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Abstract 

This thesis aimed to understand the causes, controls and consequences of managing indoor air 

quality with an emphasis on ventilation throughout, and considerations to energy efficiency.  

This was achieved through three complimentary sets of experiments.  

First this thesis analysed particle number concentrations associated with a series of discrete 

cooking events to evaluate the efficacy of different types of ventilation in “real world” domestic 

settings. We identified and characterised 128 discrete cooking events and observed large 

increases (up to 106 particles/cm3) in particle number concentration in response to these events. 

A series of key metrics were adopted to enable comparisons to be made between different source 

and ventilation combinations which revealed that natural ventilation was the most effective 

means of reducing particle number concentrations in terms of time to background.  

Second, we replicated these discrete cooking experiments in a specialist test facility to quantify 

the energy penalties associated with attempts to improve indoor air quality through use of 

ventilation. We found that energy penalties are modest (0.082–0.193 kWh) if a period of 

window opening was restricted to no more than 20 minutes, and that the indoor air quality 

benefits from this are significant in terms of particle removal. We found that the energy 

penalties associated with mechanical extract ventilation were even lower for such a period 

(0.063kWh), and that mechanical ventilation provides the best means of meeting the dual 

objectives of good indoor air quality and energy efficiency.  

Third, we investigated the prevalence of volatile organic compounds within buildings across a 

university campus to assess the association between volatile organic compounds concentrations 

and sustainable building standards. We concluded that there were no associations between 

sustainable building standard ratings and volatile organic compound concentrations, which 

could result from a lack of indoor air quality related incentives. We suggest a framework for 

future sustainable building assessment that not only considers ventilation for improving 

building sustainability and indoor air quality, but also combines continuous total volatile 

organic compound measurements with detailed speciation.  

This thesis was supported by NAQTS who provided access to portable, state-of-the-art V2000 

air quality monitoring units. We reflect on the value of such instrumentation and the role it may 

play in raising public awareness of indoor air quality issues in public and private settings. 
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1.0. Introduction 

1.1. Background Context  

1.1.1. What is Indoor Air Quality? 

“Indoor Air Quality” (IAQ) has no universal or standard definition. In general, IAQ is 

related to pollutants (e.g., biological, chemical and physical) within indoor 

environments that can affect the health of occupants, but definitions can vary depending 

on perspectives of the human user, the characteristics of indoor space and the sources 

contributing to the indoor air pollution (Steinemann et al., 2017). Brown (2019) defines 

IAQ as “what we experience as the temperature, humidity, ventilation and chemical or 

biological contaminants of the air inside non-industrial buildings” whereas the US 

Environmental Protection Agency (EPA) define IAQ as: “the air quality within and 

around buildings and structures, especially as it relates to the health and comfort of 

building occupants” (Steinemann et al., 2017). 

Historically, studies of IAQ have been largely overshadowed by studies of outdoor or 

ambient air quality. However, in the western world, we spend the majority of our time 

indoors (> 90% of our time) where we are exposed to various pollutants (Isaxon et al., 

2015). There is growing public awareness about the risks associated with poor IAQ 

particularly in homes and workplaces (Bernstein et al., 2008). We know indoor air 

pollution may cause or aggravate illnesses (Daisey et al., 2003, Mendell, 2007), increase 

mortality (WHO, 2010), and have major economic and social impacts (Fisk and 

Rosenfeld, 1997, Fisk et al., 2011). Indoor air is a dominant exposure route for humans 

and IAQ plays a major role with regard to public health (Sundell, 2004). Logue et al. 

(2011) estimated the effect in disability-adjusted life years per person per year 
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(µDALY/p/year) from all sources attributable to IAQ excluding second-hand smoke 

and radon and found it to be in the range between the health effects of road traffic 

accidents (4000 µDALY/p/year) and heart disease (11,000 µDALY/p/year) (Guyot et 

al., 2018). Of late, there has been a growing interest in IAQ, and this is reflected in the 

increasing number of studies in this area. The over-arching topic of this thesis is IAQ, 

and this introductory chapter will summarise some of the current knowledge in this area 

which will be later discussed in the literature (Chapter 2). 

1.1.2. Sources and Characterisation 

IAQ is considered a subset of indoor environmental quality (IEQ) that also includes 

factors such as lighting, ergonomics, acoustics, and temperature in addition to pollutants 

(Steinemann et al., 2017). Many different factors contribute to the overall quality of air 

in an indoor environment. Indoor pollution sources that release gases or particles into 

the air are the primary cause of IAQ problems. Published research has clearly identified 

the major sources and types of pollution (gaseous and particulate pollutants) in the 

indoor environment. We know that indoor environments represent a mixture of indoor 

and outdoor pollutants, with outdoor pollutants typically associated with vehicular 

traffic and industrial activities, entering indoor environments by infiltration and/or 

through natural and mechanical ventilation systems (Cincinelli and Martinelli, 2017). 

Indoor pollutants originate inside the building, from building materials and furnishings, 

activities undertaken within the building (including the use of combustion appliances, 

heating systems, and the storage and application of cleaning and consumer products) 

and the behaviour and presence of occupants (microbial and metabolic emissions) 

(Seppänen, 2008; Han et al., 2010; Kumar et al., 2016; Cincinelli and Martinelli, 2017; 

Salvador et al., 2019). IAQ can also vary according to i) the building characteristics e.g., 
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type of foundation, presence or absence of mechanical ventilation, airtightness, and 

envelope integrity and ii) the characteristics of the outdoor environment (Lavesseur et 

al., 2017).  

In many countries there is no law or body that regulates IAQ even though people 

typically spend more than 90% of their time indoors and 70% of that time inside their 

home, with pollutant levels typically several times to several hundred times higher 

indoors than outdoors (Steinemann et al., 2017; Kruza and Carslaw, 2019; Brown, 

2019). That being said the degree of outdoor pollution is strongly dependent on many 

factors including the country in question. However, this situation is beginning to change 

as more countries are adopting legislation and standards that target particular pollutants 

or aspects of IAQ such as ventilation. In the UK for example, a statement issued by the 

UK Government in 2019 presents a series of IAQ guidelines derived from scientific 

literature for selected pollutants, to control their levels in the indoor environment 

through informing discussions on source control and raising awareness, reflecting some 

progress towards regulation (Public Health England, 2019). In light of the current 

coronavirus pandemic where we now spend more time indoors, IAQ developments are 

accelerated and there is increasing pressure on employers to address the issue of 

providing good indoor air quality.  

Exploring indoor sources of air pollutants involves evaluating the processes and 

products which are used indoors (Brown, 2019). Most air quality studies undertaken by 

governments and scientists, particularly those of a regulatory nature, use static, 

expensive, regulation-grade monitoring equipment to measure and assess pollutant 

concentrations (Lewis et al., 2016). However, equivalent measurements can now be 

made using low-cost sensors which can be used to measure multiple pollutants 
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simultaneously at multiple locations (Piedrahita et al., 2014). There has been increasing 

awareness of the use and practicalities of such low-cost sensors in air quality research, 

and many studies have evaluated their potential for improving public awareness about 

IAQ risks and burdens (Lewis et al., 2016). IAQ is, however, difficult to measure and 

assess due to (i) the lack of consistent metrics, standards and consensus on what 

constitutes favourable IAQ; (ii) the diversity and complexity of pollutants found indoors 

that can affect human health and well-being and diversity of issues associated with the 

range of different environments; (iii) the inadequate understanding of links between 

pollutant levels indoors, exposure to those pollutants and their effects; (iv) the range of 

health effects related to indoor pollutant exposures and (v) the lack of requirements to 

measure and monitor IAQ (Steinemann et al., 2017). 

