
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 99, 2021 1

Horus: Interference-Aware and Prediction-Based
Scheduling in Deep Learning Systems

Gingfung Yeung, Damian Borowiec, Renyu Yang, Adrian Friday, Richard Harper, Peter Garraghan

Abstract—To accelerate the training of Deep Learning (DL) models, clusters of machines equipped with hardware accelerators such
as GPUs are leveraged to reduce execution time. State-of-the-art resource managers are needed to increase GPU utilization and
maximize throughput. While co-locating DL jobs on the same GPU has been shown to be effective, this can incur interference causing
slowdown. In this paper we propose Horus: an interference-aware and prediction-based resource manager for DL systems. Horus
proactively predicts GPU utilization of heterogeneous DL jobs extrapolated from the DL model’s computation graph features, removing
the need for online profiling and isolated reserved GPUs. Through micro-benchmarks and job co-location combinations across
heterogeneous GPU hardware, we identify GPU utilization as a general proxy metric to determine good placement decisions, in
contrast to current approaches which reserve isolated GPUs to perform online profiling and directly measure GPU utilization for each
unique submitted job. Our approach promotes high resource utilization and makespan reduction; via real-world experimentation and
large-scale trace driven simulation, we demonstrate that Horus outperforms other DL resource managers by up to 61.5% for GPU
resource utilization, 20.4–33.6% for makespan reduction and 68.3% in job wait time reduction.

Index Terms—Distributed Systems, Deep Learning, Interference, GPU Utilization, Cloud computing, Workload prediction

F

1 INTRODUCTION

Deep Learning (DL) is an increasingly important type of
machine learning positioned to impact many fields. Innova-
tion in DL architectures and growth in data volume has led
to increased practitioner demand, resulting in the establish-
ment of clusters of machines equipped with computer ac-
celerators such as Graphical Processor Units (GPUs). These
DL systems—comprising distributed systems at both small
and large-scale—are leveraged to enable vast amounts of
computation throughput and reduce total model training
time [1], [2].

Cloud providers deploy and execute DL workloads (en-
capsulated as DL jobs) by provisioning resources as part
of their service model [3], [4], [5]. An important goal for
such DL systems is their ability to satisfy Service Level
Agreements (SLA) and Quality of Service (QoS) criteria in
a resource-efficient manner [6], [7]. Efforts to ensure such
SLA and QoS guarantees are challenged due to GPU under-
utilization [8], [9], [10]. This is due to existing resource man-
agers such as Kubernetes [11] and YARN [12] prohibiting the
explicit use of GPU sharing (i.e. only allowing a single DL job
to be assigned to each GPU). Such under-utilization decreases
performance, resource-efficiency, and service availability in-
curring longer queuing times [9], requiring additional GPU
devices to satisfy demand.

The ability to co-locate DL jobs (i.e., execute on the same
GPU) has been identified as a means to address under-
utilization [13], [14], [15], [16]. The effectiveness of such co-
location is based on a good understanding of DL workload

• G. Yeung, D. Borowiec, A. Friday, R. Harper and P. Garraghan
are with the School of Computing & Communications, Lancaster
University, UK. Email: {g.yeung1, d.borowiec, a.friday, r.harper,
p.garraghan}@lancaster.ac.uk

• R.Yang is with the School of Computing, University of Leeds, Leeds, UK.
Email: r.yang1@leeds.ac.uk

Manuscript received XX XX 2021 (corresponding author: Renyu Yang)

GPU utilization patterns [8], [17], [18]. For providers, this
enables high-quality DL system scheduling and co-location
decisions that reduce GPU resource under-utilization. For
consumers, this allows greater insight into potential GPU
costs1. Understanding and exploiting DL workload utiliza-
tion to improve co-location is critical for designing resource-
efficient DL systems [19], [20], [10].

However, established approaches for characterizing
GPU utilization from DL workloads leverage online profiling
during execution. Online profiling entails executing each
unique DL job on an isolated GPU (or dedicated machine)
to ensure accurate metric collection [21], [22]. Such online
profiling results in reduced service availability and resource-
efficiency due to the need for reserved GPU devices: a grow-
ing problem given the increasing number of different model
architectures and configurations [8]. Whilst co-location can
improve GPU utilization, it also can incur performance in-
terference (which we refer to as interference) resulting in an
average DL job slowdown of 18% for different co-location
combinations [8]. While DL resource managers now exist
that allow for co-location [8], [6], [10], less attention has been
paid to actively addressing interference between DL jobs
sharing the same GPU during placement decisions. Poor DL
job placement results in a higher makespan, increased Job
Completion Time (JCT), job eviction, and job failures from
GPU out-of-memory (OOM) errors [9].

In this paper we present Horus: a prediction-based
interference-aware resource manager for DL systems. In
contrast to existing approaches, Horus proactively predicts
the GPU utilization of unseen DL jobs based on their model
features, which are exploited by our scheduler to determine
suitable DL job co-location combinations to minimize in-

1. AWS p3.16xlarge instance (8x NVIDIA V100 GPUs): $28.712/h
(https://aws.amazon.com/ec2/pricing/on-demand/) [01/07/2020]

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 99, 2021 2

terference. Our approach avoids the need to profile kernel
patterns [13], [21], [22], [10], modification of the underlying
DL framework, nor require extensive online profiling of job
execution requiring an isolated GPU at scheduler runtime—
all of which are expensive and time consuming. We offer
three specific research contributions:
• Characterization of DL workload interference resulting from

co-location. We have characterized interference profiles
of over 600 unique combinations of co-located DL jobs
across heterogeneous GPU hardware architecture. Find-
ings demonstrate that DL job co-location interference re-
sults in up to 2.4x–3.4x slowdown, and is comparable to
network locality for distributed training.

• GPU utilization analysis and prediction engine for DL work-
loads. Through a series of benchmarks, we analyze and
identify the key DL model features and their relationship
to GPU utilization. These include Floating Point Opera-
tions Per second (FLOPs), input data size and DL com-
putation graph structure such as number of convolution
layers. Our proposed prediction engine allows for sub-
second DL job GPU utilization prediction without a need
for online profiling.

• An interference-aware DL resource manager. Exploiting our
prediction engine, we propose an interference-aware re-
source manager supporting co-location and minimizing
GPU over-commitment. Our approach offers two alterna-
tive scheduling algorithms that prioritize minimizing job
makespan or improving fairness to avoid job starvation—
lowering median job wait time at the expense of a
marginal degradation to makespan and utilization. The
resource manager was integrated into Kubernetes and
deployed within a DL cluster, and evaluated at scale
via trace-driven simulation of a production DL cluster.
Results demonstrate that our approach achieves a 32–
61.5% increase in GPU cluster utilization and up to 17.3–
33.6% makespan reduction over existing approaches.

We expand upon our previous work [23], by increasing
the scope of the DL workload characterization study from
81 to 292 models; capture additional GPU architectures and
600 more co-location profiles for analysis and modelling,
improved GPU prediction model accuracy; and evaluate
Horus at scale via trace-driven simulation of a production
cluster. The Horus framework has also been redesigned
to include a refined fair queuing scheduling algorithm to
minimize a cost objective. Finally, the evaluation has been
conducted with an additional set of workload compositions
and an additional co-location algorithm for comparison [8].

The paper is structured as follows: §2 and §3 present
the research background and job characterization study,
respectively. §4 outlines design and implementation of the
Horus system. §5 and §6 discuss experiment setup and
results. §7 provides related work and §8 the conclusions.

2 MOTIVATION

2.1 Background

Deep Learning are Deep Neural Networks (DNN) repre-
sented as a Directed Acyclic Graph (DAG) or computa-
tion graphs in execution. Each graph node is an operation
(i.e. layer or combination of layers), containing parameter

0 20 40 60 80 100

GPU Utilization (%)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

(a) GPU Utilization CDF

0.0 0.5 1.0 1.5 2.0 2.5 3.0

GPU Memory Consumption (GiB) 1e7

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

(b) GPU Memory Consumption CDF

0 1000 2000 3000 4000

Job Completion Time (JCT)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

(c) JCT CDF truncated at 4000 mins (d) Number of GPUs per Job CDF

Fig. 1: Job utilization and JCT from production DL cluster (1 month)

information with access to its predecessor and successor.
Model parameters are stored as floating point values, hence
larger models in execution often result in a higher number
of Floating Point Operations (FLOPs), and an increased
requirement for GPU device memory. This is important as
recent research demonstrate increasing DNN model depth
and width can improve accuracy [24]. DNNs are frequently
executed on GPUs due to the high performance capability to
perform matrix multiplication on thousands of cores. Each
operation is often expressed as computation or memory
kernels on GPUs [25]. Hence a DL model with a large number
of layers requires more kernels, resulting in greater GPU
load driven by the number of FLOPS and the intermediate
outputs (activations) of the network.
Deep Learning Systems (DL Systems) are clusters of ma-
chines containing one or more accelerators – predominately
GPUs – employed to execute DL workloads. Users submit
workloads into the DL system as jobs with various con-
figurations (e.g. batch size, model, dataset). Jobs are then
allocated onto the machines via the resource manager. Recent
studies of production DL systems have identified the chal-
lenge of GPU under-utilization reflected by an average GPU
utilization of 52% [9], and long queuing time for DL jobs
of between 4,000s–8,000s due to head-of-line blocking [26].
We are able to corroborate such findings from conducting
an analysis of a month-long trace of a 398 production DL
jobs scheduled to a 500+ machine GPU cluster operated by
a large global e-commerce company. As shown in Fig 1, we
observed that half of the jobs have GPU Utilization less than
or equal to 60% and JCT less than or equal to 300 minutes,
averaging at 51% and around 500 minutes, respectively.

