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Abstract 

Ice sheets form from snow which has been compacted into ice over many years. As snow transitions 

into ice, it passes through an intermediate stage known as firn. Both the Greenland and Antarctic ice 

sheets are covered by a firn layer that can be up to ~150 m thick, with lighter firn closer to the surface 

and denser firn at depth.  Firn models aim at representing densification processes as a function of 

climate (e.g. snowfall and temperature), and model simulations can be performed on large spatial 

scales, e.g. for ice sheet mass balance assessments, or at individual locations, e.g. for analyses of ice 

cores. Firn densification models are empirical models, thus relying on calibration with observational 

data. In this context, there are several sources of inter-model discrepancies: calibration methodology, 

calibration data, level of model complexity, physical processes included and their parameterisation, 

and climatic input forcing. For all these reasons, uncertainty about firn densification results is large, 

yet difficult to evaluate. This thesis aims to better quantify uncertainty from these aspects, and their 

impact on firn model output.  

 

In Chapter 1, a new model implementation for simulating meltwater percolation in firn models is 

presented and evaluated. Representing meltwater infiltration and the subsequent effects on firn 

densification and temperature properties remains a primary source of uncertainty in firn models. This 

study provides a novel and physics-based approach to represent the meltwater flow process and its 

interplay with firn densification. 

 

Uncertainty associated with model parameterisation and with the calibration process is addressed in 

Chapter 2. Using a large dataset of firn cores, a Bayesian calibration framework is designed and used 

in order to re-estimate model parameter values. This statistical approach further allows to quantify 

parametric uncertainties and their direct impact on modelled densification rates. 

 

Chapter 3 is the first study to thoroughly evaluate uncertainty in firn thickness changes at the ice sheet 

scale, the East Antarctic ice sheet more specifically. Using statistical emulation of firn densification 

models, a large ensemble of model simulations that accounts for the different uncertainty sources in 

firn model simulations is constructed. Statistical analysis of the results evaluates spatial patterns of the 

resulting total uncertainty and quantifies the contributions of the different uncertainty sources. Finally, 

this study demonstrates the direct impact of such firn model uncertainties on the interpretation of 

altimetry-based mass balance assessment in East Antarctica. 

 

Together, these chapters bring novel firn physics, statistical techniques, and uncertainty evaluation 

methods into firn modelling. They contribute to firn model accuracy and robust estimation of 

uncertainties, both being crucial to several important glaciological applications.    
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0. General introduction 

0.1 The polar ice sheets 

The cryosphere is one of the major dynamic components of the Earth system, interacting with the 

atmosphere, the ocean, the lithosphere and the biosphere. The Greenland and Antarctic ice sheets 

(GrIS and AIS, respectively) are the largest ice reservoirs of the cryosphere: combined, they account 

for more than 99% of all ice on Earth, and for ~68% of all freshwater (Shiklomanov and Rodda, 

2003). Paleoclimatic records show that variations in the size and extent of ice sheets depend on global 

climatic changes (Alley et al., 2005). In turn, ice sheets also have a profound impact on the global 

Earth system. For example, they reflect incoming solar radiation, release freshwater into the oceans, 

dictate global sea level and change the land surface elevation. Since the early 1990's, the combined 

loss of ice from the GrIS and AIS is ~6600 billion tons, which corresponds to a global sea level 

contribution of +18 mm (Shepherd et al., 2018, 2020). This has many implications for the other 

components of the Earth system and for societies worldwide, compounded by the increasing rate of 

mass loss (Meredith et al., 2019). For these reasons, understanding the dynamical changes of the GrIS 

and AIS in the context of current climatic changes is a major scientific challenge. This includes a finer 

process-based understanding of ice sheet mass balance, as well as an improved ability to perform and 

interpret measurements of ice sheet changes. 

 

0.2 Definition of firn 

On the GrIS and AIS, the area where snow accumulation exceeds melting is defined as the 

accumulation zone, and it spans the majority of both ice sheets. In the accumulation zone, snow layers 

are progressively buried under more recently deposited snow, which causes compaction of the 

material. Snow is ultimately transformed into ice, and this process is the necessary condition for the 

inception and progressive growth of ice sheets. Freshly fallen snow is very loosely compacted and can 

have density values as low as 50 kg m-3 (Cuffey and Paterson, 2010). Progressive densification 

reduces the air content and ice is defined as the stage where interconnections between pores in the 

solid material are closed. This pore close-off density is ~830 kg m-3, but fully densified ice has typical 

density values of ~917 kg m-3. Firn is commonly defined as the intermediate stage of transformation 

between freshly fallen snow and ice (Cuffey and Paterson, 2010), and thus its density can span a large 

range of values (e.g. Fig. 0.1). 

 

Throughout densification, at the microstructural level, ice crystals transform due to their mutual 

displacement, to changes in their size and shape, and to internal deformation. In addition to possessing 

a large range of density values, firn also therefore has highly variable microstructural properties, and 
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thus the mechanisms involved in the densification process vary accordingly. In the absence of 

meltwater influence, dry firn densification is commonly separated in distinct stages (Fig. 0.1), 

differing by their governing mechanisms (Maeno and Ebinuma, 1983). In the first stage of 

densification, rounding and packing of the ice particles, known as grain boundary sliding (Alley, 

1987), dominate until firn reaches a critical density of ~550 kg m-3. At densities higher than this 

critical density, sintering becomes the dominant process. Sintering of ice particles occurs through 

several transport mechanisms: volume diffusion, surface diffusion, grain boundary diffusion, 

sublimation, and plastic deformation (Blackford, 2007). Different mechanisms dominate at different 

stages of the densification process, but they all act simultaneously. The transition from the second to 

the third stage of densification was suggested by Maeno and Ebinuma (1983). From this second 

critical density (~730 kg m-3), remaining air is confined to thin channels along the intersections of 

grain boundaries. The last critical density corresponds to the pore close-off density. In the fourth 

stage, further slow densification results from the compression of air bubbles by plastic deformation of 

ice, also called ice creep. The manifestation of these four stages is displayed in Figure 0.1, showing 

that the relationship between density and overburden pressure is non-linear and varies through each of 

these stages. Parts of the accumulation zones of the Greenland and Antarctic ice sheets are affected by 

surface melt in summer, and so in these areas wet firn densification must also be considered. This 

includes refreezing of meltwater – a key process affecting firn densification. Meltwater can percolate 

through the firn, be retained by capillary forces and refreeze at depths where the firn has subfreezing 

temperature conditions. When this melt-refreezing process occurs, it efficiently contributes to firn 

densification and raises firn temperature through latent heat release. 

 

 
Figure 0.1. Firn density – overburden pressure relationship illustrating the four different stages of dry firn 

densification, which are governed by different mechanisms. Data are from Gow (1968) and was collected at 

Byrd Station, Antarctica, in the dry snow zone. 
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The speed of firn densification varies strongly and depends on climatic conditions. Densification rates 

have an Arrhenius-type dependence on temperature (Arthern et al., 2010), with some studies 

supporting a temperature-dependence of the activation energy (Zwally and Li, 2002; Scapozza and 

Bartelt, 2003).  The rate of snowfall determines the overburden pressure exerted on the firn column. 

Consequently, seasonal, multi-annual and long-term changes in climate affect the GrIS and AIS firn 

thickness, density and air content properties.  

 

The climatic sensitivity of firn densification also results in spatial differences of densification rates, 

associated with local climatic patterns. Additionally, complex variabilities in firn microstructural 

properties affect the several mechanisms that govern densification. As such, modelling firn 

densification with fidelity at the scale of ice sheets, which span areas of ~1.7×106 (GrIS) and ~14×106 

(AIS) km2, represents a major challenge. 

 

0.3 Importance of firn modelling 

Firn densification modelling has several important applications in glaciology. First, fluctuations in 

firn thickness affect surface elevation of the ice sheets. The advent of polar altimetry satellite missions 

in the early 1990's opened the way for regular measurements of ice sheet elevation changes (e.g. 

Shepherd et al., 2018; 2020). These measurements are subsequently converted to a mass change in 

order to evaluate the mass balance of the ice sheets and thus their contribution to global sea level. This 

volume to mass conversion relies on accurate partitioning of the elevation change signal between firn 

densification variability and changes in ice flow below the firn column. Accounting for variability in 

firn densification rates, and short-term fluctuations in firn thickness, is therefore crucial to ensure the 

accuracy of altimetry-based mass balance assessments, and for identifying long-term trends in mass 

changes (Morris and Wingham, 2015). Secondly, in areas affected by surface melt, pore space within 

the firn provides a substantial reservoir for the retention of meltwater. Infiltration and refreezing of 

surface meltwater in the porous and cold underlying firn column mean that firn has the capacity to 

delay the runoff of meltwater to the ocean. This process acts as a buffer on the contribution to sea-

level rise from increases in surface melt and plays an important role in ice sheet Surface Mass Balance 

(SMB). This buffer effect is especially important on the GrIS, where summer melt affects ~64% of 

the total area, and this percentage of melt-affected areas has been increasing over recent decades 

(Tedesco and Fettweis, 2020). Model studies show that ~40% of the GrIS surface meltwater is 

estimated to refreeze in firn, but that this buffer capacity may plummet as firn porosity becomes 

saturated due to increasing melt rates (van Angelen et al., 2013; van den Broeke et al., 2016). Finally, 

accurate estimations of firn densification rates are important for paleoclimate analyses based on ice 

cores (Goujon et al., 2003). Due to the porosity of firn, air bubbles become isolated from the 
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atmosphere only once the pore close-off density is reached. Past air composition is inferred from air 

bubbles trapped in ice cores, while past climatic conditions are inferred from isotopic signals in the 

surrounding ice matrix. The time needed for deposited snow to reach pore close-off density implies 

that ice can be significantly older than air bubbles entrapped at the same vertical level. This age lag of 

the gas depends strongly on firn densification rates: it is typically several centuries but can be as high 

as ~4000 years in the cold and dry interior of the AIS (Loulergue et al., 2007). As such, accurate firn 

models are required to link chronologies of past changes in temperature and atmospheric composition 

with precision. 

 

These aspects have motivated research into firn model development over the past 40 years (e.g. 

Herron and Langway, 1980; Barnola et al., 1991; Arthern and Wingham 1998; Arthern et al., 2010; Li 

and Zwally, 2011; Ligtenberg et al., 2011; Morris and Wingham, 2014). Approaches to firn modelling 

can be separated into two main categories. First, the microscale approach seeks to express 

densification through governing equations that represent all the microphysical processes at play 

(Alley 1987; Arthern and Wingham 1998; Fourteau et al., 2020). Due to the many complexities 

associated with this approach, most models have instead focused on a macroscale approach. This 

entails formulating bulk densification equations, which are assumed to encompass all the relevant 

mechanisms. The macroscale approach incorporates tunable model parameters, and thus relies on 

calibration of these parameters against field measurements. Firn strain rates, defined as thinning of the 

firn column, can provide direct observations of firn compaction rates. But continuous strain 

measurements are logistically difficult to acquire and thus relatively scarce. A common method for 

firn model calibration is to use measured depth-density profiles derived from firn cores instead. 

However this approach implies the assumption that the firn column is in steady-state (Sorge's Law – 

Bader, 1954). By making this assumption, time derivatives can be substituted for space derivatives, 

hence linking depth-density profiles to densification rates. 

 

0.4 Existing firn models 

The Herron and Langway (1980) model is considered a benchmark in firn modelling and is the 

foundation for many later developments. In this model, densification results from the progressive 

compression of firn, and thus densification rates are linked to strain rates: 

𝜀̇ =
−1

𝜌

𝑑𝜌

𝑑𝑡
  (0.1) 

where 𝜌 is firn density (kg m-3) and 𝜀̇ is the volumetric strain rate (s-1). The strain rate is assumed to 

be a function of firn density with a certain proportionality coefficient, or rate coefficient, to be 

determined: 

𝜀̇ =
−1

𝜌
 𝑐 (𝜌𝑖 − 𝜌) (0.2) 



5 
 

where 𝑐 is the rate coefficient (s-1) and 𝜌𝑖 is ice density (917 kg m-3). The dependence of strain rates 

on firn density illustrates that compaction must account for structural changes of firn as density 

increases. The rate coefficient captures the contributions to strain rates from all factors not dependent 

on the firn density itself. In the Herron and Langway (1980) model, the rate coefficient only depends 

on temperature and on the rate of increase in overburden stress, approximated by the snow 

accumulation rate. 

 

The prevalent underpinning of the macroscale approach is to express the rate coefficient through an 

Arrhenius-type equation to model densification rates; Herron and Langway (1980) were the first to 

propose its form: 

𝑐 = 𝑘 �̇�𝑎 exp (
−𝐸𝑐

𝑅 𝑇
) (0.3) 

Expressing the governing equation for densification rates by substitution: 

𝑑𝜌

𝑑𝑡
= (𝜌𝑖 − 𝜌) 𝑘 �̇�

𝑎 exp (
−𝐸𝑐

𝑅 𝑇
) (0.4) 

where 𝑅 is the universal gas constant (8.314 J K-1 mol-1), 𝑇 is temperature (K) and �̇� is the snow 

accumulation rate (m w.e. yr-1). The factor 𝑘, the exponent 𝑎 and the activation energy 𝐸𝑐 (J mol-1) are 

considered as calibration parameters. This framework captures the strong sensitivity of densification 

rates to temperature, quantified by the activation energy. It also indirectly accounts for overburden 

pressure by using the accumulation rate as a proxy for the rate at which the weight of the material 

overlying any given firn layer increases. The exponent 𝑎 characterises whether this relation is linear 

or nonlinear. Its value was determined by comparing measured rate coefficients at sites of similar 

temperature but different accumulation rates.  

 

Herron and Langway (1980) calibrated their model with 17 firn cores from GrIS and AIS. They 

suggested a critical density of 𝜌 = 550 kg m-3 at which the values of the three calibration parameters 

change, hence separating the modelled densification process into two different stages. This model 

form has served as the basis for most of the firn densification models since then. Model developments 

have primarily focused on refining the parameter estimates and on adding additional terms to the 

governing equation to approximate effects of other factors such as snow type and impurity content 

(e.g. Arthern et al., 2010; Freitag et al., 2013; Morris and Wingham, 2014). The use of the climatic 

variables has also progressed from using only mean annual accumulation and surface temperature to 

calculating the overburden pressure (Li and Zwally, 2011) and computing the firn vertical temperature 

profile by coupling the densification equation to the heat diffusion equation (Goujon et al., 2003). 

Importantly, these advancements relax the steady-state assumption and thus mean that firn 

densification models can be used dynamically. Models have generally been calibrated to special 

regions of interest, and most separate GrIS and AIS (e.g. Li and Zwally, 2011; Ligtenberg et al., 2011; 

Kuipers Munneke et al., 2015b; Li and Zwally, 2015). 
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Most firn densification models are numerical, finite-difference and one-dimensional vertical models, 

in which each firn layer in depth is treated as a separate volume. Lagrangian discretisation is most 

common (e.g. Kuipers Munneke et al., 2015b; Stevens et al., 2020), but some models take an Eulerian 

approach (e.g. Colin and Meyer, 2017; Langen et al., 2017). In the former, individual firn layers are 

modelled and are progressively buried in the firn column. In the latter, firn layers of fixed depth 

and/or mass constitute the model domain. At the surface boundary, models require climatic forcing 

which will dictate the evolution of firn density in depth and in time (e.g. Eq. 0.4). Ideally the forcing 

comes from weather station data, because they provide, in theory, the most accurate observations of 

local meteorological variables. But on the ice sheets such stations are sparse in space, have limited 

coverage in time, can present data gaps and sometimes require corrections. For paleoclimatic studies, 

climatic fields determined from ice-core data provide multi-millennial forcing at a temporally coarse 

resolution (e.g. Buizert et al., 2015). However, ice sheet wide studies aimed at determining recent 

elevation changes attributable to firn or estimating meltwater retention within the firn column require 

both large-scale and temporally fine climatic forcing. These applications thus rely on Regional 

Climate Models (RCM) or atmospheric reanalysis products to provide continuous time series of 

temperature, snow accumulation and snow melt covering the entire ice sheets. 

 

Recent advances in ice sheet studies have highlighted the importance of percolation, retention and 

refreezing of meltwater for several reasons (van As et al., 2016a; Vandecrux et al., 2020). First, the 

extent of the GrIS affected by seasonal surface melt is increasing (Tedesco and Fettweis, 2020). As 

such, deep firn layers with high retention capabilities have newly become exposed to meltwater 

infiltration – increasing the importance of refreezing in GrIS mass balance calculations. Second, 

perennial firn aquifers have been discovered in some areas of the GrIS accumulation zone (Foster et 

al., 2014; Miège et al., 2016). These perennial liquid water bodies deep in the firn column could well 

store substantial amounts of meltwater (Koenig et al., 2014) and could influence ice flow dynamics if 

they drain through vertical crevasses towards the bed of the ice sheet (Poinar et al., 2019). Third, 

water retention in firn on ice shelves is thought to be a key factor in ice shelf stability. Saturation of 

the firn can trigger the process of hydrofracturing, whereby water-filled crevasses develop and 

decrease the mechanical stability of the ice shelf (Kuipers Munneke et al., 2014b). Progressive firn 

saturation is hypothesised to have been influential in the notorious 2002 collapse of the Larsen B ice 

shelf in Antarctica (Leeson et al., 2020), and there is recent evidence of perennial firn aquifers on ice 

shelves (Montgomery et al., 2020). For these reasons, it is now clear that a better understanding of the 

physics of meltwater behaviour in firn, and models that adequately capture this behaviour, are needed. 

 

 



7 
 

0.5 Uncertainty in firn modelling and contribution of this work 

Addressing model uncertainty is a vast and continuous process. In academic research uncertainty is 

traditionally defined in two different ways (Beven, 2009). First, it can be perceived as the existence of 

a set of possible alternatives of which only one is valid. The limitation of this approach is that any 

element must be either in- or outside of the set of alternatives. Second, in statistics, probability theory 

allows to express uncertainty quantitatively by allocating some measure ranging between 0 and 1 to 

any alternative. The latter approach usually treats uncertainty as originating from randomness, called 

aleatory uncertainty. But uncertainty can also arise from lack of information and knowledge, referred 

to as epistemic uncertainty. Both aleatory and epistemic uncertainty arise in environmental modelling.  

 

In the case of firn densification, aleatory uncertainty can be associated with different snow crystal 

structures as they fall from the sky, randomness in the agency of the crystals once they settle and the 

intrinsic randomness of climatic variability, for example. Such uncertainties are inherent to firn 

densification and are thus irreducible by nature, but they should be quantified as accurately as 

possible. To date, epistemic uncertainty likely contributes more to uncertainty in firn model output. 

Different sources of epistemic uncertainty, as identified by Refsgaard et al. (2007), and which are 

directly applicable to firn densification modelling are:  

- Input uncertainty, i.e. the uncertainty inherent to the climatic time series provided by RCMs, 

weather station data or paleoclimatic records that are used to force the firn model. It also 

includes uncertainty in the snow density at the onset of the densification process. 

- Model structure uncertainty. This is likely the most pressing issue in firn modelling. It 

originates from our incomplete understanding of firn compaction physics and associated 

processes such as meltwater percolation. One example of this is that a simple Arrhenius 

relation is not fully representative of the true physics governing densification, but is a simple 

and useful approximation. 

- Parameter uncertainty relates to the exact values of model parameters being unconstrained. 

This is particularly relevant to firn models because their development relies on different 

calibration techniques but also on different type of calibration data and on data collected at 

different locations and in different climates. 

- Model technical uncertainty arises from the computer implementation of the model. It 

includes the space and time resolution of model simulations, as well as coding practices of the 

model developer and numerical approximations from the software. 

Ultimately, all these sources of uncertainty contribute to firn model output uncertainty. 

 

While the importance of firn densification model accuracy is well-established, little effort has actually 

been dedicated to address uncertainty in and from firn models to date. Many altimetry studies do not 
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consider firn thickness and firn density uncertainties, and others approximate these using temporal 

variability in RCM time series of snowfall and in modelled firn densities (McMillan et al., 2016; 

Shepherd et al., 2019). Ice core studies typically account for uncertainty in the climatic forcing and in 

the exact value of the pore close-off density, but not in the firn model output itself (Capron et al., 

2013). And, despite our lack of understanding of meltwater behaviour in firn, ice sheet wide SMB 

studies rely on a single model output as a best estimate for meltwater refreezing. This approach is 

questionable because it does not account for the well-known limitations of meltwater schemes in firn 

models and for the large ranges of possible parameter values in the schemes, which are poorly 

constrained. For uncertainty calculations, they use average discrepancies of the RCM accumulation 

and melt fields with respect to observations but neglect spatial variability in these values and 

uncertainty in the firn model (van den Broeke et al., 2016). These shortcomings underline how much 

progress must be achieved by the firn modelling community to satisfy better scientific rigour. In 

particular, the numerous sources of uncertainty in firn model output need to be addressed, as 

illustrated above. 

 

The firn model intercomparison experiment of Lundin et al. (2017) was an important first step in 

uncertainty assessment. They used synthetic steady-state climatic forcing followed by a step change in 

either accumulation or temperature to evaluate differences in both steady and transient responses from 

eight firn densification models. Analysing key metrics such as depth integrated porosity (DIP, also 

referred to as firn air content – FAC) and pore close-off depth, they showed significant disagreement 

between models in steady-state conditions. Importantly, the disagreement was further amplified in the 

transient responses, despite the simplicity of the step change. This likely has major implications with 

respect to firn model agreement in simulations forced with highly variable time series of polar 

climate. 

 

This thesis focuses on specific issues related to uncertainty in firn densification models. It addresses 

structural uncertainty by improving model representation of firn processes. Also, parametric 

uncertainties are investigated to better constrain the empirical nature of firn models. Finally, it focuses 

on quantifying firn model output uncertainty and its implications. The research performed for this 

thesis has been continuously associated with the development of the Community Firn Model (CFM, 

Stevens et al., 2020). The CFM is an open source model that facilitates the applicability of firn 

modelling for various research interests among the glaciology community. Improving the model and 

extending its applicability have been an integral part of this thesis. The CFM also contributes to 

reduce technical uncertainties as defined above: the model code is openly available and can thus be 

accessed, used and verified by all scientists. 
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In order to address structural uncertainty associated with representation of meltwater behaviour, 

Chapter 1 describes the implementation of advanced liquid water flow schemes to simulate meltwater 

percolation and refreezing. The newly implemented schemes are based on hydrological theory of 

liquid water flow in porous media. Model results are compared to simple empirical schemes and to 

firn observations from the percolation zone of the GrIS in order to assess their benefits and 

shortcomings. The findings demonstrate that model results in melt areas are sensitive not only to the 

meltwater scheme, but also to the parameterisation of firn compaction equations. In this light, further 

focus is dedicated to firn model calibration in Chapter 2. The latter is an in-depth evaluation of 

parametric uncertainty in three benchmark firn models. Bayesian statistical methods are used to re-

calibrate the firn models and to better constrain parameter uncertainty. This statistical application 

makes use of an extensive set of firn cores from both the AIS and the GrIS in order to overcome the 

location-specific aspect of model parametrisations. It also incorporates input and aleatory 

uncertainties by accounting for stochastic climatic perturbations in the calibration. The results 

demonstrate that, despite being calibrated with the same method and dataset, inter-model 

disagreements remain significant. This motivates large-scale intercomparisons of model results to 

evaluate how such disagreements translate into firn model output uncertainty for ice sheet wide 

applications. With this aim, Chapter 3 investigates implications of firn model output uncertainty on 

altimetry-based mass balance assessments of the East Antarctic ice sheet (EAIS). Such assessments 

on the EAIS are particularly sensitive to uncertainty and fluctuations in firn thickness. By applying 

statistical emulation of firn densification models, an ensemble of model scenarios of 1992-2017 firn 

thickness change is developed. This ensemble approach allows to evaluate uncertainty related to 

climatic forcing, boundary conditions on surface snow density and choice of firn densification model. 

Ultimately, the ensemble quantifies modelled firn thickness change, estimates the associated 

uncertainty, and provides a direct basis of comparison for satellite measurements of surface elevation 

changes.  
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1. Development of physically based liquid water schemes for 

Greenland firn-densification models 

1.1 Abstract 

As surface melt is increasing on the Greenland ice sheet (GrIS), quantifying the retention capacity of 

the firn layer is critical to link meltwater production to meltwater runoff. Firn-densification models 

have so far relied on empirical approaches to account for the percolation-refreezing process, and more 

physically based representations of liquid water flow might bring improvements to model 

performance. Here we implement three types of water percolation schemes into the Community Firn 

Model: the bucket approach, the Richards Equation in a single-domain and the Richards Equation in a 

dual-domain, which accounts for partitioning between matrix and fast preferential flow. We 

investigate their impact on firn densification at four locations on the GrIS and compare model results 

with observations. We find that for all of the flow schemes, significant discrepancies remain with 

respect to observed firn density, particularly the density variability in depth, and that inter-model 

differences are large (porosity of the upper 15 m firn varies by up to 47 %). The simple bucket 

scheme is as efficient in replicating observed density profiles as the single-domain Richards Equation 

and the most physically detailed dual-domain scheme does not necessarily reach best agreement with 

observed data. However, we find that the implementation of preferential flow simulates ice layer 

formation more reliably and allows for deeper percolation. We also find that the firn model is more 

sensitive to the choice of densification scheme than to the choice of water percolation scheme. The 

disagreements with observations and the spread in model results demonstrate that progress towards an 

accurate description of water flow in firn is necessary. The numerous uncertainties about firn structure 

(e.g. grain size and shape, presence of ice layers) and about its hydraulic properties, as well as the one 

dimensionality of firn models render the implementation of physically based percolation schemes 

difficult. Additionally, the performance of firn models is still affected by the various effects affecting 

the densification process such as microstructural effects, wet snow metamorphism and temperature 

sensitivity when meltwater is present.  

 

1.2 Introduction 

Estimating the properties of the firn layer – and how it evolves under a warming climate – is a critical 

step in measuring the ice sheets’ contribution to sea level rise, yet it remains one of the key sources of 

uncertainty in present assessments (McMillan et al., 2016). Accurate estimates of firn thickness and 

density are required for the conversion of space-borne measurements of volume change into mass 

change (e.g. McMillan et al., 2016; Shepherd et al., 2018). Also, assessments of the Greenland and 

Antarctic ice sheets’ contribution to sea level require information on firn density and spatial 

distribution in order to calculate meltwater retention potential and the capacity of firn to buffer the 
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flow of meltwater to the ocean (Harper et al., 2012; Machguth et al., 2016; van den Broeke et al., 

2016). Surface melting has become more widespread and intense on the Greenland Ice Sheet (GrIS), 

with annual total melt rates rising by 11.4 Gt yr-2 between 1991 and 2015 (van Angelen et al., 2014; 

van den Broeke et al., 2016). This melt water percolates into the firn layer, where it can refreeze, run 

off, or remain liquid in temperate firn. Refreezing of liquid water in firn, known as internal 

accumulation, has an impact both on ice-sheet mass balance and on heat fluxes from the surface to the 

ice sheet (van Pelt et al., 2012). As such, understanding physical processes in firn, including in 

particular the transport of liquid water, is becoming increasingly important in order to accurately 

constrain and predict the mass balance of the GrIS (van den Broeke et al., 2016).  

 

Densification of dry firn is typically modelled as a function of near-surface air temperature and 

accumulation (Herron and Langway, 1980; Arthern et al., 2010; Li and Zwally, 2011; Simonsen et al., 

2013; Morris and Wingham, 2014; Kuipers Munneke et al., 2015a,b). If applied to wet firn, these 

models are often modified to include a simplified representation of liquid water percolation, the 

bucket scheme, which assumes flow and refreezing through the firn column occur in a single time step 

(Simonsen et al., 2013; Kuipers Munneke et al., 2015b; Steger et al., 2017a). Observations have 

shown that, in reality, liquid water transport in firn is characterised by flow patterns that are 

heterogeneous in space and time (Pfeffer and Humphrey, 1996; Humphrey et al., 2012). Incorporation 

of liquid water schemes representing such flow patterns would enable models to better represent the 

transport of mass and heat through the firn; these schemes might also improve modelled densification 

in wet firn conditions (Kuipers Munneke et al., 2015a; van As et al., 2016a; Meyer and Hewitt, 2017). 

Liquid water flow however, is a complex function of several properties and processes that are difficult 

to constrain by observations and, as a corollary, are difficult to represent in these models (e.g. 

presence of impermeable ice layers, snow hydraulic properties, grain-size, lateral runoff). The 

infiltration of water through firn can be partitioned between the progressive advance of a uniform 

wetting front through the pores, called matrix flow, and fast, localised, preferential flow (Colbeck, 

1979; Waldner et al., 2004; Katsushima et al., 2013). This dual-nature of water flow has been reported 

in observations of the firn layer of the GrIS, where preferential flow pathways come in the form of 

discrete vertical conduits and are crucial to effectively transport surface meltwater in deep subfreezing 

firn (Pfeffer and Humphrey, 1996; Parry et al., 2007; Humphrey et al., 2012; Cox et al., 2015). The 

detection of Perennial Firn Aquifers (PFA), in which large amounts (140 Gt) of liquid water is stored 

year round in deep firn, further emphasises the importance of firn hydrology on the GrIS mass balance 

(Forster et al., 2014; Koenig et al., 2014). Snow modellers have developed liquid water schemes 

based on the Richards Equation (RE) to simulate matrix flow (Hirashima et al., 2010; Wever et al., 

2014; D’Amboise et al., 2017). The RE is a continuity equation describing water flow in unsaturated 

porous media and is widely used in hydrological models. Recently, a preferential flow scheme has 

been included in the SNOWPACK model to account for heterogeneous percolation (Wever et al., 
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2016). Until now however, such developments have not been implemented in firn-densification 

models. 

 

In this study, we describe and compare liquid water schemes of different levels of physical 

complexity from snow models, and we apply these in combination with firn-densification models in 

order to evaluate the impact of the treatment of liquid water flow on modelled firn densification and 

temperature. We use the Community Firn Model (CFM) as the modelling framework for our study; 

the CFM is able to simulate numerous physical processes in firn and includes a large choice of 

governing formulations for densification. We use the common bucket approach and also develop 

schemes for liquid water flow in firn following physically based advances in snow models (Wever et 

al., 2014, 2016; D’Amboise et al., 2017). 

 

We simulate liquid water flow and firn densification starting from 1980 at four sites on the GrIS: 

DYE-2, NASA-SE, KAN-U and a PFA site (Fig. 1.1). These sites were chosen because they are 

collocated with recently drilled firn cores which allow a direct comparison of model results with 

observations. By comparing simulated firn densification to observations at these sites, we investigate 

the sensitivity of the system to the choice of liquid water flow scheme and the sensitivity of the flow 

schemes to various parameterisations of firn structural properties. Finally, we perform simulations 

with a range of firn-densification formulae and assess the relative importance of the choice of liquid 

water flow scheme to the choice of the underlying densification equation. 

 

 

Figure 1.1. Study sites locations and mean annual melt rates (1958-2017) from RACMO2.3p2 
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1.3 Firn Model and Data 

In this study we use and further develop the CFM, an open-source firn-densification modelling 

framework. We refer the reader to Stevens (2018) for details and briefly summarise the main 

characteristics here. The CFM is one-dimensional and works in a Lagrangian framework; it is forced 

at its upper boundary by observed or modelled values for accumulation, surface temperature, surface 

density, rain, and snow melt. The CFM includes many of the commonly used dry firn-densification 

schemes (e.g. Herron and Langway, 1980; Helsen et al., 2008; Arthern et al., 2010; Li and Zwally, 

2011; Morris and Wingham, 2014; Kuipers Munneke et al., 2015b). We refer the reader to the original 

publications for details on the different densification schemes and briefly outline the expressions used 

in our simulations in this section.  

 

1.3.1 Firn-densification model  

As a base case, we use the firn-densification formulation implemented in the snow model CROCUS 

(Vionnet et al., 2012), Eq. (1.1). It has previously been used in model studies of firn densification on 

the GrIS and also on polar ice caps (Gascon et al., 2014; Langen et al., 2017). This model is 

formulated so that densification is based on the overburden stress: 

𝑑𝜌

𝑑𝑡
= 𝜌 

𝜎

𝜂
  (1.1)  

where 𝜌 is the density of the firn (kg m-3), 𝜎 is the stress due to weight of the upper layers (kg m-1 s-2) 

and 𝜂 is the snow viscosity (kg m-1 s-1) following the parameterisation: 

𝜂 = 𝑓1𝑓2𝜂0
𝜌

𝑐𝜂
exp [𝑎𝜂(𝑇0 − 𝑇) + 𝑏𝜂𝜌]  (1.2) 

where 𝜂0 = 7.62237 kg s-1 m-1, 𝑎𝜂 = 0.1 K-1, 𝑏𝜂= 0.023 m3 kg-1, 𝑇 is the firn temperature (K) and 𝑇0 = 

273.15 K. The parameter 𝑐𝜂 is set to 358 kg m-3 as suggested by van Kampenhout et al. (2017) when 

using Eq. (1.1) for polar firn. There are two additional correction factors, 𝑓1 and 𝑓2 , depending on firn 

microstructural properties. The factor 𝑓1 accounts for the presence of liquid water: 

𝑓1 =
1

1+60 𝜃
  (1.3) 

where 𝜃 is the volumetric water content (m3 m-3). In this study, we neglect the change in snow 

viscosity for grain-sizes smaller than 0.3 mm by keeping the constant value 𝑓2 = 4 (after Langen et al., 

2017; van Kampenhout et al., 2017).  

 

Several firn-densification equations have been derived and calibrated for the GrIS specifically. We 

favoured the use of Eq. (1.1) as our base case because (i) most of these calibrated schemes were 

developed for dry firn densification whereas the CROCUS formulation accounts for the presence of 

liquid water explicitly, (ii) applying a percolation scheme in a stress-based densification model rather 
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than in an accumulation-rate-based model ensures that the redistribution of mass associated with 

percolation will affect the densification appropriately and (iii) the CROCUS densification scheme is 

currently used by the regional climate model MAR and by the Earth System Model CESM to quantify 

firn densification on the GrIS (Fettweis et al., 2017; van Kampenhout et al., 2017). 

 

1.3.2 Climatic forcing  

To force the model at its upper boundary we use three-hourly skin temperature, melt, snowfall, rain 

and sublimation fields simulated by the latest version of the RACMO2 regional climate model 

(RACMO2.3p2, Noël et al., 2018). This model has a 5.5 km horizontal resolution grid and has been 

explicitly adapted for use over the polar ice sheets. Discrepancies between the climatic forcing and the 

real climatic history can bias the firn models’ results. For the areas of our study sites (Sect. 1.3.4), we 

provide detailed statistical comparisons between RACMO2.3p2 output and available observations 

(see Appendix A1). We further refer to Noël et al. (2018) for a more detailed discussion about the 

performance of RACMO2.3p2 on the GrIS scale and related uncertainties. Additionally, Ligtenberg et 

al. (2018) have demonstrated the impact of recent developments in RACMO2.3p2 on firn modelling, 

mostly yielding improvements in modelled densification. 

 

If the solid input rate (snowfall – sublimation) is negative over a time step, the CFM treats it as a 

corresponding mass loss in the surface layer; liquid water is evaporated before solid mass gets 

sublimated. The temperature of a newly accumulated snow layer is defined as the skin temperature at 

that time step. Deep temperatures in the model are thus mostly determined by the mean surface 

temperature applied during the spin-up process (Sect. 1.3.5) together with latent heat release through 

refreezing. We use a Neumann boundary condition for the temperature at the bottom of the domain 

and use a 250 m deep column to account for the large thermal mass of the ice sheet during the 

transient run. 

 

In addition to latent heat release due to refreezing, the CFM accounts for heat conduction through the 

different layers to determine the temperature profile. In accordance with previous firn modelling 

studies (Kuipers Munneke et al., 2015b; Steger et al., 2017a), we make the firn conductivity, 𝑘𝑠, a 

function of density following Anderson (1976):  

𝑘𝑠 = 0.021 + 2.5 (
𝜌

1000
)
2
  (1.4) 

This formulation for 𝑘𝑠 assumes a simple relation between thermal conductivity and density, but we 

note that alternative formulations have been derived, some including a dependence on microstructural 

parameters (e.g. Yen, 1981; Löwe et al., 2013). Another boundary condition is the density of every 

fresh snow layer deposited at the surface. To reduce the sources of possible uncertainties, we simply 
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use a constant and site-specific surface density according to the surface value of the drilled firn cores 

instead of a parameterised formulation (see Sect. 1.3.4).  

 

1.3.3 Grain-size  

The temporal evolution of grain-size in firn is poorly understood and observational constraints are 

scarce. However, the grain-size is a key variable for the RE, and the flow schemes used in this study 

thus require an initial grain-size and a grain-growth rate. For the former, we use the empirical 

formulation of Linow et al. (2012) derived from observations of snow samples from Antarctica and 

Greenland: 

𝑟0 = (𝑏0 + 𝑏1(𝑇𝑎𝑣 − 𝑇0) + 𝑏2 �̇�
𝜌𝑖

𝜌𝑤
)  (1.5) 

where 𝜌𝑖 is the ice density (917 kg m-3), 𝜌𝑤 that of liquid water (1000 kg m-3), �̇� is the mean annual 

accumulation rate (m w.e. yr-1), 𝑇𝑎𝑣 the mean annual surface temperature (K) and 𝑏0, 𝑏1 and 𝑏2 are 

calibration parameters taking the values 0.781 m, 0.0085 m K-1 and -0.279 yr (m w.e.)-1 respectively.  

