2
w2w̃2

˙̂w2

)
= −αeTe+ eT

(
− w̃1f(ν2)

− w2w̃2

(
αe+ ŵ1f(ν2)− ν̇2d

))
+ tr

( 1

γ1
w̃1

˙̂w1 +
1

γ2
w2w̃2

˙̂w2

)
= −αeTe+ tr

( 1

γ1
w̃1

˙̂w1

+
1

γ2
w2w̃2

˙̂w2 − w̃1F (ν2)E

− w2w̃2E(αE + ŵ1F (ν2)−N2d)
)

= −αeTe.
From (26) and (27), we can see that e(t), w̃1 and w̃2

are bounded. To show the tracking error e is driven
asymptotically to zero, we calculate the second time-
derivative of Lyapunov function V (e, w̃1, w̃2) as

V̈ (e, w̃1, w̃2) = −2αeTė. (29)

It shows from (27) that e is uniformly bounded, and hence

V̈ (e, w̃1, w̃2) is bounded. This implies that V̇ (e, w̃1, w̃2)
is uniformly continuous. By Barbalat’s Lemma, then
limt→∞ e(t) = 0. Therefore, the proof is completed.

4. SIMULATION RESULTS

The performance of the proposed approach is evaluated
numerically in this section. The parameters of quadrotor
UAV used in this simulation is presented in Table 1

Table 1. The parameters of a quadrotor UAV

Parameter name Notation Value

Mass m 0.52kg
Gravity acceleration g 9.8m/s2

Translational drag coefficient kt 0.95
Arm length l 0.205m
Drag factor d 7.5e−7kg.m2g

Inertia of x-axis Ix 0.0069kg.m2

Inertia of y-axis Iy 0.0069kg.m2

Inertia of z-axis Iz 0.0129kg.m2

To maintain the translational motions, the simulation is
conducted using a virtual PD controller (8) with KP =
KD = diag([100 100 100]). In another side, the Theo-
rem 3.1 is proposed to maintain the attitude motions. The
gains of (25) and (26) are selected to be

α = 10000, γ1 = 0.1, γ2 = 0.01.

The simulation results for tracking control of UAV for both
the translational and rotational motions are illustrated in
Figures 1-4. We can verify that all states of UAV can follow
the desired trajectories, as concluded in Theorem 3.1.
Moreover, we also present the performance of adaptation
law estimation error as presented in Figure 5 and 6. The
profiles of torque τ and UAV motions in three-dimension
(3D) can be seen in Figure 7 and 8, respectively.
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5. CONCLUSION

We present a fully tracking control for 6-DOF of UAV
with unknown inertia. A virtual PD controller is proposed
for the tracking position control. Our main contribution
is to design an adaptive controller for rotational dynam-
ics with the presence of unknown inertia in the control
input structure as well as in the nonlinear function. An
adaptive controller is designed to handle the nonlineari-
ties with uncertainties. The effectiveness of the tracking
controller is presented in the rigorous proof by applying
Barbalat’s Lemma. To demonstrate the performance of
our approaches, a simulation is conducted for a mini-
quadrotor. It will be interesting to apply our scheme for
practical implementation in the future work.
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