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Abstract 

Interactions between plants and soil microbial communities underpin soil processes and forest 

ecosystem function but the links between tree diversity and soil microbial diversity are poorly 

characterized. Differences in both the taxonomic and functional diversity of trees and microbes can 

shape soil nutrient status and carbon storage, but the stoichiometry of carbon and nutrients in the 

soil also influences resource availability to plant and microbial communities. Given the key role of 

resource availability in plant-soil interactions, we hypothesized that relationships between tree 

diversity metrics and soil bacterial or fungal diversity are mediated by soil stoichiometry. To test our 

hypothesis, we measured tree diversity metrics (tree species richness, functional trait diversity and 

functional trait composition) and soil stoichiometry in a temperate forest in China, and we 

determined soil microbial diversity by Illumina sequencing. We used structural equation models to 

assess the relationships between tree diversity metrics and soil bacterial or fungal diversity, and to 

evaluate the influence of soil stoichiometry. Overall, microbial diversity was strongly related to soil 

stoichiometry, whereby fungal diversity was associated with high soil N:P ratios, whereas bacterial 

diversity was related to high soil C:P ratios. Soil bacterial and fungal diversity were more closely 

related to tree functional trait diversity and composition than to tree species richness, and the links 

between tree and soil microbial diversity were mediated by soil stoichiometry. The strong links 

between tree functional traits, soil stoichiometry and soil bacteria or fungi suggest that resource 

quality plays a key role in plant-microbial interactions. Our results highlight the importance of 

nutrient stoichiometry in linkages between tree functional diversity and soil microbial diversity.  

 

Key words: Bacterial and fungal diversity; forest soil stoichiometry; functional trait composition; 

tree functional trait diversity; tree species richness; plant-soil interactions; soil microbial 

communities. 

 

Highlights 

l Soil bacterial and fungal diversity responded differently to tree diversity metrics and soil 
stoichiometry. 

l Soil microbial diversity was strongly associated with soil stoichiometry. 

l Soil bacterial and fungal diversity were more closely related to tree functional trait diversity 
and composition than to tree species richness.  
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1. Introduction 

Soil microbes, particularly bacteria and fungi, are key components of forest ecosystems, 

because they catalyse multiple crucial ecosystem processes (Voříšková and others 2014; Lladó and 

others 2017). Soil microbial communities are primarily responsible for decomposition processes that 

underpin forest nutrient and carbon dynamics and can thus influence tree species diversity and 

productivity (Wardle and others 2004; Van Der Heijden and others 2008; Bardgett and van der 

Putten 2014). In turn, forest soil microbes are influenced by tree species diversity and functional 

traits, which modify habitat conditions, diversify resources and facilitate mutualisms (Wardle and 

others 2004; Pantha and Dassanayake 2020; Prada-Salcedo and others 2021). The diversity and 

species composition of trees and soil microbial communities are also strongly associated with soil 

properties and nutrient status (Han and others 2005; Li and others 2020) and thus, numerous 

interactions between plants, soil properties and microbial communities are crucial for forest 

ecosystem function (Delgado-Baquerizo and others 2018; Li and others 2020; Yuan and others 

2020). However, the diversity and species composition of both trees and soil microbes are being 

affected by climate change, land-use intensification (Vitali and others 2016; Lladó and others 2017), 

and nutrient inputs from atmospheric deposition (Zhang and others 2018; Ma and others 2021), all 

of which could modify plant-soil interactions and influence important forest ecosystem services 

such as carbon storage and nutrient retention (reviewed by Hyvönen and others 2007). Thus, to 

improve our understanding of how global changes might influence forest ecosystems in future, we 

first need to gain a better understanding of the links between soils, trees, and microbial 

communities. 

In forest ecosystems, tree species diversity, community structure and species composition play 

crucial roles in shaping soil microbial communities (Delgado-Baquerizo and others 2018; Dukunde 

and others 2019; Prada-Salcedo and others 2021). Diverse tree stands can shape soil microbial 

community structure because many soil organisms obtain their energy by mineralising organic 

matter (Hättenschwiler and Jørgensen 2010; Delgado-Baquerizo and others 2017), which in turn 

releases nutrients for plant uptake (Van Der Heijden and others 2008). Different groups of 

microorganisms such as bacteria and fungi are ecologically and morphologically distinct, and 

therefore have distinct resource requirements (Delgado-Baquerizo and others 2018). In general, soil 

bacteria have faster growth rates and lower C:N biomass stoichiometry than soil fungi, whereas 

fungi are better able to degrade recalcitrant ‘low-quality’ plant material (Waring and others 2013), 

although the specific requirements of taxa within these broad groups can also vary widely (Fierer 
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and others 2007; McGuire and others 2010). The links between soil microbial communities and tree 

species diversity are thus often explained by the range of resources provided by plant inputs such 

as leaf or root litter and rhizodeposits (Delgado-Baquerizo and others 2018; Prada-Salcedo and 

others 2020) because ‘functional complementarity’ of resources should support a greater diversity 

of bacteria and fungi (Hättenschwiler and others 2005; Bardgett and Wardle 2010; Sayer and others 

2017). There is growing recognition that the resource acquisition traits of trees can shape soil 

microbial communities because they represent plant inputs that are preferentially utilized by 

different groups of microorganisms and hence, the functional composition and trait diversity of 

trees are often better for explaining variation in soil microbial communities than species richness 

per se (Hättenschwiler and others 2005; Prada-Salcedo and others 2021). For example, inputs from 

fast-growing trees with acquisitive traits, such as high specific leaf area and leaf nitrogen and 

phosphorus concentrations, are favoured by bacterial communities (Orwin and others 2010; 

Delgado-Baquerizo and others 2018), because they represent high-quality resources that are rapidly 

decomposed (Bakker and others 2011). By contrast, conservative traits of slow-growing, stress-

tolerant trees, such as high leaf dry matter content and low specific leaf area, are generally preferred 

by fungal communities (Orwin and others 2010; Boeddinghaus and others 2019). Hence, tree 

species can govern the structure of a particular soil microbial community via resource inputs with 

distinct physical and biochemical traits (Urbanová and others 2015; Prada-Salcedo and others 2021). 

However, microbial communities can also access a range of soil resources, and nutrients in the 

mineral soil and soil organic matter can support the decomposition of plant litter (reviewed by 

Krishna and Mohan 2017). Consequently, the strength of associations between plant functional 

traits and soil microbial communities is likely related to the availability of nutrients and carbon in 

the soil (Figure 1). 

Soil stoichiometry plays an important role in shaping plant and soil microbial diversity in forests 

because soil nutrient elements, such as carbon (C), nitrogen (N), and phosphorus (P), and their 

stoichiometric balance (C:N:P) are important for the growth and community composition of both 

trees and soil microbes (Delgado-Baquerizo and others 2018; Li and others 2020). Soil stoichiometry 

is strongly influenced by organic C content, reflecting the balance of resources in the soil (Delgado-

Baquerizo and others 2017), and soil stoichiometry can provide some indication of nutrient 

limitation to plants or soil microbial communities (Cleveland and Liptzin 2007; Fan and others 2015). 

Soil stoichiometry is also strongly linked to plant functional traits and diversity (Schlatter and others 

2015) due to the considerable variation in the C, N, and P content of plant inputs to the soil (Han 

and others 2005). In forests, soil fertility interacts with nutrient cycling by litterfall, whereby plants 
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growing on nutrient-rich soil tend to produce large quantities of leaf litter with high nutrient 

content, which in turn provides large nutrient inputs to the soil, whereas plants growing on nutrient-

poor soil tend to resorb a higher proportion of foliar nutrients before leaf abscission, resulting in 

lower nutrient inputs (Zechmeister-Boltenstern and others 2015). In theory, the elemental 

stoichiometry of plants and soils also link directly to the resource requirements of soil microbes 

(Chen and others 2019) because bacteria have high P requirements (Güsewell and Gessner 2009), 

and therefore prefer soils characterized by lower C:P stoichiometry, whereas fungi have high N 

requirements and therefore prefer soils characterized by higher N:P ratios (Zechmeister-Boltenstern 

and others 2015). Nonetheless, there is contrasting evidence for the influence of soil N:P 

stoichiometry on bacterial (Zheng and others 2020) or fungal (Liu and others 2020) communities 

and soil stoichiometry may instead modulate soil microbial communities indirectly via plant 

biodiversity and plant traits (Schlatter and others 2015; Carrillo and others 2016). 

Despite the importance of tree species identity and richness in shaping forest soil microbial 

diversity and composition, the role of tree functional trait diversity is still poorly characterised, and 

the importance of soil properties for mediating interactions between tree functional traits and soil 

microbial communities is unclear.  To advance our understanding of the linkages between tree 

functional traits diversity and soil microbial communities, we conducted a study at a temperate 

forest site in Northeast China to assess the linkages between different tree diversity metrics (i.e., 

tree species richness vs. functional trait diversity and composition) and soil bacterial and fungal 

diversity, while considersing the potential mediating role of soil stoichiometry (C:P and N:P ratios). 

