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Abstract: As different algae growths responding to a set of nutrients can occur under different conditions, 15 

the nutrient load management based on the relationship between chlorophyll a (Chla) and total phosphorus 16 

(TP) alone may not always effective for lake algae bloom control. It is not clear whether the lagged 17 

response of algae to reduced nutrients related to the utilization efficiency of algae to phosphorus (UEAP), 18 

and how UEAP could response to climate and water quality factors. Here we analyzed over 20 years 19 

monitoring data in two lakes with similar geology but different nutrient levels by using statistical and 20 

modeling methods. The aim was to reveal the impact of UEAP on lake algae dynamics and the driving 21 

factors of UEAP changes. The results showed that UEAP is one of the key factors affecting algae dynamics, 22 

the incorporation UEAP and its driving factors achieved greater modeling reliability. UEAP, Nitrogen 23 

phosphorus ratio (NPr) was the key driving factor in Dianchi Lake, while total nitrogen (TN) and air 24 

temperature (AT) were the key driving factors in Erhai Lake. The changes of nutrients and climate drove 25 

UEAP into the paralysis or sensitive phase depending on lake specific factors and conditions. This 26 
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correlated to algae density dynamics, in particular to those characteristic of algae growth thresholds. The 27 

future trend of climate change will continue to promote the increase of UEAP in both lakes, but severer in 28 

Erhai Lake. The key finding here is of the value of a proxy index (UEAP) for phosphorus utilization was 29 

associated with the lagged response of algae to nutrient reduction. We demonstrated the related modeling 30 

procedures with two-function variable (UEAP) of both prediction and response can predict the trend of 31 

algae growth and determine the states of the lake ecosystem. Hence, the approaches are of great value for 32 

lake management policy making.  33 

Keywords: algal bloom, climate change, lake eutrophication, phosphorus utilization efficiency, water 34 

quality 35 

1. Introduction 36 

Phosphorus is a necessary nutrient element for aquatic organisms to carry out biosynthesis and energy 37 

production, and it is also a major limiting factor for lake primary productivity (Kaiserli et al., 2002; Reeder, 38 

2017). In the 1970s, some scholars put forward the concept of "phosphorus loading", which is based on the 39 

premise that the load of phosphorus influences the concentration of phosphorus in lakes, and higher 40 

concentration of phosphorus lead to higher primary production (Dillon, 1974; Rowland et al., 2020). The 41 

studies on the Chla-TP relationship in lakes around the world showed that the Chla concentration increases 42 

with the increase of TP concentration in a logarithmic linear function (Dillon and Rigler, 1974; Jones and 43 

Bachmann, 1976; Tang et al., 2019; Liang et al., 2020). These relationships suggest that phosphorus limits 44 

the primary productivity of most lakes, which has become a long-term paradigm for limnology (Canfield Jr., 45 

1983; Filstrup et al., 2014; Smith and Shapiro, 1981). Based on this theory, people began to reduce external 46 

and internal loads of phosphorus according to load targets, so as to reduce biomass such as phytoplankton 47 

and lake eutrophication control (Ibisch et al., 2017; Søndergaard et al., 2005). However, this method is not 48 

always effective (Sas, 1990; Dodds et al., 1998; Oliver et al., 2017; Huang et al., 2018). As far as algae 49 

control is concerned, it is desirable to reveal the responding behaviors of lake ecosystems to environmental 50 

changes when setting the lake management strategy.  51 

In the Chla-TP relationship, the UEAP reflects the nutrient and energy flow in the lake ecosystem, 52 

which is of great significance for understanding the state of the ecosystem (Abell et al., 2012; Huo et al., 53 
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2014). Although previous studies have expressed UEAP as the ratio of TP to Chla per mass unit (Huo et al., 54 

2019a), this ratio does not truly reflect the availability of phosphorus. There is still no effective method in 55 

to quantify the change of UEAP on a long-term series and spatial scale. The impact of nutrients on algae 56 

depends on other growth conditions and environmental factors. Changes of the concentration of nutrients in 57 

water, or ratio between different nutrients, such as the ratio of nitrogen to phosphorus (NPr), can affect the 58 

interaction between nutrient and Chla (Hamilton and Mitchell, 1997). The relationship between nutrients 59 

and primary productivity is affected by meteorological conditions, which leads to changes of the utilization 60 

of algae to nutrients (Huo et al., 2019b; Davis et al., 2009; Wood et al., 2016). For example, temperature 61 

and light intensity determine the growth response of algae and its relationship with nutrients (Halldal and 62 

French, 1958). Water temperature is highly correlated with primary productivity and affects the relationship 63 

between nutrients and Chla significantly (Liu et al., 2018; Wang et al., 2016). Climatic warming can cause 64 

regime shifts in lake food webs (Scheffer et al., 2001). Light intensity is an important condition for the 65 

growth of phytoplankton and is related to absorption of phosphorus and other micronutrients (Paerl et al., 66 

2011). Rainfall dilutes the lake water and brings nutrients into the lake (Huo et al., 2014), resulting in 67 

changes of the nutrients concentrations, which, in turn, alter the growth of algae. Climate change can effect 68 

on the water budget components and snow-melt runoff of lakes, which can change the hydrological 69 

conditions of algae growth (Kansoh et al. 2020; Javadinejad et al. 2020). Wind velocity affects the 70 

synthesis of gas vesicles in algae breeding and the distribution of algae cells, and also disturbs the water 71 

body to release nutrients from sediments (Yang et al., 2016). Broadly speaking, climate change is warming 72 

lakes, and the more frequent extreme precipitation events in many regions may be transport more nutrients 73 

to surface water (O'Reilly et al., 2015; Allan and Soden, 2008). At the same time, the flow of rivers entering 74 

the lake will also affect the hydrological conditions of the lake. Only by ensuring proper river flow and 75 

morphological quality can environmental goals be achieved (Ćosić-Flajsig et al., 2020). These changes are 76 

unevenly distributed in time and space, but all of these are expected to affect the effectiveness of lake 77 

eutrophication control. Determining the long-term characteristics of UEAP and its main driving forces are 78 

valuable in understanding how water ecosystems will change in a warmer and extreme climate.  79 

In the world, one-third of the lakes are under considerable human pressure (Mammides, 2020). Water 80 

quality management is the main concern and research hotspot in current water pollution problems 81 
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(Zhang, 2019), many lakes still face algae bloom problem even with improved water quality (Sas, 1989; 82 

Dodds et al., 1998; Scheffer and Nes, 2007; Yang et al., 2008; Huang et al., 2018). and In China, with 83 

economic development and rapid urbanization, excessive external nutrient load causes the lake water 84 

quality to deteriorate drastically (Qin et al., 2010; Tong et al., 2017; Zhou et al., 2017). In order to improve 85 

the water quality of lakes, the Central Government of China issued a series of strict laws, plans and 86 

guidelines from 2005 to 2017, including a series of five-year plans, the Guidelines on Strengthening Water 87 

Environmental Protection for Key Lakes in 2008 and the Water Pollution Control Action Plan (Water Ten 88 

point Plan) in 2015. The investment in environmental restoration for improving the water quality of lakes 89 

and rivers has increased from nearly 0 in 1994 to 1 trillion yuan in 2014 (Huang et al., 2019; Zhou et al., 90 

2017), especially for the three eutrophic lakes (Taihu, Chaohu and Dianchi Lakes). Eutrophication and 91 

harmful algal blooms of the three lakes have received great attention (Duan et al., 2017; Ni et al., 2016; 92 

Stone, 2011; Tong et al., 2017). At present, the water chemical quality of lake statue such as Taihu Lake, 93 

Chaohu Lake and Dianchi Lake has been improved to a certain extent, and the nutritional level has been 94 

reduced, but algal blooms have not been controlled effectively (Huang et al., 2018; Wu et al., 2017; Yang et 95 

al., 2008). Measures to reduce surface water pollution include the construction of sewage treatment plant, 96 

lakeside pollution interception, agricultural non-point source control, ecological restoration and dredging in 97 

the lake, and external load control (Liu et al., 2014), but the understanding of the impact of all these efforts 98 

on the lake ecosystem is still very limited. 99 

In view of the huge cost of water quality management, we need to understand the reasons for the 100 

delayed response of algae to water quality improvement, and the relationship between the lake ecosystem 101 

and the staged characteristics of lake governance. As the response of algae growth to the nutrients are 102 

multi-factor controlled, nutrient load management based on the relationship between Chla and TP may not 103 

always effective for lake algae bloom control. Thus, is it possible that the current unexplained phenomenon 104 

of sustained algal blooms in water nutrients level improved or low-maintained lakes was the consequences 105 

of the changes of UEAP? In other words, was it possible the increased UEAP caused by nutrient factor and 106 

climate factor have offset the benefit of catchment management for reducing nutrient loads to lakes? If yes, 107 

what are the main drivers in controlling UEAP? When the threshold point and paralysis or active phase are? 108 

Is the change of UEAP the main driver for the change of algae? 109 
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Dianchi Lake and the Erhai Lake are the two climate-sensitive lakes with different nutritional states in 110 

Yungui Plateau of China. Before the 1980s, Dianchi Lake had a good water quality with lower nutrients 111 

contents. With the rapid economic development and urbanization in the lake basin, large amounts of 112 

external nutrient input has caused rapid deterioration of water quality and severe eutrophication (Chen et al., 113 