For grain growth rate, the relationship proposed by Katsushima et al. (2009) is applied: 

𝑑𝑟

𝑑𝑡
=

1

8 𝑟2 109
 𝑚𝑖𝑛 [

2

𝜋
(1.28 × 10−8 + 4.22 × 10−10 (𝜃𝑤𝑒𝑖𝑔ℎ𝑡,%)

3
) , 6.94 × 10−8]  (1.6) 

where 𝑟 is the grain radius (m) and 𝜃𝑤𝑒𝑖𝑔ℎ𝑡,% is the mass liquid water content expressed in percent and 

is thus related to 𝜃 (see Eq. (1.3)): 

𝜃𝑤𝑒𝑖𝑔ℎ𝑡,% =  100 
𝜃 𝜌𝑤(𝜌𝑖−𝜌)

𝜌𝑖 𝜌
  (1.7) 

Equation (1.6) combines a wet snow metamorphism formula and a higher limit of growth rate of ice 

particles, both derived from laboratory measurements.  

 

To study the sensitivity of the model to the grain-size implementation, we also use an alternative 

option based on the approach for West-Antarctic firn of Arthern et al. (2010) and supported by 

observations of Gow et al. (2004); the grain radius in newly deposited layers (𝑟0) has the constant 

value of 0.1 mm and the grain growth rate is formulated as: 

𝑑𝑟

𝑑𝑡
=

1

2 𝑟
 𝑘𝑔 exp (

−𝐸𝑔

𝑅𝑇
)  (1.8) 

where 𝐸𝑔 is the activation energy for grain growth (42.4 kJ mol-1), 𝑅 is the gas constant (8.314 J mol-1 

K-1) and 𝑘𝑔 a parameter that takes the value 1.3 10-7 m2 s-1. Note that Eq. (1.8) does not take the 

impact of liquid water presence on firn metamorphism into account. 

 

1.3.4 Study sites  

We perform simulations at four study sites in the percolation zone of the GrIS where the availability 

of well-documented firn cores allows for model-observations comparisons: NASA-SE, DYE-2, KAN-

U and FA13 (perennial Firn Aquifer) (Fig. 1.1). NASA-SE (66.48ºN, 42.50ºW, 2372 m a.s.l.) is 

located in the upper part of the percolation zone with a mean annual temperature of -20℃ and 
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relatively low melt rates (50 mm yr-1). DYE-2 (66.48ºN, 46.28ºW, 2126 m a.s.l.) is a slightly warmer 

site (𝑇𝑎𝑣 = -18℃), and melt is about three times greater than at NASA-SE (150 mm yr-1). KAN-U 

(67.00ºN, 47.03ºW, 1838 m a.s.l.) is near the equilibrium line altitude and has warmer temperatures 

(𝑇𝑎𝑣 = -8℃) and significant melting (280 mm yr-1). FA13 (66.18ºN, 39.04ºW, 1563 m a.s.l., 𝑇𝑎𝑣 = -

13℃) is a location known to contain a firn aquifer (Foster et al., 2014). The persistence of deep 

saturated layers year round is due to the coupling of high melt rates (587 mm w.e. yr-1) with high 

accumulation rates (1002 mm w.e. yr-1) (Kuipers Munneke et al., 2014a). Multiple firn core density 

data exist, a large part of which is available in the SUMup dataset (Montgomery et al., 2018). The 

selection of these four particular sites is motivated by their variety in climatic and glaciological 

conditions: a cold site with low melt rates, a cold site with high melt rates, a site close to the 

equilibrium line with substantial refreezing and a site with the presence of a firn aquifer. We perform 

transient firn-model simulations for each site until the date that a core was drilled. The cores at 

NASA-SE and DYE-2 were drilled in spring of the years 2016 and 2017 respectively, as part of the 

FirnCover project. The cores at KAN-U (Machguth et al., 2016) and at FA13 (Koenig et al., 2014) 

were drilled in spring 2013. The firn temperature measurements were given in the sources mentioned 

for the density data, except at KAN-U for which it comes from the collocated automatic weather 

station overseen by the Programme for Monitoring of the Greenland Ice Sheet (PROMICE) (van As et 

al., 2016b). The fixed surface densities for DYE-2, NASA-SE, KAN-U and FA13 are 325, 240, 325 

and 365 kg m-3 respectively and were taken in accordance with the surface density of the drilled cores.  

 

1.3.5 Spin-up and domain definition  

In order to simulate the evolution of the firn layer in time, we start the transient simulation from an 

initial state in equilibrium with a reference climate. In accordance with previous GrIS firn studies 

(Kuipers Munneke et al., 2015b; Steger et al., 2017a), we take the 1960-1979 climate as reference 

climate because it predates the onset of the general warming of Greenland and the subsequent increase 

in surface melt. We iterate over the reference climate until 70 m w.e. of snow has been accumulated, 

which ensures the entire firn column is refreshed. The number of iterations over the reference climate 

is thus site-specific. This spin-up process starts from an analytical solution for the density profile 

(Herron and Langway, 1980) with temperatures corrected to account for latent heat release by 

refreezing (Reeh, 2008). During the spin-up process we use the simple bucket approach, and the more 

advanced flow schemes, detailed in the next section, are turned on only at the end of the spin-up for 

the transient simulation. This is because using the advanced schemes over long periods is 

computationally expensive. The domain on which the flow calculations are applied is a subset of the 

entire CFM domain; this sub-domain is defined each time the flow routine is called in the transient 

run. The bottom of the sub-domain is defined as the depth below which all layers have density higher 

than the pore close-off value (830 kg m-3), because infiltration of liquid water becomes negligible at 

this point. The thickness of the layers deposited in every three hourly time step determines the vertical 
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resolution, and we apply a merging process only to individual layers less than 2 cm thick (see 

Appendix A2.8). 

 

1.4 Liquid Water schemes 

The water flow schemes are added to the dry-densification model detailed in Sect. 1.3.1 and are thus 

also effectively one-dimensional, representing no lateral exchange of heat and mass although lateral 

runoff is used as a mass sink. In this section, we present the three different flow schemes that we 

implement in the CFM: (1) the Bucket method (BK), (2) a single-domain Richards Equation scheme 

(R1M) and (3) a dual-permeability Richards Equation scheme (DPM). Because of its robustness and 

ease of implementation, BK is the current ‘state-of-the-art’ in firn-densification models that are 

interactively coupled to regional climate models. R1M is used in several stand-alone snow models to 

describe water flow (Hirashima et al., 2010; Wever et al., 2014; D’Amboise et al., 2017), and DPM is 

entirely based on the scheme implemented in the snow model SNOWPACK (Wever et al., 2016), 

where dual-permeability means that separate domains for matrix flow and preferential flow coexist 

with liquid water exchanged between these domains.  

 

1.4.1 Bucket model  

The bucket percolation scheme is commonly used to account for the vertical transport of meltwater in 

firn models, though the precise form of its implementation is variable. Each layer in the model can 

refreeze meltwater according to its ‘cold content’, i.e. the energy required to raise the temperature of 

the layer to the melting point. Starting from the surface, the meltwater may percolate through 

successive layers, thus allowing for refreezing at depth. Meltwater is progressively depleted due to 

refreezing and retention according to each layers’ water-holding capacity, which is the part of the 

water that is stored in some of the available pore space and not subject to vertical transfer. The water-

holding capacity acts as an approximation of the effect of capillary forces on water retention. 

Percolation proceeds until all the meltwater is stored (refrozen or retained) or until it reaches a layer 

with a density exceeding the impermeability threshold (780-830 kg m-3), at which point all the water 

in excess is instantly treated as lateral runoff. The BK thus requires two parameters: the water-holding 

capacity and the impermeability threshold. We test two possibilities for the former and three for the 

latter. The water-holding capacity can be prescribed by the calculations of Coléou and Lesaffre (1998) 

for the mass proportion of water in a firn layer, 𝑊𝑤: 

𝑊𝑤 = 0.057 
𝜌𝑖−𝜌

𝜌
  (1.9) 

This mass proportion is then converted to the water-holding capacity, 𝜃ℎ: 

𝜃ℎ =
𝑊𝑤

(1−𝑊𝑤)
 

𝜌 𝜌𝑖

𝜌𝑤(𝜌𝑖−𝜌)
  (1.10) 

Using constant values of the water-holding capacity is also common practice (Reijmer et al., 2012; 

Steger et al., 2017a). Our base case scenario uses a fixed 𝜃ℎ at 0.02, or 2% of the pore space available 
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for liquid water retention. This low value assumes effective downward percolation and is meant to 

account for vertical preferential flow (Reijmer et al., 2012). For that reason, we consider this as a 

good basis for comparison with the DPM that explicitly accounts for such flow.  

We test three values for the impermeability threshold; these were selected in accordance with Gregory 

et al. (2014), who tested firn permeability of Antarctic samples in a lab and reported that 

impermeability can occur over density values ranging from 780 kg m-3 to 840 kg m-3. We thus take 

our three test values to be 780 kg m-3, 810 kg m-3 and 830 kg m-3, respectively the lower bound and 

middle of this range and a commonly-used value of pore close-off density. 

 

1.4.2 Richards Equation  

Vertical movement of water in a variably saturated porous medium can be described by the one-

dimensional version of the RE: 

𝜕𝜃

𝜕𝑡
−

𝜕

𝜕𝑧
[𝐾(𝜃) (

𝜕ℎ

𝜕𝑧
+ 1)] = 0  (1.11) 

where 𝐾 is the hydraulic conductivity (m s-1), ℎ is the pressure head (m of water), 𝑧 is the vertical 

coordinate (m, taken positive downwards) and 𝜃 is as defined in Eq. (1.3). The +1 term accounts for 

the effect of gravity. The RE is an equation expressing the mass conservation law and Darcy’s law 

and it includes the ‘suction head’, i.e. the suction force exerted at the surface of individual grains.  

 

A water-retention curve describes the relationship between 𝜃 and ℎ required by Eq. (1.11). We use the 

van Genuchten (1980) model which is typically applied in studies of liquid water flow through snow 

(Jordan, 1995; Hirashima et al., 2014; Wever et al., 2014; D’Amboise et al., 2017): 

𝜃 = 𝜃𝑟 + (𝜃𝑠𝑎𝑡 − 𝜃𝑟)
(1+(𝛼|ℎ|𝑛)−𝑚

𝑆𝑐
  (1.12) 

where 𝜃𝑟 is the residual water content (m3 m-3), 𝜃𝑠𝑎𝑡 is the volumetric liquid water content at 

saturation (m3 m-3). 𝑆𝑐 is a correction coefficient following Wever et al. (2014). The parameters 𝛼, 𝑛 

and 𝑚 are tuning coefficients, with 𝛼 being related to the maximum pore size and 𝑛 and 𝑚 being 

related to the pore size distribution. These three parameters, referred to as the van Genuchten 

parameters, are specific to the modelled porous medium and for snow; a common approach is to use 

the parameterisation developed by Yamaguchi et al. (2012) in a laboratory study: 

𝛼 = 4.4 × 106 (
𝜌

2𝑟
)
−0.98

  (1.13) 

𝑛 = 1 + 2.7 × 10−3 (
𝜌

2𝑟
)
0.61

  (1.14) 

𝑚 = 1 −
1

𝑛
  (1.15) 

Yamaguchi et al. (2012) measured the water-retention curve for a range of grain radii (0.025 to 2.9 

mm) and densities (361 to 636 kg m-3) in different snow samples by using a gravity drainage column 

method.  
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The porosity is the part of the volume not occupied by the solid matrix and, in the case of firn, is 

defined as: 

𝑃 = 1 −
𝜌

𝜌𝑖
  (1.16) 

The volumetric liquid water content at saturation is proportional to the porosity (Wever et al., 2014): 

𝜃𝑠𝑎𝑡 = 𝑃 
𝜌𝑖

𝜌𝑤
  (1.17) 

Note that water is not assumed to fill the entire pore space in saturated conditions and the correction 

factor 
𝜌𝑖

𝜌𝑤
 included in Eq. (1.17) accounts for the required space to allow the liquid water to freeze. 

This correction factor agrees with the finding of Yamaguchi et al. (2010) that trapped irreducible air 

still occupies 10 % of the porosity in water-saturated snow.  

The parameter 𝜃𝑠𝑎𝑡 thus represents the pore space available for liquid water and from there we can 

define the effective saturation as: 

𝑆𝑒 =  
𝜃−𝜃𝑟

𝜃𝑠𝑎𝑡−𝜃𝑟
  (1.18) 

and 𝑆𝑒 must be bounded between 0 and 1. In completely dry layers, a zero effective saturation would 

lead to infinite values in the head pressure calculation and thus, we use a numerical adjustment to 

avoid this happening (see Appendix A2.3). The residual water content 𝜃𝑟 is defined as the amount of 

liquid water that cannot be removed by gravity as it is held by capillary tension at the surface of the 

solid grains. Following Yamaguchi et al. (2010), a constant value of 𝜃𝑟 = 0.02 can be taken but in 

case of refreezing, 𝜃 can approach zero and 𝜃𝑟 must be adjusted accordingly. We take 𝜃𝑟 following a 

piecewise function: 

𝜃𝑟 = min [0.02, 0.9 𝜃]  (1.19) 

The numerical requirement of an effective saturation value strictly greater than zero causes the 

persistence of very low flow rates, even for liquid water contents close to the residual water content 

because gravitational flow persists as 𝑆𝑒>0. Over long time periods, layers cannot hold any residual 

water content and eventually dry out under the effect of gravity. By taking the coefficient 0.9 in Eq. 

(1.19) instead of 0.75 used in snow models (Wever et al., 2014; D’Amboise et al., 2017), we partially 

reduce this effect because this lowers the effective saturation value 𝑆𝑒 for any value of volumetric 

water content 𝜃 approaching zero. 

 

The hydraulic conductivity (𝐾(𝜃)) is the ability of the fluid to flow through the porous medium under 

a certain hydraulic gradient dependent on pressure head and gravity. Thus, 𝐾(𝜃) depends on the 

effective saturation and on the properties of both the porous medium and the fluid; fluid flow is 

enhanced in highly saturated layers. The hydraulic conductivity is described by the van Genuchten-

Mualem model (Mualem, 1976; van Genuchten, 1980): 
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𝐾(𝜃) = 𝐾𝑠𝑎𝑡 𝑆𝑒1/2  [1 − (1 − 𝑆𝑒
1

𝑚)
𝑚

]
2

  (1.20) 

where 𝐾𝑠𝑎𝑡 is the hydraulic conductivity in saturated conditions (𝑆𝑒 = 1). For the case of water flow 

through snow, it has been inferred using three-dimensional images of the microstructure by Calonne 

et al. (2012) as: 

𝐾𝑠𝑎𝑡 = 3.0 𝑟2 exp (−0.013 𝜌) (
𝑔 𝜌𝑤

𝜇
)  (1.21) 

Where 𝑔 is the gravitational acceleration (9.8 m s-2) and 𝜇 is 0.001792 kg m-1 s-1, the dynamic 

viscosity of liquid water at 273.15 K. Equation (21) shows that simulated water flow is faster in layers 

with coarser grains and lower densities. These conditions correspond to cases where the connectivity 

between the pore spaces is high. With respect to the hydraulic conductivity parameterisation, we 

additionally modify the permeability of ice layers. The hydraulic conductivity of any layer with 

density exceeding the impermeability threshold is set to zero, rendering it impermeable to incoming 

flow and leading to the ponding of water on top of that layer and subsequent enhancement of runoff 

rates (Sect. 3.4.2). This RE implementation completely describes R1M and provides the basis of 

DPM, further detailed in the next section. 

 

Details of the numerical implementations that are required to maintain stability and to improve 

computational efficiency for the RE calculations are discussed in Appendix A. 

 

1.4.3 Dual-permeability model  

Physical models of preferential flow in snow are still scarce (Hirashima et al., 2014; Wever et al., 

2016). In this section, we explain how the SNOWPACK dual-permeability model (Wever et al., 2016) 

is implemented in the CFM. The firn column is separated into two domains and water flow in both is 

governed by the RE (Sect. 3.2). We define 𝐹 as the pore space allocated to the preferential flow 

domain and accordingly 1-𝐹 as the pore space for the matrix flow domain. Wever et al. (2016) used a 

grain-size dependence for 𝐹, but their regression was performed on only four data points measured in 

idealised snow laboratory conditions (Katsushima et al., 2013). The experimental grain-sizes ranged 

from 0.1 to 0.8 mm and the water input from 480 to 550 mm per day, which is not representative of 

firn conditions in Greenland (Figs. 1.1 and 1.2). Moreover, due to the typical grain-size ranges in firn 

(Gow et al., 2004; Lyapustin et al., 2009), the model would regularly be forced to use for 𝐹 the 

minimal value for numerical stability implemented in SNOWPACK. To deal with this uncertain 

parameter but still retain fidelity with respect to the SNOWPACK implementation, we favour the use 

of a constant value based on observations in natural snow. Marsh and Woo (1984) and Williams et al. 

(2010) reported that rapid flow paths occupy respectively 22% and 5% to 30% of the area and we thus 

fix the value 𝐹 = 0.2. The extension of the preferential flow area within the snowpack is very likely to 

be a function of grain-size and meltwater influx and these dependencies are still uncertain (Avanzi et 
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al., 2016). The value of 𝐹 thus determines the value of the saturated liquid water content 𝜃𝑠𝑎𝑡 in both 

domains and instead of Eq. (1.17), we write: 

{
𝜃𝑠𝑎𝑡,𝑚 = (1 − 𝐹)𝑃

𝜌𝑖

𝜌𝑤

𝜃𝑠𝑎𝑡,𝑝 = 𝐹 𝑃
𝜌𝑖

𝜌𝑤

  (1.22) 

where from hereon, the subscripts 𝑚 and 𝑝 stand for matrix and preferential flow domain 

respectively. Equation (22) shows that the volumetric water content in the preferential flow domain is 

smaller than that in the matrix flow domain. All the input of meltwater is added to the matrix flow 

domain. For the regulation of the exchange of water between domains, we also closely follow the 

transfer processes of SNOWPACK (Wever et al., 2016) which are executed at the same 15-minute 

time step. We briefly summarize the transfer processes below. 

 

Water from the matrix flow domain can enter the preferential flow domain of the layer below if the 

pressure head in the layer reaches the water entry suction, ℎ𝑤𝑒, of the underlying layer. The parameter 

can be expressed as (Katsushima et al., 2013; Hirashima et al., 2014; Wever et al., 2016): 

ℎ𝑤𝑒 = 0.0437(2𝑟)
−1 + 0.01074   (1.23) 

The amount of water transferred into the preferential flow domain equals the amount of water in 

excess of ℎ𝑤𝑒. If after the transfer, 𝑆𝑒 in the matrix flow domain still exceeds 𝑆𝑒 in the preferential 

flow domain of the underlying layer, their respective 𝑆𝑒 are equalised by transferring the appropriate 

amount of water from the overlying matrix flow domain to the underlying preferential flow 

domain. In addition, in every individual firn layer where 𝑆𝑒 in the matrix flow domain exceeds 𝑆𝑒 in 

the preferential flow domain, matrix and preferential 𝑆𝑒 are equalised by transferring water from the 

matrix flow domain to the preferential flow domain. This serves to avoid the presence of horizontal 

pressure gradients in wet snow. 

 

Water can flow from the preferential flow domain to the matrix domain by two processes. The first 

process is when the saturation in the preferential flow domain exceeds a threshold value Θ. Wever et 

al. (2016) determined Θ by tuning its value to best match observations. When this threshold is 

reached, the amount of water corresponding to the cold content of the layer flows back into the matrix 

domain. If there is still water in excess of the threshold in the preferential flow domain, saturation in 

both domains is set equal to one another. The second process simulates the heat flow from the 

preferential flow domain (at the melting point) to the colder surrounding matrix domain. Instead of 

transferring sensible heat, this process allows liquid water and its inherent latent heat to be exchanged 

to account for a theoretical heat flow, 𝑄, and thus approximating Fourier’s law: 

𝑄 = 𝑘𝑠  
(𝑇−𝑇0)

(√
1+𝐹

2𝜋
−√

𝐹

𝜋
)

  (1.24) 
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This formulation assumes a linear horizontal temperature gradient in the matrix and a circular shape 

of the preferential flow path’s perimeter. From Eq. (1.24), the corresponding water transfer is 

calculated as: 

𝛥𝜃𝑝→𝑚 =
2 𝑁 √𝜋 𝐹 𝑄 𝛥𝑡15

𝐿𝑓 𝜌𝑤
  (1.25) 

where 𝛥𝑡15 is the 15 minutes time step (s), 𝐿𝑓 is the specific latent heat of fusion (335 500 J kg-1) and 

𝑁 is a tuning parameter representing the number of preferential flow paths per square meter (m-2). In 

their study, Wever et al. (2016) arrived at a best parameter set for Θ and 𝑁 of 0.1 and 0 m-2 based on 

comparisons of ice-layer occurrence and runoff amounts with observations in alpine snowpacks. Note 

that the use of a null value for 𝑁 is implausible in our case of firn-column simulations. Indeed, this 

would imply that liquid water would persist and flow deeper in the preferential flow domain in 

saturation conditions below the Θ value until the bottom of a subfreezing firn column, which can be 

up to 70 meters thick in some areas of the GrIS. Therefore, we use the smallest non-zero value of 𝑁 

tested by Wever et al. (2016) and the parameters Θ and 𝑁 are fixed to 0.1 and 0.2 m-2 respectively. 

 

The hydraulic conductivity of ice layers is not artificially set to zero in the preferential flow domain as 

it is in the matrix flow domain. Preferential flow thus provides a way for water to flow through an ice 

layer, reproducing observations that ice layers are not totally impermeable barriers and can lead to 

localised piping events (Marsh and Woo, 1984; Pfeffer and Humphrey, 1998; Williams et al., 2010; 

Sommers et al., 2017). An exception for this is the bottom of the domain: as preferential flow is 

stopped at the last layer, it does not percolate through the solid ice. 

 

1.4.4 Additional processes in the single- and dual-domain schemes  

1.4.4a Refreezing process 

In R1M and DPM a ‘cold content’ is calculated for every firn layer, similarly to BK (Sect. 3.1) and 

refreezing in both flow schemes is executed at the 15 minutes time step (equivalent to the time step of 

the transfer processes of DPM, Sect. 3.3). 

 

When refreezing occurs, every layer freezes the maximum of its liquid water content that its cold 

content allows. For numerical reasons, refreezing cannot dry out a layer completely; instead, a very 

low value of liquid water remains in every layer (see Appendix A2.3). The refrozen water densifies 

the firn layer and modifies its hydraulic properties. The remaining liquid water is still subject to flow 

and infiltrates deeper into the firn column. 

 

In DPM, refreezing is restricted to the matrix flow domain (see Appendix A2.7). In the preferential 

flow domain, liquid water can percolate through cold layers, as has been observed in field studies on 

the GrIS (e.g. Pfeffer and Humphrey, 1996; Humphrey et al., 2012). For this liquid water to refreeze, 
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it first has to be transferred back to the matrix flow domain. Preferential flow thus provides a way for 

liquid water to bypass cold firn layers and subsequently to infiltrate deeper layers.  

 

1.4.4b Aquifer development and lateral runoff 

In R1M and DPM, lateral runoff in the firn column is simulated using the parameterisation of Zuo and 

Oerlemans (1996): 

𝑑𝑅𝑢

𝑑𝑡
=

𝐿𝑒𝑥𝑐𝑒𝑠𝑠

𝜏𝑅𝑢
 (1.26) 

𝜏𝑅𝑢 = 𝑐1 + 𝑐2 exp (−𝑐3 𝑆)  (1.27) 

where 𝑅𝑢 is the amount of meltwater that runs off (m), 𝐿𝑒𝑥𝑐𝑒𝑠𝑠 is the excess of liquid water amount 

with respect to the residual water content (m) and 𝜏𝑅𝑢 is a characteristic runoff time (s). The constants 

𝑐1, 𝑐2 and 𝑐3 are parameters derived by comparison with observations by Zuo and Oerlemans (1996) 

for the GrIS and 𝑆 is the surface slope. The meltwater input is immediately treated as lateral runoff if 

the surface layer is an impermeable ice layer or if it is saturated. 

 

Equation (26) leads to the complete drainage of a layer with a zero slope in only 26 days, precluding 

the formation and persistence of perennial firn aquifers. Therefore, we don’t apply Eq. (1.26) in the 

layers at the bottom of the firn column. All the inflow of water reaching this section is added to the 

aquifer, allowing the model to progressively fill the pore space of the bottom layers in the firn column 

with meltwater. 

 

Firn aquifers are known to be affected by drainage mechanisms not represented in the model, for 

example via crevasses (Poinar et al., 2017), and possibly hydrofracture and rapid drainage events 

(Koenig et al., 2014). Miller et al. (2018) found discharge rates within the firn aquifer to be 4.3 x 10-6 

m s-1 by borehole dilution tests in the field. We tested this approach in our model by applying this 

value as a constant discharge rate for aquifers formed in our simulations. We found however that, 

using this approach, an aquifer was not sustained; suggesting that such discharge rates must be 

dependent on the total amount of water within the aquifer and are likely temporally variable. To 

account for drainage processes and yet allow the formation of an aquifer, we therefore limited the 

amount of water stored in the firn aquifer to 1.65 m w.e., i.e. the water level measured in the field by 

Koenig et al. (2014). In firn aquifers forming at the bottom of the firn column, the saturation in both 

domains is equalised and the model does not perform flow calculation in this lowest part of the 

domain (see Appendix A2.5). 

 

1.4.5 Investigating model sensitivity  

In Sections 2 and 3, we highlight several factors influencing BK, R1M and DPM. For each of the 

schemes, we analyse results generated using three possible impermeability thresholds: 780 kg m-3 
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(ip780), 810 kg m-3 (ip810) and 830 kg m-3 (ip830). This provides a way to compare the sensitivity of 

the simple BK and of the physically based schemes (R1M and DPM) to a common parameter. For 

BK, we try two different formulations of the water-holding capacity: constant at 0.02 (wh02) and 

according to the parameterisation of Coléou and Lesaffre (1998), Eq. (1.9) (whCL). For R1M and for 

DPM, we test two different grain-size implementations: the Linow et al. (2012) surface grain-size 

calculation, Eq. (1.5), coupled to the Katsushima et al. (2009) grain growth rate, Eq. (1.6) (grLK), and 

the grain-size implementation of Arthern et al. (2010), Eq. (1.8) (grA). It is important to examine 

model sensitivity to the grain-size variable as almost all the hydraulic parameters of the RE depend on 

it. The different sensitivity tests are summarised in Table 1.1. 

 

Bucket Model (BK) Single-domain RE (R1M) Dual-Permeability RE (DPM) 

Impermeability 

threshold (ip) 

Water-holding 

capacity (wh) 

Impermeability 

threshold (ip) 

Grain-size 

formulation 

(gr) 

Impermeability 

threshold (ip) 

Grain-size 

formulation 

(gr) 

780 810 830 0.02 CL 780 810 830 LK A 780 810 830 LK A 

Table 1.1 Summary of the sensitivity tests 

 

 

1.5 Results 

In this section, we describe and discuss the model performance at each of the four sites tested (DYE-

2, NASA-SE, KAN-U and FA13). We begin by comparing BK, R1M and DPM in a base case 

parameterisation: BK wh02 ip810, R1M grLK ip810 and DPM grLK ip810 respectively. Then, we 

perform various tests to investigate the sensitivity of the flow schemes to variations in their parameter 

values. We refer to ice layers as layers with a density value exceeding the impermeability threshold in 

the model, and to liquid water input as the total of meltwater and rain influx. The DPM approach 

features two tuning parameters, 𝑁 and Θ. Model results and depth-density profiles were found to be 

weakly sensitive to the value of 𝑁 and Θ and so we omit consideration of these from the remainder of 

our study. Results of simulations and observations are inter-compared based on the firn air content 

(FAC; the depth integrated porosity in a firn column) over the top 15 m of firn and the temperature at 

10 m depth. Comparing the modelled FAC and 10 m depth temperature values with observed data 

depicts the ability of the tested models to reproduce the bulk condition of the upper firn column. We 

also qualitatively assess the degree to which the models form a ‘realistic’ ice layer distribution and 

depth-density profile. One would not expect simulated values of either to match observations 

precisely given the high spatial variability of firn structure (Marchenko et al., 2017), but it is 

indicative of the models’ performance in reproducing heterogeneity in firn density. 
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Figure 1.2. Annual surface mass fluxes from RACMO2.3p2 at the study sites (1980-drilling date)  

 

1.5.1 DYE-2  

DYE-2 has a typical liquid water input between 0.1 and 0.3 m w.e. yr-1 (Fig. 1.2), which is moderate 

in the context of our study sites. The extreme melt year of 2012 (Nghiem et al., 2012) is an exception, 

with an estimated input of more than 0.7 m w.e. Using BK, almost all of this meltwater refreezes 

locally and runoff is close to zero (Table 1.2) until the 2012 summer when ice layers (𝜌 ≥ 810 kg m-3) 

start forming in the top 2 m (Fig. 1.3a). Runoff increases in the subsequent years because meltwater 

reaches these ice layers. In R1M and DPM, small amounts of runoff occur between 1980 and 2011 

due to the lateral runoff implementation, Eq. (1.26). Beginning in summer 2004, some ice layers start 

to form in R1M (Fig. 1.3b) due to the refreezing of water held close to the surface by capillary forces. 

Over the 2012 summer, surface layers are progressively melted, bringing ice layers closer to the 

surface. The ponding and refreezing of water on the top ice layer allows it to thicken. This then acts as 

an impermeable barrier to vertical percolation from 2012 onwards, resulting in a more than sixfold 

increase in runoff (Table 1.2). In contrast, runoff remains low in DPM, in which several ice layers 

form in the upper firn as early as summer 1996 (Fig. 1.3c). These ice layers generally form deeper 

than 2 m due to more effective water transfer from the near-surface to lower layers; preferential flow 

provides a path for ponding meltwater in the matrix flow domain to bypass ice layers and continue to 

percolate vertically, thus maintaining low runoff amounts. Preferential flow brings part of the 2012 

meltwater to depths greater than 12 m. For each flow scheme, the modelled FAC underestimates the 

observed value by 4-16%. This can partly be attributed to the tendency of the CROCUS scheme to 

slightly overestimate densification rates in the upper part of polar firn (Gascon et al., 2014). FAC is 
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underestimated more strongly in DPM (16 %) than in BK and R1M (4 %) because in DPM the deeper 

firn is not isolated from surface meltwater percolation (Table 1.2).  

 

 

Refreezing / 

Inflow 

(1980-2011) 

Refreezing / 

Inflow 

(2012-2016) 

Runoff / 

Inflow 

(1980-2011) 

Runoff / 

Inflow 

(2012-2016) 

Top 15 m FAC 

[m] (anomaly vs 

observations) 

T 10m [K] 

(anomaly vs 

observations [K]) 

BK (wh02 ip810) 0.96 0.67 0.01 0.31 5.01 (-4 %) 260.88 (+0.21) 

R1M (grLK ip810) 0.91 0.63 0.05 0.35 4.99 (-4 %) 260.27 (-0.40) 

DPM (grLK ip810) 0.95 0.95 0.02 0.03 4.38 (-16 %) 263.39 (+2.72) 

Observations / / / / 5.21 260.67 

DPM (grLK ip780) 0.95 0.96 0.02 0.02 4.39 (-16 %) 263.45 (+2.78) 

BK (wh02 ip780) 0.96 0.60 0.02 0.38 5.15 (-1 %) 260.68 (+0.01) 

BK (whCL ip810) 0.92 0.62 0.05 0.36 5.21 (+0 %) 259.40 (-1.27) 

BK (wh02 ip830) 0.97 0.68 0.00 0.31 4.96 (-5 %) 260.98 (+0.31) 

R1M (grA ip810) 0.83 0.59 0.14 0.38 5.19 (-0 %) 259.64 (-1.03) 

DPM (grA ip810) 0.93 0.93 0.04 0.05 4.40 (-16 %) 263.08 (+2.41) 

HL DPM (grLK ip810) 0.95 0.96 0.02 0.02 4.16 (-20 %) 263.78 (+3.11) 

KM DPM (grLK ip810) 0.95 0.95 0.02 0.02 3.35 (-36 %) 262.74 (+2.07) 

HL R1M (grLK ip810) 0.90 0.72 0.07 0.26 4.65 (-11 %) 260.41 (-0.26) 

KM R1M (grLK ip810) 0.91 0.75 0.06 0.23 4.00 (-23 %) 260.26 (-0.41) 

Table 1.2. Model outputs at DYE-2 site. / indicates no data. 

 

 

Figure 1.3. Modelled firn density at DYE-2 (a) BK wh02 ip810, (b) R1M grLK ip810, (c) DPM grLK ip810, (d) 

BK whCL ip810, (e) R1M grA ip810, (f) DPM grA ip810, black indicates solid ice. 

 

Modelled density profiles using each flow scheme are compared with observations (Fig. 1.4a). Mean 

density is reproduced reasonably well using each of the three flow schemes, but no configuration is 

able to qualitatively reproduce the strong variability in density observed. For example, numerous 
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high-density layers separated by much lower density intervals are clear in the observations. 

Regardless of the flow scheme, only a few ice layers are formed in the model and these tend to be 

confined to the upper 6 m, which has been affected by the higher melting rates of the recent years. In 

older firn deposited under lower-melt conditions, the number of density peaks and their amplitude is 

underestimated even more strongly. Several ice layers are observed in the 10 – 20 m depth range; only 

DPM simulates the presence of ice layers here.  

 

 

Figure 1.4. Measured and modelled depth-density profiles at DYE-2 on 11/05/2017. Thick vertical lines show ice 

layers. The modelled densities are averaged at the vertical resolution of the drilled core. CR: CROCUS, HL: 

Herron and Langway, KM: Kuipers Munneke. 

 

The three flow schemes lead to significantly different firn thermal conditions. The temperature at 10 

m depth of BK and R1M agree well with observations (+0.2 and -0.4 K). In contrast, 10 m 

temperature is strongly overestimated in DPM (+2.7 K) because it allows percolation at depth, 

subsequent refreezing, and latent heat release. The summer 2012 percolation raises the 10 m depth 

temperature to within a few degrees of melting using DPM. Since the DPM method seems to 

exaggerate deep percolation, we tested a lower impermeability threshold (DPM grLK ip780) which 

should favour the formation of shallow ice layers, the ponding of water in the matrix flow domain, 
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more lateral runoff and colder temperatures at depth. The ice layers do form slightly earlier in the melt 

seasons but not noticeably shallower than in DPM ip810. The partitioning between runoff and 

refreezing is barely affected and the 10 m temperature bias remains (Table 1.2).  

 

The BK method gives a density profile closer to R1M than to DPM. In order to mimic the behaviour 

of DPM we increase the impermeability threshold in BK (BK wh02 ip830) to make it more effective 

in transporting water vertically; however, model results are only weakly affected by this change 

(Table 1.2). We also modify the water-holding capacity in BK according to the parameterisation of 

Coléou and Lesaffre (1998) (BK whCL ip810) which allows more water to be retained in the low-

density layers close to the surface. Ice layers appear earlier in the simulation and at shallower depths 

(Fig. 1.3d). This increases the amount of runoff in BK whCL ip810 with respect to BK wh02 ip810 

(+4 % of the water input over the entirety of the transient model run); however, in the surface layers, 

where high amounts of water are retained, refreezing dominates. As a result, much less water 

percolates to the deeper firn and there is less refreezing and latent heat release. All of this leads to a 

significantly higher FAC (+4 %) and colder 10 m temperature (-1.5 K) relative to BK wh02 ip810. 

 

For models based on the RE (R1M and DPM), we test sensitivity to grain-size by implementing a 

parameterisation for grain growth based on Arthern et al. (2010) (denoted grA). Using this 

parameterisation, grain-sizes tend to be smaller, and so more water tends to be retained and refrozen 

close to the surface due to stronger capillary forces. Compared to the R1M grLK ip810 experiment, 

the R1M grA ip810 causes formation of ice layers earlier in the simulation (beginning in 1996) and 

shallower in the firn column (Fig. 1.3e), favouring water ponding and subsequent runoff (+7 % of the 

water input over the entirety of the transient model run). Stronger capillarity also means that 

saturation is higher for percolation to occur, which in turn increases the simulated runoff since more 

water is in excess of the residual water content. The enhanced runoff and shallower percolation lead to 

a higher FAC (+4 %) and a colder 10 m temperature (-0.6 K). In DPM, the flow and refreezing 

patterns are also altered by the grain-size formulation: DPM grA ip810 produces ice layers much 

earlier (beginning in summer 1981), at shallower depths and in larger numbers (Fig. 1.3f). Runoff is 

however only slightly increased (+2%). The FAC remains similar to DPM grLK ip810, but the 10 m 

temperature is 0.3 K lower and the warm bias is thus reduced (an 11 % decrease) (Table 1.2). 

