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Short-Term Immobilization Promotes
a Rapid Loss of Motor Evoked
Potentials and Strength That Is Not
Rescued by rTMS Treatment
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Abbie Robinson?, Kayle-Anne Sands?, Kate Slade?, Jason J. Braithwaite? and
Helen E. Nuttall*

" Lancaster Medical School, Health Innovation One, Lancaster University, Lancaster, United Kingdom, ? Department of
Psychology, Faculty of Science & Technology, Lancaster University, Lancaster, United Kingdom

Short-term limb immobilization results in skeletal muscle decline, but the underlying
mechanisms are incompletely understood. This study aimed to determine the
neurophysiologic basis of immobilization-induced skeletal muscle decline, and whether
repetitive Transcranial Magnetic Stimulation (r-TMS) could prevent any decline.
Twenty-four healthy young males (20 + 0.5 years) underwent unilateral limb
immobilization for 72 h. Subjects were randomized between daily rTMS (n = 12) using six
20 Hz pulse trains of 1.5 s duration with a 60 s inter-train-interval delivered at 90% resting
Motor Threshold (rMT), or Sham rTMS (n = 12) throughout immobilization. Maximal grip
strength, EMG activity, arm volume, and composition were determined at 0 and 72 h.
Motor Evoked Potentials (MEPs) were determined daily throughout immobilization to
index motor excitability. Immobilization induced a significant reduction in motor excitability
across time (—30% at 72 h; p < 0.05). The rTMS intervention increased motor excitability
at Oh (+13%, p < 0.05). Despite daily rTMS treatment, there was still a significant
reduction in motor excitability (—48% at 48h, p < 0.05), loss in EMG activity (—23.5%
at 72h; p < 0.05), and a loss of maximal grip strength (—22%, p < 0.001) after
immobilization. Interestingly, the increase in biceps (Sham vs. rTMS) (+-0.8 vs. +0.1 mm,
p < 0.01) and posterior forearm (+0.3 vs. +0.0mm, p < 0.05) skinfold thickness with
immobilization in Sham treatment was not observed following rTMS treatment. Reduced
MEPs drive the loss of strength with immobilization. Repetitive Transcranial Magnetic
Stimulation cannot prevent this loss of strength but further investigation and optimization
of neuroplasticity protocols may have therapeutic benefit.

Keywords: rTMS, MEPs, immobilization, plasticity, muscle function

INTRODUCTION

In the present paper, we investigated whether repetitive Transcranial Magnetic Stimulation (rTMS)
to the primary motor cortex (M1) could attenuate the loss of motor excitability during limb
immobilization. In clinical settings, immobilization of an injured upper or lower limb prevents the
limb from moving during recovery from injury. A number of different immobilization methods
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can be used, including plaster casts, braces, or splints, which all
hold joints or bones in place and are very effective at preventing
muscle activation (Campbell et al., 2019). This prevention of
muscle activation during immobilization promotes a rapid loss of
muscle strength and mass, and it therefore represents an excellent
model to study muscle atrophy (Gaftney et al., 2020).

Research on limb immobilization largely focuses on the
effects within skeletal muscle itself (Wall et al., 2015, 2016;
Crossland et al., 2019; Luo et al., 2020) but evidence indicates
that the human brain is also affected (Langer et al, 2012).
Indeed, neuromuscular function is governed by peripheral
processes at skeletal muscle (Rudrappa et al., 2016) and central
processes in the brain; specifically, the motor cortex (Campbell
et al, 2019). It is known that limb immobilization causes
a decrease in excitability of motor brain areas after as little
as 8h (Avanzino et al., 2011; Rosenkranz et al., 2014). This
is a serious concern for individuals who are bed-bound, or
older adults with reduced mobility. Upper limb immobilization
promotes a decrease in the cortical thickness of the left M1
and somatosensory area and reduces fractional anisotropy of
white matter tracts associated with the right hemisphere M1
(Langer et al., 2012). Immobilization also promotes a change
in the interhemispheric balance of the homologous motor
cortices toward increased control of the non-immobilized limb
(Furlan et al., 2016). Collectively, these observations suggest
a reorganization of the motor systems in the brain with
immobilization (Langer et al., 2012).

Whilst some literature suggests that immobilization leads to
decline in the peripheral motor pathways directly (Alves et al.,
2013), there is no change or a decrease in resting membrane
potential and no change in acetylcholinesterase activity in the
neuromuscular junction after 4 weeks of immobilization (Booth,
1982). These observations suggest peripheral neuromuscular
changes are not causative of muscle decline. Further, a
recent systematic review (Campbell et al., 2019) suggests that
muscle atrophy cannot fully explain the functional loss during
immobilization and that central processes appear critical. Thus,
the focus of this study was to target motor cortical activity to
prevent immobilization-induced neurophysiologic decline.

