

VOLUME XX, 2017 1

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number

On Depth, Robustness and Performance Using
the Data Re-Uploading Single-Qubit Classifier

P. Easom-McCaldin1, A. Bouridane1, A. Belatreche1 and R. Jiang2
1Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne, UK
2Department of Computing and Communications, Lancaster University, Lancaster, UK

Corresponding author: A. Bouridane (ahmed.bouridane@northumbria.ac.uk)

This work was partially supported by the QNRF under Grant NPRP No.8–140-2–065 and the EPSRC under Grant EP/P009727/1.

ABSTRACT Quantum machine learning (QML) is a new field in its’ infancy, promising performance

enhancements over many classical machine learning (ML) algorithms. Data reuploading is a QML algorithm

with a focus on utilizing the power of a singular qubit as an individually capable classifier. Recently, there

have been studies set out to explore the concept of data re-uploading in a classification setting, however,

important aspects are often not considered in experiments, which may hinder our understanding of the

methodology’s performance. In this work, we conduct an analysis of the single-qubit data re-uploading

methodology, in relation to the effect that system depth has on classification performance, and robustness

against the influence of environmental noise during training. We do this in an effort to bridge together

previous works, solidify the concepts of the methodology, and provide reasonable insight into how

transferable the methodology is when applied to non-synthetic data. To further demonstrate the findings, we

also analyse results of a case study using a subset of MNIST data. From this work, our experimental results

support that an increase in system depth can lead to higher classification performance, as well as improved

stability during training in noisy environments, with the sharpest performance improvements seemingly

occurring between 1-3 uploading layer repetitions. Leading on from our experimental results, we also suggest

areas that for further exploration, to ensure we can maximize classification performance when using the data

re-uploading methodology.

INDEX TERMS Machine Learning, Quantum Computing, Quantum Machine Learning.

I. INTRODUCTION

Quantum machine learning is a rapidly expanding domain,

bringing promising performance enhancements through

complex feature space representations [1-5] and lowering

computational complexity of equivalent classical algorithms

by exponential factors in cases [6-11]. Variational quantum

circuits (VQCs) are currently an area of large interest in the

field [12-20], and provide a natural progression point for

developing quantum algorithms due to their optimization

capability.

VQCs often appear to be initialised using circuit structures

and designs which are seemingly chosen at random, or have

very little justification. Whilst this may work fine in certain

scenarios, we need to look at what aspects of these circuits

improve our performance, and whether certain features, such

as the depth to our circuits, are most beneficial. Two measures

of circuit capability referred to as ‘expressability’ and

‘entangling capability’ were explored initially in [21]. This

was furthered in [22], where the performance of these circuits

were compared in a classification setting. These studies

suggest that expressability and performance of VQCs will start

to plateau at a point, however this point may change dependent

on the circuit used.

An encoding and classification strategy that has shown to

be promising for an individual qubit is the concept of data re-

uploading, introduced in [23]. Here, layers of parameterized

gates are repeated to embed classical input data into Hilbert

space. As a minimum, only a single qubit is required for

classification, which makes this a promising methodology to

pursue.

A critical aspect that should be explored when using data

re-uploading is the correlation between circuit parameters and

performance. These parameters could be considered as the

number of qubits, entanglement usage and depth (i.e. the

VOLUME XX, 2017 2

number of uploading layers used). The original proposal of

data re-uploading partially explored these parameters, where

added depth to the circuit did show performance increasing,

before beginning to saturate. However, arguably there was not

enough evidence to support that increasing depth, qubits or the

use of entangling layers is always necessary to consistently

improve upon performance.

Many QML algorithms are designed and tested with

simulations. Whilst simulations can be effective in

determining optimal performance, they leave an important

factor of how the results of the proposed system may translate

across to a real-world task through a quantum processing unit

(QPU). An analysis in [24] took this into account, showcasing

results processed using a QPU. However, little insight was

provided into showing any correlation between circuit

parameters and performance.

Ultimately, effective use of each qubit is especially

important at the current NISQ era of quantum computation, as

we are fairly limited by qubit cohesion and connectivity in

QPUs. Many quantum algorithms rely on a moderate to large

number of cohesive qubits to compute or encode inputs, which

is not necessarily practical to use at the current time.

 Also, it is especially important that we can maximise the

working potential of each qubit used during computation, so

that when the approach is extended to multiple qubits, the

efficiency of the architecture is not affected. Doing so will not

only allow us to understand the computational power that a

single qubit possesses, but also provide an insight into

effective VQC design, where each qubit can be maximally

used. Because of the reasons outlined here, this work will

focus on the use of a single qubit only.

Overall, recent works that explore data re-uploading

described previously lack an important aspect which should be

examined, such as correlations between system parameters

and classification performance, or how the influence of noise

affects classification performance. These are aspects which

should be examined together in order to gain a full

understanding of the methodology, and how this may translate

to the wider field. Therefore, the aims of this work are to

determine any correlations present between circuit parameters

and performance, and to determine how this may translate to

use in noisy environments, using a single qubit only.

Ultimately, the contribution of this work will be through an

analysis of classification performance using the data re-

uploading single qubit classifier. Through our experiments, we

aim to identify key trends within system design, which can not

only aid classification performance, but improve robustness of

training in noisy environments. The work presented here will

not only aid in our understanding of performance using the

data re-uploading methodology, but how we can adapt our

VQC design, to maximise the effectiveness of each available

qubit dependent to the environment.

In order to achieve these aims, previous work will be

bridged through an analysis of classification performance with

varied circuit depths, using artificially generated datasets of

incrementing difficulty. The resulting embeddings will be

examined, where necessary, to give indications of how they

change dependent to the input and design of the VQC. This

will aid our search in determining effective embeddings of

data, which are capable of producing higher-performing

standards of classification. In addition, this will determine

whether the methodology remains viable as the dimensionality

of the task increases.