2020). Erhai Lake is mainly affected by agricultural non-point source pollution. For a long time, Erhai Lake 114 

has maintained in the middle or low nutrition level and the water quality is at Grade II and III, but algal 115 

blooms have also occurred from time to time (Chu, 2020). In order to verify the above hypothesis, the two 116 

lakes were taken as examples for the study to investigate: (1) the relationships between UEAP and algae 117 

density, and significance of UEAP and other factors, (2) the main driving forces for lake UEAP in the past 118 

20 years and their relevance and significance in individual lakes, (3) the improvement of modeling 119 

reliability for algae density by incorporation of UEAP and other factors (4) the simulation UEAP changes 120 

in response identified lake specific driving forces, explaining lake ecological status and stages, and 121 

speculating future trajectories of the lake ecology with possible interventions. Unlike our previous studies 122 

on the impact of sediment release on lake eutrophication (Chen et al., 2020; Ni et al., 2016), this study 123 

investigates the response of UEAP to nutrients and climate and discusses the mechanism of lake 124 

eutrophication from the perspective of changes in the water ecosystem. This result will reveal the impact of 125 

UEAP on lake algae dynamics and the driving factors of UEAP changes, therefore, provide a diagnosis 126 

method of lake ecosystem state, hence it is pertinent to the insights of algal blooms control from the 127 

perspective of water ecological changes. 128 

2. Materials and methods  129 

2.1. Study area 130 

Dianchi Lake (24°40′-25°02′ N, 102°36′-103°40′ E) and Erhai Lake (25°36-25°58′N, 100°05′-100°17′E) 131 

are located in southwest of Kunming city and Dali Prefecture, Yunnan Province, respectively (Fig. 1). They 132 

are the largest and second largest freshwater lake in Yunnan-Guizhou Plateau in southwestern China, 133 

respectively. The area of the Dianchi watershed is 2920 km2, and the area of lake is approximately 298 km2 134 

at an average water level of 1887.4 m. The area of the Erhai watershed is approximately 2565 km2, and the 135 

area of lake is approximately 249.8 km2 at an average water level of 1974 m. The hydraulic retention time 136 
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of Dianchi Lake is about 4 years of the lake. Dianchi Lake has been divided into two parts artificially. 137 

Among them, Waihai is located in the south (299 km2, with an average water depth of 5 m), and Caohai is 138 

located in the north (11km2, with an average water depth of 2.5 m) (Wang et al., 2019). The average water 139 

depth of Erhai Lake is 10.5 m, and the hydraulic retention time is about 2.75 years. The average annual 140 

temperature in the Dianchi basin is 14.7 ℃, and the average annual rainfall is 1006 mm. For Erhai Lake, 141 

the average annual temperature of Erhai basin is 15.1℃ with the sufficient sunshine hours, and the annual 142 

dominant wind is southwest wind, and the annual precipitation is 1048 mm. More than 80% of precipitation 143 

is concentrated in May-October. There are 35 rivers flowing into Dianchi Lake, all of which converge into 144 

the lake along the north, east and south directions of the lake. However, there are 23 rivers enter the lake 145 

mainly, which accept all the incoming water in the basin. Xi'er River is the only river that flows out of the 146 

Erhai Lake (Wang, 2015). From the assessment reports of Five Year Plan (2006-2020) for Dianchi basin 147 

and Erhai basin, the soil types in the Dianchi Lake basin are mainly paddy soil and red soil, while the soil 148 

types in the Erhai Lake basin are mainly red soil, purple soil and brown forest soil. In recent years, the per 149 

capita GDP in the Dianchi Lake basin has increased year by year. The average per capita GDP (2005-2015) 150 

has increased by 3.2 times, and the annual growth rate was 12.34%. The average GDP growth rate of the 151 

Erhai Lake basin has reached more than 10% (2005-2015), and it is also one of the fastest growing regions 152 

in Yunnan Province. However, the overall industrial structure of the Erhai Lake basin is relatively low, and 153 

the development model is relatively extensive. The largest land use type in the Dianchi Lake basin is forest 154 

land, mainly coniferous forest, broad-leaved forest and mixed forest. With a wide variety of plants and rich 155 

in biodiversity, the Erhai Lake basin is an important biodiversity treasure house in China. The horizontal 156 

zonal vegetation in the Erhai Lake basin is semi-humid evergreen broad-leaved forest and Yunnan pine 157 

forest, and Yunnan pine forest is currently widely distributed. 158 
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159 
Fig. 1. Study area, the regularly sampled monitoring stations and meteorological stations in the Dianchi and 160 

Erhai Lakes. A is the locations of Dianchi and Erhai Lakes in China; B is the elevation map of the Dianchi 161 

Lake (right) and Erhai Lake (left); C is the location of Erhai Lake and the water quality indicator 162 

monitoring section; D is the location of the Dianchi lake and the water quality indicator monitoring section. 163 

2.2. Data sources 164 

The data of Kunming Meteorological Station (NO. 56778, 25°N, 102°38′24′′E, altitude 1886.5 m) and 165 

Dali Prefecture Meteorological Station (NO. 56751, 25.7°N, 100°18′41′′E, altitude 1990.5 m) were 166 

represented the climate of Dianchi Lake and Erhai Lake, respectively. The meteorological data of Dianchi 167 

Lake was obtained from the China Meteorological Data Center (CMDC), http://data.cma.cn/. The 168 

meteorological data of Erhai Lake was obtained from the National Greenhouse Data System (NGDC), 169 

http://data.sheshiyuanyi.com/WeatherData//. Meteorological indicators included air temperature (AT, ℃), 170 

precipitation (PP, mm), wind velocity (WV, m/s) and sunshine hours (SH, h). The water quality of rivers 171 

and lakes in Dianchi Lake (1998-2019, 10 stations, month by month) and flow data were from 172 

Environmental Monitoring Center Station and Hydrological Bureau of Kunming city, respectively. The 173 

water quality of rivers and lakes in Erhai Lake (1994-2019, 11 stations, month by month) and flow data 174 

were from Environmental Monitoring Center Station of and Hydrological Bureau of Dali Prefecture, 175 

respectively. The TP load of the river entering the lakes was calculated using the Wi=Ci×Qi formula (Zhao 176 

et al., 2013) , where Wi is the TP load into the lake in i year, t/a; Ci is the mean concentration of TP in the 177 

http://data.cma.cn/
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river inlet in i year, mg/L; Qi is the average amount of water inflow into lake in i year, m3/s. Water quality 178 

indicators include water temperature (WT, ℃), dissolved oxygen (DO, mg/L), acidity and alkalinity (pH), 179 

servo disk depth (SD, m), total nitrogen (TN, mg/L), TP (mg/L) L), nitrogen phosphorus ratio (NPr), 180 

chemical oxygen demand (CODCr, mg/L), biochemical oxygen demand (BOD5, mg/L) and Chla (mg/L). 181 

The relevant data for watershed water pollution control and load of lakes were from the assessment reports 182 

of the "Eleventh Five-Year Plan (2006-2010)", "Twelfth Five-Year Plan (2011-2015)" and "Thirteenth 183 

Five-Year Plan (2016-2020)" of Dianchi Lake basin and Erhai Lake basin. The abbreviations of the 184 

indicators were listed in the abbreviation table in the Supporting information files. According to the 185 

implementation of national governance measures and changes in pollution load, combined with the 186 

occurrence of algal blooms, the research time of Dianchi and Erhai Lakes were divided into three stages. 187 

Among them, Stage Ⅰ from 1998 to 2005, Stage Ⅱ from 2006 to 2012 and Stage Ⅲ from 2013 to 2019 for 188 

Dianchi Lake, and Stage Ⅰ from 1994 to 2002 Stage Ⅱ from 2003 to 2012, and Stage Ⅲ from 2013 to 2019 189 

for Erhai Lake.  190 

2.3. Statistical analysis 191 

 (1) Hierarchical Linear Model (HLM) 192 

Multi-level/hierarchical modeling method can associate single observations with group-level variables 193 

and make statistical inferences based on group mean and population mean (Malve and Qian, 2006). A 194 

hierarchy structure was introduced into the data, including the observations nested in each year group and 195 

the year group nested in each lake. The log-log linear model was used as the basic model form of the 196 

Chla-TP relationship. Log-logarithmic linear regression represents the proportional change relationship 197 

between response and predictor variables (Qian, 2017). That is, the model assumes that a 1% increase in 198 

predictor variables will result in a fixed percentage increase in response variables. When using natural 199 

logarithm, the fitting slope (β) is the fixed percentage (β%) (Tang et al., 2019). 200 

TP, Chla and meteorological data were grouped by year, where paired data of Chla-TP corresponds to 201 

the same sampling site. There were two lakes as types, and each lake was divided into n groups by year. 202 

There were 10 sampling monitoring sections in Dianchi Lake (Fig. 1C). The water quality indicators were 203 

sampled and monitored once a month for 12 months a year. Therefore, the annual Chla-TP paired data of 204 
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Dianchi Lake has 120 observation values. The monthly sampling sections of Erhai Lake were different 205 

(4-12 sections), and the water quality indicators were sampled and monitored once a month for 12 months a 206 

year. Therefore, the annual Chla-TP paired data of Erhai Lake has 53-144 observation values. The 207 

hierarchical nature of the data was formally assessed using 2-level models. The first layer was the 208 

observation value of n groups, and the relationship between Chla and TP was established. In the second 209 

layer, the relationship model between the influence factors and the intercept or slope of the first layer was 210 

established.  211 

In the first level, after natural log-transforming, concentrations of Chla and TP were modeled linearly 212 

