
On The Dynamic Allocation Of

Assets Subject To Failure And

Replenishment

Stephen Ford, B.A., M.Sc., M.Res.

Submitted for the degree of Doctor of Philosophy at

Lancaster University.

March 2021



Abstract

Problems of the dynamic allocation of assets subject to both failure and replenish-

ment are common. We consider a problem inspired by naval search, where unmanned

aerial vehicles are required to search an area of ocean for targets. The vehicles will

require refuelling or rearming; this is represented by the aspects of failure and replen-

ishment. Similar models can arise from considering problems of search and rescue,

environmental monitoring, or project management.

We formulate several versions of the problem, initially using the framework of a

Markov decision process, bearing in mind trade-offs between real-world fidelity and

mathematical tractability. We first consider models where rewards are gained in-

dependently from different tasks, before moving on to consider a specific kind of

dependence in the rewards. We use a variety of mathematical techniques, including

restless bandits, to formulate near-optimal policies for a slew of models.

We consider and investigate the various policies through comprehensive computational

modelling. For the independent case, we find that a Whittle index policy is extremely

close to optimal while being computationally efficient. For the dependent formulation,
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we create a class of policies guaranteed to contain the optimal, parameterise the space,

then choose the best from a limited set of parameters, augmenting with a single step

of policy improvement.

We close with some thoughts about what we have learned, considerations about ap-

plying the results presented in this thesis, and a discussion of intensifications and

extensions we did not have time to consider.
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Chapter 1: Introduction

1.1 Describing the Problem

We shall begin by considering where our problem came from, why we care about it,

and what kind of models we want to build, before then moving on to the details of

the mathematical notation. It is easy to spend time creating increasingly complicated

models, but we must ensure that the complexity accurately reflects the difficulties of

the problem we are trying to solve.

There are three questions that we must keep in mind to prevent us from straying from

the useful into the merely interesting. They are:

1. What is the problem that we are trying to solve?

2. What are the rules of the problem?

3. What is our plan for attacking the problem?

We begin this section by considering a variety of real-world applications which inspired

1
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different parts of this thesis. We then move on to considering which kinds of models

we want to build, as there are several places where trade-offs must be made between

fidelity to the problem and mathematical or computational tractability. We focus

throughout on the general shape of things more than the specific details, which we

defer to subsequent chapters.

1.1.1 Real-World Inspirations

In this section, we first explain the meaning of the title of this thesis - “On The

Dynamic Allocation of Assets Subject To Failure And Replenishment”

- before then looking at four types of problem that inspired ours: naval search, search

and rescue, environmental monitoring, and project management.

Our Problem: Dynamic Allocation With Failure And Replenishment

To explain what this title means, we now go through its significant words: dynamic,

allocation, assets, failure and replenishment.

� Dynamic: We are concerned with problems that have an element of time or

of change to them. This will lead us to consider controls that change with

the situation and rewards that change as well. This is as opposed to static

or once-and-for-all problems where we apply a single decision and get a single

reward.
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� Allocation: We wish to understand not only the dynamics of the systems but

also how best to control them. We assume that there are some actions we can

take to affect the system and that we wish to maximise some changing reward

gained from the system, or equivalently to minimise some loss. Our controls

will take the form of some kind of allocation of assets, generally to ‘tasks’ in the

system.

� Assets: Our allocations will be of some assets in the system. They will generally

be discrete, for both mathematical and real-world reasons: drones, ships and

dogs come in whole numbers. We can reasonably assume that as we are the one

in control of them, we know their properties, even if the eventual lifetimes are

random, and that any lack of knowledge will be about the system. We might

not know exactly when they will fail or be repaired, but will know that they can

fail or be repaired.

� Failure: Our assets will have finite lifetimes, after which they fail; were the

lifetimes infinite, we would have a static optimisation problem. We will consider

a variety of possibilities for the forms of the failure: in some cases we might know

the lifetimes exactly, whereas in others we might start off with no idea, and have

to infer it from the observed results. If the lifetimes are unknown, then we can

model them as random, and we may or may not know the parameters for the

random distributions exactly. This ties into the first point: both the system

and our controls must be dynamic, to capture the element of failure.

� Replenishment: If assets only ever failed, we would have a very short problem
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indeed. There must be some process of replenishment, which returns the assets

to us, ready to reallocate. This makes the system as a whole recurrent, an

important aspect we need to include in our mathematical models. As with

the failures, the repair times might be deterministic or random, have known or

unknown parameters, and could depend on the number of assets being repaired

at the time.

Taken together, the key aspects are optimisation and cyclic choices. We want to

optimise our allocations, and the assets go through a regular cycle of allocation,

failure and repair. One other thing worth stressing is randomness: we assume that

there is some stochastic element to the system, whether inherently in the dynamics

or arising from our ignorance.

In the next four sections, we are going to talk about the major real-world scenarios

that lead us to this approach and title, to clarify our motivations.

Naval Search

This is our first and most important application, which should be borne in mind

when reading the rest of this thesis. The best way to explain this is to quote from

the proposal document for this PhD:

“Consider our assets to be UAVs searching for targets in a communication-degraded

environment. Some UAVs search for targets (task 1 is search, say) while other UAVs

form a line-of-sight communication network (tasks 2, . . . , K are communication at



CHAPTER 1. INTRODUCTION 5

distinct network locations, say) back to the centre of operations (base). A target is

only detected if its sighting is reported back to base successfully. In order for this

system to function effectively, we need some UAVs searching, with enough UAVs also

deployed to form a fully connected communications network from the search region to

base. UAVs have a limited endurance and must periodically return to refuel. After

refuelling, a UAV is sent back to the area of operation as either a searcher (task 1) or

a communicator (one of tasks 2, . . . , K). The goal is to determine effective approaches

to UAV deployment.”

Problems of UAV utilisation, especially for searching, have been much studied in the

literature*, but our particular interest is the use of UAVs in naval search problems.

This has several particular features we wish to reflect in any mathematical formula-

tions we use.

Firstly, the oceans are unhelpfully large [8]. This seemingly obvious fact is in fact

significant: it is the origin of the ‘failure and replenishment’ part of our title. This is

because unlike in other applications, we cannot necessarily expect to search all of the

target area in a single pass, at least to a sufficient level of accuracy. Even if our assets

are comparatively long-life in terms of fuel or charge, we probably have to contend

with mechanical failures and the like.

Secondly, we would expect our assets to be discrete whether they are UAVs, planes,

ships, or submarines, and quite probably homogeneous. By homogeneous we do not

necessarily mean identical, just that they are similar enough that the differences can

*For a review, see [2] and [3, 4, 5, 6, 7] for some particular examples.
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be folded into the randomness present in the system.

Continuous assets can sometimes be better-behaved mathematically, even when reality

is discrete - this is called fluid approximation [9, 10, 11] - but under our circumstances,

if we make the system continuous then it will no longer be dynamic. It would instead

stay in a steady state, depending on the control applied.

Lastly, we would expect to have a significant number of assets: more than one or

two, but probably less than a hundred. An important reason for the use of UAVs as

opposed to traditional manned aircraft is that they are cheaper [12] and can be used

en masse. This is precisely why we seek to find ‘effective’ and not necessarily optimal

approaches to UAV deployment: the numbers involved in our problems may simply

be too large to achieve anything more.

We therefore have to bear in mind the computational complexity of any calculations

our allocation decision processes require. We are unlikely to require allocations to be

made each second - timescales of hours are more likely - but we still need to ensure

we can calculate what decision needs to be made without causing undue delay to the

allocation process.

The number of assets is another reason to favour a discrete model over a continuous

one. Continuous approximations naturally become more accurate as the number of

assets increases, and our numbers are likely small enough that the errors would be

significant - there is no way to search with half a drone. That being said, it is always

possible to deal with rounding by randomisation, so that if the policy dictates that
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we allocate 0.6 of a drone, we allocate a single drone with probability 0.6.

Search and Rescue

Search and rescue operations (hereafter S&R) are often retrofitted onto existing meth-

ods or equipment as a post hoc justification [13], but one common reason to search

large areas of otherwise featureless ocean is to locate boats or ships that are in trou-

ble. Similarly, we might want to search moors or mountains to find lost hikers, or to

search through buildings collapsed by an earthquake to find any survivors.

Each of these cases has its own difficulties, but two peculiarities are generally common

in S&R problems: finite horizons, and inhomogenous assets [14]. In a S&R problem,

we often have a fixed number of targets to find, with the problem being to minimise

the expected time until we have found all of them. This encourages us to be more

myopic in our allocation of assets: if a failure happens after the last target is found, we

have no reason to care. This is an aspect that is easily incorporated into mathematical

models, but requires us to have information about how long we might have to find

our targets.

Similarly, the rewards might be ‘impatient’ [15] because if we delay the targets could

die.

The second aspect is equally important, but more mathematically difficult to incorpo-

rate. S&R operations, being time-limited, are often carried out with whatever assets

are available at that moment. As such, the assets will not necessarily all be the same,
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but might be of several different classes. In any formulation this would increase the

number of possibilities we have to consider, but this complication may be necessary.

Environmental Monitoring

At the other end of the spectrum, we have problems of long-term monitoring. This

is another common use-case for UAVs [16, 17, 18, 19], which are cheap enough to

be worth using for mundane monitoring. A simple example would be monitoring a

forest looking for signs of disease: here the problem is so long-term as to be effectively

infinite-horizon and so considerations of failure are unavoidable. We would want to

maximise the long-term average reward, which could be a statistic such as average

area covered, or length of time between checks.

Similar but slightly different is monitoring wildlife [20]. Even if using static cameras,

they can break and have to be replaced, and we would have limited resources to

replace them. Here each ‘task’ would be one location where we could put a camera,

and we would have fewer assets than tasks. Our objective might be to get as accurate

a count as possible of the population present; we would seek not just to record as

many animals as possible, but also to do so in different locations.

The monitoring of a forest fire [21] would also be long-term, as such fires can burn

for weeks on end. Here we might have a trade-off between risk and reward: the closer

to the front of the fire we send our assets, the more likely they would be to fail. In

addition, we might have multiple failure modes: crashes due to smoke and ashes, and
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ordinary failures caused by running out of fuel.

Project Management

Consider a problem where we have a project to manage, with assets as employees or

contractors, and a manager needing to assign them to projects composed of discrete

tasks. People can only work for so long before needing a break, a rest or taking

leave, but such features are typically ignored in the project management literature

[22]. We might even have multiple stages of failure, with workers getting tired and

their performance degrading long before they require a break.

Mathematically, this is different because there might be significantly more assets than

tasks, with decisions being made on a scale of weeks or months [23]. As such, com-

putational efficiency would be less of a concern; however, we might have much more

uncertainty about completion times and failure times, and several different failure

modes.

1.1.2 Formulating Models of our Problem

We have now given a generic description of our problem, as well as an overview of

the real-world applications whose behaviour we want to capture. As explained in

Section 1.1.1 above, the essence of our problem is the repeated allocation of assets to

a finite number of discrete tasks. In this section, we explore several aspects of turning

this vague description into a concrete model, and illustrate with suitable diagrams.
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This section should be read with an eye on Section 1.1.1: we want to make choices

which reflect the difficulties outlined above.

The Most General Model Necessary

There are many choices we have to make in formulating a model for our problem. We

therefore start off by creating a very general model for our problem. There are five

key aspects:

1. Assets arrive into the system according to some process. This could depend on

the state of the system (i.e. repairs) or be entirely external. The assets might

be hetereogeneous or all the same.

2. We allocate these assets to tasks, of which there are a finite number*. The

tasks are of a fixed number, and remain the same throughout, with neither

impatience nor expiration on completion. We might also choose not to allocate

and to reject the incoming assets from the system entirely, or instead to reserve

arriving assets for future allocation.

3. We gain reward according to some process depending on the number of assets at

the tasks. This might be random or deterministic, and the gain process might

be completely understood or initially unknown. The rewards are considered to

be stationary in the sense that the same allocation will always give the same

*Even if there are an infinite number of tasks, if the system is stationary, which we generally
assume, then as we only have a finite number of assets only a finite number of tasks will ever be
used.
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reward.

4. The assets stay allocated until they fail, and leave the tasks; this might be a true

failure, or a predetermined decision to withdraw them. The assets may leave

the system entirely, or go to a repair process, or one of several repair processes.

5. We seek to maximise the total overall reward: this might be up to some finite

deadline, accrued in a discounted manner, or the infinite-horizon long term

average.

We have deliberately left most of the details unspecified, and will specify them in

subsequent sections. Nevertheless, if we look at Figure 1.1.1, the essential flow of the

problem is clear, and it is the flow that is our main concern.

It is worth dicussing here that there are three slightly different things we want to

be able to do with any model: stochastic modelling, performance evaluation, and

optimisation. Stochastic modelling means simply to formulate the model - to be able

to describe it in a complete and comprehensible fashion, stating the uncertainty and

randomness present.

Performance evaluation means to be able to understand the dynamics, either analyt-

ically or through simulation. It is perfectly possible to formulate a sensible model

that we can neither solve analytically nor simulate on a computer, usually due to

the model’s size. For our problem, understanding the dynamics at its simplest would

mean applying a very simple policy, and seeking to answer questions such as ‘How

many assets are in the system on average?’ or ‘What’s the lowest number of assets



CHAPTER 1. INTRODUCTION 12

Figure 1.1.1: Flowchart detailing the generic dynamics of our problem. Inflow and
Outflow refer to the assets, which may be allowed to enter or leave the system. Solid
lines indicate flow of assets, whilst dotted line indicates rewards.

we ever get at task 2?’.

The third and most challenging aspect is optimisation: to specifically design policies

that work better than others. To be able to do this we need to be able to get some

grasp on the dynamics, but also to have an idea of what we want to achieve. In this

section we focus on the first aspect, while Section 1.2.1 looks mainly at the second; it

is worth bearing in mind that our ultimate goal is the third aspect, the optimisation

of the real-world systems concerned.

Closed or Open?

The first detail we tackle is a combination of the first and fourth parts given above: is

the system closed, and so the assets cycle round, or is it open, with assets arriving to
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and departing from the system. There are two different questions we need to consider:

which is more realistic, and which is more tractable.

To answer the first question: it depends. More usefully, it depends on the application

but closed models will usually be more accurate. Particularly in the all-important

naval search application we would expect to be handed a box of assets and told to

get on with it, and so we would be working under a closed model.

Looking at the other applications listed in Section 1.1.1, search and rescue and envi-

ronmental monitoring lean towards closed - a fixed set of assets - while project man-

agement would probably be open, with employees cycling in and out of the system.

That being said, there are always choices in the modelling: with project management,

we could always treat job roles as our assets, and replacing an employee by another

employee with the same job as a repair, giving a closed system.

In terms of tractability, an open system tends to give an infinite state space. Even

though in practice we are not going to have models where the number of assets

increases without bound, we must still consider the possibility if we choose to model a

system as open. This is counterintuitively often nicer from a mathematical standpoint,

as we don’t have to consider edge effects arising from an imposed upper bound.

We illustrate the difference between a closed and an open system in Figure 1.1.2;

when looking at the open system remember that incoming assets can be rejected, so

the inflow is more a flow of opportunities to get assets than of assets which we must

receive.
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Figure 1.1.2: Systems with open (top) and closed (bottom) dynamics.
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Dependent or Independent?

For our purposes, dependent and independent are defined as follows: a reward function

on variables x1, . . . , xn is independent if it can be written in the form
∑n

i=1 gi(xi), and

is dependent otherwise. Elsewhere in the literature this form may be called additive;

the effect is the same.

Why is this difference significant? As outlined in Section 1.1.1, the problem that

started this off had communications with search as a key part of the difficulty of

the problem. This is an inherently dependent structure: getting reward depends on

searching and communicating at the same time.

The difference becomes important later on when we introduce the restless bandit

framework in Section 1.2.2. This is only applicable if we can disentangle the different

tasks from each other, which is only possible if the rewards are independent.

For the dependent case, we have no such framework and so the problem will prove

much harder. This will prove a theme throughout this thesis: if there are two options,

the more realistic one is inevitably harder.

Markovian, Phased, or General?

We discuss Markov chains later, in Section 1.2.1, but for now the key word is memo-

ryless: we don’t need to keep track of how long things have been at a task.
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This is naturally helpful: the state of the system is then entirely summarised by

the locations of the assets, with no other information such as ages required. Unless

we are dealing with radioactive decay very few processes in real life are actually

Markovian, but the mathematical helpfulness is so great that we will always start

with this assumption.

Slightly better are Erlang models. Here, an asset’s dynamics are described by a

number of phases, each individually Markovian with the same rate. Now all we need

to keep track of is where each asset is, and which stage it is currently in. This is more

accurate, and good for modelling dynamics that genuinely do have multiple phases,

but a little less tractable.

A fully general model allows us to pick arbitrary distributions for how long events

take to happen. The consequences of this are obvious: we can accurately represent

any behaviour, but have to account for any behaviour. This lends itself to ad-hoc

approaches tuned to the distributions in question.

We illustrate the different dynamics of a task in Figure 1.1.3.
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λ

λ λ λ

𝑇~𝑓(𝑡)

Figure 1.1.3: Dynamics for a single asset going through a single task with Markovian
(top), Erlang (middle), or general (bottom) dynamics. The λ indicates that flow
happens at a rate λ, so with exponential distribution. The expression T ∼ f(t)
means that the time T for a failure happens according to some pdf f .

1.2 Mathematical Review

Now that we have an idea of what kinds of models we want to create, we can describe

the mathematical background necessary for these models. This is mostly standard

material, and so we are mainly concerned with laying out our notation and with a

few unusual complexities to do with computation and impulsive controls. We start by

explaining Markov Decision Processes and then move onto bandit problems, including

restless bandits.

It is worth stressing that these techniques are in the main well established* and very

general. Dynamic programming and the Bellman equation are a generic and powerful

approach that can be successfully applied in many fields, but the application is very

*Except for the detail on impulsive controls.
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often the hard part.

1.2.1 Markov Decision Problems

The framework for most of our mathematical formulations will be that of a Markov

Decision Problem (MDP). Throughout this section, we will largely be following [24],

which is a well-written textbook covering MDPs. These definitions are standard, but

the notation used does vary significantly between works; the notation chosen here is

set up to be convenient for the applications we use it for.

We have chosen the framework of MDPs more for their tractability than for their

realism. There is in mathematical modelling work an eternal tension between reality

and tractability, where the real-world models can’t have anything useful done with

them, and the solvable models don’t apply to anything that actually exists. MDPs

are more over to the ‘tractability’ side of the equation, and it seemed sensible to start

with models we can work with and then to try to add complications on from there.

We should briefly mention measure theory. As our problems are in discrete spaces

and derived from real-world problems, everything necessarily is well-behaved. We

therefore will not discuss measure theory after this.
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Markov Chains

We start with the ‘M’ in MDP. We write Markov chains as follows: we have a system

of some sort, which has a known state x in a statespace X . This evolves in simple

discrete time t = 0, 1, . . ., possibly with a maximum time, possibly in infinite time.

At each timestep, the next state is determined from the current one according to a

(possibly infinite) matrix P (t), with:

p(x(t+ 1) = y|x(t) = x) = P (t)[x, y] (1.2.1)

The system evolves in discrete jumps, going from one state to another, inside the set

X .

For a continuous-time Markov Chain (CTMC) [24, Chapter 11], with time t ∈ [0,∞),

we instead have the transition rate matrix Q, with Q[x, y] the rate at which we

transition from state x to state y. The length of time before a transition when the

system is in state x is exponentially-distributed with rate parameter −Q[x, x]; the

probability that we transition to state y is Q[x, y]/(−Q[x, x]).

Now for some definitions. These are standard, but worth listing, as we will use them

throughout this thesis.

Definition: If P (t) does not depend on t, we say that the Markov chain is stationary.

Definition: If X is finite, then we say the corresponding Markov chain is finite.
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Otherwise the Markov chain is infinite.

Definition: A Markov chain is irreducible if we can go from any state to any other

state with non-zero probability, given enough time: ∀x, y ∈ X ,∃t such that p(x(t) =

y|x(0) = x) > 0.

Definition: A state is aperiodic if the greatest common divisor of all number of steps

which it can take to return to the state is 1:

g.c.d.({t ∈ N such that p(x(t) = x|x(0) = x}) = 1 (1.2.2)

Definition: A Markov chain is aperiodic if all its states are aperiodic.

Definition: A state x is transient if, starting from x, there is a non-zero probability

that we never return to x: p(x(t) 6= x ∀ t ∈ N|x(0) = x) > 0.

Definition: A state is recurrent if it is not transient.

Definition: A Markov chain is recurrent if all its states are recurrent.

Definition: A state x is positive recurrent if starting from x, the expected time to

return to that state is finite: defining Tx = min(t ∈ N>0|x(t) = x) to be the first

return time, then this is equivalent to E[Tx] <∞.

Definition: A Markov chain is positive recurrent if all its states are positive recurrent.

Definition: A Markov chain which is stationary, irreducible, and positive recurrent
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is called ergodic.

Note that while states can be recurrent but not positive recurrent - this is called being

null recurrent - for stationary Markov chains this can only happen if they are infinite,

and so we will not have to consider this difficulty, as our chains will be both stationary

and finite.

Also, both aperiodicity and recurrence are class properties: if a Markov chain is

irreducible, than any state is aperiodic or recurrent iff all states are.

Uniformisation

If the transition rates Q[x, y] of a CTMC are bounded above by some value B, we

can transform a CTMC with transition-rate matrix Q into an equivalent discrete-

time model [24, Chapter 11]. What we do is make the system always transition at a

constant rate B, but add a new ‘dummy’ transition that does not change the state;

it occurs with probability (B +Q[x, x])/B, remembering that Q[x, x] < 0 always.

The resultant transition matrix then has P [x, y] = Q[x, y]/B for x 6= y, and P [x, x] =

(B + Q[x, x])/B. The sum of each row is then 1, and all of the elements are non-

negative, so that this is a proper stochastic matrix. This procedure is called uniformi-

sation, because it makes all of the transition rates the same - uniform.

If a Markov chain is finite, then the transition rates are bounded above as long as

none of them are infinite, and so we can always uniformise such a chain. This may be
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inefficient if there is a large gap between the largest transition rate and the majority

of them, but in practice we have greater concerns.

Finding the Stationary Distribution

Suppose we have a finite-statespace discrete-time Markov chain, or equivalently a

finite uniformised CTMC. If it is ergodic, then the stationary distribution π exists

and is given by [24, Appendix A, section 4]:

πTP = π (1.2.3)

normalised so that the components of π sum to 1.

Suppose we have an ergodic Markov chain. How do we actually calculate π on a

computer? While the equation πTP = π seems simple, in practice the first difficulty

is mapping X to the natural numbers so that a computer can work with it. Sometimes

the statespace may in fact be a set {1, 2, . . . , n} but more often we have to be clever.

The numbering system does not matter: the results are the same regardless of the

ordering of the states, but we still need to produce an enumeration of the states; see

Appendix B.4 for how we do this in practice.

Additionally the system given in Equation (1.2.3) is degenerate. The easiest way to

show this is to rearrange the system to πT (P − I) = 0, by moving the column vector

π to the left-hand-side. The sum of each row of P is 1 by definition, but we then
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subtract one off from each row, from the identity matrix I, so that each row sums to

zero. As such, if we take a vector 1 = (1, . . . , 1), then 1T (P − I) = 0, so the matrix

P − I has at least one left eigenvalue of value 0, so the system is degenerate.

