
 

VOLUME XX, 2017 1 

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000. 

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number 

On Depth, Robustness and Performance Using 
the Data Re-Uploading Single-Qubit Classifier 

P. Easom-McCaldin1, A. Bouridane1, A. Belatreche1 and R. Jiang2 
1Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne, UK  
2Department of Computing and Communications, Lancaster University, Lancaster, UK  

Corresponding author: A. Bouridane (ahmed.bouridane@northumbria.ac.uk) 

This work was partially supported by the QNRF under Grant NPRP No.8–140-2–065 and the EPSRC under Grant EP/P009727/1. 

 

ABSTRACT Quantum machine learning (QML) is a new field in its’ infancy, promising performance 

enhancements over many classical machine learning (ML) algorithms. Data reuploading is a QML algorithm 

with a focus on utilizing the power of a singular qubit as an individually capable classifier. Recently, there 

have been studies set out to explore the concept of data re-uploading in a classification setting, however, 

important aspects are often not considered in experiments, which may hinder our understanding of the 

methodology’s performance. In this work, we conduct an analysis of the single-qubit data re-uploading 

methodology, in relation to the effect that system depth has on classification performance, and robustness 

against the influence of environmental noise during training. We do this in an effort to bridge together 

previous works, solidify the concepts of the methodology, and provide reasonable insight into how 

transferable the methodology is when applied to non-synthetic data. To further demonstrate the findings, we 

also analyse results of a case study using a subset of MNIST data. From this work, our experimental results 

support that an increase in system depth can lead to higher classification performance, as well as improved 

stability during training in noisy environments, with the sharpest performance improvements seemingly 

occurring between 1-3 uploading layer repetitions. Leading on from our experimental results, we also suggest 

areas that for further exploration, to ensure we can maximize classification performance when using the data 

re-uploading methodology. 

 

INDEX TERMS Machine Learning, Quantum Computing, Quantum Machine Learning.

I. INTRODUCTION 

Quantum machine learning is a rapidly expanding domain, 

bringing promising performance enhancements through 

complex feature space representations [1-5] and lowering 

computational complexity of equivalent classical algorithms 

by exponential factors in cases [6-11]. Variational quantum 

circuits (VQCs) are currently an area of large interest in the 

field [12-20], and provide a natural progression point for 

developing quantum algorithms due to their optimization 

capability. 

VQCs often appear to be initialised using circuit structures 

and designs which are seemingly chosen at random, or have 

very little justification. Whilst this may work fine in certain 

scenarios, we need to look at what aspects of these circuits 

improve our performance, and whether certain features, such 

as the depth to our circuits, are most beneficial. Two measures 

of circuit capability referred to as ‘expressability’ and 

‘entangling capability’ were explored initially in [21]. This 

was furthered in [22], where the performance of these circuits 

were compared in a classification setting. These studies 

suggest that expressability and performance of VQCs will start 

to plateau at a point, however this point may change dependent 

on the circuit used. 

An encoding and classification strategy that has shown to 

be promising for an individual qubit is the concept of data re-

uploading, introduced in [23]. Here, layers of parameterized 

gates are repeated to embed classical input data into Hilbert 

space. As a minimum, only a single qubit is required for 

classification, which makes this a promising methodology to 

pursue. 

A critical aspect that should be explored when using data 

re-uploading is the correlation between circuit parameters and 

performance. These parameters could be considered as the 

number of qubits, entanglement usage and depth (i.e. the 
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number of uploading layers used). The original proposal of 

data re-uploading partially explored these parameters, where 

added depth to the circuit did show performance increasing, 

before beginning to saturate. However, arguably there was not 

enough evidence to support that increasing depth, qubits or the 

use of entangling layers is always necessary to consistently 

improve upon performance. 

Many QML algorithms are designed and tested with 

simulations. Whilst simulations can be effective in 

determining optimal performance, they leave an important 

factor of how the results of the proposed system may translate 

across to a real-world task through a quantum processing unit 

(QPU). An analysis in [24] took this into account, showcasing 

results processed using a QPU. However, little insight was 

provided into showing any correlation between circuit 

parameters and performance. 

Ultimately, effective use of each qubit is especially 

important at the current NISQ era of quantum computation, as 

we are fairly limited by qubit cohesion and connectivity in 

QPUs. Many quantum algorithms rely on a moderate to large 

number of cohesive qubits to compute or encode inputs, which 

is not necessarily practical to use at the current time. 

 Also, it is especially important that we can maximise the 

working potential of each qubit used during computation, so 

that when the approach is extended to multiple qubits, the 

efficiency of the architecture is not affected. Doing so will not 

only allow us to understand the computational power that a 

single qubit possesses, but also provide an insight into 

effective VQC design, where each qubit can be maximally 

used. Because of the reasons outlined here, this work will 

focus on the use of a single qubit only. 