(Formula 1). 213 

Level 1: 0 j 1j ijk ijln( )= ln( ) +Chla TPβ β+ γ  (1) 

Where β0 and β1 are the intercept and slope of the Chla-TP regression model in a certain type; ln(TP) is 214 

the natural logarithmic conversion of TP. Since the intercept and slope coefficients are random variables 215 

that vary across the lakes, they are often referred to as random coefficients. In our study, the specific values 216 

for the intercept and the slope coefficients are a lake characteristic (Hox, 2010). The intercept (β0) is the 217 

expected natural logarithmic Chla concentration when the TP concentration is at the given level, a higher 218 

intercept indicates a higher Utilization Efficiency of Algae to TP (UEAP) (i.e., the same TP value resulting 219 

in a higher Chla) (Tang et al., 2019). In the previous study, some studies express UEAP as the ratio of TP to 220 

Chla per mass unit (Huo et al., 2019a), but a higher or lower value will affect the result. Here, regression 221 

model method provides a best fitting and makes UEAP comparable between different lakes objectively. 222 

Moreover, we established a relationship between Chla and TP data from point-to-point at each time point of 223 

the year to investigate that if TP is indeed supplying Chla productivity, this can better reflect the efficiency 224 

of phosphorus utilization. Therefore, we used the intercept of the Chla-TP relationship model to represent 225 

UEAP to achieve quantization the on long-term data sets. The slope (β1) indicates the degree of changes of 226 

Chla in responding to TP increases or decreases in the lake, which represents the Response Rate of Algae to 227 

TP (RRAP); a higher slope indicates that the lake is more sensitive to TP; γ is the residual. 228 

In the second level, we assume that the interannual change of the lnChla-lnTP relationship can be 229 

explained by changes in meteorological factors. Through Spearman correlation analysis, significant 230 

correlation factors were included as covariates in the model to illustrate the changes in the groups of 231 
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intercepts and slopes of the Chla-TP relationship (Formulas 2 and 3).  232 

Level 2: 0 j 00 01 0 j ( )factorβ γ γ= + +μ  (2) 

 1j 10 11 1j ( )factorβ γ γ= + +μ  (3) 

Among them, γ00, γ01, γ10 and γ11 are the fixed coefficients (fixed effects) obtained in this process; γij, 233 

μ0j, and μ1j are random errors (random effects). That is, in the HLM software operation result part, the 234 

value of γ00, γ01, γ10 and γ11 is the fixed effect part, and the variance of the residuals of γij,μ0j andμ1j is the 235 

random effect part.  236 

(2) Generalized Additive Model (GAM) 237 

GAM is a non-parametric generalized multiple linear regression method based on the extension of the 238 

Generalized Linear Model (GLM). The advantage of GAM is that it can directly fit the non-linear 239 

relationship between the response variable and multiple explanatory variables (Guisan et al., 2002), add 240 

different forms of functions, find out the rules, and adapt to various function analysis of type distribution 241 

(Richard and Brent, 2008). Compared with linear models, the distribution of Y in GAM can be any form of 242 

exponential distribution (such as Gaussian distribution, Poisson distribution, binomial distribution), and the 243 

link function can be any monotonic differentiable function (such as logarithmic function or logistic 244 

function). The GAM method uses a smooth function s(x) instead of a linear function (Pearce et al., 2011; 245 

Capo et al., 2017), so the independent and dependent variables are not limited to linear relationships. These 246 

advantages enable the GAM model to deal with non-normally distributed response variables, while also 247 

including qualitative and semi-quantitative predictors. The general formula is: 248 

0 1 1 m mg( ) ( ) ... ( )+y s s x s x ε= + + +                       (4) 249 

where s(x) is a smooth function connecting explanatory variables and ε is a random residual. 250 

The choice of explanatory variables is determined by the strength of the correlation between the 251 

response variable and the explanatory variable, and the principle is to select the index with the strongest 252 

correlation (Deng et al., 2015). In this study, meteorological and water quality factors were used as 253 

explanatory variables, UEAP and algae density were used as response variables, and the explanatory rate of 254 

the explanatory variables to the response variables was evaluated using the GAM method. For specific 255 

steps, refer to the literature by Deng et al. (Deng et al., 2015; Chen et al., 2020). First, calculate the 256 
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variance expansion factor (VIF) by calling the vif function in the bstats package in the R language software 257 

to determine the collinearity of the predictor variables and eliminate the variables that may cause 258 

collinearity (When 0<VIF<10, there is no multicollinearity; when 10≤VIF<100, there is strong 259 

multicollinearity; when VIF≥100, there is severe multicollinearity). Then, determine the connection 260 

function according to the probability density distribution type of the response variable. Next, all variables 261 

selected by collinearity diagnosis are analyzed by the gam function in the mgcv software package based on 262 

R software, and the best model is determined according to the principle of "raj
2 is the largest, AIC is the 263 

smallest". Finally, use the gam check function to evaluate the effect of the best model and the residual 264 

distribution. In this study, the GAM method was used to analyze the correlation between UEAP (and algae 265 

density) and influencing factors of two lakes. 266 

(3) Principal Component Analysis (PCA) 267 

PCA can replace the original indicators with some main components, and reorganize many related 268 

water quality and climate indicators into a set of unrelated new comprehensive indicators, thereby revealing 269 

the internal structure between multiple variables through several main components (Moore, 1981). The 270 

process of identifying driving factors for UEAP is as follows: First, Spearman correlation analysis was used 271 

to analyze the correlation between environmental variables and UEAP, and factors that are not related to 272 

UEAP were eliminated. Then, analysis, dimensionality reduction and factor analysis were performed in 273 

turn, and basic statistical information after selecting variables was output. After the main factors were 274 

extracted by PCA, the characteristic parameters were divided into several main components. Finally, based 275 

on the principal component method and the maximum variance rotation method, the interpretation rate of 276 

water quality and climate factors on the UEAP variance was obtained, and the influence and contribution of 277 

the main factors to UEAP were determined and quantified. 278 

2.4. Data processing 279 

The image (Fig. 1) of study area was performed in ArcGIS software. HLM analysis was performed by 280 

using HLM 6.08 software. GAM analysis was performed by using R language. Spearman and PCA analysis 281 

were performed by using the SPSS 20.0 statistical software, and the level of significance used was p < 0.05 282 

for all tests. Plotting and regression analyses were completed using the Origin 2019. 283 
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3. Results 284 

3.1. Relationships between TP and Chla 285 

In the past 22 years, the average concentration scale of TP and Chla in Dianchi Lake were 0.070-0.480 286 

mg/L and 0.047-0.111mg/L, respectively. The highest values of TP and Chla appeared in 2009 and 1999, 287 

respectively, while the lowest values all appeared in 2018 (Fig. 2A). TP concentrations of Dianchi have 288 

been in inferior Grade V water (national surface water quality standard) for many years. The water quality 289 

has improved in recent years, and most sites are superior to inferior category V water. In the past 26 years, 290 

the average concentration scales of TP and Chla in Erhai Lake were 0.015-0.058mg/L and 291 

0.00058-0.023mg/, respectively (Fig. 2B). The highest values of TP and Chla appeared in 2007 and 2003, 292 

respectively, while the lowest values appeared in 1995 and 2000, respectively. Before 2003, the average 293 

concentration of Chla in Erhai Lake was lower than 0.007mg/L in each year, but after 2003, Chla increased 294 

significantly. Among them, the overall average concentration of Chla in 2003-2019 was 6 times higher than 295 

that in 1994-2002. The log-linear model between Chla and TP was established for Dianchi Lake and Erhai 296 

Lake based on more than 20 years data (Figs. 2CD, S1 and S2). A scatter plot showed that there is a linear 297 

relationship between on TP and Chla of the two lakes in most years over 20 years (p<0.05) (Table S1). 298 

However this general linear relationships model (p<0.05) (Table S1) could not explain the actual Chla 299 

fluctuations against TP over time (Fig. 2 A and 2B).  300 

2000 2005 2010 2015 2020

-0.2

0.0

0.2

0.4

0.6

0.8

1.0  TP
 Chla

TP
 (m

g/
L)

Year

Error

-0.04

0.00

0.04

0.08

0.12

0.16

0.20

0.24

C
hl

a 
(m

g/
L)

A

1995 2000 2005 2010 2015 2020

0.01

0.02

0.03

0.04

0.05

0.06

0.07  TP
 Chla

TP
 (m

g/
L)

Year

Error

-0.02

-0.01

0.00

0.01

0.02

0.03

0.04

0.05
C

hl
a 

(m
g/

L)
B

 301 



13 
 

-4 -3 -2 -1 0 1 2 3

0

2

4

6

8

 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 Linear fit

ln
 (C

hl
a)

ln (TP)

C

-5.5 -5.0 -4.5 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5

-3

-2

-1

0

1

2

3

4

5  1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 Linear fit

ln
(C

hl
a)

ln(TP)

D

 302 
Fig. 2. Changes of the relationship between Chla and TP in the two lakes in the past two decades. 303 

(A) and (B) are the changes of measured Chla over time VS TP of Dianchi (A) and Erhai (B) Lakes. 304 

(C) and (D) are the relationship and fit lines between ln (Chla) and ln (TP) in Dianchi Lake (C) and 305 