This degeneracy makes sense: we have to normalise the solution π to sum to one to

get a unique answer. There are two ways to deal with this. The first is to add another

row to P − I, with the row entirely composed of ones, and replace the zero vector on

the LHS by a vector (0, 0, . . . , 0, 1) of length |X | + 1 where all elements except the

last are equal to zero. This is more than a little ugly, and means that the matrix we

are dealing with is no longer square.

Alternatively, we can take advantage of the degeneracy, combined with the fact that

we are working on a computer, which does not have infinite precision. Consider the

system π(P − I) = 0. This can be equivalently written π(P − I) = 0π where the 0

on the LHS is a scalar not a vector. This is an eigenvalue problem, where we need to

find the left eigenvector of the matrix P − I corresponding to the eigenvalue 0.

We can now exploit the computer’s lack of precision: there are standard routines*

for finding the eigenvalue of least absolute magnitude, and finding the corresponding

eigenvector. So all we have to do is take that eigenvector, normalise it to sum to 1,

and we have π.

To summarise how we calculate π:

1. Form the matrix P − I.

*My code is written entirely in R, and I use the RSpectra [25] package.
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2. For that matrix, find the left eigenvector corresponding to the eigenvalue of least

absolute magnitude.

3. Normalise that eigenvector so that it sums to 1.

For the details of how we implement this, see Appendix B.2.

In general, for a finite Markov chain whose statespace has size |X |, the runtime to find

its stationary distribution π, assuming it exists, is of O(|X |3). We are more concerned

with the entirely implementation-dependent real-world time taken to actually find π.

It is therefore incumbent upon us to formulate the model so as to keep X small, as

that is what the runtime depends on: if |X | is large then the real-world runtime can

be prohibitive.

Decision Processes & Policies

We have explained the ‘Markov’ part; now for ‘Decision Problem’. A Markov Decision

Problem (MDP) is a Markov chain where we can control the transition probabilities

to some degree, and we get some kind of reward, depending on the state and control

applied. We assume the Markov chain is ergodic, stationary*, and finite, with notation

as laid out above.

Here is what makes a MDP: for each state x, there is a space of possible actions A(x);

at each discrete timestep t = 0, 1, . . . we choose a single action a(t) ∈ A(x(t)). This

gives transition probabilities p(x(t+ 1) = y|x(t) = x) = P (x, y|a(t)).

*Under a stationary policy, a term to be defined in a moment.
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We focus for now on stationary deterministic policies: stationary, in that they do not

depend upon time, and deterministic, so they always make the same decision in the

same state. The first condition is entirely reasonable as we have already said that

the chain is stationary, and make the rewards time-invariant as well. If everything

about the system remains the same, our decision making process - but not the action

determined by our decision making process - should remain the same.

The second condition is not automatically true, but our problem is finite so that

there is always a best decision, and so any randomness in the decision making process

should arise from our ignorance of which is the best decision to make. There might

also be cases where two possible decisions are equally good, but in that case we can

just pick one, and always make the same decision for that set of circumstances.

Under these constraints we can specify our actions by a policy u, which is a map

u : X → A(X ). These constraints might seem harsh, but if an optimal (in a sense we

define in a moment) policy exists for a given MDP whose associated Markov chain is

stationary*, then there is also one which is stationary and deterministic [24, Chapter

5].

Now for rewards: if we take an action a in state x, we get a reward R(x, a). We assume

that the rewards are deterministic, because otherwise we can just use the expected

reward, and that they are stationary. We also assume that the reward function is not

exceptionally complex to calculate, so we do not need to worry about being efficient

in our usage of evaluations of it.

*As long as a stationary policy is applied, obviously.
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A policy is called optimal if it maximises the total expected reward gained. This is a

natural definition, but maximises over what? There are three main possibilities:

1. The finite-horizon reward [24, Chapter 4]: E[
∑t=T

t=0 R(x(t), a(t)] for some T ∈ N.

2. The discounted infinite-horizon reward [24, Chapter 6]: E[
∑∞

t=0 β
tR(x(t), a(t))]

for some discount rate β ∈ (0, 1).

3. The infinite-horizon time-averaged reward [24, Chapter 5]:

lim inf
H→∞

1

H
E

[
H∑
t=0

R(x(t), a(t))

]
(1.2.4)

All of these expectations are taken with respect to a given policy u, so that when in

a state x we take the action a(t) = u(x(t)), which is well defined because we require

that u is both stationary and deterministic.

We are going to use the last of these, mainly because if the stationary distribution π

exists, then there is a much neater expression for the average reward. Define πu as the

stationary distribution of the Markov chain under the policy u. Then the expected

long-term average reward is simply:

∑
x∈X

πu(x)R(x, u(x)) (1.2.5)

This is no harder to calculate* than πu, and therefore can be calculated in O(|X |3)

*Remember that we assumed that R(x, a) is never severely difficult to evaluate.
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time, which will be handy later for evaluating policies.

Given this, we say a policy u is optimal if it maximises the reward gained, over the

set of all possible policies U .

Dynamic Programming

We can evaluate the reward gained by policies, and we now know what it means for a

policy to be optimal, but can we actually find an optimal policy? The first question

is: does an optimal policy exist? One does for the problems we will consider because

the problems are finite in both X and A(x) and so there are only a finite number

of possible policies*. Given this we can find an optimal policy, and can do so both

deterministically and in finite time [24, section 5.4]. In this section we consider only

the infinite-horizon time-averaged reward, but the same approach works for discounted

infinite-horizon.

We start by reducing the problem to one we can solve, by shrinking the time-horizon.

If we only had one timestep to worry about, then the optimal policy would be to pick

the a that maximises R(x, a). If we had two timesteps, we would want to maximise

R(x, a) +
∑

y∈X P (x, y|a)R(y, a(y)): the reward we get at this timestep, plus the

expected reward we get at the next timestep. We can continue this onwards until

infinity, getting a linear algebra problem.

The resultant set of equations is called the Bellman equation. For each state x ∈ X ,

*Because as mentioned above there is guaranteed to be an optimal policy which is both stationary
and deterministic, for the infinite-horizon average reward case [24, Chapter 5].
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it is as follows:

V + φ(x) = max
a∈A(x)

(R(x, a) +
∑
y∈X

P (x, y|a)φ(y)) (1.2.6)

Here V is the long-term average reward, and φ(x) is called the relative value function:

φ(x)− φ(y) expresses how much we would prefer to be in state x than to be in state

y. As there is one of these equations for each state, the problem is underdetermined.

We have |X | equations, and |X |+ 1 parameters: the φ(x) and V . Therefore we have

to pick some reference state x0 and specify φ(x0) arbitrarily.

The remarkable fact is, that if we can find some a(x) and φ(x) such that the max on

the RHS of Equation (1.2.6) is attained by a(x) then the resultant policy is optimal

[24, section 5.5]. The key conditions that we need for this are that everything is

stationary and finite, and that the rewards are bounded in absolute value.

Policy Improvement

How do we actually find an optimal policy? The answer is to iterate [24, section

6.4], much as we did to generate the Bellman equation Equation (1.2.6). We pro-

ceed as follows: first pick some policy u0 and relative value function φ0, which are

largely arbitrary, but for computational reasons should induce a recurrent chain and

be of reasonable absolute magnitude respectively. We then do the following, iterating

discretely over n = 0, 1, 2, . . .:
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1. For each x ∈ X , set un+1(x) = arg maxa∈A(x)(R(x, a) +
∑

y∈X P (x, y|a)φn(y)).

2. If un+1 ≡ un so that they prescribe the same actions for all states, stop and

return un+1.

3. Form the system of linear equations given by V + φn+1(x) = (R(x, un+1(x)) +∑
y∈X P (x, y|un+1(x))φn+1(y) for each x ∈ X and φn+1(x0) = 0.

4. Solve this system of linear equations for V and φn+1.

5. Increment n by 1, and return to step 1.

Notably, each iteration of the algorithm, known as policy improvement* results in

the average reward V increasing. Additionally policy improvement is guaranteed to

terminate in at most 2|X | iterations [26], and in practice it takes much fewer; for the

problems we consider generally less than 10, despite |X | ranging from 100 to 1000.

Because each iteration is guaranteed to increase V , we can run a single step or a small

number of steps of policy improvement on existing policies, and be certain that we

are getting a better one. This might seem obvious, but it is actually quite powerful:

we can consider the problem, come up with a policy that is for various reasons going

to perform quite well, and then run policy improvement on it for just one step.

The better the policy we start with, the better the results will be in practice, and

this can be much quicker than running policy improvement to completion, which, as

mentioned above, can take extremely long. Additionally, the first step usually gives

*Some descriptions call it policy iteration.
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the greatest improvement in practice.

One last point: for computational reasons, it is advisable to set a hard cap on how

large the number of iterations n can be, and to simply terminate and return un if

we reach this. We do so, generally putting the cap around 50, which is high enough

that it is almost never reached. For the details of how we have implemented this, see

Appendix B.1.

Impulse Controls

In some circumstances controls may occur instantaneously with regard to the process

[27]. That is, when we apply a control a instead of altering the transition probabilities

p(x, y|a), we jump deterministically to a new state x → x + a. The control a = 0

therefore corresponds to not applying a control at that instant. This might seem

entirely contrary to the nature of MDPs, but since the transitions between states are

instant in a standard Markov chain, this can still be incorporated within the existing

framework.

Thinking about what happens when we apply an ordinary control, we alter two things:

the reward rate R(x, a) and the transition probabilities p(x, y|a). When we apply an

instantaneous control, the reward rate afterwards is R(x+ a, a), while the transition

rates become p(x + a, y|a). Therefore, we can treat impulsive controls exactly like

regular controls, by changing the Bellman equation Equation (1.2.6) to the following:
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V + φ(x) = max
a∈A(x)

(R(x+ a, a) +
∑
y∈X

P (x+ a, y|a)φ(y)) (1.2.7)

This lets us incorporate sudden-change controls in the standard MDP framework,

which will come in useful in later chapters. We do have to be a bit careful when

programming this up: we need to make sure that we never want to apply two controls,

one immediately after the other.

What we need to do is make sure that for any state x, we apply a control a(x) such

that the control applied in the new state a(x+ a) = 0; we need this to avoid visiting

states but spending zero time there, which causes some interesting numerical issues.

This can be done by always taking the maximal optimal control: the optimal control

that moves as many assets as possible.

How does this differ from regular controls? The essence is: regular controls alter the

transition probabilities p(x, y|a), while impulse controls alter the state x → x + a.

Regular controls are more appropriate for circumstances where we are directing the

flow of the system, whereas impulse controls are better when we impose changes, and

let the system evolve on its own between applications of controls.

We can apply policy improvement to Equation (1.2.7) just as we could to Equa-

tion (1.2.6): all that changes is the system of linear equations. The resultant system

is only slightly different, and can be solved in the same way.
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1.2.2 Multi-Armed Bandits

Now that we have the generic notation for Markov chains and MDPs in place, we

can now describe a specific kind of decision problem, known as a multi-armed bandit

problem. We first talk about the standard case, including how to formulate an optimal

policy, before going on to describe restless bandits, which are much more applicable

to our problems.

The Multi-Armed Bandit

A multi-armed bandit [28] is a specific kind of decision problem. We have K ‘arms’,

each with their own possibly unobservable state. At each discrete timestep, we pull

exactly one of the arms, and get reward from it. The arm we pull has its state change;

the other arms have their states remain as they were.

For the mathematics I can do no better than to quote from the paper [29] responsible

for the key ideas of multi-armed bandits:

“There are K arms which may be pulled repeatedly in any order. Each pull takes

one time unit and only one arm may be pulled at a time. A pull may result in

either a success or a failure. The sequence of successes and failures which result

from pulling arm i forms a Bernoulli process with an unknown success probability θi,

(i = 1, 2, . . . , K). A successful pull on any arm at time t yields a reward βt(0 < β < 1),

whilst an unsuccessful pull yields a zero reward. . . . The problem is to decide which
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arm to pull next at each stage so as to maximize the total expected reward from an

infinite sequence of pulls.”*

In this formulation, a classical multi-armed bandit with 0/1 rewards, each arm’s

internal state is given by the number of failures and successes accrued; rewards are

discounted at a rate β, and are Bernouilli with a fixed probability for each arm. This

is called a binary bandit, and is in many ways the simplest possible form.

This can be naturally extended by making the internal states of each arm more

complicated. We denote arm i’s state by xi, and the total state of the system by

X = (x1, . . . , xK). There are only two constraints on the evolution of the states: the

states must evolve in time in a Markovian manner, and if an arm is not pulled, its

state remains the same. We write a(t) = 1, . . . , n to indicate which arm we activate

at time t.

Similarly, we can have more general reward distributions: with each arm i is asso-

ciated a (possibly randomised) reward function gi(xi), and at time t we get reward

ga(t)(xa(t)(t)): we get no reward from non-activated arms. Replacing the Bernoulli

distributions with others, possibly with more parameters is simple. Alternatively, we

can make the rewards depend on the state of the arm, possibly in addition to some

parameters. We would generally know the state of each arm, but initially be unsure

of some of the parameters.

The control u must remain in the same simple form for this to be considered a bandit

*The notation has been altered slightly to fit with ours.
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problem: at each stage we pull precisely one arm.

Bandit problems originated in the study of allocation problems; the prototypical such

problem is that of a clinical trial [28, 30], where we can give patients either a new treat-

ment or an old one. These correspond to having two arms, and we wish to maximise

the number of patients treated successfully. This contrasts with standard trial-design

procedures, which specify the allocations beforehand, and seek an unbiased estimator

of the effect of the treatment.

Gittins Indices

The surprising quality of the bandit problem formulation given above is that it admits

a simply-expressible optimal policy. This is an index policy: at each timestep, for each

arm i we calculate an index G(i, xi) and then choose to activate the arm with the

highest index, recalculating after each pull. It is easiest to give the formulation first,

and then to explain what it means. For arm i, currently in state xi, the Gittins index

is:

G(i, xi) = sup
τ∈N

E[
∑τ−1

t=0 β
tgi(xi(t))]

E[
∑τ−1

t=0 β
t]

(1.2.8)

The key part here is τ . On top, we have the expected total discounted reward gained

if we play this arm for τ steps, starting in state x. On the bottom, we essentially have

the expected total discounted time if we play this arm for τ steps. The Gittins index
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is asking: for state i, how well can we possibly do in terms of discounted expected

reward per discounted expected time? We compare the different arms by how well

they can possibly do.

It can be proven [29] that if, at each step, we evaluate G(i, xi) for each arm, and then

pick the arm with highest index, we get the maximum expected reward; for more

detail see Gittins’ paper [29].

How does this relate to our problem? The answer is, not particularly well; there is no

real way to incorporate both failure and replenishment into such a model. Therefore,

we need to add an additional complication, by allowing the states of inactive arms to

evolve as well.

Restless Bandits

The assumption in the above section that we wish to break is that the states of

non-activated arms do not evolve, so as to be able to incorporate failure with replen-

ishment. If we allow all of the arms’ states to evolve at each timestep and can pull

multiple arms at the same timestep, keeping everything else the same, the resultant

problem is called a restless bandit [31]. The dynamics evolve differently depending on

whether or not we activate a given arm. Our control a is now a vector of zeroes and

ones of length K, where ai = 1 if we activate arm i, and ai = 0 if we do not. There is

also the constraint that
∑K

i=1 ai ≤ M for some integer M < K, so that we can only

activate M arms at each timestep.



CHAPTER 1. INTRODUCTION 36

As all of the arms are evolving even if not activated, it is reasonable for reward to

be gained from all arms at each timestep, probably depending on both the control

applied and the arms’ states. We write the reward gained at each step as R(x, a) =∑K
i=1 g(xi, ai), so that rewards are still gained independently from each arm.

This is now more obviously akin to our problem as outlined in Section 1.1.1. If

we let the ‘arms’ be the tasks, then we activate an arm by sending an asset to it.

As long as the reward is gained independently from each task, we can see this as a

restless bandit problem. Of course this would require a constant number of assets

to become deployable per timestep, but details such as that can be folded into the

implementation, and will be in Chapter 2.

Whittle Indices

In a paper [31], Peter Whittle generalised the Gittins index for restless bandits. The

approach was highly innovative, and uses several tricks that we later apply in a very

similar context, so it is worth going through the derivation.

First, some notation. Each arm i still has its state xi. This evolves according to a

transition-probability matrix Pi0 if not activated and Pi1 if activated, so that we can

write that arm i always evolves by the matrix Piai . We want to maximise the average

reward v =
∑
vi over an infinite horizon. Define φ(xi) as being the transient value of

starting arm i in state xi. We can write the reward function for arm i as gi(xi, ai).

If we only had arm i to worry about, the Bellman equation would be:
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vi + φ(xi) = max
ai=0,1

(gi(xi, ai) +
∑
xj

Piai[xi, y]φ(xj)) (1.2.9)

What about the constraint that
∑
ai ≤M? We can temporarily relax this constraint,

and instead only expect it to hold in expectation, so that E[
∑
ai] ≤ M . In fact, the

whole point of this limitation is that activating an arm is better than not doing so, so

we put the constraint as E[
∑
ai] = M : we activate exactly M arms in expectation.

In order to push us towards not activating an arm, suppose we get a charge* Wi

for activating arm i. The formulation is now a Lagrangian relaxation of the original

problem, with Wi serving the role of the Lagrange multiplier:

vi + φ(xi) = max
ai=0,1

(gi(xi, ai)−Wiai +
∑
y

Piai [xi, y]φ(xj)) (1.2.10)

Now define the index Wi(xi) to be the value of Wi that makes us exactly indifferent

in Equation (1.2.10) to the choice between ai = 0 and ai = 1. The Whittle index

policy for this problem is to at each moment pick the M arms with the highest such

indices: the arms that we are willing to pay the most to activate.

It’s worth mentioning that, as opposed to the Gittins index, this definition is not a

closed-form expression. Any application must therefore find one for the particular

circumstances.

For this approach to yield a sensible policy, we need an additional condition called

*The original paper has a subsidy for passivity. This form fits better with our problems.
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indexability [32, 33]. In plain English, it requires that increasing the charge for acti-

vating an arm should only decrease the number of states we activate the arm for.

Definition: Let Di(Wi) be the set of values of xi for which we would not activate the

arm in the optimal policy, given a charge Wi is applied. We say this arm is indexable

if, as we increase Wi from −∞ to +∞, the space Di(Wi) decreases monotonically

from Xi to ∅.

This condition is obviously reasonable, but not necessarily the case*, and has to be

proven for any restless bandit formulation that we choose to use.

This set-up is useful for two reasons. First, if M = 1 and the non-activated arms do

not evolve, then the Whittle index policy reduces to the Gittins index policy. Second,

there are reasons [31, 33] to expect the Whittle index policy to be asymptotically

optimal, as n,M →∞ with n/M in fixed proportion.

1.3 Related Work

Now that we have a proper handle on the background of the models we will use, we

will look at some mathematical problems studied which are adjacent to ours. In this

section, we describe several of them, how they differ from ours, and why and how our

work is new. While Section 1.1.1 looked more at the practical problems our work was

inspired by, this section is about looking at papers whose approaches or techniques

*See [31], Appendix.
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are similar to ours.

MDPs are ubiquitous, and each of the subsections herein could be a book of itself;

we therefore focus on literature where the problems considered are similar to ours,

especially in the ‘allocation’ and ‘failure’ aspects, aiming to contextualise our work.

We particularly want to look at the approaches used more than the problems studied,

and hence how our work is different and new.

1.3.1 Classes of Allocation Problems

We start with a look at allocation problems. An allocation problem [34] is a very

general term, but here we mean the following: we have assets, we allocate them to

tasks and we get some reward based on the allocation. The assets are sometimes called

resources or machines, while the tasks may be known as jobs or projects. Contrary to

our problems, there is neither dynamism nor failure. There are many generic classes

of allocation problems that have more than a passing resemblance to ours; we list a

few:

� Factory location [35, 36] : we have a number of possible locations, and have to

allocate a smaller number of factories to them, to maximise some reward, often

related to the coverage of the area.

� Job scheduling [37, 38, 39]: we have a number of jobs to assign to a set of

machines, and usually want to complete all tasks as fast as possible.
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� Multiple knapsack [40, 41, 42]: we have a number of objects to fit into several

containers, constrained by size, and want to fit in the maximum value possible.

We now go through a few specific fields in more detail, aiming to look for lessons we

can learn about how we should proceed; this will help us answer the questions raised

in Section 1.1.2 above.

1.3.2 Queueing Theory

If we restrict our attention to a single task, with allocations and failures, what we

have is mathematically a queue. Queueing theory is a surprisingly old field, origi-

nating in the study of telephone lines in the 1920s [43], with much work still done

on telecommunications [44, 45, 46, 47]. Given the variety of circumstances in which

queues occur, there are thousands of published papers using or studying queueing

theory. As mentioned above, we will look at only a few papers, and will primarily be

interested in how they compare to what we wish to do.

Generically with queues, we have either no control or limited control of arrivals and

services (the equivalent of failures), and seek either to analytically find some measure

of performance such as average waiting time, or to optimise the same. The key point

is that finding the relevant value is often as hard as optimising it [48]. Queueing

systems also exist [49, 50, 51, 52]: a system of queues, linked in some way. Often

departures from one queue form the arrivals to another; we later consider this sort

of multi-phase structure (as mentioned in Section 1.1.2 above), so the concept of a
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queueing system is worth bearing in mind.

We should clarify that in queueing theory, the term ‘multi-phase’ refer to the dynamics

of a single queue, while several parallel queues are usually called a queueing system.

One paper typical of the field [53] considers a single M/G/1 queue: arrivals are

Markovian (so form a Poisson process) and service times have a General distribution:

any continuous-time strictly positive random distribution is acceptable. The ‘1’ means

that there is only one server. Unlike much of the queueing theory literature, this paper

does consider the control of the system. The single server can fail, and is then repaired,

and can go back to service.

The control considered is quite limited*. They set a threshold N for the size of the

queue. If the queue ever empties, the server goes on holiday for some random time.

When they return, they immediately take another vacation if there are fewer than N

in the queue. What the authors assume is that the expected cost is convex in terms

of N ; this means the cost can be calculated for each N in term, and once the cost is

larger for N + 1 than for N , that value of N must be optimal.

Even though this paper does consider the control of the queue, most of the paper is

concerned with the dynamics of the system. In addition, they only consider a single

queue, and the control scheme is oddly limited. An older but similar paper is [55],

which does not allow for random failures of the server.

To look at a recent paper about queueing systems, we will take [56]. This is a review

*But apparently quite common in the literature. See [54] for another example.
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paper, and so covers typical techniques used to models queues of airplanes at airports.

A key aspect is that the queues are generally non-stationary - planes do not always

arrive at the same rate. This is self-evidently correct, but messes with standard

techniques to an unhelpful degree.

Many airports have more than one runway, and so a single airport is often represented

as a queueing system, not a single queue. Another aspect of the modelling is the

creation of discrete time - the system is modelled in discrete ‘slots of 15 minutes or an

hour. This paper also discusses the usual modelling of arrivals as a Poisson process,

or using more general distributions - this is what we talked about in our context in

Section 1.1.2 above.

The key takeaway from this section is the importance of modelling: the literature

tends to stick to more tractable models, even at the expense of realism, as this allows

mathematical modelling to be done. We will do the same, but our problems are more

general than standard queues in both the way in which we get rewards, and in the

linkage of failure and replenishment.