Overall, recent works that explore data re-uploading 

described previously lack an important aspect which should be 

examined, such as correlations between system parameters 

and classification performance, or how the influence of noise 

affects classification performance. These are aspects which 

should be examined together in order to gain a full 

understanding of the methodology, and how this may translate 

to the wider field. Therefore, the aims of this work are to 

determine any correlations present between circuit parameters 

and performance, and to determine how this may translate to 

use in noisy environments, using a single qubit only. 

Ultimately, the contribution of this work will be through an 

analysis of classification performance using the data re-

uploading single qubit classifier. Through our experiments, we 

aim to identify key trends within system design, which can not 

only aid classification performance, but improve robustness of 

training in noisy environments. The work presented here will 

not only aid in our understanding of performance using the 

data re-uploading methodology, but how we can adapt our 

VQC design, to maximise the effectiveness of each available 

qubit dependent to the environment. 

In order to achieve these aims, previous work will be 

bridged through an analysis of classification performance with 

varied circuit depths, using artificially generated datasets of 

incrementing difficulty. The resulting embeddings will be 

examined, where necessary, to give indications of how they 

change dependent to the input and design of the VQC. This 

will aid our search in determining effective embeddings of 

data, which are capable of producing higher-performing 

standards of classification. In addition, this will determine 

whether the methodology remains viable as the dimensionality 

of the task increases. 

Alongside this, a case study will be conducted using 

MNIST data to provide a realistic indication of how the 

methodology may translate across to a scenario with non-

artificial data. The inclusion of this will help to negate any 

biases that may have occurred due to the inclusion of 

artificially generated data. 

In addition to the previous points, the methodology will be 

tested using a simulated noisy quantum environment. Doing 

so will help us to identify any design considerations that may 

assist convergence during training, and reach higher levels of 

performance. 

The contribution of this work is through an in-depth 

analysis of the data re-uploading methodology. In this work, 

we identify general correlations between increased system 

depth supporting improved classification performance. Our 

experimental results also support that increasing system depth 

FIGURE 1.  Overview of the data re-uploading process from i-dimensional data-point to measurement. Firstly, the input data-point is recognized as a 
single column vector. Then, each input dimension is ‘uploaded’ by an arbitrary unitary gate, using a weighted sum of 2 rotational parameters per input. 
This process is repeated until each datapoint dimension has been encoded, where the qubit is finally measured with respect to a target state. 
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may boost stability during training in noisy quantum 

environments, leading to better overall performance. 

The structure of this paper is as follows. Firstly, we will 

briefly introduce the methodology of data re-uploading, to 

provide some background knowledge required. Then, an 

outline of our experimental setup and produced results will be 

described. Afterwards, an analysis of the produced results will 

be conducted, where we can identify key aspects in order to 

draw any conclusions. 

II. METHODOLOGY 

Within machine learning, we are often presented with data that 

is in the form of a column vector. Data re-uploading is a 

methodology in which we can encode these vectors into a 

feature Hilbert space using successive unitary operations, 

acting on each dimension of the input. For any 𝑆𝑈(2) 

operation U, we are able to decompose the operation into the 

following [36]: 

 𝑈 = 𝑒𝑖𝛼𝑅𝑧(𝛽)𝑅𝑦(𝛾)𝑅𝑧(𝛿) (1) 

Where 𝛼 ∈ ℝ is the global phase factor, and 𝛽, 𝛾, 𝛿 ∈ ℝ are 

the Euler angles that define each rotation. Here, we can then 

define the Euler angles as: 

 

𝛽 =  𝜃𝑖 + 𝑥𝑖 ∙ 𝜙𝑖 
𝛾 = 𝜃𝑖+1 + 𝑥𝑖+1 ∙ 𝜙𝑖+1 
𝛿 = 𝜃𝑖+2 + 𝑥𝑖+2 ∙ 𝜙𝑖+2 

(2) 

 

With θ and ϕ being weight parameters fed into our 

optimization loop, and 𝑥𝑖 being the value of our input 𝑥 at 

dimension 𝑖. These trainable weights define the extent to 

which the state of the qubit is rotated, with respect to the value 

of the input. From these parameter definitions, we can utilize 

a maximum of three input dimensions per unitary operation. 

From here, we can cycle through our input vector, encoding 

a set of three data dimension values at a time, until the input 

vector has been fully encoded. In the proposed methodology, 

this is referred to as a full ‘upload layer’ of the data. By 

repeating this embedding of input data and adding successive 

uploading layers, a highly-complex feature Hilbert space can 

be created in an attempt to improve the learning capacity of 

the algorithm. 