Alongside this, a case study will be conducted using

MNIST data to provide a realistic indication of how the

methodology may translate across to a scenario with non-

artificial data. The inclusion of this will help to negate any

biases that may have occurred due to the inclusion of

artificially generated data.

In addition to the previous points, the methodology will be

tested using a simulated noisy quantum environment. Doing

so will help us to identify any design considerations that may

assist convergence during training, and reach higher levels of

performance.

The contribution of this work is through an in-depth

analysis of the data re-uploading methodology. In this work,

we identify general correlations between increased system

depth supporting improved classification performance. Our

experimental results also support that increasing system depth

FIGURE 1. Overview of the data re-uploading process from i-dimensional data-point to measurement. Firstly, the input data-point is recognized as a
single column vector. Then, each input dimension is ‘uploaded’ by an arbitrary unitary gate, using a weighted sum of 2 rotational parameters per input.
This process is repeated until each datapoint dimension has been encoded, where the qubit is finally measured with respect to a target state.

VOLUME XX, 2017 3

may boost stability during training in noisy quantum

environments, leading to better overall performance.

The structure of this paper is as follows. Firstly, we will

briefly introduce the methodology of data re-uploading, to

provide some background knowledge required. Then, an

outline of our experimental setup and produced results will be

described. Afterwards, an analysis of the produced results will

be conducted, where we can identify key aspects in order to

draw any conclusions.

II. METHODOLOGY

Within machine learning, we are often presented with data that

is in the form of a column vector. Data re-uploading is a

methodology in which we can encode these vectors into a

feature Hilbert space using successive unitary operations,

acting on each dimension of the input. For any 𝑆𝑈(2)

operation U, we are able to decompose the operation into the

following [36]:

 𝑈 = 𝑒𝑖𝛼𝑅𝑧(𝛽)𝑅𝑦(𝛾)𝑅𝑧(𝛿) (1)

Where 𝛼 ∈ ℝ is the global phase factor, and 𝛽, 𝛾, 𝛿 ∈ ℝ are

the Euler angles that define each rotation. Here, we can then

define the Euler angles as:

𝛽 = 𝜃𝑖 + 𝑥𝑖 ∙ 𝜙𝑖
𝛾 = 𝜃𝑖+1 + 𝑥𝑖+1 ∙ 𝜙𝑖+1
𝛿 = 𝜃𝑖+2 + 𝑥𝑖+2 ∙ 𝜙𝑖+2

(2)

With θ and ϕ being weight parameters fed into our

optimization loop, and 𝑥𝑖 being the value of our input 𝑥 at

dimension 𝑖. These trainable weights define the extent to

which the state of the qubit is rotated, with respect to the value

of the input. From these parameter definitions, we can utilize

a maximum of three input dimensions per unitary operation.

From here, we can cycle through our input vector, encoding

a set of three data dimension values at a time, until the input

vector has been fully encoded. In the proposed methodology,

this is referred to as a full ‘upload layer’ of the data. By

repeating this embedding of input data and adding successive

uploading layers, a highly-complex feature Hilbert space can

be created in an attempt to improve the learning capacity of

the algorithm.

Once the input vector has been uploaded to the specified

number of times, then the fidelity of the encoded quantum

state is measured with respect to a target state. For each task,

we pick a set of target states that are maximally distanced from

each other, e.g., for a binary classification task, we could

configure the target states for each datapoint of class 0 to be

state |0⟩, and each datapoint of class 1 to be state |1⟩.
The loss function that is used throughout this work is based

on the weighted fidelity loss function defined in [23], however

we exclude the individual class weightings. Defined in eq. 3,

the loss function aims to minimize the fidelity of datapoints

between their current state and respective target states, where

𝜃 and 𝜙 are parameters to be optimized, 𝑥 is the input data, D

is the size of the training/validation dataset and C is the

number of classes.

A full, detailed description of this method can be found at

its’ proposal in [23], however a brief example is detailed in

figure 1 for simplicity.

III. RESULTS

A. EXPERIMENT SETUP

1) BARREN PLATEAU PROBLEM

As a preface before describing the following experiments, it is

relevant to address the barren plateau problem that is largely

present when training VQCs and the effect that this has if not

considered. Barren plateaus are areas of near-zero gradient

within the loss landscape that, if not considered, can

substantially affect the training of VQCs and not allow for

stable convergence to a minimum in sufficient time.

This problem was addressed in [25], where several

approaches have been considered since to avoid this problem,

such as local cost functions [26, 27], evaluating initialized

weights [28], or the use of quantum natural gradient [29, 30].

For the following experiments, the problem of barren

plateaus is considered by initializing 10 randomized weight

sets, where all weight sets are initialized using a Gaussian

distribution, with a mean of 0 and standard deviation of 0.1.

We use these values as within preliminary experiments, they

produced more consistency between training samples than

other weight initialization values.

For each weight set, a single epoch was conducted on the

test dataset. The parameter set that produced the lowest test

loss value initially was then used thereafter throughout

training. Whilst this helped to avoid the problem of barren

plateaus in our experiments, it should be pointed out that this

is a temporary solution to the problem only and alternative

measures should be analyzed for a better solution to avoiding

the barren plateau problem.

2) EXPERIMENTATION PLAN

To outline the following results, the concepts targeted by this

work will be addressed in order. Firstly, to consider how depth

affects performance of the data re-uploading scheme, the

number of layers used within the system will be incremented

from 1 to 10. Alongside this, data dimensionality will be

increased from 3 up to 15 in increments of 3 to determine the

effect of increased classification difficulty. This will be

extended from binary to multi-class classification tasks, in

order to provide reasonable assumptions on how this

performance may translate to other tasks.