A primary cause of such under-utilization is the reliance
on traditional, non-preemptive schedulers [11], [12] in DL
system resource managers, requiring each DL job to hold
exclusive access to a GPU device. This is problematic due to
its negative impact on job throughput, system availability,
and resource-efficiency. Existing approaches have demon-
strated a positive increase of DL system GPU utilization
by enabling co-location of DL jobs on the same GPU [8],
[6], [10], [18]. The effectiveness of co-location is dependent

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 99, 2021 3

MobileNetV2 GoogLeNet LSTM 2LayersLSTM Self
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

N
or

m
al

iz
ed

 JC
T

In
cr

ea
se

ResNet50
VGG19

Fig. 2: DL job interference (Nvidia GTX 1080, Cifar10 dataset)

on two inter-related concepts: accurate GPU profiling and
minimizing interference.
GPU profiling is used to ascertain the GPU utilization for
jobs, and is known to be non-trivial to calculate [27]. In
this context, GPU utilization is defined as the percentage
of time in a given sample interval where one or more
kernels executed on a GPU. It is important to note that this
measurement is not the actual utilization of the processing
elements core (chip area containing the floating-point, inte-
ger, tensor units), nor relates to the bytes read/written from
device memory and cache. It is however, a good estimate
of the amount of load required to keep the GPU busy
within the measurement period. Profiling2 is performed by
collecting metrics related to a DL job on an isolated GPU or
machine [14], [21], [22]. Profiling can be categorized into
two types: Coarse-grained profiling obtains the number of
kernels, kernel configuration, GPU/memory utilization, and
kernel execution time, and usually takes several minutes
to complete depending on the job. Fine-grained profiling
requires accessing hardware performance counters includ-
ing Achieved Occupancy and byte read/write throughput
from DRAM for each observed kernel. Whilst more accurate
when compared to coarse-grain profiling, this method is
more intensive and takes longer to complete (minutes to
hours), depending on the metrics measured and workload
complexity. Whilst GPU profiling is used in existing DL re-
source managers for co-location decisions, such co-location
also incurs performance degradation from interference.
Interference is a system phenomena occurring when multi-
ple processes compete for the same limited set of resources
on the same machine [28], [29], [30], [31]. GPU interference
occurs with the same reason. Specifically, the limited set
of processing elements and memory then causes queuing
delays of the jobs’ kernels [13], [22], [21], [16]. These kernels
are launched by the GPU kernel scheduler, which follows
policy similar to round-robin fashion [32]. Interference of
co-located DL jobs has been shown to result in an 18% JCT
degradation [8]. Our initial experiments of job co-location
on an Nvidia GeForce GTX 1080 GPU depicted in Fig. 2,
show that ResNet50 and VGG19 models experience up to
2.1x JCT slowdown when co-located with various other
models. Such slowdown is problematic considering that DL
jobs may perform model training in the region of hours to
days. Hence, in order for DL systems to fully exploit co-
location, maximizing resource utilization and minimizing
makespan, DL resource managers should consider the ef-

2. Nvidia tools: NSight Systems, NSight Compute and NVProf

TABLE 1: Micro-benchmark hardware setup.

Feature System A System B

CPU Intel i7-6850K AMD Ryzen 1920X
GPU Nvidia GeForce GTX 1080 Nvidia GeForce RTX 2080
RAM 32GB 128GB

TABLE 2: Analyzed DL models. Datasets (CV): Cifar10 [33], batch sizes:
{8, 16, 32, 64}. (NLP): WikiText2 [34] & News Commentary v14-en-
zh [35]. NLP: sentence length: 200, vocab. 10000, batch sizes: {16,32,64}.

- CV, - NLP, - FC

Architecture Permutations

MobileNet [36] [default]
MobileNetV2 [37] [default, channel: 2i0...n]
MobileNetV3 [38] [075, 100]
GoogLeNet [39] [default]
ResNet[40] [18, 18 - bottleneck 34, 50],
VGGNet[41] [11, 11 - bottleneck, 19]
SqueezeNetV1[42] [1.0]
DenseNet[43] [121, 161, 169]
ShuffleNetV2[44] [0.5, 1.0, 1.5, 2.0]
MNASNet[45] [0.5, 1.0, 1.3],
DualPathNetwork[46] [92, 26], blocks: [2,2,2,2]
ProxyLess [47] [cpu, gpu, mob, mob-14]
PyramidNet[48] depth: [48,84,270], alpha: [66,110]
ResNeXt[49] [11,29] cardinality: 2, width: [16,64]
LSTM [50] ParaDNN implementation [20]
Gated Recurrent Unit [51] ParaDNN implementation [20]
Fully Connected (custom) ParaDNN implementation [20]

fects of interference when performing DL job co-location
during placement.

2.2 DL Utilization and Interference

Existing GPU and DL resource managers [13], [21], [16],
[14], [8], [10], [15] alleviate interference effect by profiling
kernel characteristics and GPU Utilization at runtime to
orchestrate kernels scheduling order or opportunistically co-
locate jobs. However, profiling DL job kernels at runtime to
infer interference by creating suitable performance profiles
may extend DL job training from minutes to hours. More-
over, profiling must be performed for every new job (DL
model) submitted into the system, resulting in additional
overhead in the system. Since GPU Utilization is correlated
to the load of the GPU, we therefore turn to investigate
the relationship between GPU Utilization and interference.
It is imperative to understand how different DL model
configurations affect the GPU Utilization, and exploit such
information to ascertain co-location profiles with minimal
interference.

Particularly, we conducted a set of relationship study
to address the following questions: [Q1] Can we leverage
GPU Utilization as a general proxy metric to estimate the
interference level, i.e., JCT slowdown, without fine-grained
profiling? [Q2] If so, can we exploit DL job characteristics
and extract useful information to predict GPU Utilization?

3 CO-LOCATION RELATIONSHIP STUDY

3.1 Profiling Setup

Environment. Micro-benchmarks were conducted using
two different DL systems (A & B), described in Table 1.
Leveraging methods established in the literature [15], [21],