 

Finally, we investigate differences in the depth-density profiles simulated at DYE-2 attributed to 

different firn-densification formulations in contrast to those observed due to the use of different flow 

schemes. We first choose to apply the DPM grLK ip810 flow scheme with the additional firn-

densification formulations of Herron and Langway (1980) (HL) and of Kuipers Munneke et al. 

(2015b) (KM), both calibrated for GrIS firn. The HL and KM models are forced with the same three-

hourly climatic forcing as the CROCUS (base case) model. The FAC (-5 %), 10 m temperature (+0.4 
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K) and mean density profile (Fig. 1.4b) predicted by the HL densification model agree reasonably 

well with that predicted by CROCUS, although HL predicts greater density variability due to its 

stronger dependence on the annual temperature cycle. In contrast, the KM model predicts much 

higher densification rates and thus greater densities, with several thick ice layers in the 3-8 m depth 

range, some exceeding a meter thickness. This results in a much lower FAC value compared to the 

CROCUS model (-24 %) and in this case, differences between flow schemes are small with respect to 

the choice of the densification formulation. Since the warm bias of DPM can cause temperature-

dependent densification formulations to overestimate densities, we also compare the three 

densification formulations coupled to R1M grLK ip810 (Fig. 1.4c). Similar to the results using the 

DPM flow scheme, the HL profile agrees reasonably well with the CROCUS model (FAC value is -7 

%) but predicts that a meter-thick ice layer formed at 5 m depth (Fig. 1.4c) during the 2012 summer. 

Discrepancies between CROCUS and KM are only slightly reduced using R1M; for example, the 

FAC predicted by KM is 20% less than that predicted by CROCUS. This can be attributed to greater 

densities at depth (>8 m) and to much higher densities in the depth range 3-5 m. The latter 

corresponds to the layers affected by meltwater refreezing and considerable latent heat release in the 

2012 summer. 

 

1.5.2 NASA-SE  

NASA-SE is a site characterised by high accumulation rates, ranging between 0.5 and 0.8 m w.e. yr-1, 

and low rates of liquid water input, typically between 0.01 and 0.15 m w.e. yr-1 (Fig. 1.2). Under these 

conditions, abundant pore space and cold content are available for prompt refreezing of the summer 

meltwater so one would expect a smaller sensitivity of the model to the flow scheme applied. In BK, 

no runoff is produced over the entire simulation (Table 1.3) since refreezing of small amounts of melt 

does not lead to the formation of impermeable ice layers. R1M and DPM have very low runoff 

amounts with a small spike in the summer of 2012 when there was 0.38 m w.e. of liquid water input. 

No ice layer forms in the top 15 m of the firn column using any of the liquid water schemes, in 

agreement with the observed core (Fig. 1.5a). Changing the impermeability threshold results in 

identical model results since no layer exceeds the lowest possible value in the depth range where 

water percolates. The three water-transport schemes predict a similar FAC; they all underestimate the 

observed value by approximately 3% (Table 1.3). This is because the mean firn density is well-

captured by the model but somewhat overestimated at depths greater than 8 m (Fig. 1.5a). R1M 

simulates a single density peak at 8 m depth (Fig. 1.5a), corresponding to the 2012 summer meltwater 

percolation, due to capillary forces effectively retaining the relatively high meltwater volume 

produced in that year close to the surface and exposing it to delayed refreezing once these layers cool 

below the freezing point. DPM also produces a density peak (albeit a much smaller one) at a similar 

depth, and more-effective downward percolation results in a uniform increase in density over the next 

3 m. Finally, BK also produces a small density peak; however, this is at a greater depth of 9 m since it 
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assumes water flow to be instantaneous in a time step and the major part of the refreezing occurs as 

water reaches deeper cold layers. Again, none of the percolation schemes capture the observed 

variability in density. Also, despite the low melt/accumulation ratio, the three percolation schemes 

overestimate the 10 m temperature by 1.4-2.2 K (Table 1.3).  

 

 

Refreezing / 

Inflow 

(1980-2011) 

Refreezing / 

Inflow 

(2012-2015) 

Runoff / 

Inflow 

(1980-2011) 

Runoff / 

Inflow 

(2012-2015) 

Top 15 m FAC [m] 

(anomaly vs 

observations) 

T 10m [K] 

(anomaly vs 

observations [K]) 

BK (wh02 ip810) 0.97 0.97 0.00 0.00 6.78 (-3 %) 257.91 (+1.94) 

R1M (grLK ip810) 0.94 0.89 0.02 0.08 6.78 (-3 %) 257.39 (+1.42) 

DPM (grLK ip810) 0.95 0.94 0.01 0.03 6.77 (-3 %) 258.18 (+2.21) 

Observations / / / / 6.98 255.97 

BK (whCL ip810) 0.95 0.94 0.00 0.02 6.81 (-2 %) 256.97 (+1.00) 

R1M (grA ip810) 0.92 0.83 0.04 0.13 6.83 (-2 %) 256.99 (+1.02) 

DPM (grA ip810) 0.95 0.92 0.01 0.04 6.78 (-3 %) 258.11 (+2.14) 

HL R1M (grLK ip810) 0.93 0.86 0.04 0.11 8.13 (+17 %) 258.19 (+1.22) 

KM R1M (grLK ip810) 0.93 0.86 0.03 0.10 7.53 (+8 %) 257.74 (+1.77) 

Table 1.3. Model outputs at NASA-SE site. / indicates no data. 

 

 

Figure 1.5. Measured and modelled depth-density profiles at NASA-SE on 04/05/2016. The modelled densities 

are averaged at the vertical resolution of the drilled core. CR: CROCUS, HL: Herron and Langway, KM: Kuipers 

Munneke. 

 

Increasing the water-holding capacity in BK (BK whCL ip810) leads to a minor increase in the FAC 

(< 1%) and a 0.9 K cooling of the 10 m temperature, because the surface layers have a relatively low 

density (surface boundary condition of 240 kg m-3 at this site) and thus retain high amounts of water 

with the whCL parameterisation (Table 1.3). The R1M and the DPM density profiles are weakly 

sensitive to a change in the grain-size formulation from grLK to grA (Table 1.3). This is due to the 
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small meltwater amounts with meltwater refreezing only slightly closer to the surface because of the 

stronger capillarity retention in the grA models. However, we note that simply changing the grain-size 

formulation in R1M from grLK to grA leads to a 0.4 K colder 10 m temperature and thus decreases 

the bias with respect to observations by 28 % (Table 1.3). 

 

We used the R1M grLK ip810 model with the HL and the KM densification formulations in order to 

prevent the DPM’s warm bias from skewing the modelled densification rates. As expected in this 

relatively dry site, the modelled profiles are much more sensitive to the dry-densification than to the 

percolation scheme (Table 1.3 and Fig. 1.5a and b). The maximal difference in FAC between the three 

densification formulations tested is 20% compared to less than 1 % between the three flow schemes 

and their possible parameterisations. In contrast with the DYE-2 simulations, the CROCUS model 

predicts the fastest densification and thus the lowest FAC. HL and KM predict 20% and 11% greater 

FAC than CROCUS, respectively, and CROCUS is in closest agreement with the observations, 

underestimating FAC by just 3%. 

 

1.5.3 KAN-U  

KAN-U is a high-melt site with an average melt rate over the 1980-2013 period of 0.33 m w.e. yr-1, 

and in the last three years of our simulation (2010-2013), the RCM calculates annual melt exceeding 

annual accumulation (Fig. 1.2). Since surface temperatures are relatively high (annual mean around -8 

℃), refreezing of the summer meltwater depletes the cold content over large depth ranges. Beginning 

in summer 1990 in the BK simulation, some ice layers are present in the depth range 3-8 m (Fig. 

1.6a), allowing part of the meltwater to runoff and impeding percolation to greater depths. At the start 

of 2012, there is a thick ice layer in the upper 4 m and another one forms at the surface during the 

summer. As a result, refreezing is constrained to the uppermost firn layers and a large part of the 

water input runs off (Table 1.4). In R1M, the high water content and the almost-continuous presence 

of ice layers in the upper 5 m from summer 1986 onwards (Fig. 1.6b) cause relatively high runoff 

rates throughout the simulation (28 % of the water input over the entirety of the transient model run). 

As in the BK simulation, runoff is particularly high in 2012 due to ice layers impeding vertical 

percolation below 1 m (Table 1.4). In the DPM simulation, the preferential flow mechanism leads to 

the formation of multiple ice layers in the depth range 4-10 m from 1987 onwards (Fig. 1.6c). Runoff 

rates remain low but there is a notable increase in 2012. This is due to the formation of ice layers 

close to the surface, which allows ponding of water in the matrix flow domain. The preferential flow 

domain is unable to accommodate all the ponding water, and part of it is treated as lateral runoff (Eq. 

(1.26)). While matrix flow typically remains constrained to the upper 5 m (Fig. 1.7a), the recent (2010 

to 2012) high-melt summers cause preferential flow to reach much greater depths (e.g. up to 35 m in 

the 2012 summer (Fig. 1.7b)). Since preferential flow can transfer water below ice layers, the 

refreezing process can fill the pore space available at depth, leading to substantial thickening of the 
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ice layers. As a result, the FAC is much smaller in the DPM simulation than in the BK (-39 %) and 

the R1M (-35 %) simulations, in which runoff limits the amount of meltwater refreezing. 

 

 

Refreezing / 

Inflow 

(1980-2011) 

Refreezing / 

Inflow 

(2012) 

Runoff / 

Inflow 

(1980-2011) 

Runoff / 

Inflow 

(2012) 

Top 15 m FAC [m] 

(anomaly vs 

observations) 

T 10m [K] 

(anomaly vs 

observations [K]) 

BK (wh02 ip810) 0.81 0.18 0.17 0.81 3.92 (+59%) 263.93 (-1.73) 

R1M (grLK ip810) 0.74 0.20 0.23 0.79 3.69 (+50 %) 263.09 (-2.57) 

DPM (grLK ip810) 0.91 0.77 0.07 0.23 2.40 (-2 %) 270.18 (+4.52) 

Observations / / / / 2.46 265.66 

DPM (grLK ip780) 0.91 0.75 0.07 0.25 2.77 (+13 %) 268.63 (+2.97) 

DPM (grLK ip 830) 0.90 0.82 0.07 0.18 2.18 (-11%) 271.31 (+5.65) 

BK (wh02 ip780) 0.78 0.19 0.21 0.81 4.11 (+67 %) 263.46 (-2.20) 

BK (whCL ip810) 0.78 0.22 0.19 0.78 4.05 (+65 %) 262.23 (-3.43) 

BK (wh02 ip830) 0.83 0.21 0.15 0.79 3.61 (+47 %) 264.69 (-0.97) 

R1M (grLK ip830) 0.76 0.20 0.22 0.79 3.64 (+48 %) 263.21 (-2.45) 

R1M (grA ip810) 0.66 0.26 0.31 0.73 4.08 (+66 %) 262.41 (-3.25) 

DPM (grA ip810) 0.87 0.69 0.10 0.30 2.36 (-4 %) 270.28 (+4.62) 

HL R1M (grLK ip810) 0.74 0.18 0.23 0.82 3.36 (+37 %) 263.34 (-2.32) 

KM R1M (grLK ip810) 0.74 0.20 0.23 0.80 2.70 (+10%) 262.82 (-2.84) 

Table 1.4. Model outputs at KAN-U site. / indicates no data. 

 

Figure 1.6. Modelled firn density at KAN-U. (a) BK wh02 ip810, (b) R1M grLK ip810, (c) DPM grLK ip810, 

(d) BK whCL ip810, (e) R1M grA ip810, (f) DPM grA ip810, black indicates ice layers 

 

The observations reveal a thick, almost continuous ice slab over the depth range of 1-7 m (Fig. 1.8a). 

Below it, the density is more variable but remains generally high causing a low FAC (Table 1.4). Both 

the BK and the R1M simulation significantly overestimate the FAC (+59% and +50 %). In contrast, 
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the average FAC of the DPM simulation is very close to the observed value (-2 %), however, the 

DPM density profile shows an almost continuous ice slab from 3 to 17 m depth (Fig. 1.8a) and does 

not reproduce the lower density intervals observed. This demonstrates an important limitation of the 

liquid water schemes: since water cannot be retained in layers exceeding the impermeability 

threshold, these layers can only further densify by the dry densification mechanism and not by water 

refreezing. The overestimation of the ice slab thickness in the DPM profile is thus compensated by the 

underestimation of its density, which leads to the good agreement with the observed FAC value. BK 

reproduces the presence of the ice slab at 1 m depth, but it underestimates its thickness and simulated 

a thick (2 m) low-density region (Fig. 1.8a). Below the observed ice slab, the agreement with 

observed average density is reasonable but variability in density is underestimated. Despite also 

underestimating the thickness of the ice slab, the R1M profile agrees better with the observed density 

profile: it produces only two thin, low-density layers in the slab, and more high density peaks and ice 

layers below 7 m which is in better agreement with the observed density variability. 

 

 

Figure 1.7. Volumetric water content at KAN-U site for DPM grLK ip810 in (a) Matrix flow domain, (b) 

Preferential flow domain, note difference in scales 

 

With respect to the 10 m temperature, the BK method is biased cold but gives results in reasonable 

agreement with the observations (-1.7 K). This bias is more pronounced in R1M (-2.6 K). In contrast, 

DPM largely overestimates the 10 m temperature (+4.5 K), as a result of its overestimation of 

percolation and subsequent refreezing at depth.  
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Figure 1.8. Measured and modelled depth-density profiles at KAN-U on 28/04/2013. Thick vertical lines show 

ice layers. The modelled densities are averaged at the vertical resolution of the drilled core. CR: CROCUS, HL: 

Herron and Langway, KM: Kuipers Munneke. 

 

Changing the impermeability threshold for DPM (DPM wh02 ip780 and ip830) does not alter the 

pattern of the modelled depth-density profile, but the corresponding changes to the density of the ice 

slab has an impact on the FAC (+15 % for ip780 and -9 % for ip830). Other factors further affect the 

FAC: runoff rates slightly decrease with higher impermeability thresholds (Table 1.4) and the mass of 

the ice layers increases the overburden stress on the firn column below, increasing the densification 

rate. In addition, higher (lower) impermeability thresholds lead to warmer (colder) 10 m temperatures 

(+1.1 K for ip830 and -1.6 K for ip780), due to enhanced latent heat release. Compared to BK wh02 

ip810, decreasing the impermeability threshold (BK wh02 ip780) leads to formation of ice layers in 

earlier years and closer to the surface and thus more runoff (+3 % of the water input over the entirety 

of the transient model run), which in turn increases the FAC (+5 %) and decreases the 10 m 

temperature (-0.5 K). Increasing the threshold (BK wh02 ip830) has the opposite effect (-8 % for the 

FAC and +0.8 K for the 10 m temperature compared to BK wh02 ip810). If we instead allow for a 

greater water-holding capacity (BK whCL ip810), the partitioning between runoff and refreezing 

remains very similar (Table 1.4). However, the FAC and the 10 m temperature are changed (+3 % and 

-1.7 K compared to BK wh02 ip810). The lower temperature is due to latent heat release from 

refreezing being more concentrated in the surface layers (Fig. 1.6d). The formation of ice layers 

earlier in the year and at shallower depths allows part of the underlying firn to remain free of 

refreezing, which increases the FAC. Furthermore, colder temperatures cause a higher firn viscosity 

thus decreasing the densification rates. Since the R1M formulation both overestimates the FAC and 

underestimates the 10 m temperature, we test an increase in its impermeability threshold (R1M grLK 
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ip830), allowing for deeper percolation. Both the decrease in FAC (-1 %) and increase in 10 m 

temperature (+0.1 K) compared to R1M grLK ip810 are minor.  

 

With the grA formulation in DPM (DPM grA ip810), water is more efficiently transferred vertically 

through the preferential flow domain, which causes an increase in the number of ice layers formed 

during the simulation (Fig. 1.6f), a slight decrease in FAC (-2 %) and a slight increase in the 10 m 

temperature (+0.1 K) relative to DPM grLK ip810. The nearly-continuous ice slab, which extends to 

17 m depth below the final winter accumulation, explains the weak sensitivity of the final FAC and 10 

m temperature values of DPM to grain-size. In contrast, applying the grA formulation in R1M (R1M 

grA ip810) leads to a considerable increase in FAC (+11 %) and a decrease in 10 m temperature (-0.7 

K) compared to R1M grLK ip810. This is due to higher water content during percolation events and, 

especially in the most recent years of our simulation, refreezing and ice-layer formation at shallower 

depths (Fig. 1.6e). This increases the runoff and isolates the deeper firn from meltwater percolation. 

As in the cases of DYE-2 and NASA-SE, the change in FAC due to different grain-size formulations 

in R1M is greater than the change due to switching from BK to R1M (Table 1.4). 

 

The modelled depth-density profiles also differ according to the densification formulation used (Fig. 

1.8b). We compare the different densification formulations using R1M grLK ip810, thus avoiding the 

effect of the strong temperature bias of DPM on the densification process. Densification in KM is 

sensitive to high firn temperatures, and it predicts the highest densities: it produces the highest density 

values in the ice slab range, the most ice layers below the ice slab and the lowest FAC value (-27 % 

compared to the CROCUS formulation). HL behaves in a similar way to CROCUS in the upper 5 m, 

apart from a much lower density interval in the 2-2.5 m depth range. In deeper firn, densities 

simulated using HL tend to lie between those simulated using KM and CROCUS, and its FAC 

difference with the CROCUS (-9 %) is less than that of KM. The DPM scheme simulates a depth-

density profile of an ice slab over a 14 m range, which is in stark contrast with BK and R1M. Apart 

from this, the choice of the densification formulation has a greater influence on the model than the 

choice of liquid water scheme and of any of their respective parameterisations presented here, in spite 

of the high water input at this site. 

 

1.5.4 FA13 

The FA13 site is representative of conditions in the southeast part of the GrIS; it has both high 

accumulation and high melt rates (mean 1980-2012 rates of 1.09 and 0.64 m w.e. yr-1 respectively, 

Fig. 1.2). This favours the insulation of summer percolating meltwater from winter atmospheric 

temperatures, typically leading to the formation of PFAs (Kuipers Munneke et al., 2014a). Here, the 

initial conditions and the spin-up process cause the deep firn to be close to the melting point at the 

start of the transient run.  
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The warm firn, combined with the high water influx, allows liquid water to reach greater depths than 

at the other sites in all three flow schemes. Additionally, the firn – ice transition depth becomes 

important in the FA13 simulations. The observed core shows that the 810 kg m-3 density is reached 

and maintained from 24 m depth. The CROCUS densification scheme predicts that this density 

horizon occurs at 60 m depth. Since CROCUS has been developed for seasonal snow, the 

densification at high overburden stress is probably not well captured by the model (Stevens, 2018). 

Because of this, we base our simulations for FA13 on the HL densification model, which predicts this 

transition depth to be around 21 m. 

 

The total refreezing rates are similar for the three flow schemes (Table 1.5). Since the deep firn is 

close to the melting point, the total refreezing amounts are essentially determined by the cold content 

provided in winter and the precise behaviour of the percolation has a minor impact. However, 

variability of refreezing with depth differs between schemes, which leads to differences in the 15 m 

FAC values (Table 1.5) and in the modelled depth-density profiles (Fig. 1.9a, b and c and Fig. 1.10a). 

FAC is consistently underestimated (-23 to -30 %) because firn density is overestimated above 10 m. 

R1M and DPM overestimate density most strongly with FAC values 9 and 10 % smaller than BK 

respectively, and both schemes simulate the presence of a thick ice layer in the upper 10 m of the firn, 

which is not observed in the core. The BK model produces only a single thin ice layer in the 10 upper 

meters (0.2 m thick at 9 m depth), which is in good agreement with the observations (showing a single 

thin ice layer at 7.5 m depth). Below 10 m, the modelled densities are generally in better agreement 

and all the schemes produce several ice layers (Fig. 1.10a and Fig. 1.9a, b and c). 
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Refreezing / 

Inflow 

(1980-2011) 

Refreezing / 

Inflow 

(2012) 

Runoff / 

Inflow 

(1980-2011) 

Runoff / 

Inflow 

(2012) 

Top 15 m FAC [m] 

(anomaly vs 

observations) 

T 10m [K] 

(anomaly vs 

observations 

[K]) 

Remaining 

water [m] 

BK 

(HL wh02 ip810) 
0.55 0.28 0.45 0.73 3.82 (-23 %) 271.75 (+0.10) 0 

R1M 

(HL grLK ip810) 
0.50 0.28 0.49 0.71 3.47 (-30 %) 270.94 (-0.71) 0 

DPM 

(HL grLK ip810) 
0.51 0.32 0.38 0.70 

3.45 (-30 %) of which 

0.81 m of water 
273.15 (+1.5) 1.53 

Observations / / / / 4.96 271.65 1.65 

BK 

(HL whCL ip810) 
0.60 0.23 0.38 0.81 3.38 (-32 %) 270.99 (-0.66) 0.09 

R1M 

(HL grA ip810) 
0.46 0.30 0.52 0.69 3.60 (-27 %) 269.77 (-1.88) 0 

DPM 

(HL grA ip810) 
0.51 0.36 0.39 0.70 

3.36 (-32 %) of which 

0.83 m of water 
273.15 (+1.5) 1.48 

DPM 

(HL grLK ip830) 
0.51 0.29 0.39 0.70 

3.57 (-28 %) of which 

0.38 m of water 
272.13 (+0.48) 1.64 

CROCUS R1M 

(grLK ip810) 
0.49 0.31 0.49 0.68 3.94 (-21%) 271.46 (-0.19) 0 

KM R1M 

(grLK ip810) 
0.51 0.37 0.45 0.99 2.29 (-54 %) 270.90 (-0.75) 0 

Table 1.5. Model outputs at FA13 site. / indicates no data. 

 

Figure 1.9. Firn density at FA13 (a) BK wh02 ip810, (b) R1M grLK ip810, (c) DPM grLK ip810, (d) BK whCL 

ip810, (e) R1M grA ip810, (f) DPM grA ip810, black indicates solid ice. 
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In the absence of any shallow ice layer throughout most of the simulation (Fig. 1.9a, b and c), 

meltwater is free to percolate through the winter accumulation layers and to deplete their cold content. 

The flow schemes have different abilities to store liquid water, which leads to small variations in 

runoff and refreezing rates. In BK, water is retained according to the water-holding capacity (Fig. 

1.11a) and refreezes during subsequent winters. In contrast, DPM allows percolation down to the firn 

– ice sheet transition where it ponds to form an aquifer (Fig. 1.11d and e). This leads to a significant 

reduction of runoff amounts during the aquifer build-up (-6 % of the water input over the entirety of 

the transient model run compared to BK) and the water remaining in the firn column is essentially 

constrained by the maximal amount of water we allow in the aquifer (1.65 m). In theory, the same 

mechanism could be simulated by R1M but the percolating water is depleted before it reaches the 

bottom of the firn column (Fig. 1.11b). This is due to refreezing, to the lateral runoff parameterisation 

and to the presence of ice layers in the upper 10 m. No water persists through the winter seasons, 

which illustrates the model artefact that the effective saturation must be strictly positive for the 

stability of the RE (Sect. 3.2). Thus, the refreezing rates are slightly lower than in BK since no 

residual water is stored and later exposed to winter refreezing (Table 1.5).  

 

 

Figure 1.10. Measured and modelled depth-density profiles at FA13 on 10/04/2013. Thick vertical lines show 

ice layers. The modelled densities are averaged at the vertical resolution of the drilled core. CR: CROCUS, HL: 

Herron and Langway, KM: Kuipers Munneke. 

 

The build-up of the aquifer starts very early (in the summer of 1981) when DPM is turned on in the 

transient run due to the low refreezing capacity of the deep firn. The depth of this aquifer is 

constrained by the impermeability threshold applied, which determines where the model places the 

firn ice transition. This depth is at 33 m in 1981 and 21 m in 2013, the decrease being caused by 
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enhanced densification. The aquifer is fed only by preferential flow (Fig. 1.11e) since matrix flow 

cannot reach the water table due to runoff, refreezing and the presence of ice layers in the firn column. 

 

From 1994 and onwards the total simulated water content in summer is only regulated by the 

maximum allowed in the model (1.65 m). Since the water table is at a shallow depth towards the end 

of the simulation (7.5 m), the propagation from the surface of the cold winter temperatures can 

refreeze part of the saturated layers. This leads to the formation and progressive thickening of the 

shallow, thick ice layer. Also, the shallowness of the aquifer causes 23% of the porosity in the top 15 

m to be filled with liquid water and the 10 m temperature to be at the melting point.  

 

The higher impermeability threshold in DPM grLK ip830 increases the depth of the calculated firn – 

ice transition, producing a deeper aquifer that extends between 12 and 29 m depth at the end of the 

simulation, similar to the 12-37 m depth range observed by Koenig et al. (2014). Compared to DPM 

grLK ip810, the increased depth leads to less refreezing in the shallowest layers of the aquifer and 

thus a higher FAC value (+3 %) and a 10 m temperature below the melting point. 

 

The grain-size formulation following Arthern et al. (2010) (DPM grA ip810) reduces the ability of 

preferential flow to transport water down to the firn - ice transition but instead favours formation of 

discrete ice layers in the firn column (Fig. 1.9f). In this case the aquifer does not start to form until 

summer 1988, but the final aquifer structure (also between 7.5 and 21 m), the FAC value (-3 % for 

grA), and the partitioning between refreezing and runoff are similar to those simulated using grLK 

(Table 1.5). In R1M, the sensitivity to grain-size is noticeable in the firn-structure evolution with 

differences in ice-layer formation between R1M grLK ip810 and R1M grA ip810 (Fig. 1.9b and e). 

The final FAC value (+4 % for grA) and the meltwater partitioning remain similar (Table 1.5) 

between R1M grLK and R1M grA, as for the case of DPM grLK and DPM grA. This can be 

explained by the total refreezing’s stronger dependence on the firn thermal structure than on the 

percolation pattern at this site.  

 

Increasing the water-holding capacity in BK (BK whCL ip810) leads to a significantly lower FAC 

value (-12 %): more water refreezes in the near-surface layers, which reduces the runoff and enhances 

densification in the entire underlying firn column. Also, more water remains stored at depth 

throughout the different winter seasons (Fig. 1.11c), and some is still present at the end of the 

simulation (0.09 m) between 16 and 23 m depth. However, this small amount retained by the water-

holding capacity is much less than is stored in the saturated layers of the aquifer simulated in DPM. 

 

We compare the three different densification models (CROCUS, HL, KM) using the R1M grLK 

ip810 flow scheme and these show important differences in the final modelled depth-density profiles 
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(Fig. 1.10b). CROCUS agrees reasonably well with HL in the top 6 m but, as mentioned above, it has 

a strong low density bias at greater depths. Since CROCUS simulates lower densification rates, its 

underestimation of the FAC value in the 15 upper meters (-21 %) is smaller than in HL (-30 %), but it 

is clearly not representative of the density conditions below 15 m. KM predicts a firn column below 

the last winter’s accumulation entirely at the ice density. The model thus identifies a firn - ice sheet 

transition at shallow depth (~2 m), which the water can reach before being depleted by the lateral 

runoff parameterisation and saturated layers can thus build up. This further amplifies the densification 

since the saturated layers at the transition depth are exposed to refreezing. Hence, in 2012, runoff 

combined with refreezing exceeds the liquid water input (Table 1.5). This occurs because some layers 

wherein water had been stored in previous years reach the 810 kg m-3 density, causing the stored 

water to be considered as runoff by the model. Whereas the FAC values are generally close for the 

different flow schemes and their parameterisations (maximal difference of 12 %), CROCUS and KM 

reach values 14 % higher and 34 % lower than HL respectively. 

 

1.6 Discussion 

The three liquid water schemes show consistent behaviour between sites. R1M generally predicts 

slower downward percolation of water than the other schemes, which leads to more near-surface 

refreezing, the formation of near-surface ice layers, more lateral runoff and thus lower densities and 

lower temperatures in deeper firn. As a result, when compared to observations R1M tends to reach 

higher FAC values and to underestimate 10 m temperatures. The BK formulation with the Coléou and 

Lesaffre (1998) parameterisation for the water-holding capacity leads to the same effects, but they are 

amplified. The underestimation of the 10 m temperature is stronger, suggesting that BK whCL does 

not allow for deep enough percolation. BK with the lower water-holding capacity (BK wh02) leads to 

a partitioning of the water input between refreezing and runoff similar to the more complex R1M at 

the four sites. As a result, the FAC values predicted by BK wh02 and R1M generally agree (maximum 

difference less than 10 %), as do the temperatures at 10 m depth (maximum difference less than 1 K). 

The FAC values and 10 m temperatures of R1M at the end of the model runs always lie in the range 

of the ones obtained with different parameterisations of BK. This suggests that BK can produce 

results similar to R1M, provided it is parameterised appropriately.  

 

DPM exhibits a different behaviour: it effectively brings water to greater depths, depleting the deep-

firn pore space and cold content. Even in the presence of shallow ice layers hindering matrix flow, the 

preferential flow implementation still ensures efficient vertical water transport, and runoff amounts 

remain low. This suggests that transfer mechanisms to the preferential flow domain implemented in 

DPM are more effective in draining ponding water than the lateral runoff parameterisation. Due to 

large FAC underestimation and 10 m temperature overestimation, the data-model mismatch of DPM 
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with respect to these variables is significantly greater than that of R1M and BK. DPM is better at 

producing density variability in depth, which is underestimated in all schemes at all sites. Also, in 

contrast to the two other schemes, DPM can form ice layers even in summers of average melt, and it 

is able to simulate the persistence of deep saturated firn layers at the FA13 site. In this respect our 

findings support those of Wever et al. (2016) who highlight the tendency of DPM to produce ice 

layers at various depths in alpine snowpack simulations, and thus to reproduce depth-density 

variability. It is important to bear in mind that we only use the dual permeability water scheme of 

SNOWPACK in DPM and not the other physics of this model; the results produced by the full 

SNOWPACK model would be different because it has its own formulations for snow mechanical and 

thermal properties. In particular, DPM relies heavily on the grain-size, and it would thus benefit from 

better representations of the firn’s structural properties. Moreover, the primary purpose of the DPM 

implementation in SNOWPACK is to reproduce the occurrence of ice layers in a seasonal alpine snow 

pack (Wever et al., 2016), whereas in this study we evaluate its ability to simulate representative firn 

depth-density profiles over the course of numerous decades. 

 

BK with low water-holding capacity is usually used to mimic preferential flow (Reijmer et al., 2012). 

However, our findings suggest that, in fact, this more closely represents matrix flow as modelled 

using the Richards Equation. We suggest that in order to use BK in this way, percolation of some 

meltwater in the presence of ice layers should be considered. 

 

The lack of variability in density in the modelled profiles cannot only be attributed to inaccuracies in 

the percolation-refreezing process. This is demonstrated in the example of NASA-SE: the layers of 

the density peak observed around 1 m depth (Fig. 1.4a and b) were deposited during the final winter 

of the simulation (2015-2016). As such, these have only been influenced by the percolation and 

refreezing of negligible amounts of liquid water. The consistent underestimation of density variability 

across all schemes indicates that one or several other factors that are not or poorly represented by firn 

models likely play a crucial role in firn evolution. These factors may include horizontal water flow, 

prolonged ponding of water in soaked firn close to the surface, variability in fresh snow density, the 

effects of firn microstructure and impurity content on densification, wind packing and short-term 

weather fluctuations. Moreover, the validity of the firn model relies on the accuracy of the climatic 

forcing.  

 

At all sites, interchanging the HL, KM and CROCUS formulations for firn densification generally 

leads to more variability in the results than using different water flow schemes. This highlights the 

need to understand the causes of disparity between densification models under various climatic 

conditions and thus to proceed to further model intercomparison experiments (Lundin et al., 2017). 

The existing firn-densification formulations are likely not suited for representing densification in 



42 
 

conditions of high water contents and high refreezing rates. Our study indicates that firn-densification 

models could be improved by accounting for the latent heat source as well as the effects of liquid 

water and of refreezing cycles on firn viscosity and densification rates. For example, the KM and HL 

densification equations were established for dry firn (Herron and Langway, 1980; Kuipers Munneke 

et al., 2015a). In the CROCUS scheme, firn viscosity is adjusted according to the water content, but 

our results show that the modification in the parameterisation is insufficient to reproduce the observed 

densities at KAN-U. A simple example of the densification schemes in HL and KM not representing 

reality becomes apparent when applying the percolation-refreezing schemes: in reality, densification 

is dependent on the overburden stress, but these models use accumulation rate as a proxy for stress. 

Consequently, in these models the redistribution of mass due to runoff and percolation does not affect 

the densification rates, despite the effect it has on the firn column mass. The absence of a preferential 

flow scheme is often presented as a possible explanation for firn-density overestimation close to the 

surface (e.g. Gascon et al., 2014; Kuipers Munneke et al., 2014a; Steger et al., 2017a). However, our 

results suggest that simply adding a one-dimensional preferential flow scheme, although physically 

detailed, to firn-densification models does not solve this issue. The water that is transported quickly 

from the shallow layers must flow back into the matrix domain at some point. If this occurs in the 

shallow layers, the density-overestimation issue remains; if this occurs in deep layers it can lead to 

unrealistic temperature signatures. There are several other possible factors for densification errors at 

high melt sites, including exaggerated sensitivity of the model to temperature because the 

densification model is not suited for conditions with substantial latent heat release. 

 

We compare the results reached at KAN-U with previous firn modelling studies at this site. Langen et 

al. (2017) also used the CROCUS densification scheme and a water flow scheme conceptually 

comparable to R1M but with a simplified solving process of the RE. Their results show a density 

profile entirely at ice density from 4 m depth and an overestimation of the temperature at 10 m depth 

(+3 to +5 K). In our study, the R1M results show lower deep densities and a 10 m temperature 

underestimation. These discrepancies can be attributed to differences in 1) model implementation, 2) 

climatic forcing and 3) details of the water flow scheme. Model resolution is likely of importance 

here: Langen et al. (2017) used a coarser vertical resolution, disfavouring the formation of thin 

impermeable layers, allowing liquid water to flow more readily to greater depths and refreeze, thus 

causing greater density and higher temperature values. Steger et al. (2017b) used the SNOWPACK 

densification model (recall: we use different densification physics to SNOWPACK in this study) with 

a bucket scheme, similar to BK, and the same climatic forcing as in this study. Their model output 

shows a firn column fully compacted to ice at KAN-U. They attribute this to the overestimation of 

densification rates by the densification model used and also argued that some other effects could be at 

play such as the surface density applied. The 10 m temperature is underestimated in their result, likely 

due to the absence of percolation of water through ice and thus no latent heat release at depth. 
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Both DPM and R1M exhibit significant sensitivity to the choice of the grain-size formulation (grLK 

or grA). Modifying this formulation in R1M affects the model results more than changing to the use 

of BK at all sites apart from FA13 where the magnitudes of change are comparable. For example, the 

change of grain size at FA13 in R1M leads to a difference of 4 % in FAC and 1.2 K in 10 m 

temperature, and in DPM, the patterns of ice layer formation are significantly different at all sites 

where such ice layers form. This highlights another significant difficulty for percolation schemes: the 

dependence of water flow on the firn’s structural properties. Field evidence demonstrates the crucial 

role of structural transitions, even at the scale of centimeters, on the behaviour of water flow in firn 

(Marsh and Woo, 1984; Pfeffer and Humphrey, 1996, 1998; Williams et al., 2010). With respect to 

this, the advanced flow schemes applied in this study have some limitations. Firstly, the structural 

properties of grains in the firn layer are poorly constrained by observations. Secondly, the 

parameterisations linking the structural and hydraulic properties on which R1M and DPM rely were 

derived from a limited number of laboratory experiments. These are typically performed at a very 

small scale (e.g. shallow snow columns with diameter of 5 cm in the experiments of Yamaguchi et al. 

(2012)), and are mostly based on homogeneous snow in terms of grain-size and temperature 

(Yamaguchi et al. 2012; Katsushima et al., 2013). The much larger scale of the GrIS firn layer, the 

spatial and temporal heterogeneity of its structural properties, and its climatic and glaciological 

settings render the validity of these idealised parameterisations questionable. Finally, the density 

dependence of the parameters makes them sensitive to errors in the densification process. Thus, a 

better knowledge of firn structural properties would only be profitable to water flow schemes if we 

have a clear understanding of the link between snow structure and its hydraulic properties and vice 

versa.  

 

Another major limitation of the implementation of physically detailed liquid water flow schemes in 

one-dimensional firn models is the fact that water flow is in reality three dimensional. Water can flow 

horizontally on top of buried ice lenses or on thin, near-surface ice crusts caused by daily refreezing 

(Marsh and Woo, 1984; Pfeffer and Humphrey, 1996). Even at depths greater than 10 m, large masses 

of liquid water can persist through the winter and move laterally over considerable distances 

(Humphrey et al., 2012). In one-dimensional models, the key to solving this issue is to accurately 

partition between vertical percolation and lateral flow; this likely requires a better approach than the 

lateral runoff parameterisation we implement here. As an example, at FA13 all three water-transport 

schemes overestimate the density in the 10 upper meters except in the last winter’s accumulated layers 

(0 – 2 m depth), where there is a good agreement with observations (Fig. 1.10a). This suggests a 

consistent overestimation of the summer meltwater refreezing and underestimation of lateral runoff. 