Once the input vector has been uploaded to the specified 

number of times, then the fidelity of the encoded quantum 

state is measured with respect to a target state. For each task, 

we pick a set of target states that are maximally distanced from 

each other, e.g., for a binary classification task, we could 

configure the target states for each datapoint of class 0 to be 

state |0⟩, and each datapoint of class 1 to be state |1⟩. 
The loss function that is used throughout this work is based 

on the weighted fidelity loss function defined in [23], however 

we exclude the individual class weightings. Defined in eq. 3, 

the loss function aims to minimize the fidelity of datapoints 

between their current state and respective target states, where 

𝜃 and 𝜙 are parameters to be optimized, 𝑥 is the input data, D 

is the size of the training/validation dataset and C is the 

number of classes. 

A full, detailed description of this method can be found at 

its’ proposal in [23], however a brief example is detailed in 

figure 1 for simplicity. 

III. RESULTS 

A. EXPERIMENT SETUP 

1) BARREN PLATEAU PROBLEM 

As a preface before describing the following experiments, it is 

relevant to address the barren plateau problem that is largely 

present when training VQCs and the effect that this has if not 

considered. Barren plateaus are areas of near-zero gradient 

within the loss landscape that, if not considered, can 

substantially affect the training of VQCs and not allow for 

stable convergence to a minimum in sufficient time. 

This problem was addressed in [25], where several 

approaches have been considered since to avoid this problem, 

such as local cost functions [26, 27], evaluating initialized 

weights [28], or the use of quantum natural gradient [29, 30].  

For the following experiments, the problem of barren 

plateaus is considered by initializing 10 randomized weight 

sets, where all weight sets are initialized using a Gaussian 

distribution, with a mean of 0 and standard deviation of 0.1. 

We use these values as within preliminary experiments, they 

produced more consistency between training samples than 

other weight initialization values. 

For each weight set, a single epoch was conducted on the 

test dataset. The parameter set that produced the lowest test 

loss value initially was then used thereafter throughout 

training. Whilst this helped to avoid the problem of barren 

plateaus in our experiments, it should be pointed out that this 

is a temporary solution to the problem only and alternative 

measures should be analyzed for a better solution to avoiding 

the barren plateau problem. 

 

2) EXPERIMENTATION PLAN 

To outline the following results, the concepts targeted by this 

work will be addressed in order. Firstly, to consider how depth 

affects performance of the data re-uploading scheme, the 

number of layers used within the system will be incremented 

from 1 to 10. Alongside this, data dimensionality will be 

increased from 3 up to 15 in increments of 3 to determine the 

effect of increased classification difficulty. This will be 

extended from binary to multi-class classification tasks, in 

order to provide reasonable assumptions on how this 

performance may translate to other tasks. 

Secondly, within QPUs, quantum noise from external 

factors (e.g. environmental) can negatively impact the output 
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of the quantum system executed. To account for this, 

simulated noise of varied strength will be included, in order to 

determine the robustness per system depth used. 

Thirdly, a case study of non-synthetic data (MNIST) will be 

included to give a realistic indication of the performance that 

the methodology may bring to a real-world task. 

For all of the following experiments, the PennyLane library 

[31] was used, alongside the PyTorch interface. For non-noisy 

environments, the Qulacs [32] qubit simulator plugin was used 

within PennyLane, and for noisy environments, PennyLanes’ 

mixed state simulator was used. For reproducibility, all 

relevant randomization seeds were set to zero, unless stated 

otherwise. 

All artificially-generated data was natively handled using 

scikit-learn [33], as this allowed for much greater flexibility in 

defining the data and features used appropriately. For each 

dataset, unless otherwise specified, the parameters were set to 

use 1 redundant feature, 2 informative features, 1 cluster per 

class, a class separation of 1 and a random generation seed of 

1234. 

B. LAYER CORRELATIONS 

For the following results, artificial datasets were generated, 

consisting of 500 train and 1500 test images split evenly 

between the number of classes used. 30 epochs of training 

were used per experiment, using SGD optimizer and a learning 

rate of 10−2, unless otherwise stated. We use these 

hyperparameters as from preliminary experiments, this 

produced much more stable convergence on average than 

higher learning rates, whilst reducing the computation time per 

experiment in comparison to lower learning rates with 

additional epochs. 

Figure 2 shows results of a binary classification task, where 

the depth of system (i.e. number of layers) is varied from 1 to 

10 and the dimensionality of the dataset increased from 3 to 

15 dimensions, in intervals of 3 dimensions. The generally 

expected behaviour here would be for the overall trend of 

performance per layer over each dimension to worsen, due to 

the scaling of difficulty of the task, with each individual 

dimensional groups’ performance improving as layers are 

added, giving increased learning capacity to the system. 

FIGURE 2.  Result charts of a binary classification task, using layer depths N of 1-10 per each dataset dimension D. The chart displays training set loss 
(top-left), test set loss (top-right), training set accuracy (bottom-left) and test set accuracy (bottom-right). 