We expected that the relationships between tree diversity metrics, soil stoichiometry and soil 

microbial diversity would differ among microbial groups with distinct resource requirements (Faust 

and Raes 2012). Specifically, we hypothesized that:  

1) Given the distinct resource requirements of bacteria and fungi, bacterial diversity will be greater 

in soils characterized by lower C:P ratios, whereas fungal diversity will be greater in soils with 

higher N:P ratios;  

2) As plant traits represent resource quality for soil microbial communities, tree functional trait 

diversity and composition will have a greater influence on soil microbial communities than tree 

species richness;  

3) As both tree species and soil microbial communities are influenced by soil nutrient status, soil 

stoichiometry will modulate the relationships between tree diversity metrics and soil microbial 

diversity.  
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To test our hypotheses, we determined soil C:P and N:P stoichiometry, measured the traits of 52 

tree species, and characterized the diversity of soil bacteria and fungi in 120 quadrats across 25-ha 

of temperate forest.  

 

2. Materials and Methods 

2.1. Study forests  

The study was conducted in a 25-ha permanent temperate mixed forest megaplot in the 

Changbai Mountains in Northeast China  (41°41ʹ49ʺ - 42°25ʹ18ʺN and 127°42ʹ55ʺ - 128°16ʹ48ʺE; 

Figure 2), which is one of the megaplots in the Forest Global Earth Observatory Network (ForestGEO; 

http://www.forestgeo.si.edu). The vegetation at the study site is characterized as late-successional 

Broadleaved-Korean pine (Pinus koraiensis) mixed forest, with woody plant species belonging to 52 

species, 32 genera and 18 families. The study area has a mean annual air temperature of 2.8°C and 

mean annual rainfall of 700 mm (Yang 1985) and the soil type is dark-brown (FAO soil classification; 

Yang 1985). The elevation of study area ranges from 793 to 809 m above sea level, and the slope 

ranges from 0.15° to 19° (Yuan and others 2020). 

 

2.2. Quantification of tree diversity metrics 

We assessed tree species richness and tree functional trait diversity and composition in 120 20-

m × 20-m quadrats, spaced at least 40 m apart across the 25-ha forest plot. We identified all woody 

plants with stem diameter at breast height (DBH) ≥ 1 cm in each quadrat and measured seven above- 

and below-ground tree species traits for at least 10 individuals of 52 species in total. Aboveground 

traits comprised maximum tree height (Hmax), leaf phosphorus content (LPC), leaf nitrogen content 

(LNC), leaf water content (LWC), specific leaf area (SLA), and leaf area (LA), and as a belowground 

trait we measured specific root length (SRL). We determined maximum tree height (Hmax) from the 

height of the ten individuals with the largest DBH, measured using a laser rangefinder (Yuan and 

others 2016). Leaf nitrogen content (LNC), leaf phosphorus content (LPC), leaf area (LA) and specific 

leaf area (SLA) were calculated using healthy, sun-exposed leaves (Wang and others 2013). 

Specifically, LNC was estimated by colourimetry after KCl extraction using the Kjeldahl method, LPC 

was determined by molybdate colorimetry after digestion in H2SO4–HClO4 and leaf area was 

measured using a portable scanning planimeter (LiDE 110, Canon, Tokyo, Japan; Cornelissen and 

others 2003). We calculated SRL as root dry mass divided by root length. We calculated three tree 
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diversity metrics for each quadrat: tree species richness, functional trait diversity and functional 

trait composition, using the vegan (Oksanen and others 2015) and FD packages (Laliberte and 

Legendre 2010) in R version 3.6.1 (R Development Core Team 2019). Tree species richness was 

calculated as the total number of observed species with DBH ≥ 1 cm within a quadrat using the 

vegan package (Oksanen and others 2015). Tree functional trait diversity and functional 

composition were calculated using the standard protocols recommended by Cornelissen and others 

(2003) and Paquette and Messier (2011). Functional trait diversity was based on four tree functional 

traits representing differences in resource acquisition strategies: leaf phosphorus and nitrogen 

content, specific leaf area and leaf area (Conti and Díaz 2013), using mean trait values for each 

species rescaled to a mean of 0 with a standard deviation of 1 (Villéger and others 2008). Functional 

trait diversity (FDis) was then computed as functional dispersion of the four traits (dbFD function in 

FD), which accounts for species abundance within each plot in addition to the distance of each 

species to the centre of multi-trait functional space (Laliberté and Legendre 2010). Finally, functional 

trait composition was calculated for each quadrat from the community weighted means (CWM) of 

all traits, using the proportional basal area of each species to calculate the CWM for each trait in 

each plot (Garnier and others 2004) using the dbFD function in FD package (Laliberté and Legendre 

2010).  

 

2.3. Soil sampling and nutrient analysis 

For analyses of soil nutrients, carbon and microbial diversity, we randomly selected two 

sampling points from the four corners points of each quadrat, took five soil cores (3.8 cm diameter, 

10 cm deep) at each sampling point and mixed them thoroughly to create one composite sample 

per quadrat (Figure 2). Each sample was then separated into two subsamples: one subsample for 

measuring soil carbon and nutrients, and the second subsample for measuring soil microbial 

diversity (bacteria and fungi). The subsamples for determination of soil microbial diversity were 

stored at −80 °C until DNA extraction.  

To determine soil stoichiometry, soil samples were sieved (< 2 mm) to remove roots and stones 

and then air-dried. Total soil nitrogen (TN) was analysed with an automatic Kjeldahl apparatus 

(N210, Gdana, China), total soil phosphorus (TP) was analysed by molybdate colourimetry using a 

UV-visible spectrophotometer (SP-2500, Shanghai, China; Sparks 1996) and soil organic carbon (SOC) 

was measured using the acidified dichromate (K2Cr2O7–H2SO4) oxidation method (Lu 1999). Soil C:N, 
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C:P and N:P ratios were then calculated from the ratio of SOC to TN or TP and the ratio of TN to TP, 

respectively. 

 

2.4. Quantification of soil microbial diversity 

Soil bacterial and fungal diversity was determined using the Illumina Miseq platform (Illumina, 

San Diego, CA, USA) following the manufacturer’s instructions. Soil genomic DNA was isolated from 

0.25 g of soil using the MoBio PowerSoil® DNA Isolation extraction kit (MoBio Laboratories, USA). 

The quality of the DNA was assessed based on 260/280 nm and 260/230 nm absorbance ratios 

obtained using a NanoDrop Life Spectrophotometer (NanoDrop Technologies, USA) and the DNA 

was stored at −20 °C until further use. 

The universal bacterial V4~V5 region of the 16S rRNA gene was amplified using the primers 

515F (5ʹ- GTGCCAGCMGCCGCGG-3ʹ) and 907R (5ʹ- CCGTCAATTCMTTTRAGTTT-3'; Yusoff and others 

2013). The fungal internal transcribed spacer (ITS) sequence of the ITS rRNA gene was amplified 

using primers ITS_1737F (5ʹ-GGAAGTAA AAGTCGTAACAAGG-3ʹ) and ITS_2043R (5ʹ- 

ATGCAGGCTGCGTTCTTCA TCGATGC-3'; Zhang and others 2016). Polymerase chain reaction (PCR) 

amplification was carried out using a GeneAmp PCR-System 9700 (Applied Biosystems, Foster City, 

CA, USA). The PCR analyses were performed in triplicate in a 20 µL mixture containing 4 µL of 

5×FastPfu Buffer, 2µL of 2.5 mM dNTPs, 0.8 µL of each primer (5 µM), 0.4 µL of FastPfu Polymerase 

and 10 ng of template DNA. The thermal cycling conditions of the PCR included an initial 

denaturation step at 95 ºC for 3 min, followed by 27 (16S rRNA) or 35 (ITS) cycles at 95 ºC for 30 s, 

annealing at 55 ºC for 30 s, extension at 72 ºC for 45 s, and a final extension at 72 ºC for 10 min. The 

amplified 16S rRNA gene and ITS region were sequenced on a 300PE MiSeq run. 