Also, the need to use a limit for the PFA water content demonstrates that some processes not 

represented in the model must regulate its water volume; these are likely lateral movement driven by 
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hydraulic pressure gradients and connections with englacial and subglacial hydrological systems. A 

one-dimensional preferential flow scheme aims to correctly partition the water input between matrix 

flow and fast preferential flow; there are several other difficulties with this approach. These include 

accurately determining how deep the water can be transported by preferential flow, how much water 

refreezes and how much is stored as liquid water, and the amount of lateral flow at different depths in 

the firn column. Similarly, the same considerations apply to liquid water flowing in from upstream 

grid cells. The representation of preferential flow physics thus requires improvements to address some 

deficiencies. We highlight (1) that too much water is transported through preferential flow or at 

exaggerated depths as demonstrated by the consistent overestimation of 10 m temperature, (2) the 

need to consider lateral flow as the tendency to underestimate FAC shows and (3) the large sensitivity 

of the ice layer formation process to grain size, which should be overcome or should be addressed by 

further observational studies of grain metamorphism in firn.  

 

Our results also suggest that more observations of firn-temperature variability in time and depth 

would likely be useful for the evaluation of existing flow schemes and the development of new ones. 

Modelled temperature profiles show both the depth and volume of refreezing due to the release of 

latent heat. Moreover, deep meltwater refreezing causes marked and long-lasting temperature 

increases due to insulation from the overlying firn, and temperature measurements in depth can be 

powerful indicators of the occurrence of deep percolation and refreezing events. On the other hand, 

comparisons between modelled and observed density profiles are strongly affected by the choice and 

accuracy of the densification formulation, the variability of surface density, several other factors 

influencing model outputs mentioned above and possible uncertainties in field measurements. Such 

uncertainties are related to the strong spatial variability of firn structure (Marchenko et al., 2017), 

which can be observed by comparing density profiles of cores drilled at nearby locations. However, 

the modelled temperature profile also depends on the accuracy of the climatic forcing, of the heat-

transport scheme and of the thermal-conductivity parameterisation. The latter is a function of density, 

thus erroneous depth-density profiles inevitably lead to an inaccurate heat-transport process. As an 

example of the influence of various sources of errors, the warm 10 m temperature bias of all the 

schemes at NASA-SE (Table 1.3) is unlikely to be only due to the percolation-refreezing process. 

RACMO2.3p2 has a slight negative precipitation bias at this site (-0.21 m w.e. yr-1, see Appendix 

A1) which likely leads to underestimated advection of cold snow down into the firn column and could 

partly explain the firn models’ temperature bias. Similarly, air temperature is overestimated here by 

RACMO (+ 1.5 K), which could enhance the problem. It is possible that the consistent over- and 

underestimation of FAC at FA13 and at KAN-U could be due to snowfall over- and underestimation 

respectively by RACMO, however no observations of precipitation at these sites is available for 

comparison.  
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1.7 Conclusion 

We implemented three liquid water schemes of different levels of physical complexity in a firn model 

using a fine vertical resolution: a bucket scheme, Richards Equation in a matrix flow scheme, and 

Richards Equation in a preferential flow scheme. To our knowledge, this is the first study to apply the 

Richards Equation as well as a preferential flow scheme in firn-densification simulations on the GrIS.  

Our three liquid water flow schemes predict significantly different vertical patterns of refreezing and 

consequently modelled densities, firn air content values and 10 m temperatures. The preferential flow 

scheme effectively evacuates meltwater from the surface layers and leads to underestimation of firn 

air content and overestimation of 10 m temperatures. Compared to the preferential flow scheme, the 

single-domain Richards Equation scheme generally showed biases of the opposite signs and of much 

lower magnitudes in both FAC and 10 m depth temperature, suggesting it slightly underestimates 

percolation depths. The simpler bucket scheme predicted refreezing rates, firn air contents and 10 m 

temperatures similar to those obtained by the single-domain Richards Equation; by adjusting its 

water-holding capacity and impermeable density parameters, it could produce the same results. Using 

the Coléou and Lesaffre (1998) parameterisation for the water-holding capacity in the bucket scheme 

led to underestimation of percolation depths. The bucket scheme with lower water-holding capacity 

and the single-domain Richards Equation scheme predicted firn air contents and 10 m temperatures in 

closest agreement with observations. However, the preferential flow scheme was found to perform 

better than the simpler flow schemes in reproducing the density variability with depth and the water-

saturated conditions at the bottom of the firn column at a site of a perennial firn aquifer.  

 

We identified the multidimensionality of liquid water flow as the prominent challenge for water 

percolation schemes. Because firn models are currently one dimensional, an accurate partitioning 

between horizontal and vertical flow is likely to be at least as difficult and as important as the 

separation between slow matrix and rapid preferential flow. Other difficulties related to water-flow 

representation include the uncertainties in firn hydraulic properties and in firn micro- and macro-

structure on the GrIS. This is further demonstrated by our results showing the sensitivity of the 

Richards Equation-based schemes on the grain-size formulation. However, the absence of any large-

scale field observations of water flow in firn makes it difficult to constrain its implementation and to 

validate model behaviour. Here, we aimed to assess the applicability of flow schemes developed for 

seasonal snow models to the Greenland firn. Whilst we did apply some modifications to account for 

the differences between snow and firn, we suggest that more modifications are likely required since 

the spatial scales and the structural characteristics of seasonal snowpacks and firn are different. 

 

There is no large scale detailed observation available of liquid water content and percolation pattern 

during melting events in firn. This renders the validation of a particular flow scheme difficult and 
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validation relies on temperature and density profiles. However, there are a number of effects that 

influence firn density and temperature, all potentially contributing to mismatch between modelled and 

observed values. As an example, the density variability in depth was largely underestimated 

regardless of the flow scheme. This suggests that there are uncaptured complexities in the percolation 

and refreezing mechanisms that need to be better taken into account such as water ponding and the 

effect of grain shape on water flow. Furthermore, this shows that firn-model development must focus 

on including complex processes currently poorly or not represented, such as surface-density 

variability, wet firn densification and firn structural effects on densification. We note also that our 

assessment considers only a single profile from each site, captured at one time point, and further work 

is required to assess the impact of liquid water percolation on transient firn evolution. A 

comprehensive exploration of the various firn models and their parameter spaces could help identify 

priorities for further model developments based on minimising data-model mismatch and overall 

uncertainty. In line with this, we showed that output from three common firn-densification models 

shows greater variability than the output from single densification model using the different flow 

schemes. In order to capture the multiple impacts of liquid water on firn densification, future models 

require an improved liquid water flow scheme, accurate boundary conditions, and formulations 

developed explicitly to simulate densification of wet firn. 
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2. Bayesian calibration of firn densification models 

2.1 Abstract 

Firn densification modelling is key to understanding ice sheet mass balance, ice sheet surface 

elevation change, and the age difference between ice and the air in enclosed air bubbles. This has 

resulted in the development of many firn models, all relying to a certain degree on parameter 

calibration against observed data. We present a novel Bayesian calibration method for these 

parameters, and apply it to three existing firn models. Using an extensive dataset of firn cores from 

Greenland and Antarctica, we reach optimal parameter estimates applicable to both ice sheets. We 

then use these to simulate firn density and evaluate against independent observations. Our simulations 

show a significant decrease (24 and 56%) in observation-model discrepancy for two models and a 

smaller increase (15%) for the third. As opposed to current methods, the Bayesian framework allows 

for robust uncertainty analysis related to parameter values. Based on our results, we review some 

inherent model assumptions and demonstrate how firn model choice and uncertainties in parameter 

values cause spread in key model outputs. 

 

2.2 Introduction 

On the Antarctic and Greenland ice sheets (AIS and GrIS), snow falling at the surface progressively 

compacts into ice, passing through an intermediary stage called firn. The process of firn densification 

depends on local conditions, primarily the temperature, the melt rate and the snow accumulation rate, 

and accurate modelling of densification is key to several applications in glaciology. Firstly, variability 

in firn densification affects altimetry measurements of ice sheet surface elevation changes. 

Consequently, uncertainties in modelled densification rates have a direct impact on mass balance 

estimates, which rely on a correct conversion from measured volume changes to mass changes (Li and 

Zwally, 2011; McMillan et al., 2016; Shepherd et al., 2019). Errors in the firn related correction can 

lead to over- or underestimation of mass changes related to surface processes, and to misinterpreting 

elevation change signals as changes in mass balance and in ice flow dynamics. Secondly, firn models 

are used to estimate the partitioning of surface meltwater into runoff off the ice sheet, and refreezing 

within the firn column, which strongly influences mass loss rates (van den Broeke et al., 2016). Model 

estimates of current and future surface mass balance of the AIS and GrIS are thus dependent on 

accurate models of firn evolution. And finally, the densification rate determines the firn age at which 

air bubbles are trapped in the ice matrix. Knowing this age is crucial for precisely linking samples of 

past atmospheric composition, which are preserved in these bubbles, to paleo-temperature indicators, 

which come from the water isotopes in the ice (Buizert et al., 2014).  
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Firn densification has been the subject of numerous modelling studies over the last decades (e.g. 

Herron and Langway, 1980; Goujon et al., 2003; Helsen et al., 2008; Arthern et al., 2010; Ligtenberg 

et al., 2011; Simonsen et al., 2013; Morris and Wingham, 2014; Kuipers Munneke et al., 2015b). 

However, there is no consensus on the precise formulation that such models should use. Most models 

adopt a two-stage densification process with the first stage characterising faster densification for firn 

with density less than a critical value, and then slower densification in the second stage. The firn-

model intercomparison of Lundin et al. (2017) demonstrated that, even for idealised simulations, 

inter-model disagreements are large in both stages. Firn compaction is driven by the pressure exerted 

by the overlying firn layers. Dry firn densification depends on numerous microphysical mechanisms 

acting at the scale of individual grains, such as grain-boundary sliding, vapour transport, dislocation 

creep and lattice diffusion (Maeno and Ebinuma, 1983; Alley, 1987; Wilkinson, 1988). Deriving 

formulations closely describing the densification of firn at the macroscale as a function of these 

mechanisms is challenging. Consequently, most models rely on simplified governing formulations 

that are calibrated to agree with observations. The final model formulations have usually been tuned 

to data either from the AIS (Helsen et al., 2008; Arthern et al., 2010; Ligtenberg et al., 2011) or from 

the GrIS (Simonsen et al., 2013; Morris and Wingham, 2014; Kuipers Munneke et al., 2015b), 

consisting of drilled firn cores from which depth-density profiles are measured. However, the 

calibration of firn densification rates to firn depth-density profiles requires the assumption of a firn 

layer in steady state. To overcome this limitation, some models have been calibrated against other 

type of data such as strain rate measurements (Arthern et al., 2010; Morris and Wingham, 2014) or 

annual layering detected by radar reflection (Simonsen et al., 2013), but such measurements remain 

scarce and do not extend to firn at great depths below the surface. Ultimately, firn model calibration is 

an inverse problem that relies on using observational data to infer parameter values.  

 

In this study, we adopt a Bayesian approach in order to address firn model calibration. This provides a 

rigorous mathematical framework for estimating distributions of the model parameters (Aster et al., 

2005; Berliner et al., 2008). Bayesian inversion has been applied in several glaciological studies, and 

it has been demonstrated that this methodology improves our ability to constrain poorly known factors 

such as basal topography (Gudmundsson, 2006; Raymond and Gudmundsson, 2009; Brinkerhoff et 

al., 2016a), basal friction coefficients (Gudmundsson, 2006; Berliner et al., 2008; Raymond and 

Gudmundsson, 2009), ice viscosity (Berliner et al., 2008) and the role of the subglacial hydrology 

systems on ice dynamics (Brinkerhoff et al., 2016b). In the Bayesian framework, model parameters 

are considered as random variables for which we seek an a posteriori probability distribution that 

captures the probability density over the entire parameter space. This distribution allows not only to 

identify the most likely parameter combination, but also allows us to set confidence limits on the 

range of values in each parameter that is statistically reasonable. This enables us to quantify 

uncertainty in model results, to challenge the assumptions inherent to the model itself and to assess 
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correlation between different parameters. Calculations rely on Bayes' theorem (see Sect. 2.4 and Eq. 

(2.7)), but because of the high-dimensional parameter space and the non-linearity of firn models, 

solutions cannot be computed in closed form. As such, we apply rigorously designed Monte Carlo 

methods to approximate the target probability distributions efficiently. By exploiting the 

complementarity between the Bayesian framework and Monte Carlo techniques, we recalibrate three 

benchmark firn models and improve our understanding of their associated uncertainty. 

 

2.3 Data and Methods 

2.3.1 Firn densification data  

In order to calibrate three firn densification models, we use observations of firn depth-density profiles 

from 91 firn cores (see Appendix B) located in different climatic conditions on both the GrIS (27 

cores) and the AIS (64 cores) (Fig. 2.1). Using cores from both ice sheets is important since we seek 

parameter sets that are generally-applicable and not location-specific. We only consider dry 

densification since meltwater refreezing is poorly represented in firn models and wet-firn compaction 

is absent (Verjans et al., 2019). As such, we select cores from areas with low mean annual melt 

(<0.006 m w.e. yr-1) but spanning a broad range of annual average temperatures (-55 to -20℃) and 

accumulation rates (0.02 to 1.06 m w.e. yr-1). For each core, we use the depth-integrated porosity 

(𝐷𝐼𝑃), also called firn air content. We calculate 𝐷𝐼𝑃 until 15 m depth (𝐷𝐼𝑃15, Eq. (2.1)). For 

sufficiently deep measurements, we also calculate 𝐷𝐼𝑃𝑝𝑐, Eq. (2.2), taken below 15 m and until pore 

close-off depth (𝑧𝑝𝑐, where a density of 830 kg m-3 is reached). These are the observed quantitative 

values used for the calibration: 

𝐷𝐼𝑃15 = ∫
𝜌𝑖−𝜌

𝜌𝑖
𝑑𝑧

15

0
  (2.1) 

𝐷𝐼𝑃𝑝𝑐 = ∫
𝜌𝑖−𝜌

𝜌𝑖
𝑑𝑧

𝑧𝑝𝑐
15

 (2.2) 

where 𝑧 (m) increases downwards, 𝜌 is the density of firn (kg m-3) and 𝜌𝑖 is the density of ice (917 kg 

m-3). In Eq. (2.2), we consider porosity only below 15 m to avoid dependency between 𝐷𝐼𝑃15 and 

𝐷𝐼𝑃𝑝𝑐. We choose to use both 𝐷𝐼𝑃15 and 𝐷𝐼𝑃𝑝𝑐 in order to account for first- and second-stage 

densification. One of the cores has only a single density measurement above 15 m depth and thus its 

𝐷𝐼𝑃15 value is discarded. We note that 48 cores are too shallow to reach 𝑧𝑝𝑐 and so cores which do 

reach this depth provide a stronger constraint to the Bayesian inference method. This is sensible 

because these deep cores carry information about both stages of the densification process. 

 

We use 𝐷𝐼𝑃 as the evaluation metric for the models because of the crucial role of this variable in both 

surface mass balance modelling and altimetry-based ice sheet mass balance assessments (Ligtenberg 

et al., 2014). We note that it is commonly used in firn model intercomparison exercises (Lundin et al., 

2017; Stevens et al., 2020) and is a quantity of interest for field measurements (Vandecrux et al., 
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2018). Due to its formulation (Eq. (1) and (2)), 𝐷𝐼𝑃 represents the mean depth-density profile and 

thus is robust to the presence of individual errors and outliers in density measurements. 

 

Observed firn density can be prone to measurement uncertainty, which previous studies point out is 

about 10%, though it is variable in depth and between measurement techniques employed (Hawley et 

al., 2008; Conger and McClung, 2009; Proksch et al., 2016). We outline our procedure to account for 

measurement uncertainty in Sect. 2.4.  

 

We separate the dataset into calibration data (69 cores) and independent evaluation data (22 cores). 

The latter is selected semi-randomly; we ensure that it includes a representative ratio of GrIS-AIS 

cores and that it covers all climatic conditions, including an outlier of the dataset with high 

accumulation and temperature (see Appendix B). The resulting evaluation data has 8 GrIS and 14 AIS 

cores; 11 of the 22 cores extend to 𝑧𝑝𝑐. 

 

 

Figure 2.1. Maps of Antarctic (left) and Greenland (right) ice sheets. Background is mean annual air temperature 

as modelled by RACMO2. Note the different colour scales. 

 

2.3.2 Climate model forcing  

At the location of each core, we simulate firn densification under climatic forcing provided by the 

RACMO2.3p2 regional climate model (RACMO2 hereafter) at 5.5 km horizontal resolution for the 

GrIS (Noël et al., 2019) and 27 km for the AIS (van Wessem et al., 2018). Each firn model simulation 

consists of a spin-up by repeating a reference climate until reaching a firn column in equilibrium, 

which is followed by a transient period until the core-specific date of drilling. The reference climate is 

taken as the first 20-year period of RACMO2 forcing data (1960-1979 and 1979-1998 for the GrIS 

and AIS respectively). The number of iterations over the reference period depends on the site-specific 

accumulation rate and mass of the firn column (mass from surface down to 𝑧𝑝𝑐). We ensure that the 

entire firn column is refreshed during the spin-up but fix the minimum and maximum number of 

iterations to 10 (200 years spin-up) and 50 (1000 years spin-up). We note that at 33 sites, the core was 
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drilled before the last year of the reference climate and so the transient period is effectively a partial 

iteration of the spin-up period. 

 

Results of the calibration would depend on the particular climate model used for forcing. We thus 

propagate uncertainty in modelled climatic conditions into our calibration of firn model parameters by 

perturbing the temperature and accumulation rates of RACMO2 with normally distributed random 

noise. Standard deviations of the random perturbations are based on reported errors of RACMO2 

(Noël et al., 2019; van Wessem et al., 2018 – see more details in the Appendix B). By introducing 

these perturbations, uncertainty intervals on our parameter values encompass the range of values that 

would result from using other model-based or observational climatic input. 

 

In addition to the climatic forcing, another surface boundary condition is the fresh snow density, 𝜌0. 

At each site, the 𝜌0 value is taken in agreement with the shallow densities measured in the 

corresponding core of the dataset. However, measurements of fresh snow density are highly variable 

(e.g. Fausto et al., 2018). We account for uncertainty in this parameter by adding normally distributed 

random noise with standard deviation 25 kg m-3 to 𝜌0 at every model time step (see Appendix B). We 

prefer this approach to the use of available parameterisations of 𝜌0 (Helsen et al., 2008; Kuipers 

Munneke et al., 2015b) to avoid any error in the fresh snow parameterisation affecting the calibration 

process.  

 

2.3.3 Firn densification models  

We use the Community Firn Model (Stevens et al., 2020) as the framework of our study because it 

incorporates the formulations of all three densification models investigated: HL (Herron and 

Langway, 1980), Ar (Arthern et al., 2010) and LZ (Li and Zwally, 2011). The Robin hypothesis 

(Robin, 1958) constitutes the fundamental assumption of HL, Ar and LZ. It states that any fractional 

decrease of the firn porosity, 
𝜌𝑖−𝜌

𝜌𝑖
, is proportional to an increment in overburden stress. This translates 

into densification rates depending on a rate coefficient 𝑐, assumed different for stage-1 and stage-2 

densification: 

{

𝑑𝜌

𝑑𝑡
= 𝑐0 (𝜌𝑖 − 𝜌), 𝜌 ≤ 550 𝑘𝑔 𝑚−3

𝑑𝜌

𝑑𝑡
= 𝑐1 (𝜌𝑖 − 𝜌), 𝜌 > 550 𝑘𝑔 𝑚−3

  (2.3) 

The formulations of the rate coefficients rely on calibration and thus differ between the three models 

investigated: 
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HL 

{
𝑐0 = �̇�

𝑎𝑘0
∗exp (

−𝐸0

𝑅𝑇
)

𝑐1 = �̇�
𝑏𝑘1

∗exp (
−𝐸1

𝑅𝑇
)

 (2.4) 

Ar 

{
𝑐0 = 𝜌𝑤�̇�

𝛼𝑘0
𝐴𝑟𝑔exp(

−𝐸𝑐

𝑅𝑇
+

𝐸𝑔

𝑅𝑇𝑎𝑣
)

𝑐1 = 𝜌𝑤�̇�
𝛽𝑘1

𝐴𝑟𝑔exp (
−𝐸𝑐

𝑅𝑇
+

𝐸𝑔

𝑅𝑇𝑎𝑣
)

 (2.5) 

LZ 

{
𝑐0 = 𝛽0𝑙𝑧𝑎(273.15 − 𝑇)

𝑙𝑧𝑏�̇� 

𝑐1 = 𝛽1𝑙𝑧𝑎(273.15 − 𝑇)
𝑙𝑧𝑏�̇�

 (2.6) 

𝑤𝑖𝑡ℎ {
𝛽0 = 𝑙𝑧11 + 𝑙𝑧12�̇� + 𝑙𝑧13𝑇𝑎𝑣

𝛽1 = 𝛽0(𝑙𝑧21 + 𝑙𝑧22�̇� + 𝑙𝑧23𝑇𝑎𝑣 )
−1 

 

where �̇� is the accumulation rate (m w.e. yr-1), 𝑇 the temperature (K), 𝑇𝑎𝑣 the annual mean 

temperature, 𝑅 the gas constant, 𝑔 gravity and 𝜌𝑤 the water density (1000 kg m-3). All remaining 

terms are model-specific tuning parameters. For �̇�, we use the mean accumulation rate over the 

lifetime of each specific firn layer because it better approximates the overburden stress than the 

annual mean (Li and Zwally, 2011). HL and Ar use Arrhenius relationships with activation energies 

(𝐸 terms) capturing temperature sensitivity and exponents characterising the exponential 

proportionality of the rate coefficients to the accumulation rate. Originally, Herron and Langway 

(1980) inferred all values from calibration based on 17 firn cores, from which they inferred the values 

for the six free parameters (Table 2.1) of HL. In contrast, Arthern et al. (2010) fixed the accumulation 

exponents in advance (𝛼 = 𝛽 = 1) and took activation energies (𝐸𝑐 , 𝐸𝑔) from measurements of 

microscale mechanisms: Nabarro-Herring creep for 𝐸𝑐 and grain-growth for 𝐸𝑔. Still, they noted a 

mismatch with the activation energy fitting their data best. The 𝑘0
𝐴𝑟 and 𝑘1

𝐴𝑟 parameters were tuned to 

three measured time series of strain rates collected in relatively warm and high accumulation locations 

of the AIS. Here, we consider all five 𝛼, 𝛽, 𝑘0
𝐴𝑟 , 𝑘1

𝐴𝑟, 𝐸𝑔 as free parameters (Table 2.1) but keep 𝐸𝑐 

fixed because of its strong correlation with 𝐸𝑔; our use of monthly model time steps and depth-density 

profiles as calibration data is not suitable for differentiating effects of 
𝐸𝑔

𝑅𝑇𝑎𝑣
 and 

𝐸𝑐

𝑅𝑇
. Equation (2.6) 

shows that LZ has eight free parameters (Table 2.1), all denoted by 𝑙𝑧 in this paper. In contrast to our 

approach to Ar, we do not add additional accumulation rate exponents to �̇� in Eq. (2.6) because the 

dependence of 𝑐0 and 𝑐1 on �̇� also involves the coefficients 𝑙𝑧12 and 𝑙𝑧22 in the definition of 𝛽0 and 

𝛽1. Li and Zwally (2011) performed their calibration of Eq. (2.6) against firn cores only from the 

GrIS. Later, Li and Zwally (2015) developed a densification model calibrated for Antarctic firn. The 

latter model uses the same governing equations as LZ for 𝑐0 and 𝑐1 but different formulations for 𝛽0 
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and 𝛽1 (Eq. (2.6)). Since one of the goals of this study is to find a densification formulation applicable 

to firn in both the GrIS and AIS, we choose to apply our calibration method only to the formulations 

of 𝛽0 and 𝛽1 specified in Li and Zwally (2011) (Eq. (2.6)). However, in our results' analysis (Sect. 

2.4), we also consider the performance of the Li and Zwally (2015) model on the AIS cores of our 

dataset. 

 

Parameter 
Value in 

original model 
Prior distribution MAP 95 % Credible interval 

𝑘0
∗ [m w.e.

-𝑎
] 11 𝑁(11, 100) 17.4 7.58; 28.4 

𝑘1
∗ [m w.e.

-𝑏
] 575 𝑁(575, 9 × 104) 524 260; 1060 

𝐸0 [J mol
-1

] 10 160 𝑁(10160, 4 × 106) 10 840 9 000; 12 290 

𝐸1  
[J mol

-1
] 21 400 𝑁(21400, 4 × 106) 20 800 18 900; 22 300 

𝑎 [/] 1 𝑁(1, 0.4) 0.91 0.74; 1.02 

𝑏 [/] 0.5 𝑁(0.5, 0.4) 0.63 0.54; 0.78 

𝑘0
𝐴𝑟  [m w.e.

-𝛼
] 0.07 𝑁(0.07, 4.9 × 10−3) 0.077 0.046; 0.137 

𝑘1
𝐴𝑟[m w.e.

-𝛽
] 0.03 𝑁(0.03, 9 × 10−4) 0.025 0.015; 0.048 

𝐸𝑐  
[J mol

-1
] 60 000 Fixed: 60000 / / 

𝐸𝑔  
[J mol

-1
] 42 400 𝑁(42400, 16 × 106) 40 900 39 700; 42 000 

𝛼 [/] 1 𝑁(1, 0.4) 0.80 0.66; 0.89 

𝛽 [/] 1 𝑁(1, 0.4) 0.68 0.59; 0.81 

𝑙𝑧𝑎 8.36 𝑁(8.36, 36) 7.31 3.93; 12.82 

𝑙𝑧𝑏 -2.061 𝑁(−2.061, 2) -2.124 -2.319; -1.896  

𝑙𝑧11 -9.788 𝑁(−9.788, 36) -14.710 -20.839; -5.469 

𝑙𝑧12 8.996 𝑁(8.996, 36) 7.269 2.680; 17.724 

𝑙𝑧13 -0.6165 𝑁(−0.6165, 1) -1.019 -1.389; -0.509 

𝑙𝑧21 -2.0178 𝑁(−2.0178, 2) -1.513 -2.970; -0.258 

𝑙𝑧22 8.4043 𝑁(8.4043, 36) 6.0203 4.911; 12.942 

𝑙𝑧23 -0.0932 𝑁(−0.0932, 0.25) -0.0913 -0.133; -0.0460 

Table 2.1. Information for the free parameters of HL (top), Ar (middle) and LZ (low). 𝑁(𝑥, 𝑦) designates a 

normal distribution of mean 𝑥 and variance 𝑦. The variances in the prior distributions are taken to generate 

weakly informative distributions. Some prior correlation is prescribed for the pairs (𝑘0
∗, 𝐸0), (𝑘1

∗, 𝐸1), (𝑘0
𝐴𝑟 , 𝐸𝑔), 

(𝑘1
𝐴𝑟 , 𝐸𝑔) and (𝑘0

𝐴𝑟 , 𝑘1
𝐴𝑟) (see Appendix B). Maximum a posteriori (MAP) estimates and credible intervals are 

results from the calibration process. 

 

2.3.4 Bayesian calibration  

In our approach, the free parameters of the firn models are identified as the quantities of interest and 

we define this parameter set as 𝜃. Hereafter, 'original model values' refers to the values originally 

attributed by Herron and Langway (1980), Arthern et al. (2010) and Li and Zwally (2011) to their 

respective sets of free parameters 𝜃. The calibration process relies on Bayes’ theorem (Eq. (2.7)) 

which allows to update a prior probability distribution 𝑃(𝜃) for 𝜃 based on observed data 𝑌.  

𝑃(𝜃|𝑌) =
𝑃(𝑌|𝜃)𝑃(𝜃)

𝑃(𝑌)
  (2.7) 

We use normal and weakly informative priors centred about the original model values so that the 

constraint of the prior on 𝑃(𝜃|𝑌) is minor (Table 2.1). As indicated by Morris and Wingham (2014), 
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in HL and Ar, the values of the Arrhenius pre-exponential factors (𝑘0
∗, 𝑘1

∗, 𝑘0
𝐴𝑟 and 𝑘1

𝐴𝑟) are correlated 

with their corresponding activation energies (𝐸0, 𝐸1 and 𝐸𝑔). At a given temperature, a change of the 

value in the pre-exponential factor can be compensated by adjusting the activation energy to keep the 

densification rates constant. We express our a priori knowledge of these correlations in the prior 

distributions (see Appendix B). No other pair of parameters in HL, Ar or LZ are clearly correlated a 

priori, but the calibration process captures a posteriori correlations by confronting the models with 

data. The data 𝑌 consists of the observed 𝐷𝐼𝑃15 and 𝐷𝐼𝑃𝑝𝑐 values of the calibration data. The 

marginal likelihood, 𝑃(𝑌), is a constant term independent of 𝜃 and does not influence the calibration. 

We use a normal likelihood function 𝑃(𝑌|𝜃), which quantifies the match of the modelled 𝐷𝐼𝑃 values 

with the observed: 

𝑃(𝑌|𝜃) ∝ exp [
−1

2
(𝑋15 − 𝑌15)

𝑇𝛴15
−1(𝑋15 − 𝑌15) −

1

2
(𝑋𝑝𝑐 − 𝑌𝑝𝑐)

𝑇
𝛴𝑝𝑐
−1(𝑋𝑝𝑐 − 𝑌𝑝𝑐)] (2.8) 

where 𝑋15 and 𝑌15 are vectors containing all modelled and observed values for the calibration data of 

𝐷𝐼𝑃15 respectively, and similarly for 𝑋𝑝𝑐 and 𝑌𝑝𝑐. We use diagonal covariance matrices 𝛴15 and 𝛴𝑝𝑐 

with site-specific variances. The variances determine the spread allowed for the model outputs 

compared to the observed values and are calculated by taking 10% and 20% margins around 𝐷𝐼𝑃15 

and 𝐷𝐼𝑃𝑝𝑐 measurements respectively. Allowing for such spread is necessary because multiple 

causes may lead to model-observation discrepancy such as firn model errors, measurement 

uncertainties and discrepancies induced by the random perturbations applied to RACMO2 forcing and 

to 𝜌0. This particular form of the likelihood function assumes independence between model errors in 

𝐷𝐼𝑃15 and in 𝐷𝐼𝑃𝑝𝑐, which is ensured by our calculation of 𝐷𝐼𝑃𝑝𝑐 only from 15 m depth to 𝑧𝑝𝑐 (Eq. 

(2.2)). It also assumes normally distributed model errors with respect to the observed values. Both 

these aspects were verified with preliminary assessments, along with our calculations for the 

covariance matrices 𝛴15 and 𝛴𝑝𝑐, as discussed in the Appendix B. The posterior distribution 𝑃(𝜃|𝑌) 

gives a probability distribution over the parameter space of a given model conditioned on the 

calibration data. In our case, with weakly informative priors (Table 2.1), the distribution 𝑃(𝜃|𝑌) is 

essentially governed by the likelihood function (Eq. (2.8)). We note here that extreme parameter 

combinations in the LZ model can lead to negative densification rates. In such cases, we set the 

modelled 𝐷𝐼𝑃 values to 0, which leads to extremely low values for the likelihood and for the posterior 

probability of such parameter sets. 

 

There is no analytical form of 𝑃(𝜃|𝑌) and we must investigate the parameter space to generate an 

ensemble of 𝜃𝑖 approximating 𝑃(𝜃|𝑌). Such an investigation is achieved efficiently using Markov 

Chain Monte Carlo methods. We apply the well-known Random Walk Metropolis (RWM) algorithm 

(Hastings, 1970) and summarize it in Fig. 2.2, on which we base the brief following description. A 

given model (HL, Ar or LZ) starts with the original model parameter values and simulates firn 

profiles at all the calibration sites. Its 𝐷𝐼𝑃15 and 𝐷𝐼𝑃𝑝𝑐 results are compared with observations and 
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the general performance of the model is quantified by the likelihood. From there and with the prior 

distributions assumed, the posterior probability is computed following Eq. (2.7). At this point, the 

RWM algorithm starts and the state of the chain, 𝜃𝑖 (Fig. 2.2a), is set to the original model values and 

its posterior probability is saved as 𝑃(𝜃𝑖|𝑌). It should be noted that the 𝑖 subscript designates the 

iteration number, which is equal to 0 at this initial step. The RWM then proposes a new 𝜃𝑖
∗ from a 

proposal distribution (Fig. 2.2b). For the latter, we use the symmetric multivariate normal (MVN) 

distribution which is centred about 𝜃𝑖. This implies that the random choice of 𝜃𝑖
∗ depends only on the 

current state 𝜃𝑖 and on the proposal covariance in the MVN, 𝛴𝑝𝑟𝑜𝑝, which is discussed below. Using 

the parameter combination 𝜃𝑖
∗, the model simulates profiles at all calibration sites again (Fig. 2.2c) 

and 𝑃(𝜃𝑖
∗|𝑌) is computed (Fig. 2.2d). From there, we either accept or reject the proposed 𝜃𝑖

∗ in the 

ensemble approximating 𝑃(𝜃|𝑌). By using the previously computed 𝑃(𝜃𝑖|𝑌), the probability of 

accepting 𝜃𝑖
∗ depends on the ratio 𝑃(𝜃𝑖

∗|𝑌)/𝑃(𝜃𝑖|𝑌) (Fig. 2.2e). The set saved in the ensemble (Fig. 

2.2g) is 𝜃𝑖
∗ if accepted or 𝜃𝑖 if 𝜃𝑖

∗ was rejected. The saved set becomes the updated current status for 

the next iteration 𝜃𝑖+1 (Fig. 2.2a) with its associated posterior probability, 𝑃(𝜃𝑖+1|𝑌). The algorithm 

iterates this process and reaches a final posterior distribution over 𝜃. The RWM has the property that 

the chain will ultimately converge to a stationary distribution that represents the posterior 𝑃(𝜃|𝑌). 

Thus, after a sufficiently high number of iterations of the algorithm, the ensemble of parameter sets is 

representative of 𝑃(𝜃|𝑌). We verify adequate convergence using a number of tests, which are shown 

in the Appendix B. The proposal covariance 𝛴𝑝𝑟𝑜𝑝 must account for dependence between the different 

components of 𝜃, i.e. the value of one free parameter can influence the value of another free 

parameter for the model to reach a good match with the observed data. 𝛴𝑝𝑟𝑜𝑝 can capture this 

dependence between parameters and, for optimality, it is updated every given number of iterations 

(100 in our study) using Eq. (9) (Rosenthal, 2010): 

𝛴𝑝𝑟𝑜𝑝 =
2.382

𝑝
 𝛴𝑐𝑜𝑣  (2.9) 

where 𝛴𝑐𝑜𝑣 is the covariance matrix between the free parameters of the model at this stage of the 

iterative chain and 𝑝 is the number of free parameters. 
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Figure 2.2. Implementation of the Random Walk Metropolis algorithm. 𝜃 represents a parameter combination of 

any given firn densification model investigated. 

 

From the posterior probability distributions, we can infer the Maximum a Posteriori (MAP) estimates 

of each model (MAPHL, MAPAr, MAPLZ). These are the modes of the multi-dimensional distributions 

over the space of free parameters and have been identified as the most likely sets by the RWM. The 

MAP estimates can be compared to the corresponding original model values of the parameters. The 

posterior distributions additionally incorporate the uncertainty in the parameter values. By performing 

posterior predictive simulations on the evaluation data, we can assess this remaining uncertainty 

(Gelman et al., 2013). More specifically, we can assume that a large (500) random sample of the 

ensemble of accepted 𝜃 is representative of the posterior distribution. As such, model results 

computed with all sets of this sample inform about model performance accounting for uncertainty. 

Intuitively, a large spread in results from 500 random samples would indicate a large range of possible 

sets for the free parameters and thus a high uncertainty in parameter values. 

 

Since there is no analytical form of our posterior distributions, and to facilitate future firn model 

uncertainty assessments, we can approximate the posterior distributions with MVN distributions 

whose means and covariances are set to the posterior means and posterior covariance matrices of the 

calibration. This allows straightforward sampling of random parameter sets instead of relying on 

posterior samples of the MCMC. We provide information about the normal approximations and assess 
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their validity in the Appendix B. Such normal approximations are asymptotically exact and are 

commonly applied to analytically intractable Bayesian posterior distributions (Gelman et al., 2013). 

 

2.4 Results 

We present the results of the calibration process after 15000 algorithm iterations and compare the 

MAP and original models' performances against the 22 evaluation cores. We also evaluate the 

uncertainty of the posterior distributions and compare performances between the different MAP 

models. All the evaluation simulations are performed without climatic and surface density noise in 

order to make the evaluation fully deterministic. 

 

 

Figure 2.3. Posterior probability distributions, shown for pairs of parameters, for (a) HL, (b) Ar, (c) LZ. Where 

possible, correlated parameters share the same graph (see Appendix B for full correlation matrices). The posterior 

samples are 500 randomly selected parameter combinations from the posterior ensembles of each model (HL, Ar, 

LZ). 