After limb immobilization, reduced cortical excitability, and
muscle strength can be rehabilitated through targeted physical
training of the inactive body part (Clark et al, 2009; Brocca
et al., 2015; Furlan et al, 2016). The loss of strength during
immobilization can prolong clinical recovery and can impair
physical function long-term (Gaffney et al., 2020). Loss of
strength is associated with a greater risk of falls (Dhillon and
Hasni, 2017) and bone fracture (Marty et al., 2017). If adults
in later life experience bone fracture, the loss of strength
might never be recovered, resulting in loss of muscle structure
and function, and type II diabetes (Morley et al., 2014). It is
crucial, therefore, that protective strategies are explored which
mitigate against loss of cortical excitability and strength during
limb immobilization.

Transcranial Magnetic Stimulation (TMS) is a non-invasive
brain stimulation technique that uses a coil to apply brief
magnetic pulses, which through the process of electromagnetic
induction result in electrical currents in the brain that perturb

neural activity. When repetitive pulses (rTMS) are applied
to the motor cortex, it can result in long-term potentiation-
or long-term depression-like effects, depending on whether
the stimulation is high frequency (5Hz or more) or low
frequency (1Hz), respectively (Ziemann, 2017). Such effects
have been assumed to result from changes to Ca*" influx
through post-synaptic NMDA receptors that are induced by
different stimulation frequencies (Huang et al., 2011). Repetitive
Transcranial Magnetic Stimulation can produce significant
clinical improvement in various neurological and psychiatric
disorders, including but not limited to, post-stroke motor
recovery, neuropathic pain, and depression (Rossini et al., 2015;
Lefaucheur et al., 2020).

Indeed, high-frequency 20 Hz rTMS has been shown to confer
significant increases in excitability in the motor pathway to
the hand through increasing motor evoked potential (MEP)
amplitudes in both healthy populations (Maeda et al., 2000a,b;
Gangitano et al., 2002) and individuals with Parkinson’s disease
(Khedr et al., 2019). Motor excitability appears to be maximally
enhanced following 20Hz rTMS relative to lower frequency
rTMS of 10 and 1Hz (e.g., Jennum et al, 1995; Maeda et al.,
2000a). Indeed, in subacute stroke patients, 20 Hz rTMS to M1
has also been linked to improvement in upper limb motor
function (Kim et al., 2014), though for a review of rTMS and
stroke see Fisicaro et al. (2019). Accordingly, these findings
suggest that 20 Hz rTMS presents a useful candidate frequency
for modulating M1 during limb immobilization.

In the present study, we investigated whether 20 Hz rTMS to
M1 can facilitate cortical excitability and protect against skeletal
muscle decline. We hypothesized that rapid declines in strength
with immobilization are likely to be neural in their mechanism
and are underpinned by a loss of excitability within the motor
pathway to the hand, indexed as a reduction in magnitude of
MEPs. Moreover, we hypothesized that by stimulating M1 using
20Hz rTMS and thus artificially creating activity in the motor
pathway, we could (centrally) attenuate the decline of motor
excitability and decline of skeletal muscle, which would have
significant implications for prehabilitation (Lambert et al., 2021)
or rehabilitation.

METHODS
Subjects

Twenty-four recreationally active young males gave written
informed consent to participate in this study, which was
approved by Faculty of Science and Technology Research Ethics
Committee at Lancaster University (FST17065). Subjects were
(mean £ SEM) 20.7 £ 0.5 year, 69.1 £ 1.8kg body mass,
and had a BMI of 22.1 £ 0.5 kg/m?. Anthropometric data
are detailed in Table 1. All experimentation conformed to the
seventh revision of the Declaration of Helsinki (2013). The
study was registered as a clinical trial on ClinicalTrials.gov, with
the identifier: NCT04130581. Subjects were recruited on the
Lancaster University campus and surrounding area, and testing
took place at Lancaster University TMS Lab. The inclusion
criteria were that subjects were healthy males (Rogers and
Dhaher, 2017), aged 18-30 year, had a BMI of 19-25 kg/m?,

Frontiers in Human Neuroscience | www.frontiersin.org

March 2021 | Volume 15 | Article 640642

172
173
174
175
176
177
178
179
180
181
182
183
184

186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228


https://ClinicalTrials.gov
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles

229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264

266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284

285

Gaffney et al.