Erhai Lake (D) based on the actual measure data for each year. 306 

3.2. Relationships between UEAP and algal density 307 

Fig. 3A shows that the scales of UEAP in Dianchi Lake were 4.00-6.79 (4.69±0.66) with a relatively 308 

small fluctuation ranges (2.79). Among them, UEAP fluctuated between 4 and 5 before 2013, but increased 309 

after 2013, especially in 2014 and 2017 (higher than 6). However, the scale of UEAP in Erhai Lake were 310 

-2.01 to 8.40 (4.26±2.71) and with a relatively large fluctuation ranges (10.41) (Fig. 3A). The UEAP with a 311 

lower intercept group was before 2003, and the higher group was after 2003. Before 2003, the UEAP of 312 

Erhai Lake was lower than Dianchi Lake, and then increased gradually and exceeded that of Dianchi Lake. 313 

The change trend of the RRAPs of the two Lake was similar to the change of their UEAPs, which increased 314 

after 2013 and 2003, respectively (Fig. 3B). After 2001, the RRAP of Erhai Lake was higher than that of 315 

Dianchi Lake significantly (p<0.05). All the fluctuations were correlated with the changes of algal density 316 

in the time serials (Fig. 3 and Table S2).  317 
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Fig. 3. Changes of UEAP and RRAP against Chla in 20 years in Dianchi Lake (A) and Erhai Lake (B). 319 

In order to investigate the relationship between UEAP and algae growth, meteorological factors, water 320 

quality and UEAP were used as explanatory variables, and algal density was used as the response variable. 321 

Elimination of the irrelevant indicators to algal density was conducted by Spearman analysis in the 322 

meteorological and water quality indicator. After collinearity diagnosis, the remaining factors were 323 

arranged and combined as explanatory variables to construct the GAM nonlinear model. Figs. 4 and S3 324 

showed the predictive model curves of univariate and multivariate for the changes of algal density in the 325 

two lakes. Table 1 showed the model and related parameters. The model R2 is between 0.17 and 0.78. 326 

According to the principle of smaller AIC and higher DE, also combined with the value of Adj-R2, GAM 327 

results showed that the interpretation rates of UEAP for algal density in Dianchi Lake and Erhai Lake were 328 

65.67% and 58.93%, respectively. However, the combined model of UEAP, WV and TP was the best model 329 

of algal density variation in Dianchi Lake, and its interpretation rate was 75.76%. The combined model of 330 

UEAP and TN was the best model of algal density variation in Erhai Lake, and its interpretation rate was 331 

85.44%. The model including UEAP can better explain the variation of algal density, indicating that UEAP 332 

has contributed to the change of algal density. A nonlinear correlation was observed between UEAP and 333 

algal density (Figs. 4DC-1 and EH-1), indicating the UEAP is a better parameter for explanation of algae 334 

dynamics. This relationship reflected the algal density fluctuations over time and the characteristic of 335 

threshold natures. When we consider other key factors, there may be a threshold for the response of algae to 336 

UEAP. For example, after exceeding the threshold (about 5.5) in Dianchi Lake, the promotion effect of 337 

UEAP on algae was diminishing.  338 
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Table 1 GAM related parameters for the changes of algal density in Dianchi and Erhai Lakes. 339 

Note: EV, Explanatory variables; PV, Predictor variable; DE, deviance explained; AIC, akaike information criterion. 340 

 341 

 342 

 
Dianchi Lake Erhai Lake 

EV PV Adj-R2 DE (%) AIC PV Adj-R2 DE (%) AIC 

Algal 

density 

UEAP 0.53 65.67 361.39 UEAP 0.47 58.93 402.65 

WV 0.61 66.27 355.21 AT  0.17 20.38 410.59 

TP 0.23 26.85 368.78 TN 0.61 62.26 391.18 

UEAP+WV 0.61 67.96 356.2 UEAP+AT 0.45 58.94 404.19 

UEAP+TP 0.66 73.12 353.06 UEAP +TN 0.78 85.44 381.9 

WV +TP 0.61 67.75 356.15 AT+TN 0.71 78.76 388.08 

UEAP+WV+TP 0.68 75.76 352.98 UEAP+AT+TN 0.59 64.29 394.45 

EH-1 EH-2 

DC-1 DC-2 DC-3 
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Fig. 4. GAM analysis results of the predictor variables on the changes of algal density in Dianchi (DC) and 343 

Erhai (EH) Lakes. AD is the algal density. 344 

3.3. Factors driving UEAP 345 

After Spearman analysis (Table S2) and extracting the main water quality and meteorological factors 346 

affecting UEAP, the parameters were divided into two principal components (PC1 and PC2) by PCA. For 347 

UEAP of Dianchi Lake (Fig. 5A), PC1 explained 45.87% of the total variance, while PC2 explained 29.64% 348 

of the total variance, respectively. Among them, TN, NH3N and DO were the main components of PC1, and 349 

PP, WV, NPr and Chla were the main component of PC2 in Dianchi Lake. For UEAP of Erhai Lake (Fig. 350 

5B), PC1 explained 58.60% of the total variance, while PC2 explained 19.00% of the total variance, 351 

respectively. Among them, TN, COD, BOD, pH, SD, and Chla were the main components of PC1, and AT, 352 

PP, NPr, and PLoad were the main component of PC2 in Erhai Lake. In general, regardless of Dianchi Lake 353 

or Erhai Lake, the water quality indicators were the main component of PC1 for the UEAP. In particular, 354 

changes of nutrients have an important contribution to changes of UEAP. 355 

 356 

Fig. 5. Principal component loading diagrams of drive factors on UEAP of A Dianchi and B Erhai Lakes. 357 

The red arrow represents PC1, the blue arrow represents PC2, and the length of the arrow represents the 358 

correlation coefficient between the indicator and the common factor; The scatter-fitting line graphs selected 359 

the water quality index factor with the highest correlation with UEAP. 360 

Although climate factors are the main component of PC2, it is obvious that climate factors will affect 361 
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algae growth. In order to examine the impact of interannual climatic factors on UEAP, using AT, PP, and 362 

WV as the covariates to further populate the Chla-TP regression model first (SH was excluded due to 363 

insignificant relationship with the model parameters), a two-layer models of their relationship with UEAP 364 

(β0j ) was then established. The model reliability was between 0.803 and 0.997 (Table 2). The result showed 365 

AT did not show a significant effect on UEAP of Dianchi Lake (p>0.05), but showed a significant effect on 366 

that of Erhai Lake (p<0.05). From Figs. S4A and B, AT showed a significant linear positive correlation with 367 

UEAP of Erhai Lake (p<0.01) (Fig. S4A). PP showed a significant effect on UEAP of Dianchi and Erhai 368 

Lakes (p<0.05). Among them, PP showed a significant linear relationship with UEAP of both Dianchi and 369 

Erhai Lakes (p<0.01), which was positively correlated with UEAP of Dianchi Lake (Fig. S4C) and 370 

negatively correlated with UEAP of Erhai Lake (Fig. S4D). WV showed a significant effect on UEAP of 371 

Dianchi Lake (p<0.01), and showed a significant linear negative correlation with UEAP in Dianchi Lake 372 

(p<0.05, Fig. S4E), but did not show a significant relation to that of Erhai Lake (Fig. S4F). Therefore, PP 373 

and WV could explain the time-scale changes of the UEAP of Dianchi Lake partially, while AT and PP 374 

could explain that of Erhai Lake partially. 375 

Table 2 The estimated between-group standard deviance in group-specific intercepts (β0j) and slopes (βij), 376 

and the final estimation of fixed effects (with robust standard errors). 377 

Lakes Intercept Reliability 

estimate 

Fixed effect Coefficient Standard  

error 

T-ratio p-value 

 

Dianchi 

Lake 

For Intercept 

1, β0j 

0.832 Intercept 2, 

γ00 

6.1385 4.7664 1.288 0.213 

AT, γ01 -0.0915 0.2956 -0.309 0.760 

For Intercept 

1, β0j 

0.803 Intercept 2, 

γ00 

3.5501 0.3287 10.800 0.000 

PP, γ01 0.0011 0.0004 3.005 0.007 

For Intercept 

1, β0j 

0.904 Intercept 2, 

γ00 

5.6015 0.2666 21.010 0.000 

WV γ01 -0.4760 0.1148 -4.145 0.000 

 For Intercept 0.908 Intercept 2, -55.4437 12.6343 -4.388 0.000 
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Erhai Lake 1, β0j γ00 

AT, γ01 3.8644 0.8086 4.779 0.000 

For Intercept 

1, β0j 

0.927 Intercept 2, 

γ00 

12.2588 2.927 4.138 0.000 

PP, γ01 -0.0092 0.0036 -2.533 0.019 

For Intercept 

1, β0j 

 

0.997 

 

Intercept 2, 

γ00 

2.5175 13.8100 0.182 0.857 

WV, γ01 0.7419 5.6192 0.132 0.897 

Abbreviations: DC, Dianchi Lake; EH, Erhai Lake. 378 

3.4. Predictor variables and models for simulation of UEAP 379 

Elimination of the irrelevant indicators to UEAP was contacted by Spearman analysis in the 380 

meteorological and water quality indicator. After collinearity diagnosis, the remaining factors were 381 

arranged and combined as explanatory variables to construct the GAM nonlinear model. Figs. 6 and S5 382 

shows the fitting curve of the individual predictor variables to the changes of algal density in the two lakes. 383 

According to the principle of small AIC and high DE, combined with the value of Adj-R2, it showed that 384 

NPr was the best explanatory variable for UEAP variation in Dianchi Lake, with an explanatory rate of 385 