 

For HL and even more so for Ar, the posterior distributions for the parameters demonstrate some 

strong disagreements with the original values (Figs. 2.3a, 2.3b). The 95% credible intervals for each 
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parameter (Table 2.1) incorporate 95% of the marginal probability density in the posterior. Two 

original parameter values of HL (𝑎, 𝑏) and three of Ar (𝐸𝑔 , 𝛼, 𝛽) lie in the tails of the posterior 

distributions (Figs. 2.3a, 2.3b) and even outside these intervals in the case of 𝑏, 𝐸𝑔, 𝛼 and 𝛽. This 

indicates that our analysis provides strong evidence against these original values. The strongest 

disagreements relate to the accumulation exponents of both models (𝑎, 𝑏, 𝛼, 𝛽). In contrast, the 

original LZ values agree better with the posterior distribution and all lie within the 95% credible 

intervals (Table 2.1 and Fig. 2.3c). The posterior distributions show some strong correlation between 

certain pairs of parameters (Fig. 2.3). Notable examples are the pre-exponential factors and their 

corresponding activation energy in HL and Ar, for which the posterior correlations are even stronger 

than in the prior distributions. The complete correlation matrices and a detailed analysis of all 

posterior correlation features are provided in the Appendix B. 

 

 

Figure 2.4. Comparison of evaluation data 𝐷𝐼𝑃 with model results. The 95% credible intervals are computed 

from results of 500 randomly selected parameter combinations from the posterior ensembles of each model (HL, 

Ar, LZ). Similar scatter plots for the LZ dual and IMAU results are shown in the Appendix B (Fig. B6). 

 

We use the original models and the MAP estimates to simulate firn profiles at the evaluation sites and 

we compare 𝐷𝐼𝑃 results with the observed values. This is an effective way to assess possible 

improvements in parameter estimates reached through our method since the evaluation sites were not 

used in the calibration process. The match between observations and the model is improved for 

MAPHL (Fig. 2.4a) and even more for MAPAr (Fig. 2.4b), with the original Ar strongly 

underestimating 𝐷𝐼𝑃 values. These improvements translate into significantly reduced root mean 

squared errors (RMSE) in modelled values of both 𝐷𝐼𝑃15 (-24% for HL and -45% for Ar) and 𝐷𝐼𝑃𝑝𝑐 

(-22% and -61%) (Table 2.2).  
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Model RMSE (𝐷𝐼𝑃15) [m] RMSE (𝐷𝐼𝑃𝑝𝑐) [m] 

HL original 0.503 2.395 

HL MAP 0.382 1.862 

HL 500 random sample 0.396 1.899 

Ar original 0.772 4.566 

Ar MAP 0.426 1.780 

Ar 500 random sample 0.448 1.889 

LZ original 0.452 1.812 

LZ dual 0.505 3.883 

LZ MAP 0.463 2.392 

LZ 500 random sample 0.486 2.296 

IMAU-FDM 0.418 2.681 

Table 2.2. Model results on the evaluation data. The Root Mean Squared Errors (RMSE) are calculated with 

respect to the observations of depth integrated porosity until 15 m depth and until pore close-off. 

 

For LZ, the relative performance of the MAPLZ model for both 𝐷𝐼𝑃15 and 𝐷𝐼𝑃𝑝𝑐 is worse (+2% and 

+24% in RMSE) but differences are of smaller magnitude (Table 2.2 and Fig. 2.4c). Parameter values 

of MAPLZ and the original LZ are closer, which explains more moderate differences in RMSE 

compared to HL and Ar. Comparing modelled and observed depth-density profiles of evaluation data 

illustrates the differences in performance visually (e.g. Fig. 2.5). Profiles of the original models of HL 

and Ar frequently lie outside the credible intervals of their respective MAP models. In contrast, 

profiles of MAPLZ and of the original LZ tend to be close together. At the climatic outlier of our 

evaluation data (DML in Fig. 2.5), improvements are reached for the three MAP models (Figs. 2.5g, 

2.5h, 2.5i). This demonstrates benefits of this method even at the limits of the calibration range. 

However, at a majority of the evaluation sites, the 95% credible intervals computed for the three 

models do not include the observed value (Fig. 2.4). This highlights that the governing equations of 

the models, which intend to capture densification physics, require improvement, and that parameter 

calibration in itself cannot overcome this shortcoming. 
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Figure 2.5. Depth-density profiles at three evaluation sites. DML is a climatic outlier of our dataset with 

particularly high temperatures and accumulation rates. The 95% credible intervals are computed from results of 

500 randomly selected parameter combinations from the posterior ensembles of each model (HL, Ar, LZ). 

 

Compared to the original HL, MAPHL reaches improvements in 𝐷𝐼𝑃15 for 12 of the 22 evaluation 

cores and in 𝐷𝐼𝑃𝑝𝑐 for 5 of the 11 evaluation cores (Fig. 2.6a). Generally, MAPHL performs better at 

AIS sites and worse at GrIS sites. An analysis of the improvement of MAPHL as a function of climatic 

variables (Fig. 2.6a) shows that the original HL gives better results in a narrow range of 𝑇𝑎𝑣: from -30 

to -25 ℃. As such, the better performance at the GrIS evaluation sites of the original HL is likely due 

to its parameterisation being better suited for the particular temperature range corresponding to the 

conditions of the latter sites. In contrast, MAPHL seems more appropriate for covering a wider range 

of climatic conditions. For Ar, the original model shows better performance than MAPAr at few 

evaluation sites (6 for 𝐷𝐼𝑃15 and 2 for 𝐷𝐼𝑃𝑝𝑐) which are only in AIS and confined to low-

accumulation conditions (Fig. 2.6b). This is counterintuitive given that Arthern et al. (2010) tuned the 

original Ar to measurements from high accumulation sites of the AIS. Finally, the original LZ 



61 
 

performs better than MAPLZ at most GrIS sites (Fig. 2.6c), which is unsurprising given that its original 

calibration was GrIS-specific. Again, this seems related to the original LZ performing significantly 

better in the same narrow range of temperatures as for HL. In total, MAPLZ performs better for 10 of 

the 22 𝐷𝐼𝑃15 and 4 of the 11 𝐷𝐼𝑃𝑝𝑐 evaluation measurements. 

 

 

Figure 2.6. Improvements of the MAP models with respect to the original models for the evaluation data. The 

ratios indicate the ratios of cores for which an improvement is achieved by the corresponding MAP. Graphs in 

the left column display the mean annual temperature on the x-axis and those in the right column display the 

mean annual accumulation rate. 

 

As explained in Sect. 2.3, the original LZ model was developed for GrIS firn only (Li and Zwally, 

2011) and later complemented by an AIS-specific model (Li and Zwally, 2015). We compute results 

at the AIS and GrIS evaluation sites using the Li and Zwally (2015) model for the AIS and the Li and 

Zwally (2011) model for the GrIS, so that both models are applied to the ice sheet for which they 

were originally developed. We call this pairing of models LZ dual and evaluate its general 

performance. The RMSE for 𝐷𝐼𝑃15 of LZ dual is slightly larger (+8 %) than that of MAPLZ and 

significantly larger (+38 %) for 𝐷𝐼𝑃𝑝𝑐 (Table 2.2). We note that the higher RMSE values of LZ dual 

are strongly affected by its densification scheme performing very poorly at the climatic outlier of the 

evaluation data, with conditions that are outside of the calibration range of Li and Zwally (2015). 

 

We also compare MAP results with the IMAU firn densification model (IMAU-FDM), which has 

been used frequently in recent mass balance assessments from altimetry (Pritchard et al., 2012; 

Babonis et al., 2016; McMillan et al., 2016; Shepherd et al., 2019). IMAU-FDM was developed by 

adding two tuning parameters to both densification stages of Ar. All four extra-parameters are 

different for the AIS (Ligtenberg et al., 2011) and for the GrIS (Kuipers Munneke et al., 2015b), thus 
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also resulting in two separate models. On the evaluation data, its performance for 𝐷𝐼𝑃15 is slightly 

better than MAPAr and MAPLZ but worse than MAPHL, and its performance for 𝐷𝐼𝑃𝑝𝑐 is significantly 

worse than all three MAP models (Table 2.2). 

 

To assess the uncertainty captured by the Bayesian posterior distributions, we compute results on the 

evaluation data with the 500 parameter sets randomly selected from each of the three posterior 

ensembles. For all three models, the average performance of their random sample is similar to the 

corresponding MAP performance, with a maximum RMSE change of 6% (Table 2.2). This 

demonstrates a low uncertainty in the optimal parameter combinations identified by calibration. 

Furthermore, the best performing 95th percentile of the random selection allows the construction of the 

uncertainty intervals shown in Figs 4, 5. Of the original models, LZ reaches the lowest RMSE values. 

Of all models, MAPHL performs best in 𝐷𝐼𝑃15 and MAPAr in 𝐷𝐼𝑃𝑝𝑐 (Table 2.2). MAPLZ performs 

worse than the other MAP models even when accounting for uncertainty by using the 500-samples 

random selections (Table 2.2). 

 

2.5 Discussion 

This calibration method is potentially applicable to models of similar complexity in a broad range of 

research fields. We exploit it here to investigate the parameter space of HL, Ar and LZ, and to re-

estimate optimal parameter values conditioned on observed calibration data; no further complexity is 

introduced since the number of empirical parameters remains the same. We treat the accumulation 

exponents of Ar (𝛼, 𝛽) as free parameters whereas Arthern et al. (2010) decided to fix their values to 

1. Analogous to 𝑎 and 𝑏 in HL, these exponents capture the mathematical relationship between 

densification rates and the accumulation rate, used as a proxy for load increase on any specific firn 

layer. No physical argument favours a linear proportionality between densification and load increase 

and any prescribed value for these exponents is a choice of the model designer. Under the assumption 

of linear viscous deformation, firn viscosity changes caused by increasing densities can lead to a 

sublinear relation between densification and load increase. Unlike Arthern et al. (2010), Herron and 

Langway (1980) previously inferred 𝑎 = 1 and 𝑏 = 0.5. Our calibration data shows strong evidence 

against both these pairs of values; all four are in the extreme tails of the posterior distributions (Fig. 

2.3a, b). Our results of stage-1 exponents (𝑎, 𝛼) smaller than 1 indicate a weaker increase in 

densification rates with pressure than assumed in the original versions of Ar and HL. In firn, the load 

is supported at the contact area between the grains, which increases on average due to grain 

rearrangement (in stage-1) and grain growth. As such, firn strengthens in time and the actual stress on 

ice grains increases slower than the total load (Anderson and Benson, 1963). Morris and Wingham 

(2014) incorporated this by including a temperature-history function, causing slower densification of 

firn previously exposed to higher temperatures. This is consistent with both grain rearrangement and 
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grain growth because these processes are enhanced at higher temperatures (Alley, 1987; Gow et al., 

2004). Lower values of the stage-2 exponents (𝑏, 𝛽) illustrate the larger strength of high-density firn 

with larger contact areas between grains. The difference in sensitivities of stage-1 and stage-2 

densification to accumulation also holds in the LZ model, as illustrated by the posterior correlation 

between its free parameters. The correlation coefficient between the accumulation-related parameters 

of both stages, 𝑙𝑧12 and 𝑙𝑧22, is significantly positive (0.74, Fig. S5). High values of 𝑙𝑧12 make 𝛽0 

more sensitive to �̇� (Eq. (2.6)). However, 𝛽0 appears in the numerator of the 𝛽1 calculation (Eq. (2.6)) 

and higher values of 𝑙𝑧22 thus moderate the sensitivity of stage-2 densification to �̇�. As such, 

positively correlated 𝑙𝑧12 and 𝑙𝑧22 provide further evidence that stage-1 densification rates are more 

sensitive to accumulation rates. This example demonstrates how posterior correlations provide 

insights into model behaviour. The posterior correlations of all three models are further discussed in 

the Appendix B. 

 

In the IMAU model introduced in Sect. 3, tuning parameters have been added to Ar in order to reduce 

its sensitivity to accumulation rates (Ligtenberg et al., 2011; Kuipers Munneke et al., 2015b). The 

calibration method presented in this study detects and adjusts for this over-sensitivity in Ar without 

the need for more tuning parameters in the governing densification equations. The sensitivity of stage-

1 densification to �̇� can be computed from the derivative of the rate coefficient: 

𝜕𝑐0

𝜕�̇�
= 𝜌𝑤  𝑘0

𝐴𝑟𝑔 exp (
−𝐸𝑐

𝑅𝑇
+

𝐸𝑔

𝑅𝑇𝑎𝑣
)𝛼 �̇�𝛼−1 (2.10) 

Similarly, the derivative 
𝜕𝑐1

𝜕�̇�
 is obtained by replacing 𝑘0

𝐴𝑟 and 𝛼 with 𝑘1
𝐴𝑟 and 𝛽. Our calibration 

process strongly favours smaller values of 𝛼, 𝛽 and 𝐸𝑔 with respect to the original values (Fig. 2.3b). 

We can compare the magnitudes of the derivatives under the original Ar parameterisation and under 

the MAP parameterisation. The magnitudes vary for particular combinations of 𝑇𝑎𝑣 and �̇�. Under all 

the annual mean climatic regimes of our dataset, the MAP parameters result in a decreased sensitivity 

of both stage-1 and stage-2 densification rates to �̇�. 

 

HL, Ar and LZ only use temperature and accumulation rates as input variables. Other models use 

additional variables hypothesised to affect densification rates. These include the temperature-history 

mentioned above (Morris and Wingham, 2014), firn grain size (Arthern et al., 2010), impurity content 

(Freitag et al., 2013) and a transition region between stage-1 and stage-2 densification (Morris, 2018). 

Other models are explicitly based on micro-scale deformation mechanisms (Alley, 1987; Arthern and 

Wingham, 1998; Arnaud et al., 2000). These efforts undoubtedly contribute to progressing towards 

physically based models. A potential problem with such approaches is overfitting calibration data by 

adding parameters to model formulations while detailed firn data remain scarce. As long as more firn 

data is not available to appropriately constrain the role of each variable in model formulations, we 
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favour the use of parsimonious models relying on few input variables. It is noteworthy that MAPLZ, 

which relies on eight free parameters, performs worse on the evaluation data than MAPHL and MAPAr 

with two fewer free parameters. This highlights that gains in model accuracy should rely not only on 

better calibration of parameters but also on a reconsideration of the governing densification equations. 

Additionally, firn core data invokes the assumption of a steady-state depth-density profile. As such, 

parameter calibration poorly captures seasonal climatic effects on densification. Comprehensive 

datasets of depth-density profiles (Koenig and Montgomery, 2019) are very valuable to model 

development. Efforts in collecting and publishing strain rate measurements from the field (Hawley 

and Waddington, 2011; Medley et al., 2015; Morris et al., 2017), and possibly from laboratory 

experiments (Schleef and Löwe, 2013), can further benefit model calibration and the progress towards 

more representative equations. 

 

In order to quantify the consequences of our calibration, we investigate two aspects for which firn 

models are of common use: calculating firn compaction rates and predicting the age of firn at 𝑧𝑝𝑐 

depth, 𝑎𝑔𝑒𝑝𝑐 (yr). At every site 𝑖 of our dataset, we compute the 2000-2017 total compaction 

anomaly, 𝑐𝑚𝑝𝑎𝑛,𝑖 (m), and the 𝑎𝑔𝑒𝑝𝑐,𝑖 value with each of the 500 parameter sets randomly drawn 

from the posterior ensembles of the three different models (HL, Ar, LZ). This allows evaluation of 

both parameter-related and model-related uncertainty. Total compaction anomaly (𝑐𝑚𝑝𝑎𝑛) – 

calculated as the cumulative anomaly in surface elevation change due only to firn compaction changes 

during the 2000-2017 period with respect to the climatic reference period – is given by: 

𝑐𝑚𝑝𝑎𝑛,𝑖 = 𝑐𝑚𝑝𝑡𝑜𝑡,𝑖
00−17 − 17𝑐𝑚𝑝𝑟𝑒𝑓,𝑖

𝑦𝑟
 (2.11) 

where 𝑐𝑚𝑝𝑡𝑜𝑡
00−17 (m) is the total firn compaction over 2000-2017 and 𝑐𝑚𝑝𝑟𝑒𝑓

𝑦𝑟
 (m yr-1) is the annual 

mean compaction over the reference period (see Sect. 2.2). At all sites, we compute the coefficients of 

variation (CV) for both 𝑐𝑚𝑝𝑎𝑛 and 𝑎𝑔𝑒𝑝𝑐 from the 500 simulations with each model, and we average 

the CVs across all sites. CV is the ratio of the standard deviation to the mean and provides an 

effective assessment of relative dispersion of model results. Because low mean values of 𝑐𝑚𝑝𝑎𝑛 can 

inflate its CV, we consider only half of the sites at which the mean computed 𝑐𝑚𝑝𝑎𝑛 is highest. For 

all three models, the CV values for both 𝑐𝑚𝑝𝑎𝑛 and 𝑎𝑔𝑒𝑝𝑐 lie between 5.5 and 7.5% (Table 2.3). 

These values give typical uncertainty in firn model output related to uncertain parameter values. 

Proceeding to the same calculations but using all three models, i.e. an inter-model ensemble of 1500 

simulations at each site, gives an overview of the combined parameter- and model-related uncertainty. 

The CVs are 19.5% for 𝑐𝑚𝑝𝑎𝑛 and 7.5% for 𝑎𝑔𝑒𝑝𝑐, demonstrating larger inter-model disagreement 

on 𝑐𝑚𝑝𝑎𝑛 calculations (Table 2.3). By using the CV values, we can calculate reasonable uncertainty 

estimates for 𝑐𝑚𝑝𝑎𝑛 and 𝑎𝑔𝑒𝑝𝑐. For instance, in the dry snow zone of GrIS, simulated compaction 

anomalies are typically around 20 cm over 2000-2017, and thus come with an uncertainty of the order 

of ±4 cm. Since pore close-off age here is around 250 years, a reasonable uncertainty range on this 
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value is ±19 years. In contrast, on the drier AIS, pore close-off age is about 1000 years thus this range 

increases to ±75 years. Compaction anomalies hover around 0 cm on most of the dry zone of the AIS 

because it has not experienced the strong recent surface warming of the GrIS. Absolute uncertainty is 

thus reduced but still critical given the large area of the AIS over which uncertainties are aggregated 

when mass balance trends are evaluated. The uncertainty ranges calculated from the CV values 

provide an order of magnitude of errors in firn model outputs that must be accounted for in altimetry-

based mass balance assessments and in ice core studies, respectively. 

 

Coefficient of Variation HL Ar LZ Combined (HL, Ar, LZ) 

𝑐𝑚𝑝𝑎𝑛 5.8% 5.8% 6.5% 19.5% 

𝑎𝑔𝑒𝑝𝑐 6.5% 5.8% 7.5% 7.5% 

Table 2.3. Coefficients of variation for the 2000-2017 cumulative compaction anomaly (𝑐𝑚𝑝𝑎𝑛) and firn age at 

pore close-off depth (𝑎𝑔𝑒𝑝𝑐). Values are computed from results of 500 randomly selected parameter combinations 

from the posterior ensembles of each model (HL, Ar, LZ). Coefficients of variation are averaged across all sites 

of the dataset. 

 

We further investigate how using different models and different parameterisations leads to 

discrepancies in the modelled compaction. We compute monthly values of compaction anomalies 

over the 2000-2017 period with the original and MAP models of HL, Ar and LZ (Fig. 2.7). Ar shows 

the strongest sensitivity to climatic conditions diverging from these of the reference period; 

compaction responds strongly to the general increases on GrIS in temperature and accumulation rate, 

especially in late summer. Due to its lower values for 𝛼, 𝛽 and 𝐸𝑔, MAPAr exhibits less extreme 

compaction anomalies than the original Ar and thus less seasonal variability. In sharp contrast to Ar, 

HL-computed compaction rates remain relatively stable, due to low activation energy values that 

smooth out the seasonal variability. Firn core observations provide little information and constraints 

on seasonal patterns of densification. However, it is noteworthy that MAPAr and MAPLZ tend to show 

comparable short-timescale sensitivities (insets in Fig. 2.7), despite structural differences in the 

models' governing equations. This might indicate that these models fare relatively well in capturing 

seasonal fluctuations of densification rates and their sensitivity to climate shifts.  
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Figure 2.7. Monthly time-series of compaction anomalies at two sites on the GrIS. Insets show details for 

particular intervals of the time-series. Mean climatic anomalies are calculated as a difference between mean 

climatic values over the period 2000-2017 with respect to the reference period 1960-1979, and based on 

RACMO2 values. 

 

2.6 Conclusion 

We have implemented a Bayesian calibration method to estimate optimal parameter combinations 

applicable to GrIS and AIS firn for three benchmark firn densification models (HL, Ar, LZ). An 

extensive dataset of 91 firn cores was separated into calibration and independent evaluation data. Two 

optimised models (MAPHL, MAPAr) showed significant improvement against the evaluation data, 

while MAPLZ reached results close to, but slightly worse, than its original version and inferior to 

MAPHL and MAPAr. When compared to other models of greater complexity, the MAP models showed 

comparable or even improved performances. Furthermore, the Bayesian approach provides a robust 

way to evaluate the uncertainty related to parameter value choice, which is a major deficiency of 

current models. By introducing realistic climatic perturbations in the calibration process, the 

uncertainty intervals obtained account for the effects of an uncertain climatic forcing. However, at 

most sites where we evaluated, all three models' uncertainty intervals do not cover observed 𝐷𝐼𝑃 

values. As such, although model results can be improved by re-calibration methods, model tuning 

alone is insufficient to reach exact fidelity of firn densification models. The formulation of models' 

governing equations impacts the remaining errors with respect to observations, which highlights 

deficiencies in our understanding of dry firn densification. Developing a well-constrained physically 

detailed model is challenging given the number of mechanisms affecting densification rates and their 

dependency on microstructural properties of firn, which are difficult to observe. Our study 
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demonstrates that, despite these observational limitations, thorough calibration methods relying only 

on climatic variables can substantially improve firn model accuracy, and constrain uncertainties. 
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3. Uncertainty in East Antarctic firn thickness constrained using a 

model ensemble approach 

3.1 Abstract 

Mass balance assessments of the East Antarctic ice sheet (EAIS) are highly sensitive to changes in 

firn thickness, causing substantial disagreement in estimates of its contribution to sea-level. To better 

constrain the uncertainty in recent firn thickness changes, we develop an ensemble of 54 model 

scenarios of firn evolution between 1992-2017. Using statistical emulation of firn-densification 

models, we quantify the impact of firn compaction formulation, differing climatic forcing, and surface 

snow density on firn thickness evolution. At basin scales, the ensemble uncertainty in firn thickness 

change ranges between 0.2–1.0 cm yr-1 (15–300% relative uncertainty), with the choice of climate 

forcing having the largest influence on the spread. Our results show the regions of the ice sheet where 

unexplained discrepancies exist between observed elevation changes and an extensive set of modelled 

firn thickness changes estimates, marking an important step towards more accurately constraining ice 

sheet mass balance. 

 

3.2 Introduction 

The Antarctic ice sheet (AIS) is the largest ice body on Earth, holding a total potential contribution to 

sea-level rise of ~57.2 m (Rignot et al., 2019). The AIS is divided into three entities: the Antarctic 

Peninsula (AP) and the West and East Antarctic ice sheets (WAIS and EAIS, respectively). The EAIS 

has shown less dynamic instabilities than the WAIS and AP over the past four decades, but it holds 

~90% of the total AIS ice mass and is the area with highest uncertainty concerning recent mass trends 

(Shepherd et al., 2018; Rignot et al., 2019). A layer of firn, the intermediary stage between snow and 

ice, covers ~99% of the AIS (Winther et al., 2001). The firn layer thickness, defined here as the depth 

from the surface until the firn-ice transition, varies from 0 to more than 100 m (van den Broeke, 

2008). Firn thickness also fluctuates in time due to changes in firn compaction rates and climatic 

conditions, primarily net snow accumulation. These fluctuations affect ice sheet mass balance 

assessments derived from satellite-based altimetry. Measured surface elevation changes are converted 

into mass changes, but the conversion requires precise knowledge of variability in firn thickness and 

mass. Atmospheric reanalysis products, Regional Climate Models (RCMs) and Firn Densification 

Models (FDMs) are therefore used to simulate changes of firn properties and, ultimately, to evaluate 

ice sheet mass changes with precision (Li and Zwally, 2011; Kuipers Munneke et al., 2015b; 

McMillan et al., 2016; Shepherd et al., 2019; Smith et al., 2020).  

 

By simulating mass fluxes (snowfall, sublimation, melt), RCMs estimate the surface mass balance 

(SMB) of ice sheets, which partly determines the evolution of the firn layer. These fluxes and 
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modelled surface temperatures also serve as input forcing for FDMs that explicitly simulate firn 

compaction rates. Such coupling is required to reproduce seasonal and multi-annual fluctuations in 

compaction rates (Arthern et al., 2010). Uncertainty in SMB estimates across Antarctica are typically 

assessed by comparing outputs from different RCMs. While SMB is key to firn thickness evolution 

because it determines the amount of snow removed and added at the surface, it does not capture the 

effects of fluctuating firn compaction that must be estimated with FDMs. Differences between FDMs 

can lead to substantial spread in modelled firn thickness and air content (Lundin et al., 2017), 

especially if scaled up to ice sheet extent. 

 

Compared to the AP and the WAIS, observed elevation changes across the EAIS over the past 25 

years have been generally smaller, and largely driven by snowfall and compaction variability (Davis 

et al., 2005; Shepherd et al., 2018; Shepherd et al., 2019). Altimetry-derived mass balance 

assessments of the EAIS are very sensitive to estimates of firn thickness fluctuations because these are 

of the same order of magnitude as measured elevation changes. This sensitivity complicates the 

interpretation of altimetry measurements in this area, and it is unclear whether to attribute elevation 

changes to ice dynamical imbalance or firn thickness change (Zwally et al., 2015; Scambos and 

Shuman, 2016; Shepherd et al., 2018). These conflicting assessments motivate precise uncertainty 

analyses of coupled RCM-FDM systems over the EAIS. Previously, such analyses have been 

computationally limited; running multiple FDMs for many years at the spatial resolution of RCM 

grids over the EAIS requires many thousands of simulations. The extent to which estimates of firn 

thickness change vary by combining different FDMs with different RCMs remains an open question. 

 

To overcome computational limitations and thus improve evaluation of uncertainty in the evolution of 

firn thickness, we build statistical emulators of nine FDMs. An emulator is a fast and statistically-

driven approximation of a more complex physical model (Sacks et al., 1989; O'Hagan 2006). By 

combining the FDM emulators with climatic output from three state-of-the-art polar RCMs, we 

develop an ensemble of 54 scenarios of EAIS firn thickness change. We exploit these scenarios to 

constrain uncertainty analyses of firn thickness fluctuations on the EAIS and to quantify the 

contributions of various sources of uncertainty to the spread of modelled results. 

 

3.3 Methods 

3.3.1 Ensemble configuration 

To generate our ensemble, we first calibrate each of the nine FDM emulators to its corresponding 

FDM (Table 3.1) in a representative range of EAIS climate conditions, and then we use it to emulate 

compaction rates across the entire EAIS. Changes in SMB as well as climatic forcing for the 

emulators are computed from three RCMs: RACMO2, MAR and HIRHAM (Table 3.1). Our 
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modelled scenarios of firn thickness change span the 1992-2017 period. This period is chosen to 

match the long-term altimetry record of Shepherd et al. (2019), hence facilitating intercomparison of 

observed elevation changes and modelled firn thickness change experiments of this study. We limit 

our analysis to the EAIS because surface melt there is minor compared to the AP and WAIS, and 

FDM fidelity remains questionable for simulating wet firn compaction, water percolation and 

refreezing (Steger et al., 2017a; Verjans et al., 2019; Vandecrux et al., 2020). 

 
 References 

FDM  

Armap Arthern et al. (2010); Verjans et al. (2020) 

GSFC-FDMv0 Smith et al. (2020) 

Cr Vionnet et al. (2012); van Kampenhout et al. (2017) 

HL Herron and Langway (1980) 

HLmap Herron and Langway (1980); Verjans et al. (2020) 

Lig Ligtenberg et al. (2011) 

LZ15 Li and Zwally (2015) 

LZmap Li and Zwally (2011); Verjans et al. (2020) 

Morris Morris and Wingham (2014) 

RCM  

RACMO2.3p2 (27 km) van Wessem et al. (2018) 

MARv3.11 (35 km) Agosta et al. (2019); Kittel et al. (2020) 

HIRHAM5 (12.5 km) Christensen et al. (2007) 

𝜌0   

L11 Ligtenberg et al. (2011) 

fixed-350 Smith et al. (2020) 

Table 3.1. The nine firn densification models (FDM), three regional climatic models (RCM) and two surface 

density parameterisations (𝜌0) used in this study. The horizontal resolutions of the RCM grids are given in 

brackets. All RCMs were forced by the ERA-Interim reanalysis at their boundaries (Dee et al., 2011). See 

Appendix C for details on the FDMs. 

 

3.3.2 Firn thickness change calculations 

Observed ice sheet elevation changes, once corrected for glacial isostatic adjustment, are composed of 

two different signals: one related to ice dynamical imbalance and one to firn thickness change. In this 

study, we focus on the latter. The change in firn thickness at time step 𝑡, 𝑑ℎ𝑓(𝑡), is given by: 

𝑑ℎ𝑓(𝑡) = 𝑑ℎ𝑎𝑐𝑐(𝑡) − 𝑑ℎ𝑀(𝑡) − 𝑑ℎ𝑐(𝑡) − 𝑑ℎ𝑖𝑐𝑒(𝑡)  (3.1) 

with all components expressed in metres and considered positive, and 𝑡 set to a daily time step in this 

study. The subscript 𝑀 refers to surface firn removal by melting and 𝑎𝑐𝑐 refers to net snow 

accumulation. Both 𝑑ℎ𝑎𝑐𝑐 and 𝑑ℎ𝑀 depend on the RCM-computed mass fluxes and on the value 

assumed for surface snow density, but they are independent of FDM calculations. The component 𝑑ℎ𝑐 

is the emulated firn compaction term (Section 3.3.3). The last component, 𝑑ℎ𝑖𝑐𝑒, quantifies changes in 

the flux through the lower boundary of the firn column and thus captures changes in the rate of 

conversion from firn to ice. Equation (3.1) neglects changes in firn thickness caused by temporal 

variability of horizontal divergence (e.g. Horlings et al., 2020). Changes in 𝑑ℎ𝑖𝑐𝑒 act on much longer 
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timescales than the other components (Zwally and Li, 2002; Kuipers Munneke et al., 2015b). As such, 

𝑑ℎ𝑖𝑐𝑒 can be set constant and equal to the average rate of conversion from firn to ice over a reference 

period (we use 1979-2009, following Ligtenberg et al., 2011), 𝑑ℎ𝑖𝑐𝑒
𝑟 . By assuming firn thickness in 

steady state, thus without trend, over the reference period, 𝑑ℎ𝑖𝑐𝑒
𝑟  balances the reference period 

averages of the other components: 

𝑑ℎ𝑖𝑐𝑒
𝑟 = 𝑑ℎ𝑎𝑐𝑐

𝑟 − 𝑑ℎ𝑀
𝑟 − 𝑑ℎ𝑐

𝑟  (3.2) 

Substituting 𝑑ℎ𝑖𝑐𝑒
𝑟  for 𝑑ℎ𝑖𝑐𝑒 in Eq. (3.1) yields Eq. (3.3). This is equivalent to calculating firn 

thickness change by computing anomalies in each of the 𝑎𝑐𝑐, 𝑀 and 𝑐 components with respect to 

their average value in the reference period (Li and Zwally, 2015). 

𝑑ℎ𝑓(𝑡) = 𝑑ℎ𝑎𝑐𝑐(𝑡) − 𝑑ℎ𝑀(𝑡) − 𝑑ℎ𝑐(𝑡) − 𝑑ℎ𝑖𝑐𝑒
𝑟   (3.3) 

In this study, we are interested in the cumulative 1992-2017 firn thickness changes. We thus integrate 

Eq. (3.3) over this time period to compute a total firn thickness change 𝑑ℎ𝑓
𝑡𝑜𝑡. 

 

3.3.3 Emulation of firn compaction  

The nine FDM emulators are first calibrated at 50 sites on the EAIS and over the entire time span 

(1979-2017) covered by the output of RCMs (Appendix C for details). The goal of the emulation is to 

capture both long- and short-term sensitivity of 𝑑ℎ𝑐 to climatic forcing. The long-term (1979-2017) 

mean and trend in 𝑑ℎ𝑐 are estimated by linear regressions on the long-term means and trends of 

temperature, accumulation and melt. These linear regressions are specific to each FDM and show 

good performance in capturing the FDM-computed means and trends at the calibration sites (R2>0.99 

and R2>0.97 respectively). Gaussian Process regression complements the linear regression by 

capturing short-term fluctuations from the long-term trends as a function of detrended values of 

temperature and accumulation. We evaluate the emulation capabilities in a leave-one-out cross-

validation framework; the nine FDM emulators reproduce the FDM output well, both for the total 

1979-2017 𝑑ℎ𝑐 (R
2>0.99, RMSE=0.49 m, corresponding to 3.5% of the mean total 𝑑ℎ𝑐) and for daily 

values (R2>0.99, RMSE=0.15×10-3 m) (Appendix C for details). 

 

3.3.4 Uncertainty contributions 

In order to evaluate uncertainty on the time series of cumulative 𝑑ℎ𝑓(𝑡) and on 𝑑ℎ𝑓
𝑡𝑜𝑡, we construct a 

model ensemble; the spread arising from a large number of simulations provides an estimate of 

uncertainty (e.g. Déqué et al, 2007). Our ensemble includes all combinations of the nine FDM 

emulators and the three RCMs (Table 3.1). Furthermore, surface snow density, 𝜌0, contributes to 

uncertainty in all components of 𝑑ℎ𝑓 (e.g. Ligtenberg et al., 2011; Agosta et al., 2019). As such, we 

use two different possibilities for the value of 𝜌0: the climate-dependent parameterisation of 

Ligtenberg et al. (2011) and the approach of Smith et al. (2020), which takes a constant value of 350 

kg m-3 (B. Medley, personal communication, 2020) (Table 3.1). The different combinations of RCM, 
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FDM and 𝜌0 provide 54 different firn thickness change scenarios across the EAIS. We refer to the 

spread in the model ensemble results as the total ensemble uncertainty to distinguish it from the true 

uncertainty, which may not be captured by the ensemble. We then use the analysis of variance 

(ANOVA) theory to partition the total ensemble uncertainty among the three factors RCM, FDM and 

𝜌0 (von Storch and Zwiers, 1999; Déqué et al., 2007; Yip et al., 2011). This approach allows us to 

decompose the variance in model results into the contribution of each factor and of each interaction 

between these factors (Eq. (3.4)). 

𝜎2 = 𝜂𝑅𝐶𝑀
2 + 𝜂𝐹𝐷𝑀

2 + 𝜂𝜌0
2 + 𝜂𝑅𝐶𝑀−𝐹𝐷𝑀

2 + 𝜂𝑅𝐶𝑀−𝜌0
2 + 𝜂𝐹𝐷𝑀−𝜌0

2 + 𝜂𝑅𝐶𝑀−𝐹𝐷𝑀−𝜌0
2   (3.4) 

where 𝜎2 is the variance in the ensemble results (m2) and the 𝜂2 terms are the contributions from each 

factor and interaction between factors to 𝜎2. Interaction effects stem from a non-linear behaviour of 

the three uncertainty sources. Contributions are calculated by computing the sum of squares 

associated with each 𝜂2 term. 

{
 
 

 
 𝜂𝑖

2 =
1

𝑁𝑖
∑ (𝑥𝑖.. − 𝑥…)

2𝑁𝑖
𝑖=1

𝜂𝑖−𝑗
2 =

1

𝑁𝑖 𝑁𝑗
∑ ∑ (𝑥𝑖𝑗. − 𝑥𝑖.. − 𝑥.𝑗. + 𝑥…)

2𝑁𝑗
𝑗=1

𝑁𝑖
𝑖=1

𝜂𝑖−𝑗−𝑘
2 =

1

𝑁𝑖 𝑁𝑗 𝑁𝑘
∑ ∑ ∑ (𝑥𝑖𝑗𝑘 − 𝑥𝑖𝑗. − 𝑥𝑖.𝑘 − 𝑥.𝑗𝑘 + 𝑥𝑖.. + 𝑥.𝑗. + 𝑥..𝑘 − 𝑥…)

2𝑁𝑘
𝑘=1

𝑁𝑗
𝑗=1

𝑁𝑖
𝑖=1

  (3.5) 

where 𝑁 denotes the number of possible levels for a factor (3 for RCMs, 9 for FDMs, 2 for 𝜌0), 𝑥 

denotes the value of the variable of interest (𝑑ℎ𝑓
𝑡𝑜𝑡) and a dot represents the arithmetic mean with 

respect to the index it is substituted for. Because the sums of squares in Eq. (3.5) are averaged 

departures from a mean, these terms are biased estimates of the variance (Déqué et al., 2007). An 

unbiased estimate should be divided by 𝑁 − 1, but dividing by 𝑁 results in 𝜂2 terms fulfilling Eq. 

(3.4). As such, any ratio 𝜂2/𝜎2 is only interpreted as a percentage of contribution to the total 

ensemble uncertainty. We group together all 𝜂2 terms capturing an interaction effect to quantify the 

non-linear behaviour of the model experiments with respect to the three factors (𝜂𝑖𝑛𝑡𝑟
2 ).  