Brain Stimulation and Muscle Deconditioning

TABLE 1 | Subject characteristics at baseline.

Variable Sham (n =12) rTMS (n =12)
Age (year) 20.8 £ 0.6 20.5+ 0.8
Height (m) 1.77 £ 0.01 1.79 + 0.03
Body mass (kg) 69.5 + 2.7 705+ 2.8
BMI (kg/m?) 222+ 0.7 223+ 0.9
Arm volume (L) 218 £ 0.38 210+ 0.22

Values denote mean + SEM. All Sham vs. rTMS p > 0.05.

were right-handed (Triggs et al., 1994), passed the Lancaster
University TMS Safety Screening form (based on guidelines from
Rossi et al., 2009), and could give written informed consent.
Subjects were excluded if they presented with a recent history
of musculoskeletal injury (<2 year of participation), or if they
were taking any medication that could affect muscle metabolism
or safety.

Subjects were excluded from the rTMS intervention if they
presented with a motor threshold that was not compatible with
the upper safety limit of the intensity of the 20 Hz rTMS protocol.
This was pre-determined by TMS safety guidelines (Rossi et al.,
2009) i.e., if 90% of resting Motor Threshold (rMT) from First
Dorsal Interosseous (FDI) exceeded 50% of maximum stimulator
output (Figure 1). Based on the observed effect size of 0.8
associated with loss of cortical excitability with immobilization
(Rosenkranz et al., 2014), an A-priori sample size calculation
(power = 0.95; alpha = 0.05), indicated that the proposed study
required a sample size of n = 9 per group. Thus, n = 12 per group
were recruited to account for an anticipated 25% dropout rate
during experimentation.

Subjects were randomized into two groups prior to collection
of all baseline measurements at Oh. Randomization was
completed using a permuted block randomization design (block
size of three), and a computer-based random number generator
(Sealed Envelope, sealedenvelope.com, London, UK) for the first
nine subjects. Stratified randomization was used for the final
three subjects per group (Sham/rTMS) to ensure appropriate
matching of groups.

Experimental Design

The study sought to determine the loss of excitability in the motor
pathway to the hand during 72 h unilateral limb immobilization,
and its impact upon muscle strength and arm composition. A
parallel design was applied (Sham vs. rTMS) with 72 h unilateral
limb immobilization of the dominant arm using a shoulder sling
and swathe, with the contralateral arm acting as a control (Triggs
et al.,, 1994). The arm and hand were immobilized from the
shoulder joint to the hand using a sling and swathe, which
anchors the forearm to the torso and limits any activation of
muscles in the arm (Magnus et al., 2010). Before and after
the immobilization period, hand grip dynamometry (maximal
grip strength), volume-displacement plethysmography, skinfold-
calipers, and circumference measurements were performed
to determine changes in strength and arm composition.
Electromyography (EMG) of the FDI was completed during

assessments of maximal grip strength. MEPs were determined
from left and right FDI via single-pulse TMS at Oh (before
immobilization), and at 24, 48, and 72 h after immobilization.

The rTMS group then received six x 1.5s 30-pulse trains
of 20Hz biphasic rTMS with inter-train-intervals of 60s via
a 70mm figure-of-eight coil attached to a DuoMAG XT-100
stimulator with Wasserman safety limits enabled (Deymed
Diagnostic, Hradec Kralove, Czech Republic) to the hand area of
left M1 before the sling and swathe were applied to immobilize
the arm. This procedure was repeated daily at 24 and 48h to
promote cortical plasticity during immobilization (Lefaucheur
et al., 2020). A further round of rTMS took place at 72 h after the
sling removal and data collection. The Sham group received an
identical rTMS protocol, but the coil was held 3-4 cm away from
the head (Deng et al., 2013). All subjects were naive to rTMS,
and Sham or rTMS was delivered in a single-blind fashion. It
was not necessary to unblind any participants during the trial.
Maximal grip strength, arm volume, arm composition, and EMG
activity during maximal grip strength testing were determined at
baseline and following 72 h immobilization. Cortical excitability
was evaluated using MEPs from the FDI elicited by single-pulse
TMS, measured at 0, 24, 48, and 72 h. A schematic of the study
design is detailed in Figure 2.

Muscle Mass and Function

Maximal Strength and EMG Assessments

We assessed hand-grip strength using hand-grip dynamometry
(Jamar hydraulic hand dynamometer, Jamar, Lafayette
Instrument Company, USA) as previously described (Blomkvist
et al., 2016), which has been shown to be highly responsive to
forearm immobilization (Weibull et al., 2011).