The 16S and ITS rRNA gene sequencing reads were demultiplexed, filtered and merged using 

fastp version 0.20.0 (Chen and others 2018) and FLASH version 1.2.7 (Magoč and Salzberg 2011), 

using the same quality control criteria. In brief: (i) sequences for sites with an average quality score 

of <20 were truncated over a 50 bp sliding window, and we discarded truncated reads <50 bp or 

reads containing ambiguous characters; (ii) Overlapping sequences >10 bp length were assembled 

according to the overlapped sequence, with a maximum mismatch ratio of 0.2 for the overlap region 

and discarding reads that could not be assembled; (iii) Samples were distinguished according to the 

primers, and the sequence direction was adjusted. Subsequently, we clustered operational 

taxonomic units (OTUs) with 97% similarity cut-off (Stackebrandt and Goebel 1994; Edgar 2013) 

using UPARSE version 7.1 (Edgar 2013), identifying and removing chimeric sequences. The taxonomy 
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of each OTU representative sequence was determined against relevant databases (Silva v128 for 

bacteria and unite 7.0 for fungi) using RDP Classifier version 2.2 (Wang and others 2007) with a 

confidence threshold of 0.7. It is important to note that assignment of OTUs based on sequence 

matches to reference databases might over- or under-represent actual microbial diversity (Callahan 

and others 2017) but any bias is likely to be consistent among samples. We used the identified 

bacterial phyla for subsequent analyses, and identified fungal functional groups using  FUNGuild 

(Nguyen and others 2016a) based on ‘highly probable’, ‘probable’ or ‘possible’ functional guilds, 

omitting 412 OTUs with multiple guild assignments from further analysis. The number of phylotypes 

(OTU richness) for bacteria and fungi and for the most common bacterial phyla and fungi guilds were 

calculated as OTU richness (hereafter: bacterial or fungal diversity). A summary of descriptive 

statistics for all variables is shown in Table 1.  

 

2.5. Statistical analyses 

We assessed the relative importance of plant biodiversity metrics and soil stoichiometry in 

shaping soil microbial diversity using structural equation models (SEMs; Figure 1), which allow us to 

link multiple variables and pathways in one ecological model (Grace and others 2010). As individual 

plant traits can be poor predictors of soil microbial diversity (Eisenhauer and Powell 2017), we used 

multiple trait combinations based on Principal Component Analysis (PCA) using the rda function in 

the vegan package (Oksanen and others 2015) to represent tree functional trait diversity and 

composition in the SEMs. We first performed separate PCAs for tree functional diversity and 

functional composition to reduce the number of variables and avoid issues of collinearity, and 

sampling adequacy was evaluated using the Bartlett test of sphericity and the Kaise-Meyer-Olkin 

test (Table S1). The first axis of PCA for functional trait diversity (FT PC1) explained 49% of the total 

variation and was positively correlated with FTLPC, FTLNC, FTLA, and FTSLA and the first axis of PCA for 

functional trait composition (CWM PC1) explained 65% of the variation and was positively related 

with CWMLWC, CWMSRL, CWMLPC, CWMLNC, CWMLA, and CWMSLA (Table S1). 

To account for spatial autocorrelation in bacterial and fungal diversity prior to conducting SEM 

analysis, we performed generalized least-square (GLS) analysis (Pinheiro and Bates 2016) to 

compare models with and without the spatial autocorrelation as an explanatory variable. The 

models without spatial autocorrelation showed the lower Akaike Information Criterion (Table S2), 

and we thus did not account for sampling distance in our SEMs. We then constructed SEMs based 

on theoretical direct and indirect relationships between tree diversity metrics, soil properties and 
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the diversity of soil bacteria or fungi (Figure 1). We constructed SEMs using the lavaan package 

(Rosseel 2012), using tree species richness and the first PCA axes for functional trait diversity and 

composition to represent plant diversity, bacterial and fungal OTU richness to represent soil 

microbial diversity, and we included soil C:N, C:P and N:P ratios to account for the influence of soil 

stoichiometry. Before analysis, the data were first log-transformed and then standardized (Zuur and 

others 2009). The overall model fit of alternative SEMs were assessed with Chi-square test statistics 

and associated P-values (whereby P > 0.05 indicates that expected and observed covariance 

matrices are statistically indistinguishable). For the best-fit models, the goodness of fit index (GFI) 

and Bentler's comparative fit index (CFI) were both > 0.95 and the standardized root mean square 

residual (RMSR) was < 0.05 (Malaeb and others 2000; Rosseel 2012). Soil C:N ratios did not 

contribute to the overall model fit and was therefore not retained in the final models. The 

relationships among tree and soil diversity and soil stoichiometry variables were then assessed by 

pairwise Pearson correlations (Figure S1). In order to assess the relationships between the relative 

abundances of bacterial or fungal phyla and total bacterial or fungal richness we conducted simple 

linear regressions for individual bacterial and fungal phyla (Figures S2-S6). The resulting bivariate 

relationships were then fitted to the postulated paths in the final SEM using linear regression 

(Rosseel 2012).  

  

3. Results 

All measured variables showed substantial variation among sampling quadrats across the 25-

ha forest plot. In particular, tree species richness differed up to three-fold among quadrats and tree 

functional trait diversity or composition also varied widely among quadrats (Table 1). There was a 

wide range of soil C:N, C:P and N:P ratios across the 25-ha plot (Table 1) and bacterial OTU diversity 

was generally higher but less variable among quadrats than fungal OTU diversity (Table 1). We 

identified 9534 bacterial OTUs belonging to 33 phyla, 52 classes, 105 orders, 166 families, 369 

genera and 472 species. The dominant bacterial phyla were Proteobacteria (3547 OTUs; 37.2% 

relative abundance), Acidobacteria (2221 OTUs; 23.3% relative abundance), Actinobacteria (1463 

OTUs; 15.4% relative abundance), Planctomycetes (595 OTUs; 6.2% relative abundance), Chloroflexi 

(413 OTUs; 5.4% relative abundance) and Bacteroidetes (478 OTUs; 5.0% relative abundance; Figure 

3). We identified fungi belong to 7 phyla, 27 classes, 86 orders,183 families, 601 genera and 968 

species. The dominant fungal phyla were Ascomycota (62% relative abundance), Basidiomycota 

(24% relative abundance) and Zygomycota (13% relative abundance). Out of a total 10689 fungal 
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OTUs, we were able to ascribe 4535 OTUs (42.4%) to a fungal guild. The most dominant fungal guild 

was ectomycorrhizas (2225 OTUs; 49.1% relative abundance), followed by epiphytes (876 OTUs; 

19.3% relative abundance), saprotrophs (339 OTUs; 7.5% relative abundance), plant pathogens (339 

OTUs; 7.5% relative abundance), lichenized fungi (320 OTUs; 7.1% relative abundance) and animal 

pathogens (189 OTUs; 4.2% relative abundance; Figure 3).  

Tree functional trait composition was related to tree species richness, but functional trait 

diversity was not (Figures 4 and 5). Tree functional trait diversity and composition were strongly 

positively associated with soil stoichiometry (C:P and N:P ratios), whereas tree species richness 

declined with increasing soil C:P ratio (Figures 4 and 5). 

The final SEMs showed that tree diversity metrics and soil C:P or N:P ratios explained a greater 

proportion of the variation in bacterial (24 %) than fungal diversity (11%; Figure 4). In contrast to 

our first hypothesis, bacterial diversity was strongly associated with high soil C:P ratios (Figure 4a 

and 4b) and fungal diversity was associated with low C:P ratios; however, as hypothesized, fungal 

diversity was also strongly and positively associated with high soil N:P ratios (Figure 4c and 4d). In 

partial support of our second hypothesis, bacterial diversity was significantly and positively 

associated with tree functional trait diversity and composition, but not tree species richness, (Figure 

4a and 4b). However, fungal diversity was not directly associated with any tree diversity metric 

(Figure 4c). Our third hypothesis was supported by multiple indirect links between tree diversity 

metrics and soil microbial diversity via differences in soil stoichiometry. Fungal diversity was 

indirectly linked to tree species richness via the soil C:P ratio (Figure 4c and Tables S4 and S5). 

Bacterial diversity was indirectly associated with both tree species richness and functional trait 

composition via the soil C:P ratio, but whereas the indirect relationship with tree species richness 

was negative, the indirect relationship with tree functional trait composition was positive (Figure 4b 

and Table S4). Hence, although soil microbial diversity was related to soil stoichiometry and tree 

diversity metrics, the relationships did not always conform to predictions based on differences in 

resource requirements between bacteria and fungi. 

The SEMs for individual microbial groups demonstrated that the linkages between microbial 

diversity, tree diversity metrics and soil stoichiometry differed among bacterial phyla and fungal 

guilds, explaining between 8% and 18% of the variation in the most abundant groups (Figure 5). The 

diversity of Proteobacteria and Acidobacteria were strongly associated with tree functional trait 

composition and high soil C:P ratios (Figure 5a and 5b), whereas the diversity of Actinobacteria was 

positively related to tree functional trait diversity and soil C:P ratios (Figure 5c). Ectomycorrhizal 
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fungal diversity was strongly associated with tree functional trait diversity but not soil stoichiometry 

(Figure 5d), whereas the diversity of both saprotrophs and plant pathogens were mainly explained 

by low soil C:P and high N:P ratios (Figure 5e and 5f).  

The diversity of individual microbial groups was also indirectly linked to tree diversity metrics 

via soil stoichiometry. Among the bacterial phyla, the diversity of Proteobacteria and Actinobacteria 

were indirectly negatively associated with tree species richness via the soil C:P ratio, but 

Proteobacterial diversity was also indirectly positively associated with tree functional trait diversity 

and composition (Figure 6a and 6b and Tables S6 and S8). Among the fungal guilds, only plant 

pathogen diversity was indirectly linked to greater tree species richness via the soil C:P ratio (Figure 

6f and Table S11). Hence, the linkages between microbial diversity, tree diversity metrics and soil 

stoichiometry clearly differed among microbial groups with distinct ecological niches.   