1.3.3 Multi-Agent Models

If we only had one asset, allocating it would be fairly simple, and the dynamics of

failure and replenishment would be even simpler: it is either working or it is not. The

presence of multiple assets is therefore necessary for an interesting problem. What

has been looked at often in the literature are multi-agent models, where several agents



CHAPTER 1. INTRODUCTION 43

(assets) work to achieve some goal. We will now review a few of the key studies here,

in the context of multiple agent patrol, search and surveillance, which is particularly

relevant to our naval search setting. [2] is a good overview of multiple-UAV search

and surveillance problems; [57] is also worth a look more generally.

A good general look at multi-agent patrol problems is [58], whose relevance is obvious:

searching and patrolling are extremely closely linked. ‘Patrolling problems’ is quite a

general heading, and the techniques which are reviewed are just as varied. This paper

lists “heuristic agents, negotiation mechanisms, reinforcement learning techniques,

techniques based on graph theory and others.” as some of the approaches applied.

Although the general model of a patrolling problem is nearly always a graph, which

the patrollers must traverse, there is much variation in the objective. This could be

to minimise how long it is on average between visits to each node, or to minimise the

maximum time any node goes between visits, amongst others.

Another more recent paper looking at a multi-agent patrolling is [59]. This paper

is particularly concerned with how to optimise patrolling when the environment is

changing with time - when we have nonstationarity. They nevertheless stick to a

Markovian formulation, allowing the underlying graph to have its edges evolve in a

Markovian manner.

Their approach is largely heuristic, but building on work from the stationary case,

and their policies are evaluated through simulation. These are two aspects common in

more complicated (non-stationary, heterogeneous, non-Markovian) cases for this type
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of problem. We use both aspects in Chapter 3, when we get to dependent reward

structures and a non-Markovian model, because standard methods break down and

no longer work.

There are many more papers we have not the space to describe; [60, 61, 62, 63] are

a good selection of the papers using the standard techniques in the field, while [2]

again helpfully summarises current work. Where our work differs is in the detailed

consideration of failure-with-replenishment, and in the specific heuristics used.

1.3.4 Dynamics of Failure

Similar to the previous section, much work has looked at the problem of analysing a

complex system, and determining the chances of failures occuring. This is especially

common in telecommunications networks [43, Chapter 7], [64, 65], where what matters

is not ‘do the lines work?’ but ‘does the system work?’. These studies tend to be

more concerned with predicting and diagnosing failure than attempting to optimise

matters.

That being said, there is a lot of money in accurately diagnosing and minimising

failure, so it is hardly surprising how much it has been studied, even for some quite

esoteric yet important systems [66, 67].

A helpful review paper is [68], which looks at the optimisation of maintenance, not in

the practical sense of doing individual operations well, but in the operational research

sense of when we should perform maintenance acts. They begin by discussing the
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evident economic importance and practical inevitability of maintenance policies, and

hence the need to do it as well as possible. They mention how controlling maintenance

costs is common, but ensuring that this does not come at other costs (delays, failures)

is much more complex.

The main part of the paper is concerned with classiyfing the literature, noting that

there is a clear divide between the academic research on the topic and the actual cases

of industrial usage of such work.

A more recent paper with particular relevance is [69]. This is about recovery from

failures in an airline setting, and has similar elements of dynamicism and failure to

our problem. The failures here are anything that cause a flight to be delayed or

cancelled, and the dynamic aspect is provided by the relentless passage of time: a

flight is cancelled, but we still need to ensure that subsequent flights proceed with a

minimum of disruption.

The approach here is unusual, using simulation to model the effects of possible deci-

sions, and then picking based on what does best in the simulations. For the simula-

tions, they have to bow to the reality that high-fidelity modelling of the whole system

- all planes and airports in a given region - is simply impractical. The clever trick is

in the title “Multi-fidelity Modelling’. This is of course more complicated than those

three words, but the essential idea is to concentrate on the important bits.

There is a lesson here: you can’t model everything, so pick and choose the significant

features. The specific features that distinguish our work are the coupling of failure
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and replenishments and the focus on optimising the rewards gained, not merely the

maintenance procedures.

1.3.5 Bandit Problems

As mentioned in 1.2.2, bandit problems originated in the design of medical trials

[28, 29, 30], but have been used for much else [70, 71, 72, 73, 74]. While we mainly

look at restless bandits, it is worth mentioning that bandit problems have often been

studied in a military context; see [75, 76, 77] or [78]. We talk more about bandit

problems in Section 2.1.1.

Quite a few restless bandit models are adjacent to ours [79, 80], at least for the

Markovian formulations of our problems, and we use a restless bandit model for one

version of our problem in the next chapter. The following paper [81] is a good recent

example, and quite interesting on its own merits. This paper is concerned with the

theoretical analysis, and to quote its abstract:

“we derive an analytical expression for Whittle’s index for any Markovian bandit with

both finite and infinite transition rates”

As we mentioned above in Section 1.2.2, there is not automatically an analytic ex-

pression for the Whittle index for a given restless bandit problem. Therefore, any

application of Whittle indices, including ours, has to start by either finding or ap-

proximating the indices for the problem at hand. The derivation in this paper is

therefore a significant achievement.



CHAPTER 1. INTRODUCTION 47

The authors go on to extend their work to describe the conditions for indexability;

again, indexability is seemingly obvious but not in fact guaranteed. We have to prove

it for our problem through somewhat lengthy algebra.

A practical application of restless bandits is given in [82]. They consider a scheduling

problem with deadlines which impose a penalty if not met*. This could arise from

charging a set of drones or electric cars, which need to be ready to go by a specific time.

There is much randomness in the problem: “key parameters of the problem such as

job arrivals, workloads, deadlines of completion, and processing costs are stochastic”.

The model used is a restless multi-armed bandit. They derive a closed-form expression

for the Whittle indices, at least for a limited case, and prove indexability. They also

use computer simulations to measure the performance of the Whittle index policy.

Another restless bandit application comes in [86], which looks at scheduling grouped

maintenance interventions on a set of degrading machines or factories. The outline

is the same: use a Lagrangian relaxation of the problem to find the Whittle indices,

then do numerical experimentation to see what the optimality gap looks like. That

is a common theme in restless bandit papers: relax to find Whittle indices, prove

indexability, then use numerical simulation to establish performance. We follow the

same structure in Chapter 2.

An earlier PhD thesis looking at restless bandit models in a similar area is [87].

*In general deadlines can be hard, where they are known in advance and are a constraint that
must be met, or soft, where they are random and apply a penalty if missed. In queueing theory
soft deadlines are often called impatience or abandonment. For an example of bandits with hard
deadlines see [83], while for examples of soft deadlines see [84, 85].
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This looked at the dynamic control of stochastic resource-sharing systems; this is

quite similar to our problem, but they are concerned with sharing of resources not

assets*, and the systems considered are quite different. To quote directly from the

abstract, “These type of problems have a stochastic nature and may be very complex

to solve. We therefore focus on developing well-performing heuristics”, which is again

a common theme, that the sensible model is too complicated to solve exactly.

The author takes two approaches, using first a restless bandit model and then a fluid

approximation, as we mentioned in Section 1.1.1. They mention specifically both the

necessity of verifying indexability, and how the Whittle index is only guaranteed to be

optimal asymptomatically. This approach differs from ours; we will focus on smaller

numbers where fluid approximations are inappropriate, and take much more of an ad

hoc approach to finding effective policies.

It is also worth a mention here that while in the next chapter we use a restless bandit

model, we will then go on to consider more complicated dependent reward models,

which are not amenable to the use of the same framework. We also are using a restless

bandit model as an approximation of the true system, so we will have to consider how

to adapt the indices to the system of interest.

*Although the two concepts are admittedly quite similar.
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1.4 Next Steps

In the next chapter we will look at a simple model, that is ‘independent’ as described

in Section 1.1.2: we can write the reward function as R(x) =
∑n

i=1 gi(xi). We will

look at this model first because it is amenable to the use of restless bandits.

In Chapter 3 we will then go on to consider several dependent models, where we will

have to take a different approach.



Chapter 2: The Independent Case

This chapter was originally published as [1]; it has been lightly edited for this thesis.

2.1 Introduction

The allocation of assets in an efficient way is an omnipresent problem. It is challenging

because of the typical feature that the number of available assets is limited; such

limited assets usually refer to a workforce or machines available to perform a particular

task.

When assets are relatively simple machines connected to an energy supply, such as

computers, it is reasonable to assume that they are available for continuous operation.

Allocation of such assets to tasks has been extensively studied in the performance

evaluation literature employing queueing theory techniques (see e.g. [88]) and in the

stochastic optimization literature employing dynamic programming techniques (see,

e.g., [89, 90]).

50
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However, considering a human workforce or cutting-edge machine technology, assets

are rarely available for continuous operation. Such assets may be complex and hence

failure-prone and time-consuming to repair, specialised and hence hard to quickly

replace in case of an abandonment, or of limited endurance and hence regularly require

recharging/refuelling. In this chapter we focus on the allocation of such assets that

tend to fail and must go through a replenishment process before they are once again

available for operation.

2.1.1 Motivating Examples

There is a broad range of situations in which assets are subject to failure.

Surveillance and Patrolling: Consider a number of Unmanned Aerial Vehicles

(UAVs) deployed to monitor a large area. The controller may want to keep surveillance

at all times, so as not to allow gaps that could be exploited by an adversary. In this

kind of situation, one could easily have tens to hundreds of UAVs, with time-scales

stretching from minutes to days. The UAVs have a finite endurance and so must

periodically return to base for refueling and maintenance. For a review of the general

UAV surveillance problem, see [2]; a similar situation arises in patrolling see [91].

Search and Rescue: Similar difficulties occur in search and rescue operations, with

the added complication that the assets may often be of different types such as foot

teams, search dogs and helicopters. In this case, there may be only a small number of

targets to be found, and finding them quickly could be of extreme importance. One
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such situation arises in a naval context, where UAVs can search for downed airmen

in an ocean. See, for example [92] and [93]. Search assets cannot operate indefinitely;

they need to occasionally rest (for humans or animals) or refuel (for vehicles).

Environment and Wildlife Monitoring: In environment and wildlife monitoring

the controller needs to monitor an area for some time, either to get reliable readings

or to ensure a sufficient sample of the flora or fauna in question. These are an example

of why failure must inevitably be dealt with: it is simply impractical to survey the

entire areas at once, and so some form of higher-level coordination is necessary. See,

e.g., [94] and [20].

Vehicle Rental: The recent surge of sharing and short-term renting of environmentally-

friendly vehicles (such as bicycles, drones, electric scooters, cars, etc.) in mobility-on-

demand systems brings similar challenges. These vehicles are distributed to different

locations where they wait (passively search) for customers. They frequently require

repairs, cleaning and relocation. See, e.g. [95, 96].

Queueing Systems: More generically, consider a set of queues, where the controller

assigns servers (assets) to a number of queues (tasks) to deal with arriving customers.

The servers can only serve so many customers before needing a break, giving rise

to failure and replenishment. Literature on queueing systems with server vacations

and breakdowns is extensive (e.g. [97]), but their control has only been addressed in

specific cases; see for example [55] or [53].

Project Management. If assets are employees or contractors, a manager needs to
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assign them to projects composed of tasks. People can only work for so long before

needing a break, a rest or taking leave. Such features are typically ignored in the

project management literature (see [22]). There might be significantly more tasks

than assets, with decisions being made on a scale of weeks or months.

2.1.2 Problem Description

In the rest of the chapter we consider a generic problem in which a number of inter-

changeable assets need to be allocated to a number of different tasks. Any asset is

allocatable to any task and several assets can be allocated concurrently to the same

task.

An asset will fail after a random amount of time performing a task. The failure

may manifest itself as the asset breaking down, draining its energy supply or being

damaged. The failure requires repair, which occurs via recharging, refuelling, taking

a break or replacement. The repair time is also random. During this repair time the

asset cannot be allocated to any task. Once an asset is repaired, it is kept in reserve

ready for allocation to any task, either immediately or later. Assets cannot be freely

moved from one task to another, only allocated from the reserve to any of the tasks.

Every task yields a reward at a rate depending on the number of deployed assets, which

is assumed non-decreasing and concave. The objective is to find a way of allocating

assets to tasks that will maximise the long-term time-average sum of per-task reward

rates.
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It would be possible to formulate this problem without a reserve, and require that

upon being repaired, an asset must be allocated to one of the k tasks. While this

would yield a smaller state-space, for many reward functions, particularly those which

are strongly concave, the optimal policy does keep a number of assets in the reserve.

In Section 2.3 and Section 2.4 we develop alternative policies that do not reserve.

In Section 2.5 we perform a numerical comparison of the optimal policy versus these

alternative policies and find that while in most scenarios the reserve option provides

little benefit, in some cases it is vital.

2.1.3 Contributions and Chapter Structure

In Section 2.2 we formulate this problem as a closed-system continuous-time Markov

decision problem (MDP) with impulsive controls. To overcome the theoretical issues

with impulsive controls, we reformulate it equivalently by replacing the impulsive

controls with actions that do not immediately lead to system transitions, and further

uniformise and discretise the problem. The resulting formulation allows for numerical

solution by dynamic programming of small problem instances. It also allows for

defining a greedy policy which myopically maximises the sum of reward rates.

Relevant to this formulation is research on optimisation of closed systems with mul-

tiple tasks. Many papers have used the framework of queueing networks (see, e.g.,

[89]), but these allow or even require assets to move between tasks and only one as-

set is allowed to be active at a task: the other assets wait in a queue). In terms of
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optimisation, the focus is mainly on queue scheduling disciplines, which do not apply

in our model, and on service rate control, which is somewhat related to our model as

the number of allocated assets to a task affects both the failure rate and the reward.

For any reasonably-sized problem, standard dynamic programming techniques are

computationally infeasible. In Section 2.3 we therefore develop an alternative formu-

lation of the problem as an open-system approximation to the original closed-system

problem. The open system imagines that assets depart from the system when they

fail and new assets arrive independently to the system, as if from the repair process.

This model is related to the standard problem of routing or dispatching to parallel

queues (see, e.g. [98]), in which assets correspond to jobs and tasks to queues with

servers, with the difference that each task is shared by all the allocated assets rather

than following a queueing discipline. We extend the restless bandits approach of [31]

to derive its Lagrangian relaxation and decomposition, which leads to a parametric

single-task problem that can be seen as a problem of admission control to a multi-

server queueing system; Section 2.3.2 is then devoted to the derivation of the Whittle

index. A similar model and solution approach appeared in [99], with the difference

that the reward from the task is constant in the number of assets deployed.

In Section 2.4 we describe two ways of adapting the Whittle index derived from the

open-system model to the original closed-system model, a näıve one and a cleverly

modified one. To the best of our knowledge these are both novel. In order to prepare

ground for numerical evaluation of these index rules, we describe the uniformly random
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policy and the greedy policy, and explain how the optimal policy can be found when

it is practical to do so.

Section 2.5 then describes comprehensive numerical experiments of performance eval-

uation of these policies in the original closed-system model, which indicates that the

cleverly modified Whittle index rule is nearly optimal, being within 1.6% (0.4%, 0.0%)

of the optimal reward rate 75% (50%, 25%) of the time, and significantly superior

to uniformly random allocation which is within 22.0% (16.2%, 10.7%) of the optimal

reward rate (see Table 3.5.1). Our numerical results also suggest that it is crucial

for the Whittle index to be modified when adapting it from the open-system to the

closed-system model, since the näıve Whittle index rule is not superior to the greedy

policy which is obtained by myopically optimising the original closed-system model.

Finally, Section 2.6 presents limitations and concludes with a discussion of possible

extensions of this work. A single overly long proof is deferred to Appendix A, while

pseudocode for the policy improvement algorithm to optimally solve the MDP is given

in Appendix B.1.

2.2 The Problem Formulation

In this section we formalise the problem outlined in the previous section as a continuous-

time Markov decision process (MDP) (see [24], chapter 11); that is, for the dynamics

we focus on the Markovian case. There are N interchangeable assets to allocate to K
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different tasks.

2.2.1 Markov Decision Process Model

A continuous-time MDP operating over an infinite time-horizon t ≥ 0 is defined by

its states, actions, transition rates, and reward rates.

States: We denote the current number of assets at task k = 1, . . . , K by xk. For

notational convenience, we write xK+1 for the number of assets under repair, and

xK+2 for the number of assets currently repaired but not yet allocated – the number

currently reserved. The reserve does in fact sometimes prove necessary, especially if

the reward functions are very concave. Assets are discrete so that xk ∈ N0 – the non-

negative integers – for all k = 1, . . . , K+ 2, and the total number of assets is constant

so that
∑K+2

k=1 xk = N . We denote the current overall state by x = (x1, x2, ..., xK+2),

and the space of possible states by X .

Actions: After it reaches the reserve task, any asset can then immediately be allo-

cated from the reserve to any of the tasks, or be held back for later allocation. The

actions a are the allocations of assets from reserves to tasks k = 1, . . . , K, which move

the state instantaneously from x to x+ a. We write A(x) for the space of currently

feasible actions when in state x; it is defined by the following four constraints:

1. ak ≥ 0, k = 1, . . . , K + 1; previously allocated assets or assets that are being

repaired may not be reallocated;
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2. −xK+2 ≤ aK+2 ≤ 0; assets from the reserve can be allocated up to the number

currently there;

3.
∑K+2

k=1 ak = 0; the total number of assets is constant;

4. ak ∈ Z ∀k; assets are discrete.

We may take the action 0 even if we have assets in the reserve: we do not have to

allocate all the immediately available assets. Lastly, in practice we would never want

to allocate assets directly to the repair process,so that aK+1 = 0 for any sensible

policy, but we still allow the possibility.

We specify the actions to be chosen for each state by a policy u. A policy u is

a map, possibly non-deterministic*, from states x ∈ X to actions a ∈ A. The

family of admissible policies U includes all non-anticipating policies prescribing actions

satisfying a ∈ A(x). We will in particular restrict ourselves to deterministic stationary

policies, which always take the same action when in the same state. This can be done

without loss of generality for MDPs [24].

Transition rates: Apart from those caused by our actions, there are two types of

transition: due to a failure and due to a repair. Neither the failure transition nor the

repair transition depends on the current action. Failures happen on a per-asset basis,

depending only on the task the asset is allocated to; we denote the failure rate for

an asset allocated to task k by µk, with the natural constraint that all µk > 0. Any

asset that fails immediately joins the repair process, i.e. a failure in task k causes a

*But in this chapter always deterministic.
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transition from x to x− ek + eK+1. Here ek is the kth standard (K + 2)-dimensional

unit basis vector.

The repair process produces ready-to-allocate assets one at a time at some non-

decreasing state-dependent rate λ(xK+1). The function λ(x) is a function defined

on N0, satisfying the following two constraints: λ(0) = 0 so no assets means no re-

pairs, and λ(x) is non-decreasing so more assets being repaired makes repairs more

likely to happen. After an asset is repaired, it transitions to the reserve status: repairs,

which can happen as long as xK+1 ≥ 1, cause a transition from x to x−eK+1 +eK+2.

The assets’ time to failure and the time until the next asset is repaired both follow

exponential distributions. The times-to-failure are independent for each asset and

independent of anything else, such as the overall state of the system; the repair process

is independent of anything else as well.

Reward rates: Since the actions move the state instantaneously, for our purposes it

is sufficient to consider reward rates that are independent of actions. We write that

in state x, the controller gains reward at a rate R(x). We impose that the rewards

are gained independently from each task; that is, the reward-rate function is of the

following form:

R(x) =
K∑
k=1

gk(xk) (2.2.1)

The functions gk represent the reward obtained from allocating assets to task k =
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1, . . . , K. We impose three conditions of the gk, which we expect to hold in practice:

1. gk(x) is non-decreasing; more assets allocated to a task produces no less reward;

2. gk(x) is concave in x; there are diminishing marginal rewards;

3. gk(0) = 0; no assets allocated gives no reward.

There is no reward gained for assets under repair or in reserve.

Objective: The MDP is characterised by the state process X(·) and the action

process A(·), induced by the transition rates and by the chosen policy u. We consider

the long-term time-average objective for the MDP over an infinite horizon. We define

V as the optimal long-term time-average reward rate, so that:

V = max
u∈U

lim inf
H→∞

1

H
Eu
[∫ H

0

R(x(t))dt

]
(2.2.2)

This expression is well defined because the state-space is finite and the reward rates

are non-negative and bounded above, since there is a finite number of assets.

2.2.2 Solution by Dynamic Programming

The type of actions defined above are known as impulsive controls for continuous-time

MDPs. The main difficulty with dealing with impulsive control models is that the
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process can take several different values at the same time moment, which makes the

classical theory of MDPs inapplicable.

The structure of our MDP model allows for a reformulation in which impulsive actions

are replaced by actions that do not immediately lead to system transitions, by making

both the transition rates and reward rates dependent on the action, as in [27]. This

reformulation results in a merging of the state transition caused by the impulsive

action with the next state transition due to failure or repair. Rather than viewing

the system as transitioning instantaneously from x to x+ a, we frame the system as

remaining in state x with rewards and transitions dictated by x+ a.

In particular, a failure of an asset allocated to task k while a prevails occurs at rate

(xk + ak)µk and causes a transition from x to x + a− ek + eK+1. Similarly while a

prevails, a repair occurs at rate λ(xK+1 + aK+1) and causes a transition from x to

x+ a− eK+1 + eK+2. Finally, while a prevails in state x the controller gains reward

at a rate R(x+ a).

As we have instant controls, applying two actions a1 and then a2 is equivalent to

applying a1 + a2.

We can uniformise the problem, transforming the reformulated continuous-time model

into an equivalent discrete-time model. Define B = λ(N) + N maxµk, as an upper

bound on the transition rate out of all states. Consider a related Markov decision

process that transitions out of every state with rate B. For this related process, with

probability (xk + ak)µk/B an asset in task k fails and with probability λ(xK+1 +
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aK+1)/B an asset is repaired. With the remaining probability [B−λ(xK+1 +aK+1)−∑K
k=1(xk + ak)µk]/B the dummy transition moves the system to state x+ a. During

uniformisation the dummy transition usually has the system return to its current state;

because of our impulsive action reformulation described in the previous paragraph,

the dummy transition here goes to x+a. For more details on uniformisation, see [24,

section 11.5] .

This uniformisation results in a discrete-time MDP. We can present the optimality

equation for the discrete-time MDP with a long-term time-average objective, utilising

standard MDP machinery; see [24, Chapters 8 and 11] for more details. We define

φ(x) as the relative value of a state x. This relative value is also referred to as the

bias (see [24, Chapter 8]), and is a measure of how much the controller prefers starting

the system in one state compared to some reference state.

We obtain the following dynamic programming optimality equation, which is satisfied

by the optimal value V for our problem:
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V + φ(x) = max
a∈A(x)

1

B

(
R(x+ a)

+ λ(xK+1 + aK+1)φ(x+ a− eK+1 + eK+2)

+
K∑
k=1

(xk + ak)µkφ(x+ a− ek + eK+1)

+

(
B − λ(xK+1 + aK+1)−

K∑
k=1

(xk + ak)µk

)
φ(x+ a)

)
∀x ∈ X

(2.2.3)

This is a set of |X | equations for |X |+1 unknowns - the φ(x) and V . We hence choose

some reference state x0 (in practice (0, 0, . . . , N)) and set φ(x0) = 0. We can then

solve the set of equations to find the optimal policy, and the optimal value V .