 

3.4 Results 

3.4.1 Ensemble scenarios 
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Figure 3.1. Ensemble mean 1992-2017 firn thickness change (𝑑ℎ𝑓

𝑡𝑜𝑡) in each EAIS basin. Simulation results are 

interpolated by nearest-neighbour to a common 12.5 km grid. The map uses a 3×3 median filter. Each inset 

shows the basin-averaged modelled time series of all the 54 model scenarios. Red, yellow and blue curves 

represent scenarios forced with RACMO2, HIRHAM and MAR respectively. Each curve represents a particular 

RCM-FDM-𝜌0 combination. The thick black curve represents the ensemble mean. Basin numbers are displayed 

within the insets. Frame colours show whether 𝑑ℎ𝑓
𝑡𝑜𝑡 is significantly positive (blue), negative (red) or not 

significantly different from zero (black) (at ±2𝜎). Basin limits follow Zwally et al. (2015). 

 

The model ensemble shows a stable firn thickness over 1992-2017 for most of the EAIS, but strong 

regional changes are evident in several of the 16 basins (Fig. 3.1). The large interior basins (2, 3, 10, 

17) show no significant thickness change; the 2𝜎 uncertainty ranges of the ensemble results 

encompass zero. In contrast, the ensemble shows a significant and pronounced (>0.49 m) firn 

thickening in Dronning Maud Land (basins 5-8), driven by high snowfall rates since 2009 (Boening et 

al., 2012; Medley et al., 2018). Conversely, decreases in snowfall rates cause firn thinning (>0.25 m) 

in the areas of Shackleton ice shelf and Totten glacier (basins 12-13), which coincide with localised 

zones of high ice flow velocities (Rignot et al., 2019). Low accumulation since 2005 also induced 

thinning in Victoria Land (basin 14) (Velicogna et al., 2014). In such cases of accumulation 

anomalies, the firn compaction signal must be accounted for as it partially mitigates the overall 

change in firn thickness; increased accumulation provides more pore space and thus higher 

compaction rates, while decreased accumulation has the opposite effect. In other basins, the ensemble 
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suggests thickening (e.g. basins 3-4) or thinning (e.g. basins 9 and 15) but high variability among 

model scenarios precludes any firm conclusion. 

 

 
Basin 𝑑ℎ𝑓

𝑡𝑜𝑡 

[cm] 

𝜎𝑓
𝑡𝑜𝑡 

[cm] 

𝑡𝑟𝑒𝑛𝑑 𝑑ℎ𝑓 

[cm yr-1] 

𝜎𝑡𝑟𝑒𝑛𝑑  𝑑ℎ𝑓 

[cm yr-1] 

𝜎𝑡𝑟𝑒𝑛𝑑 𝑑ℎ𝑓

|𝑡𝑟𝑒𝑛𝑑 𝑑ℎ𝑓 |
  

[%] 

Altimetry 

trend 

[cm yr-1] 

𝜂𝑅𝐶𝑀
2 /𝜎2 

[%] 

𝜂𝐹𝐷𝑀
2 /𝜎2 

[%] 

𝜂𝜌0
2 /𝜎2 

[%] 

𝜂𝑖𝑛𝑡𝑟
2 /𝜎2 

[%] 

2 -9.1 6.5 -0.3 ± 0.3 100 0.3 ± 2.3 92.1 6.2 0.2 1.5 

3 7.3 8.8 0.5 ± 0.4 80 0.7 ± 0.1 97.6 1.4 0.0 1.0 

4 26.7 21.3 2 ± 0.8 40 3.3 ± 0.4 * 97.3 1.0 0.4 1.3 

5 70.9 12.6 2.2 ± 0.6 27 4.4 ± 0.6 * 49.4 32.5 15.3 2.8 

6 54.1 6.9 2 ± 0.3 15 1.8 ± 0.3 28.5 42.6 26.1 2.8 

7 49.0 6.8 1.9 ± 0.3 16 1.6 ± 0.3 18.9 46.0 28.2 6.9 

8 68.9 16.0 3.6 ± 1.0 28 4.1 ± 0.4 71.9 11.8 12.6 3.7 

9 -13.1 9.1 0.8 ± 0.7 88 3.0 ± 0.7 * 69.5 23.9 0.3 6.3 

10 -10.2 5.5 -0.1 ± 0.3 300 0.0 ± 0.2 92.5 6.2 0.1 1.3 

11 6.3 2.2 0.5 ± 0.2 40 0.4 ± 0.4 84.9 6.0 5.6 3.5 

12 -44.8 12.0 -0.8 ± 0.4 50 1.8 ± 0.4 * 51.0 40.8 3.9 4.3 

13 -25.5 9.0 -1.2 ± 0.5 42 -0.7 ± 0.4 60.8 32.8 3.4 3.1 

14 -17.3 7.9 -2.3 ± 0.4 17 -1.5 ± 0.2 * 74.6 21.1 1.3 3.1 

15 -18.4 9.4 -2.7 ± 0.9 33 -6.2 ± 1.5 * 72.1 21.6 1.2 5.2 

16 2.2 5.0 -0.2 ± 0.4 200 -0.1 ± 0.3 95.5 1.4 0.0 3.1 

17 3.3 2.5 -0.3 ± 0.2 67 0.3 ± 0.1 * 70.5 21.6 0.1 7.9 

Table 3.2. For each EAIS basin, ensemble mean (𝑑ℎ𝑓
𝑡𝑜𝑡) and standard deviation (𝜎𝑓

𝑡𝑜𝑡) of firn thickness change. 

Mean (𝑡𝑟𝑒𝑛𝑑 𝑑ℎ𝑓) and standard deviation (𝜎𝑡𝑟𝑒𝑛𝑑𝑑ℎ𝑓) of the linear trends fitted to the ensemble scenarios, and 

their ratio (
𝜎𝑡𝑟𝑒𝑛𝑑 𝑑ℎ𝑓

|𝑡𝑟𝑒𝑛𝑑 𝑑ℎ𝑓 |
). Altimetry trends are from Shepherd et al. (2019). Superscript * denotes non-overlapping 

uncertainty ranges from altimetry and from the model ensemble. 𝜂2/𝜎2 ratios show contributions of the sources 

of uncertainty to the ensemble spread. 

 

Model uncertainties in basin-averaged rates of firn thickness change range between 0.2–1.0 cm yr-1, 

translating into relative uncertainties between 15–300% (Table 3.2). Despite low absolute 

uncertainties, the interior basins (2, 3, 10, 16, 17) show the largest relative values because their trends 

in 𝑑ℎ𝑓 are close to zero (<0.4 cm yr-1). Basins with trends exceeding 1 cm yr-1 have lower relative 

uncertainties. Yet, some of these still exhibit relative uncertainties higher than 25% (4, 5, 8, 13, 15). 

The relative importance of the RCM, FDM and 𝜌0 factors on the model spread varies between basins. 

An area-weighted averaging demonstrates the general predominance of the RCM factor (72%) 

followed by the FDM (20%), 𝜌0 (4%) and interaction (4%) factors. The high influence of RCM 

choice is mostly due to the large and direct impact of SMB on firn thickness. In addition, there is an 

indirect impact of RCM output as forcing for FDMs and for the climate-dependent L11 

parameterisation of 𝜌0.  

 

Cold basins with low snowfall rates (e.g. 2-3, 10-11) are characterised by particularly high 

contributions of 𝜂𝑅𝐶𝑀
2  (>90% of 𝜎2). In such dry conditions, small discrepancies between RCM-

modelled snowfall anomalies translate into large relative differences in firn thickness change. FDM 

contribution to the total ensemble uncertainty increases in basins with higher temperature and 
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accumulation (e.g. 5-7, 12-13), with 𝜂𝐹𝐷𝑀
2  explaining approximately 30 to 45% of the spread. These 

climatic settings drastically increase both the sensitivity of FDMs to temperature fluctuations and the 

absolute compaction rates. Consequently, small relative differences in compaction rates between the 

FDMs result in large absolute differences in firn thickness change. Moreover, high total snowfall 

amounts mitigate the impact of small differences between RCM estimates of accumulation, thus 

reducing 𝜂𝑅𝐶𝑀
2 . Another aspect that favours high 𝜂𝐹𝐷𝑀

2 /𝜎2 values is spatial variability of climatic 

conditions within basins; within basins spanning many climatic zones, there is more likely to be a 

region in which the FDMs disagree on compaction rates. Contribution of 𝜂𝜌0
2  is highest in basins with 

large and positive snowfall anomalies (basins 5-8). In such basins, it accounts for up to 28% of the 

model spread because the thickening caused by the anomaly is sensitive to the snow density 

parameterisation. Basins 16 and 17 illustrate the role of interaction effects. In these basins, MAR 

simulates substantially higher temperatures and accumulation rates, causing larger disagreements 

between FDMs forced by MAR than between FDMs forced by RACMO2 or HIRHAM. This 

nonconstancy of variance across FDMs for different RCMs leads to a significant interaction term 

𝜂𝑖𝑛𝑡𝑟
2 . Because interaction effects account for a non-negligible part of the model spread in all basins (1 

to 8% of 𝜎2), our results demonstrate the importance of combining RCMs, FDMs and 𝜌0 within 

different model experiments to assess firn thickness change uncertainty. 

 

3.4.2 Comparison with altimetry 

 
Figure 3.2. Comparison of 1992-2017 altimetry-based elevation trends and firn thickness trends of the 

ensemble, with their respective 1𝜎 uncertainty ranges. Map shows the absolute ensemble-altimetry differences, 

crosses highlight basins with non-overlapping uncertainty ranges. 
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We compare our estimates of basin-wide trends in firn thickness with elevation trends reported by 

Shepherd et al. (2019) (Table 3.2, Fig. 3.2). Firn thickness change is only a single component of the 

ice sheet elevation change signal, which also captures ice dynamical imbalance. Thus, accurate 

estimations of firn thickness change can be compared to measured elevation changes to identify areas 

of dynamical imbalance (Li and Zwally, 2011; Kuipers Munneke et al., 2015b; Hawley et al., 2020). 

For 9 of the 16 basins, the model ensemble uncertainty ranges and the altimetry uncertainty ranges 

overlap. In these cases, our results provide no evidence to support the existence of net ice flow 

imbalance. However, basin-wide averaging may conceal localised dynamic changes. On Totten 

glacier (within basin 13) for example, ice dynamical imbalance close to the grounding line makes a 

substantial contribution to recent mass loss and thus to local elevation decrease (Li et al., 2016). On 

the other hand, the uncertainty ranges do not overlap for several basins, highlighting the need to better 

understand the source of the discrepancies in these regions. In such cases, three possibilities, or 

combinations thereof, should be considered: (1) the model ensemble may fail to represent the true firn 

thickness change over the 1992-2017 period, (2) the 1𝜎 uncertainty range associated with the 

altimetry measurements may not adequately capture the true signal or (3) a component of the 

elevation changes may be related to ice dynamical imbalance.  

 

At this stage, identifying the exact cause of the discrepancy remains speculative. The long response 

time of ice flow makes any dynamical imbalance challenging to evaluate because long-term trends 

may still outweigh recent changes (Zwally et al., 2015). Moreover, disagreements persist between 

simulated SMB and field observations in certain regions (Wang et al., 2016), which can lead to 

substantial differences in mass balance partitioning (Martin-Español et al., 2017; Mohajerani et al., 

2019). Similarly, different sources of altimetry data, inter-satellite bias correction, and other 

processing steps induce uncertainty in altimetry signals (Shepherd et al., 2019). We use several basins 

where ensemble- and altimetry-based trends disagree to illustrate these factors. In basins 4 and 5, 

Medley et al. (2018) demonstrated that global climate models underestimate recent increases in 

snowfall. A similar underestimation from the RCMs used here would explain the lower ensemble 

trend compared to the observed elevation trend. In basin 12, significant changes in ice discharge may 

hint at a dynamic imbalance causing the disagreement (Rignot et al., 2019). However, this area also 

shows major discrepancies in SMB anomalies from different model estimates (Wang et al., 2016) and 

from probabilistic inversion techniques (Martin-Español et al., 2017), suggesting that modelling SMB 

in this region is challenging. Basin 15 is characterised by sparse satellite sampling but also shows a 

large spread in our model ensemble and is thus poorly constrained. The relatively high model- and 

altimetry-uncertainties may both be related to the complex topography of this basin. Finally, a robust 

evaluation of FDM-reliability in all possible EAIS areas and climatic conditions does not exist and 

models may fail to predict true compaction rates. The objective of comparing ensemble firn thickness 
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trends and altimetry trends is not to draw hasty conclusions about dynamical imbalance, but rather to 

highlight areas which deserve greater attention because recent measurements and current state-of-the-

art model scenarios do not match.  

 

In critically evaluating our work, it is important to highlight sources of uncertainty that are not 

accounted for in the ensemble. We use three RCMs forced by ERA-Interim at their boundaries. 

Different atmospheric reanalyses could, in theory, be used to force the RCMs or could be directly 

taken over the EAIS domain itself. Both the L11 and fixed-350 parameterisations of 𝜌0 assume a 

time-invariant surface density because possible seasonal and interannual variabilities are unknown. 

The ensemble is limited by the deterministic RCM, FDM and 𝜌0 combinations considered here. In the 

future, the work could be extended to consider stochastic perturbations and parametric uncertainties in 

climate input, FDMs and 𝜌0, thereby providing a larger range of results. In principle, the process of 

emulation might lead to localised discrepancies between the emulator and a corresponding FDM, 

although evaluation (Appendix C) shows that this is unlikely when averaged over large spatial areas, 

as is done here. One critical assumption is the reference climatic period of 1979-2009. Different ice 

core analyses and model-based studies disagree on the existence of a trend in Antarctic SMB over the 

last decades and centuries, but several agree on existing regional trends (Monaghan et al., 2006; 

Frezzotti et al., 2013; Previdi and Polvani, 2016; Medley and Thomas, 2019). The year 1979 

coincides with the start of satellite data assimilation into atmospheric products, and thus with the 

earliest RCM output, motivating this choice of reference period for practical reasons (e.g. Ligtenberg 

et al., 2011; Rignot et al., 2019). However, we cannot discount that substantially lower/higher past 

accumulation rates would result in under/over-estimating recent firn thickness change, thus providing 

a possible cause of disagreement with elevation change measurements. Nevertheless, because all 

model scenarios use the same reference period, it has a minor impact on both the total ensemble 

uncertainty and the uncertainty partitioning; using another reference period could shift the estimates 

of each scenario but would affect differences between the estimates only marginally.  

 

3.5 Conclusions 

Our model ensemble experiment provides a range of modelled scenarios of 1992-2017 firn thickness 

change on the EAIS that encompass current state-of-the-art modelling capabilities. Using statistical 

emulation of firn model output, we compute a total of 54 scenarios to assess variability associated 

with different RCMs, FDMs and surface snow density parameterisations. The ensemble agrees that 

firn thickness changes in the interior are minor, but there are pronounced thickening and thinning 

patterns in coastal areas. At basin-level, the uncertainty on the model estimates ranges between 0.2–

1.0 cm yr-1 and is generally dominated by differences between RCMs due to the strong and direct 

effect of SMB on firn thickness. However, in basins with high snowfall and with large spatial 
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variability of climatic conditions, FDM-related variability increases up to 46% of the total ensemble 

uncertainty. The surface snow density factor has a large impact on uncertainty in basins with recent 

increases in snowfall rates, reaching a maximum contribution of 28%. Finally, non-linear interactions 

between the three sources of uncertainty are substantial across the EAIS. Our results demonstrate that 

refining SMB estimates in RCMs is the priority for constraining future assessments of firn thickness 

change. However, as snowfall and temperatures are expected to increase in Antarctica (Ligtenberg et 

al., 2013; Lenaerts et al., 2019), FDMs and snow density will increasingly contribute to model 

uncertainty and should not be neglected. By comparing the ensemble scenarios with satellite 

measurements of elevation changes over the same 1992-2017 period, we find that these estimates are 

consistent over a majority of basins. Nonetheless, we identify several basins where model estimates 

do not match altimetry measurements. While ice dynamical imbalance could be the source of the 

discrepancies in these regions, so too could be inadequacies in the respective uncertainty 

characterisations. As such, our analysis serves to highlight specific areas where further focus on 

potential sources of errors in model and altimetry results is needed in order to better constrain mass 

balance assessments in East Antarctica. 
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4. Synthesis 

The work presented in this thesis has focused on the development and the use of firn densification 

models, on both the Greenland and Antarctic ice sheets (GrIS and AIS). Firn models are crucial to 

different applications in glaciology: mass balance assessments via satellite altimetry, surface mass 

balance modelling and paleoclimate analyses from ice cores. Both accuracy and quantification of 

uncertainty are crucial aspects for these three applications. Therefore, this thesis aimed at improving 

firn model accuracy and at better constraining uncertainty in model output. This encompassed three 

main objectives: better representing uncertain processes, constraining parametric uncertainty, and 

quantifying direct implications of firn model output uncertainty. Uncertainty constraint has often been 

neglected or poorly accounted for in firn modelling, because no robust framework for uncertainty 

quantification of firn model output existed until now. 

 

4.1 Summary 

4.1.1 Model developments in meltwater treatment 

Chapter 1 investigated the process of meltwater percolation and refreezing in firn models. Improving 

firn model capabilities in the treatment of meltwater is perceived as a priority for firn model 

developments (van As et al., 2016a), which motivated this work. Such improvements are important 

for present and future model estimates of the Surface Mass Balance (SMB) of the GrIS for several 

reasons. First, ~65% of the GrIS is currently affected by surface melt, and this extent is rapidly 

increasing (Tedesco and Fettweis, 2020). Second, meltwater refreezing is a major component of the 

GrIS SMB, accommodating ~40% of the total surface meltwater production (van den Broeke et al., 

2016). Third, the future capacity of the firn layer to refreeze and retain meltwater is vulnerable to 

increases in surface melting, which could lead to firn saturation (van Angelen et al., 2013). Finally, 

perennial firn aquifers are known to store substantial amounts of meltwater in its liquid form, but the 

timescale and total amount of this storage remains unknown (Foster et al., 2014; Miège et al., 2016). 

Additionally, there is increasing concern that firn hydrology should be better accounted for in 

Antarctica to improve SMB estimates and assessments of ice shelf stability (Bell et al., 2018). 

 

The model study of meltwater treatment focused on four different sites of the percolation area of the 

GrIS that span different climatological and glaciological settings. Three meltwater schemes of 

different levels of complexity were developed and implemented in the Community Firn Model 

(Stevens et al., 2020), including advanced water schemes based on hydrological theory that use the 

Richards Equation and an explicit representation of heterogeneous preferential flow. The study shows 

that the choice of liquid water scheme does result in significant differences in modelled density and 

temperature patterns, but that no one scheme exhibits significantly better performance than the others 
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when compared with observations. The results also showed that firn density is more sensitive to the 

choice of compaction scheme than to the choice of liquid water scheme, even at high-melt sites. 

 

The finding that simple empirical schemes of water percolation perform similarly to advanced 

schemes highlighted several elements that hinder the development of physically representative liquid 

water schemes in firn models. Firstly, results of the advanced schemes are sensitive to the hydraulic 

parameters in the model formulations, which are constrained by only few experimental studies. Such 

schemes would thus benefit from a better knowledge of firn structural properties, of their variability in 

space and of their precise relationship with hydraulic parameters, such as irreducible water content 

and hydraulic permeability. Secondly, disagreements between existing firn densification formulations 

are amplified in conditions of higher meltwater percolation. These disagreements are larger than those 

stemming from the use of different liquid water schemes. Such inter-model disagreements on firn 

compaction result in differences in modelled density patterns, in turn affecting the treatment of 

meltwater percolation. Due to their sensitivity to firn structural properties, advanced water schemes 

are strongly affected by differences in modelled densities. This was illustrated by significant 

differences in runoff and refreezing amounts simulated from different firn compaction models that use 

the same meltwater scheme. Nevertheless, the implementation of the Richards Equation and of the 

preferential flow scheme showed that some features, not captured by the empirical scheme, could be 

reproduced with better fidelity. This includes a more representative density variability in depth and 

the reproduction of perennial firn aquifers by fast and heterogeneous vertical water transport in firn.  

 

4.1.2 Parametric uncertainty in dry firn densification 

Chapter 1 highlighted large discrepancies attributable to the firn densification model itself, 

independent of the choice of water scheme. This is despite firn models being structurally similar; they 

all rely on Arrhenius-type equations as formulation for dry firn densification. The findings of major 

discrepancies between models motivated the investigation of model parameterisation, which is 

described in Chapter 2. This work aimed to optimise parameter estimates and better constrain 

parametric uncertainty in three benchmark firn models. Compared to the original publication of the 

firn models investigated, the calibration exploited a more extensive set of firn cores and used a 

Bayesian statistical framework using Markov Chain Monte Carlo methods. The firn core dataset 

spanned a large range of climatic conditions from both the GrIS and AIS, resulting in a unified 

calibration representative of all dry firn conditions, and not reliant on location-specific expressions, 

which have been common until now. 

 

The maximum a posteriori models – the optimal estimates reached for the parameter combinations – 

showed significant improvements for two models and comparable results for the third, when 

evaluated against an observational dataset independent of the calibration process. The maximum a 
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posteriori models also demonstrated comparable or even improved performances compared to other 

models of higher degree of complexity. These results show that thorough calibration can yield 

significant improvements in model accuracy, even without reconsidering the governing equations. 

Furthermore, the Bayesian approach allows to compute credible intervals for parameter estimates, 

hence constraining parametric uncertainty, and to evaluate correlation between different parameters. 

The credible intervals accounted for stochastic perturbations in climatic forcing and in surface snow 

densities, which are sources of uncertainty propagation in firn densification models. The final 

parameter estimates also provide better understanding of the adequate mathematical relationships for 

densification equations. For example, the results showed strong evidence for a sublinear relationship 

between densification rates and accumulation rates, a proxy for overburden pressure. 

 

Despite improved agreement with respect to observations, the uncertainty intervals produced with the 

three models still failed to reproduce several of the firn depth-density profiles used as evaluation data. 

Thus, the formulation of the governing equations affects the remaining errors, which suggests 

deficiencies in our representation of dry firn densification in models. Alternatively, uncertainty 

intervals could be underestimated, implying that larger datasets are required to generate wider 

intervals, representative of true model uncertainty. Together, future refinement of model formulations, 

and more data against which to evaluate, should result in improved accuracy of firn model estimates. 

By exploiting the three different firn models in both their original and optimised forms, this study 

demonstrated important inter-model disagreements, even with improved calibration, that should not 

be neglected in firn model applications such as altimetry corrections and dating of air bubbles in ice 

cores. 

 

4.1.3 Firn model output uncertainty at ice sheet scale 

The strong inter-model disagreements highlighted in Chapter 2 motivated the objective to perform 

large-scale intercomparisons of firn model results. Such an approach would allow to evaluate how 

disagreements translate into firn model output uncertainty for ice sheet wide applications. In this 

context, Chapter 3 describes work focused on quantifying uncertainty in firn model output, and its 

implications for altimetry-based mass balance assessments of the East Antarctic ice sheet (EAIS). 

Such assessments on the EAIS are particularly sensitive to model-estimates of firn thickness change 

(Shepherd et al., 2018). In this work, a model ensemble of 54 different firn thickness change scenarios 

was developed. It included climatic forcing from three different Regional Climate Models (RCM), 

compaction formulations of nine firn densification models (FDM) and two different assumptions on 

surface snow density. Daily simulations were run for 1992 – 2017 over the entire EAIS (>10 million 

km2) and the results were compared to recently published assessments of EAIS surface elevation 

change from altimetry (Shepherd et al., 2019). The range of results from the ensemble provided a 

measure of model uncertainty, which was decomposed into its different components using an 
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ANOVA method. Uncertainty was then partitioned between choice of RCM forcing, of FDM, and of 

surface density, as well as the nonlinear effects stemming from interactions between these three 

sources of uncertainty. The computational limitations associated with running the ~89 000 simulations 

required to cover the EAIS were overcome by developing statistical emulators of the FDMs, which 

were thoroughly calibrated and evaluated.  

 

The ANOVA demonstrated that RCM forcing contributes most to model spread in general, but that 

FDM and surface density choices can have large, and even predominant contributions in some areas. 

Also, nonlinear interaction effects have non-negligible contributions to model uncertainty across the 

EAIS. Considered on a drainage-basin scale, modelled firn thickness change and published satellite 

measurements of surface elevation change are in agreement in the majority of basins. This suggests 

that elevation change in these basins is dominated by firn thickness change and well-captured by 

model estimates. In several basins however, modelled firn thickness change and measured surface 

elevation change do not match, even when accounting for their respective uncertainties. Ice dynamical 

imbalance, not accounted for in firn modelling, could contribute to the discrepancy in those areas. 

However, further work is needed to improve uncertainty characterisation in both firn models and 

altimetry, especially in the basins showing disagreements, before this can be confirmed or refuted. 

Chapter 3 thus underscored the importance of uncertainty quantification in the interpretation of 

satellite-based altimetry measurements. Ultimately, partitioning observed elevation change between 

firn thickness change and ice dynamical imbalance is important to reach precise estimates of ice sheet 

mass balance and to detect potential onsets of ice flow imbalance in the EAIS. As such, the ensemble 

results highlight specific areas of the EAIS where further focus on potential sources of errors in model 

and altimetry results is needed. 

 

Through this model ensemble framework, different sources of epistemic uncertainty (uncertainty as a 

result of lack of information or knowledge) were considered. Firstly, by using different climatic 

forcings and surface density assumptions, input uncertainty was extensively covered. Secondly, the 

use of different firn model formulations addressed the model structural uncertainty. Finally, 

parametric uncertainty was also considered because some model formulations differed only by the re-

parameterisations developed in Chapter 2. Importantly, this study was the first to evaluate robustly 

and comprehensively the potential impacts of firn model output uncertainty on mass balance 

assessments at the ice sheet scale. 

 

4.2 Scientific contributions 

My work through my PhD thesis has made a number of contributions, particularly to the field of firn 

densification modelling. These are summarised here. 
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All three of my Chapters have made improvements to the Community Firn Model (CFM, Stevens et 

al., 2020). The CFM is an open source model that facilitates the applicability of firn modelling for 

various research interests among the glaciology community because it is open access, user-friendly 

and transparent about its implementation. As such, it can be used by other researchers needing an 

accessible and verified firn model in their studies (e.g. Hawley at al., 2020; Smith et al., 2020). 

Improvements I have made to the CFM as a part of my PhD include implementing new processes into 

the model (Chapter 1), extending its applicability (Chapter 2), improving the model code (all 

Chapters) and using it in model-based studies (all Chapters), as well as additional developments of the 

CFM not explicitly described in Chapters 1-3, such as sublimation and regridding routines. My 

improvements have been assimilated into the master version of the model. 

 

I have implemented the liquid water schemes described in Chapter 1 into the CFM. As such, I am the 

first person to have modelled meltwater percolation in firn based on the Richards Equation, building 

upon earlier developments in snow modelling (Colbeck, 1972; Jordan, 1983; Illangasekare et al., 

1990; Hirashima et al., 2010; Wever et al., 2014; D'Amboise et al., 2017). I also modelled the process 

of preferential flow, which has been observed in snow and firn (e.g. Humphrey et al., 2012) but never 

represented explicitly in firn models before. Both of these aspects had repeatedly been identified as 

research gaps by the community (van As et al., 2016a; Steger et al., 2017a). Based on this new 

framework for meltwater modelling, described in Chapter 1, I led the CFM contribution to the 

RetMIP firn model intercomparison project (Vandecrux et al., 2020). This study is a community-led 

effort to intercompare results from nine different firn models at different locations of the GrIS. It 

allows to better understand the sources of discrepancies between models in their treatment of 

meltwater, and thus contributes to quantifying firn model uncertainty in the percolation area. 

 

I have extended the applicability of firn models through developing and applying a Bayesian 

calibration framework in Chapter 2. This brings novel statistical methods into the field of firn 

densification modelling, and is one of the earliest studies to adopt an advanced Bayesian approach in 

glaciology more generally. Despite the empirical nature of firn models, little effort had been dedicated 

to the statistical aspects of model calibration until now. By uniting advanced statistics and glaciology, 

I thus bring an interdisciplinary approach to improving firn model accuracy and quantifying 

uncertainty in firn modelling, through the use of a mathematically robust framework. 

 

By exploiting different firn models, RCMs and boundary conditions, I have led the first, thorough ice 

sheet scale evaluation of firn model output uncertainty through Chapter 3. The ANOVA method 

allowed the contribution of these three uncertainty sources to be evaluated, with respect both to total 

uncertainty in firn thickness change and the spatial variability of the contributions. These findings can 
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help to establish future research priorities in model developments. The direct implications for 

altimetry-based mass balance assessments, were also considered. The results highlighted areas where 

surface elevation change measurements and model-based estimates of firn thickness change are not 

consistent with each other, and thus either where ice dynamical imbalance is occurring, or where there 

is a need to better characterise uncertainty in one or both of models and altimetry. This work thus 

contributes to more thorough considerations of mass balance assessment given the typical two- to 

three-fold difference between ice and firn densities, which has major implications in the conversion 

from measured elevation changes to estimates of mass changes, and thus altimetry-based estimates of 

the ice sheet contribution to global sea level rise 

 

Beyond my PhD work I have also contributed to the work of others through performing firn model 

simulations for colleagues at Lancaster and beyond. This work has been used in publications on which 

I am a co-author, including Stevens et al. (2020), Vandecrux et al. (2020), Barnes et al. (in prep.) and 

Arthur et al. (in prep.). 

 

4.3 Limitations 

The liquid water schemes that I describe in Chapter 1 are heavily reliant on the Richards Equation 

which presumes that parameter values are constant at the scale of representative elementary volumes 

(Beven and Germann, 2013). Given firn heterogeneity, it is probably not reasonable to assume that 

this holds at the horizontal scale at which firn models are typically run (order of km), which itself is 

dictated by the spatial resolution of the RCM forcing data. A similar consideration holds for the dual 

porosity approach adopted in Chapter 1 to model preferential flow. Furthermore, a limitation often 

neglected in hydrological science is that the Richards Equation was derived under the assumption of 

steady water fluxes, and is not necessarily applicable in transient cases (Beven and Germann, 2013). 

Thus, daily and sub-daily variabilities in meltwater input disagree with some of the original 

assumptions built into the equation. Finally, despite progress in computational capabilities, the 

numerical solution of the Richards Equation is still challenging and not guaranteed to be reliable 

(Farthing and Ogden, 2017). In this context, the use of the equation remains debated in the hydrology 

modelling community (Beven and Germann, 2013). Applied to firn hydrology, the computational 

requirements also raise questions with respect to the applicability of Richards Equation-based firn 

models for ice sheet scale studies, and simplifications may be necessary. The Richards Equation is 

also reliant on precise estimates of hydrological parameters, but firn hydraulic properties are not well 

understood. Currently, parameter values are only inferred from ideal small-scale laboratory 

experiments (e.g. Yamaguchi et al., 2012). On the other hand, field studies have demonstrated that 

Greenland firn permeability is strongly variable depending on both depth and location, is sensitive to 

presence of ice layers and shows no clear relationship with density (Adolph and Albert, 2014; 
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Sommers et al., 2017). In this context, it is not yet clear whether laboratory-based parameter estimates 

are reasonable with respect to natural firn conditions on ice sheets.  

 

In Chapter 2, firn cores were used as model calibration data, however firn cores represent only a 

snapshot in time of the density profiles. This limits the evaluation of model capability in representing 

intra- and inter-annual variability of densification rates. Instead, the calibration focuses on accurate 

representation of mean densification rates as a function of long-term climate. Using observations of 

firn compaction rates could help overcome this limitation. But such measurements are still scarce, 

have not been collected in a large variety of climatic settings, and do not extend to great depths. 

Nevertheless, the Bayesian framework developed is directly applicable to new data and to 

combinations of different types of data. Errors in the input (climatic forcing and surface density 

values) and in the calibration data can also alter parameter estimates. Such errors have been accounted 

for by implementing realistic noise in the input values and by assuming uncertainty in the density 

measurements. This had a direct impact on the uncertainty intervals for the parameter estimates. If 

better constraints on model input, and more – and more precise – measurements are used in future 

calibration efforts using this framework, the Bayesian calibration will naturally lead to narrower 

uncertainty intervals. 

 

The model ensemble described in Chapter 3 aimed to represent our uncertainty in firn thickness 

change estimates, based on state-of-the-art modelling capabilities. While limitations can be attributed 

to the physics and parameterisations of the models that constitute the ensemble, here I focus on the 

limitations of the ensemble methodology itself. The three RCMs of the ensemble were forced with the 

same atmospheric reanalysis product, thus the ensemble does not capture uncertainty arising from 

boundary forcing of RCMs. Also, firn model estimates of compaction rates cannot be perfectly 

reproduced by statistical emulators. However, the evaluation of the emulators shows a high degree of 

fidelity and unbiased performances. Furthermore, for computational reasons, ensemble modelling 

with firn models at ice sheet scale is prohibitive and statistical emulators overcome this limitation. A 

potentially important, yet difficult to quantify limitation is the assumption of a reference climatic 

period with respect to which changes in firn thickness are calculated. This is necessary because 

reliable, fine resolution climatic forcing over the EAIS only goes back to 1979, contrasting with the 

century timescale of firn layer deposition. Ice core studies provide no clear conclusion on possible 

trends in snowfall amounts over the past centuries. If past snowfall conditions were lower than those 

during the reference climatic period, the firn thickness changes over our period of interest (1992-

2017) would be calculated with respect to overestimated snowfall rates. This would likely result in 

underestimated estimates of 1992-2017 firn thickness change. Conversely, higher past snowfall 

conditions would result in overestimated modelled firn thickness change. While this limitation may 

affect comparisons with elevation change measurements, it does not affect the total ensemble 
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uncertainty and the uncertainty partitioning because all model scenarios of the ensemble use the same 

reference climatic period. 

4.4 Outlook 

The results from each Chapter show important research avenues to improve firn model accuracy and 

to refine estimates of the associated uncertainties. Such perspectives for further developments are 

addressed in this section. 

 

As mentioned in Sections 4.1.1 and 4.3, hydraulic parameters play an important role in the patterns of 

meltwater percolation simulated by schemes relying on the Richards Equation and on a preferential 

flow implementation. These parameters govern the relationship between meltwater infiltration and 

firn structural properties such as density and grain size. As such there are strong interactions between 

the densification, grain growth and meltwater components of firn models, providing the potential for 

errors from any of these to propagate into the model. This highlights important necessary 

developments to fully benefit from the implementation of advanced liquid water flow schemes in firn 

models. First, firn models currently do not account for the impact of water content and refrozen ice 

lenses on the densification rates. Such features are known to influence firn viscosity (Vionnet et al., 

2012), which governs the dependence of densification rates on firn structural properties. Chapter 1 

showed the major and predominant impact of the densification formulation on differences in firn 

model results. For this reason, developing densification equations which are valid in conditions where 

wet-firn processes dominate is necessary to better simulate densification, meltwater infiltration and 

interactions between these processes. Second, better constraints on firn hydraulic properties from 

laboratory and field studies are needed. Such properties have so far been inferred from only few 

laboratory measurements (e.g. Yamaguchi et al., 2012), but there is field evidence that the relationship 

between firn permeability and firn structure is complex (Adolph and Albert, 2014; Sommers et al., 

2017). Hydraulic parameterisations for firn are challenging to derive because it is a highly anisotropic 

porous medium and its hydraulic characteristics are also directly impacted by the solidification of 

liquid water through refreezing (Sommers et al., 2017). More observational studies will help better 

understand firn hydraulic properties and how to average these at large spatial scales. Finally, Chapter 

1 identified the multidimensionality of liquid water flow as an important challenge for firn model 

water schemes. The one-dimensionality of current firn models requires parameterisations for 

horizontal flow treatment, which are difficult to constrain (e.g. Lefebre et al., 2003). This is 

particularly important given the clear evidence of large subsurface horizontal water movement in GrIS 

firn (Humphrey et al., 2012) and in perennial firn aquifers (Miller et al., 2018). Addressing these 

model shortcomings will improve firn model accuracy in the percolation areas of the ice sheets. If 

such improvements are achieved, analyses similar to the model ensemble study performed on the 

EAIS in Chapter 3 could include areas where melting and wet firn processes have a large influence on 
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firn thickness changes. Consequently, robust large-scale uncertainty analyses could include the 

Antarctic Peninsula, the West-Antarctic ice sheet, ice shelves and the GrIS. 

 

Besides refinements of the densification governing equations, statistical calibration methods for firn 

densification models, such as the one performed in Chapter 2, would benefit from better constraints 

on climatic forcing and on the surface snow density boundary condition. For climatic input, firn 

models rely on atmospheric reanalysis products and RCMs. These model products show significant 

discrepancies among themselves, and also when compared to field-based observations (e.g. Wang et 

al., 2016; Fettweis et al., 2020; Mottram et al., 2020). Polar RCMs face the challenge of simulating 

complex physical processes such as the melt-albedo feedback, the redistribution of snow under strong 

wind currents and snow sublimation in extreme temperature and atmospheric humidity conditions 

(e.g. Noël et al., 2018; Agosta et al., 2019). Furthermore, they cannot rely on extensive field 

measurements for calibration and for constraining model settings because the coverage of the GrIS 

and AIS by weather stations is low and unequally distributed, leaving extended areas uncovered 

(Lazzara et al., 2012; Wang et al., 2018). Future improvements in ice sheet climate modelling will 

lead to more effective calibration of firn models and to improvements in firn model output. Similarly, 

uncertainties in the surface snow density boundary condition propagate in firn models, affecting the 

model results. In the upper centimetres of firn, densification is rapid due to breaking of the fine crystal 

structure of fresh snow and wind-driven compaction (Eisen et al., 2008; Groot Zwaaftink et al., 2013). 