74.30%. While, the combined model of TN and AT was the best model for UEAP variation in Erhai Lake, 386 

with an explanation rate of 81.23% (Table 3). Therefore, NPr was the key predictor of UEAP changes in 387 

Dianchi Lake, and TN and AT were the key predictors of UEAP changes in Erhai Lake. 388 

  389 
Fig. 6. GAM analysis results of the predictor variables on the changes of UEAP in Dianchi (DC) and Erhai 390 
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(EH) Lakes. 391 

Table 3 GAM related parameters for the changes of UEAP in Dianchi and Erhai Lakes. 392 

Note: EV, Explanatory variables; PV, Predictor variable; DE, deviance explained; AIC, akaike information criterion. 393 

4. Discussion 394 

4.1. Drivers for UEAP changes 395 

In the past 20 years, water quality in Dianchi Lake and Erhai Lake had undergone significant changes, 396 

ie the deterioration in Erhai Lake and improvement in Dianchi Lake. We found the similar result as those in 397 

previous studies that the nutrient levels alone could not explain the actual algae growth, while the UEAP of 398 

individual lake may be a better parameter to reflect the actual growth of the algae. UEAP has nonlinear 399 

positive correlation with algal density, showing more precise algal growth threshold phenomena. Fig. 7 is a 400 

schematic diagram showing the time serial plot of the UEAP, TN, TP, and algal density. The initial UEAP 401 

of Dianchi Lake was higher than that of Erhai Lake. However, UEAP of Erhai increased sharply after a 402 

threshold point around the year 2000 and kept increasing after that, and eventually succeeded the level of 403 

UEAP in Dianchi Lake. The increased UEAP of Erhai Lake correlated with the deterioration of water 404 

quality, while the UEAP of Dianchi Lake increased correlated with the improvement of water quality. For 405 

example, nitrogen and phosphorus concentrations of Erhai Lake increased in 2003, and UEAP also rose 406 

sharply. The concentrations of nitrogen and phosphorus of Dianchi Lake dropped significantly from 2010 407 

to 2016, UEAP rose sharply in the period. This was in agreement with the actual algal density. Clearly, 408 

UEAP could better reflect the actual lake ecology, in terms of algae growth. 409 

Further analysis of the two lakes’ data, the key factors driving UEAP changes identified and showed the 410 

differences between the two lakes. Our statistic and modeling approaches found that the NPr of Dianchi, 411 

TN and AT of Erhai had the highest degree of explanation for the changes of UEAP. During the stage I-II of 412 

 
Dianchi Lake Erhai Lake 

EV PV Adj-R2 DE (%) AIC PV Adj-R2 DE (%) AIC 

UEAP 

NPr 0.59 74.30 32.52 TN 0.41 48.52 117.67 

DO 0.25 30.74 42.19 AT 0.38 40.13 117.21 

NPr+DO 0.34 41.02 39.53 TN +AT 0.66 81.23 107.79 
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Dianchi Lake, TP concentration decreased significantly as the nutrients load control progressed (Fig. S6), 413 

which resulted in an increase in NPr, while the UEAP gradually decreased in this period. This might be due 414 

to the predominance of phosphorus restriction. The insufficient phosphorus leads to a lower growth rate of 415 

algae due to higher NPr. Since 2010, nitrogen load control strengthened. Especially in the Stage III, TN 416 

reduced significantly. With the NPr dropped sharply, sufficient phosphorus leads to a higher utilization 417 

efficiency by algae. The changes of NPr caused by reduction in nitrogen and phosphorus at different levels 418 

drove the alternations of UEAP in Dianchi Lake temporarily. The response of UEAP to NPr was non-linear 419 

(Fig. 6-DC). It decreased sharply with the increasing of NPr between 16.25-17.5, and decreased slowly 420 

between 17.5-25. For Erhai Lake, TN and AT were the key factors driving UEAP changes. The UEAP of 421 

Erhai Lake in stage Ⅰ was lower than that of Dianchi Lake, which might be related to the lower 422 

concentration of nutrients. Previous studies have shown that the higher the initial nutrient concentration 423 

within a certain range, the more nutrient salts are absorbed by algal cells (Janse and Aldenberg, 1991). This 424 

may be the main reason why the UEAP of Erhai Lake was lower than that of Dianchi Lake at first. When 425 

TN was higher than 0.35 (point a in Figs. 7 and 6EH-1) in Erhai Lake, UEAP increased rapidly with the 426 

increasing of TN. It might be that the nitrogen restriction was dominant, and UEAP began to respond to TN. 427 

In particular, compared with Dianchi Lake, despite the Erhai Lake had less nutrient level in general, its 428 

UEAP had exceeded that of Dianchi Lake after 2003 owing to its stage of sensitive response of UEAP to 429 

nutrients. Previous study demonstrated that high concentration of nutrients may inhibit the growth of 430 

phytoplankton (Wang, 2015). The growth kinetics experiments showed that the half-saturation constant of 431 

the maximum growth rate of microcystis cells was 0.53 mg/L for nitrogen and 0.02 mg/L for phosphorus 432 

(Baldia et al., 2007). The average concentrations of TN and TP were 0.259-0.643mg/L and 433 

0.015-0.058mg/L in Erhai Lake, respectively. This was a more suitable nutrient concentration range for the 434 

growth of microcystis cells. This response dynamics of UEAP in different types of lakes is in line with the 435 

characteristics of the ecosystem of the specific lake. With the two sets of data, our approaches established 436 

the non-linear positive correlation between algae growth and UEAP. Using the long-term data sets, such a 437 

correlation has showed both in the high nutrient lake, the Dianchi Lake, which in the process of recovering 438 

from sever eutrophication, and a lake started deterioration from good ecological status, the Erhai Lake (Fig. 439 

7). That is to say that the multi factors determined UEAP dynamics, which in turn explained the novel 440 
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phenomena of lake ecology. Using this approaches can explain that for a lake ecosystems with a given 441 

nutrient level, reducing the load to a certain extent may either promote growth of algae by increased UEAP, 442 

or decrease of it by decrease UEAP, or even no response, depending on initial nutrients concentrations and 443 

their ratios (such as NPr). While a lake had relatively good ecological status in general, a small amount 444 

nutriment increase may cause significant increase in UEAP, and increase in algae growth. It is the first 445 

attempt using the approaches to explain the complicated lake systems. Further work on the new data 446 

coming from the two lakes together with study on different data sets and the mesocosm study to approve its 447 

versatility is desirable.    448 
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Fig. 7. Changes and relationship of UEAP, nutrients and algal density in Dianchi and Erhai Lakes. The left 450 

coordinate is the UEAP and NPr values of the two lakes, the middle and the right coordinates are the values 451 

of TN (mg/L), TP(mg/L) and algal density(104cell/L) of Erhai Lake and Dianchi Lake, respectively; In 452 

order to facilitate comparison in the same figure, TP and NPr were multiplied by 10, and 0.1, respectively, 453 

and algae density was divided by 1500; a and b are the possible threshold points of nutrient change (UEAP 454 

began to increase) in Erhai and Dianchi Lakes, respectively; c is the possible nutrient threshold that causes 455 

mutation of UEAP; d is a possible trend of UEAP; DC represents Dianchi Lake, EH represents Erhai Lake; 456 

Ⅰ, Ⅱ and Ⅲ represents three stages.  457 

GAM analysis of the two lakes’ ecosystem changing processes showed that when TN is greater than 0.6 458 
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(mg/L), the effect on increase of UEAP slowed down in Erhai Lake (Fig. 6-EH). There was no a dataset 459 

available for Dianchi Lake when it was starting deterioration just like Erhai Lake today. However, it looks 460 

like the trajectories of the two lakes are at critical point because the nutrient levels, UEAP, and algal density 461 

are merging at “c” and “d” points shown in Fig. 7. If the two inverse trajectories of the two lakes mirrors 462 

each other are not by chance, this may be not a surprise as the two processes may be reflect each other 463 

because the two lakes have similar limnology and geography. Assuming it is true, we speculated that 464 

Dianchi Lake’s algae and UEAP will continues stay high for a while in the future if the water quality 465 

continues to improve, and finally reach the good ecological status. At the same time, if Erhai Lake’s 466 

nutrient level keeps going up, UEAP and algae may jump up to the level of current Dianchi Lake. Perhaps, 467 

between the high threshold point (point b in Fig. 7) and low threshold point (point a in Fig. 7) there is an 468 

inflection point (point c in Fig. 7) of nutrient concentration. Interestingly, UEAP increased with the 469 

increasing of nutrient in Erhai Lake (a-c), and decreased with the increasing of nutrient concentration in 470 

Dianchi Lake (c-b). It is easy to explain water quality deterioration leads to increased UEAP in Erhai Lake 471 

because there is a positive correlation between COD, BOD and SD (Table S2). The improvement of water 472 

quality in Dianchi Lake causing UEAP to increase may be indirect. The positive correlation between DO 473 

and UEAP may also support that the improved water quality increased the UEAP of Dianchi Lake (Table 474 

S2). Currently, both the improved water quality in Dianchi Lake and the deteriorated water quality in Erhai 475 

Lake are leading to the same direction of the increased UEAP if the speculated trajectory is true. If other 476 

factors remain unchanged, controlling the nutrients of Dianchi Lake may cause UEAP to rise to the 477 

threshold first and then decrease, and while controlling the nutrients of Erhai Lake can control UEAP 478 

directly and effectively pull the UEAP back to lower level. Therefore, the algae control in Dianchi Lake has 479 

a long way to go. 480 

HLM analysis showed that among the meteorological factors, AT, WV and PP also affected UEAP. 481 