Secondly, within QPUs, quantum noise from external

factors (e.g. environmental) can negatively impact the output

1

2
∑ ∑ (𝐹(𝜃, 𝑥⃗𝑑 , 𝜙⃗⃗) − 𝐹𝑐(𝑥⃗𝑑))

2
𝐶

𝑐=1

𝐷

𝑑=1

(3)

VOLUME XX, 2017 4

of the quantum system executed. To account for this,

simulated noise of varied strength will be included, in order to

determine the robustness per system depth used.

Thirdly, a case study of non-synthetic data (MNIST) will be

included to give a realistic indication of the performance that

the methodology may bring to a real-world task.

For all of the following experiments, the PennyLane library

[31] was used, alongside the PyTorch interface. For non-noisy

environments, the Qulacs [32] qubit simulator plugin was used

within PennyLane, and for noisy environments, PennyLanes’

mixed state simulator was used. For reproducibility, all

relevant randomization seeds were set to zero, unless stated

otherwise.

All artificially-generated data was natively handled using

scikit-learn [33], as this allowed for much greater flexibility in

defining the data and features used appropriately. For each

dataset, unless otherwise specified, the parameters were set to

use 1 redundant feature, 2 informative features, 1 cluster per

class, a class separation of 1 and a random generation seed of

1234.

B. LAYER CORRELATIONS

For the following results, artificial datasets were generated,

consisting of 500 train and 1500 test images split evenly

between the number of classes used. 30 epochs of training

were used per experiment, using SGD optimizer and a learning

rate of 10−2, unless otherwise stated. We use these

hyperparameters as from preliminary experiments, this

produced much more stable convergence on average than

higher learning rates, whilst reducing the computation time per

experiment in comparison to lower learning rates with

additional epochs.

Figure 2 shows results of a binary classification task, where

the depth of system (i.e. number of layers) is varied from 1 to

10 and the dimensionality of the dataset increased from 3 to

15 dimensions, in intervals of 3 dimensions. The generally

expected behaviour here would be for the overall trend of

performance per layer over each dimension to worsen, due to

the scaling of difficulty of the task, with each individual

dimensional groups’ performance improving as layers are

added, giving increased learning capacity to the system.

FIGURE 2. Result charts of a binary classification task, using layer depths N of 1-10 per each dataset dimension D. The chart displays training set loss
(top-left), test set loss (top-right), training set accuracy (bottom-left) and test set accuracy (bottom-right).

FIGURE 3. Bloch sphere visualizations of test set embeddings at
epoch 30 with varied system depth. The top row represents correctly
classified points (green) versus incorrectly classified points (red). The
bottom row represents the distribution of classes (different colour per
different target class value). Left to right on both rows is the system
depths of 1 layer, 7 layers and 10 layers respectively.

VOLUME XX, 2017 5

The chart displaying test loss in figure 2 is fairly consistent

with this behaviour until 12 dimensions are reached. From

here, the behaviour almost reverses, where the performance of

the system does not improve with additional layers until after

6 layers, where it appears to plateau.

Focusing on 3-dimensional loss results, fairly consistent

performance increases can be seen with added depth until 7

layers, where performance starts to regress and worsen

thereafter. This behaviour is not unique and happens on more

than one occasion. Regardless of the slight regression within

the loss value, the system still classifies the vast majority of

the test set correctly, and does not change throughout the

different depth values implemented.

Figure 3 displays embeddings of test data using Bloch

sphere visualizations, with layer depths of 1, 7 and 10 at epoch

30. Regardless of the number of layers, it can be seen that the

system still classifies each point correctly, minus the outliers

which are heavily nested inside the opposing classes cluster.

However, figure 3 shows the advantage brought by an

increased system depth, that of allowing for more complex

mappings of data. A depth of 1 layer produced a fairly linear

embedding in this case, where the distribution of points is

quite narrow along that particular rotational line, whereas 10

layers allowed for rotations to occur in the embedding, and

thus form a more complex feature space.

In the case of the data used here, perhaps only a simpler

complexity of embedding was needed to separate the clusters

and classify them to a high degree of accuracy. However, for

data that is not so separable with an intensified overlap

between clusters of datapoints, the advantage of increased

depth may become more apparent.

Figure 4 shows results of a binary classification task using

a dataset with an extreme overlap between class clusters, more

so than the data used previously. This dataset was generated

using 3 informative features, 4 clusters and a class separation

of 2. The dataset consisted of 500 train and 1500 test images

split evenly between the 2 classes. Each experiment was

trained for 10 epochs, using stochastic gradient descent

optimization and a learning rate of 10−3 to avoid overfitting

in this case.

Again, it can be seen that improvements in performance

occur with an increased system depth, however these

improvements begin to saturate after approximately 3 layers.

In comparison to previous results, these performance increases

are much more stable, and any regressions in performance

with additional depth are at a smaller scale. In addition, there

are a much higher proportion of misclassified points using a

lower number of layers, when compared to the previous results

gathered and displayed in figure 2.

If we look to the embeddings of the test set data displayed

in figure 5, the embedding capability of a single layer is much

more rigid and restricted in comparison to 10 layers, which

allows for a greater degree of flexibility in its’ mapping of

FIGURE 4. Top – Euclidean space view of the 3-dimensional dataset
used, with considerably more overlap between class clusters. Bottom –
Charts displaying test set loss (left) and test set accuracy (right) at
epoch 10, with varied system depth between 1-10 layers.

FIGURE 5. Bloch sphere visualizations displaying embeddings of the
test dataset shown in figure 4. The top row represents correctly classified
points (green) and incorrectly classified points (red). The bottom row
show the distribution of classes (different colour per different target
class value). Left to right on both rows is a system depth of 1 and 10
layers, respectively.

