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Abstract. In this paper, the problem of concept drift detection in data
stream mining algorithms is considered. The autoencoder is proposed
to be applied as a drift detector. The autoencoders are neural networks
that are learned how to reconstruct input data. As a side effect, they
are able to learn compact nonlinear codes, which summarize the most
important features of input data. We suspect that the properly learned
autoencoder on one part of the data stream can then be used to monitor
possible changes in the following stream parts. The changes are ana-
lyzed by monitoring variations of the autoencoder cost function. Two
cost functions are applied in this paper: the cross-entropy and the recon-
struction error. Preliminary experimental results show that the proposed
autoencoder-based detector is able to handle different types of concept
drift, e.g. the sudden or the gradual.

Keywords: Autoencoder · Data stream mining · Concept drift detec-
tion.

1 Introduction

In recent years, the topics connected with data stream mining attracted much
attention of machine learning researchers [1], [6], [9–17], [24], [27–34], [37], [38].
In data streams it is quite common that the underlying data distribution can
change over time. It is known in the literature as the ’concept drift’ [40], [41].
Another characteristics of the streaming data is their potentially infinite size
and high rates of arriving at the system. Therefore, proper data stream mining
algorithms should be resource-aware [8], [15].

The data stream can be defined as a sequence of data elements

S = (x0, x1, x2, . . . ). (1)
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In this paper the case of unsupervised learning is considered, which means that
there are no classes assigned to data elements. Hence, the data stream element
sn is a D-dimensional vector defined as follows

xn =
[
x1n, . . . , x

D
n

]
. (2)

The data stream mining algorithm should be able to react to possible changes
in data distribution [16], [20], [41]. The concept drift handling can be realized
in two ways, i.e. passively or actively. In the passive approach, a concept drift
reaction mechanism is incorporated in the data stream mining algorithm itself. It
can bed done by applying the sliding window techniques [7] or ensemble methods
[28], [29]. In the active approach, there is an external drift detector functioning
in parallel to the main algorithm. Based on the information from the detector
the algorithm can make a decision about rebuilding the model. Many active drift
detectors focus on monitoring the current accuracy of the model. If it decreases,
then it means that the model becomes invalid and needs to be modified. En
examples of such methods are the Drift Detection Method (DDM) [18] and
the Early Drift Detection Method (EDDM) [3]. Other active drift detection
methods rely on statistical tests. They look for possible changes in parameters of
data probability density functions. Among others, the Welch’s, the Kolmogorov-
Smirnov’s [27], or the Page-Hinkley’s tests are often used [19].

In this paper, we present an active concept drift detection approach based on
autoencoders. This approach is similar to the one presented in [23], in which the
Restricted Boltzmann Machine (RBM) [39] was applied as a drift detector. This
idea was further extended with resource-awareness strategies to deal with fast
data streams [26] or to deal with missing values [25]. Autoencoders are important
neural network models often used in the field of deep learning [21]. They are used,
for example, in greedy-pretraining methods of learning deep neural networks [4],
[5]. Similarly to RBMs, the properly learned autoencoder contains in its middle
layer the information about the data probability distribution. It can be then used
to check whether the data from another part of the data stream belong to the
same distribution as the part on which the autoencoder was trained. This can be
checked, for example, by measuring the reconstruction error or the cross-entropy
of new data.

The rest of the paper is organized as follows. In Section 2 autoencoders are
presented in more detail. In section 3 methods for concept drift detection using
autoencoders are proposed. In section 4 the results obtained in numerical simu-
lations are demonstrated. Section 5 concludes the paper and indicates possible
future research directions.