1.2. Problem Statement  

Numerous strategies have been presented in the scientific literature that target 

improvements in IAQ, particularly at the design stage of a building, which is when most 

IAQ problems arise (Liddament, 1996). Strategies to improve IAQ include source 

control, ventilation and air cleaning. Source control helps reduce or eliminate individual 

sources of contamination or emission (Levasseur et al., 2017) and is considered the most 

effective strategy for improving IAQ (Matson and Sherman, 2004). Adequate 

ventilation is also required to introduce and circulate fresh air throughout a building and 

remove or dilute contaminated indoor air to provide a healthy and comfortable living 

environment (Dimitroulopoulou, 2012). Ventilation rate, expressed as air changes per 

hour (ACH), is an important determinant for the ingress of ambient air pollutants and 

removal of indoor pollutants (Breen et al., 2014). Natural ventilation occurs when air 

infiltrates through unintentional leaks in the building envelope, through intentional 
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openings (such as open windows, ventilation ducts) and via coupled spaces such as 

crawlspaces, basements and attics (Liu et al., 2018a). Mechanical ventilation and other 

measures such as extractors can also help deliver good IAQ (Levasseur et al., 2017). 

Mechanical ventilation, creating airflow in and out of a building (Seppänen, 2008) adds 

to the energy demands of a building but can overcome drawbacks of natural ventilation 

by providing a controlled rate of air change in response to the varying occupant needs 

and pollutant loads (Liddament, 1996). Air cleaning is another way to improve IAQ 

such as using high-efficiency particulate air (HEPA) filters. 

We know that buildings consume a significant fraction of total energy consumption (a 

1/3 worldwide); thus, are responsible for much of the anthropogenic carbon dioxide 

emitted that contributes to climate change (Thomsen et al., 2016). Increasing the 

airtightness of a building saves energy but negatively impacts upon IAQ due to a 

reduction in the infiltration rate and increase in concentrations of contaminants with 

indoor sources (Seppänen, 2008; Persily and Emmerich, 2012; Langer et al., 2015; 

Hamilton et al., 2017; Awbi, 2017). It is not desirable to increase infiltration to improve 

IAQ as it is positively correlated with heating energy demand (O’Leary et al., 2019b; 

Dimitrouloupou., 2012). Many organisations are struggling to deal with reducing 

energy use whilst maintaining acceptable IAQ (Spengler and Chen, 2000; Seppänen, 

2008). Several methods have been proposed that target improvements in IAQ without 

negatively affecting energy consumption such as demand controlled ventilation. Green 

buildings, certified by various programs (such as BREEAM) typically emphasise 

efficient use of energy and resources and to a lesser extent, health and indoor air quality. 

IAQ has been included as one of the default elements of this and other schemes 

presently in use, which is assessed through awarded credits in the rating systems of such 

programs. However, concerns have been expressed since IAQ credits contribute to such 
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a small percentage of credits overall, as to whether the IAQ credits in such schemes are 

sufficient and allow adequate incentive to pursue these credits (Steinemann et al., 2017). 

1.3. Aims and Objectives 

The research undertaken in this thesis makes a significant contribution to the broader 

indoor air science area focusing on and remedying current gaps in understanding and 

knowledge. The overall aim of the thesis is to evaluate the sources of indoor air pollution 

and the controls on IAQ within residential and educational micro-environments and to 

explore the dichotomy between good IAQ and energy efficiency, identifying how we 

can harmoniously achieve these -sometimes- conflicting objectives. Cooking sources 

are targeted in this study due to the daily nature of these activities and recent research 

highlighting the potential harmful nature of pollutants generated through these activities. 

This aim will be achieved by addressing the following objectives; 

• Using low cost, portable monitoring units to measure pollution levels under 

different ventilation regimes in response to discrete cooking events in; 

a) a specialist test facility and  

b) a selection of households in NW England 

• Quantify VOCs between and within sustainably accredited (BREEAM) 

buildings to assess potential VOC sources and relationships between IAQ and 

sustainability accreditation. 

1.4. Thesis Organisation and Structure 

The research in the thesis is concerned with various aspects of IAQ which is of critical 

importance due to aforementioned negative health effects of poor IAQ. An extensive 

literature review was conducted prior to undertaking the work in this thesis to evaluate 
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current research in the field of indoor air science and evaluate the research gaps that 

could be addressed with future work (Chapter 2). The following chapter (Chapter 3) 

refers to the instruments used to evaluate IAQ in the research undertaken throughout 

this thesis. The main chapters (4–6) that comprise the thesis discuss an array of data that 

was collected between February 2017 and February 2020, with each focussing on one 

of the objectives outlined in section 1.3. 

Chapter 2: This presents a review of the available literature in indoor air science. Topics 

covered in the literature review include indoor sources and characterisation, controls on 

pollutant concentrations, measurements and instrumentation, improving IAQ and IAQ-

energy efficiency conflicts. 

Chapter 3: This chapter presents an overview of the instruments used for indoor air 

quality monitoring in the work undertaken throughout this thesis and a technical 

specification of these instruments. 

Chapter 4: This chapter presents results from a study that deployed high time resolution 

air quality instruments with multiple pollutant monitoring capabilities in a selection of 

households in the NW of England. This study aimed to examine the temporal and spatial 

particle response to typical episodic household cooking activities and the influences that 

control cooking emissions, including exposure mitigation to generated particles via 

natural and mechanical ventilation and housing layout.  

Chapter 5: This chapter presents a novel pilot study that replicates cooking activities 

within the Salford Energy House under different ventilation regimes to assess trade-offs 

between IAQ and energy efficiency. This pilot study brings new knowledge and 

understanding to the conflicting objectives of good IAQ and energy efficiency in 

existing dwellings, through examining temporal variations in indoor pollutant 
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concentrations from discrete cooking activities. The Energy House provided a unique 

opportunity to study particle numbers and indoor temperatures at unprecedented 

temporal resolution. The energy consequences of ventilation are important to consider 

as these are significant for reducing residential energy use. 

Chapter 6: This chapter discusses the results of a study that quantified indoor VOCs 

within sustainability accredited buildings (BREEAM certified) at a UK university 

during periods of non-occupancy (building dependent) and occupancy (activity 

dependent) using a sieve mapping approach. This study aimed to assess the prevalence 

and concentration of VOCs in high performance buildings with sustainability 

credentials. This was in order to evaluate sources of VOCs and the relevance of IAQ 

credits in BREEAM accreditation in order to determine whether the current approach 

for accreditation is fit for purpose.  

Chapter 7: This chapter summarises the main findings of the thesis and based on this 

offers recommendations for future research in the area of indoor air science. 