FIGURE 3.  Bloch sphere visualizations of test set embeddings at 
epoch 30 with varied system depth. The top row represents correctly 
classified points (green) versus incorrectly classified points (red). The 
bottom row represents the distribution of classes (different colour per 
different target class value). Left to right on both rows is the system 
depths of 1 layer, 7 layers and 10 layers respectively. 
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The chart displaying test loss in figure 2 is fairly consistent 

with this behaviour until 12 dimensions are reached. From 

here, the behaviour almost reverses, where the performance of 

the system does not improve with additional layers until after 

6 layers, where it appears to plateau. 

Focusing on 3-dimensional loss results, fairly consistent 

performance increases can be seen with added depth until 7 

layers, where performance starts to regress and worsen 

thereafter. This behaviour is not unique and happens on more 

than one occasion. Regardless of the slight regression within 

the loss value, the system still classifies the vast majority of 

the test set correctly, and does not change throughout the 

different depth values implemented. 

Figure 3 displays embeddings of test data using Bloch 

sphere visualizations, with layer depths of 1, 7 and 10 at epoch 

30. Regardless of the number of layers, it can be seen that the 

system still classifies each point correctly, minus the outliers 

which are heavily nested inside the opposing classes cluster. 

However, figure 3 shows the advantage brought by an 

increased system depth, that of allowing for more complex 

mappings of data. A depth of 1 layer produced a fairly linear 

embedding in this case, where the distribution of points is 

quite narrow along that particular rotational line, whereas 10 

layers allowed for rotations to occur in the embedding, and 

thus form a more complex feature space.  

In the case of the data used here, perhaps only a simpler 

complexity of embedding was needed to separate the clusters 

and classify them to a high degree of accuracy. However, for 

data that is not so separable with an intensified overlap 

between clusters of datapoints, the advantage of increased 

depth may become more apparent. 

Figure 4 shows results of a binary classification task using 

a dataset with an extreme overlap between class clusters, more 

so than the data used previously. This dataset was generated 

using 3 informative features, 4 clusters and a class separation 

of 2. The dataset consisted of 500 train and 1500 test images 

split evenly between the 2 classes. Each experiment was 

trained for 10 epochs, using stochastic gradient descent 

optimization and a learning rate of 10−3 to avoid overfitting 

in this case.  

Again, it can be seen that improvements in performance 

occur with an increased system depth, however these 

improvements begin to saturate after approximately 3 layers. 

In comparison to previous results, these performance increases 

are much more stable, and any regressions in performance 

with additional depth are at a smaller scale. In addition, there 

are a much higher proportion of misclassified points using a 

lower number of layers, when compared to the previous results 

gathered and displayed in figure 2. 

If we look to the embeddings of the test set data displayed 

in figure 5, the embedding capability of a single layer is much 

more rigid and restricted in comparison to 10 layers, which 

allows for a greater degree of flexibility in its’ mapping of 

FIGURE 4.  Top – Euclidean space view of the 3-dimensional dataset 
used, with considerably more overlap between class clusters. Bottom – 
Charts displaying test set loss (left) and test set accuracy (right) at 
epoch 10, with varied system depth between 1-10 layers. 

FIGURE 5.  Bloch sphere visualizations displaying embeddings of the 
test dataset shown in figure 4. The top row represents correctly classified 
points (green) and incorrectly classified points (red). The bottom row  
show the distribution of classes (different colour per different target 
class value). Left to right on both rows is a system depth of 1 and 10 
layers, respectively. 
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data. This flexibility results in the system being able to 

separate each class more effectively. 

In the case of the first experiment, a system depth of a single 

layer, requiring 6 parameters in total, was sufficient to perform 

to a high standard. Whilst increasing depth generally improved 

the confidence of these scores up until 7 layers, these 

additional layers were unnecessary to determine much better 

performance and just increased complexity. 

For the secondary dataset with a severe overlapping 

between data clusters, a much more complex level of 

embedding was needed to classify the dataset to a good 

standard, which was not sufficiently found until 3 layers and 

onwards. The performance increases between layers 1, 2 and 

3 here in figure 3 are much bigger in proportion to those shown 

previously in figure 2. 

However, as we increase the number of classes within the 

classification task, the boundaries for each class region on the 

Bloch sphere will become smaller when using a single qubit. 

For a multi-class task, higher levels of embedding flexibility 

than that of a binary task may be required to effectively map 

each datapoint to their respective class region. 

Figure 6 displays 4 result charts gathered from a multi-class 

classification task, consisting of the default data generation 

scheme described earlier, with 3 datapoint classes. Looking at 

the general behaviour between depth and data dimensionality, 

straight away it can be seen that there is a correlation between 

depth and performance. The correlation shown here is 

arguably much stronger than that of the initial set of results 

displayed previously in figure 2. 

Whilst performance improvements can be seen with added 

system depth, these improvements do saturate and begin to 

plateau at a point. On average, the sharpest increases to 

performance occur between 1-3 layers, and quickly plateau 

thereafter. As before, there are cases where performance starts 

to regress, such as test set performance using 15-dimensional 

dataset. However, as there is a spike at the corresponding train 

set performance, it is unclear whether aspects of these 

performance regressions are due to slight overfits towards the 

training data. 