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 99, 2021 4

0

20

40

60

80

100

D
en

se
N

et
1

21

D
e

n
se

n
e

t6
1

D
en

se
N

et
1

69

D
u

al
P

at
h

N
e

t2
6

D
u

al
P

at
h

N
e

t2
6

.s

D
u

al
P

at
h

N
e

t9
2

Fu
lly

 C
o

n
n

e
ct

 0

Fu
lly

 C
o

n
n

e
ct

 1

Fu
lly

 C
o

n
n

e
ct

 2

Fu
lly

 C
o

n
n

e
ct

 3

Fu
lly

 C
o

n
n

e
ct

 4

Fu
lly

 C
o

n
n

e
ct

 5

Fu
lly

 C
o

n
n

e
ct

 6

Fu
lly

 C
o

n
n

e
ct

 7

Fu
lly

 C
o

n
n

e
ct

 8

Fu
lly

 C
o

n
n

e
ct

 9

Fu
lly

 C
o

n
n

ec
t

1
0

Fu
lly

 C
o

n
n

ec
t

1
1

Fu
lly

 C
o

n
n

ec
t

1
2

Fu
lly

 C
o

n
n

ec
t

1
3

Fu
lly

 C
o

n
n

ec
t

1
4

Fu
lly

 C
o

n
n

ec
t

1
5

Fu
lly

 C
o

n
n

ec
t

1
6

Fu
lly

 C
o

n
n

ec
t

1
7

Fu
lly

 C
o

n
n

ec
t

1
8

Fu
lly

 C
o

n
n

ec
t

1
9

Fu
lly

 C
o

n
n

ec
t

2
0

Fu
lly

 C
o

n
n

ec
t

2
1

Fu
lly

 C
o

n
n

ec
t

2
5

G
R

U
 0

G
R

U
 1

G
R

U
 2

G
R

U
 3

G
R

U
 4

G
R

U
 5

G
R

U
 6

LS
TM

 0

LS
TM

 1

LS
TM

 2

LS
TM

 3

LS
TM

 4

LS
TM

 5

LS
TM

 6

M
N

A
Sn

et
0

.5

M
N

A
Sn

et
1

.0

M
N

A
Sn

et
1

.3

M
o

b
ile

N
e

t

M
o

b
ile

N
e

t3
.s

.0
7

5

M
o

b
ile

N
e

t3
.s

.1
0

0

M
o

b
ile

N
e

tv
2

M
o

b
ile

N
e

tv
2

.L

p
ro

xy
le

ss
_

cp
u

p
ro

xy
le

ss
_

gp
u

p
ro

xy
le

ss
_

m
o

b

p
ro

xy
le

ss
_

m
o

b
.1

4

P
yr

am
id

n
et

4
8

.1
1

0

P
yr

am
id

8
4

.6
6

P
yr

am
id

8
4

.1
1

0

P
yr

am
id

2
7

0
.1

1
0

R
e

sN
e

t1
8

R
e

sN
e

t3
4

R
e

sN
e

t5
0

R
e

sN
e

t_
w

id
e

.1
8

.2

R
e

sN
e

X
t1

1
.2

x1
6

R
e

sN
e

X
t1

1
.2

x6
4

R
e

sN
e

X
t2

9
.2

x6
4

Sh
u

ff
le

N
e

t_
0

.5

Sh
u

ff
le

N
e

t_
1

.0

Sh
u

ff
le

N
e

t_
1

.5

Sh
u

ff
le

N
e

t_
2

.0

V
G

G
1

1

V
G

G
1

1
b

n

V
G

G
1

9

G
P

U
 U

ti
liz

at
io

n
 %

Batch 64 Batch 8

Fig. 3: Overview of DL workload GPU utilization differences (Nvidia RTX 2080)

[22], DL model profiling was conducted using isolated
GPUs, and by co-locating different combinations of DL jobs
within the same GPU. Each micro-benchmark was repeated
multiple times to ensure metric consistency. Both systems
used an Nvidia container runtime, CUDA Toolkit 10.2 and
PyTorch 1.5 DL Framework [52].
DNN Models. We selected a wide variety of representative
DL job types: 14 prominent computer vision (CV) models,
2 Natural Language Processing (NLP) and 1 custom Fully
Connected (FC) model architecture, encompassing convolu-
tion neural networks (CNNs) and recurrent neural networks
(RNNs), comparable to prior works [53], [26], [15], [54]. Each
model architecture were then further refined into several
different configurations by varying mini-batch size, hidden
dimensions and number of layers to create a number of
model permutations, as shown in Table 2 and Fig. 3. Within
the memory constraints of GPU devices, this resulted in
292 unique configurations profiled in isolation with further
600 co-location combinations. We run these models with
the highest capacity on our systems until they encountered
OOM.
Metrics. In order to understand the impact of interfer-
ence, we extracted several key metrics of interest in-
cluding: GPU utilization, Job Completion Time (JCT)
and kernel access patterns. Metrics were collected us-
ing nvidia-smi, nvml-golang bindings, and Nvidia
Nsight Systems. We measured the impact of interference
by analysing the corresponding JCT slowdown in each
co-located execution case by comparing with the isolated
execution case. JCT slowdown Tdeg is measured as:

Tdeg =
|Tcolo − Tsolo|

Tsolo
(1)

where Tcolo is the time taken for a co-located DL job to reach
a fixed time epoch, and Tsolo is the time taken for the same
DL job executing in isolation.

3.2 Relationship between GPU Util and JCT Slowdown
In response to [Q1], we observe that co-located DL jobs,
with each requiring high GPU utilization, result in greater
JCT slowdown due to more significant levels of resource
contention by the scheduled kernels. This is intuitive as
GPU utilization is driven by the degree in which kernels
engage GPU’s processing elements and memory. As shown
in Fig. 4, co-located job combinations with increasing levels

of GPU over-commitment (i.e. the cumulative GPU utilization
requirement greater than 100%) results in a JCT increase
between 1.5x–3x; In contrast, pairs of co-located DL jobs
which individually require less than 50% utilization are less
likely to exhibit severe performance degradation, with an in-
crease in JCT between 1x – 1.5x. The correlation of increased
over-commit utilization with increased JCT suggests that
utilization can be used as a proxy metric for determining
job interference levels.

Without fine-grained profiling of individual DL job ker-
nels, one can leverage GPU utilization w.r.t. each DL job as
such proxy, when co-locating jobs with high load and de-
termine scenarios which are likely to result in performance
degradation. Observably, there is an approximate linear rela-
tionship between accumulative GPU utilization and resultant
JCT slowdown before GPU over-commitment manifests. In
comparison, GPU over-commitment results in a non-linear
relationship – we find that quadratic polynomial fits well
to the data with the lowest R-squared difference indicated
by 0.88 and and 0.84 for Nvidia 1080 and Nvidia RTX 2080,
respectively.

Additionally, we investigate the impact of hardware het-
erogeneity on JCT slowdown. Fig. 4 reveals that on average
the interference severity when running identical DL jobs is
lower on the Nvidia RTX 2080 architecture than Nvidia 1080,
due to additional processing elements, increased cache size,
and larger memory bandwidth. Accordingly, the coefficient
of the best-fit relationship is also different for heterogeneous
hardware.

3.3 Relationship between FLOPs and GPU Utilization
In response to [Q2], we investigate the DNN computation
graph and Fig. 5 illustrates a positive correlation between
FLOPs and GPU utilization. This is because the DNN model
has a larger number of parameters, and the number of
activations will lead to more computation and memory
kernels launched in the GPU device, further causing an
increased GPU load.

In reality, both the number of matrix multiply and mem-
ory transaction increase when the batch size is increased due
to the number of FLOPs and memory transactions are corre-
lated to the number of elements within a batch of inputs, i.e.,
B ×X where B is the batch size and X is the DNN inputs.
Hence, by looking into the DNN computation graph, we can
extract meaningful information to quantitatively determine

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 99, 2021 5

25 50 75 100 125 150 175 200
Cummulative GPU Utilization (%)

1.0

1.5

2.0

2.5

3.0

3.5
N

o
rm

al
iz

e
d

 J
C

T
 I

n
cr

e
as

e NVIDIA 1080
NVIDIA 2080

Fig. 4: Cumulative GPU Utilization
and JCT slowdown

0.0001

0.001

0.01

0.1

1

10

100

1000

0 20 40 60 80 100

G
FL

O
P

S

GPU Utilization %

Fig. 5: GFLOP and GPU Utilization

the GPU utilization, which in turn allow us to accurately
infer the most suitable job co-location scheme for reducing
the performance interference in a deep learning cluster.

4 PROPOSED APPROACH: HORUS

Horus is a prediction-based interference-aware DL system
resource manager, and has been designed as a set of com-
ponents that can be deployed as part of existing cluster
resource manager frameworks such as Kubernetes. Fig. 6
depicts Horus architecture and it comprises three main
components: the Prediction Engine, the Metric Repository and
the Application Controller. Upon job submission, the applica-
tion controller sends a request to the prediction engine to
estimate DL job GPU usage, i.e., GPU Utilization and GPU
Memory Utilization by inspecting the workload definition
(§4.1). Specifically, the prediction engine requires a way
to access the DNN graph and dry run the model (e.g.
downloading the .pth file3). Cluster view is maintained
through infrastructure updates and monitoring agents, to
collect infrastructure data from each node including GPU
usages and system usages (host memory usages, and CPU
utilization). An agent is deployed on each individual node
reporting application and system utilization metrics, which
are eventually collected into the metric repository (§ 4.3).

The scheduler then assigns DL jobs to GPUs by com-
puting their suitability—minimizing a cost function objec-
tive to support co-location w.r.t. cached cluster state. Our
approach aims to maximize GPU utilization and minimize
makespan via de-prioritizing co-location placement deci-
sions that would result in JCT slowdown from severe in-
terference and communication delays (§4.2).

4.1 Prediction Engine
4.1.1 Estimating GPU Utilization

Overview. The prediction engine extracts key DL workload
features as described in Table 3 by iterating over the Open
Neural Network Exchange (ONNX)4 graph representation
of the DL model. We can obtain aggregate features such as
FLOPs by iterating each operators and calculate based on its
inputs, output shape, and parameters. Features are then nor-
malized and used as numerical inputs to a machine learning
model in order to predict the GPU utilization (GUtilj) of
a given job j. We train the prediction model in an offline
training stage based on a set of historical DL workload pro-
file micro-benchmarks similar to existing prediction based

3. The pytorch model checkpoint
4. https://onnx.ai/ [01/07/2020]

Application Controller

Workload Definitions

Task Allocator

Metric Repository

Cached workload queues

Cached Cluster State

Infrastructure Updates

Infrastructure

Horus 1. Receive info. for new
workloads and infrastructure.

2. Periodic update cluster
utilizations.

3. Predict computation and
memory requirement for
each workload.

Scheduler Prediction Engine

ML Model
Memory
Estimator

4. Request Allocations.

5. Deployment.

Periodic metrics scaping.