Arm Composition

The composition of the upper arm and forearm were determined
using both volume-displacement plethysmography (Brorson and
Hoijer, 2012) and skinfold calipers (Lohman et al., 1988)
as previously described. In brief, to measure arm volume,
the subject’s arm was immersed up to their axilla with the
volume of water displaced and weighed (Salter, Chadderton,
UK) equal to the weight of the arm. At both baseline and after
immobilization, the arm was inserted into the plethysmograph
by the experimenter to limit any neural activation of the arm or
hand muscles.

To confirm plethysmography measurements, measurements
for forearm and upper arm circumference were also taken. The
maximal circumference of the forearm was determined using a
method previously described (Brorson and Hoijer, 2012). The
mid-point between the acromion process of the scapula and the
olecranon process of the ulna was determined as the upper-arm
mid-point, from which circumference was measured using a tape
measure. To determine changes in subcutaneous fluid/fat, we
measured skinfold sites on both the upper and lower arm using
Harpenden Skinfold Calipers (Harpenden, Baty International,
West Sussex, UK) before and after immobilization, as previously
described (Lohman et al., 1988). In brief, skinfold measurements
were taken at the biceps, triceps, anterior, and posterior forearm.
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| Subjects presented for medical screening (n = 51) I

| Met inclusion criteria (n = 27) |

| Met exclusion criteria (n = 24) |

| Subject withdrew from study at Oh (n = 3) |

| Sham (n=12) |

| TV (n=12) |

FIGURE 1 | Flow chart of eligible participants and randomization to Sham or rTMS group.

Oh

Grip strength T
EMG T
meps {1
Plethysmography & skinfolds T
rTMS or sham TMS T

FIGURE 2 | Schematic of the experimental design.

24h 48h 72h

Immobilization of right arm

I 1 1]

All measurements for plethysmography and skinfolds were taken
three times and a mean average was taken.

Neurophysiologic Measures

Transcranial Magnetic Stimulation

For single-pulse stimulation to elicit MEPs, biphasic TMS pulses
were generated by a DuoMAG XT-100 unit and delivered by
a 70 mm diameter figure-of-eight coil. To ensure a posterior—
anterior current flow using the biphasic stimulator, the coil
was placed tangential to the skull at a 225-degree angle,
which promotes posterior-anterior current flow in biphasic
TMS stimulation relative to a 45-degree angle in monophasic
stimulation (Sommer et al., 2006). Posterior-anterior current
flow was required for effective MEP generation. Single-
pulse and rTMS protocols were delivered using the same
biphasic stimulator.

The hand area of each M1 was found by using the functional
“hot spot” localization method (Mottonen et al., 2014). This
location was then marked using Brainsight neuronavigation
software (Rogue Research Inc., Montreal, Canada). For left M1,
we also marked the 45-degree angle on the same hand location
for use during rTMS for optimal efficacy of the plasticity protocol
(Sommer et al., 2013). Localization of brain areas were performed
at 0 h baseline, and the same co-ordinates were used for the visits
at 24,48, and 72 h.

In every session, the TMS procedures were identical. First,
subjects received one block of single-pulse TMS to the hand
area of left M1 (treatment hemisphere), and one block of single-
pulse TMS to the hand area of right M1 (control hemisphere).
The blocks of single-pulse TMS were presented at intensities that
varied incrementally from 5 to 75% maximum stimulator output
in 5% increments, with 2 stimuli applied per intensity (30 stimuli
in total per block). There was a jittered inter-stimulation-interval
of between 5.0 and 6.0 s. All MEPs were collected with the subject
at rest, and muscle activation was visually monitored via EMG.
The first TMS intensity interval at 0 h that elicited a robust MEP
of 50 WV amplitude was taken as rMT. We used this adapted
staircase procedure to efficiently estimate left M1 rMT at 0 h (Sen
et al., 2017), and used the same procedure at each time point to
track changes in excitability.

Second, rTMS or Sham was applied to the hand area of left
M1 at a frequency of 20 Hz in six 1.5s trains of 30 pulses, with
inter-train-intervals of 60 s. The intensity of rTMS was delivered
at 90% of rMT in right FDI (Sen et al., 2017), mean intensity =
41%, S.E.M. = 1.3%. In order to comply with safety guidelines,
we did not apply the 20Hz rTMS trains at intensities above
50% maximum stimulator output. This particular rTMS protocol
and dosing procedure was selected based on evidence that it
can increase motor excitability and generate effects that persist
longer than lower frequency protocols (see section Introduction
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A Control arm B Immobilisation arm
60 60 *
—~ 50 —~ 504
=] 3
8 8
o 407 o 404
2 2
c 30 = 30
© ©
[} [}
= 2041 = 20+
10 1 1 1 1 10 T T T T
0 24 48 72 0 24 48 72
Time (h) Time (h)
FIGURE 3 | The effect of immobilization on motor excitability. (A) In the control
arm, there was no significant change in motor excitability across time. (B) In
the immobilized arm, there was a reduction in motor excitability across time (o
< 0.05). *0 vs. 48h (—48%) (p < 0.05).