 

4. Discussion 

Our study demonstrates clear linkages between tree diversity metrics, microbial diversity, and 

soil stoichiometry. In partial agreement with our first hypothesis, fungal diversity was linked to soil 

stoichiometry, with greater fungal diversity at high soil N:P ratios, but bacterial diversity was related 

to high rather than low soil C:P ratios. Similarly, in partial support of our second hypothesis, bacterial 

diversity was more closely associated with tree functional diversity than tree species richness 

(Figure 4), but fungal diversity was not associated with any tree diversity metric. Nonetheless, our 

results provide evidence to support our third hypothesis that soil stoichiometry plays a role in 

mediating the linkages between tree and microbial diversity. Overall, the interactions between soil 

microbial communities, tree functional traits and soil stoichiometry demonstrate the importance of 

considering the diversity of plant and soil resource pools  (Hooper and others 2000; Wardle and 

others 2004) and many of the patterns we observed can be explained by the distinct resource 

requirements of different microbial taxa (Faust and Raes 2012). 

 
Direct influence of soil stoichiometry 

Soil stoichiometry has recently been identified as a key determinant of variation in microbial 

communities (Delgado-Baquerizo and others 2017; Li and others 2020; Liu and others 2020) and our 

findings support the general hypothesis that soil stoichiometry influences microbial diversity. 

However, whereas other studies demonstrated higher bacterial diversity at a low soil C:P ratio 

(Delgado-Baquerizo and others 2017), we observed the opposite pattern of greater bacterial 
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diversity in soils with a high C:P ratio. The temperate forest soils at our site are more likely to be N 

than P-limited (Xu and others 2017), and thus it is conceivable that bacteria are not P-limited, even 

in soils with a high C:P ratio. Bacterial diversity also increases with organic C content (Maestre and 

others 2015), and the indirect effects of tree diversity via the soil C:P ratio could therefore indicate 

that greater diversity of C-rich soil resources promotes bacterial diversity because specific soil 

microbial groups have distinct resource preferences (Chen and others 2019; Zhao and others 2020). 

Interestingly, our analyses of individual bacterial phyla demonstrated that the diversity of the three 

most abundant phyla was associated with a high soil C:P ratio, even though they are usually assigned 

to distinct functional groups: Proteobacteria and Actinobacteria are fast-growing copiotrophs, 

which favour nutrient-rich soils, whereas Acidobacteria are regarded as oligotrophs that tend to 

dominate in nutrient-poor soils (Fierer and others 2007; Ai and others 2015). Although a strong 

relationship between soil N:P ratios and bacterial diversity or composition was reported along a 

steep climatic gradient across 12 forest ecosystems in China (Zheng and others 2020), we found no 

influence of soil N:P ratio on bacterial diversity within our study forest, despite the wide range of 

N:P values across our 120 sampling quadrats (Table 1). Hence, it seems likely that bacterial diversity 

in our soils is not nutrient-limited and the links between bacterial diversity and tree functional traits 

might suggest that the quality or diversity of carbon sources plays a more important role in shaping 

soil bacterial communities at our study site (Hättenschwiler and Jørgensen 2010). 

As hypothesized, fungal diversity increased with soil N:P ratios, highlighting the higher N 

compared to P requirements of fungi (Hodge and others 2000), but fungal diversity was also related 

to low soil C:P ratios, which was unexpected. However, the C:P stoichiometry of fungal tissues varies 

markedly among taxa, whereas N:P stoichiometry is much more stable (Camenzind and others 

2020). Distinct nutrient requirements among fungal guilds could also contribute to the observed 

relationships between fungal diversity and soil stoichiometry. It is noteworthy that saprotrophs and 

plant pathogens, which have low tissue C:P and N:P ratios compared to ectomycorrhizal fungi (Zhang 

and Elser 2017), were most diverse in soils with high N:P but low C:P ratios (Figure S5). By contrast, 

the lack of a direct relationship between soil stoichiometry and ectomycorrhizal fungi might be 

explained by C acquisition metabolism from host plants, and their ability to produce enzymes to 

acquire nutrients from organic matter (Bödeker and others 2016), which plays an important role in 

decomposition processes in forest ecosystems (Talbot and others 2008; Sterkenburg and others 

2018). 
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Links between tree functional diversity and soil microbial diversity 

As hypothesized, we found that the diversity of soil bacteria was more strongly associated with 

tree functional trait diversity and composition than with tree species richness (Figure 4a). There is 

mounting evidence that plant trait-based approaches better explain variation in forest soil microbial 

communities than plant species diversity (Shigyo and others 2019). Plant functional traits that 

reflect structural, physiological and chemical characteristics of organisms can shape microbial 

communities (Steinauer and others 2017) and thus drive variation in ecosystem functioning (Violle 

and others 2007). In our study, we focused on tree traits related to resource acquisition, including 

leaf nitrogen and phosphorus content, specific leaf area and leaf area (Conti and Díaz 2013) because 

these also represent the quality of resources available to soil microbial communities (Bardgett and 

Wardle 2010; Sayer and others 2017). Although our metric for functional trait composition included 

all measured tree trait variables, the traits that explained most of the variation in tree trait 

functional composition were resource acquisition traits, but also included leaf water content, which 

might influence microhabitat conditions at the forest floor, and specific root length, which 

contributes to C inputs to the rooting zone (Bardgett and others 2014). However, we note that in 

only considering one root trait, our study would not have detected the associations between soil 

bacterial diversity and functional dispersion of root traits in forests, which have recently been 

established (Prada-Salcedo and others 2020). Nonetheless, our analyses of individual bacterial phyla 

suggest that Proteobacteria and Acidobacteria were largely influenced by tree functional trait 

composition, whereas Actinobacteria were influenced by tree functional trait diversity (Figure 

6a,b,c). Hence, the influence of tree functional traits on bacterial diversity suggests that variation in 

tree traits, rather than tree species richness, determines bacterial community composition via 

differences in the range of available resources (Hooper and others 2000; Wardle and others 2004; 

Delgado-Baquerizo and others 2018).  

We expected soil fungal diversity to be highly associated with tree functional diversity, because 

previous work reports strong links between plant species identity and fungal community 

composition in forest litter and soils (Urbanová and others 2015; Li and others 2020). Fungal 

decomposers are often linked to tree traits representing low-quality resources, as fungi tend to have 

slower growth rate traits and a more conservative C metabolism (Orwin and others 2010; Delgado-

Baquerizo and others 2018). The negligible direct effects of tree diversity metrics on fungal diversity 

in our study are surprising but might suggest that fungal communities are more strongly influenced 

by tree traits we did not measure (e.g., foliar and root lignin:N ratios; Bray and others 2012; Bardgett 
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and others 2014). For example, recent work showed that fungal guilds were more associated with 

root community traits than with tree diversity across European forests (Prada-Salcedo and others 

2021). Hence, we may have detected stronger associations between fungal diversity and tree 

functional diversity by including a wider range of belowground traits. The stronger links to tree 

functional diversity for bacterial than fungal diversity might be explained by the greater influence 

of plant trait variation at early stages of decomposition when bacteria play a key role in the rapid 

turnover of labile plant compounds (Güsewell and Gessner 2009; Bray and others 2012). 

Alternatively, as ectomycorrhizal fungi and plant pathogens were two of the dominant guilds in our 

soils, it is conceivable that host plant identity played a more important role in shaping overall fungal 

diversity than tree trait variation (Ishida and others 2007; Tedersoo and others 2013). However, the 

tree traits we measured also represent available resource to saprotrophic fungi (Nguyen and others 

2016b), so it is unclear why only ectomycorrhizal diversity was directly related to plant functional 

trait diversity in our study.  

 

Conclusions 

Our study demonstrates strong linkages between tree functional diversity and soil microbial 

diversity, with a role for soil stoichiometry in mediating those linkages. We propose that tree 

functional diversity is a better predictor of soil microbial diversity than tree species richness because 

functional diversity represents the range of resources to soil microbial communities. Hence, soil 

stoichiometry likely modifies the linkages between trees and soil microbes by influencing resource 

quality and availability to both groups of organisms. Consequently, studies of ecosystem processes 

in forests might benefit from simultaneously considering the relationships between plant trait 

diversity, microbial communities, and soil resources. We focused solely on microbial diversity, but 

our study provides a solid foundation for future work to investigate how the linkages with tree 

diversity and soil stoichiometry influence soil microbial activity and community composition. In 

particular, further work assessing the role of belowground plant traits and the relative importance 

of plant vs. soil resources for microbial decomposers may be particularly illuminating. Given that 

global change can influence tree functional diversity, soil microbial communities and soil 

stoichiometry, we suggest that all three aspects need to be taken into account to fully assess how 

global changes will affect important forest ecosystem processes such as decomposition, nutrient 

dynamics and carbon storage.  
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Table 1. Summary of variables measured in sampling quadrats within a 25-ha mixed temperate forest plot in the Changbai Mountains, Northeast China. Means, 

standard errors (S.E.), minima (min.) and maxima (max.) are given for n = 120 sampling quadrats across the 25-ha plot; where PC1 refers to the fist axis of a principal 

component analysis, and OTU is operational taxonomic unit. 