FIGURE 6.  Result charts of a 3-class classification task, using layer depths N of 1-10 per each dataset dimension D. The chart displays 

training set loss (top-left), test set loss (top-right), training set accuracy (bottom-left) and test set accuracy (bottom-right).  

FIGURE 7.  Bloch sphere visualizations displaying embeddings of the 
test dataset used for results shown in figure 6. The top row represents 
correctly classified points (green) and incorrectly classified points (red) 
at epoch 30. The bottom row displays the distribution of classes at epoch 
30, with each colour representing a different class. From left to right on 
both rows is a system depth of 5, 6 and 7 layers, respectively. 
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In figure 2, the classification accuracy using a single layer 

was much higher in proportion to successive layers than in the 

case of results shown in figure 6. This suggests that the data 

here was much harder to classify to a high standard, where 

embedding complexity is a key feature in determining 

classification performance. 

Upon a closer review, there are cases where test set 

performance starts to regress. This is apparent with 6-

dimensional and 9-dimensional data results, where a spike 

occurs when 6 layers are used. In an inspection of the 

corresponding embeddings displayed in figure 7, we can see 

that the embedding of layers 5 and 7 are very similar. 

However, the data distribution formed from 6 layers is closer 

together. 

Figure 8 displays test set loss values over training for a 

system depth of 5, 6, and 7 layers using 6-dimensional data. 

Here, it can be seen that layer 6 has a much slower 

convergence rate in comparison to layers 5 and 7 in this 

scenario. However, where the curves for 5 and 7 layers appear 

to plateau, the curve for 6 layers is still steadily decreasing. 

This implies that the initial weights for layer 6 may have been 

initialized in a region of lower gradient than the weights of 

layer 5 and 7. This would cause a delay in convergence, 

similar to the behaviour in figure 8. If training were to be 

continued, then it is likely that the curves would meet at 

roughly the same boundary between loss values of 0.10-0.11.  

Whilst weight initialization may a factor in the drop of 

performance in this case, it is difficult to state that this factor 

caused performance drops in other cases throughout this work. 

For example, there are cases of performance regression 

occurring, i.e., test set performance using 15-dimensional data 

at 10 layers displayed in figure 6. However, there is also a drop 

in the corresponding train set performance, which suggests 

that this may have been a slight overfit causing the drop in 

performance and not related to the mapping of data or 

initialization of weights.  

Overall, the previous results support that increasing system 

depth does generally improve classification performance on 

average, with the biggest improvements usually occurring 

between depth increments of 1, 2 and 3 layers. From 

visualizing the differences between depth increments, a clear 

advantage that increased depth has is by being able to produce 

much more complex mappings of data. 

However, in cases, increased depth does not necessarily 

relate equally to improved performance. This implies that an 

optimal depth is data dependent, where depending on the 

complexity of the task more layers are needed to effectively 

separate each class cluster towards their respective target 

states. Due to the innate randomness of weight initialization, it 

is hard to justify the impact this this or other reasons had on 

performance, i.e., whether any drops in performance were 

related to suboptimal initial weights, slight overfitting to 

training data or purely from the depth specified at the time. 

C. INTRODUCTION OF NOISE 

To simulate the effect of noise during training in a QPU 

environment, amplitude damping channels are implemented 

within the system after each unitary gate. Whilst there are 

many quantum noise channels which could be used to simulate 

noise (e.g. bit-flips, de-phasing and depolarizing channels), 

amplitude damping was implemented as it provides a realistic 

noise model, and is frequently used to model noise within 

other works [5, 34]. Amplitude damping is a model of qubit 

energy relaxation through interactions with the environment 

over time. The result 𝑄 with decay probability 𝛾 ∈ [0, 1] of 

Kraus operators 𝐾 acting on the density matrix 𝜌 is: 

 

𝑄𝛾(𝜌) =  𝐾0𝜌𝐾0
† + 𝐾1𝜌𝐾1

†  
(4) 

 

Where: 

 

𝐾0 = [
1 0

0 √1 − 𝛾
]  ,   𝐾1 = [0 √𝛾

0 0
] 

(5) 

 

The effect that amplitude damping has on the qubits’ 

density matrix can be defined as: 

 

𝑄𝛾(𝜌) =  (
𝜌00 + 𝛾𝜌11 √1 − 𝛾𝜌01

√1 − 𝛾𝜌10 (1 − 𝛾)𝜌11

) 
(6) 

 

For all experiments using simulated noise, amplitude 

damping is implemented within the mixed state simulator 

available through the PennyLane library. More information on 

the amplitude damping channel can be found at [35]. 