VOLUME XX, 2017 6

data. This flexibility results in the system being able to

separate each class more effectively.

In the case of the first experiment, a system depth of a single

layer, requiring 6 parameters in total, was sufficient to perform

to a high standard. Whilst increasing depth generally improved

the confidence of these scores up until 7 layers, these

additional layers were unnecessary to determine much better

performance and just increased complexity.

For the secondary dataset with a severe overlapping

between data clusters, a much more complex level of

embedding was needed to classify the dataset to a good

standard, which was not sufficiently found until 3 layers and

onwards. The performance increases between layers 1, 2 and

3 here in figure 3 are much bigger in proportion to those shown

previously in figure 2.

However, as we increase the number of classes within the

classification task, the boundaries for each class region on the

Bloch sphere will become smaller when using a single qubit.

For a multi-class task, higher levels of embedding flexibility

than that of a binary task may be required to effectively map

each datapoint to their respective class region.

Figure 6 displays 4 result charts gathered from a multi-class

classification task, consisting of the default data generation

scheme described earlier, with 3 datapoint classes. Looking at

the general behaviour between depth and data dimensionality,

straight away it can be seen that there is a correlation between

depth and performance. The correlation shown here is

arguably much stronger than that of the initial set of results

displayed previously in figure 2.

Whilst performance improvements can be seen with added

system depth, these improvements do saturate and begin to

plateau at a point. On average, the sharpest increases to

performance occur between 1-3 layers, and quickly plateau

thereafter. As before, there are cases where performance starts

to regress, such as test set performance using 15-dimensional

dataset. However, as there is a spike at the corresponding train

set performance, it is unclear whether aspects of these

performance regressions are due to slight overfits towards the

training data.

FIGURE 6. Result charts of a 3-class classification task, using layer depths N of 1-10 per each dataset dimension D. The chart displays

training set loss (top-left), test set loss (top-right), training set accuracy (bottom-left) and test set accuracy (bottom-right).

FIGURE 7. Bloch sphere visualizations displaying embeddings of the
test dataset used for results shown in figure 6. The top row represents
correctly classified points (green) and incorrectly classified points (red)
at epoch 30. The bottom row displays the distribution of classes at epoch
30, with each colour representing a different class. From left to right on
both rows is a system depth of 5, 6 and 7 layers, respectively.

VOLUME XX, 2017 7

In figure 2, the classification accuracy using a single layer

was much higher in proportion to successive layers than in the

case of results shown in figure 6. This suggests that the data

here was much harder to classify to a high standard, where

embedding complexity is a key feature in determining

classification performance.

Upon a closer review, there are cases where test set

performance starts to regress. This is apparent with 6-

dimensional and 9-dimensional data results, where a spike

occurs when 6 layers are used. In an inspection of the

corresponding embeddings displayed in figure 7, we can see

that the embedding of layers 5 and 7 are very similar.

However, the data distribution formed from 6 layers is closer

together.

Figure 8 displays test set loss values over training for a

system depth of 5, 6, and 7 layers using 6-dimensional data.

Here, it can be seen that layer 6 has a much slower

convergence rate in comparison to layers 5 and 7 in this

scenario. However, where the curves for 5 and 7 layers appear

to plateau, the curve for 6 layers is still steadily decreasing.

This implies that the initial weights for layer 6 may have been

initialized in a region of lower gradient than the weights of

layer 5 and 7. This would cause a delay in convergence,

similar to the behaviour in figure 8. If training were to be

continued, then it is likely that the curves would meet at

roughly the same boundary between loss values of 0.10-0.11.

Whilst weight initialization may a factor in the drop of

performance in this case, it is difficult to state that this factor

caused performance drops in other cases throughout this work.

For example, there are cases of performance regression

occurring, i.e., test set performance using 15-dimensional data

at 10 layers displayed in figure 6. However, there is also a drop

in the corresponding train set performance, which suggests

that this may have been a slight overfit causing the drop in

performance and not related to the mapping of data or

initialization of weights.

Overall, the previous results support that increasing system

depth does generally improve classification performance on

average, with the biggest improvements usually occurring

between depth increments of 1, 2 and 3 layers. From

visualizing the differences between depth increments, a clear

advantage that increased depth has is by being able to produce

much more complex mappings of data.

However, in cases, increased depth does not necessarily

relate equally to improved performance. This implies that an

optimal depth is data dependent, where depending on the

complexity of the task more layers are needed to effectively

separate each class cluster towards their respective target

states. Due to the innate randomness of weight initialization, it

is hard to justify the impact this this or other reasons had on

performance, i.e., whether any drops in performance were

related to suboptimal initial weights, slight overfitting to

training data or purely from the depth specified at the time.

C. INTRODUCTION OF NOISE

To simulate the effect of noise during training in a QPU

environment, amplitude damping channels are implemented

within the system after each unitary gate. Whilst there are

many quantum noise channels which could be used to simulate

noise (e.g. bit-flips, de-phasing and depolarizing channels),

amplitude damping was implemented as it provides a realistic

noise model, and is frequently used to model noise within

other works [5, 34]. Amplitude damping is a model of qubit

energy relaxation through interactions with the environment

over time. The result 𝑄 with decay probability 𝛾 ∈ [0, 1] of

Kraus operators 𝐾 acting on the density matrix 𝜌 is:

𝑄𝛾(𝜌) = 𝐾0𝜌𝐾0
† + 𝐾1𝜌𝐾1

†
(4)

Where:

𝐾0 = [
1 0

0 √1 − 𝛾
] , 𝐾1 = [0 √𝛾

0 0
]

(5)

The effect that amplitude damping has on the qubits’

density matrix can be defined as:

𝑄𝛾(𝜌) = (
𝜌00 + 𝛾𝜌11 √1 − 𝛾𝜌01

√1 − 𝛾𝜌10 (1 − 𝛾)𝜌11

)
(6)

For all experiments using simulated noise, amplitude

damping is implemented within the mixed state simulator

available through the PennyLane library. More information on

the amplitude damping channel can be found at [35].