2 Autoencoders

The autoencoder is a kind of feed-forward neural network, which is learned to
reconstruct input data [22]. There are many types of autoencoders [21], like the
denoising autoencoder [2], the sparse autoencoder [35] or the contractive autoen-
coder [36]. Generally, the autoencoder is composed of two parts: the encoder and
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the decoder. The aim of the encoder is to transform input data in a nonlinear
way, extracting the most important features of the data. The decoder is learned
to reconstruct the output of the encoder back to the input data as close as pos-
sible. In this paper, we consider autoencoders consisting of L + 1 layers. Let

y
(l)
j (xn) denote the value of the j-th neuron in the l-th layer obtained for input

data xn. Then, the values of neurons in the l-th layer can be computed using
the following formula

y
(l)
j (xn) = σ

Nl−1∑
i=1

w
(l)
ij y

(l−1)
i (xn) + b

(l)
j

 , l = 1, . . . , L, (3)

where w
(l)
ij are weights of synapses between the (l − 1)-th and the l-th layers,

b
(l)
j are the biases, and Nl is the size of the l-th layer. Function σ(z) is an

activation function. Many different types of activation functions can be applied
in autoencoder. In this paper, we apply the most common one, i.e. the sigmoid
function defined below

σ(z) =
1

1 + exp(−z)
. (4)

The 0-th layer is the input layer, i.e. y
(0)
j (xn) = xjn. The size of the output layer

is equal to the input layer size, i.e. NL = N0 = D. If we do not apply any
sparsity constraints while learning the autoencoder, the middle layer should be
of the smallest size, i.e.

D = N0 > N1 > · · · > NL
2
< · · · < NL−1 < NL = D (5)

The autoencoder is trained as a usual feedforward neural network by mini-
mizing a cost function. Let C(xn) be the cost function obtained for the xn data

element. Then, for example, a weight w
(l)
ij would be updated in each step using

the following formula

w
(l)
ij := w

(l)
ij − η

∂C(xn)

∂w
(l)
ij

, (6)

where η is the learning rate. Analogous formula applies for biases.
In practice, the learning is often performed on minibatches of data instead

of single data elements. Let us assume that the minibatch Mt consists of B
subsequent data

Mt = (xtB , . . . , x(t+1)B−1). (7)

Then, the neural network parameters are obtained using the arithmetic average
of gradients obtained for all data from the minibatch

w
(l)
ij := w

(l)
ij − η

1

B

t(B+1)−1∑
m=tB

∂C(xm)

∂w
(l)
ij

. (8)
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Many different types of cost functions can be used. In this paper, we consider
two of them. The cross-entropy:

CCE(xn) = −
D∑

j=1

[
xjn log2

(
y
(L)
j (xn)

)
+
(
1 − xjn

)
log2

(
1 − y

(L)
j (x)

)]
, (9)

and the reconstruction error:

CRE(xn) =

√√√√ D∑
j=1

(
xjn − y

(L)
j (xn)

)2
. (10)

The monitoring of cost function values can be used to detect potential drifts in
data distribution. The detection procedure is described in the next section.

3 Concept drift detection with the autoencoder

We suspect that the autoencoder properly trained on one part of the data stream
can be applied to monitor possible changes in data distribution in the following
parts. For any cost function C (given by (9) or (10), the average value of this
cost function for minibatch Mt of size B is given by

C(Mt) =
1

B

∑
xm∈Mt

C(xm) (11)

Apart from the cost function itself, we want to investigate also the trend Q(C, t)
of cost function C for subsequent minibatches. To ensure that the trend is com-
puted only on the basis of the most recent data, we apply additionally the
forgetting mechanism, as it was done in [23]. The trend at time t is given by the
following formula

Q(C, t) =
ntTCt − T tCt

ntT 2
t −
(
T t

)2 . (12)

In standard regression procedure, the terms in formula (12) are givevn simply
by appropriate arithmetic averages. In our case, becasue of the forgetting mech-
anism applied, the arithmetic averages are replaced by the following recurrent
formulas

TCt = λTCt−1 + t ∗ C(Mt), TC0 = 0, (13)

T t = λT t−1 + t, T 0 = 0, (14)

Ct = λCt−1 + C(Mt), C0 = 0, (15)

T 2
t = λT 2

t−1 + t2, T 2
0 = 0, (16)

nt = λnt−1 + 1, n0 = 0, (17)
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where λ is a forgetting factor and it takes values lower than 1. The trend of
the cost function should be close to 0 as long as there is no concept drift in the
data stream. After the drift occurs, then Q(C, t) is suspected to increase to some
positive value. Since we consider two cost functions in this paper, there are two
trends analyzed as well, i.e. Q(CCE , t) and Q(CRE , t).