1.5. Declaration 

This PhD was undertaken with a start-up SME, National Air Quality Testing Services 

(NAQTS, https://www.naqts.com/). Part of the thesis involved testing and utilising their 

portable V1000/V2000 air quality monitoring units which can simultaneously monitor 

a variety of gaseous and particulate pollutants and environmental conditions. Chapter 3 

presents a technical review of the NAQTS monitoring units. This is followed up in the 

Appendix with a series of short-term case studies designed to examine its effectiveness 

for a variety of pollutants. 
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2.0. Literature Review 

2.1. Introduction 

Indoor air quality (IAQ) is concerned with concentrations of pollutants and thermal 

conditions that may negatively affect the health, comfort and performance of a 

building’s occupants (Kubba, 2017). Kubba (2017) states that the four basic factors that 

influence IAQ are (i) a building’s occupants, (ii) a building’s HVAC system, (iii) 

possible pollutant pathways and (iv) possible sources of contaminants. Interest in IAQ 

began through associations with health. It is well understood that indoor pollutants, even 

at low concentrations, act as respiratory irritants, toxicants, adjuvants or carriers of 

allergen (Bernstein et al., 2008) and have led to lung cancer, chronic obstructive 

pulmonary disease and cardiovascular disease (Spinazze et al., 2019). 

Today, the average person spends 90% of their time indoors and 70% of that inside their 

home (Notman and Carslaw, 2018). Therefore, it is important to understand IAQ and 

its related problems. This forms the basis for remediating these problems and improving 

IAQ for the health and well-being of occupants. This literature review discusses current 

understanding in the overall topic of indoor air science, in order to identify research 

gaps which, form the basis of the research presented in this thesis. 

2.2. Indoor Sources and Characteristics 

We know that indoor environments include pollutants from external sources (such as 

vehicular traffic), which enter by infiltration and/or ventilation systems, and internal 

sources (Cincinelli and Martinelli, 2017). Indoor contaminants originate from building 

materials and furnishings, activities undertaken within the building (including the use 

of combustion appliances, heating systems, and the storage and application of cleaning 
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solvents and consumer products) and the presence and behaviour of occupants 

(microbial and metabolic emissions) (Seppänen, 2008; Han et al., 2010; Kumar et al., 

2016; Cincinelli and Martinelli, 2017; Salvador et al., 2019). Though invasive, and both 

time and cost prohibitive (O’Leary et al., 2019a) many researchers have characterised 

the temporal and spatial patterns of common pollutants (particulate matter, inorganic 

gases and microbial and chemical volatile organic compounds (Bernstein et al., 2008)) 

in various indoor microenvironments, which vary between pollutant species and among 

and within buildings (Sundell et al., 2011). A large number of studies have focussed on 

domestic residences, particularly kitchens and living rooms due to the amount of time 

that occupants spend in these microenvironments, and the presence of major indoor 

sources. Studies of schools and universities, offices and commercial buildings are also 

relatively common (Vu et al., 2017).  

The concentration of individual pollutants indoors depends on (i) emission rates from 

various indoor sources (ii) rates of transport from outdoors to indoors and (iii) the rates 

at which they are deposited on indoor surfaces, consumed by indoor chemistry and 

removed by ventilation/filtration (Weschler and Carslaw, 2018).  

2.2.1 Particles 

Particle number concentrations (PNC) vary from low values (<103 particles/cm3) in 

clean indoor environments to high values (>104 particles/cm3) during active periods of 

occupancy and very high values (>106 particles/cm3) in the presence of intense indoor 

sources (Bo et al., 2017; Isaxon et al., 2015). 

Recent studies highlight the main indoor particle sources relate to cooking activities 

including frying, sautéing, toasting and baking (Long et al., 2000). However, smoking 

has also been associated with high PNC, as has the use of household appliances 



11 

 

including gas-fired ranges and ovens, kerosene heaters, wood-stoves and fireplaces, 

along with other more general activities including incense burning, walking and 

vacuuming (Long et al., 2000). Combustion sources tend to elevate ultrafine (UFP, <0.1 

µm), fine or accumulation mode (AMP) (0.1–2.5 µm), and nanoparticle concentrations. 

In contrast, activities resulting in resuspension (e.g., physical movement) tend to elevate 

coarse particle concentrations (2.5–10 µm) (Long et al., 2000; Howard-Reed et al., 

2003; Bo et al., 2017). There is an extensive body of literature analysing particulate 

pollution, particularly from cooking-related activities. Episodic sources such as cooking 

are the cause of peak concentrations and variability in exposure among buildings 

(Bhanger et al., 2011). 

Residential environments are perhaps the most commonly studied environments. Most 

airborne particles in residences, when expressed as PNC, are generated by residents 

themselves through combustion/thermal related activities (Isaxon et al., 2015; Fantke et 

al., 2017); cooking, wood-burning, candles and smoking. Highest UFP concentrations 

have been associated with burning pure wax candles [241,000 particles/cm3], cooking 

(frying meat, electric and gas stove), smoking, and the use of electric heaters (Pederson 

et al., 2001; Afshari et al., 2005; Gehin et al., 2008; Bhanger et al., 2011). In contrast 

vacuuming, sweeping, use of non-terpene cleaning products and ironing without steam 

on a cotton sheet [550 particles/cm3] have not appeared to lead to a notable enhancement 

of PNC (Bhanger et al., 2011). Though not considered in this review, the use and 

application of chemical cleaners can generate UFP and coarse particles, which is 

particularly attributed to the oxidation and condensation of VOCs contained with them 

(Vu et al., 2017). 
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Cooking is an important part of daily food preparation in residential and commercial 

settings for the safety and enhancement of a substantial number of food products, to 

reduce food-borne illnesses, and to alter the composition of food products (Hager and 

Morawicki, 2013). It is also one of the most significant indoor sources of particles and 

organic gas emissions (Dennekamp et al., 2001; Wallace et al., 2004; Wheeler et al., 

2011; Kearney et al., 2011; Wallace and Ott, 2011; Rim et al., 2012; Klein et al., 2019) 

which can reach hazardous concentrations in the kitchen space and elsewhere in the 

internal environment. Therefore, it can contribute significantly to personal exposure and 

adversely affect health if concentrations are not maintained below health-based 

thresholds (Logue and Singer, 2014; Lunden et al., 2015; O’Leary et al., 2019a). High 

cooking temperatures and cooking practices more generally generate large amounts of 

smoke which may cool and nucleate to form UFPs that dominate number concentration 

but contribute negligibly to particle mass concentration (Lai and Ho, 2008; Nazaroff, 

2018). It has long been recognised that cooking can create high concentrations of visible 

aerosol indoors but cooking it is now also being considered a significant component of 

particles outdoors (Abdullahi et al., 2013). Cooking emission studies have been carried 

out in real world environments where emissions are influenced by numerous factors 

(e.g., room arrangement, building materials, outdoor infiltration, other combustion 

devices, ventilation and cooking methods) (Abdullahi et al., 2013). Emission studies 

have also been conducted in controlled environments where measurements are 

influenced by few factors, mainly the fuel and food used (Abdullahi et al., 2013). Fewer 

studies focus on cooking in commercial settings, though some of this work has been 

undertaken (Lee et al., 2001; Ots et al., 2016; Gysel et al., 2018). 

Numerous researchers have investigated cooking emissions and influencing factors but 

reported emission rates are highly variable due to the many influencing factors and 
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complications associated with real-world environments. Examples include toasted 

bread (9.5 ± 10.8 mg/min), fried chicken breast (15.2 mg/min) and deep‐fried French 

fries (0.34 ± 0.03 mg/min) (O’Leary et al., 2019a). It has been said that peak 

concentrations may be more important for health effects than long‐term concentration 

averages (Garrett et al., 1998). Peak PNCs from cooking have been found to be higher 

than reported outdoor peak concentrations by at least an order of magnitude. Zhang et 

al. (2010) reported increases in UFP exposure up to 550 times that of background levels 

during cooking. Concentrations of between 90,000–150,000 particles/cm3, 400,000 

particles/cm3 and 200,000–300,000 particles/cm3 have been found from scrambling 

eggs (Li et al., 1993), from deep frying tortillas on a gas stove burner followed by baking 

in the oven and from sautéing shrimp on a gas stovetop burner (Wallace and Ott, 2011) 

respectively. Dennekamp et al. (2001) and Afshari et al. (2005) noted that UFPs rose to 

a peak of 150,000 particles/cm3 simply by turning on 4 gas rings (or in the latter frying 

meat on an electric stove) and then to a peak of 590,000 particles/cm3 when frying bacon.  