For definiteness, we define φ(x) = 0 for all x such that xk < 0 for any k = 1, . . . , K+2:

for all ineligible x the terms disappear.

On the LHS of Equation (2.2.3), we have the optimal value plus the relative value of

the current state. On the RHS, we choose the control a to maximise the sum of four

terms. The first term is the immediate expected reward received in state x while a

prevails. Note that R(x+a) is a rate, and hence R(x+a)/B is the expected reward

accumulated before the next transition.

The second term captures the expected future reward obtained when a repair tran-

sition occurs next. The third term represents the expected reward from all failure
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transitions. The fourth term is the expected reward from the dummy transition

where the system moves to state x+ a.

In theory, we can compute the optimal V from Equation (2.2.3) using standard MDP

solution techniques such as policy iteration, value iteration, or linear programming

(see [24] chapter 8). Unfortunately, in practice such exact methods quickly become

intractable even for relatively small problems.

The state space for our problem has size |X | =
(
N+K+1
K+1

)
because the controller dis-

tributes N identical assets among K + 2 non-identical tasks. For instance, if N = 15

and K = 10, then |X | is more than 7.7 million. Given this, computing the optimal

solution will only be feasible for small problems, as standard policy iteration requires

us to form a matrix of size |X |+ 1 by |X |+ 1. We now turn to heuristic methods, in

particular one that will allow us to consider the tasks separately.

2.3 A Restless Bandit Approximation

Restless bandits [31] provide a framework applicable to our problem. A generalisation

of the well-known multi-armed bandit problem [29], a restless bandit is a specific type

of MDP.

In a restless bandit problem there are K bandits, which are independent Markov

decision processes with binary action space: the controller can choose to activate the

bandit, or not to. Each bandit has its own state xk and generates rewards at a rate
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depending only on its own state. The control is quite simple: at each decision point,

the controller can activate up to M < K of the bandits; the controller gains reward

according to both the state of all the bandits and the actions taken. Taking the

active action is usually better in some way, either providing more immediate reward,

or charging up the bandit.

The restlessness is as follows: even the bandits not activated still evolve stochastically,

usually decaying in some way. This contrasts with a classic bandit problem of the

Gittins type, where the controller can only activate one bandit at a time, and the

non-activated bandits remain in the same states.

2.3.1 The Approximating System

We now formulate an approximating system, which modifies the original problem in

three respects:

1. We remove the repair process, and have assets arriving for allocation to tasks at

a constant rate Λ independently of the system’s state: assets arrive according

to a Poisson process with rate Λ.

2. Failing assets depart the system entirely, as opposed to going to a repair buffer.

3. We remove the reserve, so arriving assets are immediately allocated.

The diagrams in Figure 2.3.1 and Figure 2.3.2 illustrate the difference between the

original system and the approximating system.
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𝜇1𝑥1

𝜇2𝑥2

𝜇𝐾𝑥𝐾

𝜆(𝑥𝐾+1)

Figure 2.3.1: A diagram of the problem. Assets fail, are repaired, and are then
allocated to tasks, possibly via a sojourn in the reserve.

The approximating system is a continuous-time MDP with the elements as follows.

We write xk for the number of assets currently at task k = 1, . . . , K. The number of

assets is unbounded and the state space is NK
≥0 – a vector of K non-negative integers.

Each arriving asset is immediately allocated to one of K tasks. Assets at task k

fail at rate µk independently of each other, and of everything else in the system. The

aggregate asset failure rate in system state x = (x1, x2, . . . , xK) is given by
∑K

k=1 µkxk.

Rewards are earned in state x at a rate R(x) =
∑K

k=1 gk(xk).

We now write u : NK → {1, 2, . . . , K} for a stationary allocation policy; when the

approximating system is in state x, an arriving asset is assigned to task u(x). We

define U as the set of all such policies. We will write the optimum allocation problem

for the approximating system as:
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𝜇1𝑥1

𝜇2𝑥2

𝜇𝐾𝑥𝐾

Λ

Figure 2.3.2: A diagram of the restless bandit approximation. Assets arrive at a
constant rate, and there is no reserve or repair process.

Gopt = max
u∈U

K∑
k=1

V u
k (2.3.1)

Here we write V u
k for the long-term time-average reward rate earned by task k under

allocation policy u ∈ U , i.e.:

V u
k := lim

H→∞

1

H
Eu
[∫ H

0

gk(Xk(t))dt

]
. (2.3.2)

Even this simplified version of our original problem lies beyond the scope of analysis

via conventional dynamic programming. However, we can make progress by using

ideas which have their origins in the description of a class of restless bandit problems

in [31]. We create a Lagrangian relaxation of the above allocation problem as follows:

first extend the class of feasible policies from U to a class U ′ ⊇ U .
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Any u ∈ U ′ is given by a map u : NK → 2{1,2,...,K}. Under u ∈ U ′ we allow each

incoming asset to be allocated to all tasks in any subset (including the empty set) of

the task set {1, 2, . . . , K}, with the total number of assets assigned to each task in

the nominated subset incrementing by one. Consequently, the arrival of one asset to

the system can result in the allocation of up to K assets (one asset per task) for a

policy u ∈ U ′.

This relaxation follows the form of that used in problems of routing arrivals to parallel

queues, as in [73].

We write Λk (u) for the long-term time-average allocation rate of assets to task k under

u ∈ U ′. We develop a relaxation of the above allocation problem in Equation (2.3.1)

as follows. Define:

Gopt′ = max
u∈U ′(Λ)

K∑
k=1

V u
k (2.3.3)

The maximum is taken over the policy set U ′(Λ) given by:

U ′(Λ) =

{
u ∈ U ′;

K∑
k=1

Λk (u) ≤ Λ

}
(2.3.4)

Problem Equation (2.3.3) allows us to use the extended policy class U ′, but our total

asset allocation rate is constrained by the arrival rate Λ of assets.

We now relax the problem in Equation (2.3.1) further by dropping the constraint
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in Equation (2.3.4) and instead incorporating it into the objective in a Lagrangian

fashion to obtain

Gopt (W ) = max
u∈U ′

{
K∑
k=1

(V u
k −WΛk (u))

}
+WΛ (2.3.5)

The multiplier W has an interpretation as a charge levied whenever an asset is allo-

cated to a task. It is plain that

Gopt(W ) ≥ Gopt′ ≥ Gopt, W ≥ 0, (2.3.6)

Further, it can be shown by a standard argument that:

min
W≥0

Gopt(W ) = Gopt′ (2.3.7)

Further inspection of the problem in Equation (2.3.5) makes it plain that due to

independence of the tasks, the problem can be decomposed into K independent asset-

allocation problems, given the Lagrange multiplier W . We write:

Gopt (W ) =
K∑
k=1

Gk (W ) +WΛ, (2.3.8)

where:

Gk (W ) = max
uk∈{0,1}N

(V uk
k −WΛk(uk)) , 1 ≤ k ≤ K. (2.3.9)
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The {0, 1}N in Equation (2.3.9) is a way to represent a policy uk as an infinite dimen-

sional binary vector where the policy assigns an incoming asset to task k in state i if

index i of the binary vector is a 1, otherwise the policy declines the incoming asset if

index i is 0.

The problem in Equation (2.3.9) concerns task k only. It seeks an optimal allocation

policy when assets arrive at task k according to a Poisson process of rate Λ and are

either allocated to the task (action 1), or not (action 0) dependent upon the task’s cur-

rent state. Reward rates for task k are as in the original problem in Equation (2.3.1),

but now rewards are earned net of charges levied at a rate of W per allocation.

We can now focus attention on this parametric single-task problem, and until further

notice shall drop the task identifier k from the notation. We thus write the single task

problem as:

G (W ) = max
u∈{0,1}N

(V u −WΛu) (2.3.10)

See Figure 2.3.3 for a diagram of the single-task problem. We will say that the single

task problem is in a state x if there are x assets currently at the task.

We write u (W ) for an optimal allocation policy for the sub-problem in Equation (2.3.10).

We seek optimal policies of simple structure for the Lagrangian relaxation in Equa-

tion (2.3.5) by looking for simplicity of structure in u(W ). The following notion [31]

is key:
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𝜇𝑥Λ

𝑥

Figure 2.3.3: A diagram of a single task of the restless bandit approximation

Definition: The approximating system is indexable if there exist optimal policies

u(W ) for all parametric single-task problems for which the activation sets:

A(W ) = {x|x ∈ N and u(W,x) = 1} (2.3.11)

are decreasing in W .

We prove in the following subsection that the approximating system is indexable and

derive the corresponding Whittle index.

2.3.2 Indexability

Indexability is the natural requirement that, for each task, as the allocation charge W

increases, the set of states in which it is optimal to allocate an incoming asset to the

task decreases. Since the following result has a proof along the lines of a corresponding

result in [73] for a different system, we shall provide a sketch only.

Proposition: The approximating system is indexable.
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Proof: First, it is trivial to show that there exists optimal policies u(W ) of threshold

type, namely whose corresponding allocation sets take the form:

A(W ) = {0, 1, . . . , T (W )− 1} (2.3.12)

for some T (W ) ∈ N. Hence T (W ) is the minimal state for which the optimal policy

dictates that an incoming asset should be rejected. Define πT (W )(x) as the stationary

probability of being in state x, given a policy with threshold T (W ). For such a policy

we have a long-term time-average rate of allocation of incoming assets equal to:

Λ(u(W )) = Λ
{

1− πT (W )(T (W ))
}

(2.3.13)

Here πT (W )(T (W )) is the stationary probability that the task operating under policy

u(W ) has its maximal number of assets present, namely T (W ). The dynamics of the

task under this policy are a M/M/∞ queue, truncated at T (W ), and so:

πT (T ) =

1
T !

(Λ
µ

)T∑T
x=0

1
x!

(Λ
µ

)x
(2.3.14)

which is decreasing in T . We now remark that G(W ), being the upper envelope of a

set of linear functions, must be convex in W. It then follows that Λ(u(W )) must be

decreasing in W and hence from Equation (2.3.13), πT (W )(T (W )) must be increasing

in W . It then follows that T (W ) and A(W ) must be decreasing in W. This establishes
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indexability, and so completes the proof.

Remark: Note that the reward function g plays no role in the proof of the above

proposition. Hence the approximating system is indexable whatever the functional

form the rewards take. However, as we develop stronger notions of indexability, the

increasing concave nature of g will come into play. We now proceed to define the

indices which the indexability of the approximating system make possible.

Definition: An index function W : N → R+ for a task with associated optimal

acceptance sets

{A(W ) = {0, 1, . . . , T (W )− 1},W ∈ R+} is defined by

W (x) = sup
{
W |W ∈ R+ and x ∈ A(W )

}
(2.3.15)

Definition: The approximating system is strictly indexable if, for all tasks, the

mapping T : R+ → N which takes W to T (W ) is onto N.

Remark: We already know from the above proposition that the mapping T is non-

increasing.

Before proceeding further, we extend the notation in Equation (2.3.14) by noting

that the stationary distribution for the number of assets at a task operating under

acceptance set {0, 1, . . . , T − 1} is given by
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πT (x) =

1
x!

(Λ
µ

)x∑T
y=0

1
y!

(Λ
µ

)y
, 0 ≤ x ≤ T (2.3.16)

We now introduce the key quantities w(x), x ∈ N, given by

w(x) =

∑x+1
y=0 g(y)πx+1(y)−

∑x
y=0 g(y)πx(y)

Λ(πx(x)− πx+1(x+ 1))
(2.3.17)

The quantity w(x) has a natural interpretation as follows [100]: imagine that the

decision maker facing the single task problem in Equation (2.3.10) is committed to

accepting newly arriving assets provided there are no more than x−1 of them currently

present at the task. The question arises of the effect of expanding the acceptance set

to include x as well.

The numerator in Equation (2.3.17) is the increase in reward rate thus achieved while

the denominator is the increase in acceptance rate. It is the case that when this

marginal quantity is less than W (the charge per unit asset accepted) then the ex-

pansion of the acceptance rate proposed leads to a decrease in the overall reward rate

in Equation (2.3.10).

Should W be less than w(x), then the reverse conclusion holds and the expansion

proposed improves the overall reward rate. From these considerations it follows that,

under suitable conditions on the reward function g, w(x) coincides with the index

W (x) defined above. We now outline a proof of this key result.
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Theorem: If the reward function g is increasing and strictly concave, then the ap-

proximating system is strictly indexable with index given by W (x) = w(x), x ∈ N.

Proof: We introduce the quantities:

Px =
x∑
y=0

(
Λ
µ

)y
y!

, x ∈ N (2.3.18)

In Appendix A, we prove the identity:

w(x) =

∑x
y=0 Py(g(y + 1)− g(y))

µ
∑x

y=0 Py
(2.3.19)

from which it follows that w(x) is strictly decreasing in x when g is increasing and

strictly concave. We also note that w(0) = g(1)
µ

and because g is concave, each asset

considered separately can only give a reward of at most g(1)
µ

. We can therefore write:

0 ≤ lim
x→∞

(g(x+ 1)− g(x)) ≤ lim
x→∞

w(x) ≤ g(1)

µ
(2.3.20)

We now write Gx(W ) for the reward rate achieved in Equation (2.3.10) when the

acceptance set is {0, 1, . . . , x}. We have

Gx(W ) =
x+1∑
y=0

g(y)π(y|x+ 1)−WΛ(1− π(x+ 1|x+ 1)) (2.3.21)
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and we then obtain W = w(x) as the unique W−solution to the equation:

Gx(W ) = Gx−1(W ), x ∈ N (2.3.22)

with the natural interpretation for the case x = 0. Further, each Gx(W ) is linear in

W with a gradient which is negative, and which decreases as x increases. From these

facts it follows that for all choices of x ∈ N:

Gx(W ) < Gy(W ), y ≤ x− 1,W ≥ w(x) (2.3.23)

and

Gx+1(W ) < Gy(W ), y ≤ x,W ≤ w(x+ 1) (2.3.24)

From these inequalities and the fact that w(x) is strictly decreasing in x, we can

deduce that for any x ∈ N:

Gx(W ) > max
y 6=x

Gy(W ), w(x+ 1) ≤ W ≤ w(x), (2.3.25)

Hence:
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A(W ) = {0, 1, . . . , x} , w(x+ 1) ≤ W ≤ w(x) (2.3.26)

with

A(w(x)) ∈ [{0, 1, . . . , x− 1}, {0, 1, . . . , x}] (2.3.27)

The corresponding rejection thresholds are given by:

T (W ) = x+ 1, w(x+ 1) ≤ W ≤ w(x) (2.3.28)

and

T (w(x)) ∈ {x, x+ 1} . (2.3.29)

It now follows from the above that the map T is onto N, that the approximating

system is strictly indexable, and that the index is given by:

W (x) = sup
{
W |W ∈ R+ and x ∈ A(W )

}
= w(x) (2.3.30)

as required. This concludes the proof.



CHAPTER 2. THE INDEPENDENT CASE 78

To continue the discussion, we now restore the task identifier k. From the above

discussion, under the assumption that all reward functions gk are increasing and

strictly concave, the approximating system is strictly indexable, and associated with

each task k is an index function Wk : N→ R+ given by a suitable form of the quantity

in Equation (2.3.17).

It is an immediate consequence of the above discussion that an optimal policy for

the Lagrangian relaxation in Equation (2.3.5) may be expressed as follows: when the

approximating system is in state x, an arriving asset should be allocated to those

tasks for which Wk(xk) > W. Denote this policy by Index(W ). Plainly the asset

allocation rate associated with Index(W ) is decreasing in W. It is straightforward to

show that the relaxed problem in Equation (2.3.3) is solved by Index (WΛ) , where

WΛ is such that:

K∑
k=1

Λk(Index(WΛ)) = Λ (2.3.31)

To achieve equality in Equation (2.3.31) it may be necessary to introduce randomisa-

tion into the operation of Index(WΛ) when a task-state pair for which Wk (xk) = WΛ

is encountered. In light of these optimal policies of index structure, we follow [31] in

proposing a solution for Equation (2.3.1) in the form of an index rule for the approx-

imating system as follows: when the approximating system is in state x an arriving

asset should be allocated to any task l ∈ arg maxkWk (xk).
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2.4 Policies

To evaluate how well the Whittle index rule works on example problems, we will

compare it against the optimal policy, when possible. However, as discussed earlier, it

is only possible to compute the optimal value for smaller problems. Therefore, we also

compare the Whittle index rule to two other policies which could easily be applied to

larger problems. We now expound briefly on the policies, including how to actually

apply the Whittle index rule to the original closed-system problem.

2.4.1 The Whittle Index Rule

Although we provide a full derivation and explanation of the Whittle index above, we

touched only briefly on how to use this to make decisions for a given instance of the

original closed-system problem. Recall from Equation (2.3.17) that the formula for

the Whittle index for task k which has xk assets is*:

wk(xk) =

∑xk+1
x=0 πxk+1(x)gk(x)−

∑xk
x=0 πxk(x)g(x)

πxk(xk)− πxk+1(xk + 1)
(2.4.1)

Defining ρk ≡ Λ
µk

for the open-system, we rewrite the stationary distribution from

Equation (2.3.16)

πxk(x) =
ρxk/x!∑xk
y=0 ρ

y
k/y!

(2.4.2)

*Dropping the initial constant 1/Λ because it is the same ∀ k.
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The key input to compute the index wk(xk) is the ratio ρk, which appears in Equa-

tion (2.4.1) via the stationary distribution in Equation (2.4.2). This ratio is not well

defined in the original closed-system problem because Λ is not a parameter in that

system. Consequently we need to define ρk more concretely for the original system.

We examine two different Whittle index variants corresponding to different values for

ρk; we denote one the näıve index and the other the clever index.

The näıve index sets ρk = λ(xK+1+1)

µk
. This definition directly mimics the open-system

definition of ρk by replacing the arrival rate Λ with the repair rate λ(xK+1 +1), which

is reasonable because assets arrive for allocation in the original system following a

repair. We use xK+1 + 1 instead of xK+1 because repaired assets move immediately

to the reserve, and hence xK+1 could be zero when the allocation decision is made.

The clever index sets

ρk =
λ(xK+1 + 1)

λ(xK+1 + 1) + µk
. (2.4.3)

We choose this value of ρk for two reasons. First this value of ρk produces the optimal

solution for the original closed-system in the case with N = 1 asset. As the rewards

are unchanging, the optimal policy is to always allocate the asset to the same task.

If the controller always allocates to task k, the asset is at that task for a fraction of

the time λ(1)/(µk + λ(1)). The controller gets a reward per unit time of

gk(1)
λ(1)

λ(1) + µk
, (2.4.4)
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and the optimal policy allocates to the task which makes the expression in Equa-

tion (2.4.4) the largest. In this case, the Whittle index for task k for the state xk = 0

can be found from equations Equation (2.4.1) and Equation (2.4.2)

wk(0) =
π(1|1)gk(1)

1− π(1|1)
= gk(1)

ρk
1+ρk

1− ρk
1+ρk

= gk(1)ρk (2.4.5)

Comparing Equation (2.4.5) to Equation (2.4.4), the Whittle index rule produces the

optimal policy if we define ρk according to equation Equation (2.4.3).

The second justification for the ρk defined in Equation (2.4.3) is that the näıve index

is obviously not capturing the system dynamics correctly when λ(xK+1 + 1) � µk.

In this case, the näıve index makes assignments believing that future assets will be

arriving for allocation rapidly and indefinitely; in reality the actual arrival rate in the

closed-system is constrained by the finite number of assets in the system. The clever

index addresses this issue by replacing the arrival rate Λ in the open-system not just

with the repair rate as the näıve index does, but with a throttled version of the repair

rate:

Λ← λ(xK+1 + 1)
µk

λ(xK+1 + 1) + µk
. (2.4.6)

We then define ρk = Λ
µk

as in the open-system, which produces the desired quantity

in Equation (2.4.3). We can view Equation (2.4.6) as stating the arrival rate to the
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approximation system (Λ) is the repair rate (λ(xK+1 + 1)) multiplied by a rough

estimate of the fraction of time an asset is under repair, assuming an alternating

renewal framework ( µk
λ(xK+1+1)+µk

).

Regardless of how ρk is chosen, the procedure for using the Whittle index rule is as

follows. Suppose the system is in state x: the Whittle index rule does not keep a

reserve, so the controller must wait until a repair completes to make a decision. We

then proceed as follows:

Step 1: For each task k, note the number xk of assets at that task;

Step 2: Set ρk, using either the näıve or clever approach described above.

Step 3: Calculate wk(xk) using equation Equation (2.4.1), using ρk in the calculation of

the stationary probabilities in Equation (2.4.2).

Step 4: Allocate the asset to the task with the highest calculated Whittle index wk(xk);

in case of ties choose the task first in the ordering.

2.4.2 Policies for Comparison

We shall compare the two Whittle index rule variants with three other policies: uni-

formly random allocation, greedy allocation, and where possible the optimal policy.

Uniformly random allocation is the simplest: whenever there are assets in the reserve,

the controller allocates them randomly, with equal probability for each task. This
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policy is not intended to be a sensible option, but instead acts as a basic benchmark:

random allocation is what we might resort to if we knew nothing about the system

state, and so any decent state-dependent policy should do better.

The second policy is the simple greedy policy: the controller never keeps a reserve,

and whenever there is an asset to allocate, the controller puts it wherever results

in the highest instantaneous reward rate. That is, the controller allocates the asset

to task l = arg maxk R(x + ek). This policy is in many ways the simplest sensible

policy, and if we did not have to worry about failures and replenishment would in

fact be optimal. We examined other variants of the greedy policy (such as using

l = arg maxk R(x + ek)/µk), but none were markedly different to the greedy policy

and so we omit them.

The last policy we shall use for comparison is the optimal policy, which we compute

by policy iteration ([24], section 8.5). We provide pseudocode for our policy iteration

algorithm in Appendix B. As discussed earlier, the state-space grows very quickly,

and as such we are only able to calculate the optimal policy for small values of N and

K.

The optimal policy is the only policy we consider that makes use of the reserves;

all other policies immediately assign an asset after repair. While we did consider

allowing the other policies to retain reserves, there is no natural way to do this, and

the performance of the clever Whittle policy is sufficient to make further finesses

unnecessary.
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2.5 Numerical Experiments

We now conduct numerical experiments to evaluate the performance of the policies

defined above. We first re-parametrise the problem, so that the numerical experiments

are clearer. We have five main inputs to our model: N , K, gk(xk), λ(xk), and µk.

We specify the reward functions gk(xk) as follows. Recall that rewards are gained

independently: R(x) =
∑K

k=1 gk(xk). In this section we focus on the following special

form:

R(x) =
K∑
k=1

(
1 +

Ak

K

)
g(xk) (2.5.1)

That is, we have one reward function g(x) which is increasing and concave, and one

parameter A > 0 that specifies how quickly reward rates increase with k.

We assume there is no queuing for repairs; as soon as an asset fails it immediately

begins the repair process. Therefore, λ(x) = lx and we normalise l = 1 throughout.

The failure rates take the form µk = Mmk, where M is a constant we vary to control

the magnitude of the failure rate, and the set (m1,m2, ...,mK) is a sequence of values

near 1; the crucial aspect is the ratios of the mk to each other. Specifically we look

at four cases for the form of (m1,m2, ...,mK)

Case 1: Constant mk: mk = 1 for all 1 ≤ k ≤ K

Case 2: mk increasing with k: mk = 0.5 + k−1
K−1
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Case 3: mk decreasing with k: mk = 1.5− k−1
K−1

Case 4: mk oscillating in k, mk = 1.5 if k odd, mk = 0.5 if k is even.