For the following experiments, 3 and 15-dimensional 

artificially-generated data was initialized, with a train to test 

image split of 50 to 150 datapoints per class. For each dataset 

dimensionality, the noise magnitude was incremented from 0 

to 1, in intervals of 0.1 and the circuit depth was also increased. 

Each training session consisted of 30 epochs of training, using 

stochastic gradient descent for optimization and a learning rate 

of 10−2.. In each experiment, final loss values at epoch 30 

were taken, and the change between these values per noise 

magnitude 𝜆 was recorded. 

As we implement simulated noise after each parametrized 

gate, as the defined number of layers and task dimensionality 

increases, naturally the occurrences of noise will increase 

proportionally. Therefore, we measure the change in loss in 

proportion to the occurrences of noise within that particular 

FIGURE 8.  Plot of test set loss result per epoch using 6-dimensional 
data and a system depth of 5, 6 and 7 layers. 
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circuit. This avoids any unfair advantage that a lesser depth 

circuit may possess, since noise would naturally be 

implemented less than a circuit with a higher depth. 

Within figure 9, it can be seen that for lower circuit depths 

of 1 and 3, the increases within the final training loss value are 

much bigger in comparison to a larger circuit depth, as noise 

magnitude increases. However, as the number of layers is 

increased, this rate of change does begin to saturate. In this 

case, the visible drop-off in training loss to the right-hand side 

can be justified. For a binary classification task, the associated 

target states will be located on opposing points on the Bloch 

sphere, or states  |0⟩ and |1⟩ for simplicity. As noise 

magnitude increases, the distribution of datapoints will be 

drawn closer towards the |0⟩ state. If the noise is extremely 

strong, then the datapoints with target state |1⟩ will be very far 

away, unable to be drawn further away. As loss is calculated 

using the measure of fidelity between states, this explains the 

corresponding drop off. 

Again, as shown in figure 10, the rate of increase is much 

larger for lower numbers of layers used, even with a larger 

dataset dimensionality of 15. In this case, a drop can again be 

seen to the right-hand side of the chart, as a result of the 

decrease in fidelity between datapoints and their target states 

slowing down.  

From figures 9 and 10, these results suggest that using a 

circuit of larger depth may perhaps bring an advantage of 

robustness against the influence of noise during training. 

Whilst the benefits of this did appear to saturate as we got 

closer to a layer depth of 10, these results do suggest that using 

additional layers may allow for a better quality of training, by 

resisting the influence of environmental noise, ensuring that 

the training can converge more stably. 

Figure 11 displays the proportional change to training loss 

for a 3-class classification task using 3-dimensional data. 

Here, a much sharper performance regression can be seen for 

1 layer as noise magnitude increases. Regardless of noise 

increments, 7 and 10 layers show a fairly stable level of 

increase in loss, only showing signs of divergence from 

~𝜆=0.8.  

In contrast to previous results, there is a diverging behaviour 

to the right-hand side of the charts. As the results in figure 11 

were produced from a 3-class classification task, the 

maximally-distanced target class states are distributed more 

heavily away from the |0⟩ state in our setup. Because 

datapoints are drawn closer towards the |0⟩ state as noise 

magnitude is increased, the associated loss value will increase 

at a higher rate than that of a binary classification task due to 

a larger cumulative distance between each datapoint and its’ 

target class state. 

FIGURE 9.  Plot displaying the proportional change in final training loss 
values between 0.1 intervals of noise strength values 𝝀 for N layers. The 
results shown are for a binary classification task, using 3-dimensional 
data. 

FIGURE 10.  Plot displaying the proportional change in final training 
loss values between 0.1 intervals of noise strength values 𝝀 for N layers. 
The results shown are for a binary classification task, using 15-
dimensional data. 

FIGURE 11.  Plot displaying the proportional change in final training 
loss values between 0.1 intervals of noise strength values 𝝀 for N layers. 
The results shown are for a 3-class classification task, using 3-
dimensional data. 
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Similar behaviour can be seen in figure 12, showing results 

from a 3-class classification task, using 15-dimensional data. 

Here, layers 7 and 10 show consistently lower changes in 

comparison to lower layers of 1 and 3. However, again there 

is a much larger difference between 1 layer and 3 layers than 

7 layers and 10 layers. This supports that whilst additional 

layers may provide added robustness against the effects of 

noise during training, this benefit does saturate as more and 

more layers are implemented to the system. 

Overall, the results displayed within this section support the 

possibility of an advantage of robustness against noise during 

training, when additional layers are implemented to the 

system. Whilst plots showed a higher variance of training loss 

between noise intervals using 15-dimensional data (shown in 

figures 10 and 12) over 3-dimensional data (shown in figures 

9 and 11), a higher depth consistently showed more stability 

throughout experiments, rather than the diverging behaviour 

seen in lower layer depths. 