The cooking of individual components, rather than full meals, may not be representative 

of typical home meal preparation. O’Leary et al. (2019a) studied emission rates and 

source strengths for complete meals. Likewise, He et al. (2004) characterised cooking 

emissions, finding variable emission rates of 0.03–2.78 mg/min and peak PNC of 

between 16,000 and 180,000 particles/cm3. Increased number and volume 

concentrations during dinnertime may, in part, have been due to the increased time of 

cooking (He et al., 2004). More research is required to assess PNC emissions from 

cooking full meals. 

The Home Observations of Microbial and Environmental Chemistry (HOMEChem) 

study has made some progress in this area in investigating the influence of everyday 
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activities on the emission, chemical transformation and removal of gases and particles 

indoors through extensive collaborative research (Farmer et al., 2019). Sequential 

experiments repeating similar activities throughout the day were interspersed with 

periods of enhanced ventilation (window opening) to investigate emissions (Farmer et 

al., 2019). Layered experiments replicated cooking and cleaning activities throughout 

the day with no interspersed window opening to simulate real-life use of a home 

(Farmer et al., 2019). During cooking events, large particle enhancements occur, which by 

number are largely in the ultrafine mode, with a substantial fraction owing to chemical 

species related to cooking oils (Farmer et al., 2019) (Figure 2.1). Substantial mass changes 

are also observed in the accumulation and super-micron modes (Farmer et al., 2019).  

 

 

 

 

 

 

Figure 2.1: Particulate response to typical cooking activities in the HOMEChem Study. (a) 

particulate matter mass concentration measurements from typical cooking activities during the 

HOMEChem experiments according to particle size and (b) measured particle concentration 

plotted against particle size for individual cooking events (Farmer et al., 2019). 

Most UFPs are said to be produced in response to the flame or heating elements, rather 

than the pots, pans or food (Wallace et al., 2008). Nonetheless more recent work 

highlights there is evidence that the cooking equipment itself can influence emission 

rates, especially when there is absorbed organic matter on the surface of pans (O’Leary 

et al., 2019a). Indeed, particle emission rates from and during the processes used in 

cooking (e.g., frying, roasting, grilling, boiling) are seen to span several orders of 

https://pubs.rsc.org/image/article/2019/em/c9em00228f/c9em00228f-f6_hi-res.gif
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magnitude; affected by ingredients, procedures, cooking style or setting and cooking 

temperature as well as air exchange rates and oxidant precursor levels (Abdullahi et al., 

2013; O’Leary et al., 2019a; Klein et al., 2019). Dry, water‐based, and oil‐based 

cooking processes have very different emission rates, with oil‐based methods, such as 

frying and grilling, having the highest rates (up to 30 and 90 times the ambient 

concentration) (He et al., 2004). Higher particle numbers and mass concentrations have 

also been found at higher cooking temperatures by some researchers. Siegmann and 

Sattler (1996) show that the PNCs increased twofold with an increase of the oil 

temperature from 223 to 256 °C. Evidence suggests that cooking ingredients influence 

PM2.5 emissions, and oil type (smoke point, composition, and water content) is perhaps 

the most significant (O’Leary et al., 2019a). The effects of non‐essential additives, e.g., 

seasonings, on emission rates have also been investigated. Further contradicting the 

previous assertion food type has been found to be important, with the fat content of 

foods and their emission rate being highly correlated (O’Leary et al., 2019a). Fuel type 

is also significant. Higher emission rates are reported when using gas burners rather 

than electric hobs by Buonanno et al. (2009) but not by others. 

Particle size distributions have been extensively studied. It is well known that 

combustion- generated particles are considerably smaller than 2.5 µm, often smaller 

than 1 µm, justifying the use of number concentration of ultrafine particles as a more 

relevant metric than mass when determining residential exposure to combustion related 

particles (Isaxon et al., 2015). Most of the particles emitted from gas/electric stoves 

have been seen to be less than 0.04 µm with the peak PNCs occurring around 0.005 µm 

to 0.006 µm (Wallace et al., 2008; Rim et al., 2012) and a slight shift in size during 

frying of bacon (0.05–0.1 µm) (Dennekamp et al., 2001). Wallace et al. (2006) 

highlighted a shift towards larger particle sizes for more complex dinnertime cooking, 
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such as using gas burners, stir-frying and pan-frying (0.036–0.04 µm) and using a gas 

oven (broiling fish, baking potatoes) (0.045–0.046 µm). Singer and Delp (2018) 

summarised cooking sources that produced large numbers of particles at size fractions 

<0.3 µm; heating water on a gas stove, cooking a pizza in a gas oven, cooking pancakes 

over medium heat, and toasting bread in a well‐used electric toaster oven, and those that 

generated large quantities of PM2.5; heating oil in a wok on gas or electric burners, frying 

bacon, toasting 4 slices of bread in a toaster oven, and stir‐frying green beans on a gas 

burner. 

Particles in indoor air are influenced by various physical and chemical processes which 

change their physical characteristics, chemical composition and concentrations (Bekö 

et al., 2020). Particle exposure from indoor sources is a function of the source strength 

and losses due to air exchange, filtration, coagulation, and deposition (Wallace et al., 

2019). All previous studies assessing particle count data from cooking show similar 

temporal trends.  Concentrations from the onset of cooking are initially low, then rise 

steeply with the rate of increase depending on many factors including the cooking 

method, the relative location between the source and the sampling area and the indoor 

airflow (buoyancy and convection) (Lai and Ho, 2008). Concentrations increase over 

time as the cooking continues indicating ongoing emissions of particles. High peaks in 

concentration are quickly generated (Afshari et al., 2005), with maximum 

concentrations reached between a few minutes and a half hour (Afshari et al., 2005; 

Klein et al., 2019).  

After cooking stops, concentrations decrease towards background levels at a rate that is 

usually exponential (with the rate of decrease of particle concentration with time 

proportional to the concentration), determined by air change rate (governed by 
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ventilation, mainly that provided by a kitchen fan and/or natural ventilation) and 

deposition on interior surfaces (and where number concentration is higher than 10,000–

20,000 particles/cm3, by coagulation) (Isaxon et al., 2015). Typically, the increase of 

the particle concentration immediately after the onset of cooking is more rapid than the 

observed decay once cooking has ceased. During the decay, the total number 

concentration decreases with time and the particle size distribution moves toward larger 

particle sizes as the aerosol ages (Wallace, 2000; Abt et al., 2000; Dennekamp et al., 

2001). 

The lifetime of the cooking aerosol particles in the kitchen has been reported to vary 

between 4–6 h (Hussein et al., 2006). PNCs in adjacent living spaces can also be 

affected.  Wan et al. (2011) noted that during cooking average number concentrations 

of UFPs and AMPs were 20–40 times and 10 times greater than background levels in 

the kitchen and living room respectively.  PNCs then remained elevated after cooking 

for up to 90 and 60 minutes in the kitchen and living room. The average number mean 

diameter of UFPs and AMPs in the living room was about 10 nm larger than that in the 

kitchen during cooking, highlighting coagulation effects (Wan et al., 2011).  