Given the discussion above, we require the following six parameters to completely

specify our problem: N,K, g(x), A,M,mk.

In our numerical experiments we examine all combinations of the parameters within

the following limits:

� N ∈ {2, . . . , 10}

� K ∈ {2, . . . , 5}

� g(x) ∈ {1− e−x/5, log(1 + x),
√
x, min(x, 2)}

� A ∈ {1, 2, 3, 4}

� M ∈ {0.1, 0.5, 1, 1.5, 2, 3, 5, 10}

� mk: the four cases described above

These parameter combinations produce 18432 different scenarios.

2.5.1 Policy Evaluation

Owing to the continuous-time Markov process structure of the problem, we can com-

pute the long-term time-average reward exactly for a fixed policy u. We denote the
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long-term time-average reward V u for policy u. Any policy u induces a transition

matrix Qu on the state-space. We can find the stationary distribution πu from the

balance equations πuQu = 0, with normalization constraint to ensure that πu is a

probability distribution. Once we have πu, we compute the long-term time-average

reward via V u =
∑
x∈X R(x)πu(x).

2.5.2 Results

Our measure of performance is a policy’s long-term time-average reward rate relative

to the optimal, measured as the relative suboptimality gap of policy u:

1− V u

V

That is, for each set of parameters, we get a number between 0 and 1, which we report

as a percentage, where 0% is identical to the optimal policy, and 100% equates to no

reward at all. In the graphs, performance improves as we move up the y-axis.

Overall performance: The curves in Figure 3.5.1 show the performance quantiles

across all 18432 parameter combinations. Table 3.5.1 gives a statistical summary for

this case. Not surprisingly the uniformly random policy performs poorly relative to

the other three. The clever Whittle index rule clearly dominates the other options,

and is significantly more robust: even in the 5th percentile, it is at only 5.4% under-

performance. The greedy policy performs better than the näıve Whittle index rule



CHAPTER 2. THE INDEPENDENT CASE 87

across most percentiles, but both struggle significantly for some cases. The median

performance is 0.6% for greedy, 1.3 % for näıve Whittle, and 0.4% for clever Whittle.

Failure rates: The failure rate has a significant impact on the results. Recall we use

two parameters to specify the failure rate µk = Mmk. M controls the magnitude of the

failure rates, whereas mk determines the form of the rates in k. Table 2.5.2 presents

the 5th percentile performance for each of the 4 cases for mk (constant, increasing,

decreasing, oscillating) and Figure 2.5.2 presents the quantile plots. Greedy performs

reasonably well in Case 1 and Case 3 but not well in Case 2 and even worse in Case

4. The näıve Whittle index rule slightly dominates over greedy in Case 1 (even over

the clever Whittle), and very significantly across lower quantiles in Case 4, but has a

significantly worse performance in Case 2. Clever Whittle performs consistently well

for all 4 cases, showing it is robust to changes in forms of failure rates.

We see similar behaviour in Table 2.5.3 and Figure 2.5.3 as we vary the magnitude

M of the failure rates. Recall the repair rate has the form λ(x) = x, so M = 10

(M = 0.1) corresponds to very large (small) failure rates relative to repair. For large

M , greedy performs very well and näıve Whittle performs almost as poorly as the

uniformly random policy. In these cases, assets spend most of the being repaired,

and we rarely have multiple assets allocated. As such, being myopic is a reasonable

choice.

For small M when assets fail slowly compared to repairs, the greedy performs almost

as poorly as the uniformly random policy and the näıve Whittle performs well, even



CHAPTER 2. THE INDEPENDENT CASE 88

0 10 20 30 40 50 60 70 80 90 100

60
50

40
30

20
10

0

Quantile

D
eg

re
e 

of
 S

ub
op

tim
al

ity
 (

%
)

Uniformly Random
Greedy
Naïve Whittle
Clever Whittle

Figure 2.5.1: Policy performance for each quantile.

Policy Mean Min. 5th Percentile Lower Quartile Median Upper Quartile Max.

Uniformly Random 17.1 52.1 34.1 22.0 16.2 10.7 0.0
Greedy 3.6 58.3 18.4 3.7 0.5 0.0 0.0

Näıve Whittle 4.6 60.6 14.5 6.3 2.3 0.0 0.0
Clever Whittle 1.3 26.6 5.4 1.6 0.4 0.0 0.0

Table 2.5.1: Mean and five-number summary given as the relative suboptimality gap (in percent).

Case 1 Case 2 Case 3 Case 4
Policy | Case (constant) (increasing) (decreasing) (oscillating)

Uniformly Random 27.2 27.6 42.8 38.9
Greedy 3.4 25.4 10.3 34.5

Näıve Whittle 2.5 30.3 9.4 15.7
Clever Whittle 3.4 7.1 5.6 5.6

Table 2.5.2: The 5th percentile for each policy, stratified by the failure rate forms.
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Policy |M 10 2 1.43 1 0.5 0.33 0.2 0.1

Uniformly Random 28.6 26.9 25.8 25.1 26.4 28.9 32.1 46.6
Greedy 2.2 3.1 3.6 4.3 8.1 12.3 17.3 45.7

Näıve Whittle 27.0 24.5 21.5 19.4 14.0 11.0 8.0 5.0
Clever Whittle 4.2 4.3 4.6 4.5 4.5 5.1 6.0 11.2

Table 2.5.3: The 5th percentile for each policy, stratified by the failure rate magnitude
M .
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(a) Case 1
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(b) Case 2
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(c) Case 3
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(d) Case 4

Figure 2.5.2: Quantile plots, stratified by the failure rate forms.
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(a) M ≤ 1
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(b) M > 1

Figure 2.5.3: Quantile plots, stratified by the failure rate magnitude M .
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better than the clever Whittle. In this case the rapid barrage of repairs produces

a system that more closely mimics the open-system approximation with a constant

arrival rate. Although the clever Whittle does not perform as well as either greedy or

näıve Whittle in the extremes, it is again very robust across all values of M .

Use of the reserve: The reserve is used by the optimal policy in 33% of the scenarios.

In the most extreme cases, the system is in a state with an asset in reserve 25% of the

time. However, overall the reserve component usually plays only a very minor role.

Only 2% of the scenarios that optimally use the reserve are in a reserve state more

than 10% of the time. The fact that our policies, which do not use reserves, perform

so well illustrates that in general, the reserve does not serve a critical role.

The reserve is more important for larger N and smaller K. The reserve is also used

more frequently for larger M (greater failure rate relative to repair rate). In this case

a decision maker might prefer to wait for another imminent failure before allocating

an available asset to ensure the allocation is effective, because the next allocation

opportunity may not be for a while.

Other Points: For the four reward function options, g(x) = min(x, 2) most often

produces the worst performance. This is not surprising as none of our policies allows

for reserves, and clearly it is sub-optimal to allocate more than two assets per task

for this reward function. Consequently performance degrades for large N and small

K for this reward function.

Finally, there is a slight degradation in performance of the policies as we increase the
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number of assets N . For the median, the clever Whittle’s median relative subopti-

mality gap is 0.0% at N = 2 and increases to 0.9% at N = 10. The corresponding

degradation at the 5th percentile for the clever Whittle index rule is from 2.2% to

6.4%.

2.6 Conclusion

We have formulated a model for the allocation of assets when the assets are subject

to failure. We established a solid theoretical grounding for the Whittle index rule and

examine the performance of two Whittle index rule variants along with several other

policies. From the numerical experiments, the clever Whittle index rule performs

well and appears to be a reasonable and robust policy to generally use in practice.

Additionally it is computationally simple, and extremely quick compared to using

policy improvement to calculate the optimal policy.

There are several avenues for future research to improve our model. Rewards may not

accumulate independently across the tasks. One might need a critical mass of assets

at each task before the controller can gain positive rewards. The restless bandit model

would not apply to a more complex reward function with dependencies across tasks;

both the Whittle index rule and the greedy policy would need to be modified. We

consider this in the next chapter.

The Markovian assumptions, while unrealistic for some real-world applications, are
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not easy to discard. In practice it may be better to model failure times as uni-

form or deterministic: each asset has a certain level of charge, which depletes in a

fairly predictable way. A possible intermediate approach would be the use of Erlang

distributions, which are still simple enough to allow for effective calculations, while

sufficiently complicated to model actual situations. One could also perform a sim-

ulation exercise to apply the policies formulated here for the Markovian case to a

non-Markovian setting.

There might be delays between assignment and when an assets starts performing a

task, such as travel times. Some of this delay can be absorbed into the repair process.

We could also modify the reward function to account for the delay cost.

We mentioned in Section 2.4.2 the possibility of adding a reserve to the policies derived

from the restless bandit model. This would best be done by adding a reserve to the

restless bandit model, although there is no simple way of doing this. In particular the

presence of a reserve links the different tasks, something wholly incompatible with a

restless bandit model.

The assumption that assets cannot be moved from one task to another may be rea-

sonable in certain situations in practice (e.g. where the tasks are located too far away

from each other or where there are few specialized assets), but the range of potential

applications would greatly expand if asset relocation was allowed, possibly incorpo-

rating a switching cost and/or delay. Whittle indicies for such models have not yet

been studied, only its special case the Gittins index, which does not apply in this
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context.

One last complication is rewards that are unknown a priori. The controller would have

to learn about the rewards gained per state as she tries to stay in high-reward states.

The framework here is analogous to a classic bandit problem [28]. Unlike a bandit

problem, we have a complicated state-space, and the dynamics are not entirely under

our control. This would be particularly relevant to environmental monitoring cases,

where the controller might not initially know which locations are most important to

observe.



Chapter 3: The Dependent Case

In this chapter, we address a particular case in which we are required to form a

chain of assets to communicate any discoveries back to base. We first motivate the

problem, then formulate it as a continuous-time, average-reward Markov decision

problem (MDP) with impulsive controls. We identify several features necessary for a

policy to be optimal, and use this to formulate a variety of heuristic policies.

We conduct extensive numerical experiments, and determine that a simple policy

enhanced by a single round of policy iteration provides the best balance between

computational cost and effectiveness, equalling the optimal policy 75% of the time,

and performing within 10% of optimal 95% of the time. We additionally extend to

cases with multiple reward-gaining tasks, multiple phases, or with non-Markovian

dynamics, and find the same policy is similarly effective there, performing within 10%

of optimal 85% and 95% of the time for the first two cases respectively, and performing

better than other policies in the non-Markovian case.

95
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3.1 Introduction

3.1.1 Problem Description

In this chapter we consider a problem in which a number of interchangeable assets

need to be allocated to a number of different tasks.

The inspiration for this was a problem of searching with communications arising in

a naval context. In this problem, we are required to search for targets in an area of

ocean, and any detections must be reported back to some base. The communications

are comparatively short-range, and so it is necessary to assign some of the assets to

act as relays to ensure the transmissions are properly received.

The tasks are split into two categories: communications and search. We require

a certain threshold of assets communicating before any reward can be gained from

assets allocated to search. The objective is to find a way of allocating assets to tasks

that maximises the long-term time-average reward rates obtained.

The overall problem is motivated by the same problems as in [1], including those of

UAV search and patrol [2, 20, 94, 101, 102, 103], assignment problems [104], search

and rescue work [92, 93] and environmental monitoring [94].

The reward functions in this chapter are all ‘dependent’ in some manner: the rewards

are not gained independently from each task, but instead depend on the overall state
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of the system. In particular, we focus on cases where we are required not merely to

allocate assets to gain reward, but also to communicate or transfer said reward.

3.1.2 Chapter Structure

We begin in Section 3.2 by defining the problem as a Markov decision process (MDP).

In Section 3.3 we give two results justifying the use of a particular form of policy, and

explain more fully how to use and improve on this. We then describe in Section 3.4

how we propose to numerically test these policies, and give the results in Section 3.5.

We then move on to two extended cases in Section 3.6 and Section 3.7, and then

the non-Markovian case in Section 3.8. Finally, in Section 3.9 we talk about possible

extensions of this work.

3.2 Mathematical Formulation

We now describe our first formulation of the problem; there will be others later. We

treat this problem as an MDP initially, even though this requires several unrealistic

assumptions to be made; later sections will relax some of these conditions. Everything

in this section except the reward rates is as in Section 2.2, so we will not describe

those matters.

Since the actions move the state instantaneously, for our purposes it is sufficient to

consider reward rates that are independent of actions. We write that in state x, we



CHAPTER 3. THE DEPENDENT CASE 98

gain reward at a rate R(x). The rewards are gained in the following form:

R(x) = g(xK)
K−1∏
k=1

I(xk > 0) (3.2.1)

We need at least one asset in each of the first K − 1 tasks, and only then do we get

reward, depending on the number of assets at task K. We impose that g is increasing

and that g(0) = 0. These conditions are both reasonable: adding more assets should

give more reward, and no assets should give no reward. There is no reward gained for

assets under repair or in reserve, again a reasonable condition.

There is a cleverer equivalent formulation of this problem, as long as all the first K−1

failure rates (the µk) are the same. Set K = 2 and define C as the number of assets

required for coherent communications; for the model just before, C = K − 1. Use the

reward function:

R(x) = I(x1 ≥ C)g(x2) (3.2.2)

A brief argument now justifies why the two formulations are equivalent, given that

the first K − 1 failure rates are identical:

1. As the first K−1 of the µk are of equal value, and the system is Markovian and

hence memoryless, the state of the first K− 1 tasks can be summarised entirely

by how many of the tasks have an asset allocated to them.
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2. As the reward function gives no benefit to having more than one asset allocated

to any of the first K − 1 tasks, and we can allocate from the reserve at the

instant of any failure, following any sensible policy, we have xk ≤ 1∀k ≤ K − 1.

3. Therefore,
∏K−1

k=1 I(xk > 0) = 1 iff xk = 1∀k ≤ K − 1.

4. This second condition is equivalent to
∑K−1

k=1 xk = K − 1.

5. The search task is exactly the same in both formulations.

6. Therefore the two formulations are equivalent, under the conditions given, for

any sensible policy.

This two-task formulation is neater, simpler, and gives rise to a smaller state-space,

allowing efficient computation of the optimal policy for larger problem instances, and

we therefore use it in the rest of this chapter.

3.3 Policies

In this section we describe the various policies we have formulated for this problem,

starting with the framework common to them all.

3.3.1 The Policy Skeleton

Utilising the two-task formulation makes the state-space smaller, and so the problem

more tractable. As such, we use the two-task formulation until mentioned otherwise.
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That being said, it is still not possible to compute the optimal policy for relatively

small values of N : having even 15 assets causes serious computational problems.

Recall that the statespace has size

 N +K + 1

K + 1

 = (N+K+1)!
(K+1)!N !

, so that in our case

|X| = (N+4)!
6∗N !

= O(N4). This does not look too bad, but policy improvement takes

per-step a time O(|X|3)

It is therefore necessary to produce policies that can actually be used in practice. We

start with a structure that captures the essential logic common to any sensible policy;

this is depicted with algebra in Figure 3.3.1 and without the algebraic expressions in

Figure 3.3.2. We also present two results to justify some of the diagrams’ logic.

Result #1 (boxes 2 and 3): x1 ≤ C for any sensible policy, at all times, so that we

never have more that C assets at the communications task.

Restatement: Given a policy u that can ever allocate assets such that x1 > C, the

policy u∗ that follows u except to reserve assets whenever it would make x1 > C has

no worse a long-term average-reward.

Proof : Firstly, u∗ always has at least as many assets reserved at all times as u,

because reserving assets that are allocated by u is the only difference. So at any

point, we can go freely from the states we reach via u∗ to those we would reach using

u, by allocating the assets to task 1.

Consider the Bellman equation 2.2.3. The important part here is that everything on

the RHS is ensconced within the maxa∈A(x). Therefore, if we replace the set A(x) by
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𝐶 − 𝑥1𝑥1 + 𝐼 𝑥2 > 0
+𝑥4 ≥ 𝐶 + 1

𝑥1 = 𝐶?

Figure 3.3.1: Flowchart detailing in algebra the logic of any sensible policy.

Figure 3.3.2: Flowchart detailing in words the logic of any sensible policy.
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a set A′(x) such that A(x) ⊆ A′(x), we can only get a larger value on the LHS.

As such, the resultant average reward rate can only be larger, and so the policy can

only have been an improvement over the original one. But this is exactly the relation

of u and u∗, so u∗ must be at least as good as u, as required.

Result #2 (box 1): x1 + I(x2 > 0) + x4 < C + 1 iff no allocation of assets can get

us reward.

Proof : We need x1 ≥ C, x2 ≥ 1 in order to get reward, as g(0) = 0, so we do need

x1 + I(x2 > 0) + x4 to be at least C + 1.

As proven above, we should never reach x1 > C, so if x1 + I(x2 > 0) + x4 ≥ C + 1,

we must have x4 ≥ C − x1 if x2 > 0, and x4 ≥ C + 1 − x1 if x2 = 0. So if

x1 + I(x2 > 0) + x4 ≥ C + 1, we can always allocate assets to reach a reward-gaining

state.

3.3.2 θ-Policies

The diagram above does not specify a policy: to create one, we need to decide on

what happens in box 4. The first approach we take is to attempt to keep a constant

split of assets between task 2 and task 4 - between searching and the reserve. We

control the split with a parameter θ ∈ [0, 1], as follows:

1. Arrive at box 4. We are in some state x = (C, x2, x3, x4). x4 > 0 as otherwise

we have no decision to make;



CHAPTER 3. THE DEPENDENT CASE 103

2. If x2 = 0, send one asset to task 2 from the reserve;

3. We want to have a fraction θ of the deployable assets at task 2. That is,

we start with x2 assets at task 2 and x4 at task 4, and want to end up with

x2/(x2 + x4) ≈ θ. So we send dθ(x4 + x2)− x2e assets* to task 2 from the

reserve, or none if that expression is negative;

4. Move on to box 5.

For this set of policies, θ controls how conservative the policy is. For low values of θ,

we try to keep most of our assets back, while for θ closer to 1 the policy is aggressive

and sends most of the free assets to task 2, to search.

3.3.3 Optimising, and Policy Improvement

The θ policies described above form a one-parameter family of policies, so it is natural

to ask if we can choose the best value of θ. The optimal value depends on the precise

details of the problem, but it is not exceptionally difficult to find. We have one

parameter θ, a small state-space (0, 1] to search, and the function evaluations are not

too difficult: we just find the resultant control u(θ), find the stationary distribution

πu(θ) (we explain how to do this in section Section 1.2.1 and Appendix B.2), and then

the average reward rate is just
∑

x∈X R(x)πu(θ)(x).

This gives us one policy: the optimal θ policy. Another approach that we could

*The ceiling d e is necessary because assets are discrete; we choose ceiling instead of floor to
encourage allocation.
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apply to any policy but here use only on θ policies, is to apply a single step of policy

improvement [24] to an existing policy. This is guaranteed to give a better policy, and

has a fixed runtime, as opposed to full policy improvement which in the worst case

could take 2|X | steps [26].

At this point, we might reasonably ask if there are any sensible families of policies for

which we could analytically compute the stationary distribution π. If this were the

case, we could then optimise over the parameters of those families just like we can

over θ. The answer to this is sadly no, for several reasons.

The first difficulty is that π need not exist. Consider a policy that never reserves assets

if xK+2 = 0, but if it has more than one asset reserved, keeps at least two reserved

for the rest of time. This policy has essentially two different stationary distributions,

on two communicating classes of states. This difficulty can be avoided by choosing

less silly policies; a more intractable problem is that the overall dynamics depend in

unpredictable ways on the decisions made in different states.

Additionally the size of the statespace depends on the parameter N , and K in the

full formulation. Taken together, these difficulties render it impossible to find the

stationary distribution analytically.

3.3.4 The Concavity Policy

The θ policy as promulgated above uses the same θ for all states. Approaching the

problem of choosing θ from a different angle, if g(x) is linear or close to linear, a
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higher θ would be more appropriate, while if g(x) = min(x, 1) for example, then we

should never send more than one asset to task 2. The concavity policy uses a measure

of how concave g is to pick an appropriate θ, given the current state x.

The two functions that guided us whilst formulating this policy were g(x) = x and

g(x) = min(x, 1). For the first one, we want θ either at 1 or close to it; for the latter,

we want θ = 1/(x2 + x4), so that we only send one asset to task 2.

The expression we use starts with the following formula, which is the ratio of the area

beneath a function f(x) satisfying f(0) = 0 and the area beneath the line tangent to

f at x = 0, as displayed in Figure 3.3.3:

θ(x) =

∫ x
0
f(t) dt

f ′(0)
∫ x

0
t dt

(3.3.1)

Now, our g are only defined on the integers, so we need to substitute expressions

for g′(0) and for the integrals. The standard approximation for the derivative of a

function f at x is f ′(x) = f(y)−f(x)
y−x ; because g(0) = 0, we can approximate g′(0) =

g(1)−g(0)
1−0

= g(1).

For the integrals, we can evaluate them using the trapezium rule, which is exact for

the integral in the denominator. This yields:

θ(x) =
1

g(1)

2g(1) + 2g(2) + . . .+ 2g(x− 1) + g(x)

x2
(3.3.2)
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Figure 3.3.3: The diagram on the top corresponds to Equation (3.3.1), while the dia-
gram below corresponds to Equation (3.3.2). In each case, the area in blue corresponds
to the denominator and the sum of the areas in green and blue to the numerator.
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To use this, we follow the θ policy, but every time we come to check if we should

allocate assets to task 2 from the reserve, we use θ(x2), allocating assets one at a time

and recalculating θ(x2) each time.

3.4 Procedure for Experiments

We now carry out some detailed numerical experiments to determine which of the

policies above performs best.

3.4.1 Procedure & Parameter Values

Because of the Markovian structure of the problem, we can evaluate the infinite

horizon time-averaged reward of a given policy exactly, as in Section 1.2.1 and Ap-

pendix B.2.

We also need to specify the parameter values for the problem. Given that we are using

the two-task formulation, we need the following parameters to specify the problem:

µ1, µ2, λ(x), N, C, g(x) (3.4.1)

There is a subtle redundancy here, as we had before in Section 2.5. If we multiply

µ1, µ2 and λ(x) by the same positive constant, the system speeds up, but the station-

ary distribution and hence the long-term average reward rates for any policy remain
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unchanged. As such, we vary µ1 and µ2, and fix λ(x) = x; this form ensures a certain

amount of reliability in the system.

We vary the remaining parameters as follows:

� N = 3, . . . , 8; N must be at least 3 to give an interesting problem, and we run

to as high a value as computational time allows

� C = 1, . . . , 8, but with C ≤ N − 2 so the problem is interesting.

� µ1, µ2 ∈ {0.1, 0.5, 0.7, 1, 2, 3, 5, 10}; each failure rate seperately takes each value

in the set

� g(x) ∈ {1 − e−x/3; min(x, 2); log(1 + x);
√
x;x}; these reward functions give a

good range of behaviours, all of which are increasing and start at 0. Both of

these are reasonable conditions: more assets should help, and having no assets

would give no reward.

This comes out to 6720 different combinations of the parameters.

3.4.2 Policies

We investigate the following six policies in comparison to the optimal policy:

1. Uniform random allocation: whenever there are assets in the reserve, the con-

troller allocates them randomly, with equal probability for each task. This policy
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is not intended to be a sensible option, but instead acts as a basic benchmark:

random allocation is what we might resort to if we knew nothing about the

system state, and so any decent policy should do better.