For the following experiments, 3 and 15-dimensional

artificially-generated data was initialized, with a train to test

image split of 50 to 150 datapoints per class. For each dataset

dimensionality, the noise magnitude was incremented from 0

to 1, in intervals of 0.1 and the circuit depth was also increased.

Each training session consisted of 30 epochs of training, using

stochastic gradient descent for optimization and a learning rate

of 10−2.. In each experiment, final loss values at epoch 30

were taken, and the change between these values per noise

magnitude 𝜆 was recorded.

As we implement simulated noise after each parametrized

gate, as the defined number of layers and task dimensionality

increases, naturally the occurrences of noise will increase

proportionally. Therefore, we measure the change in loss in

proportion to the occurrences of noise within that particular

FIGURE 8. Plot of test set loss result per epoch using 6-dimensional
data and a system depth of 5, 6 and 7 layers.

VOLUME XX, 2017 8

circuit. This avoids any unfair advantage that a lesser depth

circuit may possess, since noise would naturally be

implemented less than a circuit with a higher depth.

Within figure 9, it can be seen that for lower circuit depths

of 1 and 3, the increases within the final training loss value are

much bigger in comparison to a larger circuit depth, as noise

magnitude increases. However, as the number of layers is

increased, this rate of change does begin to saturate. In this

case, the visible drop-off in training loss to the right-hand side

can be justified. For a binary classification task, the associated

target states will be located on opposing points on the Bloch

sphere, or states |0⟩ and |1⟩ for simplicity. As noise

magnitude increases, the distribution of datapoints will be

drawn closer towards the |0⟩ state. If the noise is extremely

strong, then the datapoints with target state |1⟩ will be very far

away, unable to be drawn further away. As loss is calculated

using the measure of fidelity between states, this explains the

corresponding drop off.

Again, as shown in figure 10, the rate of increase is much

larger for lower numbers of layers used, even with a larger

dataset dimensionality of 15. In this case, a drop can again be

seen to the right-hand side of the chart, as a result of the

decrease in fidelity between datapoints and their target states

slowing down.

From figures 9 and 10, these results suggest that using a

circuit of larger depth may perhaps bring an advantage of

robustness against the influence of noise during training.

Whilst the benefits of this did appear to saturate as we got

closer to a layer depth of 10, these results do suggest that using

additional layers may allow for a better quality of training, by

resisting the influence of environmental noise, ensuring that

the training can converge more stably.

Figure 11 displays the proportional change to training loss

for a 3-class classification task using 3-dimensional data.

Here, a much sharper performance regression can be seen for

1 layer as noise magnitude increases. Regardless of noise

increments, 7 and 10 layers show a fairly stable level of

increase in loss, only showing signs of divergence from

~𝜆=0.8.

In contrast to previous results, there is a diverging behaviour

to the right-hand side of the charts. As the results in figure 11

were produced from a 3-class classification task, the

maximally-distanced target class states are distributed more

heavily away from the |0⟩ state in our setup. Because

datapoints are drawn closer towards the |0⟩ state as noise

magnitude is increased, the associated loss value will increase

at a higher rate than that of a binary classification task due to

a larger cumulative distance between each datapoint and its’

target class state.

FIGURE 9. Plot displaying the proportional change in final training loss
values between 0.1 intervals of noise strength values 𝝀 for N layers. The
results shown are for a binary classification task, using 3-dimensional
data.

FIGURE 10. Plot displaying the proportional change in final training
loss values between 0.1 intervals of noise strength values 𝝀 for N layers.
The results shown are for a binary classification task, using 15-
dimensional data.

FIGURE 11. Plot displaying the proportional change in final training
loss values between 0.1 intervals of noise strength values 𝝀 for N layers.
The results shown are for a 3-class classification task, using 3-
dimensional data.

VOLUME XX, 2017 9

Similar behaviour can be seen in figure 12, showing results

from a 3-class classification task, using 15-dimensional data.

Here, layers 7 and 10 show consistently lower changes in

comparison to lower layers of 1 and 3. However, again there

is a much larger difference between 1 layer and 3 layers than

7 layers and 10 layers. This supports that whilst additional

layers may provide added robustness against the effects of

noise during training, this benefit does saturate as more and

more layers are implemented to the system.

Overall, the results displayed within this section support the

possibility of an advantage of robustness against noise during

training, when additional layers are implemented to the

system. Whilst plots showed a higher variance of training loss

between noise intervals using 15-dimensional data (shown in

figures 10 and 12) over 3-dimensional data (shown in figures

9 and 11), a higher depth consistently showed more stability

throughout experiments, rather than the diverging behaviour

seen in lower layer depths.

However, similar to results seen previously throughout

section 3B, any advantage of robustness during training

appeared to plateau as depth increased. The sharpest of

improvements could be seen between 1 layer used and 3 layers

used. The differences between 7 layers and 10 layers used

were minimal, and arguably not worth the increase in

complexity that additional layers would bring.

D. MNIST CASE STUDY

Previously, experiments have been conducted using

artificially-generated datasets. Whilst this is acceptable for

examining specific details surrounding performance, it does

not always give a realistic representation of how the algorithm

may perform on a non-artificial dataset.