4 Experimental Results

In this section, we present preliminary simulation results of experiments con-
ducted on simple synthetic datasets with concept drift4. The dataset was gener-
ated in the same manner as it was done in [23], i.e. based on synthetic Boltzmann
machines with randomly chosen parameters. At the beginning, we applied two
Boltzmann machines, which then were used to generate to datasets with static
probability distributions

S1 = (x1,1, x1,2, x1,3 . . . ) , (18)

S2 = (x2,1, x2,2, x2,3, . . . ) . (19)

The dimensionality of the data in both sets is D = 20. The datasets S1 and S2

were used to generate two datasets with concept drifts. The dataset with sudden
concept drift is denoted as Ss = (xs,1, xs,2, . . . ), where xs,n is taken from S1

if n < 500000 and from S2 if n ≥ 500000. The dataset with gradual concept
drift is denoted as Sg = (xg,1, xg,2, . . . ), where xg,n is from S1 if n < 500000
and from S2 if n ≥ 600000. In the interval [500000; 600000) the data element
xg,n is drawn from S1 with probability 600000−n

100000 and from S2 with probability
n−500000
100000 . Hence, the two datasets Ss and Sg are constructed in such a way, that

the concept drift occurs at after processing 500000 data elements.
In the experiments, we used the simple 3-layered autoencoder (L = 3). The

sizes of the 0-th and the 2-nd layer are equal to N0 = N2 = D = 20, to match the
dimensionality of the data. The middle layer is chosen to be of size N1 = 15. The
learning rate and minibatches sizes are set to η = 0.05 and B = 20, respectively.
In each experiment, the autoencoder is trained only for the first 400000 data
elements. Then, it is turned to the monitoring mode (no learning is performed,
only the values of the cost functions are analyzed). The forgetting factor λ for
trend measures was set to 0.998.

4.1 Sudden concept drift detection

The first experiment was conducted on the Ss dataset, with the sudden drift.
The results obtained for the cross-entropy loss function are presented in Fig. 1.
As can be seen, the value of the cross-entropy decreases while the autoencoder
learns until the 400000-th data element. Then it monitors the incoming data.
Since the distribution of data does not change until the 500000-th element, the

4 All the experiments were conducted using our own software implemented in C/C++
and it can be found at www.iisi.pcz.pl/˜mjaworski
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a) values b) trend

Fig. 1. Cross-entropy values and trend as a function of the number of processed data
elements, for dataset Ss with sudden concept drift.

cross-entropy values fluctuate around some fixed level. Then the sudden drift
occurs and the cross-entropy suddenly achieves higher values. It is more clearly
visible in Fig. 1 b), where the trend of cross-entropy values is presented. The
peak at n = 500000 matches the occurrence of the sudden drift.

In the case of the reconstruction error, the results can be additionally com-
pared with the drift detector based on the RBM, presented in [23]. We applied
the same parameters as for the autoencoder. The RBM was learned using the
Contrastive Divergence (CD-k) method with K=1. The results are shown in Fig.
2. .

a) values b) trend

Fig. 2. Reconstruction error values and time as a function of the number of processed
data elements, for data set Ss with sudden concept drift.

It seems that the autoencoder wins with the RBM approach in all three con-
sidered aspects. In Fig. 2 a) we can observe that the values of the reconstruction
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error are lower for the autoencoder. It might be important if we wanted to use
the network simultaneously for other purposes, besides the concept drift detec-
tion. In Fig. 2 b) it is visible that the signal peak of suddent change detection is
higher for the autoencoder.

4.2 Gradual concept drift detection

In the next experiment, analogous simulations were carried out for the dataset
Sg with gradual concept drift. The results concerning the cross-entropy are pre-
sented in Fig. 3, whereas in Fig. 4 the comparisons of reconstruction error values
are demonstrated.

a) values b) trend

Fig. 3. Cross-entropy values and trend as a function of the number of processed data
elements, for dataset Sg with gradual concept drift.