However, similar to results seen previously throughout 

section 3B, any advantage of robustness during training 

appeared to plateau as depth increased. The sharpest of 

improvements could be seen between 1 layer used and 3 layers 

used. The differences between 7 layers and 10 layers used 

were minimal, and arguably not worth the increase in 

complexity that additional layers would bring. 

D. MNIST CASE STUDY 

Previously, experiments have been conducted using 

artificially-generated datasets. Whilst this is acceptable for 

examining specific details surrounding performance, it does 

not always give a realistic representation of how the algorithm 

may perform on a non-artificial dataset. 

For this reason, the following results will be from 

experiments using MNIST data. For these experiments, a 

subset of the MNIST dataset was used, consisting of 200 

images per class within the training set, and 100 images per 

class within the testing set. Each image used was normalized 

and downsampled to a size of 9x9, in order to reduce the 

processing time required. 

FIGURE 13.  Figure displaying results from binary and multi-class experiments using downsampled MNIST data. Left – Test set loss (top) and 
test set accuracy (bottom) results from a binary classification task (classes 0 and 1), with varied noise magnitude 𝝀 and a system depth of 1 

layer. Right - Test set loss (top) and test set accuracy (bottom) results from a 3-class classification task (classes 0, 1 and 2), with varied noise 

magnitude 𝝀 and a system depth of 1 layer. 

FIGURE 12.  Plot displaying the proportional change in final training 
loss values between 0.1 intervals of noise strength values 𝝀 for N layers. 
The results shown are for a 3-class classification task, using 15-
dimensional data. 
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For the hyperparameter choice, a system depth of a single 

layer was used, again to reduce processing required. For 

optimization, Adam [37] was implemented with a learning 

rate of 10−4. Each experiment was trained for 30 epochs, with 

test set results taken at the end of each training epoch. 

To give a representation of noise impact on non-artificial 

data, the same schematic for noise introduction was used as 

outlined in previous results. 6 experiments were conducted per 

dataset, with magnitudes of noise increasing from no noise to 

a value of 0.5 in intervals of 0.1. 

By looking at the results of a binary classification task 

(using digit classes 0 and 1) displayed on the left-hand side in 

figure 13, it can easily be seen that the experiment with zero 

noise performed to an excellent level within 5 epochs. As the 

noise magnitude is increased, the system is still able to classify 

the test dataset to an excellent standard between noise values 

of 𝜆 = 0.1 and 𝜆 = 0.2. However, the loss value begins to 

converge to approximately 0.15, making this a more realistic 

level than the loss result with zero noise influence. 

For results with 𝜆 = 0.2, a delay in accuracy increase can be 

seen, where improvements do not occur until approximately 

epoch 19. As the loss value is decreasing at a satisfying rate, 

this delay can be justified from the distribution of all 

datapoints residing in a single state region only until this time. 

Once a noise magnitude of 0.4 is reached, the system is unable 

to produce any effective encoding of data and performance is 

at a minimum throughout. 

By looking at results using 3-classes (digits 0, 1 and 2), 

displayed on the right-hand side of figure 13, the performance 

is further decreased than when classifying 2 classes only, with 

a max test set accuracy of 88.7% with no noise influence. As 

noise in increased to a value of 𝜆 = 0.1, similar levels of 

performance are reached, with a final test set accuracy value 

of 88%, however convergence is much slower than when no 

noise is present. 

As noise becomes stronger to 𝜆 = 0.2, performance starts to 

plateau after epoch 15 despite a sharp improvement between 

11-15 epochs. Similar to binary classification results, once the 

level of noise reaches a magnitude of 𝜆 = 0.3, the system is 

unable to perform at a level better than random, since all 

datapoint will be located in a single target region. 

Overall, the results shown in in this section using MNIST 

data are very good within the binary classification task, for 

noise levels up to 𝜆 = 0.2, even with the increase in 

convergence time. When extended to a 3-class task, 

performance did have a substantial drop, however, the target 

state boundaries are also lesser as additional classes are used.  

For both tasks, as noise reaches higher levels, then the 

system is unable to cope with the influence brought and is 

unable to converge to a level different than random guesses. 

These results were with a single uploading layer only, where 

previous results show adding extra depth may provide the 

robustness and complexity of embedding needed to classify 

the datapoints to a higher accuracy. 

IV. DISCUSSION 

The aim of this work is to bridge knowledge between previous 

works, determine any correlation between system depth and 

performance using the data re-uploading methodology, test 

robustness of the system when using different depths, and 

finally provide an indication of how this methodology may 

perform on non-artificially generated data. 

From the results gathered within this work, we have 

identified a general trend where increasing depth does tend to 

improve upon previous performance. However, the sharpest 

performance benefits seem to occur between 1-3 uploading 

layers. After approximately 3 layers were introduced, any 

performance increases were often not as distinctive, where the 

increased depth just added complexity to the system with little 

reward in performance. 