For this reason, the following results will be from

experiments using MNIST data. For these experiments, a

subset of the MNIST dataset was used, consisting of 200

images per class within the training set, and 100 images per

class within the testing set. Each image used was normalized

and downsampled to a size of 9x9, in order to reduce the

processing time required.

FIGURE 13. Figure displaying results from binary and multi-class experiments using downsampled MNIST data. Left – Test set loss (top) and
test set accuracy (bottom) results from a binary classification task (classes 0 and 1), with varied noise magnitude 𝝀 and a system depth of 1

layer. Right - Test set loss (top) and test set accuracy (bottom) results from a 3-class classification task (classes 0, 1 and 2), with varied noise

magnitude 𝝀 and a system depth of 1 layer.

FIGURE 12. Plot displaying the proportional change in final training
loss values between 0.1 intervals of noise strength values 𝝀 for N layers.
The results shown are for a 3-class classification task, using 15-
dimensional data.

VOLUME XX, 2017 10

For the hyperparameter choice, a system depth of a single

layer was used, again to reduce processing required. For

optimization, Adam [37] was implemented with a learning

rate of 10−4. Each experiment was trained for 30 epochs, with

test set results taken at the end of each training epoch.

To give a representation of noise impact on non-artificial

data, the same schematic for noise introduction was used as

outlined in previous results. 6 experiments were conducted per

dataset, with magnitudes of noise increasing from no noise to

a value of 0.5 in intervals of 0.1.

By looking at the results of a binary classification task

(using digit classes 0 and 1) displayed on the left-hand side in

figure 13, it can easily be seen that the experiment with zero

noise performed to an excellent level within 5 epochs. As the

noise magnitude is increased, the system is still able to classify

the test dataset to an excellent standard between noise values

of 𝜆 = 0.1 and 𝜆 = 0.2. However, the loss value begins to

converge to approximately 0.15, making this a more realistic

level than the loss result with zero noise influence.

For results with 𝜆 = 0.2, a delay in accuracy increase can be

seen, where improvements do not occur until approximately

epoch 19. As the loss value is decreasing at a satisfying rate,

this delay can be justified from the distribution of all

datapoints residing in a single state region only until this time.

Once a noise magnitude of 0.4 is reached, the system is unable

to produce any effective encoding of data and performance is

at a minimum throughout.

By looking at results using 3-classes (digits 0, 1 and 2),

displayed on the right-hand side of figure 13, the performance

is further decreased than when classifying 2 classes only, with

a max test set accuracy of 88.7% with no noise influence. As

noise in increased to a value of 𝜆 = 0.1, similar levels of

performance are reached, with a final test set accuracy value

of 88%, however convergence is much slower than when no

noise is present.

As noise becomes stronger to 𝜆 = 0.2, performance starts to

plateau after epoch 15 despite a sharp improvement between

11-15 epochs. Similar to binary classification results, once the

level of noise reaches a magnitude of 𝜆 = 0.3, the system is

unable to perform at a level better than random, since all

datapoint will be located in a single target region.

Overall, the results shown in in this section using MNIST

data are very good within the binary classification task, for

noise levels up to 𝜆 = 0.2, even with the increase in

convergence time. When extended to a 3-class task,

performance did have a substantial drop, however, the target

state boundaries are also lesser as additional classes are used.

For both tasks, as noise reaches higher levels, then the

system is unable to cope with the influence brought and is

unable to converge to a level different than random guesses.

These results were with a single uploading layer only, where

previous results show adding extra depth may provide the

robustness and complexity of embedding needed to classify

the datapoints to a higher accuracy.

IV. DISCUSSION

The aim of this work is to bridge knowledge between previous

works, determine any correlation between system depth and

performance using the data re-uploading methodology, test

robustness of the system when using different depths, and

finally provide an indication of how this methodology may

perform on non-artificially generated data.

From the results gathered within this work, we have

identified a general trend where increasing depth does tend to

improve upon previous performance. However, the sharpest

performance benefits seem to occur between 1-3 uploading

layers. After approximately 3 layers were introduced, any

performance increases were often not as distinctive, where the

increased depth just added complexity to the system with little

reward in performance.

In cases, (e.g. the case of 10 layers trained on 15-

dimensional data, displayed in figure 6), it could be seen that

increasing depth did not relate to improved performance. In

some of these cases, this could be justified from factors such

as slight overfitting to the training data used, or perhaps from

other factors, such as the initial weight selection. In these

cases, it is hard to determine whether any regression in

performance occurred solely from the selected depth, or from

the influence of other factors.

A large advantage shown with an increased depth is the

allowance for more complex embeddings of data. Lower

circuit depths with lower total parameters were fairly rigid in

their embedding capability, therefore restricting the freedom

of movement needed in order to effectively separate the

overlapping data clusters.

When examining from a perspective of noise, our results

support that a higher system depth could be linked to

robustness of noise during training. In comparison to lower

system depths, higher depths had consistently smaller

proportional changes as noise magnitude increased, therefore

providing a more stable platform to train from. However, as

with general classification performance, this advantage of

robustness did saturate as additional layers were implemented,

with the sharpest robustness improvements generally

occurring between 1-3 layers.

In the case of experiment results using MNIST data, the data

re-uploading methodology showed promising binary

classification results, using only a single layer of 162 total

parameters. As the levels of noise increased here, good

performance was still achieved with lower noise levels, but

was unable to converge after a noise magnitude of 𝜆 = 0.3.

Whilst the results gathered on MNIST data may not be

state-of-the-art, it should be considered that this performance

was achieved using a single layer and a single qubit only.

Therefore, these results are fairly promising in relation to the

early state that QML is in. As this methodology expands to

multiple qubits of larger depth, then this performance can only

hope to be improved upon, and extended to much higher

numbers of classes.