Laboratory and field-based studies show combustion-related particles contain a host of 

organic and inorganic material (Morawska and Zhang, 2002; Klein et al., 2019) 

including alkanes, fatty acids, alkanones, sterols, polycyclic aromatic hydrocarbons and 

heterocyclic amines (Abdullahi et al., 2013) and more complex oxidised organic 

molecules such as sorbic and lactic acid (Farmer et al., 2019). Experimental work has 

characterised cooking emissions and found that whilst frying processes are the main driver 

of larger and unsaturated aldehyde emissions, terpenes are mostly emitted due to condiment 

use (Klein et al., 2019).  Farmer et al. (2019) found that organic aerosol dominated the 
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submicron mass during cooking, and, while variable between meals and throughout cooking, 

was dominated by components of hydrocarbon character and low oxygen content, similar to 

cooking oil. Emitted particles evolve throughout cooking, becoming more oxygenated and 

nitrogenated when food is added to cooking oil (Farmer et al., 2019).   

2.2.2. Organic Compounds 

Volatile organic compounds (VOCs thereafter), carbon-based chemicals which contain 

a range of chemical species (including saturated and unsaturated hydrocarbons, 

carbonyls, alcohols, ethers, esters, furanoids, amines, siloxanes and sulphides) with a 

high vapour pressure at room temperature (above 0.01 kPa at 20 °C) (Goodman et al., 

2017), are prevalent indoor air pollutants. The most well-documented VOCs are 

benzene, toluene, ethylbenzene, and xylene (BTEX) compounds and 1,3,5-

Trimethylbenzene (1,3,5-TMB). Documented indoor sources include consumer 

products and building materials; wood (MDFs and particle boards), thermal and 

acoustic insulations, carpets, paints, coatings, industrial solvents, adhesives, fireproof 

materials, PVC, flooring, and furnishings (Shaw et al., 2005; Cacho et al., 2013). 

Advances in construction and changes in building materials, including the use of 

recycled material and more synthetic materials (Jones, 1999) have introduced more 

organic gases indoors (Spengler and Chen, 2000). Even green consumer products and 

building materials can emit potentially hazardous VOCs (Goodman et al., 2018). 

Formaldehyde, whose indoor concentrations typically exceed outdoor concentrations, 

is often treated separately as it is not detected by gas chromatographic methods that 

quantify VOCs (Shaw et al., 2005). Sources include additive degradation in wood‐based 

building materials, furniture, sealants, combustion, and chemical reactions (Destaillats 

et al., 2006; Singer et al., 2006; Kruza and Carslaw, 2019).  Recent research has shown 
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that semi-volatile organic compounds (SVOCs) can also be emitted from building 

materials; flooring, furniture, electronics, plastic items, textiles, cleaning, and cosmetic 

products (Kristensen et al., 2019). 

Elevated VOC concentrations associated with difference source types and different 

activities; building materials, furnishings, and household products inside the living 

space; occupants and their episodic activities; chemical processes; and transport from 

outdoors or connected spaces have distinctive characteristics and are a concern for 

residential IAQ (Farmer et al., 2019). High‐baseline concentrations indicate continuous 

indoor emissions from building materials and furnishings (Kristensen et al., 2019) 

When indoor sources are absent, concentrations are typically lower than outdoors, as 

VOCs are expected to adsorb on surfaces or be chemically destroyed (Yurdakul et al., 

2017). 

In the past, concern has focused on primary emissions from building materials and 

furnishings (Liu et al., 2019) which may decay in days or weeks, but secondary 

emissions due to ageing of the material persist over longer periods (Sundell, 2004; 

Prasaukas et al., 2016). Compared to older buildings, recently constructed buildings 

have shown increased carbonyl concentrations and total VOCs likely due to increased 

ventilation in older dwellings and lower emissions from older building materials 

(Molloy et al., 2012; Langer et al., 2015). Reasonably good IAQ in newer buildings is 

generally attributed to higher air exchange rates owing to mechanical ventilation. 

Continuous emission patterns for many compounds indicate ongoing chemical 

processes such as decomposition and oxidation (Liu et al., 2019). Liu et al. (2019) 

suggest slow decomposition of the wooden building envelope is a major source for 

acetic acid, formic acid, and methanol, which accounted for 75% of the total continuous 
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indoor emissions. When compared to conventional buildings, the IAQ of energy 

efficient buildings has been marked by high concentrations of terpenes and hexaldehyde, 

likely attributed to wood or wood-based products (Derbez et al., 2017). Langer et al. 

(2015) reported significant sources of total volatile organic compounds (TVOCs) in 

passive houses and formaldehyde in conventional houses. 

Observed airflow patterns highlight that air pollutants can enter occupied spaces from 

coupled zones (e.g., crawlspaces, attic) (Liu et al., 2019). Liu et al. (2019) found 

substantial upward inter-zonal airflows, with most VOCs observed in the living spaces 

of residences being emitted from sources directly into the living space and negligible 

transport from outdoor and coupled spaces. Sleeping environments are usually 

characterised by lower ventilation rates (Bekö et al., 2010) which tends to promote 

pollution accumulation (Canha et al., 2017).  Mattresses, pillows and bed linens are 

often treated with flame-retardants and contain residual detergent components and other 

substances such as SVOCs that can be re-suspended during sleep and impact human 

health (Canha et al., 2017; Boor et al., 2017). 

Intermittent emissions from occupants and their activities produce short‐term 

enhancements in VOC concentrations (Liu et al., 2019). Human occupants in buildings 

enhance pollution owing to emissions of alcohols, hydrocarbons, aldehydes and ketones, 

with concentrations in the range of ppb to ppm including acetone, acetate and pentanal, 

from skin oils and shedding of skin flakes, rich in skin oil, and breath (Verielle et al., 

2016; Weschler and Carslaw, 2018; Kruza and Carslaw, 2019; Farmer et al., 2019). 

Their concentration in the indoor environment depends on the volume of the indoor 

space, the air change rate, the number of individuals indoors and individual variations 

such as diet (Kruza and Carslaw, 2019). Experimental studies show the sources, behaviour, 



21 

 

and time series of VOCs, including oxidized organic acids, following human occupancy and 

occupant activities (cooking and cleaning) are complex (Farmer et al., 2019). 

Many studies note that VOC exposures are affected by an individual′s activity. In the 

RIOPA study, Su et al. (2013) found most VOC exposures (66–78%) in non-smoking 

households occurred indoors. VOCs with the highest average concentrations in 

Michigan residences included aromatics (benzene, toluene and xylenes), which are 

solvent-related and in household products, paints, adhesives, synthetic fragrances, 

evaporated fuel and vehicle emissions, alkanes (n-C7–13 and methyl cyclohexane) and 

terpenes (d-limonene and α-pinene), constituents of cleaning products, air fresheners 

and fragrances (Chin et al., 2014). Bari et al. (2015) similarly attributed VOCs in 

residences to household products (44%), combustion and environmental tobacco smoke 

(10.5%), deodorizers (8.4%) and off-gassing of building materials (5.9%).  Presence of 

a carpet, use of a dishwasher, washing clothes, painting or varnishing floors and 

furniture within the last 12 months caused elevated concentrations of VOCs in 60% of 

homes studied by Bari et al. (2015). Residential air exchange rate (AER, or ventilation) 

has been negatively associated with indoor levels of toluene, xylenes, styrene, 

chloroform and monoterpenes (Su et al., 2013). In terms of environmental factors, 

ambient humidity and wind speed were negatively associated with indoor VOC levels 

(Su et al., 2013). 