Fig. 6: Horus architecture - GPU utilization prediction engine deployed
and co-location scheduler in a DL resource manager

TABLE 3: ONNX model features

Features

FLOPs, Memory Parameters, Batch Size, Memory Activations,
Exponentials, Split, Constant, GlobalAveragePool, ReduceMean,
MaxPool, GRU, Reshape, LSTM, Concat, Gather, Squeeze,
Pad, BatchNormalization, AveragePool, Conv,Slice, Transpose,
Flatten, Relu, Gemm

approaches [14], [29]. These profiles are nominally acquired
via developers running micro-benchmarks or by monitoring
existing non co-located DL workloads on isolated GPUs.
Critically, after successful prediction model training, there
is no need for isolated profiling for unique DL workloads
entering the system. It is worth noting that such an approach
can also be combined with reactive approaches [8], [10], [15],
[17], [18]. The machine learning model can be periodically
retrained after collecting additional profiles (e.g. when new
models are discovered).

50 100 150 200
Weights

Num. Flatten
Num. Relu

Num. Gemm
Memory Activations

Batch Size
Memory Parameters

FLOPs

Fig. 7: Most important regressor features

Feature Importance. To understand further what con-
tributes towards GPU utilization, we investigate each of
the tree based regressor feature weights by extracting the
weights and averaged across them as shown in Fig. 7. These
features are clear indicators and follow the existing litera-
ture of model compression and neural architecture search
where reducing the number of parameters and intermediate
activations can save computation and memory consumption
of the hardware [37], [45]. Surprisingly, we found that the
number of convolution and the remaining features had
minimal to no impact on the regressor, and we plan to
look into leveraging compiler intermediate representation
for more hardware feature characteristics [25].

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 99, 2021 6

TABLE 4: Regressors Root Mean Square Log Error (RMSLE) for GPU
utilization prediction

Linear LightGBM[55] XGBoost[56] Random Forest [57]

RMSLE 0.188 0.193 0.133 0.150

Model Evaluation. Model accuracy was determined
via measuring regressor Root Mean Square Log Error
(RMSLE)—an established measure of regression accuracy
when the under-prediction error is enlarged. This approach
is useful for utilization prediction: whilst overestimating
GPU utilization is not ideal in terms of maximizing resource
efficiency, it is preferable to underestimation which could
lead to unintended GPU over-allocation and interference
that we attempting to avoid. Table 4 shows that all predic-
tion models achieve a relatively low RMSLE score of 0.133.

4.1.2 Estimating GPU Memory Utilization
Compared with GPU utilization, estimating GPU memory
utilization is more complex since total job memory size
(MiB) is governed by initialization and optimization of indi-
vidual DL libraries. Without looking into the kernels imple-
mentation, it is possible to estimate the minimum expected
memory usage in bytes by considering the following four
factors in both forward Mf and backward passes M b: (i)
the batch size of dataB, (ii) the number of activationsA, (iii)
number of gradients G and (iv) the number of parameters
P . In addition to an initialization overhead δ, the overall
estimated memory requirement for a given DL job j will be:

GMemj =Mf
j +Mb

j + δ = (B ∗A+ P) +B ∗G+ δ (2)
The estimated GPU utilization (GUtilj) and GPU memory
(GMemj) will be used for node capacity check in the sched-
uler in case of tackling an incoming job.

4.2 Interference-Aware Job Scheduling
Gandiva [8] placement strategy monitors application
throughput, a job is killed or migrated to another node
randomly upon slowdown detection using an undefined
threshold value and time period. In such an approach,
it is possible for random job migration to be allocated
with another incompatible job leading to equal or greater
performance slowdown. Antman [10] enables co-location
by monitoring DL jobs, employing a local coordinator and
modified the underlying DL frameworks to allow fine-
grained control of DL jobs kernels, injecting idle time on a
GPU to alleviate interference between co-located jobs. This
approach, however, requires understanding and profiling
of the kernels execution order at runtime to determine the
appropriate idle time.

At the core of our interference-aware scheduling is to
understand the compute resource requirement prior to job
execution, and then perform the job placement with as less
cost as possible w.r.t the corresponding resources to the job.
This is in contrast to most existing DL system schedulers
which react after obtaining workload utilization patterns.

4.2.1 Job Scheduling Plan
Problem Formulation. Our objective is to find a job place-
ment onto a cluster of nodes with GPU capacities that
minimizes the cost value of all possible solutions. In this

TABLE 5: Notations Definition

Symbol Description

J, j Jobs awaiting scheduling, a job
N,n Cluster node collection, a node
Gn Available GPUs on node n
ωi Component weights in the objective function
R Enumerated resource types: CPU(0), RAM(1),GMem(2)
r a given resource type in R
CP rn Capacity of resource r on node n
URrn Used resource r on node n
CP τng Capacity of resource τ (GMem) on GPU g on node n
URτng Used resource τ (GUtil, GMem) on GPU g on node n
Xjng 1 if job j is allocated to GPU g on node n; 0 otherwise
RQrj Requested resource of job j for resource r
RQGPUj Requested GPU number of job j
GUtilj Estimated GPU utilization of a job j
GMemj Estimated GPU memory usage of a job j
β the number of jobs considered in each scheduling round
k queue numbers in the scheduler

context, we use a decision variable Xjng to represent the
node n’s GPU g is allocated to the job j at the decision time,
and Costjng denotes the cost variable in this placement.
The optimization problem can be therefore defined as the
following Integer Linear Programming (ILP) problem:

min
∑
j∈J

∑
n∈N

∑
g∈Gn

Costjng ·Xjng (3)

s.t.
∑
n∈N

∑
g∈Gn

Xjng = RQGPUj , ∀j ∈ J (4)

∑
j∈J

∑
g∈Gn

RQrj ·Xjng 6 CP rn − URrn, ∀r ∈ R, ∀n ∈ N (5)

Xjng = {0, 1}, ∀j ∈ J,∀n ∈ N,∀g ∈ Gn (6)

The constraints ensure at every time all GPU requests of
each job can be satisfied (Constraint (Eq. 4) and the sum of
any type of resources (i.e., CPU, memory, and GPU memory)
requested by all jobs on any node must be within the bound
of node free resource (Eq. 5). Subject to these constraints, we
aim to minimize the involved cost of the overall GPU allo-
cation among co-located jobs (Eq. 3). For clarity, notations
used in this paper are summarized in Table 5.
Cost Breakdown. To accurately capture the incurred cost
and the impact of GPU co-location onto the DL job per-
formance, we further break down the overall cost into
two independent portions: GPU memory usage and GPU
utilization increase:

Costjng = ω1C
GMem
jng + ω2C

GUtil
jng (7)

wherein ωi is a customized weight that indicates the perfor-
mance impact and we set all weights equally by default.

Since higher GPU memory usage has a higher chance of
OOM errors and JCT slowdown, the cost of GPU memory
CGMem
jng is inherently referred to as a proportion of GPU

memory usage as a result of placing the job j (Eq. 8):

CGMem
jng =

URGMem
ng + GMemj

CPGMem
ng

(8)

where CPGMem
ng is a fix number, i.e., the total GPU memory

of the GPU device, while GMemj is the estimated GPU
memory usage of job j and URGMem

ng is the used GPU
memory within URτng . Due to the relationships between
increased GPU utilization of co-located DL jobs and JCT
slowdown w.r.t hardware outlined in §3, we penalize the
combinations of co-located DL jobs when over-commitment

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 99, 2021 7

Algorithm 1 Weighted Fair Queuing Based Job Scheduling
Input: (J , S, k, β) // Pending jobs, current cluster state, k queues and

β jobs to consider into the buffer for each scheduling round.
1: // Cluster the similar jobs into multi-tiered queues
2: Q ← Put pending jobs into k queues via k-means (J , k)
3: while queues in Q is not empty do
4: J̃ ← Pick β jobs into scheduling buffer via weighted fairness
5: for j in J̃ do
6: if the cluster has allocatable resources (S) then
7: // capacity check (CPUs, Mems, GPU Mems)
8: N ← filter all nodes passing capacity check (j, S)
9: λ← j.requestedGPU

10: σ ← dλ/#GPUperNodee
11: if LEN(N) < σ then
12: continue
13: // calculate the cost of placing a job onto GPUs on the nodes
14: Cj ← Eq. 7, (j,∀g ∈ Gn, ∀n ∈ N)
15: // shortlist a collection of GPUs with min costs
16: G ← select top-λ from Cj in ascending order
17: // resource allocation
18: SCHEDULE(j, G)

manifests. Specifically, let F be a set of functions that we
trained and fitted on the JCT slowdown and cumulative
GPU Utilization w.r.t GPU device g. f−τ and f+τ are two
function instances in F where f−τ represents the function
when the targeting device is of τ type and cumulative GPU
utilization is not yet over-committed while f+τ is used when
the cumulative GPU utilization surpasses 100%. Hence, the
GPU cost can be expressed as:

CGUtiljng =

{
f+τ (GUtiljng), if GUtiljng > 100

f−τ (GUtiljng), if GUtiljng ≤ 100
(9)

where GUtiljng is the estimated GPU utilization if job j is
placed onto node n’s GPU g:

GUtiljng = URGUtilng + GUtilj (10)

As our functions F was fitted against the JCT slowdown
and GPU Utilization, we can directly use the outcome of the
function as an estimated cost when these jobs are packed
onto the GPU device. Therefore, the scheduling probability
of the node would be inversely correlated to the JCT slow-
down estimate. As this ILP problem is proved to be NP-
hard, we borrowed the idea from [58] to derive a cost based
algorithm to solve it greedily within a runtime scheduling
system with modification into considering fairness due to
jobs heterogeneity in resource requirements [26], [9].