Variable Unit Mean   S.E.  Min. Max. 
Tree species richness (SR) Spp. per 400 m-2  11 0.22 6 18 
Functional dispersion diversity PC1 (FT) Unitless 0.00 0.13 -3.63 3.79 
Functional dispersion based on leaf nitrogen content (LNC) Unitless 0.38 0.01 0.18 0.69 
Functional dispersion based on leaf phosphorous content (LPC) Unitless 0.43 0.01 0.15 0.69 
Functional dispersion based on specific leaf area (SLA) Unitless 0.52 0.01 0.15 0.82 
Functional dispersion based on leaf area (LA) Unitless 0.51 0.01 0.17 0.84 
Community weighted means (CWM) PC1 (TC) Unitless 0.00 0.22 -7.77 5.42 
CWM of tree maximum height (Hmax) meter 26.66 0.14 21.59 30.77 
CWM of leaf phosphorus content (LPC) % 1.73 0.01 1.52 1.88 
CWM of leaf nitrogen content (LNC) % 2.00 0.01 1.72 2.25 
CWM of specific leaf area (SLA) cm2 g-1 195.82 1.79 131.78 247.50 
CWM of leaf area (LA) cm2 30.82 0.58 15.89 46.50 
CWM of leaf water content (LWC) % 0.65 0.002 0.60 0.69 
CWM of specific root length (SRL) m g-1 2904.29 30.57 2159.09 3660.51 
Soil organic carbon (C) g kg-1 9.40 0.21 4.24 20.42 
Total soil nitrogen (N) g kg-1 6.34 0.16 3.02 12.42 
Total soil phosphorus (P) g kg-1 1.24 0.03 0.58 2.11 
Soil C:P ratio Unitless 12.56 0.27 8.15 27.84 
Soil N:P ratio Unitless 5.23 0.09 3.50 10.35 
Total bacterial OTU richness No. of OTUs 2424 13 2133 2737 
Proteobacteria No. of OTUs 719 5 603 841 
Acidobacteria No. of OTUs 322 1 276 370 
Actinobacteria No. of OTUs 260 2 188 313 
Total fungal OTU richness No. of OTUs 921 19 949 1760 
Ectomycorrhizas No. of OTUs 159 3 82 244 
Saprotrophs No. of OTUs 153 4 60 312 
Plant pathogens No. of OTUs 49 1 22 97 
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Figure 1 Initial conceptual model illustrating the hypothesized linkages between tree diversity metrics, soil 
microbial diversity and the modulating effects of soil stoichiometry, represented by the ratios of carbon to 
nitrogen (C:N), carbon to phosphorus (C:P) and nitrogen to phosphorus (N:P). 
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Figure 2 Maps showing the location of the temperate forest study site; a) the location of the Changbai 
mountains in China, b) the location of the 25-ha forest plot within the Changbai Mountain Natural Reserve, 
c) the sampled quadrats within the forest plot, and d) the soil sampling points in each quadrat. 
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Figure 3 Relative abundances of (a) soil bacterial phyla and (b) fungal guilds in 120 sampling quadrats across 
a 25-ha temperate forest site in north-east China.  
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Figure 4 Final structural equation models (SEMs) illustrating the pathways by which a,b) soil bacterial and 
c,d) fungal diversity are linked to tree diversity metrics and soil stoichiometry in 120 sampling quadrats across 
a 25-ha temperate forest site in north-east China. In b) and d), the magnitude of direct and indirect 
relationships is shown as standardized coefficients, where 0 indicates no relationship. SR is tree species 
richness, FT is functional trait diversity, TC is functional trait composition, C:P and N:P indicate the ratios of 
soil carbon to phosphorus and soil nitrogen to phosphorus, respectively. Significance levels are shown as 
**P < 0.01, *P < 0.05 and pathways without asterisks are not significant. 
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Figure 5 Final structural equation models (SEMs) illustrating the pathways by which the most common (a, b 
and c) bacterial phyla and (d, e and f) fungal guilds are linked to plant diversity metrics and soil stoichiometry 
in 120 sampling quadrats across a 25-ha temperate forest site in north-east China. Model-fit statistics are 
shown in Table S3. Abbreviations and symbols follow the legend to Figure 4. 
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Figure 6 Standardized coefficients showing the magnitude of direct and indirect linkages between a-c) the 
most common bacterial phyla, or d-f) the most common fungal guilds and plant diversity metrics or soil 
stoichiometry in 120 sampling quadrats across a 25-ha temperate forest site in north-east China. Model-fit 
statistics are shown in Table S3. Abbreviations and symbols follow the legend to Figure 4. 
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Appendix A: Supplementary information  

 

Table S1. Results of the principal component analyses (PCA) based on parameters representing plant functional trait 

diversity and composition in a temperate forest in China, showing the variation explained by the first principal 

component (PC 1), and the results of the Kaise-Meyer-Olkin (KMO) test and Bartlett’s test of sphericity (BS) for the 

variables used in each PCA. The plus (+) and minus (-) symbols in parentheses refer to positive or negative correlations, 

respectively, between PC1 and the individual variables, where LNC is leaf nitrogen content; LPC is leaf phosphorus 

content; SLA is specific leaf area; LA is leaf area; Hmax is maximum tree height; SRL is specific root length and LWC is leaf 

water content. 

 

 Parameters PC 1 (%) KMO values BS test 

Functional trait diversity LNC (+), LPC (+), SLA (+), LA (+) 49 0.64 χ2 = 116, p < 0.05 

Functional trait composition 
LNC (+), LPC (+), SLA (+), LA (+), Hmax 

(-), SRL (+), LWC (+) 
65 0.80 χ2 = 1054, p < 0.05 
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Table S2. Summary statistics of the generalized least-squares (GLS) models of the relationships between bacterial or fungal richness and the explanatory variables tree functional 

trait diversity (FT), tree functional trait composition (TC), tree species richness (SR), and ratios of soil organic carbon to total phosphorus (Soil C:P) and total soil nitrogen to soil 

phosphorus (Soil N:P); showing the coefficients, t-statistic, significance, pseudo R2 value and Akaike Information Criterion (AIC) for alternative GLS models including or excluding 

spatial autocorrelation (spatial or non-spatial, respectively). 

 

GLS model Model Coefficient t-value P-value AIC R2 pseudo 

Bacterial richness 
Bacterial richness ~ FT Non-spatial 0.069 0.757 0.451 352.363 0.0004 

Spatial 0.049 0.750 0.454 355.534 0.0004 
Bacterial richness ~ TC Non-spatial 0.100 2.700 0.008 346.127 0.003 

Spatial 0.100 2.700 0.008 350.127 0.003 
Bacterial richness ~ SR Non-spatial -0.067 -0.734 0.464 350.894 0.01 

Spatial -0.067 -0.734 0.464 354.894 0.01 
Bacterial richness ~ Soil C:P Non-spatial 0.378 4.439 <0.001 333.211 0.02 

Spatial 0.378 4.439 <0.001 337.211 0.02 
Bacterial richness ~ Soil N:P Non-spatial 0.139 1.520 0.131 349.143 0.03 

Spatial 0.139 1.520 0.131 353.143 0.03 
Fungal richness 

Fungal richness ~ FT Non-spatial 0.005 0.071 0.943 352.091 0.0004 
Spatial -0.001 -0.105 0.917 353.579 0.0004 

Fungal richness ~ TC Non-spatial 0.021 0.562 0.574 352.885 0.003 
Spatial 0.022 0.582 0.562 354.394 0.003 

Fungal richness ~ SR Non-spatial 0.075 0.815 0.417 350.769 0.01 
Spatial 0.069 0.757 0.451 352.363 0.01 

Fungal richness ~ Soil C:P Non-spatial -0.151 -1.655 0.100 348.723 0.02 
Spatial -0.174 -1.867 0.064 349.556 0.02 

Fungal richness ~ Soil N:P Non-spatial 0.183 2.020 0.046 347.420 0.03 

Spatial 0.194 2.144 0.034 348.491 0.03 
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Table S3. Model fit statistics for the structural equation models (SEMs) shown in Figures 3 and 4, where df is degrees of freedom, CFI is the comparative fit index, GFI is the goodness 

of fit index, SRMR is standardized root mean square residual, AIC is Akaike Information Criterion and χ2 is the Chi-square test statistic. 