2. The θ policy, with θ = 0.5.

3. The θ = 0.5 policy, improved by one stage of policy improvement, which we

call θ+ or θ = 0.5+. We described policy improvement in Section 1.2.1 and

Appendix B.1.

4. The optimal-θ policy; that is, the θ-policy with the best possible θ for the

problem at hand. This can be done quite simply, as we are searching an interval

(0, 1], and we do not have to be too precise, as the discreteness of assets means

small changes in θ may not change the policy at all.

5. The optimal-θ policy, improved by one stage of policy improvement, which we

call optimal-θ+*.

6. The concavity policy, as laid out in Section 3.3.4 above.

We are limited in the number of scenarios for which we can evaluate these policies

by computational time, and making the problem larger does not make it particularly

more interesting.

*There is an ambiguity in this: it could mean optimal of (θ+), but we mean (optimal-θ)+. This
is English’s fault, and unavoidable.
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3.5 Numerical Results

In this section we present the results of our numerical experiments. Our measure of

the performance of a policy u is its long-term time-average reward rate relative to the

optimal, measured as a fraction:

V u

V opt

That is, for each set of parameters, for each policy we get a number between 0 and 1,

where 1 is a reward-rate identical to that of the optimal policy, and 0 equates to no

reward at all. In the graphs, performance improves as we move up the y-axis.

Our first figure, Figure 3.5.1 shows the quantiles of the relative reward, for each of

the policies above; summary statistics are given in Table 3.5.1.

It is interesting to look at the results, stratified by the form of g(x) in Table 3.5.2,

and by N in Table 3.5.3. We use the 25th quantile because the median is too high to

clearly show any differences.

We are also interested in the relative time-complexities of the different policies; the

times taken for each policy to be computed are shown in Figure 3.5.2 as box-plots

across all parameter values, with the y-axis as a log scale. Theoretically, we would

expect a stage of policy improvement to take a time O(|X |3), and for each policy

evaluation for the optimal-θ policy to have the same time complexity.
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Figure 3.5.1: Policy performance for each quantile.

Policy Minimum First Quartile Median Mean Third Quartile Maximum

Random Uniform 0.00 0.07 0.27 0.28 0.47 0.96
θ = 0.5 0.55 0.89 0.95 0.93 0.99 1.00
θ = 0.5+ 0.61 1.00 1.00 0.99 1.00 1.00
Optimal θ 0.57 0.95 1.00 0.96 1.00 1.00

Optimal θ+ 0.64 1.00 1.00 0.99 1.00 1.00
Concavity 0.33 0.89 0.96 0.93 1.00 1.00

Table 3.5.1: Mean and five-number summary for our six policies.

Policy Linear Logarithmic Minimum Negative-Exponential Square Root

Random Uniform 0.073 0.069 0.068 0.070 0.067
θ = 0.5 0.826 0.917 0.877 0.898 0.933
θ = 0.5+ 0.979 0.999 0.992 0.996 1.000
Optimal θ 0.932 0.962 0.922 0.956 0.968

Optimal θ+ 1.000 1.000 0.999 1.000 1.000
Concavity 0.859 0.898 0.934 0.901 0.885

Table 3.5.2: 25th quantile of the normalised reward rate, stratified by form of g(x).
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The graphed results are in line with our expectations. Random uniform is fast (it does

no computation), and so is θ = 0.5, which only needs to calculate two expressions.

Concavity is next, as it requires a few computations, but no linear algebra. θ = 0.5+ is

next quickest, as it only requires a single matrix solve, while optimal-θ takes several,

and optimal-θ+ takes one more. Lastly, calculating the optimal policy takes the

longest, as it requires many matrix solves, and some more operations to choose the

new policy at each stage.

3.5.1 Summary of Results

A step of policy improvement is key: the two best performing policies are θ = 0.5+

and optimal-θ+. Taking into account both computational time and experimental

effectiveness, the best policy is the optimal-θ+ policy, improved by a step of policy

improvement. The θ = 0.5+ policy performs slightly worse, but is a little quicker to

compute, with the optimal-θ policy only slightly behind.

We can get more detail by looking at the stratified results. First of all, the form

g(x) = min(x, 2) is the most challenging of the reward functions; this should not

surprise us, as it is the most sharply changing. Apart from that, the reward rates for

each of the reward functions are largely in line with the averages overall.

Looking at Table 3.5.3, we have a similar pattern. The problem gets harder for larger

N , with no particularly interesting features other than that.

Lastly, which case did optimal-θ+ do worst on? The answer was the problem deter-
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Policy 3 4 5 6 7 8

Random Uniform 0.317 0.190 0.117 0.075 0.037 0.018
θ = 0.5 0.948 0.952 0.930 0.900 0.867 0.829
θ = 0.5+ 1.000 1.000 1.000 0.998 0.992 0.987
Optimal θ 1.000 1.000 0.985 0.947 0.902 0.855

Optimal θ+ 1.000 1.000 1.000 1.000 1.000 0.998
Concavity 0.982 0.977 0.948 0.907 0.858 0.816

Table 3.5.3: The 25th quantile of the normalised reward rate, stratified by N .

Random θ=0.5 θ=0.5+ Optimal-θ Optimal-θ+ Concavity Optimal
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Figure 3.5.2: Computation time for each policy, box-plotted across all scenarios. The
y-axis shows the time taken to compute the policy, on a logarithmic scale.
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mined by the following parameters: N = 8, C = 5, µ1 = 10, µ2 = 1, g(x) = min(x, 2).

This is clearly a nasty case: the µk are significantly different, N is large and has a

gap to C, and g(x) has the most difficult form.

Figure 3.5.2 shows the distributions of the times taken to compute the various policies,

and is what we would expect. Random uniform, θ = 0.5 and concavity are all quick;

θ-+, optimal-θ and optimal-θ+ are all slower, and the optimal policy is the slowest to

compute of all the policies. While we would have predicted this ordering on theoretical

grounds, it is helpful to have experimental verification.

3.6 An Extended Case

The model given above is extremely specific. We make it more general by starting

with the same general framework, and extending the search tasks. Instead of only

having one, we have K − 1 for some integer K ≥ 2, giving K + 2 tasks in total,

writing the state of the repair process as xK+1 and of the reserve as xK+2. We keep

the assumption about all the communications tasks’ failure rates being the same, and

so can collapse communications to task 1.

Now, we have a reward function gk for each search task, and the overall reward

function is:

R(x) = I(x1 ≥ C)
K∑
k=2

gk(xk) (3.6.1)
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We are still keeping everything else the same: failures and repairs are still Markovian,

and we are still interested in the long-term average reward gained, so that Equa-

tion (2.2.3) still applies. See Figure 3.6.1 for the dynamics.

𝜇1

𝜇2

𝜇𝐾

𝜆(𝑥𝐾+1)

Figure 3.6.1: Flowchart detailing the dynamics of the full-K problem.

We can use the previous work for this case: we can still determine the balance between

allocation and reserving as before, and follow the logic in Figure 3.3.1. The difference

is that once we choose to allocate an asset to searching, we must then choose which

of the search tasks 2, . . . , K we wish to allocate to.

In Chapter 2, we addressed the problem of allocating between K independent tasks,

in a similar MDP framework. The conclusion from that work was to use a Whittle

index policy. In essence, the Whittle index policy decomposes the problem into K

tasks, and quantifies how much each task would ‘pay’ to have an additional asset sent

its way. This is done using a restless bandit model of the problem.

We use the Whittle index policy as follows:
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Step 1: For each task k, note the number xk of assets at that task;

Step 2: Calculate wk(xk) as below.

Step 3: Allocate the asset to the task with the highest calculated Whittle index wk(xk);

in case of ties choose the task with the smallest numerical identifier. If we have

multiple assets to allocate, go back to step 1.

We determine the index wk(xk) for task k as follows:

1. Define the effective arrival rate as Λk = λ(xK+1+1)

λ(xK+1+1)+µk
, and write ρk = Λk/µk

2. Calculate the stationary distribution probabilities π(x|xk) =
ρxk/x!∑xk
y=0 ρ

y
k/y!

.

3. The Whittle index for task k is then:

wk(xk) =

∑xk+1
x=0 π(x|xk + 1)gk(x)−

∑xk
x=0 π(x|xk)g(x)

π(xk|xk)− π(xk + 1|xk + 1)
(3.6.2)

We use this form for the Whittle index because in Chapter 2 it gave the best experi-

mental results.

We can combine this with the policy skeleton by using the Whittle indices to decide

allocation to the search tasks: whenever we decide to allocate to searching, allocate

to the search task with the highest Whittle index. If we have multiple assets to

allocate, we do so sequentially: we allocate one asset, reevaluate the Whittle indices,

and iterate until all assets we have decided to allocate have been allocated.
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Figure 3.6.2 shows a comparison between random uniform allocation which is again

serving as a lower bound of sorts, the policy produced from joining the θ = 0.5

policy with the Whittle index policy, and that policy improved by one step of policy

improvement. The plot shows quantiles of the reward, as a fraction of the total

reward, over the same parameter values as before, with µ2 taken as the failure rate for

all search tasks, and K being varied between 2 and 5. Summary statistics are given

in Table 3.6.1.

We can see that, while our best policy has a significant suboptimality gap, being

below 90% of optimal 20% of the time, the suboptimality is not worse than the sum

of that achieved by the θ = 0.5+ policy in Figure 3.5.1 above, and that of the Whittle

policy in [1]. We can see that the joining of the polices has not introduced significant

extra error. Additionally, the median suboptimality of the best policy around 3%,

which is a good performance, considering the complexity of the problem.

If we look at the worst 1% of results for the θ = 0.5 with Whittle+ policy, we can

see a few things. N is always at least 6, and at least one of the µk is high. There

are no particular tendencies in the relative performance as we change K, the reward

function or C. These are about what we would expect, as high N and µk increase the

range for error and cost of an error respectively.

The jumps in the graph are because we only have a few values of K.

Our conclusion here is the same: a relatively simple policy, improved by a single step,

is effective.
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Figure 3.6.2: Policy performance for each quantile, for the full-K case.

Policy Minimum First Quartile Median Mean Third Quartile Maximum

Random Uniform 0.000 0.025 0.212 0.239 0.414 0.985

θ = 0.5 with Whittle 0.362 0.648 0.755 0.766 0.929 1.000

θ = 0.5 with Whittle+ 0.452 0.870 0.969 0.920 1.000 1.000

Table 3.6.1: Mean and five-number summary for our three policies, for the full-K problem.
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3.7 The Two-Phase Model

Markovian assumptions are mathematically useful, but are often inaccurate. We can

take a step forwards by modelling the duration of each task as a random variable with

two phases.

3.7.1 Two-Phase Formulation

Once again, we must describe a new model. The key idea is: everything remains like

in Section 3.2, but each task has been split into two phases. The diagram Figure 3.7.1

may be illuminating.

We start by taking the example of the first task. We split the value x1 into two parts

x11 and x12, representing the first and second phases respectively. If we have a failure

in phase 1, then the asset moves from phase 1 to phase 2, so x11 decreases by one,

and x12 increases by one. A failure in phase 2 is a ‘genuine’ failure, with the asset

moving to the first phase of the repair process: x12 decreases by 1, and x31 increases

by 1. The rates are the same for both phases, for now; see Table 3.7.1 for a complete

tabulation of the transition rates.

The same applies for all tasks including the repair task, except for the reserve. As no

events ever happen in the reserve, assets are only ever in the first stage, so x42 = 0

always. When we allocate assets from the reserve, they go to the first stage of the
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𝜆

𝜇1

𝜇2

𝜆

𝜇1

𝜇2

Figure 3.7.1: Flowchart of the dynamics of an asset in the two-phase case. Labels on
arrows indicate rates.

relevant task.

All of the transitions - between phases and between tasks - are independent and

exponentially-distributed, so that the dynamics remain Markovian. The only real

change to the system is the splitting of each task into two phases.

We keep the reward functions the same as before, by simply using the number of

assets in either phase for the number of assets at the task: where before we had x1,

we now have x11 + x12. As such, the reward function looks like:

R(x) = I(x11 + x12 > C)g(x21 + x22) (3.7.1)

It is worth mentioning that because we have two phases, each with exponential dis-

tribution, the resultant time from the initial allocation to the asset failing has an

Erlang(2, µk) distribution, which is also a Gamma(2, µk) distribution. We could nat-
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Transition Rate

x→ x− E11 + E12 µ1x11

x→ x− E12 + E31 µ1x12

x→ x− E21 + E22 µ2x21

x→ x− E22 + E31 µ2x22

x→ x− E31 + E32 λx31

x→ x− E32 + E41 λx32

Table 3.7.1: Transitions and transition rates for the two-phase case.

urally extend this to any number of phases and a Gamma(n, µk) distribution. The

price of this additional flexibility is the size of the statespace: to treat the problem as

Markovian, we have to split each task into one subtask per phase.

The use of multiple exponential phases to more accurately represent a process is

common [105]. Firstly, it allows slightly more general distributions to be represented.

Secondly, it well represents problems where an asset does several things in sequence.

In our case, we might have a UAV travel to an area, search that area, search a second

area, and then travel back. This could be represented as four different phases.

We can formulate the Bellman equation for this new scenario as follows. Write the

state x as a 2 × 4 matrix, and define Eij as the matrix with zeros in all except

E[i, j] = 1, analagously to the standard basis vectors ei. Then the possible non-

control transitions are as as in Table 3.7.1.

The Bellman equation is hence:
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V + φ(x) =

max
a∈A(x)

1

B
(R(x+ a) + (B − µ1x11 − µ1x12 − µ2x21 − µ2x22 − λx31 − λx32)φ(x+ a)

+ µ1x11φ(x+ a− E11 + E12) + µ1x12φ(x+ a− E12 + E31)

+ µ2x21φ(x+ a− E21 + E22) + µ2x22φ(x+ a− E22 + E31)

+ λx31φ(x+ a− E31 + E32) + λx32φ(x+ a− E32 + E41))

∀x ∈ X

Here φ, V,B and A are as before in Equation (2.2.3), and the same note applies about

ineligible transitions. We are assuming that the number of assets in each phase is

observable: for each asset, we know not only what task it is at, but which phase it is

in.

3.7.2 Two-Phase Case Results

We run our numerical experiments across the same parameter sets as before, but with

N only up to 6, as the statespace is larger for a given N . We can use the policies we

already have for the one-phase problem; we do have to halve the rates in the one-phase

problem to keep the problems equivalent.

We use the following policies:
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� The θ = 0.5 policy. This is the same regardless of the number of phases.

� The one-phase θ+ policy.

� The one-phase optimal θ+.

� The two-phase θ+ policy.

� The two-phase optimal θ+.

� The two-phase optimal policy, which is used to normalise the other policies’

reward rates.

Results are depicted in Figure 3.7.2, with summary statistics in Table 3.7.2. We also

display the results stratified by reward function, in Table 3.7.3.

What do we get from this? First, the results are as expected, with the two-phase

optimal-θ+ policy performing best. We also get the ordering of policies that we

would expect.

We do see that taking into account the phases of the assets is important. The policies

that use the whole two-phase structure do considerably better than those which do

not, across all measures, because they have a more accurate measure of the immediate

balance of failure and repair. This is nice to see: more complicated policies should

give better results.

The stratified results are not particularly different; g(x) = min(x, 2) continues to be

the most difficult reward function.
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Figure 3.7.2: Policy performance for each quantile, for the two-phase problem.

Policy Minimum First Quartile Median Mean Third Quartile Maximum

θ = 0.5 0.59 0.91 0.96 0.94 0.99 1.00

θ = 0.5+ 0.82 0.98 0.99 0.98 1.00 1.00

Optimal θ+ 0.83 0.99 1.00 0.99 1.00 1.00

Two-Phase θ = 0.5+ 0.79 0.99 1.00 0.99 1.00 1.00

Two-Phase Optimal θ+ 0.79 1.00 1.00 1.00 1.00 1.00

Table 3.7.2: Mean and five-number summary for our six policies, for the two phase problem.

Policy Linear Logarithmic Minimum Negative-Exponential Square-Root

θ = 0.5 0.85 0.96 0.87 0.93 0.98

θ = 0.5+ 0.96 0.99 0.97 0.98 0.99

Optimal θ+ 0.98 0.99 0.99 0.98 0.99

Two-Phase θ = 0.5+ 0.96 1.00 0.97 0.99 1.00

Two-Phase Optimal θ+ 1.00 1.00 0.99 1.00 1.00

Table 3.7.3: The 25th quantile of the normalised reward rate, stratified by the reward function.
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3.8 Non-Markovian Dynamics

An obvious flaw with the model presented in Section 3.2 above is the limitation

to Markovian dynamics. While this makes both the formulation and evaluation of

policies much simpler, it is inherently less realistic*. We now reformulate the problem

with general distributions for both failure and repair times.

3.8.1 The Non-Markovian Model

We cannot simply replace the exponential distributions in the Markovian formula-

tion in Section 3.2 with different probability distributions: changing the distributions

introduces an element of memory to the problem, meaning we must approach the

formulation from another direction, similar to how we would construct a simulation

model of a non-Markovian system.

It is no longer enough to have the vector x of the number of assets at each task.

Instead, we begin with a vector y of length N , where yn is the index of the task

which the nth asset is allocated to at this moment in time. We do this because the

formulation with x does not let us distinguish individual assets, which is essential for

a non-Markovian formulation.

We also need a second vector τ also of length N ; here τ n is the time until something

happens to the nth asset. If the asset is allocated the event is a failure, if the asset is

*Unless, as mentioned before, we’re studying radioactive decay.
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being repaired the event is a repair, and if the asset is in the reserve then τ n is the

time at which the policy specifies it should be allocated, should no event occur in the

mean time. For any Markovian policy, τ n is infinite for any asset in the reserve.

We mention in passing that this asset-centered formulation is naturally suitable for

heterogeneous asset problems, although we will not add that complication here.

To replace the Markovian dynamics, we require probability distributions Mk for the

failure times and L(xk+1) for the repair times; these names are deliberately remini-

scient of µk and λ(xK+1) from before. That is, when an asset is allocated to task k,

we set τk ∼ Mk, and equivalently for repairs. We use the following forms for the dis-

tributions, in all cases using the same form but not necessarily parameters for repair

and failure:

� Uniform distribution U [0, 2t], which like the Markovian case allows failures at

arbitrarily small times.

� Linearly increasing hazard-rate, with pdf f(x) = x
σ2 e
−x2/(2σ2); this is a Rayleigh

distribution, and represents failures becoming increasingly likely as assets age.

� Deterministic, with all events of the same kind taking exactly the same time t.

The Rayleigh distribution has mean σ
√
π/2, and if we generate a random variable

U ∼ Uniform[0, 1] then R = σ
√
−2 ln(U) is distributed according to a Rayleigh

distribution with parameter σ. Therefore, if we generate R = t
√

2/π
√
−2 ln(U),

then the resulting random variable will be Rayleigh with mean t.
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Although no Markovian-derived policy can use it, there is one extra bit of information

available: the ages a of the assets at their current locations. This could be useful if

we wished to take into account the likelihood of failures or repairs in the near future.

The reward structure remains unchanged, in that it is some time-invariant rate R(x) =

I(x1 ≥ C)g(x2)*; we limit ourselves to the two-task case for this section.

3.8.2 Policy Evaluation & Simulation

Given the above formulation, we cannot solve exactly for the average reward obtained

under a policy as we did before. Instead, we must simulate the system, and evaluate

the performance as such. This is unhelpful first because it takes longer, and second

because it introduces a source of error previously absent: the time-averaged reward

will not be exactly the long-term average. We deal with this by running the simula-

tions for as long as proves practical, and carrying out multiple simulation runs for each

policy, for each parameter set. This allows us to quantify and control the variance in

the results from run-to-run; this proves to be comparatively minor compared to the

means.

The simulation procedure is shown in Figure 3.8.1. The key step is that because we

store the times-to-event on a per-asset basis, we can advance in time by a step of size

equal to the smallest of them: by τ = minn=1,. . . ,N τ n.

*We could express this in terms of y, but the expression becomes overly complex, and it is not
difficult to convert from y to x for this calculation.
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Figure 3.8.1: Simulation dynamics for the non-Markovian case.

3.8.3 Policy Translation

Our existing policies assume the problem is Markovian; a little effort is therefore

necessary to apply them to the non-Markovian case. It is simple to translate between

locations of assets y and numbers of assets x, but we must also provide values for the

parameters λ(x3) and µk that the policies rely on.

In both cases we can use the following: if a random variable X ∼ Exp(µ), then

E[X] = 1/µ. So, if the time-to-repair for one asset being repaired is a random variable

L, then we can back-define λ(1) = 1/E[L], and can do the same with the rest of the

rates.

While it might seem sensible to try to instead use the remaining expected lifetime

for each asset, and to generate an immediate µ or λ from that, this is not in fact

possible. Firstly, the θ = 0.5 and concavity policies do not actually use the rates at

all. Meanwhile, the θ+, optimal-θ, and optimal-θ+ policies are defined and calculated
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globally, and therefore we would have to recalculate the entire policy whenever we

changed any of the rates.

3.8.4 Optimality and Comparison

For the model described here, it does not appear possible to find the optimal policy.

While for discrete-time NMDPs it is often possible to convert them into a MDP, this

cannot be done in this case, primarily because the state-space is uncountably infinite.

As such, the best we can do is compare the performance of the various policies to

that of the optimal policy in the Markovian case. No useful analytic upper-bound has

proved forthcoming.

Even though we cannot guarantee that the Markovian-optimal policy performs best,

we have still normalised so that it is at a value of 1, so that we can compare the

effectiveness of the policies across different parameter settings.

3.8.5 Results and Conclusions

Our three plots Figure 3.8.2, Figure 3.8.3, and Figure 3.8.4 show the same as the

graphs from earlier: the quantiles of the normalised reward rate. Note that the y-

axis now included values above 1. The tables showing the summary statistics are in

Table 3.8.1,Table 3.8.2, and Table 3.8.3 respectively.

We can see from these graphs that the Markovian-optimal policy is no longer always
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Figure 3.8.2: Simulation quantiles for the non-Markovian case with uniform random
event times.

Policy Minimum First Quartile Median Mean Third Quartile Maximum
Random Uniform 0.0000 0.0002 0.0379 0.1275 0.2000 0.9427

θ = 0.5 0.5746 0.9225 0.9986 1.0313 1.0036 5.9153
θ = 0.5+ 0.1449 0.9983 0.9999 0.9978 1.0018 2.5598
Optimal θ 0.1654 0.9908 0.9993 1.0014 1.0016 3.7564
Concavity 0.1363 0.7423 0.9952 0.9027 1.0006 3.3275

Table 3.8.1: Mean and five-number summary for our five policies, for the non-Markovian case with
uniform random event times.
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Figure 3.8.3: Simulation quantiles for the non-Markovian case with deterministic
event times.

Policy Minimum First Quartile Median Mean Third Quartile Maximum
Random Uniform 0.000 0.000 0.022 0.163 0.274 1.148

θ = 0.5 0.590 0.896 0.999 0.982 1.000 3.670
θ = 0.5+ 0.148 1.000 1.000 0.996 1.000 1.585
Optimal θ 0.273 0.999 1.000 0.983 1.000 1.693
Concavity 0.122 0.768 0.995 0.908 1.000 1.989

Table 3.8.2: Mean and five-number summary for our five policies, for the non-Markovian case with
deterministic event times.
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Figure 3.8.4: Simulation quantiles for the non-Markovian case with Rayleigh event
times.