The physics and the temporal resolution (daily or coarser) of firn models make it impractical to 

represent such short-lived processes, justifying the use of a surface density value typically around 300 

kg m-3. However, the surface density value is affected by spatiotemporal variability (Groot Zwaaftink 

et al., 2013; Proksch et al., 2015; Fausto et al., 2018). By calibration to upper densities of firn cores, 

parameterisations of surface densities have been developed for both the GrIS and AIS (e.g. Kaspers et 

al., 2004; Kuipers Munneke et al., 2015b; Fausto et al., 2018; Agosta et al., 2019). However, their 

calibration shows large variations between model estimates and field data, and temporal variability is 

generally not accounted for. Better constraining surface densities will require more field data and a 

better understanding of relationships between climatic factors and very fresh snow compaction and 

erosion. 

 

The large majority of current firn models are empirical models that do not include formulations for 

the different micro-mechanisms that affect densification. Instead, they are parameterised to include 

the relevant mechanisms in a single equation. Alternative and more physically-based microscale 

approaches are possible and in progress (e.g. Alley, 1987; Arthern and Wingham 1998; Meyer et al., 

2020; Fourteau et al., 2020), but they still face the challenge to be applied on firn columns typically 

10–100 m thick. The recent developments of empirical, macro-scale firn models show encouraging 

results. An important aspect of their future development will be to better validate their accuracy in 
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short timescale variability of firn compaction (i.e. daily to seasonal). To date, this has been limited by 

model calibration largely relying on firn core datasets. Validation of short timescale variability will 

require evaluating models against firn strain rates measurements in a variety of climatic settings. By 

combining calibration to such measurements and knowledge of the microphysical mechanisms at 

play, it will be possible to improve firn models to ensure adequate representation of shorter-term 

densification fluctuations. Refining model formulations to explicitly include relevant small scale 

mechanisms could also help address (1) the shortcomings of current formulations in melt areas 

identified in Chapter 1, and (2) the remaining deficiencies of models in representing dry firn 

densification after recalibration, as identified in Chapter 2. 

 

These avenues of investigation will be crucial to further improve firn model accuracy and 

quantification of uncertainty. This thesis has highlighted their importance, addressed some of the 

associated limitations, and thus contributed to progress in firn densification modelling. 
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Appendix A 

This appendix includes the Supplementary Information to Chapter 1. 

 

A.1 Regional Climate Model performance 

The climatic forcing (temperature, melt, snowfall, rain and sublimation) is provided by the 5.5 km 

resolution RACMO2.3p2 regional climate model. Table A1 provides summary statistics of model 

performance with respect to weather station data from the Institute for Marine and Atmospheric 

research at Utrecht University (IMAU), from the Programme for Monitoring of the Greenland Ice 

Sheet (PROMICE) (van As et al., 2016) and from the Greenland Climate Network GC-Net (Steffen et 

al., 1996). Detailed pointwise comparisons between modelled and observed values of temperature, 

melt rate and precipitation rate are shown in Figs. A1, A2 and A3. In general, RACMO reaches good 

agreement the with observed data, and root mean squared errors (RMSE) for daily 2 m height 

temperatures, annual melt rates and annual precipitation rates are of the order of 5 K, 0.1 m w.e. yr-1 

and 0.15 m w.e. yr-1 respectively. 

 

At both FA13 and KAN-U, modelled temperatures and melt rates show very low bias (smaller than 1 

K and 0.06 m w.e. yr-1). The low RMSE in melt rates (0.11 and 0.08 m w.e. yr-1 respectively) is 

noteworthy because the total melt rates are large. We note that no precipitation data is available at 

these sites and only two years of melt data for FA13, but RACMO2.3p2 has shown great agreement 

with other surface mass balance measurements, especially in accumulation areas (RMSE of 0.08 m 

w.e. yr-1), although weather stations remain sparse on the GrIS (Noël et al., 2018). There is no 

evidence that the climatic forcing is a source for bias in the firn models’ simulations at these sites. 

 

 At the stations of DYE-2 and NASA-SE, observed GC-Net data is of lower quality, which partly 

explains their relatively larger RMSE in temperature and melt rates. At DYE-2, RMSE in 

precipitation is still low (0.09 m w.e. yr-1) and the bias is only slightly positive (0.04 m w.e. yr-1). Melt 

rates tend to be underestimated but the RMSE is reasonable (0.13 m w.e. yr-1). It is difficult to 

partition the larger errors in temperature (positive bias of 1.2 K) between model and measurement 

errors, but no indication of firn temperature overestimation appears in the firn models’ simulations. At 

NASA-SE, we hypothesize that the negative bias in precipitation rates (-0.21 m w.e. yr-1) leads to an 

underestimation of downward advection of cold snow and partly causes the 10 m temperature 

overestimation in our simulations. Additionally, the temperature overestimation (bias of 1.5 K) could 

enhance the problem. The negative bias in melt rates (-0.07 m w.e. yr-1) plays an opposite role by 

underestimating latent heat release. However, annual melt rates are low and the effects of this 

underestimation are likely minor. 

 



100 
 

 

RACMO2.3p2 vs. AWS Temperature 2 m [K] Melt [m w.e. yr-1] Precipitation [m w.e. yr-1] 

Station Period 
number of 

observations 
R2 Bias RMSE R2 Bias RMSE R2 Bias RMSE 

NASA-SE 1998-2015 6209 0.61 1.47 6.94 0.77 -68.34 10-3 84.48 10-3 0.85 -206.1 10-3 228.8 10-3 

DYE-2 1998-2015 6209 0.60 1.19 7.32 0.88 -101.4 10-3 128.2 10-3 0.78 43.58 10-3 90.30 10-3 

KAN-U 2009-2016 2718 0.97 0.88 2.09 0.93 14.00 10-3 81.92 10-3 - - - 

FA13 2014-2016 352 0.92 0.87 2.20 - -51.56 10-3 105.8 10-3 - - - 

Table A1. Statistics of comparison between RACMO2.3p2 climatic output and Automatic Weather Station 

measurements, hyphens indicate absence or paucity of data 

 

 

Figure A1. Pointwise comparison between RACMO2.3p2 and Automatic Weather Station data of temperature 

at 2 m height 

 

 

Figure A2. Pointwise comparison between RACMO2.3p2 and Automatic Weather Station data of annual 

cumulative melt 
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Figure A3. Pointwise comparison between RACMO2.3p2 and Automatic Weather Station data of annual 

cumulative precipitation 

 

A.2 Model Implementation 

The model uses a finite-volume scheme with each layer being an independent volume. We use the 

general mixed-form Picard iteration scheme to solve the RE, as it has been demonstrated that the 

mixed form of RE can be efficiently used in finite-difference schemes because of its accuracy and its 

robustness with respect to mass conservation (Celia et al., 1990). The Picard scheme discretises the 

model using central finite differences for the space derivative and a backward Euler method for the 

time derivative. The iterative process calculates the value of the pressure head at each iteration and 

then adjusts the liquid water content according to the water retention curve, Eq. (1.12). Hydraulic 

parameters are updated and iterations are repeated until convergence of the solution is achieved. 

Boundary conditions are the rate of meltwater input at the surface and a no-flow condition at the 

bottom. Solving the RE in the firn column presents numerical challenges. We adopt an 

implementation strategy based on the works of Wever et al. (2014) and D’Amboise et al. (2017) who 

implemented the RE in the snow models SNOWPACK and CROCUS respectively. Here, we give 

more details about this methodology. 

 

A.2.1 Convergence criteria 

For the solution reached by the Picard iteration scheme to be considered convergent, it must fulfil 

different criteria. The convergence criteria between two successive iterations are defined for the head 

pressure (εh) and liquid water content (εθ) values as well as for the mass balance error (εMB) of 

individual layers. These three criteria are fixed to 10-3 m, 10-5 and 10-8 m respectively, following 

Huang et al. (1996) and Wever et al. (2014). For each layer, we select εθ or εh according to the 
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effective saturation. Huang et al. (1996) showed that using εθ allows faster convergence. However, it 

cannot be used in very saturated layers and thus we apply εh for layers where effective saturation 

exceeds 0.99, in accordance with Wever et al. (2014). The mass-balance criterion is always applied to 

every layer, regardless of the saturation. 

 

A.2.2 Hydraulic conductivity calculation 

As we use a central finite difference approach to compute RE, the fluxes are assumed to occur on the 

interface between adjacent layers. Incoming and outgoing fluxes are computed and this requires the 

hydraulic conductivity value to be calculated at the top and bottom of every layer i and not at the 

centre. We use the upstream-weighting technique (Forsyth et al., 1995): 

𝐾
𝑖+

1

2

= {
𝐾𝑖, 𝑖𝑓 

Δℎ

Δ𝑧
− 1 ≤ 0

𝐾𝑖+1, 𝑖𝑓 
Δℎ

Δ𝑧
− 1 > 0

  (A1) 

The advantage of this formulation over a simple arithmetic mean is that it does not lead to oscillatory 

solutions, regardless of the mesh size (Forsyth et al., 1995; Szymkiewicz, 2009).  

 

A.2.3 Dry layers 

For numerical stability, a snow layer cannot be completely dry (i.e. 𝜃 = 0). Therefore, two cases must 

be considered: dry layers and refreezing layers. At the start of the flow routine, all layers are 

initialised with a very low 𝜃 value, θdry. The value must be sufficiently low to avoid influencing the 

refreezing process but sufficiently high to lead to a convergent solution (D’Amboise et al., 2017). In 

this study, the θdry value is fixed at 10-6 as this is a tenth of the εθ criterion. This corresponds to a 1 m 

thick snow layer holding 1 μm of liquid water. When the flow routine is called in the firn model, the 

water content of every dry layer is thus synthetically raised to θdry, which corresponds to a pre-

wetting. The porosity of ice layers that are at high densities (>900 kg m-3) is thus adjusted in order to 

raise their water content to θdry in both domains.  

 

Similarly, there is a risk for 𝜃 reaching too-low values when refreezing occurs. Therefore, refreezing 

is allowed only if the 𝜃 value is above 0.01% (Wever et al., 2014). This value is above θdry to avoid 

refreezing and corresponding latent heat release of the very low amounts of water resulting from the 

fluxes between layers that are initialised at θdry. Only at the last time step of the flow routine is the 

refreezing process allowed to decrease the volumetric water content until θdry. After that, the pre-

wetting amounts of liquid water are subtracted at the end of the flow routine to maintain the mass 

conservation property of the firn model. At the end of the flow routine, if all the layers have a water 

content below 10-5, we consider the firn column to be completely dry again so that the flow routine 

does not have to be called until the next melt event and computational time is largely saved. 
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A.2.4 Dynamical time step adjustment 

The numerical solving of RE uses a dynamically adjusted time step. Certain situations, such as the 

arrival of the wetting front at a stratigraphic transition, require a very small time step whereas larger 

time steps can be used in other cases without affecting numerical stability. Thus, the time step is 

adjusted according to the number of iterations, 𝑛𝑖𝑡, required to achieve convergence of the solution at 

the previous time step: decreased for a large number of iterations and increased for few iterations. 

Also, as in Wever et al. (2014) and D’Amboise et al. (2017), a back step case is used: the calculation 

is stopped and the time step automatically decreased if the solution fails to converge in 15 iterations or 

if warning signs of instability appear (positive pressure head values, effective saturation exceeding 1 

or differences in successive pressure head values exceeding 103 m). The time step is bounded between 

10-20 s and 900 s. The procedure can be summarised as follows: 

𝛥𝑡𝑅𝐸
𝑡 =

{
 
 

 
 1.25 𝛥𝑡𝑅𝐸

𝑡−1, 𝑖𝑓 𝑛𝑖𝑡 ≤ 5

𝛥𝑡𝑅𝐸
𝑡−1            , 𝑖𝑓 5 < 𝑛𝑖𝑡 < 10

0.5 𝛥𝑡𝑅𝐸
𝑡−1  , 𝑖𝑓 10 ≤ 𝑛𝑖𝑡 ≤ 15

𝑏𝑎𝑐𝑘 𝑠𝑡𝑒𝑝   , 𝑖𝑓 𝑛𝑖𝑡 > 15

  (A2) 

 

A.2.5 Saturated layers and aquifer treatment 

If water reaches an impermeable ice layer, the layer above progressively becomes saturated. This 

means that its hydraulic conductivity progressively increases. As a consequence, the incoming flow 

becomes very large whereas the outgoing flow is forced to be zero. To deal with this issue, the layer 

has to be set impermeable once close to saturation and this process must go on for layers above when 

these reach saturation in turn. When an aquifer is present at the bottom of the domain, the amount of 

water is held in memory at the start of the flow routine and the end of the domain is set as the top of 

the aquifer. All the percolating water reaching the end of the domain is added to the aquifer amount 

and at the end of the routine, this total amount is redistributed in the bottom layers. 

 

A.2.6 Partial RE solving 

In order to save computational time, the RE is not necessarily solved for the entire domain. If a 

significant part of the lowest layers is dry, we do not proceed to the calculations for this lower dry 

part. Starting from the surface, we look for the lowest layer where the water content is at least εθ + 

0.01 % (above the minimum water content after refreezing). Then we take as lower limit for the RE 

calculation the layer situated 50 cm below this lowest wet layer. This is recalculated at every time step 

of the RE solving, making the 50 cm addition largely sufficient to capture the wetting of the dry lower 

part. If the lowest wet layer is less than 50 cm above the end of the domain, then the RE is calculated 

on the entire domain. This is applied in both the matrix and the preferential flow domains. 

 

A.2.7 Refreezing in the preferential flow domain 
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Contrarily to the SNOWPACK model, there is a particular circumstance for which we apply 

refreezing directly in the preferential flow domain: if a cold front (subfreezing temperatures) 

propagates from the surface into a wet firn column, all the water present in the matrix flow domain 

will progressively be refrozen, starting from the surface layer. It would be unrealistic to keep liquid 

water present in the preferential flow domain of layers that are above this cold front. Thus, if starting 

from the surface, the entire firn column until a particular layer that holds some liquid water in the 

preferential flow domain is at subfreezing temperatures, this liquid water is refrozen. In such cases, 

the firn column is dry in both domains until the depth delimited by the cold front. Simulations without 

this refreezing implementation reached very similar results but required more computational time. 

 

A.2.8 Merging process 

The CFM usually considers every accumulation event as a new layer. However, as we use three 

hourly accumulation forcing, the firn layer could consist of a high number of extremely fine layers. 

Because the calculation time for the RE is very dependent on the number of distinct layers in the firn 

column, we chose to merge any layer thinner than 2 cm with the underlying layer. If this was applied 

to the surface layer, every accumulation event of less than 2 cm snow would be immediately merged 

with the previous surface layer. In the case where a high number of successive snowfall events would 

be below the 2 cm threshold, these would all be merged within the same layer, possibly becoming 

very thick. To avoid this, the newly added snow layer is merged with the previous surface layer only 

if the latter is below the 2 cm threshold. However, newly-added layers that are less than 0.01 mm 

thick are always merged with the layer below. It is important to keep a high vertical resolution when 

simulating the percolation process with the RE, as this flow equation is highly sensitive to structural 

heterogeneities in the firn. If the merging process is too lenient, this leads to the smoothing of 

heterogeneities such as sharp grain-size or density transitions. Moreover, using a coarse resolution 

would lead to only an approximation of the water percolation because water content is always 

homogeneous in a single layer. Thus, as soon as water percolates at the top of a given layer, it is 

distributed in the entire layer. 
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Appendix B 

This appendix includes the Supplementary Information to Chapter 2. 

 

B.1 Separation between the calibration and evaluation data 

The 91 sites of the dataset span a broad range of temperature and accumulation rate conditions (Table 

B1 and Fig. B1, Table B1 is provided at the end of Appendix B). As explained in the main text, our 

objective is to select the evaluation data (22 cores) randomly but still making it representative of (i) all 

climatic conditions and (ii) the ratio of GrIS to AIS sites of the dataset. We separate the 91 observed 

cores in three tiers of lowest, middle and highest 𝑇𝑎𝑣 and we select randomly 7 cores in each tier for 

the evaluation data. We repeat this random selection until 5 to 10 out of the 21 cores are from GrIS, 

with the remainder from AIS. Finally, our dataset includes two sites that are climatic outliers with 

respect to the others (DML and spencer4 in Table B1) with high 𝑇𝑎𝑣 and �̇� values (Fig. B1). We select 

randomly one of these for the evaluation data. Proceeding to the selection based on �̇� rather than 𝑇𝑎𝑣 

would be similar given the strong correlation between both variables.  

 
Figure B1. Climatic conditions at the 91 sites of the dataset 

 

B.2 Application of random noise in the boundary conditions 

In order to let uncertainty in RACMO2 output affect the calibration process, we perturb the 

temperature and accumulation time series that serve as climatic forcing for the firn models. At each 

iteration (a round of simulations with a given parameter set at all the calibration sites) and for each 

individual calibration site, we randomly draw an individual climatic perturbation value 𝑐𝑝 from a 

standard Normal distribution (Eq. (B1)). As such, every calibration site has a specific 𝑐𝑝 value, which 

changes at each iteration. We use observed statistics of RACMO2 errors in temperature and Surface 

Mass Balance to determine the perturbation. For GrIS, Noël et al. (2019) report RMSE values with 

respect to field observations for temperature and surface mass balance flux of 2.1 K and 69 mm w.e. 
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yr-1 respectively (in their Supplementary Material). Each monthly value of the RACMO2 time series is 

therefore perturbed by the corresponding RMSE value scaled by 𝑐𝑝 (Eq. (B2), (B3), (B4)).  

 

We favour this approach rather than drawing a different random perturbation at each time step. The 

latter method would cause perturbations of opposite signs to occur on a very short timescale, which 

would result in unrealistic short term climatic variability (e.g. a very warm perturbation could be 

immediately followed by a very cold perturbation in the next month). Also, using the same 𝑐𝑝 value to 

quantify the magnitude of the perturbation for temperature and accumulation preserves the strong 

correlation between these variables. Warm (cold) temperature perturbations coincide with high (low) 

accumulation perturbations, which keeps our random perturbations physically plausible.  

 

The part of the total accumulation perturbation attributed to each monthly time step is weighted by the 

actual accumulation at that time step. This attributes larger absolute noise in accumulation to high-

accumulation months and lower absolute noise to low-accumulation months (Eq. (B3), (B4)).  

 

Our approach is summarized in Eq. (B1), (B2), (B3) and (B4). These equations are applied at all 

iterations of the calibration process. 

 

 𝑐𝑝~𝑁(0,1)    at all calibration sites  (B1) 

𝑇𝑡
∗ = 𝑇𝑡 + 𝑐𝑝𝜎𝑇    at all 𝑡 (B2) 

�̇�𝑡𝑜𝑡
∗ = 𝑛𝑦𝑟𝑐𝑝𝜎𝑆𝑀𝐵  (B3) 

�̇�𝑡
∗ = �̇�𝑡 + �̇�𝑡𝑜𝑡

∗ �̇�𝑡

∑ �̇�𝑡𝑡
  (B4) 

 

where 𝑇𝑡 and �̇�𝑡 are temperature and accumulation rate as computed by RACMO2 at time step 𝑡 and 

the ∗ superscript denotes the perturbed quantity. 𝑛𝑦𝑟 is the total number of years in a given 

simulation, �̇�𝑡𝑜𝑡
∗  is the total accumulation perturbation applied for that simulation and 𝜎𝑇 and 𝜎𝑆𝑀𝐵 are 

the temperature and surface mass balance flux RMSE values (as mentioned above, 𝜎𝑇 = 2.1 K and 

𝜎𝑆𝑀𝐵= 69 mm w.e. yr-1 for GrIS). Note that by using a RMSE value on the surface mass balance flux, 

we overestimate uncertainty because the observed RMSE is mostly driven by errors in melt amounts 

which do not apply at the sites of our dataset, all from the dry snow zone area. For AIS, we apply the 

exact same process for perturbing the temperature variables. We use the RMSE value reported by van 

Wessem et al. (2018) and set 𝜎𝑇 = 1.3 K. The accumulation conditions of AIS forces the use of a 

slightly different method for perturbing the accumulation rate. In terms of magnitude, RACMO2 

errors are much larger in coastal areas, where accumulation rates are high. In contrast, in the dry 

interior of the ice sheet where most of the cores of our dataset come from, the magnitude of RACMO2 
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errors is small due to low accumulation rates. As such, applying noise based on the ice sheet wide 

RMSE value would result in noise signals larger than actual accumulation values at most of our dry 

sites. We thus use the average RACMO surface mass balance bias of 5% (van Wessem et al., 2018) as 

a proxy for one standard deviation. For AIS, Eq. (B3) and (B4) are replaced by Eq. (B5). 

�̇�𝑡
∗ = �̇�𝑡 + 0.05 𝑐𝑝 �̇�𝑡  (B5) 

 

As explained in Sect. 2.2, we also let uncertainty in fresh snow density, 𝜌0, affect the calibration 

process by applying random perturbations to each 𝜌0
𝑡 . In contrast to the climatic perturbation, the 

perturbation in 𝜌0 can be specific to each single time step 𝑡, and the perturbation thus varies 

throughout the duration of a firn model simulation. Indeed, it is not unrealistic that a month with 

anomalously low fresh snow density is immediately followed by a month of anomalously high fresh 

snow density for example. We determine surface density values at each site from the firn cores of our 

dataset, 𝜌0
𝑐𝑜𝑟𝑒, and we perturb these values based on a standard deviation of 25 kg m-3. This value 

goes in line with a typical window of local variability of 50 kg m-3 for 𝜌0 (Reeh et al., 2005). As such, 

adding noise to 𝜌0 simplifies to Eq. (B6). 

𝜌0,𝑡
∗  ~𝑁(𝜌0

𝑐𝑜𝑟𝑒 , 25)  (B6) 

We emphasize that the aim of this study is not to conduct a complete sensitivity analysis of firn 

densification to climatic forcing and to fresh snow density. The objective of the perturbations is to let 

reasonable estimates of errors in those fields to be accounted for in the calibration process. 

 

B.3 Prior correlations in HL and Ar 

The Arrhenius form of HL and Ar (Eq. (2.4) and (2.5)) allows us to include some correlation in the 

prior distributions over the parameters of these models. The values of the Arrhenius pre-exponential 

factors (𝑘0
∗, 𝑘1

∗, 𝑘0
𝐴𝑟 and 𝑘1

𝐴𝑟) are correlated with their corresponding activation energies (𝐸0, 𝐸1 and 

𝐸𝑔). For any given constant temperature, modelled densification rates, 
𝑑𝜌

𝑑𝑡
 , can be kept constant 

despite a change in the pre-exponential factor if the corresponding activation energy is changed 

accordingly and vice versa. As such, changes in these parameters can potentially compensate in the 

calculation of 𝐷𝐼𝑃 values and of the likelihood function (Eq. (2.8)).  

 

By enforcing constant 
𝑑𝜌

𝑑𝑡
, exact compensation is ensured by the following equalities: 

𝑘0,𝑚𝑣
∗ = 𝑘0,𝐻𝐿

∗ exp (
𝐸0,𝑚𝑣−𝐸0,𝐻𝐿

𝑅 𝑇
)  (B7) 

𝑘1,𝑚𝑣
∗ = 𝑘1,𝐻𝐿

∗ exp (
𝐸1,𝑚𝑣−𝐸1,𝐻𝐿

𝑅 𝑇
)  (B8) 

𝑘0,𝑚𝑣
𝐴𝑟 = 𝑘0,𝐴𝑟

𝐴𝑟 exp (
𝐸𝑔,𝐴𝑟−𝐸𝑔,𝑚𝑣

𝑅 𝑇
)  (B9) 

𝑘1,𝑚𝑣
𝐴𝑟 = 𝑘1,𝐴𝑟

𝐴𝑟 exp (
𝐸𝑔,𝐴𝑟−𝐸𝑔,𝑚𝑣

𝑅 𝑇
)  (B10) 
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where 𝐻𝐿 and 𝐴𝑟 subscripts denote the values from the original publications of the HL and Ar 

models, and the 𝑚𝑣 subscript denotes a modified value of the parameter. Firstly, we generate 10000 

random values of temperature 𝑇 in the range of annual mean temperatures covered by our dataset. 

Secondly, for each random temperature, we generate random values of 𝐸0,𝑚𝑣, 𝐸1,𝑚𝑣 and 𝐸𝑔,𝑚𝑣 in an 

interval of ±500 J mol-1 around the original values. Thirdly, we calculate the corresponding values in 

the pre-exponential factors from Eq. (B7), (B8), (B9) and (B10). This results in 10000 pairs of 

(𝑘0,𝑚𝑣
∗ , 𝐸0,𝑚𝑣), (𝑘1,𝑚𝑣

∗ , 𝐸1,𝑚𝑣), (𝑘0,𝑚𝑣
𝐴𝑟 , 𝐸𝑔,𝑚𝑣) and (𝑘1,𝑚𝑣

𝐴𝑟 , 𝐸𝑔,𝑚𝑣), from which we calculate correlation 

coefficients. The absolute values of all four correlation coefficients lie in the interval [0.75; 0.78]. We 

decide to fix all prior correlation coefficients to -0.75 (HL parameters, negatively correlated) and 0.75 

(Ar parameters, positively correlated). The process described necessarily results in perfectly 

correlated 𝑘0,𝑚𝑣
𝐴𝑟  and 𝑘1,𝑚𝑣

𝐴𝑟 . We also set the prior correlation between these parameters to 0.75.  

 

We emphasize here that any other pair of a priori uncorrelated parameters can certainly be correlated 

a posteriori if the calibration process identifies such quantitative behaviour when the observed data is 

considered. This is highlighted and further discussed in Sect. B.7. 

 

B.4 The likelihood function (Eq. (2.8)) 

The covariance matrices 𝛴15 and 𝛴𝑝𝑐 that appear in Eq. (2.8) are diagonal matrices with the site-

specific variances on the diagonal. At each site, we take 10% of the observed 𝐷𝐼𝑃15 and 20% of the 

observed 𝐷𝐼𝑃𝑝𝑐 as the standard deviation, and the variance value is the square of the standard 

deviation. We take the higher value of 20% for 𝐷𝐼𝑃𝑝𝑐 because density errors propagate in firn 

models. Equation (2.3) shows that densification rates depend on the density value itself, resulting in 

error propagation through time. As such, if a model shows an offset compared to observations at 15 m 

depth, it is likely to show an even stronger offset at 𝑧𝑝𝑐. Taking a higher variance alleviates the 

strength of this effect on the likelihood calculations by allowing a larger spread of model results 

compared to observed 𝐷𝐼𝑃𝑝𝑐 values. 

 

The form of Eq. (2.8) corresponds to a normal likelihood function. This assumes that model 𝐷𝐼𝑃 

results are normally distributed around the observed values. To support this assumption, we conducted 

a preliminary verification of errors in 𝐷𝐼𝑃15 (𝑋15 − 𝑌15) and 𝐷𝐼𝑃𝑝𝑐 (𝑋𝑝𝑐 − 𝑌𝑝𝑐) computed with the 

three original models (HL, Ar, LZ) on the entire dataset. We compute a basic Kolmogorov-Smirnov 

test for both sets of errors: residuals in 𝐷𝐼𝑃15 and in 𝐷𝐼𝑃𝑝𝑐. The resulting p-values are very large: 

0.94 and 0.86 respectively. The distributions of these errors are thus in line with a normal distribution. 

We show the Quantiles-Quantiles plots for both sets of residuals in Figure B2. As explained in the 

main text, the form of Eq. (2.8) also assumes independence between errors in 𝐷𝐼𝑃15 and 𝐷𝐼𝑃𝑝𝑐, 

which is the reason why 𝐷𝐼𝑃𝑝𝑐 is calculated only from depths below 15 m. As such, observations-
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model discrepancies are essentially governed by parameter values of stage-1 densification for 𝐷𝐼𝑃15 

and by parameter values of stage-2 densification for 𝐷𝐼𝑃𝑝𝑐, with little interaction between both. The 

same preliminary verification as mentioned above allows us to evaluate the correlation between 

𝐷𝐼𝑃15 and 𝐷𝐼𝑃𝑝𝑐 errors for all three original models on the entire dataset. This yields correlation 

coefficients of 0.13, 0.60 and -0.01 for the original models HL, Ar and LZ respectively. 

 

 
Figure B2. Quantiles-Quantiles plots for the errors of the three original models (HL, Ar, LZ) computed on the 

entire dataset. The alignment of the points along the red line informs about the fit to a normal distribution. 

 

 

B.5 Convergence diagnostics 

For convergence of the RWM algorithm, the chain must traverse between the peaks of the target 

posterior distribution multiple times. Simply examining the trace of the RWM algorithm for each 

parameter provides an effective way to verify this criterion. The trace is the history of accepted 

parameter values over the entire chain. We show this sampling history in Fig. B3. The fuzzy 

appearance for each parameter of each model indicates an efficient exploration of the parameter space 

as the samples from RWM algorithm oscillate around the posterior mode. 

 

In addition to this, we compute the Gelman-Rubin statistic, which provides a numerical test for 

convergence (Gelman et al., 2013). The motivation behind this test is that if each chain (run 

independently) converges to the same posterior distribution, then the variances within each chain 

should be approximately the same. For each model (HL, Ar, LZ), we launch three different chains 

from different initial parameter values. For each parameter of each model, we calculate the mean 

within sample variance 𝑊: 

𝑊 =
𝑠1
2+𝑠2

2+𝑠3
2

3
  (B11) 

where 𝑠2 denotes the variance of an individual chain. We then calculate the between sample variance: 
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𝐵 =
𝑛

3−1
∑ (�̅�𝑖 − �̿�)

23
𝑖=1  (B12) 

where 𝑛 denotes the number of iterations within each chain, �̅�𝑖 the mean parameter value within each 

chain and �̿� is the mean of (�̅�1, �̅�2, �̅�3). From there, the estimate of the variance of the posterior 

distribution is given by: 

 𝜎2 =
𝑛−1

𝑛
𝑊 +

1

𝑛
𝐵 (B13) 

And the Gelman-Rubin statistic is defined as: 

𝑅 = √
�̂�2

𝑊
 (B14) 

Large values of 𝑅 indicate that estimates of 𝜃 values between the different chains are significantly 

different. With more iterations, the chains progressively converge to the same stationary distributions 

and the estimates of 𝜃 become similar, resulting in values of 𝑅 close to 1. We reach 𝑅 < 1.1 for all 

parameters, which proves adequate convergence (Gelman et al., 2013). Two parameters of the LZ 

model needed a larger number of iterations to reach 𝑅 < 1.1. 

 

 
Figure B3. Sampling chains of each parameter for (a) HL, (b) Ar, (c) LZ. The x-axis displays the iteration 

number, the y-axis displays the parameter value. The dashed pink line shows the value of the original model, 

which is also the starting point of each chain. 

 

 

B.6 Normal approximation to the posterior 

The ensembles of parameter combinations obtained for each model provide large samples, 

representative of the posterior probability distributions over their respective parameter space. The 
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most efficient way to assess parameter-related uncertainty is to run a model with a high number of 

random parameter combinations from these ensembles, which is demonstrated in Sect. 3. However, 

this means that for any firn modelling study, access must be easy to such posterior ensembles or an 

MCMC algorithm must be re-executed. To circumvent these practical difficulties, it is approximately 

correct to sample random parameter combinations from a multivariate normal distribution centred 

about the mean of the posterior ensemble and with covariance matrix set to the posterior ensemble 

covariance matrix. This is commonly referred to as a normal approximation to the posterior (Gelman 

et al., 2013). Table B2 provides both the posterior mean and posterior covariance for the HL, Ar and 

LZ models. 

 

We assess how random samples from the normal approximations compare to samples from the 

posterior ensembles in Fig. B4. Posterior samples and the normal approximations are very similar, 

with correlations only slightly less well captured in the tails of the distributions. As a consequence, 

the normal approximation results in a slight overestimation of uncertainty and thus conservative 

estimates of uncertainty. This has been confirmed by additional model simulations with values 

sampled from the normal approximations (not shown). 

 

 
 Parameters Posterior mean Posterior covariance matrix 

HL 
𝑘0
∗ , 𝑘1

∗, 𝐸0, 
𝐸1, 𝑎, 𝑏 

[
16.7, 649, 10760,
 21000, 0.88, 0.66

] 

[
 
 
 
 
 
34.4 40.2 4500 324 −0.0685 −0.0195
40.2 44000 618 161000 1.087 −3.670
4502 618 710000 7080 −29.95 1.94
324 1610000 7080 694000 7.86 −27.51

−0.0685 1.087 −29.95 7.86 0.0051 −0.0012
−0.0195 −3.670 1.94 −27.51 −0.0012 0.0036 ]

 
 
 
 
 

 

Ar 
𝑘0
𝐴𝑟, 𝑘1

𝐴𝑟, 𝐸𝑔, 

𝛼, 𝛽 
[
0.080, 0.028, 40900,

  0.78, 0.69
] 

[
 
 
 
 
5.62 × 10−4 1.55 × 10−4 −12.66 9.65 × 10−5 −3.23 × 10−4

1.55 × 10−4 7.41 × 10−5 −4.64 −2.04 × 10−4 1.05 × 10−4

−12.66 −4.64 360000 11.0 4.67
9.65 × 10−5 −2.04 × 10−4 11.0 0.00330 −0.00101
−3.23 × 10−4 1.05 × 10−4 4.67 −0.00101 0.00312 ]

 
 
 
 

 

LZ 

𝑙𝑧𝑎, 𝑙𝑧𝑏, 𝑙𝑧11, 
𝑙𝑧12, 𝑙𝑧13, 𝑙𝑧21, 
𝑙𝑧22, 𝑙𝑧23 

 

[
7.56, −2.091,−14.71,
  7.269, −1.019,−1.513,
6.0203, −0.09127

] 

[
 
 
 
 
 
 
 
5.27 −0.198 −1.20 −1.68 −0.0239 0.00553 −0.0606 0.00413
−0.198 0.0116 0.218 −0.0612 0.0134 −0.0158 −0.00229 −7.37 × 10−4

−1.20 0.218 14.6 −3.96 0.801 0.368 0.354 0.0129
−1.68 −0.0612 −3.96 13.3 −0.309 −0.0850 5.40 0.0166
−0.0239 0.0134 0.801 −0.309 −0.0502 −0.0173 0.0252 −4.42 × 10−4

0.00553 −0.0158 0.368 −0.0850 −0.0173 0.446 −0.429 0.0131
−0.0606 −0.00229 0.354 5.40 0.0252 −0.429 3.94 −2.59 × 10−4

0.00413 −7.37 × 10−4 0.0129 0.0166 −4.42 × 10−4 0.0131 −2.59 × 10−4 4.80 × 10−4 ]
 
 
 
 
 
 
 

 

Table B2. The posterior means and covariance matrices for the free parameters of HL, Ar and LZ. These 

statistics can be used to generate random parameter combinations following a normal approximation. 
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Figure B4. Evaluation of the normal approximations to the posterior distributions for (a) HL, (b) Ar, (c) LZ. 

Where possible, correlated parameters share a same graph. 