Household, consumer, and maintenance products such as air fresheners, cleaning 

products and personal care products can emit VOCs (such as monoterpenes, 

acetaldehyde, acetone, toluene, xylenes, decane, undecane, dodecane and ethanol) 

during usage (Goodman et al., 2018; Massolo et al., 2010; Jenkin et al., 2000; Derbez 

et al., 2017). In HOMEChem, mopping with pine-scented cleaner raised limonene levels, 
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while mopping with bleach solution raised chloroform levels (Farmer et al., 2019). Indoor 

emissions of cyclic volatile methylsiloxane (cVMS) (octamethylcyclotetrasiloxane (D4), 

decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6)) 

associated with personal care products have also been studied (Nazaroff et al., 2015; Yang 

et al., 2018).  

Educational institutions are commonly studied indoor environments (Akal et al., 2015; 

Allou et al., 2008; Chan et al., 2007; Godwin and Batterman, 2007; Goodman et al., 

2018; Park et al., 2014; Solomon et al., 2008; Yurdakul et al., 2017) with a focus on 

primary and high schools as they house high density populations of young people who 

are particularly vulnerable to air pollutants. Human emissions are important in highly 

occupied spaces, e.g., classrooms, more so now energy efficiency measures are making 

buildings more airtight (Kruza and Carslaw, 2019). Zhong et al. (2017) examined VOCs 

in conventional schools and schools built to high sustainability credentials. Most VOC 

concentrations were low (mean <5 µg/m3) and the most prevalent were aromatic 

compounds e.g., toluene, benzene, m/p-xylene and 1,2,4-trimethylbenzene (Zhong et 

al., 2017). BTEX, terpene and formaldehyde concentrations were positively correlated 

with the presence of vinyl and wood floor materials and negatively correlated (along 

with TVOCs) with carpeted floors, whilst VOCs (except formaldehyde) were associated 

with the presence of science class materials (Zhong et al., 2017). Building type 

(conventional vs high performance) did not appear to have a significant influence on 

VOC concentrations (Zhong et al., 2017). 

Several international studies have studied IAQ in university buildings but generally 

university buildings have drawn less attention (Yurdakul et al., 2017). Chan et al. (2007) 

studied VOCs across a university campus and attributed the main VOCs; toluene and 
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benzene to ingress from outdoors. Solomon et al. (2008) found environmental tobacco 

smoke was a main factor in indoor pollution at the University of Bremen and pollutants 

associated with cleaning products and materials exhibited higher concentrations indoors 

than outdoors. Goodman et al. (2018) studied the prevalence and concentration of VOCs 

at an Australian University across campus services, restrooms, renovated offices, a 

green building, meeting areas and classrooms, revealing the most prevalent VOCs 

(ethanol, d-limonene and formaldehyde) had links with building materials, furnishings 

and fragranced consumer products. 

Due to the use, application and storage of volatile solvents and chemicals, relatively 

higher VOC concentrations have been detected in many (university) buildings housing 

laboratories (Valavanidis and Vatista, 2006; Park et al., 2014; Yurdakul et al., 2017). 

Park et al. (2014) found concentrations of 11 VOCs within laboratory buildings were 

significantly higher (mean: 185 µg/m3) than those of non-laboratory buildings (mean: 

12.1 µg/m3) owing to the presence and use of laboratory chemicals; ethanol, acetone, 

methylene chloride, n-hexane and chloroform. Even when using fume hoods organic 

materials can be a source of VOCs when heated (Yurdakul et al., 2017). In addition, 

fume hoods may exacerbate outdoor air pollution (Park et al., 2014). Rumchev et al. 

(2003) and Valavanidis and Vatista (2006) investigated IAQ in university laboratories 

in Australia and Athens respectively (Park et al., 2014) showing occupants can be 

exposed to higher levels of TVOCs compared to non-laboratory environments, although 

these can be reduced by air conditioning. 

2.2.3. Inorganic Gases 

Combustion activities are responsible for elevating levels of some inorganic gaseous 

pollutants indoors, especially in residences. Carbon monoxide (CO) is formed from 
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incomplete fuel combustion, and as such has been positively correlated with gas 

cooking (Molloy et al., 2012). Carbon dioxide (CO2) is exhaled by humans and, in the 

absence of combustion activities, is the greatest contributor to indoor concentrations 

(Jones, 1999). Typical concentrations range from 700–2000 ppm but can exceed 3000 

ppm when unvented appliances are used (Jones, 1999). Indoor ozone and ammonia 

sources include air purifiers and laser printers, human emissions, pets and household 

products respectively (Sutton et al., 2000; Zhang and Smith, 2003; Bernstein et al., 

2008; Salonen et al., 2018). Indoor ammonia concentrations can be higher than outdoor 

concentrations (1–5 ppb) (Ampollini et al., 2019). Ammonia has been related to 

(thanksgiving) cooking where concentrations have been found to range between 24 and 130 

ppb. A rapid ammonia increase as the oven is opened suggests thermal decomposition of 

amino acids in meat proteins is responsible (Ampollini et al., 2019). Indoor ozone 

concentrations are highly variable, with specific indoor sources including air purifiers, laser 

printers and photocopiers (Salonen et al. 2018). Nitrogen compounds form during 

combustion. Primary indoor sources of nitrogen oxides are unvented fuel burning appliances, 

heating appliances and tobacco smoking (Vilcekova, 2011). Nitrogen oxides play key roles 

in ozone formation. 

2.3. Controls on Concentration   

2.3.1. Building Characteristics 

Occupant behaviour is an important determinant of pollutant concentrations, which 

varies between and within buildings. Indoor pollutant concentrations are also influenced 

by building age, size, type, and use, which vary considerably, both in terms of 

geographic location and method of construction. Other influencing factors include the 

characteristics of interior materials, the airtightness of the building envelope and type 
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of ventilation system (Langer and Bekö, 2013; Lavesseur et al., 2017). UK Building 

regulations Parts L and F are related to indoor air quality and give guidance of air 

tightness and ventilation respectively (UK Government, 2014a). Proper building 

envelope design and occupant behaviour can limit infiltration of contaminants from the 

outside, while regular maintenance and inspection of buildings can prevent the 

deterioration of building materials that are not designed to be exposed to the elements 

(Levasseur et al., 2017). Residential buildings constructed in the past two decades tend 

to be more airtight than older buildings, with lower air exchange rates (Weschler, 2009) 

preventing ingress of outdoor pollutants. Conversely, newer buildings often have higher 

concentrations of airborne pollutants that are generated in the indoor environment from 

materials and activities (Fortenberry et al., 2019). Building operators and designers are 

encouraged to avoid low ventilation rates unless alternative effective measures are 

employed (Sundell et al., 2011). When designing buildings, it is important to account 

for local pollution-generating processes by locating them in separate rooms (Seppänen, 

2008). 