VOLUME XX, 2017 11

In the wider field of QML, we are able to link insights

gathered from our experimental results to other relevant works

directed towards VQC design and implementation. In [21],

expressability of a qubit was determined by its ability to

navigate the Bloch sphere, which was also analysed in [22].

Our results support the idea that increased embedding

complexity, which relates to the expressability of a qubit, can

allow for the complex feature spaces needed to separate

entangled clusters of datapoints.

Therefore, by improving our embedding complexity, or

expressability in a VQC, we can have a much higher capability

in classifying difficult, overlapping datapoint clusters to a

good level of performance, compared to if we did not consider

this in our design. However, once we have reached a sufficient

level of embedding complexity, or expressability, then adding

additional depth may just increase computational complexity

for little performance improvement in return.

From this work, there are some limitations and areas for

future exploration that should be addressed alongside the

described contributions. Whilst our experimental results

showed trends appearing, in cases it was hard to justify

whether performance differences were influenced by other

factors such as initial weight selections. Whilst our weight

initialization strategy was kept constant throughout, it was not

necessarily an optimal choice. Currently, there have been

some efforts to address weight initialization strategies, in

association with avoiding barren plateaus [28]. However, it

still remains an open question of whether there are any optimal

initialization strategies that may benefit the training of VQCs,

and specifically when using the data re-uploading

methodology.

When using the data re-uploading methodology with a

single qubit only, as we increase the number of classes used,

then the corresponding class regions within the Bloch sphere

also become reduced in area. In the original proposal of the

methodology [23], the authors presented the use of multiple

qubits, which naturally introduce larger state boundaries per

class than when using a single qubit. In order to do this,

entangling layers of CZ gates were introduced to give the

dependency needed between qubits. However, this also leaves

room to explore the effects from different implementations of

entanglement measures, and whether there is an optimal setup

for introducing multiple qubits.

V. CONCLUSION

In this work, we have conducted an analysis of the data re-

uploading methodology, using a single qubit only. Multiple

values of depth were used throughout this work, in order to

give an indication of how this parameter affects classification

performance. We also introduced simulated noise to determine

any key features that are beneficial in providing robustness

and stability during training.

Here, our experimental results support that increasing depth

does improve classification performance, with the sharpest

improvements occurring between approximately 1-3 layers

used. A clear advantage displayed is that the complexity of

data embedding improved alongside increased depth, which

allowed for highly overlapping datapoint clusters to separate

more effectively. However, our results also suggest that once

a sufficient level of embedding complexity is found, then

additional depth may just increase complexity with little

performance benefit rewarded in return.

In the case of our noise simulations, our results suggest that

higher depth values may allow for improved stability during

training. However, extreme levels of noise will continue to

have extreme consequences, due to the nature of the algorithm

and how predictions are measured.

Considering limitations and directions of future work, we

suggest that studies should be conducted into favourable

weight initializing strategies for avoiding barren plateaus, to

assist in stable training convergence. Alongside this, as we

extend to using multiple qubits, how we introduce measures

of entanglement may provide a substantial role in determining

overall classification performance and should be explored

further.

VI. REFERENCES
[1] M. Schuld and N. Killoran, “Quantum Machine Learning in
Feature Hilbert Spaces,” 2019. doi: 10.1103/PhysRevLett.122.040504.

[2] V. Havlíček et al., “Supervised learning with quantum-enhanced

feature spaces,” 2019. doi: 10.1038/s41586-019-0980-2.
[3] C. M. Wilson et al., “Quantum Kitchen Sinks: An algorithm for

machine learning on near-term quantum computers,” 2018. Accessed: May

13, 2020. [Online]. Available: http://arxiv.org/abs/1806.08321.
[4] S. Lloyd, M. Schuld, A. Ijaz, J. Izaac, and N. Killoran, “Quantum

embeddings for machine learning,” 2020. Accessed: Jun. 02, 2020. [Online].

Available: http://arxiv.org/abs/2001.03622.
[5] R. LaRose and B. Coyle, “Robust data encodings for quantum

classifiers,” 2020. Accessed: Sep. 28, 2020. [Online]. Available:

http://arxiv.org/abs/2003.01695.

[6] Y. Dang, N. Jiang, H. Hu, Z. Ji, and W. Zhang, “Image

classification based on quantum K-Nearest-Neighbor algorithm,” 2018. doi:

10.1007/s11128-018-2004-9.

[7] V. Dunjko, J. M. Taylor, and H. J. Briegel, “Quantum-Enhanced

Machine Learning,” Phys. Rev. Lett., vol. 117, no. 13, 2016, doi:

10.1103/PhysRevLett.117.130501.

[8] C. Ding, T.-Y. Bao, and H.-L. Huang, “Quantum-Inspired Support

Vector Machine,” 2019. Accessed: Jun. 01, 2020. [Online]. Available:

http://arxiv.org/abs/1906.08902.

[9] S. Lloyd, M. Mohseni, and P. Rebentrost, “Quantum principal

component analysis,” Nat. Phys., vol. 10, no. 9, pp. 631–633, Jul. 2014, doi:

10.1038/NPHYS3029.

[10] P. Rebentrost, A. Steffens, I. Marvian, and S. Lloyd, “Quantum

singular-value decomposition of nonsparse low-rank matrices,” 2018. doi:

10.1103/PhysRevA.97.012327.

[11] P. Rebentrost, M. Mohseni, and S. Lloyd, “Quantum support

vector machine for big data classification,” 2014. doi:

10.1103/PhysRevLett.113.130503.

[12] E. Farhi and H. Neven, “Classification with Quantum Neural

Networks on Near Term Processors,” 2018. Accessed: May 30, 2020.

[Online]. Available: http://arxiv.org/abs/1802.06002.