4.2.2 Runtime Job Scheduling with Weighted Fair Queuing
As we observed in Fig. 1 that the JCTs vary substantially
among jobs, it is critical to avoid head-of-line blocking and
any forms of resource starvation – particularly incurred by
long jobs with large resource requests. To schedule different
jobs in a fair manner, we borrow the ideas from [59], [60];
(1) cluster similar jobs into several groups to individually
manage the jobs in a group and (2) at each scheduling
round, we fairly pick up a certain number of jobs from
different queues, primarily considering the waiting time
and queue length, and then assign the most suitable GPU
resources to launch them in the GPU cluster. Alg. 1 outlines
the algorithm details.
Job clustering. Before jobs are actually scheduled, we carry
out a clustering procedure for all jobs. Specifically, the

L1 Distance metric is used to identify similar jobs con-
sidering the following features: (1) Number of tasks; (2)
GPU Utilization predicted; (3) GPU per task; and (4) GPU
memory estimated. These features outline per-job resource
requirements and can be obtained by adopting the method
in §4.1. In practice, we run the k-means algorithm on all yet-
to-execute jobs to identify similar jobs and put them into
the corresponding queues, i.e., Q = [Q1, . . . ,Qk] (Line 2).
We set k = 3 as we found that from Fig. 1a, the utilization
patterns have 3 distinct CDFs.
Picking jobs based on weighted fair queuing. Presumably,
β jobs are allowed, as a batch, into each scheduling round.
To be fair, Horus picks up a certain number of pending jobs
from each queue according to the queue weight, i.e., the
degree of job pending (Line 4). more jobs are expected to
be selected and processed from a queue with longer waiting
time and larger queue length, we measure the weight as
the product of job’s median waiting time per queue and
the queue length, i.e., wx = max{Len(Qx),Med(Qx) ×
Len(Qx)}, x = {0 . . . k}, where the max operation is to
guarantee a non-zero value once median waiting time is
zero when all jobs are new arrivals on the system. Median
has a statistical property that is less affected by skewed data,
thus can more accurately reflect the queuing time for a class
of jobs. Eventually, the number of jobs picked from Qx can
be calculated by wx∑k

i wi
β. This design can actively avoid job

starvation of any particular class of jobs – whenever a class
of jobs start to starve, an increased number of jobs will be
selected. We also allow reservation for starving jobs as the
weighted fair queuing algorithm will select the jobs with the
longest waiting time.
Resource allocation. Because all pending jobs are now well
ordered into J̃ according to the weighted fairness, the sched-
uler will try its best effort to allocate available resources
to each job in turn whist minimizing the performance in-
terference. Specifically, for each job, we check the resource
capacity and select all the nodes (N) that can satisfy all
requirements of job j in terms of CPU, memory and GPU
memory (Lines 8). The GPU memory requirement is inferred
by using Eq. 2 in § 4.1. Based on the total number of GPUs
required by the job and the number of GPUs per node, we
calculate the minimal number of nodes that can meet the
needs of job j (Lines 9-12). By using Eq. 7, we can then
calculate the cost of scheduling a job onto each GPU of each
node in N (Line 14) and pick the top-λ GPUs (G) with the
minimal costs (Line 16) before the final resource allocation
and job scheduling (Line-18).

4.2.3 Other Considerations and Discussion
Job Failover and Rescheduling. It is possible for our ap-
proach (as well as other DL resource managers) to encounter
issues associated with OOM errors due to co-located DL jobs
exceeding the total GPU memory capacity stemming from
incorrect memory requirement estimation. We address this
issue by using a separate thread to monitor job progress,
and in the event of failure, jobs are resubmitted onto the
scheduling queue similar to prior works [8], [29]. The sched-
uler will then update the DL job request with necessary GPU
memory requirements, where GPU memory must be equal
or greater than the memory available previously placed
based on periodic infrastructure profiles.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 99, 2021 8

Locality-based calibration. This work primarily tackles the
JCT slowdown due to interference stemming from job co-
location while optimizing the distributed job training is
not the focus of this paper. The current job placement
scheme assumes high-speed connection across-nodes, hence
the data transfer time during training is not the dominating
factor in current algorithm design. The GPU interference
aware scheduling is most suitable for jobs which do not
have high frequent transfer of gradients and parameters.
For jobs requiring 8 or more GPUs, the cost model in the
algorithm frame can be integrated with the locality-based
placement so that GPUs on the same nodes or same racks
can be prioritized before the cost-based GPU filtering to
reduce the large amount of data transfer [8], [26], [61].
Timing Constraints. Horus factors in the waiting time in
multiple queues job selection, however like many other DL
cluster managers, does not consider the timing constraint
in terms of completion time in the placement/planning
phase [8], [10], [26], [61]. This is because a DL job’s
convergence rate is often non-linear, depends on hard-
ware/software parameters and does not correlate to the
number of iterations [9], so normally DL cluster managers
cannot rely on the job’s (remaining) execution time, which
is used by generic algorithms such as shortest-job-first (SJF)
and shortest remaining time first (SRTF), etc or other opti-
mization problem formulation based on timing constraints.
Existing scheduling approaches, particularly in HPC and
Grid computing, based on the estimation of execution time
rely on a strong assumption, that is, workloads are pre-
known, e.g., periodic jobs with same datasets, hyperparam-
eter, and model architecture. This assumption does not hold
in DL clusters due to constant model evaluation with dif-
ferent datasets [8]. Considering this constraint is, however,
beyond the scope of this paper.

4.3 System Implementation
Horus Application Controller is approximately 5k+ lines
of code written in Go. The prediction engine is written in
Python, and operates as a separate process within the DL
system i.e. in Kubernetes, our prediction engine is a pod.
Both the prediction engine and our application controller
communicate via remote procedure calls (RPC). We leverage
the gRPC5 library as the underlying RPC implementation
to perform data serialization and de-serialization during
data transfer, allowing our scheduler to request predicted
information upon job submission. It is worth noting that
our approach requires no modification to any underlying DL
libraries such as TensorFlow or PyTorch.
Monitoring. Monitoring is the key to application aware
optimization [10], [26], [53], [62], [17], [63]. In order to obtain
a fine-grained view of the infrastructure, Horus leverages
cAdvisor6, a container monitoring framework. These infras-
tructure information is then aggregated into a centralized
time series database, which our application controller can
query and make decision based on the job’s historical usage.
Fault Tolerance. Using a Network File System (NFS) is
often necessary in DL training jobs due to a large amount
of training data and memory limitation [9], [64], [26]. In

5. https://github.com/grpc/grpc, [01/07/2020]
6. https://github.com/google/cadvisor

addition to efficient retrieval of training data, a checkpoint
file or miscellaneous event files can be persisted across
nodes by using NFS. This allows DL job recovery after a
failure and, more importantly, enables job preemption due
to GPU over-commitment. In Horus, the over-commitment
threshold can be configured based on the number of co-
located jobs or device memory usage by DL system op-
erators. Apart from failures, stragglers can be present in
the cluster and elastic training regime is a practical way of
addressing the issue [65]. However, it is not the core focus
of this work.

5 EXPERIMENT SETUP

5.1 Hardware and Software
Horus was deployed onto a 12-GPU cluster with each
node containing 4 x Nvidia 2080 GPUs, an AMD Ryzen
1920X 12 Core Processor (2 threads per core) with a 10Gb
Ethernet network, and 128GB DDR4 memory. Each node
was installed with Ubuntu Disco 19.04 and uses Nvidia
driver version 430.50. In our experiments, the DL library
and CUDA toolkits responsible for DL job instantiation and
execution were packaged in a container. Our cluster uses
Kubernetes 1.15.2 due to its prominence in the distributed
systems community. cAdvisor and DCGM were configured
to extract data at 1s and 250ms intervals, respectively, as
initial trial runs indicated that these parameters resulted
in effective job throughput given our cluster configuration.
Our large-scale simulation forms a 128-node cluster with
each node containing 8 GPUs, 128 CPU cores and 512GB
memory comparable to existing work [53], [26].

5.2 Methodology
We have evaluated Horus using two production traces, one
from [26] and one from our collaborator with 398 jobs shown
in Fig. 1, using experiments and large-scale trace driven
simulations. The main highlights are:

• In testbed experiments, Horus improves the makespan
by up to 33.6% and increases the average cluster GPU
utilization by up to 26% in comparison to FIFO, Op-
portunistic Bin Packing and Performance-aware Bin
Packing.