Levasseur et al. (2017) stated that we must keep designing and building ‘performant’ 

buildings (e.g., green and net-zero energy buildings) that promote good IAQ, and 

energy efficiency. Since the 1970s significant momentum toward energy conservation 

in buildings has led to energy related building codes and has resulted in the tightening 

of building envelopes reducing air infiltration (Mudarri, 2010). Regulations targeted 

towards energy efficiency are also included in the UK Building Regulations Approved 

Documents (UK Government, 2014a). Newer designs, construction practices and 

building materials for “green” buildings and the use of “environmentally friendly” 

products can potentially reduce chemical exposure, but this is not always the case 

(Zhong et al., 2017). 
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2.3.2. Indoor Chemistry 

Chemical reactions occurring in materials, on the surface of materials or in the gas phase 

have a great influence on the chemical composition of indoor air (Uhde and Salthammer, 

2007; Weschler and Carslaw, 2018). These chemical processes and their relation to 

those occurring outdoors must be well-understood (Bekö et al., 2020). From 1991–2010 

more than 250 peer-reviewed publications addressed reactions among indoor pollutants 

(Weschler, 2011) including oxidation, hydrolysis, acid/base, photolysis and 

decomposition (Weschler and Carslaw, 2018). Most studies, at least initially, were 

undertaken in controlled chambers, often neglecting the influence of occupancy.  Some 

researchers have focused on particles being oxidised by ozone during episodic activities 

such as cooking, and surface-mediated ozonation driven by clothing and skin (e.g., 

Fortenberry et al., 2019). Another trending topic is chemistry in hidden building spaces 

and how this influences chemistry in occupied spaces (Weschler and Carslaw, 2018). 

The field of indoor air chemistry is moving forward rapidly, accelerated to some extent 

by the Alfred P Sloan Foundation’s “Chemistry of Indoor Environment” Program (Bekö 

et al., 2020). In addition, INDAIRPOLLNET (2018–2022) is also addressing the current 

state of knowledge of indoor air pollution, with an emphasis on indoor air chemistry 

(Indairpollnet, 2019). With increasing use, more studies into reactions of green 

materials containing nanoparticles are also envisaged (Weschler and Carslaw, 2018). 

The reaction between ozone (O3) and the terpenes (a class of VOCs) has been 

extensively explored in the literature, given the common occurrence of ozone in outdoor 

air and terpenes in indoor environments, which react fast enough to compete with air 

change rates (Long et al., 2000; Wainman et al., 2000; Weschler, 2004; Fan et al., 2003; 

Fan et al., 2005; Destaillats et al., 2006). Fan et al. (2003) found that when O3 was added 
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to terpenes or a mixture 23 VOCs including terpenes (α-pinene and d-limonene), 

reaction products included aldehydes, organic acids and submicron particles. The 

mechanism for the reaction between O3 and the terpenes was identified as O3 addition 

to a >C=C< bond of the terpene to form a primary ozonide, which reacts further to form 

hydroxyl carbonyls for example (Fan et al., 2003). Fiedler et al. (2005) shows 

formaldehyde is a product of this reaction increasing from 13 µg/m3 (no ozone) to 40 

µg/m3 in the presence of 40 ppb ozone. Other experimental studies support these 

findings, with reaction products including unsaturated VOCs; the hydroxyl (OH), 

hydroperoxy (HO2), organic peroxy and nitrate (NO3) radicals, and Criegee 

intermediates (Weschler and Carslaw, 2018). Fan et al (2005) and (Chen and Hopke, 

2009) similarly discuss how adding O3 to a mixture of VOCs led to the formation of 

submicron particles.  

Earlier studies did not investigate reactions between ozone and skin surface lipids 

because they took place in unoccupied areas (Weschler, 2016) but now such studies are 

prevalent. Human occupants contribute to reactive chemicals. Breath is a significant 

source of reactive chemicals indoors; containing isoprene, nitric oxide (NO) and 

ammonia (Weschler and Carslaw, 2018). Skin oils are transferred onto surfaces that 

humans contact, and skin flakes can deposit on horizontal surfaces (Weschler and 

Carslaw, 2018). Squalene has been considered the most important skin surface lipid that 

readily reacts with ozone (Weschler, 2016) entering buildings from outdoors via 

ventilation and infiltration (Kruza and Carslaw, 2018). Through the presence of 

occupants indoors and decreases in oxidant levels, the formation of nitrated organic 

species, potentially toxic compounds, can be affected (Kruza and Carslaw, 2018). 
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The time available for chemical reactions indoors is determined by the building 

ventilation rate, which influences reactant, ozone, and seed particle concentrations, and 

by dry deposition of the reactants (Langer et al., 2008; Waring and Siegel, 2010; 

Weschler and Carslaw, 2018). For gas phase reactions to influence indoor environments, 

the time scale of the reaction must be competitive with air change (Weschler and 

Carslaw, 2018). Emerging research focuses on low- or zero-energy buildings, which 

often have low ventilation rates providing more time for gas-phase chemistry (Weschler 

and Carslaw, 2018). Salvador et al. (2019) quantified the influence of ventilation on 

occupant-related indoor air chemistry. Exposure to noxious products of ozone/human 

chemistry can be reduced by decreasing ventilation during periods with high outdoor 

ozone levels. Turning off the ventilation overnight or on weekends may lead to the 

accumulation of certain pollutants with indoor sources but could limit the extent that 

ozone‐derived products are formed (Salvador et al., 2019). Time constraints do not 

apply to surface reactions, unless they involve airborne particles (Weschler and Carslaw, 

2018). Higher rates of terpene emission (Sarwar et al., 2003) and higher rates of 

ventilation have been shown to increase O3/terpene reaction rates and reaction products 

(Coleman et al., 2008) but the latter will also dilute these products (Kruza and Carslaw, 

2018). Higher outdoor particle concentrations have been seen to cause higher indoor 

‘seed’ particle concentrations, increasing organic aerosol concentrations (Sarwar et al., 

2003). 

Other reactions are considered including base-catalyzed hydrolysis of plasticizers and 

personal care products (Weschler and Carslaw, 2018). Reactions with ammonia are also 

considered; ammonia reacts with acidic gases such as H2SO4, HNO3, and HCl and with 

bleach, enabling the formation of secondary aerosol mass as ammonium sulfate 
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(NH4)2SO4, ammonium nitrate (NH4)NO3, ammonium chloride NH4Cl, and 

chloramines (NCl3, NHCl2) (Farmer et al., 2019). 

2.3.3. Outdoor: Indoor Exchange 

Historically, outdoor air pollution has been the focus of air quality research because of 

public awareness and acknowledgements of associated health impacts. It is important 

to consider the impact that outdoor (ambient) air quality has on IAQ and several 

researchers have evaluated this. The impact, of course, depends on where the building 

is located (e.g., city or countryside) and how airtight it is.  In the absence of indoor 

pollution sources, studies show a general trend of higher outdoor than indoor 

concentrations (Bo et al., 2017). Generally higher ventilation rates cause indoor air to 

become more like local outdoor air.  

The main outdoor sources include emissions from vehicles, coal and gas-fired power 

stations, industry, agriculture, domestic heating systems and atmospheric reactions (Bo 

et al., 2017). Common sources of prevalent VOCs, benzene and toluene include 

petroleum and vehicle exhaust and their presence in the indoor environment indicates 

close proximity to heavily trafficked roads (Chan et al., 2007). VOCs in the atmosphere 

can react with UV-rays contributing to tropospheric photochemical ozone formation 

over wide areas (Park et al., 2014). Whereas indoor activities intermittently influence 

indoor PNCs, outdoor particle concentrations continuously influence indoor (and indoor 

baseline) concentrations (Bhanger et al., 2011). Coarse particles are generally 

associated with natural sources whilst fine, ultrafine and nano-scale particulates are 

generally associated with anthropogenic sources (Bo et al., 2017). 