In this experiment, the values of cost functions raise smoothly whilst the
gradual drift takes place between the 500000-th and the 600000-th data ele-
ments. Figure 4 confirms the superiority of the autoencoder over the RBM-based
approach also in the case of gradual drift.

5 Conclusions and future work

In this paper, the autoencoder was proposed as a drift detector in time-changing
data streams. First, the neural network learns the model on the beginning part
of the stream. Then it is used to monitor possible changes in the following parts.
The variations of the cost function values are analyzed. If he changes turn out to
be large, it means that the concept drift occurred, and it can be a signal for the
data stream mining algorithm to rebuild the current model. Two cost functions
were applied in this paper, i.e. the cross-entropy and the reconstruction error.
The preliminary results obtained in experiments carried out on simple synthetic
datasets confirmed that the autoencoder can be successfully used as a concept
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a) values b) trend

Fig. 4. Reconstruction error values and trend as a function of the number of processed
data elements, for data set Sg with gradual concept drift.

drift detector. It was demonstrated that it is capable of handling both sudden
and gradual concept drifts. In future research, we plan to extend the proposed
method to make it more resource-aware for fast-changing data streams and to
make it able to deal with missing values.
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3. Baena-Garcıa, M., del Campo-Ávila, J., Fidalgo, R., Bifet, A., Gavalda, R.,
Morales-Bueno, R.: Early drift detection method. In: Fourth international work-
shop on knowledge discovery from data streams. vol. 6, pp. 77–86 (2006)

4. Bengio, Y.: Learning deep architectures for ai. Found. Trends Mach. Learn. 2(1),
1–127 (Jan 2009)

5. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training
of deep networks. In: Proceedings of the 19th International Conference on Neural
Information Processing Systems. pp. 153–160. NIPS’06, MIT Press, Cambridge,
MA, USA (2006)

6. Bifet, A.: Adaptive stream mining : pattern learning and mining from evolving data
streams. Frontiers in artificial intelligence and applications, IOS Press, Amsterdam,
Berlin (2010)

7. Bifet, A., Gavald, R.: Learning from Time-Changing Data with Adaptive Window-
ing, pp. 443–448 (2007)



Concept drift detection using autoencoders 9

8. Bilski, J., Kowalczyk, B., Grzanek, K.: The parallel modification to the Levenberg-
Marquardt algorithm. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz,
W., Tadeusiewicz, R., Zurada, J.M. (eds.) Artificial Intelligence and Soft Comput-
ing. pp. 15–24. Springer International Publishing, Cham (2018)

9. Domingos, P., Hulten, G.: Mining high-speed data streams. In: Proc. 6th ACM
SIGKDD Internat. Conf. on Knowledge Discovery and Data Mining. pp. 71–80
(2000)

10. Duda, P., Rutkowski, L., Jaworski, M., Rutkowska, D.: On the parzen kernel-
based probability density function learning procedures over time-varying streaming
data with applications to pattern classification. IEEE Transactions on Cybernetics
50(4), 1683–1696 (2020)

11. Duda, P., Jaworski, M., Cader, A., Wang, L.: On training deep neural networks
using a streaming approach. Journal of Artificial Intelligence and Soft Computing
Research 10(1), 15–26 (2020)

12. Duda, P., Jaworski, M., Rutkowski, L.: Convergent time-varying regression models
for data streams: Tracking concept drift by the recursive parzen-based general-
ized regression neural networks. International Journal of Neural Systems 28(02),
1750048 (2018)

13. Duda, P., Jaworski, M., Rutkowski, L.: Knowledge discovery in data streams with
the orthogonal series-based generalized regression neural networks. Information
Sciences 460-461, 497 – 518 (2018)

14. Dyer, K.B., Capo, R., Polikar, R.: Compose: A semisupervised learning framework
for initially labeled nonstationary streaming data. IEEE Transactions on Neural
Networks and Learning Systems 25(1), 12–26 (2014)

15. Gaber, M., Zaslavsky, A., Krishnaswamy, S.: Mining data streams: A review. Sig-
mod Record 34(2), 18–26 (June 2005)
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