Again, the main factors affecting UEAP are lake specific. This differentiation made the identification of 482 

lake specific factor driven trajectory possible, which otherwise was impossible by using TP-Chla 483 

relationships. The WV in Dianchi Lake showed an increasing trend before 2010 and then decreased 484 

gradually, which showed a significant promoting effect on the UEAP in Dianchi Lake (Fig. S7). Decreased 485 

WV will reduce the exchange of oxygen between the water surface and the atmosphere, and help the algae 486 
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particles drift along the wind direction, causing large amount of algae accumulation in a specific area of the 487 

water surface, thereby increasing the possibility of algal blooms (Whitehead et al., 2009). At the same time, 488 

taking 2010 as the demarcation point, PP of Dianchi Lake showed a trend of first decline and then 489 

gradually rise (Fig. S7). Precipitation, on the one hand, allows more runoff to enter the water body and 490 

dilutes the nutrients in the lake, on the other hand, it can bring many nutrients which are beneficial to algae 491 

absorption in the water body, thereby affecting the biomass of phytoplankton (Tang et al., 2019). PP 492 

showed a significantly positive correlation with the UEAP (p<0.05) of Dianchi Lake. This showed that the 493 

dilution effect of PP was greater than that of nutrient input. Increased PP is beneficial to dilute the 494 

concentration of nitrogen and phosphorus in the water body and make it tend to the optimum concentration 495 

for algae growth. This might also be related to the reduction of the nutrient content of the runoff into the 496 

lake body due to the reduction of the external load under the watershed water pollution control. In the past 497 

26 years, the scale of annual average AT in Erhai Lake was 14.4-16.1℃ and showed an upward trend 498 

gradually (Fig. S7). This study found that AT promoted the UEAP of Erhai Lake significantly (Figs. 6 and 499 

S4A), and it will be severer if coupled with TN, the main driving force for the increase of UEAP. From the 500 

intercept of the AT-UEAP relationship, it can be speculated that a temperature increase of 1°C in the Erhai 501 

Lake would increase the UEAP by 3.25 times. On the one hand, warming can promote the absorption of 502 

ions by biofilm and the activity of related enzymes, and increase the utilization of nutrients by 503 

cyanobacteria (Wang et al., 2016). On the other hand, cyanobacteria can adjust their buoyancy to optimize 504 

nutrient and light access. Higher temperatures will reduce the viscosity of surface water, increase the 505 

settlement rate of eukaryotic phytoplankton, and further strengthen the competitive advantage of 506 

microcystis (Paerl and Huisman, 2009). Although currently the water chemical quality of Erhai Lake is still 507 

good, an increase of AT alone will promote the increase of UEAP. The Erhai Lake had less nutrient input, 508 

but its UEAP had exceeded that of Dianchi Lake after 2003, which might be related to the promotion of 509 

warming effect. The differences in UEAP level, amplitude and trend direction observed in this study may 510 

partly reflect the changes in the driving force of ecological destruction, which leads to the different 511 

responses of the ecosystem to environmental changes. The important point is the actual factor values and 512 

the combination of the factors in contribution to the changes of UEAP was different between the two lakes. 513 

The approaches we taken in this study were able to describe the individual ecological status of a specific 514 
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lake. Further work using the same approaches on different data sets may approve its broad value.    515 

4.2. Implications for lake eutrophication control and decision making 516 

Reducing algal biomass is usually the goal of lake management, and decreasing nitrogen and 517 

phosphorus can reduce the primary production in surface waters (Oliver et al., 2017; Conley et al., 2009; 518 

Paerl et al., 2016; Schindler, 2012). Though the trends of TN of Erhai Lake and TP of Dianchi Lake were 519 

both positively correlated to Chla trends (Table S2), the magnitude of change in nutrients and algae can also 520 

be used to infer if trends are ecologically meaningful. For example, since the water pollution control began 521 

in 2006, nutrients of Dianchi Lake began to decline sharply in the middle stage Ⅱ, but algae did not show a 522 

corresponding decline. The nutrient content of the Erhai Lake has always been in the water quality grade Ⅱ 523 

and Ⅲ, but algae has not recovered to the lower level like in the stage Ⅰ (the green line was lower than the 524 

gray line in Fig. 7). The reductions in nutrients did not necessarily promote a similar shift in algal biomass 525 

decline. Previous studies have reported that the decline of TN has been enough to transform lakes from 526 

eutrophic to mesotrophic systems (Dodds et al., 1998), but reducing nutrients has not promoted a similar 527 

change in algal biomass, Even if, the nutrient load to such lakes was strongly reduced they often did not 528 

recover to their original clear state (Sas, 1990). The relationship of Chla and TP is bound to be changes 529 

when considering other ecological factors owning to nonlinear dynamics in ecosystem (Brown et al., 1999), 530 

which includes resilience and abrupt changes owing to thresholds and feedback processes (Walther, 2010). 531 

The lack of algae response to nutrient and the GAM analysis results indicate that other emerging 532 

environmental changes are affecting the ecosystem status of the lake (Oliver et al., 2017; Scheffer and Nes, 533 

2007). Lake pollution control measures must related to specific endpoints, whether it is algae bloom or 534 

water quality, or both. These goals may be different between lakes and the same lake between different 535 

stages. Therefore, modeling work to identify the phase of the lake recovering or deterioration is crucial for 536 

decision making to achieve the goals. 537 

Although algae biomass is affected by many factors, UEAP, WV and TP in Dianchi Lake, UEAP and 538 

TN in Erhai Lake all explained well the variation of algal density in the lakes. The two-lake study 539 

demonstrates that nutrients levels may not necessarily link to algae dynamic directly and climate change 540 

were driving the increasing of UEAPs. These assumptions were based on the contribution rate of the 541 
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particular set of parameters to the change of algae density in the GAM results. UEAP successfully linked 542 

water nutrient factors and other environment and climate factors in defining the algae density. Our statistic 543 

and model approaches provided answers to phenomena of algae growth increase under the improvement of 544 

nutrient concentration because the decrease of concentrations of nutrients in Dianchi Lake will actually 545 

drive the increase of UEAP now, and the decreasing trend of WV is also conducive to the occurrence of 546 

algal blooms. In the past 22 years, the range of annual average AT in Dianchi Lake was 15.4-16.7℃. The 547 

annual WV was less than 3 m/s, and the average water exchange time was nearly 4 years. These conditions 548 

are favorable factors for the occurrence of algal blooms (Ibelings et al., 2016). Although the AT in Dianchi 549 

Lake did not show a significant increase and a significant impact on the UEAP in the past 20 years, the 550 

temperature still showed an upward trend (Fig. S7) from the perspective of long-term trend, which will 551 

become the catalyst for algal bloom. Unlike Dianchi Lake, the water quality in Erhai Lake has deteriorated 552 

in recent years, the increased nutrients concentration together with the increasing AT and the decreasing PP 553 

are all conducive to the increase of UEAP. This indicates that algal blooms may still occur even if the 554 

external load is reduced in the future, climatic conditions with more drying and warming period will 555 

increase the severity of lake eutrophication. At the same time, the fluctuation trends of algal density in each 556 

year in Dianchi Lake and Erhai Lake were basically consistent with UEAP dynamics. This makes UEAP a 557 

useful parameter to predict algae growth when a long term monitoring data is available. This showed that 558 

after controlling the nutrients level of the two lakes, the delayed response of algae to the reduction of 559 

external load may be due to the increased UEAP. Under the combined influence of UEAP and climate 560 

change, even if the nutrients are pressure significantly removed, the lake ecological response will delayed 561 

(McCrackin et al., 2017). Therefore, lake management based on the Chla-TP theory may not be achieved 562 

what we expected in time. The end targets of the lake management are impotent. Algae control is one and 563 

overall improvement of lake chemistry and ecology is another. Hence, the advantage of using UEAP is that 564 

one can incorporate many statistically significant factors as variables to increase the reliability of the 565 

modeling prediction. This was supported by statistical analysis and modeling work. However, this approach 566 

can only be possible with long term monitoring data sets. Of course, all these will need further studies to 567 

approve. Like most modeling and statistical analysis, there must be limitations of our work in incorporation 568 

of the details of complex natural phenomena. Future work on data sets form different lakes will improve the 569 
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representation of adaptation in the modeling.     570 

This also indicated that a lake specific and targeted restoration plan relies sound monitoring strategy. 571 

In the past ten years, China has made considerable progress in improving lake water quality (Huang et 572 

al., 2019). However, the frequency and intensity of cyanobacteria blooms in many lakes such as Dianchi 573 