 

 

B.7 Posterior correlation between parameters 

The joint posterior distributions for the parameters of each model also allow us to analyse the models' 

internal structure, i.e. the correlation between their different parameters. The full correlation matrices 

are given in Fig. B5. In HL, the strongest correlation coefficients 𝑟 are unsurprisingly found for the 

pairs of pre-exponential factor and activation energy governing densification in stage-1 (𝑘0
∗ and 𝐸0) 

and in stage-2 (𝑘1
∗ and 𝐸1) with 𝑟 of 0.91 and 0.92 respectively. Higher activation energies (𝐸0 and 

𝐸1) imply stronger thermal barriers to the densification process and thus slower densification, and the 

pre-exponential factors (𝑘0
∗ and 𝑘1

∗) counter-balance the effect to still match observed 𝐷𝐼𝑃 values. In 

the same way, the activation energies are negatively correlated with their respective accumulation rate 

exponent (𝑎 and 𝑏), but more moderately (𝑟 values of approximately -0.5). The negative correlation of 

-0.28 between 𝑎 and 𝑏 themselves might be linked to the density at 15 m being the lower boundary 

and the upper boundary condition for the calculation of 𝐷𝐼𝑃15 and 𝐷𝐼𝑃𝑝𝑐 respectively. Higher values 
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of 𝑎 tend to cause lighter firn at 15 m depth. Lower 𝐸0 values compensate for this effect on 𝐷𝐼𝑃15 

because the shallow firn densifies faster due to its greater sensitivity to temperature variations. The 

lighter 15 m depth density also affects 𝐷𝐼𝑃𝑝𝑐, and lower values of 𝑏 compensate for this by 

enhancing the densification rate, which explains the negative correlation between 𝑎 and 𝑏. In Ar, the 

interpretation is more challenging due to the use of a same activation energy in both stages. There is a 

strong correlation between the activation energy 𝐸𝑔 and both pre-exponential factors 𝑘0
𝐴𝑟 (𝑟 = -0.89) 

and 𝑘1
𝐴𝑟 (𝑟 = -0.90), for the same reason as in HL. As such, this induces a strong positive correlation 

between the latter parameters (𝑟 = 0.76). The negative correlation between 𝛼 and 𝑘1
𝐴𝑟 (𝑟 = -0.41) is 

more surprising because these parameters apply to different stages, but it reveals an interesting 

pattern. Higher temperatures raise densification rates at warmer sites, where accumulation rates are 

also higher thus further amplifying this effect. Higher accumulation rates nevertheless cause light 

recently deposited firn to be buried rapidly, which may cause lower density firn governed by the fast 

stage-1 densification to extend below 15 m. To avoid underestimation of 𝐷𝐼𝑃𝑝𝑐 at such sites, stage-1 

densification rates must remain low enough but there is no possibility for adjusting a stage-1 specific 

activation energy. Lower 𝛼 values generate this effect while only marginally affecting densification at 

colder low-accumulation sites. Thus, high 𝑘1
𝐴𝑟 without a complementary lower 𝛼 would cause 𝐷𝐼𝑃𝑝𝑐 

underestimation at warm and high accumulation sites. We note here that, through the calibration 

process, the data enhanced the prior correlations we assigned in the HL and Ar models. Analysis of 

correlation coefficients in LZ is less straightforward because its governing equations, Eq. (2.6), are 

less interpretable than the plain Arrhenius relationship of HL and Ar. Still, we highlight some 

correlated pairs of parameters. As could be expected from Eq. (2.6), 𝑙𝑧𝑎 and 𝑙𝑧𝑏 are negatively 

correlated (𝑟 = -0.80). Also, the independent term of stage-1 densification 𝑙𝑧11 is strongly correlated 

with the corresponding temperature-related parameter (𝑙𝑧13, 𝑟 = 0.94). The same is valid for stage-2 

densification between 𝑙𝑧21 and 𝑙𝑧23 (𝑟 = 0.90). The positive correlation between 𝑙𝑧12 and 𝑙𝑧22 (𝑟 = 

0.74) is discussed in the main text.  

 

 
Figure B5. Posterior correlation matrices. 
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Figure B6. Comparison of evaluation data 𝐷𝐼𝑃 with model results for the LZ dual and IMAU models. 
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Site Lat Lon 

Core 

depth 

[m] 

Year Mean �̇� 

[m w.e. yr-1] 

Mean T 

[℃] 

𝜌0 
[kg/m3] 

𝐷𝐼𝑃15 

[m] 

Var 

𝐷𝐼𝑃15 

[m2] 

𝐷𝐼𝑃𝑝𝑐 
[m] 

Var 

𝐷𝐼𝑃𝑝𝑐 
[m2] 

EGRIP 75.63 -35.98 20.1 2017 0.113 -29.0 285 7.816 0.611 / / 

Summit * 72.58 -38.47 22.1 2017 0.205 -28.4 330 7.500 0.562 / / 

id359 73.94 -37.63 102.4 1993 0.124 -28.8 240 6.708 0.450 11.456 5.250 

id369 75.00 -30.00 19.9 1997 0.135 -27.6 335 7.454 0.556 / / 

id373 75.25 -37.62 100.8 1993 0.106 -29.5 275 7.826 0.612 12.372 6.123 

id385 76.00 -43.49 109.8 1995 0.124 -29.3 315 7.857 0.617 13.186 6.955 

id423 * 76.62 -36.40 143.2 1993 0.093 -29.1 310 7.716 0.595 10.666 4.550 

id514 77.25 -49.22 119.6 1995 0.163 -28.3 300 7.575 0.574 13.217 6.987 

id531 * 77.45 -51.06 75.0 2009 0.198 -27.4 320 7.434 0.553 / / 

id534 80.00 -41.14 96.0 1994 0.105 -28.4 335 7.811 0.610 11.345 5.148 

Basin8 69.80 -36.49 29.8 2003 0.350 -25.6 300 7.396 0.547 / / 

D2 71.80 -46.34 101.3 2003 0.421 -23.4 370 7.051 0.497 14.097 7.949 

D4 71.39 -43.94 143.9 2003 0.390 -24.6 300 7.394 0.547 12.770 6.523 

HumboldtM * 78.47 -56.98 141.9 1995 0.384 -24.8 280 8.062 0.650 10.947 4.794 

NASAE1 * 74.98 -29.97 19.9 1997 0.135 -27.6 340 7.394 0.547 / / 

spencer6 * 72.57 -37.62 82.3 1994 0.176 -29.0 360 4.889 0.239 / / 

spencer16 71.75 -40.75 15.0 1954 0.289 -27.0 340 7.216 0.521 / / 

spencer17 77.95 -39.18 60.0 1973 0.080 -29.3 300 5.002 0.250 7.781 2.421 

spencer66 * 70.75 -35.96 109.0 1987 0.247 -27.3 300 7.340 0.539 14.852 8.823 

spencer67 70.63 -35.83 128.6 1988 0.262 -27.0 325 7.098 0.504 14.114 7.968 

spencer68 * 70.65 -37.48 105.6 1988 0.263 -26.9 325 7.172 0.514 14.505 8.416 

spencer69 70.67 -38.79 24.8 1988 0.252 -27.1 305 7.184 0.516 / / 

spencer70 70.64 -39.62 100.1 1988 0.262 -27.0 290 6.772 0.459 14.026 7.869 

spencer71 71.76 -35.87 77.8 1988 0.203 -28.2 275 7.043 0.496 13.094 6.858 

spencer72 71.48 -35.88 25.7 1988 0.207 -28.0 330 7.223 0.522 / / 

spencer73 71.15 -35.85 70.8 1988 0.214 -27.7 340 7.230 0.523 / / 

spencer74 70.85 -35.85 26.2 1988 0.264 -26.9 330 7.087 0.502 / / 

SouthPole -90.00 0.00 122.9 2001 0.055 -47.8 325 7.613 0.580 22.312 19.913 

Newall -77.58 162.50 111.1 1989 0.043 -31.2 305 7.160 0.513 4.132 0.683 

Berkner * -79.61 -45.72 178.2 1995 0.124 -28.3 345 6.255 0.391 9.658 3.731 

DML * -71.41 -9.92 78.2 2007 0.902 -20.6 410 6.037 0.364 10.228 4.185 

id9 -76.77 
-

101.74 
111.6 2012 0.313 -24.7 470 6.194 

0.384 12.119 5.875 

id10 -76.95 
-

121.22 
62.0 2011 0.213 -28.4 355 6.947 

0.483 / / 

id11 -77.06 -89.14 114.5 2001 0.346 -26.5 415 5.879 0.346 11.201 5.019 

id12 -77.61 -92.25 67.8 2001 0.301 -27.8 350 6.019 0.362 / / 
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id13 -77.68 
-

124.00 
59.3 2000 0.155 -28.2 350 6.411 

0.411 / / 

id14 -77.76 153.38 97.1 2006 0.048 -44.6 360 6.833 0.467 17.516 12.272 

id15 * -77.84 
-

102.91 
70.7 2001 0.486 -25.1 415 5.853 

0.343 / / 

id17 -77.88 158.46 98.5 2006 0.058 -41.1 350 6.419 0.412 11.687 5.464 

id18 -77.96 -95.96 57.4 2010 0.354 -28.0 335 6.752 0.456 / / 

id19 -78.08 
-

120.08 
57.8 2000 0.171 -27.7 315 6.253 

0.391 / / 

id20 -78.12 -95.65 70.5 2001 0.324 -27.7 385 6.265 0.393 / / 

id22 * -78.33 
-

124.48 
59.9 2000 0.152 -27.7 285 6.509 

0.424 8.989 3.232 

id24 -78.43 
-

115.92 
59.8 2000 0.318 -27.8 390 6.295 

0.396 / / 

id26 -78.73 
-

111.50 
60.7 2000 0.329 -27.8 350 6.427 

0.413 / / 

id28 -79.04 149.68 100.1 2006 0.040 -44.6 405 6.703 0.449 15.584 9.714 

id29 * -79.13 
-

122.27 
63.1 2000 0.127 -27.8 300 6.507 

0.423 9.926 3.941 

id30 -79.16 
-

104.97 
72.7 2001 0.306 -28.7 400 5.921 

0.351 / / 

id33 -79.38 
-

111.24 
104.8 2000 0.239 -28.2 370 6.159 

0.379 12.943 6.701 

id35 * -79.48 
-

112.09 
160.0 2011 0.162 -28.0 460 6.181 

0.382 11.824 5.592 

id39 -80.62 
-

122.63 
57.5 1999 0.094 -25.9 370 6.253 

0.391 / / 

id43 -81.20 
-

126.17 
48.3 1999 0.070 -24.5 325 6.268 

0.393 4.975 0.990 

id46 -82.00 
-

110.01 
62.2 2002 0.180 -27.8 340 6.161 

0.380 / / 

id48 -83.50 
-

104.99 
61.7 2002 0.220 -31.0 360 6.098 

0.372 / / 

id49 * -84.40 140.63 50.1 2007 0.023 -45.4 340 6.886 0.474 / / 

id50 -85.00 
-

105.00 
44.9 2002 0.157 -36.3 360 6.422 

0.412 / / 

id51 -85.78 145.72 41.7 2007 0.033 -46.1 310 6.767 0.458 / / 

id52 * -86.50 
-

107.99 
71.6 2002 0.147 -38.8 340 6.882 

0.474 / / 

id53 -86.84 95.31 20.8 2003 0.042 -53.3 355 6.535 0.427 / / 

id54 * -88.00 
-

107.98 
54.1 2002 0.133 -41.4 355 7.009 

0.491 / / 

id55 -88.51 178.53 99.3 2007 0.081 -48.2 320 6.880 0.473 / / 

id56 -89.93 144.39 139.5 2002 0.080 -48.6 345 6.319 0.399 25.046 25.092 

spencer1 -80.00 
-

120.00 
307.0 1968 0.120 -27.2 350 6.987 

0.488 10.314 4.255 

spencer4 -66.72 113.18 200.9 1989 1.060 -22.0 380 7.848 0.616 12.847 6.602 

spencer5 -74.50 123.17 49.5 1980 0.037 -51.8 345 8.262 0.683 / / 
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spencer7 -85.25 166.50 79.9 19997 0.028 -39.7 305 7.003 0.490 8.202 2.691 

spencer8 -66.77 112.80 180.0 1997 0.488 -22.7 385 7.385 0.545 10.640 4.528 

spencer22 -73.60 -12.43 25.5 1996 0.220 -22.5 380 3.920 0.154 / / 

spencer25 -74.02 -12.02 26.5 1996 0.171 -30.7 390 5.412 0.293 / / 

spencer29 * -75.00 2.00 20.6 1996 0.072 -42.9 320 7.602 0.578 / / 

spencer33 -70.68 44.32 123.5 1978 0.114 -33.1 385 6.385 0.408 7.022 1.972 

spencer34 * -70.68 44.32 109.0 1978 0.114 -33.1 375 6.161 0.380 6.909 1.909 

spencer61 -73.10 39.75 99.7 1978 0.069 -42.3 360 7.005 0.491 16.245 10.556 

spencer62 * -71.18 45.97 100.2 1997 0.091 -38.2 395 7.049 0.497 16.344 10.686 

spencer76 -90.00 0.00 122.1 1997 0.055 -47.8 360 4.906 0.241 25.586 26.185 

spencer77 -75.00 147.00 15.8 1961 0.042 -46.1 385 7.184 0.516 / / 

spencer78 * -74.00 143.00 16.0 1961 0.043 -45.5 375 7.205 0.519 / / 

spencer79 -73.00 142.00 15.7 1961 0.057 -44.0 325 7.148 0.511 / / 

spencer80 -73.00 141.00 16.0 1961 0.057 -44.0 355 6.876 0.473 / / 

spencer81 -72.00 140.00 16.9 1961 0.080 -42.7 335 6.936 0.481 / / 

spencer82 * -71.00 139.00 15.6 1961 0.120 -41.6 375 6.848 0.469 / / 

spencer83 -72.00 143.00 15.7 1961 0.087 -41.3 405 6.796 0.462 / / 

spencer84 -72.00 146.00 16.2 1961 0.086 -40.9 410 6.876 0.473 / / 

spencer85 -72.00 148.00 15.9 1961 0.096 -40.2 360 6.745 0.455 / / 

spencer86 -72.00 151.00 15.8 1961 0.103 -39.7 400 6.963 0.485 / / 

spencer87 -72.00 154.00 15.9 1961 0.130 -38.0 355 6.430 0.414 / / 

spencer88 -72.00 156.00 15.7 1961 0.130 -37.6 395 7.050 0.497 / / 

spencer89 -72.00 159.00 15.7 1961 0.115 -35.7 370 6.665 0.444 / / 

spencer90 -83.47 138.80 340.5 1994 0.020 -45.2 420 / / 10.046 4.037 

spencer91 -83.47 
-

138.80 
47.0 1987 0.058 -27.1 295 7.037 

0.495 3.530 0.499 

spencer92 -78.47 106.80 179.3 1996 0.022 -54.6 360 8.790 0.773 20.368 16.594 

Table B1. The 91 firn core dataset used in this study. * symbols indicate the core is part of the evaluation data. 

Lat and Lon designate latitude and longitude respectively. Year indicates the year of drilling of the core. �̇� is the 

accumulation rate. T is the temperature. Values for both �̇� and T are computed from the RACMO2 model. 𝜌0 is 

the surface density boundary condition that was derived individually for each core by extrapolating density 

measurements until the surface (random noise is added to 𝜌0 as discussed in Sect. S2). Var designates the site-

specific variance used for the terms of 𝛴15 and 𝛴𝑝𝑐 (see Text S4 for their calculation). The core spencer90 has 

only a single density measurement above 15 m depth and its 𝐷𝐼𝑃15 is discarded. 
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Appendix C 

This appendix includes the Supplementary Information to Chapter 3. It includes additional details 

about the construction of the firn densification models emulators (C1), the validation of the emulators 

(C2) and the original formulations of the firn densification models (C3). It also includes a map that 

compares the ensemble mean and the spread in the ensemble results (Figure C4) and a map that 

compares the mean accumulation anomaly and the spread in accumulation anomaly from the three 

RCMs used in this study (RACMO2, MAR, HIRHAM) (Figure C5). 

 

C.1 Emulator Construction 

We first describe the construction of a single FDM emulator since all nine emulators for the nine 

FDMs are constructed in the same way. A FDM simulates firn compaction values, 𝑑ℎ𝑐 (m), and the 

emulator is a statistical approximation of the FDM computing estimations 𝑑ℎ�̂�. Calibration of the 

emulator requires a calibration set, which is given by computations of the FDM at specific calibration 

sites of the EAIS. In order to select the calibration sites, we perform k-means clustering on the mean 

annual temperature and accumulation rate values from the RACMO2 model on the EAIS domain. By 

selecting the cluster centroids, our calibration sites span the entire range of climatic conditions on 

EAIS. We test the clustering with various number of clusters, which shows that the decrease in 

differences in mean climatic values between centroids becomes marginal for numbers of centroids 

greater than 50 (Fig. C1). As such, we keep the 50 centroids of the 50-means clustering as our 

calibration sites.  

 

 

Figure C1. Mean differences in average surface temperature (left) and accumulation rate (right) between cluster 

centroids as a function of the number of clusters taken in EAIS. 

 

At each calibration site, we compute entire time series of daily FDM computations over the 1979-

2017 period. As such, the FDM requires 1979-2017 time-series of accumulation, surface temperature, 

melt rates and rainfall computed by RCMs as forcing inputs. We use the RACMO2 RCM for these 
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computations but this has no effect on the calibration and climatic sensitivity of the emulator. Indeed, 

climatic values depend much more on the calibration site than on the particular RCM, and the range 

of climatic values of the three RCMs at the locations of the 50 calibrations sites is small. Each FDM 

simulation proceeds to a spin-up until refreshment of 80 m w.e. of firn under the reference period 

(1979-2009) climate and we use the L11 parameterisation for 𝜌0 (Ligtenberg et al., 2011). A simple 

bucket scheme is used to treat the small amounts of melt and rain at calibration sites at the coastal 

margins of EAIS. We use the Community Firn Model to perform the FDM simulations (Stevens et al., 

2020). 

 

The first step in the statistical emulation is to capture long term signals in the modelled 𝑑ℎ𝑐. At each 

calibration site, the FDM 1979-2017 time series is fitted with a linear trend: 

𝑑ℎ𝑐(𝑡
∗) ≈ 𝛽0 + 𝛽1𝑡

∗  (C1) 

where 𝑡∗ is the time centred about the mid-date of 1979-2017 (i.e. 1998). As such, the coefficients 𝛽0 

and 𝛽1 capture the mean 𝑑ℎ𝑐 and the trend in 𝑑ℎ𝑐 respectively. For the purpose of estimating the 

coefficients at non-calibration sites, we perform linear regression of 𝛽0 and 𝛽1 on climatic values of 

the calibration sites: 

{
𝑏0 = 𝑎01 + 𝑎02𝑇𝑎𝑣 + 𝑎03𝜑𝑎𝑣 + 𝑎04𝑀𝑎𝑣
𝑏1 = 𝑎11 + 𝑎12𝑇𝑡𝑑 + 𝑎13𝜑𝑡𝑑 + 𝑎14𝑀𝑡𝑑

  (C2) 

where 𝑏0 and 𝑏1 are the estimates of 𝛽0 and 𝛽1 by linear regression. The coefficients 𝑎 are the 

regression coefficients, the subscripts 𝑎𝑣 and 𝑡𝑑 stand for the average and the trend in the 1979-2017 

values, 𝑇 is surface temperature (°C), 𝜑 is rate of porosity gain (m yr-1) (Eq. C3), and 𝑀 is melt rate 

(m ice equivalent (i.e.) yr-1). The use of 𝜑 instead of the accumulation rate 𝑎𝑐𝑐̅̅ ̅̅̅ (m i.e. yr-1) is 

motivated by the differences in 𝜌0 across EAIS, which leads to different inputs of pore space in the 

firn for same accumulation rates. Firn compaction is strongly sensitive to the total pore space in the 

firn column, making 𝑑ℎ𝑐 more sensitive to 𝜑 than to 𝑎𝑐𝑐̅̅ ̅̅̅.  

𝜑 =
𝜌𝑖−𝜌0

𝜌0
 𝑎𝑐𝑐̅̅ ̅̅̅  (C3) 

The regression coefficients 𝑎 are common across sites but are specific to each of the 9 FDMs, since 

these have different climatic sensitivities. The respective fits of 𝑏0 and 𝑏1 to 𝛽0 and 𝛽1 across the 

calibration sites and for all FDMs explain more than 97% of their variances and show negligible 

biases (Fig. C2). This demonstrates that the long-term compaction signal modelled by FDMs can be 

estimated by linear regression on the long-term means and trends of the climatic values that force the 

FDMs. 
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Figure C2. Fit (a) of the mean compaction values estimated by linear regression (𝑏0) to the mean compaction 

values computed by the FDMs (𝛽0) and (b) of the trend in compaction values estimated by linear regression 

(𝑏1) to the trend in compaction values computed by the FDMs (𝛽1). 

 

We calculate FDM-specific uncertainties on the estimated linear signals in 𝑑ℎ𝑐. First, we compute the 

sample error standard deviations, �̂�(𝛽0) and �̂�(𝛽1). In addition to these, we must account for the 

uncertainty associated with the estimation of 𝑏0 and 𝑏1. For this purpose, we compute the root mean 

square error (RMSE) between the 50 daily 1979-2017 𝑑ℎ𝑐 time series reconstructed using the 𝑏 

coefficients and those reconstructed using the 𝛽 coefficients. As expected, for each FDM, the RMSE 

values are larger at sites with strong compaction. By using the centred 𝑡∗, 𝑏0 is an estimate of the 

mean 𝑑ℎ𝑐 and we compute this component of the uncertainty as the across sites mean ratio  

𝜎𝑏
𝑟𝑎𝑡𝑖𝑜 =

1

50
∑

RMSE𝑖

𝑏0,𝑖

50
𝑖=0   (C4) 

As such, each FDM has its own value of 𝜎𝑏
𝑟𝑎𝑡𝑖𝑜. Multiplying the 𝑏0 value estimated at a new site by 

𝜎𝑏
𝑟𝑎𝑡𝑖𝑜 provides an uncertainty estimate due to the estimations of 𝑏0 and 𝑏1. We sum this term linearly 

with the contributions from �̂�(𝛽0) and �̂�(𝛽1) to reach an uncertainty related to the linear fit for each 

daily 𝑑ℎ�̂� value at this new site. 

 

FDM computed 𝑑ℎ𝑐 time series are non-linear, and a statistical emulator must go beyond the linear 

regression (Eq. C1) to simulate shorter term features such as seasonality and daily spikes in 

compaction. In order to capture short term patterns in 𝑑ℎ𝑐, we complement the linear regression with 

Gaussian Process (GP) regression. The GP contribution to the emulator is to capture deviations away 

from the estimated linear trend. The statistical emulator is thus expressed as: 

 𝑑ℎ𝑐(𝑡
∗)̂ = 𝑏0 + 𝑏1𝑡

∗ + 𝜀(𝑡∗)  (C5) 

where the terms 𝜀(𝑡∗) are the stochastic terms simulated by the GP. As input, the GP uses a vector of 

predictor variables 𝒙(𝑡∗), which we construct to account for different time spans of the short-term 
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features in 𝑑ℎ𝑐. As for the linear regression, the predictor variables are entirely determined from the 

RCM climatic values. We consider as predictors the daily values as well as the weekly, monthly and 

yearly rolling averages of the 𝑇 and 𝜑 variables. We discard the melt rate input for the GP calibration 

because melt rates are mostly negligible across the EAIS, and because their association with surface 

temperatures close to the melting point still allows the emulator to capture melt-related patterns in 

𝑑ℎ𝑐. Since the GP must capture deviations from the trend in 𝑑ℎ𝑐, the 𝑇 and 𝜑 values used as its inputs 

are detrended. The GP regression is most efficient when the target variable, 𝑑ℎ𝑐 in this case, 

approximately follows a Gaussian distribution. However, 𝑑ℎ𝑐 values are always positive and are 

mostly small during colder periods with some peak values in summer. This motivates a log 

transformation of 𝑑ℎ𝑐 such that log(𝑑ℎ𝑐) can be modelled as a variable with Gaussian errors (Rios 

and Tobar, 2018) and then be converted back for the results analysis. The stochastic term 𝜀 in Eq. 

(C5) is modelled as a GP with a 0 prior mean because it only captures deviations from the trend in 

𝑑ℎ𝑐. 

𝜀~𝐺𝑃(0, 𝐾(𝒙, 𝒙′))  (C6) 

For the covariance function 𝐾(𝑥, 𝑥′), we choose the commonly used squared exponential covariance 

function: 

𝐾(𝒙, 𝒙′) = 𝜎𝑓
2 exp[(𝒙 − 𝒙′)𝑇𝐷−1(𝒙 − 𝒙′)] + 𝜈 𝛿(𝒙, 𝒙′)  (C7) 

where 𝜎𝑓
2, 𝐷 and 𝜈 are the hyperparameters of the covariance function and 𝛿(𝒙, 𝒙′) is the Dirac delta 

function. The choice of this covariance function form assumes a certain degree of smoothness in the 

response with respect to the predictor variables, which is motivated by the log transformation. The 

diagonal matrix 𝐷 is formed of the length scales for every predictor, 𝜎𝑓
2 is the variance and 𝜈 is a 

noise term, also called the nugget. While 𝜈 is often omitted when emulating deterministic models such 

as FDMs, it brings significant advantages such as numerical stability and prevention of overfitting. 

Moreover, the predictor variables used by the GP are only a subset of the full RCM time series used 

by the FDM and 𝜈 can account for the variability related to inactive inputs (Andrianakis and 

Challenor, 2012). The hyperparameters are fixed by maximum likelihood estimation with respect to 

the calibration data (Rasmussen and Williams, 2006). We selected this covariance function by 

assessing the emulator performance with different possible function choices in a leave-one-out cross 

validation framework (see Section S2). We use the software package GPy for the GP regression. 

 

Every daily time step of the 50 calibration FDM simulations over the 1979-2017 period provides a 

potential training point for the GP regression. However, for 𝑛 training points, the GP calibration time 

has a scaling of 𝑂(𝑛3) and the memory requirements have a scaling of 𝑂(𝑛2) (Quiñonero-Candela et 

al., 2007). Using the entirety of the possible training points for the GP calibration is thus 

computationally impractical. It would also be highly redundant because many daily steps share similar 

predictor 𝒙(𝑡∗) and response 𝑑ℎ𝑐(𝑡
∗) values, both within a time series and across time series of 



122 
 

different sites. Furthermore, climatic conditions vary strongly across EAIS, and 𝑑ℎ𝑐 emulation at a 

given new site does not require information from all the 50 calibration sites. As such, for any new site, 

we select relevant calibration sites based on their climatic similarities. Since 𝑏0 is calculated at any 

site and represents its mean 𝑑ℎ𝑐 estimated from the long term climate, we select the two calibration 

sites with the 𝑏0 values closest to the new site 𝑏0. By doing so, the number of calibration sites used 

for the GP calibration is reduced from 50 to the 2 sites deemed most relevant to emulation of daily 

𝑑ℎ𝑐 values at a given new site. In order to address the redundancy of information in the two selected 

FDM time series, we proceed to sparse GP regression by following the Deterministic Training 

Conditional approximation (Seeger et al., 2003; Quiñonero-Candela et al., 2007; Liu et al., 2018). 

Sparse GP regression essentially approximates the full GP regression by selecting a smaller set of 

inducing inputs and cutting the computational burden of a high number of daily values in the two 

calibration 1979-2017 time series. The emulator allows a computational speedup of two orders of 

magnitude compared to the original FDMs. 

 

C.2 Emulator validation 

To evaluate the predictive accuracy of the emulator (Eq. C5), we use a leave-one-out cross-validation 

(LOOCV) technique. In total, each FDM performs simulations at the 50 calibration sites. The 

LOOCV framework consists in leaving out each site in turn from the emulator calibration and predict 

the daily 𝑑ℎ𝑐 time series at the left-out site. As such, every emulator prediction can only use the 

results of the FDM at the 49 other sites for calibration. From the emulated 𝑑ℎ𝑐 time series, we 

compute the total firn compaction over the 1979-2017 period and compare these values with the ones 

computed by the FDM at the corresponding site. This process is repeated for each of the nine FDMs 

and executed with the RACMO2 forcing. Again, the choice of the RCM for this evaluation has no 

impact, since the emulator does not retrieve any information from the RCM used to compute the 

forcing climatic time series, and climatic differences across sites largely cover climatic differences 

across RCMs. We compute several statistics from the LOOCV experiment to assess the performance 

of the emulator (Fig. C3a). The coefficient of determination (R2) shows that the emulator captures 

more than 99% of the variance in the FDM simulated total 𝑑ℎ𝑐 values. The RMSE is of 0.49 m, 

which corresponds to only 3.5% of the mean total compaction values of the LOOCV experiment and 

the small bias (+0.04 m) demonstrates that the emulator does not over- or underestimate the 

densification rates of the FDMs. Finally, the emulator reproduces low and high total compaction 

equally well, with confidence intervals that are understandably larger for larger magnitudes of 

compaction. The emulator is conservative in its prediction uncertainties because 99% of the FDM 

computed values fall within their corresponding 95% confidence intervals computed by the emulator. 

The performance of the emulator is slightly worse for the LZ15 (RMSE = 0.92 m) and Cr (RMSE = 

0.74 m) models with respect to the other FDMs. We attribute this to the very strong sensitivity of 
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LZ15 to daily spikes in temperature, and to the strongly different formulation of Cr. The latter is an 

alpine snow model with significantly different governing equations for firn densification than the 

eight other FDMs (see Section S3). It is nevertheless regularly used to simulate firn compaction over 

ice sheets (e.g. van Kampenhout et al., 2017; Agosta et al., 2019). The emulator performance on total 

1979-2017 𝑑ℎ𝑐 values is essentially governed by the accuracy of the linear trend estimations. In order 

to evaluate the ability of the emulator on a shorter timescale and thus the GP contribution, we also 

show the match between all daily emulated 𝑑ℎ𝑐 values from the 1979-2017 LOOCV experiment and 

the daily FDMs-computed values (Fig. C3b). Furthermore, we perform the same LOOCV experiment 

on only the last year of the period (i.e. 2016-2017). The results shown in Figure C3c confirm the 

predictive accuracy of the emulator over this single year. We tested this LOOCV technique with three 

other possibilities for the covariance function of the GP (Eq. C7): the exponential, the Matérn(3/2) 

and the Matérn(5/2) functions. None of these showed an improvement in RMSE, bias and confidence 

interval coverage. 

 

 

Figure C3. Results of the leave-one-out cross validation experiment. Fit (a) of the total (1979-2017) compaction 

values emulated to the values computed by the FDMs. Fit (b) of each daily compaction value of 1979-2017 

emulated to the corresponding value computed by the FDMs. Note the logarithmic colour scale in (b). And (c) is 

same as (a) but computed only over the last 2016-2017 year. 

 

C.3 Densification equations of the firn densification models 

Eight FDMs (Armap, GSFC-FDMv0, HL, HLmap, Lig, LZ15, LZmap, Morris) use Eq. (C8) as 

governing formulation for densification. 

{

𝑑𝜌

𝑑𝑡
= 𝑐0 (𝜌𝑖 − 𝜌), 𝜌 ≤ 550 𝑘𝑔 𝑚−3

𝑑𝜌

𝑑𝑡
= 𝑐1 (𝜌𝑖 − 𝜌), 𝜌 > 550 𝑘𝑔 𝑚−3

 (C8) 

with 𝜌 the firn density (kg m-3), 𝜌𝑖 ice density (917 kg m-3) and 𝑡 time (s). They vary by the 

parameterisation of the coefficients 𝑐0 and 𝑐1. 
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Armap and GSFC-FDMv0 

{
𝑐0 = 𝜌𝑤  �̇�

𝛼 𝑘0
𝐴𝑟 𝑔 exp (

−𝐸𝑐0

𝑅𝑇
+

𝐸𝑔

𝑅𝑇𝑎𝑣
)

𝑐1 = 𝜌𝑤  �̇�
𝛽 𝑘1

𝐴𝑟 𝑔 exp (
−𝐸𝑐1

𝑅𝑇
+

𝐸𝑔

𝑅𝑇𝑎𝑣
)
  (C9) 

where �̇� is the mean accumulation rate over the lifetime of each specific firn layer (m w.e. yr-1), 𝑇 the 

firn temperature (K), 𝑇𝑎𝑣 the annual mean temperature (K), 𝑅 the gas constant (8.314 J K-1 mol-1), 𝑔 

gravity (9.81 m s-2) and 𝜌𝑤 water density (1000 kg m-3). The remaining terms are calibration 

parameters. For Armap, 𝛼=0.80, 𝛽=0.68, 𝑘0
𝐴𝑟= 0.077 m w.e.-α, 𝑘1

𝐴𝑟= 0.025 m w.e.-β, 𝐸𝑐0=𝐸𝑐1= 60 000 

J mol-1, 𝐸𝑔= 40 900 J mol-1 (Arthern et al., 2010; Verjans et al., 2020). For GSFC-FDMv0, 𝛼=0.8517, 

𝛽=0.6490, 𝑘0
𝐴𝑟= 0.07 m w.e.-α, 𝑘1

𝐴𝑟= 0.03 m w.e.-β, 𝐸𝑐0= 59 269 J mol-1, 𝐸𝑐1= 57 139 J mol-1, 𝐸𝑔= 42 

400 J mol-1 (Arthern et al., 2010; Smith et al., 2020). 

 

HL and HLmap 

{
𝑐0 = �̇�

𝑎  𝑘0
∗ exp (

−𝐸0

𝑅𝑇
)

𝑐1 = �̇�
𝑏 𝑘1

∗ exp (
−𝐸1

𝑅𝑇
)

  (C10) 

For HL, 𝑎= 1, 𝑏= 0.5, 𝑘0
∗= 11 m w.e.-a, 𝑘1

∗= 575 m w.e.-b, 𝐸0= 10 160 J mol-1, 𝐸1= 21 400 J mol-1 

(Herron and Langway, 1980). For HLmap, 𝑎= 0.90, 𝑏= 0.64, 𝑘0
∗= 16.3 m w.e.-a, 𝑘1

∗= 627 m w.e.-b, 

𝐸0= 10 790 J mol-1, 𝐸1= 21 100 J mol-1 (Herron and Langway, 1980; Verjans et al., 2020). 

 

LZ15 and LZmap 

{
𝑐0 = 𝛽0 𝑙𝑧𝑎(273.15 − 𝑇)

𝑙𝑧𝑏  �̇� 

𝑐1 = 𝛽1 𝑙𝑧𝑎(273.15 − 𝑇)
𝑙𝑧𝑏  �̇�

  (C11) 

For LZ15 (Li and Zwally, 2015), 𝑙𝑧𝑎= 8.36, 𝑙𝑧𝑏= -2.061 and  

{
𝛽0 = −1.218 − 0.403 𝑇𝑎𝑣

𝛽1 = 𝛽0(0.792 − 1.080 �̇� + 0.00465 𝑇𝑎𝑣 )
−1  (C12) 

For LZmap (Li and Zwally, 2011; Verjans et al., 2020), 𝑙𝑧𝑎= 7.31, 𝑙𝑧𝑏= -2.124 and 

{
𝛽0 = −14.710 + 7.269 �̇� − 1.019 𝑇𝑎𝑣

𝛽1 = 𝛽0(−1.513 + 6.0203 �̇� − 0.09127 𝑇𝑎𝑣  )
−1  (C13) 

For both LZ15 and LZmap, the term (273.15 − 𝑇) is set to a maximum value of -10 K to avoid 

numerical instabilities and singularities in Eq. (C11). 

 

Lig 

{
𝑐0 = [1.435 − 0.151 ln(�̇�)] 𝜌𝑤  �̇� 𝑘0 𝑔 exp (

−𝐸𝑐

𝑅𝑇
+

𝐸𝑔

𝑅𝑇𝑎𝑣
)

𝑐1 = [2.366 − 0.293 ln(�̇�)] 𝜌𝑤  �̇� 𝑘1 𝑔 exp (
−𝐸𝑐

𝑅𝑇
+

𝐸𝑔

𝑅𝑇𝑎𝑣
)

  (C14) 
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with 𝑘0= 0.07 m w.e., 𝑘1= 0.03 m w.e., 𝐸𝑐= 60 000 J mol-1, 𝐸𝑔= 42 400 J mol-1 (Arthern et al., 2010; 

Ligtenberg et al., 2011). 

 

Morris  

{
𝑐0 = 

𝑘0
𝑀

𝜌𝑤 𝑔 𝜌
(1 − 3.3 𝑚)

1

𝐻(𝜏)
 exp (

−𝐸𝛼

𝑅𝑇
) 𝜎

𝑐1 = �̇�
𝑏 𝑘1

∗ exp (
−𝐸1

𝑅𝑇
)

  (C15) 

with 𝑏, 𝑘1
∗, 𝐸1 taken from the HL model, with 𝜏 the age of a specific firn layer (s), 𝜎 being the weight 

(N) exerted by the firn overlying a specific firn layer and 𝑚 is the normalized deviation of 𝜌 to a 

quadratic curve fit to the vertical profile of 𝜌. The parameter 𝐸𝛼 is assigned a value of 60 000 J mol-1, 

which is one of the values suggested by Morris and Wingham (2014). The remaining terms, 𝑘0
𝑀and 

𝐻(𝜏) are functions of 𝑇𝑎𝑣 and of the firn temperature history respectively, and as defined in Eqs. 

(C16) and (C17). 

𝑘0
𝑀 = 𝑘0

∗ exp (
−(𝐸0+(0.05606 𝑇𝑎𝑣−15.0205)×10

3)

𝑅𝑇𝑎𝑣
)  (C16) 

𝐻(𝜏) = ∫ exp (−
𝐸𝛼

𝑅 𝑇(𝜏′)
)

𝜏

0
𝑑𝜏′  (C17) 

with 𝑘0
∗, 𝐸0 taken from the HL model (Morris and Wingham, 2014).  

 

Finally, the Cr model (Vionnet et al., 2012; van Kampenhout et al., 2017) does not use Eq. (C8). 

Densification rates are given by Eq. (C18). 

𝑑𝜌

𝑑𝑡
= 𝜌 

𝜎

𝜂
  (C18) 

𝜂 = 𝑓1𝑓2𝜂0
𝜌

𝑐𝜂
exp [𝑎𝜂(𝑇0 − 𝑇) + 𝑏𝜂𝜌]  (C19) 

with 𝜂0= 7.62237 kg s-1 m-1, 𝑎𝜂= 0.1 K-1, 𝑏𝜂= 0.023 m3 kg-1, 𝑐𝜂= 358 kg m-3, 𝑓2= 4 and 

𝑓1 =
1

1+60 𝜃
  (C20) 

with 𝜃 being the volumetric liquid water content of a specific firn layer. 
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