Policy Minimum First Quartile Median Mean Third Quartile Maximum
Random Uniform 0.000 0.000 0.012 0.168 0.238 0.920

θ = 0.5 0.669 0.885 0.982 0.949 0.999 1.262
θ = 0.5+ 0.687 0.996 1.000 1.011 1.006 1.292
Optimal θ 0.894 0.998 1.001 1.036 1.012 1.409
Concavity 0.397 0.768 0.962 0.871 0.999 1.197

Table 3.8.3: Mean and five-number summary for our five policies, for the non-Markovian case with
Rayleigh event times.
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the best, and that the θ+ policy remains reliable. It is impressive how robust the θ+

policy is to changes in the precise structure of the problem.

We can also see that some policies are ‘safer’ than others. In particular, the concavity

policy is worse than the Markovian-optimal in about 40% of cases, but is better in

about 20%. Meanwhile, the optimal-θ policy deviates below and above in about 15%

and 20% of cases respectively.

Finally, there does not seem to be any significant differences between the relative

performances of the policies with respect to the precise distributions used.

3.9 Future Work

First: we can conclude that the optimal-θ+ policy is effective, robust, and computa-

tionally practicable.

Be that as it may, there are several possible complications that could be added:

1) Adding travel costs or delays of some form. This would not in itself be particularly

difficult: to add travel costs to the model is easy, and travel times can be represented

by travel costs, if a little indirectly. First, travelling to and from the repair task can

be incorporated into the time taken for the repairs. Now suppose it takes a time τk

to send an asset from the reserve to task k. If the travel times are small enough that

sent assets are likely to arrive before the next failure or repair, then instead impose

a charge τk(R(x + ek − e4) − R(x)). That is, we lose the difference in rewards for a
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length of time τk.

Without any particular reason to add this to the model, we are inclined to leave such

matters out.

2) Heterogeneous assets. As we mentioned in Section 3.8.1, the formulation using

the vector y instead of x allows us to easily introduce heterogeneity into the model,

because we are then keeping track of every asset’s position. We mentioned in Sec-

tion 1.1.1 that this would be common in S&R problems, so this strikes us as an

addition worth future investigation.

3) Excessively large N , for example more than 104. Unless some application with such

large N presents itself, does not seem useful enough to justify further investigation.

It is worth mentioning that all of the numerical experiments above were done with

N ≤ 10, while we would expect our real-world problems to have 10 ≤ N ≤ 100. This

size was chosen purely so that we could compute the optimal policy, so that we had

something to compare our heuristics to.

4) Imperfect observation of states*, leading to a POMDP [106]. This sort of formula-

tion is unlikely to be suitable for our problem: we should know where the assets are

and what they are doing.

5) Initially unknown rewards and communications limits. The framework here is

analogous to a bandit problem [28]: each time we reach a state x, we would get

reward as a Poisson process with some rate r(x), until the state changes. We would

*These could be x or y.
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have to learn about the rewards gained per state (and need to specify priors for

them), as we try to stay in high-reward states. Unlike a bandit problem, we have a

complicated state-space, and the dynamics are not entirely under our control.

This problem, considered quite generically, is really a disguised form of reinforcement

learning [107]. As such, existing methods could be brought to bear on this case.



Chapter 4: Conclusions

In this chapter, we first recapitulate what we have found, and the lessons that we

have learned from this thesis. We then talk about how the results in this thesis can

be put to practical use, before discussing how the results could be built upon.

4.1 Findings

In the previous two chapters we have found policies close to optimal in performance

but still computationally tractable. The second facet is worth stressing: for the inde-

pendent case the clever Whittle policy is practically instantaneous compared to full

policy improvement, while for the dependent case look again at Figure 3.5.2 at the

relative speeds of the heuristics. This would only be amplified if we increased the

number of assets N to the 10-100 likely in real-world applications. For the dependent

case we also have a nice series of policies which increase in effectiveness and compu-

tational cost together, so that if we need a quick answer, we can obtain one at the

cost of worse performance.

136
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For the independent case in Chapter 2, the policy we started with was a Whittle index

policy [31], arising by considering the problem as a restless bandit, and using that to

find a ‘price’ that each task would be willing to pay for an asset. This general idea

of pricing as a control approach is a very ‘economics’ approach to the problem, and

suitable for generalisation to similar problems, where the tasks all work the same way

but with different parameters. We discuss this more in Section 4.4

For the dependent case in Chapter 3, we had to be more inventive. We started by

creating what we have called the policy framework: a structure that limits the policies

that we have to consider in such a way that we do not eliminate the optimal policy*.

This then naturally gives us a simple way to generate a whole family of policies - the

θ-policies - which we have every reason to believe have performance close to optimal.

As these policies are parameterised by a single parameter - θ - we can quite easily find

the optimal θ, in the sense of the one that gives the best time-averaged infinite-horizon

reward. We can then apply a single step of policy improvement to the resultant policy,

as before. This is both welcome and reasonable: we encode our problem-specific

knowledge into a policy, then improve it by an extra step of foresight.

Additionally, for the dependent case, we have shown that this form of policy is robust

to the precise formulation, and performs well regardless. This included going from

purely exponential distributions to a two-phase Erlang formulation, which, while not

the greatest of deviations, still allows us more room to fit to real-world distributions.

*The optimal policy is guaranteed to fit into the policy framework. It is not guaranteed to be a
θ-policy.
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4.2 Lessons Learned

First, we have learned about the inherent ease-of-use of Markov decision processes,

at least compared to non-Markovian ones. Not only do they have a nice clear struc-

ture which makes formulation easier, it is as simple to evaluate policies* as anything

involving linear algebra ever could be. A Markovian formulation also allows us to use

policy improvement, and lets us find a definitively optimal policy, at least for small

N . This lets us compare any policies that we formulate to the genuine optimal policy,

giving a definite answer to how well they are performing.

As mentioned above, this only works for N smaller than is of practical use; were this

not the case we would have no need for heuristics.

Second, coding up mathematical algorithms is often much harder than it should be,

simply because mathematicans and computers naturally think of things in different

ways. In this thesis this showed up most strongly in producing the mappings between

statespaces and numbers 1, . . . , N , especially because it is a detail almost always

glossed over in textbooks and courses. The policy improvement code was also a

significant time sink, and took multiple restarts to get to work - even simple things

like generating all a ∈ A(x) turn out to be hard to program.

Third, it is better, in the sense of being more productive, to sort out a limited case

well than to flail about on a more general or more applicable case. If you cannot

*As in, it takes O(|X |3) time.
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produce anything useful, it is irrelevant how good the model was or how closely it

sticks to reality - the point of modelling is to provide solutions, not to look good.

We can see this in our foray into a non-Markovian model. While this is certainly more

realistic than just assuming that all of the relevant distributions are exponential, we

cannot find the optimal policy or even analytic lower or upper bounds. While we

can at least evaluate policies through simulation, we can only compare them to each

other, which does not tell us if their performance is actually close to the best possible.

Finally, it is not a bad idea to take multiple approaches to a problem, whether that

means multiple policies or just several different formulations. Even a failed approach

is a learning experience, and finding that something definitely doesn’t work can be as

productive as a more obvious success.

4.3 Applying These Results

We have, in the previous chapter, been more concerned with formulating and opti-

mising than with actually applying the results; this is unfortunate, but inevitable.

We now discuss how the contents of this thesis might be bent towards some practical

good.

The first point is this: know your problem*. Even given a formulation, there are a

huge number of parameters that need to be extracted from reality and piped into the

*ΓNΩΘI ΣAΥTON
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model: failure rates, repair rates, estimated reward rates, and more.

It is therefore crucial to understand what you are asking for, and what you can

provide. Our work shows that the optimal policy varies significantly depending on

the parameters, and therefore that simply making them up is insufficient. Similarly, do

you need a complete policy, one that specifies your decisions under all circumstances?

Or do you just want guidance and advice?

If what you want is the former, then you need to think about adopting the modelling

in this thesis wholesale. The latter strikes me as more sensible; an example would be

the use of θ-policies as a guide. That being said, using a model to guide your thinking

gives three possibilities:

1. The model suggests what you would have done anyway. Then you can go ahead

with what you would have done anyway.

2. The model suggests allocations slightly different from what you would have

done anyway. Try what the model suggests, but monitor its performance, and

be ready to revert.

3. The model suggests an entirely different set of allocations from what you would

have done anyway. Stop and think! This is a sign that in this case, either you

or the model is missing something. Think about which it might be. Consider

the possible consequences of following the model’s allocations; how bad could it

get? Follow the model only if you have spotted something you’ve missed, or if

the probable consequences are minor. Take care, have a backup plan, and pay
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close attention to what happens.

It must be said that the three points above apply to any set of circumstances where

you are applying a model-based approach to situations where people have been taking

actions for some time without any mathematical guidance whatsoever.

The second point is: look one step ahead. This is the essence of policy improvement[24],

which uses an existing policy to give a relative value to states, and then tries to max-

imise the sum of reward we’ll get at this state, and expected value of the state we

transition to next.

This does not have to be understood merely mathematically. You can think in terms

of relative value of states, even if your measure of that value is quite crude. Given

this, you can utilise the RHS of the Bellman equation:

max
a∈A(x)

(R(x, a) +
∑
y∈X

P (x, y|a)φ(y)) (4.3.1)

The key part remaining is: what about a ∈ A(x)? Again, this is where subject

expertise comes into play. Ask yourself: what can you do? What can’t you do? Why

not? What would it cost you to do that? What would you have to change to be able

to do that?

The procedure is then:

1. What is A(x)? What allocations could you apply, in the current moment?
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2. How does R(x, a) work? How does your action affect the reward you will gain

in the immediate future?

3. What are the important P (x, y|a)? How does your action affect the system?

What kind of failures or repairs are likely?

4. What are the φ(y)? How much would you prefer to be in one state instead of

another? Can you rank the possible states? Which states do you want to avoid?

Which states do you want to be in?

Lastly: build a policy framework. We did this in Chapter 3, identifying features than

an optimal policy would have to have, and zeroing in on the remaining uncertainties.

Similarly, you can try to rule out things you know you would never want to do, and

try to concentrate on the genuinely hard decisions.

To summarise what we have learnt about deploying assets with failure and replenish-

ment: know your problem, look one* step ahead, and minimise the number of choices

you have to make.

4.4 Intensifications

We now talk about two related topics: the first is where we could have gone into more

detail on things we have covered in this thesis, while the second is things that we have

*Or more if possible, but the point is that looking even one step ahead is a major improvement
over not looking ahead at all.
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not properly covered that it would be interesting or useful to attack. This section

addresses the first.

The inevitable question about this subsection is: why did we not do these things?

The primary reason for failing to address these complications is simple lack of time

- there were only so many things that we could cover. Part of this was that some

matters - the non-Markovian case in particular - were particularly difficult and hence

would have required an undue amount of extra time and attention.

A secondary difficulty was lack of knowledge. While I do possess a passing familiarity

with such topics as parallellisation, reinforcement learning and approximate dynamic

programming, I did not start with any great expertise in them, and so my attention

was naturally directed to areas which I had a more thorough grounding in. Of course

this links to the previous difficulty, as such things are not impossible to learn, but it

seemed more productive to work with what matters I could.

A third reason is that certain complications, whilst natural extensions, did not seem

particularly interesting. Increasing N , using a different programming language, con-

sidering heterogeneous assets - none of these seemed to justify the time that would

have had to be spent on them.

One obvious but not necessarily interesting extra is simply increasing the size of the

problem. Using the code I have produced, anything above about N = 15 takes an

irritatingly long amount of time to calculate the optimal policy for*, which is why we

*Especially because we were running thousands of cases.
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did not do so. But there are certain changes that could be made to ameliorate this,

the first of which is changing to sparse matrices. Transition matrices are often sparse

[108], and this would greatly reduce the memory usage.

Similarly, when testing the policies in different scenarios, it would be possible to run

several scenarios at a time, in parallel. This is not easy, and we did make attempts at

this which only served to cause complicated and inexplicable errors that were judged

not worth the time to resolve.

R as a programming language is also not the quickest; it was chosen for its ease of use,

familiarity, and because it allows for rapid prototyping. It also has the advantage of

generally readable code. If speed was the primary concern, a language such as C++,

which has plenty of linear algebra libraries, would be preferable.

Similarly, Chapter 3 was limited in the forms that it looked at, and we could certainly

look at dependence structures inspired by different problems, such as S&R or project

management. One worth looking at is a generalisation of the one we had, where

for each number of assets communicating x1, a certain number of assets f(x1) can

communicate back; f should start at 0 and be strictly increasing. The reward function

would therefore become:

R(x) = g(min(f(x1), x2)) (4.4.1)

The previous case then corresponds to f(x) = 0 for x < C and f(x) = N for x ≥ C.
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This case is more general but still nicely limited, and I suspect would prove amenable

to a slight generalisation of the policy framework.

To go into more detail on this, we still have the same simplification where if f(x1) >

x2 there is no point sending more assets to task 1. But now when considering an

allocation, in addition to the previous case when f(x1) > x2 and our only choice is

reserve vs. allocate, we also have the case where f(x1) = x2 and we need to decide

if it is worth sending one more asset to task 1 in order to be allowed to send up to

f(x1 + 1)− f(x1) assets to task 2.

We could add another parameter σ; as θ controls the balance between allocation to

task 2 and reserving, σ would control the balance to allocating to task 1 or task 2

and reserving. This is only a sketch; much more work would be needed to turn this

into a coherent policy.

There are other possible dependence structures:

� R(x) = g(min(x1, C, x2)), linear up to a threshold; suitable for where we have

restrictions on both commications sending (x1) and receiveing (C).

� R(x) = max(g1(x1), . . . , gK(xk)), where we get the best of what we have; suitable

for when several tasks are independently searching for the same target.

� R(x) = min(g1(x1), . . . , gK(xk)), where we are rewarded according to the weak-

est link; suitable for a facility defense or perimeter patrol problem.

� R(x) =
∏k=K

k=1 gk(xk), where we are rewarded for keeping all tasks filled at once;
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could also be used for defense problems, but encourages us to fill up all tasks,

not just the most important.

Two other choices we made in the formulations were to look at the time-averaged

infinite-horizon rewards, and to have all assets identical. Discounted rewards would

not be significantly different, as the Bellman equation is still applicable [24], with the

addition of a single occurence of the discount factor β, and the removal of the average

reward*:

φ(x) = max
a∈A(x)

(R(x, a) + β
∑
y∈X

P (x, y|a)φ(y)) (4.4.2)

This would probably not change the effectiveness of our policies, but that is the

whole point: until we look, we cannot be sure. There is no reason that changing to

discounted rewards would affect the computational time taken, so the same one step

of policy improvement approach should remain computationally feasible

Finite horizons are a little trickier, as we have to take into account the time until

the horizon, but this does not make things fundamentally different. We can still use

the Bellman equation, but we work by reverse induction, using the time-to-go as our

variable: at the horizon, we can get no more rewards, so we know what happens at

the edge, and can work backwards from that. This is all standard stuff; the point is

that this model could be applied to different cases, and it would be interesting to see

*Because the average reward is zero, in the long run, as long as the rewards at any step are
bounded in absolute value.
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if the same policies still worked well.

The use of heterogeneous assets, as often arise in S&R problems (see Section 1.1.1),

however, works somewhat differently. It would probably be better to use the formula-

tion given in the non-Markovian section of Chapter 3, with the state being described

by a vector y of the locations of the assets. But even if the dynamics are still Marko-

vian, this makes the state-space much larger. Be that as it may, heterogeneous assets

are mentioned often in the literature [109, 110, 111] and so allowing for this would be

useful, to say the least.

4.5 Extensions

Let us now go from intensifications to extensions.

Learning the Rewards

The most potentially productive extension of this work which I have identified is that

of initially unknown rewards. In reality we would reasonably expect to have a good

idea of some parameters, such as N, λ and the µk, but the reward functions - R(x)

- are quite possibly entirely unknown. Bandit problems are all about the balance of

exploration and exploitation [112, 113, 114], and the whole point of searching is that

we want to find something, but we do not know where it is. Similarly, in environmental

modelling we might not know which places are important to monitor, and in project
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management we might not know how productive individuals will be.

So suppose the reward functions are initally unknown, but at least fixed in time*.

What can we do?

First, the idea of ‘learning’ only makes sense in either finite or discounted time [107].

If we measure performance by the time-averaged infinite-horizon reward, we could

spend an arbitrary amount of time learning about the system and our performance

would not be adversely affected. Therefore we need to use either finite-horizon or

discounted rewards.

For various reasons, most notably the removal of boundary effects, I would go with

discounted rewards, which also have a nice practical justification. Suppose that, in

discrete time, the system as a whole ends with some probability 1−β at each timestep.

Therefore, we only make it to timestep t with probability βt, and so we must discount

rewards accordingly. Similarly for continuous time, we have the system-ending event

happening at a constant rate β, and so rewards get discounted according to e−βt.

If the reward functions are unknown but deterministic, we would learn about them

instantly - as soon as we first reach a state x, we would learn the exact value of

R(x). This is unrealistic and far too easy, and it is therefore necessary to make the

process of gaining rewards to be in some way random. The obvious way to do this is

to have binary rewards arrive (in some sense) at a rate R(x). In discrete time that

would mean that when in a state x, we would get rewards at each step according to

*Learning about things that change in time would be an entire Ph.D. on its own.
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a distribution Bernoulli(R(x)), with R(x) ∈ [0, 1].

For a uniformised continuous-time version, we would have rewards, each of value 1,

arriving according to a Poisson process of rate R(x), giving rise to a total number

of rewards accrued between jumps* which is distributed according to a geometric

distribution; for a derivation, see Appendix D.

Unfortunately, this breaks things, as the variance is excessive compared to the mean;

if a random variable X ∼ Geo(p), then it has mean 1/p and variance 1
p2
− 1

p
. For

our problems, p is probably low, making the variance much higher than the mean.

This suggests that either we should move to a discrete-time framework, or make the

transitions deterministic. The latter option is not as unreasonable as it sounds -

we would essentially be looking at this like a bandit problem, just with constrained

controls: our control would be the vector x, constrained by what it was at the previous

time-step.

We might also have to learn the µk, but this is less complicated, being just a statistical

estimation problem. But it is yet another difficulty to add.

NMDPs

The second major extension would be to actually get somewhere with the non-

Markovian case. This is of course easier said than done, but important if we want to

accurately model real-world behaviour - the life-spans of deployed drones are unlikely

*Recall that in a uniformised chain jumps happen at a constant rate B.
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to be accurately modelled by exponential distributions. I do not know how to do this;

if I did, I would have done so already. Additionally, most examples of NMDPs in the

literature [115, 116] deal with them by transforming them into MDPs.

The key difficulty, that we mentioned in section 3.8, is that we cannot find the optimal

policy. There are three obvious approaches that we could take towards this.

The first approach is what we did: don’t do anything. Rely on comparisons between

policies, and on our knowledge of what sensible policies should do. While this has

the advantage of simplicity, this does not really work because we have many scenarios

that we want policies to work well on, and different policies do better on different

scenarios.

The second approach is to find upper and lower bounds on the reward rates, and

compare our policies to them. This is not as effective, but should be easier.

The third approach is to change the details of the problem until we can actually

find the optimal policy. This seems sensible, but the reason we wanted to switch to

a NMDP was to make our model more realistic; having to then simplify the model

rather undermines the point.

Approximate Dynamic Programming

We mentioned the effects of increasing N and K above, but particularly if we want to

include multiple phases in our model as in Section 3.7, the statespace increases in size
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dramatically; this would be particualrly important for the naval search applications,

where we might have a large number of assets (N high) and a large number of different

places to search (K high). If we have N assets and M places* to put them, then we

have:

|X | =

 N +M − 1

M − 1

 =
(N +M − 1)!

(M − 1)!N !
(4.5.1)

This is roughly NM/M !, and we would expect N � M for our applications. So we

have a statespace that quickly gets too large even to enumerate, let alone perform

operations on. If the assets are heterogeneous and all distinct matters are even worse,

as we then have exactly NM possible states.

So what are we to do? While there are always tricks that can be employed to shrink

the effective statespace, what we are going to talk about now is approaches that let us

only handle the parts of the statespace we need. This is called approximate dynamic

programming (ADP) [117]. In ADP, just like in standard dynamic programming,

we have states x, controls a, transition probabilities P (x, y|a), and a reward func-

tion R(x, a), although these often have different names�. We use again the Bellman

equation, which we present in the discounted form:

φ(x) = max
a∈A(x)

(R(x, a) + β
∑
y∈X

P (x, y|a)φ(y)) (4.5.2)

*We would have to have one for each combination of phase and task.
�This is because there are several different fields that use dynamic programming techniques.
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To quote from a good overview of the topic [118]:

“The essence of approximate dynamic programming is to replace the true value func-

tion with some sort of statistical approximation.”

All of a sudden, we have gone from |X | = NM to something much smaller, which we

can actually work with. Rather than give all the details, we refer you again to [118];

the more important question is how this would work for us.

One common idea in ADP is taking sample paths of the future, and updating φ based

on this. This is very well suited for our problem, where there are many states we

should never get into - all assets in the reserve, for example. Any use of a policy

framework as in Chapter 3 also restricts the size of the portion of the state-space that

we actually ever visit, hopefully to something computationally practicable.

Generalised Bandits

What if we tried to formulate our problem more like a bandit problem? This would

be most appropriate for the S&R-inspired problems, but, if it works, could be applied

elsewhere. For this we limit ourself to the independent case, as bandits are required

to be independent of each other in both dynamics and rewards. We have bandits

1, . . . , K, which are our tasks. Each gives binary rewards out randomly at a rate

gk(xk) when we have xk assets at that bandit.

Now for the key switch: x is our control, not our state. The state is the observed
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rewards gained, per task when we had a specific number of assets there. In the

simplest case, at each discrete timestep t = 0, 1, . . . we choose a vector x such that∑K
k=1 xk = N . This would give us a bandit with bunched-delayed rewards, which is

somewhat non-standard, but has been studied [119, 120, 121].

But that is not our problem. The whole point of our problem is that we have con-

straints on how the system-control goes! Incorporating this would be tricky, and

we can only present some thoughts on how. One option is to impose probabilistic

contraints on the control. Essentially, this would be a Lagrangian relaxation of the

problem, so that under our policy U :

K∑
k=1

p(xk(t+ 1) = i+ 1|xk(t) = i) =
λ

B + λ+
∑
xk(t)µk

(4.5.3)

Et[p(xk(t+ 1) = i− 1|xk(t) = i] =
µkxk(t)

B + λ+
∑
xk(t)µk

∀k (4.5.4)

The first condition says that the average arrival rate of assets across all tasks is λ,

while the second says that the expected departure rate of assets from task k is µkxk(t).

The constant B is the uniformisation constant, and B
B+λ+

∑
xk(t)µk

is the probability

the state does not change.

This setup does not include an explicit reserve, but that is another reason for the

Lagrangian relaxation: we can take assets from one time and use them at another,

which is the essence of the reserve.

So that is a Markovian pseudo-bandit setup for our problem. The reason for doing
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this is that we can try and apply standard bandit techniques [28][122], and not have

to invent approaches entirely from scratch. This is merely a sketch of a possible

approach, but one that strikes me as plausible and worth investigating.



Appendix A: Proving The Identity

This appendix proves the identity 2.3.19 used in 2.3.2.