[13] A. Mari, T. R. Bromley, J. Izaac, M. Schuld, and N. Killoran,

“Transfer learning in hybrid classical-quantum neural networks,” Dec. 2019,

http://arxiv.org/abs/1806.08321
http://arxiv.org/abs/2001.03622
http://arxiv.org/abs/2003.01695
http://arxiv.org/abs/1906.08902

VOLUME XX, 2017 12

Accessed: Apr. 28, 2020. [Online]. Available:

http://arxiv.org/abs/1912.08278.

[14] M. Schuld, A. Bocharov, K. M. Svore, and N. Wiebe, “Circuit-

centric quantum classifiers,” Phys. Rev. A, vol. 101, no. 3, Apr. 2020, doi:

10.1103/PhysRevA.101.032308.

[15] I. Cong, S. Choi, and M. D. Lukin, “Quantum convolutional neural

networks,” 2019. doi: 10.1038/s41567-019-0648-8.

[16] S. Y.-C. Chen, C.-H. H. Yang, J. Qi, P.-Y. Chen, X. Ma, and H.-

S. Goan, “Variational Quantum Circuits for Deep Reinforcement Learning,”

2019. Accessed: May 21, 2020. [Online]. Available:

http://arxiv.org/abs/1907.00397.

[17] M. Henderson, S. Shakya, S. Pradhan, and T. Cook,

“Quanvolutional neural networks: powering image recognition with quantum

circuits,” 2020. doi: 10.1007/s42484-020-00012-y.

[18] J. M. Liang, S. Q. Shen, M. Li, and L. Li, “Variational quantum

algorithms for dimensionality reduction and classification,” 2020. doi:

10.1103/PhysRevA.101.032323.

[19] Y. Liu et al., “Variational quantum circuits for quantum state

tomography,” 2020. doi: 10.1103/PhysRevA.101.052316.

[20] J. Bausch, “Recurrent Quantum Neural Networks,” 2020.

[21] S. Sim, P. D. Johnson, and A. Aspuru‐Guzik, “Expressibility and

Entangling Capability of Parameterized Quantum Circuits for Hybrid

Quantum‐Classical Algorithms,” 2019. doi: 10.1002/qute.201900070.

[22] T. Hubregtsen, P. Josef, J. Pichlmeier, · Patrick Stecher, and ·

Koen Bertels, “Evaluation of Parameterized Quantum Circuits: on the relation

between classification accuracy, expressibility and entangling capability.”

Accessed: Sep. 28, 2020. [Online]. Available:

https://www.researchgate.net/publication/340115185.

[23] A. Pérez-Salinas, A. Cervera-Lierta, E. Gil-Fuster, and J. I.

Latorre, “Data re-uploading for a universal quantum classifier,” Quantum, vol.

4, p. 226, Jul. 2020, doi: 10.22331/q-2020-02-06-226.

[24] W. Cappelletti, R. Erbanni, and J. Keller, “Polyadic Quantum

Classifier,” 2020. Accessed: Sep. 28, 2020. [Online]. Available:

http://arxiv.org/abs/2007.14044.

[25] J. R. McClean, S. Boixo, V. N. Smelyanskiy, R. Babbush, and H.

Neven, “Barren plateaus in quantum neural network training landscapes,” Nat.

Commun., vol. 9, no. 1, 2018, doi: 10.1038/s41467-018-07090-4.

[26] M. Cerezo, A. Sone, T. Volkoff, L. Cincio, and P. J. Coles, “Cost-

Function-Dependent Barren Plateaus in Shallow Quantum Neural Networks.”

[27] A. Skolik, J. R. Mcclean, M. Mohseni, P. Van Der Smagt, and M.

Leib, “Layerwise learning for quantum neural networks.”

[28] E. Grant, L. Wossnig, M. Ostaszewski, and M. Benedetti, “AN

INITIALIZATION STRATEGY FOR ADDRESSING BARREN

PLATEAUS IN PARAMETRIZED QUANTUM CIRCUITS TECHNICAL

NOTE,” 2019.

[29] J. Stokes, J. Izaac, N. Killoran, and G. Carleo, “Quantum Natural

Gradient.”

[30] N. Yamamoto, “On the natural gradient for variational quantum

eigensolver.”

[31] V. Bergholm et al., “PennyLane: Automatic differentiation of

hybrid quantum-classical computations.” Accessed: Jul. 21, 2020. [Online].

Available: https://pennylane.ai.

[32] Y. Suzuki et al., “Qulacs: a fast and versatile quantum circuit

simulator for research purpose,” 2020. Accessed: Jan. 04, 2021. [Online].

Available: http://arxiv.org/abs/2011.13524.

[33] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion,

B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V. and

Vanderplas, J., 2011. Scikit-learn: Machine learning in Python. the Journal of

machine Learning research, 12, pp.2825-2830.

[34] C. Ciliberto et al., “Quantum machine learning: A classical

perspective,” Proc. R. Soc. A Math. Phys. Eng. Sci., vol. 474, no. 2209, 2018,

doi: 10.1098/rspa.2017.0551.

[35] Nielsen, M.A. and Chuang, I.L., 2001. “Quantum computation and

quantum information”. Phys. Today, 54(2), p.60.

[36] A. Barenco et al., “Elementary gates for quantum computation,”

1995. doi: 10.1103/PhysRevA.52.3457.

[37] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic

optimization,” in 3rd International Conference on Learning Representations,

ICLR 2015 - Conference Track Proceedings, Dec. 2015, Accessed: Jan. 27,

2021. [Online]. Available: https://arxiv.org/abs/1412.6980v9.

http://arxiv.org/abs/1912.08278
http://arxiv.org/abs/2007.14044
https://pennylane.ai/
http://arxiv.org/abs/2011.13524