In cases, (e.g. the case of 10 layers trained on 15-

dimensional data, displayed in figure 6), it could be seen that 

increasing depth did not relate to improved performance. In 

some of these cases, this could be justified from factors such 

as slight overfitting to the training data used, or perhaps from 

other factors, such as the initial weight selection. In these 

cases, it is hard to determine whether any regression in 

performance occurred solely from the selected depth, or from 

the influence of other factors. 

A large advantage shown with an increased depth is the 

allowance for more complex embeddings of data. Lower 

circuit depths with lower total parameters were fairly rigid in 

their embedding capability, therefore restricting the freedom 

of movement needed in order to effectively separate the 

overlapping data clusters. 

When examining from a perspective of noise, our results 

support that a higher system depth could be linked to 

robustness of noise during training. In comparison to lower 

system depths, higher depths had consistently smaller 

proportional changes as noise magnitude increased, therefore 

providing a more stable platform to train from. However, as 

with general classification performance, this advantage of 

robustness did saturate as additional layers were implemented, 

with the sharpest robustness improvements generally 

occurring between 1-3 layers. 

In the case of experiment results using MNIST data, the data 

re-uploading methodology showed promising binary 

classification results, using only a single layer of 162 total 

parameters. As the levels of noise increased here, good 

performance was still achieved with lower noise levels, but 

was unable to converge after a noise magnitude of 𝜆 = 0.3.  

Whilst the results gathered on MNIST data may not be 

state-of-the-art, it should be considered that this performance 

was achieved using a single layer and a single qubit only. 

Therefore, these results are fairly promising in relation to the 

early state that QML is in. As this methodology expands to 

multiple qubits of larger depth, then this performance can only 

hope to be improved upon, and extended to much higher 

numbers of classes.   
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In the wider field of QML, we are able to link insights 

gathered from our experimental results to other relevant works 

directed towards VQC design and implementation. In [21], 

expressability of a qubit was determined by its ability to 

navigate the Bloch sphere, which was also analysed in [22]. 

Our results support the idea that increased embedding 

complexity, which relates to the expressability of a qubit, can 

allow for the complex feature spaces needed to separate 

entangled clusters of datapoints.  

Therefore, by improving our embedding complexity, or 

expressability in a VQC, we can have a much higher capability 

in classifying difficult, overlapping datapoint clusters to a 

good level of performance, compared to if we did not consider 

this in our design. However, once we have reached a sufficient 

level of embedding complexity, or expressability, then adding 

additional depth may just increase computational complexity 

for little performance improvement in return. 

From this work, there are some limitations and areas for 

future exploration that should be addressed alongside the 

described contributions. Whilst our experimental results 

showed trends appearing, in cases it was hard to justify 

whether performance differences were influenced by other 

factors such as initial weight selections. Whilst our weight 

initialization strategy was kept constant throughout, it was not 

necessarily an optimal choice. Currently, there have been 

some efforts to address weight initialization strategies, in 

association with avoiding barren plateaus [28]. However, it 

still remains an open question of whether there are any optimal 

initialization strategies that may benefit the training of VQCs, 

and specifically when using the data re-uploading 

methodology.  

When using the data re-uploading methodology with a 

single qubit only, as we increase the number of classes used, 

then the corresponding class regions within the Bloch sphere 

also become reduced in area. In the original proposal of the 

methodology [23], the authors presented the use of multiple 

qubits, which naturally introduce larger state boundaries per 

class than when using a single qubit. In order to do this, 

entangling layers of CZ gates were introduced to give the 

dependency needed between qubits. However, this also leaves 

room to explore the effects from different implementations of 

entanglement measures, and whether there is an optimal setup 

for introducing multiple qubits. 

V. CONCLUSION 

In this work, we have conducted an analysis of the data re-

uploading methodology, using a single qubit only. Multiple 

values of depth were used throughout this work, in order to 

give an indication of how this parameter affects classification 

performance. We also introduced simulated noise to determine 

any key features that are beneficial in providing robustness 

and stability during training. 

Here, our experimental results support that increasing depth 

does improve classification performance, with the sharpest 

improvements occurring between approximately 1-3 layers 

used. A clear advantage displayed is that the complexity of 

data embedding improved alongside increased depth, which 

allowed for highly overlapping datapoint clusters to separate 

more effectively. However, our results also suggest that once 

a sufficient level of embedding complexity is found, then 

additional depth may just increase complexity with little 

performance benefit rewarded in return. 

In the case of our noise simulations, our results suggest that 

higher depth values may allow for improved stability during 

training. However, extreme levels of noise will continue to 

have extreme consequences, due to the nature of the algorithm 

and how predictions are measured. 

Considering limitations and directions of future work, we 

suggest that studies should be conducted into favourable 

weight initializing strategies for avoiding barren plateaus, to 

assist in stable training convergence. Alongside this, as we 

extend to using multiple qubits, how we introduce measures 

of entanglement may provide a substantial role in determining 

overall classification performance and should be explored 

further. 
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