 

Dataset df Model fit statistics  Model fit  SEM 

CFI GFI SRMR AIC  χ2 (P-value) 

Overall soil microbial diversity 
Bacterial richness 1 0.982 0.989 0.038 1890.77  3.257 (0.071) Accepted Fig. 4a 
Fungal richness 1 0.979 0.989 0.038 1909.93  3.257 (0.071) Accepted Fig. 4c 
Dominant soil bacteria          

Proteobacteria 1 0.980 0.989 0.038 1902.13  3.257 (0.071) Accepted Fig. 5a 
Acidobacteria 1 0.980 0.989 0.038 1901.03  3.257 (0.071) Accepted Fig. 5b 
Actinobacteria 1 0.981 0.989 0.038 1898.22  3.257 (0.071) Accepted Fig. 5c 
Dominant soil fungi  

Ectomycorrhizas 1 0.978 0.989 0.038 1912.32  3.257 (0.071) Accepted Fig. 5d 
Saprotrophs 1 0.978 0.989 0.038 1911.18  3.257 (0.071) Accepted Fig. 5e 
Plant pathogens 1 0.978 0.989 0.038 1913.75  3.257 (0.071) Accepted Fig. 5f 
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Table S4. The relationships between soil bacterial richness and tree diversity metrics (FT, SR and TC) or soil stoichiometry 

(soil C:P and N:P ratio) for the structural equation model shown in Figure 4a, showing direct, indirect and total 

standardized effects with standard errors; significant effects are indicated in bold (P < 0.05) and abbreviations follow 

the legend to Table S2. 

 
Response Mediator  Pathway Predictor label S.E. P-value Effect 

Bacterial richness ----- Direct FT a 0.08 0.005 0.29 
Bacterial richness ----- Direct SR b 0.08 0.528 -0.05 

Bacterial richness ----- Direct TC c 0.04 <0.001 0.40 
Bacterial richness ----- Direct Soil C:P d 0.09 <0.001 0.33 
Bacterial richness ----- Direct Soil N:P e 0.09 0.470 -0.06 

Soil C:P ----- Direct FT f 0.08 0.028 0.24 
Soil N:P ----- Direct FT g 0.08 0.009 0.29 
Soil C:P ----- Direct SR h 0.08 0.005 -0.23 
Soil C:P ----- Direct TC i 0.05 0.008 0.30 
Soil N:P ----- Direct TC j 0.05 0.101 0.18 

FT ----- Direct SR k 0.13 0.139 -0.13 
TC ----- Direct SR l 0.21 0.007 0.24 
TC ----- Covariance FT m 0.34 <0.001 -0.61 

Soil C:P ----- Covariance Soil N:P n 0.09 <0.001 0.38 
Bacterial richness FT Indirect SR ka 0.03 0.191 -0.04 

Bacterial richness TC Indirect SR lc 0.04 0.027 0.10 
Soil C:P FT Indirect SR kf 0.03 0.220 -0.03 

Soil N:P FT Indirect SR kg 0.03 0.198 -0.04 

Soil N:P TC Indirect SR li 0.03 0.161 0.04 

Soil C:P TC Indirect SR lj 0.04 0.058 0.07 

Bacterial richness Soil C:P Indirect FT fd 0.03 0.061 0.08 

Bacterial richness Soil N:P Indirect FT ge 0.02 0.486 -0.02 

Bacterial richness Soil C:P Indirect SR hd 0.03 0.027 -0.08 
Bacterial richness Soil C:P Indirect TC id 0.02 0.034 0.10 
Bacterial richness Soil N:P Indirect TC je 0.01 0.509 -0.01 

Bacterial richness ----- Total FT a+(f*d)+(g*e) 0.08 0.001 0.35 
Bacterial richness ----- Total SR b+(k*b)+(l*b)+(h*d) 0.06 0.036 0.30 
Bacterial richness ----- Total TC c+(j*e)+(i*d) 0.04 <0.001 0.49 

Soil C:P ----- Total SR h+(k*f)+(l*i) 0.06 0.036 0.30 
Soil N:P ----- Total SR i+(k*g)+(l*j) 0.06 0.036 0.30 
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Table S5. The relationships between soil fungal richness and tree diversity metrics (FT, SR and TC) or soil stoichiometry 

(soil C:P and N:P ratio) for the structural equation model shown in Figure 4c, showing direct, indirect and total 

standardized effects with standard errors; significant effects are indicated in bold (P < 0.05) and abbreviations follow 

the legend to Table S2. 

 

Response Mediator  Pathway Predictor label S.E. P-value Effect 

Fungal richness ----- Direct FT a 0.08 0.733 0.04 
Fungal richness ----- Direct SR b 0.09 0.720 0.03 

Fungal richness ----- Direct TC c 0.05 0.426 0.09 
Fungal richness ----- Direct Soil C:P d 0.10 0.005 -0.28 
Fungal richness ----- Direct Soil N:P e 0.10 0.002 0.30 

Soil C:P ----- Direct FT f 0.08 0.028 0.24 
Soil N:P ----- Direct FT g 0.08 0.009 0.29 
Soil C:P ----- Direct SR h 0.08 0.005 -0.23 
Soil C:P ----- Direct TC i 0.05 0.008 0.30 
Soil N:P ----- Direct TC j 0.05 0.101 0.18 

FT ----- Direct SR k 0.13 0.139 -0.13 
TC ----- Direct SR l 0.21 0.007 0.24 
TC ----- Covariance FT m 0.34 <0.001 -0.61 

Soil C:P ----- Covariance Soil N:P n 0.09 <0.001 0.38 
Fungal richness FT Indirect SR ka 0.02 0.740 -0.01 

Fungal richness TC Indirect SR lc 0.03 0.445 0.02 
Soil C:P FT Indirect SR kf 0.03 0.220 -0.03 

Soil N:P FT Indirect SR kg 0.03 0.198 -0.04 

Soil N:P TC Indirect SR li 0.03 0.161 0.04 

Soil C:P TC Indirect SR lj 0.04 0.058 0.07 

Fungal richness Soil C:P Indirect FT fd 0.03 0.083 -0.07 

Fungal richness Soil N:P Indirect FT ge 0.03 0.045 0.09 
Fungal richness Soil C:P Indirect SR hd 0.03 0.046 0.06 
Fungal richness Soil C:P Indirect TC id 0.02 0.053 -0.08 
Fungal richness Soil N:P Indirect TC je 0.02 0.146 0.06 

Fungal richness ----- Total FT a+(f*d)+(g*e) 0.08 0.607 0.06 
Fungal richness ----- Total SR b+(k*b)+(l*b)+(h*d) 0.06 0.036 0.30 
Fungal richness ----- Total TC c+(j*e)+(i*d) 0.05 0.582 0.06 

Soil C:P ----- Total SR h+(k*f)+(l*i) 0.06 0.036 0.30 
Soil N:P ----- Total SR i+(k*g)+(l*j) 0.06 0.036 0.30 
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Table S6. The relationships between taxonomic (operational taxonomic unit) richness of soil Proteobacteria and tree 

diversity metrics (FT, SR and TC) or soil stoichiometry (soil C:P and N:P ratio) for the structural equation model shown 

in Figure 5a, showing direct, indirect and total standardized effects with standard errors; significant effects are indicated 

in bold (P < 0.05) and abbreviations follow the legend to Table S2. 

 

Response Mediator  Pathway Predictor label S.E. P-value Effect 

Proteobacteria  ----- Direct FT a 0.08 0.080 0.19 
Proteobacteria  ----- Direct SR b 0.09 0.613 -0.04 

Proteobacteria  ----- Direct TC c 0.05 0.006 0.31 
Proteobacteria  ----- Direct Soil C:P d 0.10 0.003 0.28 
Proteobacteria  ----- Direct Soil N:P e 0.09 0.780 -0.03 

Soil C:P ----- Direct FT f 0.08 0.028 0.24 
Soil N:P ----- Direct FT g 0.08 0.009 0.29 
Soil C:P ----- Direct SR h 0.08 0.005 -0.23 
Soil C:P ----- Direct TC i 0.05 0.008 0.30 
Soil N:P ----- Direct TC j 0.05 0.101 0.18 

FT ----- Direct SR k 0.13 0.139 -0.13 
TC ----- Direct SR l 0.21 0.007 0.24 
TC ----- Covariance FT m 0.34 <0.001 -0.61 

Soil C:P ----- Covariance Soil N:P n 0.09 <0.001 0.38 
Proteobacteria  FT Indirect SR ka 0.02 0.258 -0.03 

Proteobacteria  TC Indirect SR lc 0.04 0.052 0.07 
Soil C:P FT Indirect SR kf 0.03 0.220 -0.03 

Soil N:P FT Indirect SR kg 0.03 0.198 -0.04 

Soil N:P TC Indirect SR li 0.03 0.161 0.04 

Soil C:P TC Indirect SR lj 0.04 0.058 0.07 

Proteobacteria  Soil C:P Indirect FT fd 0.03 0.079 0.07 

Proteobacteria  Soil N:P Indirect FT ge 0.02 0.781 -0.01 

Proteobacteria  Soil C:P Indirect SR hd 0.03 0.042 -0.06 
Proteobacteria  Soil C:P Indirect TC id 0.02 0.050 0.08 
Proteobacteria  Soil N:P Indirect TC je 0.01 0.783 -0.005 

Proteobacteria  ----- Total FT a+(f*d)+(g*e) 0.08 0.022 0.25 
Proteobacteria  ----- Total SR b+(k*b)+(l*b)+(h*d) 0.06 0.036 0.30 
Proteobacteria  ----- Total TC c+(j*e)+(i*d) 0.05 0.001 0.39 

Soil C:P ----- Total SR h+(k*f)+(l*i) 0.06 0.036 0.30 
Soil N:P ----- Total SR i+(k*g)+(l*j) 0.06 0.036 0.30 
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Table S7. The relationships between taxonomic (operational taxonomic unit) richness of soil Acidobacteria and tree 

diversity metrics (FT, SR and TC) or soil stoichiometry (soil C:P and N:P ratio) for the structural equation model shown 

in Figure 5b, showing direct, indirect and total standardized effects with standard errors; significant effects are indicated 

in bold (P < 0.05) and abbreviations follow the legend to Table S2. 