We wish to prove that:

w(x) =

∑x
y=0 Py(g(y + 1)− g(y))

µ
∑x

y=0 Py
(A.0.1)

Begin with the expression for w(x):

w(x) =

∑x+1
y=0 g(y)πx+1(y)−

∑x
y=0 g(y)πx(y)

Λ(πx(x)− πx+1(x+ 1))
(A.0.2)

Next we define

ρ =
Λ

µ
(A.0.3)

Recall from equation (2.3.18) that Px =
∑x

y=0 ρ
y/y!, which is the normalising constant

for πx(x). The second sum in the numerator of w(x) can be written as:

155
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x∑
y=0

πx(y)g(y) =
1

Px

(
x∑
y=0

ρy

y!
g(y)

)
(A.0.4)

Take out a term g(x) from the sum:

x∑
y=0

πx(y)g(y) =
1

Px

((
x∑
y=0

ρy

y!

)
g(x) +

x−1∑
y=0

ρy

y!
(g(y)− g(x))

)
(A.0.5)

Using the definition of Px:

x∑
y=0

πx(y)g(y) =
1

Px

(
Pxg(x) +

x−1∑
y=0

ρy

y!
(g(y)− g(x))

)
(A.0.6)

We can repeat what we just did:

x∑
y=0

πx(y)g(y) =
1

Px

(
Pxg(x) +

x−1∑
y=0

ρy

y!
(g(x− 1)− g(x)) +

x−1∑
y=0

ρy

y!
(g(y)− g(x− 1))

)
(A.0.7)

Rewrite, noting that the last term of the second sum is zero:

=
1

Px

(
Pxg(x) + Px−1(g(x− 1)− g(x)) +

x−2∑
y=0

ρy

y!
(g(y)− g(x− 1))

)
(A.0.8)

By doing this repeatedly, we can collapse the whole sum:
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x∑
y=0

πx(y)g(y) =
1

Px

(
g(x)Px +

x−1∑
y=0

Py(g(y)− g(y + 1))

)
(A.0.9)

Now look at the numerator of the formula for w(x). Using the expression just obtained,

we can express it as:

1

Px+1

(
g(x+ 1)Px+1 +

x∑
y=0

Py(g(y)− g(y + 1))

)
− 1

Px

(
g(x)Px +

x−1∑
y=0

Py(g(y)− g(y + 1))

)
(A.0.10)

Joining the two sums together:

=
Px
Px

(g(x+ 1)− g(x)) +
Px(g(x)− g(x+ 1)

Px+1

+ (
1

Px+1

− 1

Px
)
x−1∑
y=0

Py(g(y)− g(y + 1))

(A.0.11)

The numerator is therefore equal to:

Px+1 − Px
Px+1Px

(
x∑
y=0

Py(g(y + 1)− g(y))

)
(A.0.12)

For the denominator of w(x), we can simplify directly:

πx(x)− πx+1(x+ 1) =
Px − Px−1

Px
− Px+1 − Px

Px+1

=
P 2
x − Px+1Px−1

Px+1Px
(A.0.13)
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We can now combine the two expressions we have obtained to get a new form for

w(x), with a factor of PxPx+1 cancelling:

w(x) =
1

Λ

(Px+1 − Px)
(∑x

y=0 Py(g(y + 1)− g(y))
)

P 2
x − Px+1Px−1

(A.0.14)

We can simplify the terms involving Px by rearranging as follows:

(Px+1 − Px)
Px

2 − Px+1Px−1

=
ρx+1/(x+ 1)!

P 2
x − (Px − ρx

x!
)(Px + ρx+1

(x+1)!
)

(A.0.15)

Multiply out the brackets on the bottom and cancel:

=
ρx+1/(x+ 1)!

Px(
ρx

x!
− ρx+1

(x+1)!
) + ρx

x!
ρx+1

(x+1)!

(A.0.16)

Strip out a factor of ρx+1/(x+ 1)! from top and bottom:

=
1

Px(
x+1
ρ
− 1) + ρx

x!

=
1

Px
x+1
ρ
− Px + ρx

x!

=
1

Px
x+1
ρ
− Px−1

(A.0.17)

Simplifying this expression requires us to prove a lemma.

Lemma: Px
x+1
ρ
− Px−1 = 1

ρ

∑x
y=0 Py

Proof : We proceed by induction. For x = 1 we substitute in P0 = 1 and P1 = 1 + ρ:
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(1 + ρ)
2

ρ
− 1 =

1

ρ
(1 + 1 + ρ) (A.0.18)

2

ρ
+ 2− 1 =

1

ρ
+

1

ρ
+ 1 (A.0.19)

The two sides are equal, so we have our base case.

For the induction step, we assume the x− 1 case, that:

Px−1
x

ρ
− Px−2 =

1

ρ

x−1∑
y=0

Py (A.0.20)

When we go to the x case, we must add the same to both sides; we must have that:

Px
x+ 1

ρ
− Px−1

x

ρ
− ρx−1

(x− 1)!
=

1

ρ
Px (A.0.21)

We can manipulate the L.H.S as follows, beginning by taking out a factor of ρ−1:

1

ρ

(
(Px−1 +

ρx

x!
)(x+ 1)− Px−1x−

ρx

(x− 1)!

)
=

1

ρ
Px (A.0.22)

Cancel the factor ρ−1, and multiply out the brackets:

xPx−1 + Px−1 +
xρx

x!
+
ρx

x!
− Px−1x−

ρx

(x− 1)!
= Px (A.0.23)
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Px−1 +
ρx

x!
+

ρx

(x− 1)!
− ρx

(x− 1)!
= Px (A.0.24)

Px−1 +
ρx

x!
= Px (A.0.25)

We have hence established the required identity �.

We can now use this result and rewrite wx as:

w(x) =
1

µ

∑x
y=0 Py(g(y + 1)− g(y)∑x

y=0 Py
(A.0.26)

This is the required identity �.



Appendix B: Algorithm Pseudocode

This appendix contains pseudocode of the significant algorithms used in this thesis,

emphasising where matters are different from the normal. These are more detailed

than pseudocode normally is, as the implementation-specific details are often the most

interesting part.

Throughout, 0 is the vector of all zeros, and ei is the ith basis vector, both in the

appropriate number of dimensions. Square brackets show access to an element of an

array, while round brackets show a call to a function. = is used for assignment, which

== is used for checking equality. Comments are preceded by two hashes and are in

italics ## like so. Syntax is derived from a combination of R as it is what these

algorithms were coded in, and from the defaults for the algorithmicx package used to

typeset the algorithms.
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B.1 Policy Improvement

This is the algorithm for policy improvement as described in Section 1.2.1. Two things

are unusual: this one actually explains the workings in detail, and the use of impulsive

controls.

U is the policy, represented as a vector of the controls, indexed by the states; U(x) = a

is the control applied in state x. The variable maxIterations is first of all there in

case the iteration takes too long to converge, and is a hard cap on the number of

times the central loop can run. It also lets us run a single step of policy improvement

on an arbitrary policy U , by setting maxIterations = 1.
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function PolicyImprovement(U ,maxIterations) ## U is the starting policy.
iterationNumber=0

|X | =
(
N +K + 1
K + 1

)
φ = 0
B = N max(µi) + λ(N)
while iterationNumber < maxIterations do ## Run until we hit the limit.

oldU = U
A = 00T

r = 0
for x ∈ X do ## Find φ for the current policy U .

a = U [x]
r[x] = R(x+ a)/B

A[x, x] = − 1
B
λ((x+a)[K+1]))− 1

B
(
∑K

k=1 µk(x+a)[k]) ## Self-transition
## Repair transition - can only happen if we have an asset to repair.
if (x+ a)[K + 1] > 0 then

pxy = λ((x+ a)[K + 1])/B
y = x+ a− eK+1 + eK+2

A[x, y] = −pxy
end if
for k ∈ 1 to K s.t. (x+ a)[k] > 0 do

## Failure transitions - can only happen if there is an asset to fail.
pxy = (x+ a)[k]µk/B
y = x+ a− ek + eK+1

A[x, y] = −pxy
end for
A[x, |X |+ 1] = 1 ## Average reward.

end for
A[|X |+ 1, 1] = 1 ## Fixing condition: φ[1] = 0.
r[|X |+ 1 + 1] = 0
φ = A−1r
for x ∈ X s.t. x[K + 2] > 0 do ## Solve for the optimal controls, ∀x.

val = 0, of length |U(x)|
for a ∈ U(x) do ## For all possible controls.

val[a] = R(x+ a) +φ(x)(B− λ((x+ a)[K + 1])−
∑K

k=1 µk(x+ a)[k])
if (x+ a)[K + 1] > 0 then

qxy = λ((x+ a)[K + 1])/B
y = x+ a− eK+1 + eK+2

val[a] = val[a] + qxyφ[y]
end if
for k ∈ 1 to K s.t. (x+ a)[k] > 0 do

qxy = (x+ a)[k]µk
y = x+ a− ek + eK+1

val[a] = val[a] + qxyφ[y]
end for

end for
U(x) = arg max val

end for
if oldU == U then ## Check the termination condition.

Return U .
end if
iterationNumber = iterationNumber + 1

end while
Return U .

end function
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B.2 Policy Evaluation

We alluded to the approach here in Section 1.2.1, but now we clarify the detail. The

two key details are: near-instantanenous transitions under controls, and the use of

eigenvalues. it is also worth noting that we do not uniformise the chain, as there is

no need.

function PolicyEvaluation(U)## U is the policy to evaluate.
r = 0 ## Length is |X |.
for x ∈ X do r[x] = R(x)
end for

|X | =
(
N +K + 1
K + 1

)
Q = 00T ## I.e. a matrix of all zeros.
L = 100(N max(µi) + λ(N)) ## Near-impulsive controls.
for x ∈ X do

a = U [x]
## We do this differently depending on whether or not
## the control is non-zero.
if a[k + 2] 6= 0 then

Q[x, x] = −L
Q[x, x+ a] = L

else
Fill in row x of Q as in PolicyImprovement
Q[x, x] = −

∑
y 6=xQ[x, y]

end if
end for
Let λ1, . . . , λ|X | be the eigenvalues of Q
Find v, the eigenvector corresponding to arg mini=1,...,|X | |λi|
Normalise π = v/‖v‖
Return π · r.

end function
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B.3 Parameter Space Mapping

Suppose we have L different parameters a1, a2, . . . , aL. Each of them takes values in

its own (finite) set A1, A2, . . . AL. We want to enumerate all possible combinations,

and map them to the integers 1, 2, . . .. The essential idea is to use the same integer i

modulo the sizes of the various sets to pick which member of the sets we use. Here is

the procedure:

function ParameterSpace(A1, A2, . . . AL; L)

Find the size S =
∏L

i=1 |Ai|
Create a matrix R with L columns, and S rows, to hold the combinations
for i in 1 to S do

v = i− 1
for j in 1 to L do

w = v mod|Aj|
R[i, j] = Aj[w + 1]
v = bv/|Aj|c

end for
end for
Return R.

end function
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B.4 State-Space Mapping

As mentioned in Section 4.2 and Section 1.2.1, mapping the state-space X to the

integers 1, . . . , |X | is nontrivial for many problems, ours included. This is particularly

hard because the mapping must be bijective, as if we leave any gaps, when we come

to perform any operations on the matrix Q, it will be multiply degenerate.

The solution involves three things, because we want the mapping to be quick each

time we use it, but are happy having to spend some time to set up the mapping in the

first place. We have a function BackwardsSpaceMap or BSM : N → X , a function

ForwardsSpaceMap or FSM : X → N, which both rely on a matrix globalLookup

created by a function CreateLookup. The functions BSM and FSM are simple;

the function CreateLookup is not and deserves a full explanation.

This is what is invoked in the policy improvement and evaluation algorithms above.

When we write for x ∈ X , what that actually means is:

1. for i in 1 to |X |

2. x = BSM(i)

In the other direction, when we write Q[x, y], we mean Q[FSM(x),FSM(y)]. We

have left this out of the pseudocode as it is dense enough already.

The key detail for CreateLookup is: we want to generate all vectors x of length

K + 2 where the components are non-negative integers, and
∑K+2

k=1 xk = N . We do
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this through a form of unrolled recursion, working our way up on K. Additionally,

we generate all vectors of length K + 1 with
∑K+1

k=1 xk ≤ N , and then set xK+2 =

N −
∑K+1

k=1 xk so that the sum is N .

With this complicated setup, we make the resultant matrix globalLookup available

globally (hence the name), and the resultant maps are simple and simpleish:

function BSM(i)
Return row i of globalLookup.

end function

function FSM(x)
for i in 1 to |X | do

Read row i of globalLookup
if Row i and x are the same then

Return i.
end if

end for
end function
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function CreateLookup(N,K)

Create a matrix M of with N + 1 rows and 1 column

Set M [i, 1] = i− 1 for all possible i

## We have now generated all possible states for 1 task and ≤ N assets.

for j in 2 to K + 1 do

Create L = M , a new matrix

Define smallSize equal to the number of rows in L

Set bigSize = 0

## We now go through each state and see how many

## new states it will generate when we increase K by 1.

for i in 1 to smallSize do

Set x equal to row i of L

## This is the clever bit. If the vector x has
∑

k xk assets,

## we can tack on any integer 0, 1, . . . , N −
∑

k xk and

## the new x will not have more than x assets.

Increase bigSize by N + 1−
∑

k xk

end for

Recreate M as a matrix with bigSize rows and l columns

Define place = 1 ## To keep our place

for i in 1 to smallSize do

Set x equal to row i of L

for d in 0 to N −
∑

k xk do

Set row place of H to the vector (x1, . . . , xl, d)

Increment place by 1

end for

end for

end for

## We have to deal with the last task seperately, as it needs to

## take all remaining assets.

for i in 1 to |X | do

Take row i of M

Append to it N −
∑K+1

k=1 M [i, k]

end for

Return M , named globalLookup.

end function
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B.5 Whittle Indices

In Section 2.4.1 we give a formula for the Whittle indices for the restless bandit

approximation of the independent case.:

wk(xk) =

∑xk+1
x=0 πxk+1(x)gk(x)−

∑xk
x=0 πxk(x)g(x)

πxk(xk)− πxk+1(xk + 1)
(B.5.1)

Here ρk = λ(xK+1+1)

λ(xK+1+1)+µk
and:

πxk(x) =
ρxk/x!∑xk
y=0 ρ

y
k/y!

(B.5.2)

This is an analytic expression, but how do we calculate it efficiently? We can avoid

repeated calculation by calculating the probability distributions iteratively, and only

normalising at the end. This works as follows:
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function WhittleIndex(x, k, µk)

ρk = λ(xK+1+1)

λ(xK+1+1)+µk

Create vector π1 of length x[k] + 2
π1[1] = 1
for i in 1 to x[k] + 1 do

Set π1[i+ 1] = π1[i]ρk
i

end for
Create a vector π0 of the first x[k] + 1 elements of π1.
π1 = π1

‖π1‖

π0 = π0

‖π0‖
Create a vector r1 of length x[k] + 2
Fill in r1 as r1[i] = gk(i)
Create r0 out of the first x[k] + 1 elements of r0

top = π1 · r1 − π0 · r0

bottom = π0[x[k] + 1]− π1[x[k] + 2]
Return w = top/bottom.

end function



Appendix C: Use of Code

The above appendix explains how the algorithms work. But how does the code

actually work?

There are two folders “Markovian” and “General”, both of which have two folders

“Functions” and “Scripts”. The folder “General” corresponds to the results Sec-

tion 3.8, while “Markovian” is responsible for everything else. The folders “Scripts”

also contains all of the diagrams and data outputted by the scripts. The contents

of “Markovian” and “General” are analogous, so the rest of this should be taken as

describing both; we will mention divergences when they arise.

The contents of “Functions” are only ever called, and therefore need only concern

you if you are interested in the exact implementation details of the algorithms. In

“Markovian/Functions”, anything starting “TS ” refers to the two-phase case of Sec-

tion 3.7.

The folders “Scripts” have the key files in two sets: the scenario-running scripts and

the data-extraction scripts. There are also all of the outputs from the scripts, which

171
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have three categories:

1. .txt files, containing LaTeX formatted tables, labelled according to scenario and

datapoint. Generated by some of the data-extraction scripts.

2. .pdf files, containing the graphs generated by the data-extraction scripts.

3. .csv files, containing the data from the numerical experiments, generated by the

scenario-running scripts.

The data-extraction scripts are largely boring, doing what they describe in their

filenames and the comment at the top of each file. The scenario-running scripts are

more complex, and we shall explain them now. The pattern is the same for all of

them, and is as follows:

1. We load the files from “Functions”, and the relevant nonstandard libraries.

2. We set up the sets for the parameter values, as vectors, for example as Nvec =

(3, 4, 5, 6, 7, 8, 9, 10).

3. We set up dummy values for variables which need to be available globally, not

just in specific functions. This includes N,K and µk.

4. We set a counter for how many runs we have done already, to allow us to pause

and restart computation without losing data.

5. We set up a matrix experimentData to hold the data we are about to collect.
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6. Now for the big loop. For each scenario, we:

(a) Decide on the parameters using Appendix B.3.

(b) For each policy, form it for the current parameters.

(c) Evaluate each policy with Appendix B.2.

(d) Write the results and parameters to experimentData.

7. Write the matrix experimentData to a suitably named .csv file.

Hopefully this is sufficient explanation. One last thing: all the filepaths are hardcoded,

so if running them on a different machine you will have to change them all by hand.



Appendix D: Derivation

This corresponds to the discussion of randomly arriving rewards in 4.5.

Suppose we have a Poisson process A, of rate µ and an exponentially distributed

random variable B, of parameter λ. Let N be the number of arrivals to A that

happen at a time t < B. What is the distribution of N?

Well, the relevant distributions are:

Poisson(µ) ∼ e−µ
µn

n!
(D.0.1)

and

Exp(λ) ∼ λe−λt (D.0.2)

So, condition on the event B = t > 0. Then we have that
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p(A = n|B = t) = e−µt
µntn

n!
(D.0.3)

Now integrate over all possible t:

p(N = n) =

∫ ∞
0

p(A = n|B = t)p(B = t)dt (D.0.4)

Plug in the expressions:

p(N = n) =

∫ ∞
0

e−µt
µntn

n!
λe−λtdt (D.0.5)

This looks like a lot, but we can take everything not involving t safely outside of the

integral:

p(N = n) =
µnλ

n!

∫ ∞
0

tne−(λ+µ)tdt (D.0.6)

This integral is that of a gamma distribution. Properly, a gamma distribution with

parameters α, β is defined over (0,∞), with distribution:

βα

Γ(α)
xα−1e−βx (D.0.7)

Comparing to our integral, we have α = n + 1 and β = λ + µ. The integral in

Equation (D.0.6) above is therefore equal to the reciprocal of the normalising constant
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of that gamma distribution, so that we can write:

p(N = n) =
µnλ

n!

Γ(n+ 1)

(λ+ µ)n+1
(D.0.8)

For natural numbers Γ(n) = (n− 1)!. The factor of n! cancels out so that:

p(N = n) = µnλ
1

(λ+ µ)n+1
=

λ

λ+ µ
(

µ

λ+ µ
)n (D.0.9)

This is a geometric distribution, with probability of success µ
λ+µ

�.

#freeHK
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using variance estimates in multi-armed bandits. Theoretical Computer Science,

410(19):1876–1902, 2009.

[114] N. Galichet, M. Sebag, and O. Teytaud. Exploration vs. exploitation vs. safety:

Risk-aware multi-armed bandits. In Asian Conference on Machine Learning,

pages 245–260, 2013.

[115] K. Glazebrook. On a class of non-Markov decision processes. Journal of Applied

Probability, 15(4):689–698, 1978.

[116] S.D. Whitehead and L.-J. Lin. Reinforcement learning of non-Markov decision

processes. Artificial Intelligence, 73(1-2):271–306, 1995.

[117] D. Bertsekas. Dynamic programming and optimal control. Athena Scientific

Belmont and MA, 1995.

[118] W.B. Powell. What you should know about approximate dynamic programming.

Naval Research Logistics, 56(3):239–249, 2009.

[119] C. Pike-Burke, S. Agrawal, C. Szepesvari, and S. Grunewalder. Bandits with

delayed, aggregated anonymous feedback. In International Conference on Ma-

chine Learning, pages 4105–4113, 2018.



BIBLIOGRAPHY 192

[120] Z. Zhou, R. Xu, and J. Blanchet. Learning in generalized linear contextual

bandits with stochastic delays. In Advances in Neural Information Processing

Systems, pages 5197–5208, 2019.

[121] J. Tyo, O. Neopane, J. Byrd, C. Gupta, and C. Igoe. Multi-armed bandits with

delayed and aggregated rewards. Technical report, CCDC ARL Adelphi United

States, 2019.

[122] T.L. Lai and H. Robbins. Asymptotically efficient adaptive allocation rules.

Advances in Applied Mathematics, 6(1):4–22, 1985.


	Abstract
	Acknowledgements
	Declaration
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	List of Symbols
	1 Introduction
	1.1 Describing the Problem
	1.1.1 Real-World Inspirations
	1.1.2 Formulating Models of our Problem

	1.2 Mathematical Review
	1.2.1 Markov Decision Problems
	1.2.2 Multi-Armed Bandits

	1.3 Related Work
	1.3.1 Classes of Allocation Problems
	1.3.2 Queueing Theory
	1.3.3 Multi-Agent Models
	1.3.4 Dynamics of Failure
	1.3.5 Bandit Problems

	1.4 Next Steps

	2 The Independent Case
	2.1 Introduction
	2.1.1 Motivating Examples
	2.1.2 Problem Description
	2.1.3 Contributions and Chapter Structure

	2.2 The Problem Formulation
	2.2.1 Markov Decision Process Model
	2.2.2 Solution by Dynamic Programming

	2.3 A Restless Bandit Approximation
	2.3.1 The Approximating System
	2.3.2 Indexability

	2.4 Policies
	2.4.1 The Whittle Index Rule
	2.4.2 Policies for Comparison

	2.5 Numerical Experiments
	2.5.1 Policy Evaluation
	2.5.2 Results

	2.6 Conclusion

	3 The Dependent Case
	3.1 Introduction
	3.1.1 Problem Description
	3.1.2 Chapter Structure

	3.2 Mathematical Formulation
	3.3 Policies
	3.3.1 The Policy Skeleton
	3.3.2 -Policies
	3.3.3 Optimising, and Policy Improvement
	3.3.4 The Concavity Policy

	3.4 Procedure for Experiments
	3.4.1 Procedure & Parameter Values
	3.4.2 Policies

	3.5 Numerical Results
	3.5.1 Summary of Results

	3.6 An Extended Case
	3.7 The Two-Phase Model
	3.7.1 Two-Phase Formulation
	3.7.2 Two-Phase Case Results

	3.8 Non-Markovian Dynamics
	3.8.1 The Non-Markovian Model
	3.8.2 Policy Evaluation & Simulation
	3.8.3 Policy Translation
	3.8.4 Optimality and Comparison
	3.8.5 Results and Conclusions

	3.9 Future Work

	4 Conclusions
	4.1 Findings
	4.2 Lessons Learned
	4.3 Applying These Results
	4.4 Intensifications
	4.5 Extensions

	A Proving The Identity
	B Algorithm Pseudocode
	B.1 Policy Improvement
	B.2 Policy Evaluation
	B.3 Parameter Space Mapping
	B.4 State-Space Mapping
	B.5 Whittle Indices

	C Use of Code
	D Derivation
	Bibliography