for details). The intensity and duration between pulse trains
was informed by international safety guidelines (Rossi et al.,
2009). The 90% threshold used for rTMS in the Oh session
was also used in the 24, 48, and 72 h sessions. Third, after the
rTMS/Sham protocol, we repeated the 5-75% staircase procedure
again, as described in the first step. MEPs were always collected
from the left hemisphere followed by the right hemisphere
both before and after rTMS. Single-pulse TMS blocks lasted
for ~3min, and the rTMS/Sham block 5min. All TMS was
performed at rest, as we wanted to ensure that the muscles stayed
inactive throughout the 72h testing period, and testing under
active contraction could theoretically have acted as an exercise
countermeasure to loss of muscle strength. The same TMS coil
was used throughout the experiment and for every session and
every participant. All participants wore earplugs in both ears
throughout all TMS/rTMS procedures (Tringali et al., 2012).

Electromyographic (EMG) activity was recorded from FDI
using single-use, 30-mm diameter solid gel adhesive press-stud
Kendall ECG electrodes with foam backs (Henleys Medical,
Hertfordshire, UK) in a tendon-belly montage, with an electrode
placed at the wrist serving as a common ground. The raw
EMG signal was filtered between 1 and 2,000 Hz and sampled
at 12,500Hz online using a TruTrace 2-channel amplifier
(Deymed Diagnostic, Czech Republic). Data epochs of 2's were
acquired and recorded using DuoMag rTMS software (version
6.2, Deymed Diagnostic, Czech Republic).

Statistics

To quantify excitability, MEP input-output functions were
plotted offline in MATLAB (MATLAB R2016a, MathWorks,
Massachusetts, USA) pre- and post-rTMS/Sham for each time-
point. Area Under the Curve (AUC) was calculated for each
input-output function as a measure of motor excitability.
A larger AUC indicates greater motor excitability, and a
smaller AUC indicates lower motor excitability. For the EMG
acquired during maximal grip strength measurement, data were
full-wave rectified offline in MATLAB and AUC was also
computed. Mixed-model analysis of variance (ANOVA) was used

to determine if there were statistically significant differences
between all anthropometric measures, strength, EMG, and MEPs
between groups and over time. When a significant main-effect
was observed, t-tests were used to locate differences. Data were
analyzed using GraphPad Prism (GraphPad Prism 8.0, GraphPad
Software, Inc.). Data are presented as means + SEM, and
statistical significance was set at p < 0.05. In addition to p-values,
Bayes Factor (BF) 10 values are reported. According to Jarosz and
Wiley (2014), BF10 between 1 and 3 is regarded as weak evidence,
3-10 as moderate evidence, and >10 as strong evidence for the
alternative hypothesis. Bayes factors were calculated using JASP
v3.00.1. Reporting is aligned to CONSORT guidelines on the
reporting of randomized controlled trials (http://www.consort-
statement.org).

RESULTS

The Effect of Immobilization on Motor

Excitability

We first measured the change in MEPs in the Sham group to
determine any effect of immobilization on motor excitability.
Only MEPs collected before Sham treatment were used in
the analysis to ensure data reflected a basal state. A repeated
measures one-way ANOVA showed that in the control arm,
there was no significant change in motor excitability across
time [F(2,09, 23.02) = 0.83, p > 0.05, BFyg < 1; Figure 3]. In the
immobilized arm, however, there was a significant reduction in
motor excitability across time [F(;sg 1987) = 3.69, p < 0.05,
BF)p = 2.75]. Post-hoc analysis revealed a significant difference
between 48 and Oh (—48% from Oh; p < 0.05, BF;y = 4.65;
Figure 3).

The Effect of rTMS on
Immobilization-Induced Loss of Motor

Excitability
We next sought to establish whether the rTMS protocol was
efficacious in increasing motor excitability at Oh baseline. A
paired t-test indicated that there was a significant difference
between motor excitability pre- vs. post-rTMS at 0 h (Figure 4A),
indicating that the rTMS protocol was effective in increasing
motor excitability [4+13% from pre-rTMS; t(;) = —1.77, p <
0.05, BF9 = 1.80].