 

Response Mediator  Pathway Predictor label S.E. P-value Effect 

Acidobacteria ----- Direct FT a 0.08 0.109 0.18 
Acidobacteria ----- Direct SR b 0.09 0.277 -0.10 

Acidobacteria ----- Direct TC c 0.05 0.001 0.35 
Acidobacteria ----- Direct Soil C:P d 0.10 0.010 0.24 
Acidobacteria ----- Direct Soil N:P e 0.09 0.857 -0.02 

Soil C:P ----- Direct FT f 0.08 0.028 0.24 
Soil N:P ----- Direct FT g 0.08 0.009 0.29 
Soil C:P ----- Direct SR h 0.08 0.005 -0.23 
Soil C:P ----- Direct TC i 0.05 0.008 0.30 
Soil N:P ----- Direct TC j 0.05 0.101 0.18 

FT ----- Direct SR k 0.21 0.007 0.24 
TC ----- Direct SR l 0.13 0.139 -0.13 
TC ----- Covariance FT m 0.34 <0.001 -0.61 

Soil C:P ----- Covariance Soil N:P n 0.09 <0.001 0.38 
Acidobacteria FT Indirect SR ka 0.05 0.168 0.04 

Acidobacteria TC Indirect SR lc 0.02 0.179 -0.05 
Soil C:P FT Indirect SR kf 0.06 0.088 0.06 

Soil N:P FT Indirect SR kg 0.07 0.060 0.07 

Soil N:P TC Indirect SR li 0.01 0.272 -0.02 

Soil C:P TC Indirect SR lj 0.02 0.197 -0.04 

Acidobacteria Soil C:P Indirect FT fd 0.03 0.095 0.06 

Acidobacteria Soil N:P Indirect FT ge 0.02 0.857 -0.005 

Acidobacteria Soil C:P Indirect SR hd 0.03 0.058 -0.06 
Acidobacteria Soil C:P Indirect TC id 0.02 0.065 0.07 
Acidobacteria Soil N:P Indirect TC je 0.01 0.857 -0.003 

Acidobacteria ----- Total FT a+(f*d)+(g*e) 0.08 0.035 0.23 
Acidobacteria ----- Total SR b+(k*b)+(l*b)+(h*d) 0.08 0.004 0.34 
Acidobacteria ----- Total TC c+(j*e)+(i*d) 0.05 <0.001 0.42 

Soil C:P ----- Total SR h+(k*f)+(l*i) 0.08 0.004 0.34 
Soil N:P ----- Total SR i+(k*g)+(l*j) 0.08 0.004 0.34 
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Table S8. The relationships between taxonomic (operational taxonomic unit) richness of soil Actinobacteria and tree 

diversity metrics (FT, SR and TC) or soil stoichiometry (soil C:P and N:P ratio) for the structural equation model shown 

in Figure 5c, showing direct, indirect and total standardized effects with standard errors; significant effects are indicated 

in bold (P < 0.05) and abbreviations follow the legend to Table S2. 

 

Response Mediator  Pathway Predictor label S.E. P-value Effect 

Actinobacteria  ----- Direct FT a 0.08 0.022 0.25 
Actinobacteria  ----- Direct SR b 0.09 0.437 -0.07 

Actinobacteria  ----- Direct TC c 0.05 0.105 0.18 
Actinobacteria  ----- Direct Soil C:P d 0.09 0.005 0.26 
Actinobacteria  ----- Direct Soil N:P e 0.09 0.256 0.10 

Soil C:P ----- Direct FT f 0.08 0.028 0.24 
Soil N:P ----- Direct FT g 0.08 0.009 0.29 
Soil C:P ----- Direct SR h 0.08 0.005 -0.23 
Soil C:P ----- Direct TC i 0.05 0.008 0.30 
Soil N:P ----- Direct TC j 0.05 0.101 0.18 

FT ----- Direct SR k 0.21 0.007 0.24 
TC ----- Direct SR l 0.13 0.139 -0.13 
TC ----- Covariance FT m 0.34 <0.001 -0.61 

Soil C:P ----- Covariance Soil N:P n 0.09 <0.001 0.38 
Actinobacteria  FT Indirect SR ka 0.06 0.080 0.06 

Actinobacteria  TC Indirect SR lc 0.01 0.274 -0.02 
Soil C:P FT Indirect SR kf 0.06 0.088 0.06 

Soil N:P FT Indirect SR kg 0.07 0.060 0.07 

Soil N:P TC Indirect SR li 0.01 0.272 -0.02 

Soil C:P TC Indirect SR lj 0.02 0.197 -0.04 

Actinobacteria  Soil C:P Indirect FT fd 0.03 0.084 0.06 
Actinobacteria  Soil N:P Indirect FT ge 0.02 0.298 0.03 

Actinobacteria  Soil C:P Indirect SR hd 0.03 0.047 -0.06 
Actinobacteria  Soil C:P Indirect TC id 0.02 0.054 0.08 
Actinobacteria  Soil N:P Indirect TC je 0.01 0.351 0.02 

Actinobacteria  ----- Total FT a+(f*d)+(g*e) 0.08 0.002 0.34 
Actinobacteria  ----- Total SR b+(k*b)+(l*b)+(h*d) 0.08 0.004 0.34 
Actinobacteria  ----- Total TC c+(j*e)+(i*d) 0.05 0.014 0.28 

Soil C:P ----- Total SR h+(k*f)+(l*i) 0.08 0.004 0.34 
Soil N:P ----- Total SR i+(k*g)+(l*j) 0.08 0.004 0.34 
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Table S9. The relationships between taxonomic (operational taxonomic unit) richness of ectomycorrhizal fungi and tree 

diversity metrics (FT, SR and TC) or soil stoichiometry (soil C:P and N:P ratio) for the structural equation model shown 

in Figure 5d, showing direct, indirect and total standardized effects with standard errors; significant effects are indicated 

in bold (P < 0.05) and abbreviations follow the legend to Table S2. 

 

Response Mediator  Pathway Predictor label S.E. P-value Effect 

Ectomycorrhizas  ----- Direct FT a 0.08 0.045 0.23 
Ectomycorrhizas  ----- Direct SR b 0.09 0.083 -0.16 

Ectomycorrhizas  ----- Direct TC c 0.05 0.451 0.09 
Ectomycorrhizas  ----- Direct Soil C:P d 0.10 0.795 -0.03 
Ectomycorrhizas  ----- Direct Soil N:P e 0.10 0.241 0.11 

Soil C:P ----- Direct FT f 0.08 0.028 0.24 
Soil N:P ----- Direct FT g 0.08 0.009 0.29 
Soil C:P ----- Direct SR h 0.08 0.005 -0.23 
Soil C:P ----- Direct TC i 0.05 0.008 0.30 
Soil N:P ----- Direct TC j 0.05 0.101 0.18 

FT ----- Direct SR k 0.13 0.139 -0.13 
TC ----- Direct SR l 0.21 0.007 0.24 
TC ----- Covariance FT m 0.34 <0.001 -0.61 

Soil C:P ----- Covariance Soil N:P n 0.09 <0.001 0.38 
Ectomycorrhizas  FT Indirect SR ka 0.03 0.234 -0.03 

Ectomycorrhizas  TC Indirect SR lc 0.03 0.467 0.02 
Soil C:P FT Indirect SR kf 0.03 0.220 -0.03 

Soil N:P FT Indirect SR kg 0.03 0.198 -0.04 

Soil N:P TC Indirect SR li 0.03 0.161 0.04 

Soil C:P TC Indirect SR lj 0.04 0.058 0.07 

Ectomycorrhizas  Soil C:P Indirect FT fd 0.02 0.796 -0.01 
Ectomycorrhizas  Soil N:P Indirect FT ge 0.02 0.285 0.03 