Lake, Chaohu Lake, Taihu Lake and Erhai Lake have not declined significantly (Jing et al., 2019; Zhang 574 

and Kong, 2015; Zhang et al., 2020; Yang et al., 2016). In other words, nutrient load management based on 575 

the Chla-TP relationship can reduce the external load to achieve water quality, but the algae response is 576 

variable. The phenomenon that the ecosystem cannot be restored to the original state after eliminating the 577 

disturbance also shows that only reducing the nutrient load is not enough, and the cost is huge. Our 578 

research found that UEAP has a high explanatory for algal density changes, which partly explains that the 579 

phenomenon of sustained algal blooms in water nutrients level improved or low-maintained nutrient level 580 

lakes. This is particularly impotent for those looks like no risk of lakes for algae blooms based on their low 581 

and medium level of nutrients. We need to treat the goals of overall eutrophication control and algae control 582 

separately and scientifically according to the progresses of dynamic lake ecology, consider setting algae 583 

control goals, and incorporate algae prevention and control into the governance. We summarized the pattern 584 

diagram in Fig. S8. Eutrophication control not only reduces the external source load, but also takes into 585 

account, the UEAP changes caused by climate and nutrient changes. For low nutrient lakes, reducing 586 

nutrient salts is beneficial to the reduction of UEAP and Chla, and nutrient control is the main method of 587 

lake management. For high-nutrient lakes, the interference itself has exceeded the ecological threshold, and 588 

recovery is difficult. Decreasing nutrients may not reduce algae in a short period of time, and it may even 589 

increase UEAP and make recovery more difficult. This type of lake management needs to consider 590 

controlling NPr while reducing nutrients, so that UEAP may be controlled in a lower range in coordinating 591 

control to nitrogen and phosphorus.  592 

Our research showed that the UEAP incorporated nutrient and climate factors can predict the trend of 593 

algae dynamic. The incorporation of environment/climate factors into consideration dramatically increased 594 

the reliability of the model. The key finding here may be find a proxy index (UEAP) for phosphorus 595 

utilization and demonstrate a two-function variable of both predictor and response, and their related 596 

modeling procedures that can predict the response trend of algae growth and determine the state and stage 597 
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of the lake ecosystem. The advantages of the approaches are, based on long-term monitoring dataset, a lake 598 

specific prediction produced and the insight of the lake ecological status identified, which otherwise would 599 

be difficult by just simple Chla-TP or Chla-NPr models. By our approaches, lake management may be 600 

strategic, informed, efficient, and relevant in response to future developing water quality and climate 601 

changes.  602 

5. Conclusions 603 

Our results showed UEAP was one of the major factors affecting algae density and had significant 604 

correlation with algae dynamics along the time serials. The incorporation of UEAP and other main factors 605 

into the modeling of the Chla-TP relationship achieved greater reliability. The time scale serial of the two 606 

contrary trajectories of the lake status showed, in the past 20 years, nutrients and meteorological factors 607 

driven the UEAP changes into the sensitive and paralysis phases between low and high threshold points, 608 

this was correlated to algal density. NPr was the key driving factor for UEAP changes in Dianchi Lake, 609 

while TN and AT were the key driving factors for UEAP in Erhai Lake. The approaches we took can 610 

explain the status of the lake, which otherwise would be difficult by just simple Chla-TP or Chla-NPr 611 

models. We also be able to quantify the threshold characters of UEAP, hence, explaining the resulted algae 612 

growth sensitive and paralyses stages. The study demonstrated that the nutrient levels of the two lakes were 613 

at critical points. We speculated that any future changes could cause changes in the lake UEAP, leading to 614 

different directions of ecological status. The holistic analysis on UEAP in responding the dynamics of 615 

nutrient regimes and environmental factors supported lake specific and phase specific pollution control 616 

measures. Our work indicated that the delayed algae response to changes of nutrient regimes might have 617 

partially offset the contribution of external load reduction from the expensive algae control measures. 618 

Therefore, the effectiveness of water quality control goals is able to achieve by reducing external nutrient 619 

load, while controlling algae is depended on the phase of the lake in the process trajectory and the 620 

environment/climate factors of the specific lake. The simulation of UEAP with multi factors is impotent. 621 

This approach can draw lake specific road maps for achieving the lake management goal and perhaps with 622 

more effective and targeted measures. The key finding here may be of the interest and value of a proxy 623 

index (UEAP) for phosphorus utilization and demonstrate the two-function variable of both predictor and 624 

response, and their related modeling procedures that can predict the response trend of algae growth and 625 
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determine the state and stage of the lake ecosystem. 626 
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 859 
Abbreviated notation list 860 

Note: “-“Represents no unit.  861 

NO. Abb. Meaning Unit NO. Abb. Meaning Unit 

1 AT Air Temperature ℃ 16 PLoad Phosphorus Load into the 

lake 

Ton 

2 PP Precipitation mm 17 NLoad Nitrogen Load into the lake Ton 

3 WV Wind Velocity m/s 18 AD Algal Density 104cell/L 

4 SH Sunshine Hours h 19 UEAP Utilization Efficiency of 

Algae to TP 

- 

5 WT Water Temperature ℃ 20 RRAP Response Rate of Algae to 

TP 

- 

6 DO Dissolved Oxygen mg/L 21 PCA Principal Component 

Analysis 

- 

7 pH Acidity - 22 GAM Generalized Additive Model - 

8 SD Secchi Disk Depth m 23 HLM Hierarchical Linear Model - 

9 TN Total Nitrogen mg/L 24 GLM Generalized Linear Model - 

10 TP Total Phosphorus mg/L 25 PC1 First Principal Components - 

11 NH3N Ammonia nitrogen mg/L 26 PC2 Second Principal 

Components 

- 

12 Chla Chlorophyll A mg/L 27 DC Dianchi Lake - 

13 NPr Ratio of TN to TP - 28 EH Erhai Lake - 

14 BOD Biochemical Oxygen 

Demand 

mg/L 29 AIC Akaike Information 

Criterion 

- 

15 COD Chemical Oxygen 

Demand  

mg/L 30 DE Deviance Explained - 



38 
 

Table S1 Summary statistics of Chla-TP regression model for each year in Dianchi and Erhai Lake. 862 

Group Formula N Adj-R2 F-value t-value p-value 

DC1998 ln(Chl a)=4.921+0.448×ln (TP) 120 0.0583 8.3724 25.2678 p<0.01 

DC1999 ln(Chl a)=5.016+0.600×ln (TP) 120 0.0960 13.6318 27.6388 p<0.01 

DC2000 ln (Chl a)=5.077+0.596×ln (TP) 120 0.3134 55.3088 46.6836 p<0.01 

DC2001 ln(Chl a)=4.379+0.185×ln (TP) 120 0.0367 5.5362 36.3090 p<0.05 

DC2002 ln(Chl a)=4.795+0.420×ln (TP) 120 0.2341 37.3762 36.0693 p<0.01 

DC2003 ln(Chl a)=4.409+0.239×ln (TP) 120 0.0662 9.4302 30.3380 p<0.01 

DC2004 ln(Chl a)=4.909+0.387×ln (TP) 120 0.3241 58.0527 55.0654 p<0.01 

DC2005 ln(Chl a)=4.150+0.287×ln (TP) 120 0.1028 14.6269 29.6024 p<0.01 

DC2006 ln(Chl a)=4.327+0.220×ln (TP) 120 0.0660 9.4062 34.6003 p<0.01 

DC2007 ln(Chl a)=4.102+0.080×ln (TP) 120 0.0069 1.8212 34.4194 p<0.05 

DC2008 ln(Chl a)=4.000+0.039×ln (TP) 120 -0.0054 0.3600 31.4401 0.5496 

DC2009 ln(Chl a)=4.263+0.038×ln (TP) 120 -0.0053 0.3789 38.3190 0.5394 

DC2010 ln(Chl a)=4.066-0.143×ln (TP) 120 0.0032 1.3858 21.4425 0.2415 

DC2011 ln(Chl a)=4.545+0.088×ln (TP) 120 -0.0008 0.9005 26.1507 0.3446 

DC2012 ln(Chl a)=4.551+0.100×ln (TP) 120 -0.0041 0.5180 18.3564 0.4731 

DC2013 ln(Chl a)=4.191-0.003×ln (TP) 120 -0.0085 0.0006 18.5025 0.9809 

DC2014 ln(Chl a)=6.785+1.422×ln (TP) 120 0.3343 60.7511 18.9371 p<0.01 

DC2015 ln(Chl a)=4.591+0.276×ln (TP) 120 0.0329 5.0429 16.6559 p<0.05 

DC2016 ln(Chl a)=4.600+0.255×ln (TP) 120 0.0143 2.7303 12.3522 p<0.05 

DC2017 ln(Chl a)=6.104+0.902×ln (TP) 120 0.2644 43.7722 21.2937 p<0.01 

DC2018 ln(Chl a)=4.671+0.503×ln (TP) 120 0.0177 3.1446 5.9889 p<0.05 

DC2019 ln(Chl a)=4.790+0.298×ln (TP) 120 0.0161 2.9526 10.0464 p<0.05 

EH1994 ln(Chl a)= 4.962+1.146×ln (TP) 66 0.3263 32.4752 5.8160 p<0.01 

EH 1995 ln(Chl a)= -2.009-0.559×ln (TP) 53 0.1760 12.1076 -2.9853 p<0.01 

EH 1996 ln(Chl a)= 1.409+0.252×ln (TP) 66 0.0165 2.0917 1.9915 p=0.05 

EH 1997 ln(Chl a)= 1.906+0.409×ln (TP) 66 0.0502 4.4318 2.4308 p<0.05 
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EH 1998 ln(Chl a)= 1.197+0.269×ln (TP) 54 0.0050 1.2651 1.2984 p<0.05 