• In trace-driven simulation, Horus performance also
holds where our approach outperforms other schedul-
ing approaches in both makespan, cluster GPU utiliza-
tion and average job waiting time.

Comparative Algorithms. To evaluate the Horus scheduling
algorithm described in §4.2.2, we have designed and imple-
mented additional scheduling algorithms for comparison:
B First in First Out (FIFO): Emulating slot-based ap-

proaches established in big data cluster schedulers such
as Kubernetes and YARN. FIFO assigns the incoming DL
job onto an idle GPU without job co-location.

B Performance-aware Bin Packing (PAB): Leveraging tech-
niques found in [8], [53], PAB schedules DL jobs based on
leveraging Job characteristics – detected iteration slow-
down. The scheduler measures the difference in average
steps per second vs. the previous state. After new job
placement, if performance drops by 50%, the job is simply
re-queued. We allow a warm-up period between 0-60s so
all DL jobs achieve stable resource patterns.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 99, 2021 9

B Opportunistic Bin Packing (OBP): Assigns DL jobs based
on available information – GPU memory availability, via
the memory estimation model described in Eq. 8. During
job submission time, if a GPU has more memory available
than estimated memory requirement, the scheduler op-
portunistically schedules jobs to the GPU similar to least-
loaded approach.
In the testbed environment, we conducted experiments

with Horus (k=1), as Horus-f (k=3) did not result in signif-
icant difference, which instead improved at greater system
scale as shown in the large-scale trace driven simulation.
Workload. Experiments were conducted by using a mixture
of DL jobs generated from Table 1, as well as new DL model
configurations and models such as Transformer, resulting
in Horus being exposed to 5̃0% new DL jobs not used
in predictor training. The selected models and datasets
leveraged in our experiments are well established in micro-
benchmarking DL cluster schedulers [8], [26]. All algorithms
were evaluated with two different workload submission
patterns W-Small & W-Large. W-Small and W-Large use job
type distributions between 3 minutes to 2 hours following
DL job sizes derived from production systems [26].
Job characteristics. Jobs are characterized as short/long
(<=800s or >800s) and light/heavy (<60% or>60% GPU
utilization). JCT was controlled by terminating jobs at spec-
ified epoch numbers to emulate JCT patterns of production
systems. Note that over 50% of total production DL jobs
have been shown to require a single GPU in [26], [9], and
hence for our test bed experiments, we focused on DL jobs
requiring a single GPU for training. Second, our objective
is to study changes in workload makespan and JCT due
to interference from DL job co-location. Locality–a focus in
prior DL cluster schedulers [8], [53], [26]–introduces further
JCT heterogeneity, making it difficult to fairly measure po-
tential trade-off gains between resource utilization against
JCT increase when co-locating DL jobs.
Experiment runs. Each algorithm scheduled 100 DL jobs for
each workload pattern five times each, successfully training
a total of 2,500 DL jobs; equivalent to approximately to
7.5 days of continuous DL cluster execution. For test bed
experiments, Horus was configured to operate with buffer
size β = 15, and k = 1 to demonstrate throughput. In
order to evaluate fairness at scale, we conduct the fairness
measure in large-scale production trace driven simulation.
Metrics. Algorithm effectiveness was measured using the
following metrics: Cluster GPU Resource Utilization: average
aggregate GPU utilization of all GPUs, Job Completion Time
(JCT): the end-to-end completion time for a DL job, com-
mencing from the start of job execution and finishing at job
completion. Workload Makespan: the total span time to com-
plete all DL jobs from en-queuing through to completion. Job
waiting time: average job waiting time measured from point
at arrival to being scheduled and placed by our scheduler.

6 EXPERIMENT RESULTS

6.1 Testbed Experiments

JCT. Fig 8 shows the comparison of average JCT of each
scheduling approach. We observe that FIFO achieves the
fastest JCT, due to exclusive GPU access, hence having no
interference. In contrast, we observe that all co-location

TABLE 6: DL cluster makespan statistics.

Workload Algorithm Avg.(mins) St. Dev.(mins) Gain

W-Large

FIFO 306.9 1.15 -
PAB 277.6 1.72 4.7%
OBP 238.6 4.9 22.2%
Horus 204.0 8.5 33.6%

W-Small

FIFO 267.3 1.32 -
PAB 250.4 2.02 6.3%
OBP 225.3 5.38 15.7%
Horus 212.8 5.04 20.4%

0.0

0.2

0.4

0.6

0.8

1.0

0 1000 2000 3000 4000 5000
C

D
F

JCT (s)

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000

C
D

F

JCT (s)

FIFO
PAB
OBP
Horus

W-Small

W-Large

Fig. 8: Job Completion Time (JCT) in testbed environment experiments.

algorithms experience JCT slowdown of between 8.2%–
21.8%, and 10.3%–30.3% for W-Large and W-Small when
comparing to FIFO, respectively. All co-location approaches
suffer greater performance degradation in W-Small. This is
because a higher proportion of short and small jobs allows
for a more frequent and varied co-location within GPUs,
as opposed to longer and heavier jobs that claim a large
portion (or the entire GPU). Although FIFO achieve the
fastest average JCT, it has resulted in the largest makespan
and lowest GPU Utilization due to longer queuing times.
Makespan. As shown in Table 6, Horus successfully sched-
ules all DL jobs with the lowest makespan of 204 and 212
minute across W-Small and W-Larges, respectively, and is
equivalent to a 33.6% improvement against FIFO, and a
17%–26.5% improvement over OBP and PAB. We observe
that OBP has the second lowest makespan (238 and 225
minutes), outperforming PAB due to the latter algorithm
incurring additional overhead, when determining whether
performance were impacted after initial co-location deci-
sion. As co-location gains are more effective when work-
loads are long with diverse utilization, the effectiveness
of co-location algorithms (particularly OBP and Horus) is
slightly lower in W-Small in comparison to W-Large.
Utilization. Horus is also able to achieve high overall cluster
resource utilization in all experiment runs as shown in Fig 9,
reflected by an average 69% GPU utilization. We observed
that in some experiments runs of W-Small, both Horus and
OBP can experience up to 30 minutes of DL cluster resource
utilization of only 3–5%. This is due to our generated DL
jobs may have long epoch times, yet exhibit a low GPU

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 99, 2021 10

0

20

40

60

80

100

0 50 100 150 200 250 300 350

C
lu

st
er

 G
P

U
 U

ti
liz

at
io

n

Time (m)

0

20

40

60

80

100

0 50 100 150 200 250 300 350

C
lu

st
er

 G
P

U
 U

ti
liz

at
io

n

Time (m)

FIFO
PAB
OBP
Horus

W-Small

W-Large

Fig. 9: Avg. cluster GPU util in testbed environment experiments.

utilization. When omitting such tailing behavior in W-Small,
cluster resource usage of OBP and Horus algorithms in-
creases by a further 5.2% and 11.9%, respectively. While
OBP and PAB both achieve higher utilization compared
to that of FIFO due to their ability to perform co-location,
OBP is able to achieve higher utilization as a result of its
rapid scheduling cycle. In contrast, PAB incurs additional
scheduling waiting time in order to profile scheduled job’s
stable performance, this results in a total of n jobs multiply
by Twait where Twait is the time it takes for a job to
reach stability. Interestingly, Horus’s ability to effectively
co-locate, achieving higher DL job throughput and GPU
Utilization will paradoxically expose to greater interference
and consequent JCT slowdown. Horus does however still
achieve a lower JCT in comparison to OBP, and when
considering our gains to resource utilization and makespan,
we view this as an acceptable trade-off.

6.2 Large-scale Trace Driven Simulation
To demonstrate scalability, we evaluated Horus’s perfor-
mance in simulation using 398 jobs from a production trace
shown in Fig. 1. Derived from the production trace, our
simulation captures both the number of GPUs allocated and
execution time required for DL job execution. We executed
scheduling algorithms OBP, FIFO, Horus (k=1) and Horus-
f (k=3) configured identically to testbed experiments. Since
the simulator does not capture the exact effects of kernel-
level characteristics or internal job progress, PAB was not
included. We assume interference overheads scale linearly
w.r.t. the sum of the jobs GPU Utilization. The simulation
runs in super-real time as the full trace duration is a month.

TABLE 7: Job waiting time (steps) for DL cluster

Algorithm Avg. Med. St. Dev Reduction

Fifo 466.2 463.1 327.69 –
OBP 347.8 351.4 248.9 24%
Horus 156.5 150.1 130.4 67.6%
Horus-f 147.6 148.5 126.2 68.3%

Improvements. Similar to the testbed experiments, both
Horus approaches improves the average cluster GPU Uti-
lization by up to 24% as shown in Fig. 10a and resulted

0

20

40

60

80

Cl
us

te
r G

PU
 U

til
iza

tio
n

(%
)

Horus
Fifo
OBP
Horus-f

(a) Cluster GPU Utilization.