To next determine whether the loss of motor excitability
with 24, 48, and 72h immobilization could be offset by rTMS,
we compared the difference between MEPs collected during
immobilization relative to MEPs at Oh (baseline), across the
rTMS and Sham groups. We sought to determine the decline
in maximal excitability across immobilization and thus MEPs
after rTMS are used hereafter. AUCs at each immobilization
time-point were expressed relative to Oh baseline. A negative
score reflects a loss of motor excitability due to immobilization.
This loss would be blunted in the immobilized arm if rTMS is
effective in mitigating loss of motor excitability. In the control
arm, there was no observable change in MEPs across time, or
between Sham and rTMS groups (Figure 4B). A mixed-model
ANOVA on control arm data with time and group as factors
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FIGURE 4 | The effect of rTMS on the immobilization-induced loss of motor excitability. (A) There was a significant effect of rTMS on MEPs at Oh (p < 0.05). (B) In the
control arm, there was no significant change in MEP size across time or between Sham and rTMS (p > 0.05). (C) In the immobilized arm, there was a decrease in
MEPs across time (p < 0.05), which did not differ between Sham and rTMS (p > 0.05). *p < 0.05.

(Figure 4B) showed no effect for time: F(, 44) = 0.77, p > 0.05,
BFjo < 1; group: F(y, 22) < 0.01, p > 0.05, BFyo < 1; or interaction:
F, 44y = 0.65, p > 0.05, BF19 < 1. This lack of treatment effect
and interaction indicates that rTMS had no change on the control
arm data, as expected.

In the immobilized arm, Figure4C shows how MEPs
reduced across time, reflecting the immobilization effect seen
in Figure 3B, whereby MEPs at 48 h were maximally reduced
by immobilization relative to other time-points. A mixed-
model ANOVA on data from the immobilized arm confirmed a
significant main effect for time: F(, 44y = 3.57, p < 0.05, BFg =
1.681. However, the effect of group was not significant: F(; ;)
= 2.63, p > 0.05, BFj¢p < 1. The interaction between time and
group was also not significant: F(, 44y = 0.19, p > 0.05, BFj¢ < 1.
This lack of group effect and interaction between group and time
on the immobilized arm indicates that rTMS did not significantly
change the excitability in the immobilized motor pathway, contra
to our prediction.

The Effect of rTMS on the Loss of EMG

Activity During Immobilization

Figure 5 shows the changes in EMG activity during
immobilization. A mixed-model ANOVA with time (pre
vs. post) and group (rTMS control arm; rTMS immobilized
arm; Sham control arm; Sham immobilized arm) confirmed
a significant reduction in EMG activity over time [F(j44) =
7.57, p < 0.01, BF;¢p = 6.57]; however, there was no significant
difference between rTMS and Sham groups [F(344) = 0.73, p >
0.05, BFjyp < 1; Figure 5]. In the control arm receiving Sham,
there was evidence of a reduction in EMG activity across the 72 h
immobilization (—25%, p = 0.06, BF;o = 1.61). Interestingly, in
the control arm of the group that received rTMS, there was no
evidence of a reduction in EMG activity (—12%, p > 0.05, BFyg
< 1). In the immobilized arm that received Sham, there was a
similar reduction in EMG activity to the control arm (—24%,
p < 0.05, BFjp = 1.88). Similarly, in the immobilized arm that
received rTMS, there was a significant reduction in EMG activity
(—31%, p < 0.05, BFp = 2.30; Figure 5).
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FIGURE 5 | Effect of rTMS on immobilization-induced loss of EMG activity. In
the control arm, EMG activity was reduced in the Sham group across the 72 h
(trend; p = 0.06) but not in the rTMS group (p > 0.05). In the immobilized arm,
there was a loss of EMG activity in the Sham group (o < 0.05) and this was
not prevented with rTMS (p < 0.05). *p < 0.05.