EH 1999 ln(Chl a)= 2.529+0.567×ln (TP) 66 0.0773 6.4459 2.9715 p<0.05 

EH 2000 ln(Chl a)= -1.862-0.254×ln (TP) 62 -0.0017 0.8978 -1.8433 0.3472 

EH 2001 ln(Chl a)= 1.310+0.394×ln (TP) 124 0.0122 2.5211 1.3744 0.1149 

EH 2002 ln(Chl a)= 5.929+1.418×ln (TP) 124 0.1353 20.2473 5.2334 p<0.01 

EH 2003 ln(Chl a)= 6.380+1.014×ln (TP) 135 0.4143 95.7649 16.9595 p<0.01 

EH 2004 ln(Chl a)= 3.019+0.232×ln (TP) 144 0.0284 5.1720 8.1725 p<0.05 

EH 2005 ln(Chl a)= 4.863+0.680×ln (TP) 143 0.2559 49.8392 13.2777 p<0.01 

EH 2006 ln(Chl a)= 5.270+0.738×ln (TP) 142 0.2369 44.7781 12.4575 p<0.01 

EH 2007 ln(Chl a)= 5.878+0.882×ln (TP) 144 0.2544 54.2151 12.3306 p<0.01 

EH 2008 ln(Chl a)= 4.710+0.557×ln (TP) 132 0.1323 20.9731 9.6225 p<0.01 

EH 2009 ln(Chl a)= 6.818+1.098×ln (TP) 132 0.6803 279.7656 26.9137 p<0.01 

EH 2010 ln(Chl a)= 6.362+1.008×ln (TP) 132 0.3535 72.6232 13.9177 p<0.01 

EH 2011 ln(Chl a)= 7.836+1.488×ln (TP) 132 0.6899 292.3867 23.5307 p<0.01 

EH 2012 ln(Chl a)= 7.014+1.248×ln (TP) 132 0.4522 109.1186 15.7547 p<0.01 

EH 2013 ln(Chl a)= 3.791+0.488×ln (TP) 132 0.0750 11.6199 7.2780 p<0.01 

EH 2014 ln(Chl a)= 4.494+0.706×ln (TP) 132 0.2166 37.2197 10.1086 p<0.01 

EH 2015 ln(Chl a)= 8.399+1.666×ln (TP) 132 0.3286 65.1030 10.5337 p<0.01 

EH 2016 ln(Chl a)= 5.014+0.784×ln (TP) 132 0.2665 48.6037 12.3666 p<0.01 

EH 2017 ln(Chl a)= 5.840+0.924×ln (TP) 132 0.4285 99.2072 17.3693 p<0.01 

EH 2018 ln(Chl a)= 5.870+0.954×ln (TP) 132 0.2405 42.4872 11.0210 p<0.01 

EH 2019 ln(Chl a)= 6.572+1.096×ln (TP) 132 0.3888 84.3218 14.7172 p<0.01 

Note: DC represents Dicnhi Lake, EH represents Erhai Lake, and the subscript numbers represents the year.  863 
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Table S2 Spearman correlation between meteorology, water quality index, nitrogen and phosphorus load 864 

into lake and UEAP and RRAP. Red represents positive correlation, blue represents negative correlation, 865 

and green represents irrelevance, respectively. A is for Dianchi Lake, B is for Erhai Lake. 866 

A UEAP  
 UEAP 1 RRAP  
 

RRAP .899** 1 AT  
 

AT -0.082 -0.06 1 PP  
 PP .516* .625** -0.025 1 WV  
 WV -.475* -.583** -0.01 -.435* 1 SH  
 

SH 0.251 0.118 0.303 0.046 0.258 1 PLoad  
 

PLoad 0.468 .593* -0.154 .539* -.886** -0.418 1 NLoad  
 NLoad 0.386 0.368 -0.321 -0.093 -0.428 0.039 0.114 1 TN  
 TN -.535* -.438* 0.077 -0.271 -0.227 -.567** 0.032 -0.146 1 TP  
 

TP -0.257 -0.197 0.2 -0.153 -0.012 -.512* 0.277 0.009 .892** 1 NPr  
 

NPr -.661** -.685** -0.155 -.594** .507* -0.293 -.568* -0.211 .528* 0.215 1 NH3N  
 NH3N -.554** -.440* 0.13 -0.284 0.009 -.522* -0.061 -0.189 .984** .857** .547** 1 COD  
 COD 0.304 0.321 0.11 0.179 -.610** -0.115 .777** 0.365 0.32 .518* -.431* 0.312 1 BOD  
 

BOD -0.112 -0.188 0.212 -0.2 -0.327 -.444* 0.471 0.189 .665** .689** 0.262 .644** 0.387 1 pH  
 

pH -0.063 -0.253 0.299 -0.271 0.203 .476* -0.189 -0.468 -133 -0.21 -0.028 -0.11 -0.171 0.001 1 DO  
 DO .632** .560** -0.353 0.241 -0.309 0.302 0.471 0.146 -.811** -.714** -.536* -.811** -0.11 -.527* 0.077 1 WT  
 WT 0.121 0.265 0.311 0.296 0.130 0.368 -0.2 -0.171 -0.168 -0.097 -0.317 -0.067 0.244 -0.174 -0.042 -0.11 1 SD  
 

SD -0.259 -0.209 0.201 -0.259 0.209 0.154 -0.411 0.232 -0.125 -0.28 0.24 -0.034 -0.125 0.009 0.061 -0.302 0.195 1 Chla 

 
Chla 0.469* 0.293 0.075 0.136 -0.441* -0.207 .614* 0.293 0.268 .501* -0.169 0.224 .584** .621** -0.172 -0.2 -0.11 -0.226 1 AD 

AD 0.488* 0.282 0.024 0.148 -0.427* -0.189 0.275 0.636* 0.242 0.47* -0.16 0.193 0.561** 0.617** -0.158 -0.16 -0.131 -0.247 0.993** 1 

B UEAP  
 UEAP 1 RRAP  
 

RRAP .935** 1 AT  
 AT .653** .594** 1 PP  
 PP -.477* -.413* -.520** 1 WV  
 

WV 0.031 0.03 -0.183 0.356 1 SH  
 

SH -0.05 0.082 -0.068 -0.087 0.204 1 PLoad  
 PLoad -.584** -.531** -.638** .892** 0.257 -0.061 1 NLoad  
 NLoad -0.321 -0.245 -0.419 .837** 0.441 -0.247 .870** 1 TN  
 

TN .578** 0.324 .478* -.461* -0.093 -0.303 -.422* -0.29 1 TP  
 

TP 0.199 0.057 -0.034 -0.143 0.006 -0.05 -0.08 0.148 .582** 1 NPr  
 NPr .494* 0.307 .672** -.425* -0.233 -0.204 -.498** -0.449 .549** -0.204 1 NH3N  
 NH3N 0.357 0.151 0.376 -0.268 0.131 -0.2 -0.27 0.028 .600** 0.298 .398* 1 COD  
 

COD .607** 0.383 .533** -0.367 0.184 -0.34 -0.33 -0.141 .852** 0.355 .545** .645** 1 BOD  
 

BOD .552** 0.352 .432* -.446* -0.117 -0.122 -.458* -0.412 .698** .462* .415* .559** .538** 1 pH  
 pH .476* 0.325 0.196 -0.27 0.08 -0.14 -0.236 -0.046 .441* .519** 0.091 .501** .443* .780** 1 DO  
 DO -0.121 0.031 -0.023 0.049 -0.231 -0.068 0.048 0.112 -0.195 -0.007 -.422* -.520** -0.33 -0.038 -0.144 1 WT  
 

WT 0.045 0.021 0.267 0.06 -.533** -0.218 0.065 0.1 0.162 -0.247 0.363 0.147 0.076 -0.041 -0.336 0.079 1 SD  
 

SD -.500** -0.255 -0.321 0.19 -0.088 0.297 0.208 -0.082 -.800** -.471* -.411* -.672** -.718** -.737** -.622** 0.147 -0.148 1 Chla 

 Chla .681** .413* .505** -0.372 0.075 -0.222 -0.336 -0.121 .865** 0.385 .558** .715** .863** .640** .538** -0.333 0.197 -.865** 1 AD 

AD .517** 0.272 .412* -0.342 0.1 -0.175 -0.249 -0.216 .810** .460* .393* .597** .821** .607** .504** -0.223 0.066 -.714** .864** 1 

 867 

  868 
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Fig. S1. Linear fitting between ln (Chla) and ln (TP) for Dianchi Lake from 1998 to 2019.  870 
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Fig. S2. Linear fitting between ln (Chla) and ln (TP) for Erhai Lake from 1994 to 2019.  872 
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 876 

Fig. S3. GAM results of the predictive model curves of univariate and multivariate for the changes of algal 877 

density in Dianchi and Erhai Lakes. A and B are for Dianchi Lake, and C and D are for Erhai Lake. 878 

 879 
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Fig. S4. The relationship between meteorological factors and UEAP or RRAP. A and B are the relationship 882 

between AT and the intercept and slope of Dianchi and Erhai Lakes; C and D are the relationship between 883 

PP and intercept and slope of Dianchi and Erhai Lakes, E and F are the relationship between WV and 884 

intercept and slope of Dianchi and Erhai Lakes. 885 

886 



46 
 

 887 

 888 

Fig. S5. GAM results of the predictive model curves of univariate and multivariate for the changes of 889 

UEAP in Dianchi and Erhai Lakes. A is for Dianchi Lake, and B is for Erhai Lake.  890 
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Fig. S6. Concentrations changes of TN and TP in Dianchi Lake (A) and Erhai Lake (B).  892 
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Fig. S7. Changes of AT, PP, WV and SH in Dianchi Lake and Erhai Lake. 896 
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 898 

Fig. S8. Response patterns of water quality and algae under lake eutrophication control in China (taking 899 

Dianchi Lake and Erhai Lake as examples). 900 
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