Ectomycorrhizas  Soil C:P Indirect SR hd 0.02 0.795 0.01 
Ectomycorrhizas  Soil C:P Indirect TC id 0.01 0.796 -0.01 
Ectomycorrhizas  Soil N:P Indirect TC je 0.01 0.340 0.02 
Ectomycorrhizas  ----- Total FT a+(f*d)+(g*e) 0.08 0.021 0.26 
Ectomycorrhizas  ----- Total SR b+(k*b)+(l*b)+(h*d) 0.06 0.036 0.30 
Ectomycorrhizas ----- Total TC c+(j*e)+(i*d) 0.05 0.373 0.10 

Soil C:P ----- Total SR h+(k*f)+(l*i) 0.06 0.036 0.30 
Soil N:P ----- Total SR i+(k*g)+(l*j) 0.06 0.036 0.30 
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Table S10. The relationships between taxonomic (operational taxonomic unit) richness of saprotrophic fungi and tree 

diversity metrics (FT, SR and TC) or soil stoichiometry (soil C:P and N:P ratio) for the structural equation model shown 

in Figure 5e, showing direct, indirect and total standardized effects with standard errors; significant effects are indicated 

in bold (P < 0.05) and abbreviations follow the legend to Table S2 

Response Mediator  Pathway Predictor label S.E. P-value Effect 

Saprotrophs  ----- Direct FT a 0.08 0.965 -0.01 
Saprotrophs  ----- Direct SR b 0.09 0.551 0.05 

Saprotrophs  ----- Direct TC c 0.05 0.427 0.09 
Saprotrophs  ----- Direct Soil C:P d 0.10 0.012 -0.25 
Saprotrophs  ----- Direct Soil N:P e 0.10 0.003 0.28 

Soil C:P ----- Direct FT f 0.08 0.028 0.24 
Soil N:P ----- Direct FT g 0.08 0.009 0.29 
Soil C:P ----- Direct SR h 0.08 0.005 -0.23 
Soil C:P ----- Direct TC i 0.05 0.008 0.30 
Soil N:P ----- Direct TC j 0.05 0.101 0.18 

FT ----- Direct SR k 0.13 0.139 -0.13 
TC ----- Direct SR l 0.21 0.007 0.24 
TC ----- Covariance FT m 0.34 <0.001 -0.61 

Soil C:P ----- Covariance Soil N:P n 0.09 <0.001 0.38 
Saprotrophs  FT Indirect SR ka 0.02 0.965 0.001 

Saprotrophs  TC Indirect SR lc 0.03 0.446 0.02 
Soil C:P FT Indirect SR kf 0.03 0.220 -0.03 

Soil N:P FT Indirect SR kg 0.03 0.198 -0.04 

Soil N:P TC Indirect SR li 0.03 0.161 0.04 

Soil C:P TC Indirect SR lj 0.04 0.058 0.07 

Saprotrophs Soil C:P Indirect FT fd 0.03 0.098 -0.06 
Saprotrophs  Soil N:P Indirect FT ge 0.03 0.051 0.08 

Saprotrophs  Soil C:P Indirect SR hd 0.03 0.061 0.06 
Saprotrophs  Soil C:P Indirect TC id 0.02 0.069 -0.07 
Saprotrophs  Soil N:P Indirect TC je 0.02 0.152 0.05 
Saprotrophs  ----- Total FT a+(f*d)+(g*e) 0.08 0.874 0.02 
Saprotrophs  ----- Total SR b+(k*b)+(l*b)+(h*d) 0.06 0.036 0.30 
Saprotrophs  ----- Total TC c+(j*e)+(i*d) 0.05 0.545 0.07 

Soil C:P ----- Total SR h+(k*f)+(l*i) 0.06 0.036 0.30 
Soil N:P ----- Total SR i+(k*g)+(l*j) 0.06 0.036 0.30 
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Table S11. The relationships between taxonomic (operational taxonomic unit) richness of plant pathogenic fungi and 

tree diversity metrics (FT, SR and TC) or soil stoichiometry (soil C:P and N:P ratio) for the structural equation model 

shown in Figure 5f, showing direct, indirect and total standardized effects with standard errors; significant effects are 

indicated in bold (P < 0.05) and abbreviations follow the legend to Table S2. 

 
Response Mediator  Pathway Predictor label S.E. P-value Effect 

Plant pathogens ----- Direct FT a 0.08 0.713 0.04 
Plant pathogens ----- Direct SR b 0.09 0.905 0.01 
Plant pathogens ----- Direct TC c 0.05 0.307 0.12 

Plant pathogens ----- Direct Soil C:P d 0.10 0.006 -0.27 
Plant pathogens ----- Direct Soil N:P e 0.10 0.042 0.20 

Soil C:P ----- Direct FT f 0.08 0.028 0.24 
Soil N:P ----- Direct FT g 0.08 0.009 0.29 
Soil C:P ----- Direct SR h 0.08 0.005 -0.23 
Soil C:P ----- Direct TC i 0.05 0.008 0.30 
Soil N:P ----- Direct TC j 0.05 0.101 0.18 

FT ----- Direct SR k 0.13 0.139 -0.13 
TC ----- Direct SR l 0.21 0.007 0.24 
TC ----- Covariance FT m 0.34 <0.001 -0.61 

Soil C:P ----- Covariance Soil N:P n 0.09 <0.001 0.38 
Plant pathogens FT Indirect SR ka 0.02 0.721 -0.01 

Plant pathogens TC Indirect SR lc 0.03 0.339 0.03 

Soil C:P FT Indirect SR kf 0.03 0.220 -0.03 

Soil N:P FT Indirect SR kg 0.03 0.198 -0.04 

Soil N:P TC Indirect SR li 0.03 0.161 0.04 

Soil C:P TC Indirect SR lj 0.04 0.058 0.07 

Plant pathogens Soil C:P Indirect FT fd 0.03 0.087 -0.07 
Plant pathogens Soil N:P Indirect FT ge 0.03 0.109 0.06 

Plant pathogens Soil C:P Indirect SR hd 0.03 0.050 0.06 
Plant pathogens Soil C:P Indirect TC id 0.02 0.057 -0.08 
Plant pathogens Soil N:P Indirect TC je 0.01 0.202 0.04 
Plant pathogens ----- Total FT a+(f*d)+(g*e) 0.08 0.767 0.03 

Plant pathogens ----- Total SR b+(k*b)+(l*b)+(h*d) 0.06 0.036 0.30 
Plant pathogens ----- Total TC c+(j*e)+(i*d) 0.05 0.523 0.08 

Soil C:P ----- Total SR h+(k*f)+(l*i) 0.06 0.036 0.30 
Soil N:P ----- Total SR i+(k*g)+(l*j) 0.06 0.036 0.30 
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Figure S1. Pearson’s correlation coefficients for the relationships between each pair of variables used in this study, the 

heat map indicates negative (red) to positive (green) correlations, the numbers within each square represent correlation 

coefficients (r) and insignificant correlations (P > 0.05) are crossed out. Abbreviations follow the legend for Table S2. 
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Figure S2. Bivariate relationships between bacterial taxonomic (operational taxonomic unit) richness and tree diversity 

metrics from the structural equation models (SEMs) shown in Figures 4a and 5a,b,c. All variables were natural-logarithm 

transformed and standardized. Solid lines indicate significant relationships at P < 0.05 and dashed lines are non-

significant relationships at P > 0.05. All abbreviations follow the legend to Table S2. 



 Supplementary Information 14 

 

 

Figure S3. Bivariate relationships between bacterial taxonomic (operational taxonomic unit) richness and soil 

stoichiometry in the structural equation models (SEMs) shown in Figures 4a and 5a,b,c. All variables were natural-

logarithm transformed and standardized. Solid lines indicate significant relationships at P < 0.05 and dashed lines are 

non-significant relationships at P > 0.05. All abbreviations follow the legend to Table S2. 
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Figure S4. Bivariate relationships between fungal taxonomic (operational taxonomic unit) richness and tree diversity 

metrics in the structural equation models (SEMs) shown in Figures 4c and 5d,e,f. All variables were natural-logarithm 

transformed and standardized. Solid lines indicate significant relationships at P < 0.05 and dashed lines are non-

significant relationships at P > 0.05. All abbreviations follow the legend to Table S2. 
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Figure S5. Bivariate relationships between fungal taxonomic (operational taxonomic unit) richness and soil 

stoichiometry in the structural equation models (SEMs) shown in Figures 4c and 5d,e,f. All variables were natural-

logarithm transformed and standardized. Solid lines indicate significant relationships at P < 0.05 and dashed lines are 

non-significant relationships at P > 0.05. All abbreviations follow the legend to Table S2. 

 

  



 Supplementary Information 17 

 

 

Figure S6. Bivariate relationships between the relative abundances of the most dominant (a-c) bacterial phyla or (d-f) 

fungal guilds and bacterial or fungal operational taxonomic unit richness; solid red lines represent significant 

relationships at P < 0.05 and dashed lines show non-significant relationships at P > 0.05. 
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