The Effect of rTMS on Deconditioning of

the Arm During Immobilization

To determine skeletal muscle decline, we measured maximal grip
strength and changes in arm composition before and after the
72 h immobilization. A mixed-model ANOVA on grip strength
with time and group as factors (as per EMG analysis) confirmed
a significant effect of time: F(; 45y = 37.37, p < 0.0001, BF;o >
100; group: F(3, 42) = 0.76, p > 0.05, BFj¢p < 1; time x group:
F3.42) = 20.49, p < 0.0001, BF;g > 1,000. Zero vs. seventy-two
hour t-tests both p < 0.0001, BFjp > 100 in the immobilized
arm with Sham and rTMS treatment. There was no significant
loss of strength in the control arm in Sham or rTMS (p > 0.05,
BFjy < 1, Figure 6A). However, in the immobilized arm, there
was a significant loss of strength in Sham (p < 0.0001, BFo
> 150) that was not prevented by rTMS (p < 0.0001, BF;y >
1,000, Figure 6A). Arm volume was not significantly different
after 72h in the control or immobilized arm (or Sham/rTMS
groups) when measured by plethysmography, mid-biceps, or
mid-forearm circumference (p > 0.05, BFjy < 1, Table 2). Arm
volume plethysmography mixed-model ANOVA: time: F;, 4)
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FIGURE 6 | Effect of rTMS on immobilized-induced loss of grip strength and arm composition. (A) Arm immobilization induced a significant decrease in grip strength
in both the Sham group (10% loss) and rTMS group (22% loss) (o < 0.0001). In the Sham group, there was an increase in biceps skinfold (B; p < 0.01) and posterior
forearm skinfold (C; p < 0.05) of the immobilized arm. Such changes in arm composition were not observed in the rTMS group. “p < 0.05; *p < 0.01; **p < 0.001.

TABLE 2 | Effect of rTMS on arm composition with immobilization.

Measure Sham (n = 12) ITMS (n =12)
Control arm Immobilization arm Control arm Immobilization arm

Oh 72h Oh 72h Oh 72h Oh 72h
Arm volume
Arm volume (L) 2.09 £+ 0.09 2.10 + 0.09 2.20 + 0.09 217 +£ 0.08 211 4+ 0.07 212 +0.07 2.20 + 0.07 2.22 +0.08
Mid-biceps circumference (cm) 29.8 £ 0.9 29.1+£1.0 30.2+0.9 30.2 £ 0.8 299 +1.0 29.8 + 1.1 30.7 £ 0.9 30.6 +£1.0
Mid-forearm circumference (cm) 26.2 + 0.5 26.2 + 0.6 26.5 +£ 0.7 26.4 + 0.7 269 + 0.4 26.6 + 0.5 26.8 + 0.5 26.7 £ 0.5
Arm composition
Biceps skinfold (mm) 58+ 0.7 6.2 £ 09 55+ 0.7 6.3 £ 1.0* 6.3 £0.8 6.3 +£0.7 6.3 £0.8 6.4 +£0.8
Triceps skinfold (mm) 10.3 £ 0.9 10.2 £ 0.9 1.7 £ 1.1 113+ 1.1 102+ 1.1 101 £ 1.1 9.4 +1.0 93+1.0
Anterior forearm skinfold (mm) 49+ 0.3 4.8 +0.3 4.4+ 0.3 50403 49+ 0.5 49+ 0.5 50+ 05 51+05
Posterior forearm skinfold (mm) 5.0+ 0.3 50+0.3 45 +0.2 4.8 +£0.2* 53+ 04 54 +04 50+ 04 50+04

Values denote mean + SEM. *p < 0.05 from Oh; **p < 0.01 from O h.

< 0.01, p > 0.05, BFyp < 1; group: Fz4) = 0.41, p > 0.05,
BF10 < 1; time x group: F(3, 49y = 1.07, p > 0.05, BFjo < 1.
Furthermore, in the control arm, there was no change in arm
composition across the 72h in Sham or rTMS groups when
determined through skinfold measurements [p > 0.05, BFjy < 1:
Table 2, biceps (Figure 6B) and posterior forearm (Figure 6C)].
However, in the immobilized arm in Sham, there was a significant
increase in skinfold thickness of the biceps [Figure 6B; mixed-
model ANOVA time: F(;, 49) = 5.43, p < 0.05, BF19 = 2.51; group:
F(3, 40) = 0.08, p > 0.05, BFjp < 1; time x group: F(3 4) = 2.10,
p=0.12, BF)g < 1; +15%, p < 0.01, BF;p = 2.78 and t-test of 72
vs. 0h p < 0.01] and posterior forearm [Figure 6C; mixed-model
ANOVA time: F(1 41) = 5.83, p < 0.05, BFjo = 2.53; group: F(3 4)
=0.84, p > 0.05, BFjp < 1; time x group: F(3 41) = 1.62, p > 0.05,
BFjp < L. t-test of 72 vs. 0h = p < 0.05, BFjy = 13.12. 7%, p <
0.05], which was seemingly prevented in the rTMS group.