Horus Fifo OBP Horus-f
8000

8250

8500

8750

9000

9250

9500

9750

10000

M
ak

es
pa

n

(b) Makespan.

Horus_k3 Horus_k4 Horus_k5
120

125

130

135

140

145

150

Av
g.

 W
ai

tin
g

Ti
m

e
(s

te
p)

(c) Avg. waiting time sensitivity.

Horus_k3 Horus_k4 Horus_k5
9000

9025

9050

9075

9100

9125

9150

9175

9200

M
ak

es
pa

n

(d) Makespan sensitivity.

Fig. 10: Summary DL cluster simulation at scale

in fastest makespan up to hundreds of scheduling deci-
sions steps. Compared to Horus, Horus-f has almost the
same makespan and utilization, however Horus-f results
in a approximately 6% lower median job waiting time as
shown in Table 7, showing that Horus-f is desirable when
fairness between multiple tenants and jobs category should
be considered as it is a common practice for production
cluster to be shared by multiple tenants. Overall, both of
our Horus scheduling approach utilizes the expensive GPUs
effectively both in research scale and large scale cluster, thus
enabling faster turn around time, increasing productivity
and resource efficiency.
Impact of queue number k. We conduct sensitivity analysis
by examining Horus’s sensitivity to the configurable num-
ber of queues. We evaluate Horus with various values – 3,
4, and 5. The large-scale simulations are ran and averaged
over three runs. We observe that the number of queues does
not significantly affect Horus as shown in Fig. 10c. When
k=5, the waiting time reduces by 1̃% when compared to
k=3. However, the makespan performance has degraded
slightly when the number of queues is increased as shown
in Fig. 10d. There is a known trade-off between fairness and
throughput and we view this as an acceptable trade-off.

7 RELATED WORK
Understanding and achieving high resource utilization for
heterogeneous workloads—including DL—in cloud com-
puting is an important topic [30], [28], [21], [22], [14], [62],
[8], [6], [17], [18], [10].
GPU profiling. Many existing DL systems profile workloads
to improve resource-efficiency, these metrics includes train-
ing progress [53], communication patterns [26], [66], kernels
scheduling patterns [10] and inference execution time [6]. In
terms of GPU utilization profiling, Gandiva [8] focuses on
time-sharing, leverages online profiling in isolated machines
to determine suitable co-location and migration strategies.
Thinakaran et al. [17] also perform online profiling on
machines in isolation to harvest under-utilized resources.
Xu et al. [15] leverage virtualized GPU metrics and vCPU
in isolation to propose an approach to predict slowdown
from co-located DL workloads. Wang et al [19] obtain DL

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 99, 2021 11

workload and infrastructure features to determine suitable
training regime. Antman [10] also leverages GPU Utilization
to first identify jobs that maybe suitable for co-location. Qi
et al [67] predict training time via model features, device
features, and profiling per-layer execution time.
Interference-Aware Resource Managers. Studying GPU
interference is an established area of research – various
solutions have been proposed to mitigate kernel interfer-
ence in GPU kernel scheduling [13], [14], [16], [21], [22],
[32]. These GPU resource schedulers works between the
GPU device driver and the application framework, hence
cannot effectively orchestrate and optimize with the global
view of the cluster. [14] proposed to profile job’s GPU
hardware utilization patterns for only a few seconds, this
is insufficient for DL jobs as DL jobs typically require pre-
processing of the data when each mini-batch is pulled from
the DFS, which can be in region of tens of minutes [10]. For
the same reason, various cluster schedulers which reduce
performance interference of heterogeneous workloads in
cloud environments [29], [30], [31], [58] are not designed to
effectively handle DL cluster scheduling. In addition, they
do not consider job’s locality which is also a key driver
in DL job’s performance [8], [26], [61]. Thus, differences in
hardware architecture, workload, and long queue times [9]
drive a need for DL specific cluster schedulers.
DL Resource Managers. Gandiva [8] is the first co-location
enabled DL resource manager, and focuses on improving
time-sharing by introducing context-switch mechanism in
DL jobs. Tiresias [26], focuses on improving average JCT
and job starvation time. It does so by profiling network
latency, consolidating distributed DL jobs and implement-
ing a multi-level feedback queue, which adjusts job pri-
orities. Optimus [53] implements a performance predictor
model, which at runtime, adjusts the number of required
parameter servers or workers. It assumes job convergence is
predictable, which in many cases is difficult to ascertain [26].
Recently proposed DL resource manager - Antman [10]
introduces modification to the underlying DL framework
to allow fine-grained kernel scheduling for co-location to
alleviate interference, however still requires profiling at
runtime. All of the above DL system resource managers are
complimentary to our work, as they focus on addressing
various challenges and scheduling objectives. Horus builds
upon prior works, and focuses on improving DL system
overall makespan and GPU utilization by automatically pre-
dicting GPU utilization and estimate memory requirements
without manually specifying placement decisions, and com-
plements other interference-aware resource managers.

8 CONCLUSION
In this paper we have presented Horus, a prediction-based
interference-aware resource manager for DL systems that
achieves high job throughput and increased resource effi-
ciency. Horus avoids the need for lengthy online profiling
and one or more dedicated GPUs as favoured by existing
approaches, by predicting GPU utilization from compu-
tation graph features extracted from the model and an
offline trained resource predictor. Our approach requires no
modifications to DL libraries nor expensive kernel profiling
at scheduler run-time. In our analysis we have shown that

interference between co-located DL jobs causes an aver-
age JCT slowdown of 19%–42%—comparable to latency
increases due associated with distributed learning. Horus
is currently integrated into Kubernetes and is suitable for
integration into existing DL system resource managers.
We have demonstrated that Horus is capable of reducing
makespan by up to 20.4–33.6%, achieving a cluster utiliza-
tion of 69.6%, and 68.3% mean waiting time, representing a
considerable increase in DL system resource-efficiency. We
also offer Horus-f which lowers median job waiting time
and avoids starvation among queued jobs, desirable when
fairness between multiple tenants should be considered.

ACKNOWLEDGMENTS

This work is supported by the EPSRC (EP/P031617/1).

REFERENCES

[1] X. Jia et al., “Highly scalable deep learning training system with
mixed-precision: Training imagenet in four minutes,” arXiv, 2018.

[2] E. Chung et al., “Serving dnns in real time at datacenter scale with
project brainwave,” IEEE Micro, vol. 38, no. 2, pp. 8–20, 2018.

[3] Google. (2020) Cloud gpus — google cloud. [Online]. Available:
https://cloud.google.com/gpu

[4] Amazon Web Services Inc. (2020) Amazon EC2 P3 – Ideal
for Machine Learning and HPC - AWS. [Online]. Available:
https://aws.amazon.com/ec2/instance-types/p3/

[5] Microsoft Corporation. (2020) Azure VM sizes - GPU - Azure
Virtual Machines. [Online]. Available: https://docs.microsoft.
com/en-us/azure/virtual-machines/sizes-gpu

[6] H. Shen et al., “Nexus: a gpu cluster engine for accelerating dnn-
based video analysis,” in ACM SOSP, 2019.

[7] C. Zhang et al., “Mark: Exploiting cloud services for cost-effective,
slo-aware machine learning inference serving,” in USENIX ATC,
2019.

[8] W. Xiao et al., “Gandiva: Introspective cluster scheduling for deep
learning,” in USENIX OSDI, 2018.

[9] M. Jeon et al., “Analysis of large-scale multi-tenant gpu clusters
for dnn training workloads,” in USENIX ATC, 2019.

[10] W. Xiao et al., “Antman: Dynamic scaling on GPU clusters for deep
learning,” in USENIX OSDI, 2020.

[11] K. Hightower, B. Burns, and J. Beda, Kubernetes: up and running:
dive into the future of infrastructure. ” O’Reilly Media, Inc.”, 2017.

[12] V. K. Vavilapalli et al., “Apache hadoop yarn: Yet another resource
negotiator,” in ACM SoCC, 2013.

[13] R. Phull et al., “Interference-driven resource management for gpu-
based heterogeneous clusters,” in ACM SC, 2012.

[14] Y. Ukidave et al., “Mystic: Predictive scheduling for gpu based
cloud servers using machine learning,” in IEEE IPDPS, 2016.

[15] X. Xu et al., “Characterization and prediction of performance
interference on mediated passthrough gpus for interference-aware
scheduler,” in USENIX HotCloud, 2019.

[16] S. Kato et al., “Timegraph: Gpu scheduling for real-time multi-
tasking environments,” in USENIX ATC, 2011.

[17] P. Thinakaran et al., “Kube-knots: Resource harvesting through
dynamic container orchestration in gpu-based datacenters,” in
IEEE CLUSTER, 2019.

[18] T.-A. Yeh et al., “Kubeshare: A framework to manage gpus as first-
class and shared resources in container cloud,” in ACM HPDC,
2020.