DISCUSSION

Immobilization Induced a Significant
Reduction in MEPs

The current study assessed whether immobilization affected
motor excitability. Data from the immobilized arm indicated

a reduction in excitability from Oh (baseline) to 24 h, which
became significantly different at 48 h. Notably, there was no
significant difference in excitability between 24, 48, or 72 h. This
indicates that the most severe reduction in motor excitability
occurs in the first 48h of immobilization. The reduction of
cortical excitability reported here at 48 h post-immobilization is
in line with findings from animal and human literature (Facchini
etal., 2002; Rosenkranz et al., 2014). Indeed, reduced MEPs of the
ring and little fingers have been shown following immobilization
lasting from 8 to 72 h (Facchini et al., 2002; Langlet et al., 2012;
Rosenkranz et al., 2014). Notably, in these studies only hand
immobilization was used, whereas the present study utilized arm
and hand immobilization, hence the methods are non-identical.
A potential mechanism for this is modulation of the cortical
elements responsible for generation of the late I-waves in the
MEP (Facchini et al., 2002).

Data from the control arm did not show any significant
changes in excitability. Therefore, it is unlikely that compensatory
increases in corticospinal excitability in the non-immobilized
motor pathway occurred during this time period. However,
movement (physical activity) of the control (non-immobilized)
arm was not quantified during the experiment. Hence, from these
data we cannot know whether movement in the control arm
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reduced or increased during the 72h, and how this relates to
compensatory motor activity. Maximal grip strength and arm
volume of the control arm, however, were unchanged from 0
to 72h, which suggests that there were no significant changes
in activity.

rTMS Did Not Protect Against Loss of
MEPs, Strength, or EMG Activity During

Immobilization

Data indicated that at 0h (baseline), the rTMS was effective
at increasing motor excitability. However, the rTMS protocol
did not appear to protect against loss of MEPs across the
72 h immobilization, nor did it protect against loss of strength,
or EMG activity. Interestingly, whilst change has not been
observed in the immobilized MEPs, data suggest that rTMS
may have catalyzed unexpected changes in the motor pathway
due to potential maintenance of arm composition. Indeed,
there was an increase in biceps and posterior forearm skinfold
thickness during immobilization in the Sham group that was
not observed in the rTMS group. These changes in the Sham
group were observed in context with no overall change in
arm volume determined by both plethysmography, mid-biceps,
and mid-forearm circumference. Whilst there are limitations of
skinfold calipers for measurement of subcutaneous fat (Wells and
Fewtrell, 2006), they show high test-retest reliability (intraclass
correlation: 0.989) (Buxadé et al., 2018).

The observed increase in skinfold thickness in the biceps
and posterior forearm could reflect an increase in subcutaneous
fat, or, more likely, an increase in fluid during immobilization.
Indeed, immobilization of a limb is capable of promoting
both an increase in fat deposition (Manini et al, 2007) and
an increase in fluid (edema) (Baz and Hassan, 2018). To the
authors’ knowledge, this is the first study to show that rTMS
may modulate subcutaneous fat accumulation or edema during
limb immobilization. In accordance with our findings, emerging
evidence indicates that rTMS in animal models may have the
potential to reduce edema (Cui et al., 2019). Further work is
required to determine whether the effects of rTMS observed
in the present study reflect protection against increases in fat
content or the development of edema in the immobilized limb
and the mechanisms which underpin such change.

LIMITATIONS

The narrow age range and testing of only males may limit the
generalizability of the results. Future studies should be replicated
in females and in different age groups to increase the external
validity of the findings. In this study, the plethysmography and
skinfold measurements were unable to measure skeletal muscle
and fat mass specifically and thus, there could have been a
decrease in skeletal muscle mass and an increase in fat mass
that is undetected by a change in arm volume. The specificity
of the high frequency rTMS intervention may also limit the
generalizability of the results. Whilst the results of this study do
not indicate a protective effect of rTMS in our participant group,

they cannot rule out rTMS as a possible rehabilitation technique
in other contexts.

CONCLUSION

Immobilization of the dominant arm induced a significant (and
large, ~50%) reduction in MEPs within 48h. Despite 20 Hz
r'TMS being effective in enhancing motor excitability at baseline,
we did not find it protected against immobilization-induced
loss of motor excitability, loss of EMG activity, or maximal
grip strength when applied daily throughout immobilization.
However, rTMS may have modulated factors such as fluid
retention or fat accumulation, as there was no increase skinfold
thickness at the biceps and posterior forearm following rTMS,
but this was observed in the immobilized arm of the Sham
group. Thus, loss of motor excitability appears to drive the
loss of strength with immobilization, and 20 Hz rTMS could
have some efficacy as a countermeasure against immobilization-
induced changes in arm composition, but this requires further
investigation and optimization.
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