[19] M. Wang et al., “Characterizing deep learning training workloads
on alibaba-pai,” arXiv, 2019.

[20] Y. Wang et al., “A systematic methodology for analysis of deep
learning hardware and software platforms,” in MLSys, 2020.

[21] Q. Chen et al., “Prophet: Precise qos prediction on non-preemptive
accelerators to improve utilization in warehouse-scale comput-
ers,” in ACM ASPLOS, 2017.

[22] Q. Chen, H. Yang, J. Mars, and L. Tang, “Baymax: Qos awareness
and increased utilization for non-preemptive accelerators in ware-
house scale computers,” ACM SIGPLAN Notices, 2016.

[23] G. Yeung et al., “Horus: An interference-aware resource manager
for deep learning systems,” in IEEE ICA3PP, In Press.

https://cloud.google.com/gpu
https://aws.amazon.com/ec2/instance-types/p3/
https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-gpu
https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-gpu

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 99, 2021 12

[24] M. Tan and Q. V. Le, “Efficientnet: Rethinking model scaling for
convolutional neural networks,” arXiv, 2019.

[25] T. Chen et al., “Tvm: An automated end-to-end optimizing com-
piler for deep learning,” in USENIX OSDI, 2018.

[26] J. Gu et al., “Tiresias: A gpu cluster manager for distributed deep
learning,” in USENIX NSDI, 2019.

[27] Z. Guz et al., “Many-core vs. many-thread machines: Stay away
from the valley,” IEEE Computer Architecture Letters, 2009.

[28] J. Mars et al., “Bubble-up: Increasing utilization in modern ware-
house scale computers via sensible co-locations,” in IEEE/ACM
MICRO, 2011.

[29] C. Delimitrou and C. Kozyrakis, “Paragon: Qos-aware scheduling
for heterogeneous datacenters,” ACM SIGPLAN Notices, 2013.

[30] C. Delimitrou and C. Kozyrakis, “Quasar: resource-efficient and
qos-aware cluster management,” ACM SIGPLAN Notices, 2014.

[31] D. Novakovic et al., “Deepdive: Transparently identifying and
managing performance interference in virtualized environments,”
in USENIX ATC, 2013.

[32] A. Jog et al., “Application-aware memory system for fair and
efficient execution of concurrent gpgpu applications,” in ICPS
GPGPU-7. ACM, 2014.

[33] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of
features from tiny images,” Citeseer, Tech. Rep., 2009.

[34] S. Merity et al., “Pointer sentinel mixture models,” arXiv, 2016.
[35] A. M. T. (WMT19). Shared task: Machine translation

of news. [Online]. Available: http://www.statmt.org/wmt19/
translation-task.html

[36] A. G. Howard et al., “Mobilenets: Efficient convolutional neural
networks for mobile vision applications,” arXiv, 2017.

[37] M. Sandler, A. Howard et al., “Mobilenetv2: Inverted residuals and
linear bottlenecks,” in IEEE ICCV, 2018.

[38] A. Howard et al., “Searching for mobilenetv3,” in IEEE ICCV, 2019.
[39] C. Szegedy et al., “Going deeper with convolutions,” in IEEE

CVPR, 2015.
[40] K. He et al., “Deep residual learning for image recognition,” in

IEEE CVPR, 2016, pp. 770–778.
[41] K. Simonyan and A. Zisserman, “Very deep convolutional net-

works for large-scale image recognition,” CoRR, 2014.
[42] F. N. Iandola et al., “Squeezenet: Alexnet-level accuracy with 50x

fewer parameters and¡ 0.5 mb model size,” arXiv, 2016.
[43] G. Huang et al., “Densely connected convolutional networks,” in

IEEE ICCV, 2017, pp. 4700–4708.
[44] N. Ma et al., “Shufflenet v2: Practical guidelines for efficient cnn

architecture design,” in ECCV, 2018.
[45] M. Tan et al., “Mnasnet: Platform-aware neural architecture search

for mobile,” in IEEE CVPR, 2019.
[46] Y. Chen et al., “Dual path networks,” in NeurIPS, 2017.
[47] H. Cai, L. Zhu, and S. Han, “Proxylessnas: Direct neural architec-

ture search on target task and hardware,” arXiv, 2018.
[48] D. Han, J. Kim, and J. Kim, “Deep pyramidal residual networks,”

in IEEE CVPR, 2017.
[49] S. Xie et al., “Aggregated residual transformations for deep neural

networks,” in IEEE CVPR, 2017.
[50] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget:

Continual prediction with lstm,” in ICANN, 1999.
[51] K. Cho et al., “Learning phrase representations using rnn encoder-

decoder for statistical machine translation,” arXiv, 2014.
[52] A. Paszke et al., “Pytorch: An imperative style, high-performance

deep learning library,” in NeurIPS, 2019.
[53] Y. Peng, Y. Bao et al., “Optimus: an efficient dynamic resource

scheduler for deep learning clusters,” in ACM EuroSys, 2018.
[54] S. Wang et al., “Overlapping communication with computation in

parameter server for scalable dl training,” IEEE TPDS, 2021.
[55] G. Ke et al., “Lightgbm: A highly efficient gradient boosting

decision tree,” in NeurIPS, 2017.
[56] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting

system,” in ACM KDD, 2016.
[57] A. Liaw, M. Wiener et al., “Classification and regression by ran-

domforest,” R news, vol. 2, no. 3, pp. 18–22, 2002.
[58] J. Mars and L. Tang, “Whare-map: Heterogeneity in ”homoge-

neous” warehouse-scale computers,” in ACM SIGARCH, 2013.
[59] H. Wang et al., “S-cda: A smart cloud disk allocation approach in

cloud block storage system,” in ACM DAC, 2020.
[61] L. Luo et al., “Plink: Discovering and exploiting locality for accel-

erated distributed training on the public cloud,” MLSys, 2020.
[60] A. K. Parekh and R. G. Gallager, “A generalized processor sharing

approach to flow control in integrated services networks: the
multiple node case,” IEEE ACM Transactions on Networking, 1993.

[62] R. Yang, C. Hu et al., “Performance-aware speculative resource
oversubscription for large-scale clusters,” IEEE TPDS, 2020.

[63] P. Dube, T. Suk, and C. Wang, “Ai gauge: Runtime estimation for
deep learning in the cloud,” in SBAC-PAD, 2019.

[64] D. Zhang et al., “Agl: a scalable system for industrial-purpose
graph machine learning,” in VLDB Endowment, 2020.

[65] Y. Chen et al., “Elastic parameter server load distribution in deep
learning clusters,” in ACM Symposium on Cloud Computing, 2020.

[66] Y. Peng et al., “A generic communication scheduler for distributed
dnn training acceleration,” in ACM SOSP, 2019.

[67] H. Qi, E. R. Sparks, and A. Talwalkar, “Paleo: A performance
model for deep neural networks,” in ICLR, 2017.

Gingfung Yeung is a PhD Student in the Evolv-
ing Distributed Systems Laboratory (EDS Lab)
at Lancaster University. He has industrial ex-
perience building Machine Learning systems at
scale. His research interests include Machine
Learning systems, distributed systems, and re-
source scheduling.

Damian Borowiec is a PhD student in the Evolv-
ing Distributed Systems Laboratory (EDS Lab)
at Lancaster University. He received a bachelor
degree in Computer Science at the Lancaster
University. His research interests include Deep
Learning systems, energy-adaptive computing,
and Neural Network compilation methods.

Renyu Yang is a Research Fellow at the Univer-
sity of Leeds. He previously worked in Alibaba
Group China and Edgetic Ltd. UK, having indus-
trial experience in building large-scale resource
scheduling systems. His research interests in-
clude reliable resource management, distributed
systems and applied machine learning. He is a
member of IEEE.

Adrian Friday is a Professor of Computing and
Sustainability at Lancaster University. He is in-
terested in the role of computational systems in
helping us understand the energy and carbon
footprint of socio-technical systems, and in find-
ing more sustainable ways of living. His current
work focuses on the role of energy data in smart
cities, and using statistical and ML techniques to
identify new opportunities for energy savings.

Richard Harper is a Professor of Computer Sci-
ence and Co-Director for the Institute of Social
Futures (ISF) at Lancaster University. Richard
Harper has written 18 books and collections, in-
cluding The Myth of the Paperless Office (2003),
Texture: human expression in the age of com-
munications overload (2010) and Skyping the
Family (2019).

Peter Garraghan is a Lecturer (Assistant Pro-
fessor) in Distributed Systems and EPSRC Fel-
low at Lancaster University. He is the leader
of the Evolving Distributed Systems Labora-
tory (EDS Lab). Peter has industrial experience
building production distributed systems at scale.
His research interests include Machine Learning
systems, Cloud computing, green computing, re-
source management, and system security.

http://www.statmt.org/wmt19/translation-task.html
http://www.statmt.org/wmt19/translation-task.html