2.4. Indoor Air Quality Testing, Monitoring and Modelling 
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2.4.1. Questionnaires 

Qualitative assessments of IAQ and the presence, duration, frequency and patterns of 

exposures involves addressing occupant satisfaction in buildings through the 

distribution of questionnaires/surveys (Wargocki et al., 2000a; Fang et al., 2004; 

Nieuwenhuijsen, 2004; Lai et al., 2004; Clausen and Wyon, 2008).  These are not 

considered further within this review because we largely focus on quantitative analysis 

in our investigations in this thesis. 

2.4.2. Quantifying Pollutant Concentrations 

A wide range of techniques have been used to evaluate IAQ across a range of micro-

environments.  Most air quality studies, particularly those of a regulatory nature 

undertaken by governments and scientists, use static monitoring stations equipped with 

certified reference instruments (Lewis et al., 2016). These analysers are typically large, 

heavy and expensive, costing between £5000 and £60,000 (Mead et al., 2013). These 

instruments are subject to strict maintenance and calibration routines to ensure high 

quality data and comparability between sites (Castell et al., 2017). They also require 

infrastructure such as secure and temperature-controlled enclosures (Piedrahita et al., 

2014).  

In the case of VOCs, their total concentration (TVOC) can be measured or individual 

species can be quantified, which is more desirable because of the effects of some 

individual components (Ras et al., 2009). European standards ISO 16000-5:2015 

(Sampling Strategy for Volatile Organic Compounds) and ISO 16000-6:2011 

(Determination of VOCs in Indoor Air) are particularly relevant to the analysis of VOCs 

in indoor air. Sampler devices can quantify cumulative VOC levels but cannot track 

temporal patterns (Castell et al., 2017). To quantify individual species of VOCs sample 



31 

 

concentration, followed by separation by gas chromatography and detection by 

sensitive GC detectors, is required (flame ionisation detection (FID), electron capture 

detection (ECD) or mass spectrometry (MS)) (Helmig and Vierling, 1995; Ras et al., 

2009). Proton-transfer reaction mass spectrometry (PTR-MS), which works based on 

reactions of H3O
+ ions, also allows individual VOCs to be monitored with high 

sensitivity (Wang et al., 2015). Whilst GC-FID, GC-MS and PTR-MS are highly 

sensitive and linear in response, these instruments are very expensive and not portable 

and thus less suitable for field analysis but have been used in outdoor field campaigns 

(Wang et al., 2015).  

For carbonyl compounds, air is sampled onto 2,4-dinitrophenylhydrazine (DNPH)-

treated silica cartridges from stable derivatives in situ. Sampling time varies in previous 

studies from 7 hours (at 1200 mL/min) (Goodman et al., 2018) to 168 hours (Geiss et 

al., 2009). High performance liquid chromatography with ultra-violet detection (HPLC-

UV) is the most common analytical technique. Validated methods are based on ISO 

standards including 16000-3 Indoor Air: Part 3 Determination of formaldehyde and 

other carbonyl compounds in indoor air and test chamber air – Active sampling method 

for the determination of carbonyl compounds (International Organization for 

Standardization, 2020). 

Liu et al. (2019) analyse a full spectrum of VOCs by PTR-ToF-MS through continuous 

monitoring campaigns. The OFFICAIR and AIRMEX studies measured VOCs with a 

passive sampler. In the former study, VOCs were analysed by TD coupled with capillary 

GC-MS (Mandin et al., 2017). This technique was also used in the RIOPA study (Zhong 

et al., 2017) and numerous others (Roberts, 2012; Vette et al., 2013; Csobod et al., 2014; 

Sakai et al., 2017). In the AIRMEX study GC-FID was used for analysis. Similarly, 

Derbez et al. (2014) measured VOCs by a passive sampler, and provided quantification 
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through GC, MS and FID. Goodman et al. (2018) analysed VOCs in university 

buildings using an automated thermal desorber (ATD) and a Hewlett Packard 

GC/MS/FID in accordance with US EPA method TO–17. All of these studies performed 

carbonyl analysis using HPLC-UV detection (Derbez et al., 2014) in accordance with 

US EPA Method TO–11A (Goodman et al., 2018). 

Approaches used for measuring particulate matter (PM) concentration (gravimetric, 

microbalance and optical) and size distribution (scanning mobility particle sizer, 

electrical low-pressure impactor and others) are discussed in the literature. Filter-based 

gravimetric samplers have been widely used in ambient particle monitoring (Amaral et 

al., 2015). Microbalance methods, including the tapered element oscillation 

microbalance (TEOM) analyser are sometimes used in indoor-outdoor studies, but most 

measurements of time-resolved UFP and PM2.5 in indoor environments have been made 

with photometers, optical particle counters (OPCs) and condensation particle counters 

(CPCs) based on the principle of light scattering (Amaral et al., 2015; Singer and Delp, 

2018). Among size distribution methods, microscopy can provide much information 

(Amaral et al., 2015).  A recent development is the Electrical Low Pressure Impactor 

(ELPI), which classifies particles according to their aerodynamic diameter (Amaral et 

al., 2015). Other complete systems of spectrometers for measuring particle mobility 

diameter include the scanning mobility particle sizer (SMPS) which comprises a 

Differential Mobility Analyser (DMA) and a Condensation Particle Counter (CPC) and 

is based on the principle of the mobility of a charged particle in an electric field (Amaral 

et al., 2015). Aerodynamic particle sizers (APS) measure particle size distributions from 

0.5 to 20 µm by determining the time of flight of individual particles in an accelerating 

flow field (Peters and Leith, 2003). 
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These methods have been used in numerous studies of IAQ. O’Leary et al (2019a), 

O’Leary et al. (2019b) and Isaxon et al. (2015) used OPCs in their measurement 

campaigns to measure PM2.5 and particle size distribution in residential environments. 

Other researchers report the use of a CPC (Fan et al., 2005; Afshari et al., 2005; Kearney 

et al., 2011; Bhanger et al., 2011) to measure fine and ultrafine particles and SMPS to 

monitor PNC and particle size distribution (Wallace et al., 2004; Wallace et al., 2019; 

Hager and Morawska, 2013).  

Ventilation metrics include ventilation rate (m3·h−1), ventilation rate per person 

(L·s−1·person−1) and outdoor air change rate (A, h−1). These can be determined using (i) 

air flow measurements; (ii) pulse or constant injections of tracer gases; (iii) occupant-

generated carbon dioxide (CO2) or (iv) through a comparison of indoor and outdoor 

concentrations (Batterman et al., 2017). Tracer gas measurements, based on the mass 

balance of a tracer gas in a building, have been used to calculate air change rates and 

airflow characteristics in many US and European homes (Yamamoto et al., 2010; 

Dimitroulopoulou, 2012; Breen et al., 2014; Liu et al., 2018a). Occupant-generated 

CO2 has been widely used since CO2 is inert, emission sources (people) are present in 

all buildings and usually well dispersed throughout occupied spaces, and inexpensive 

and accurate measurement and logging instruments are available (Batterman et al., 

2017). The pressurised blower method can also determine AER which determines 

building envelope leakage (Breen et al., 2014). Pressurisation measurements have been 

used to calculate inputs for some AER models. 

2.4.2.1. Sensors 

Low-cost sensors which make autonomous measurements of multiple pollutant 

parameters at a cost of 100–10,000 USD per observing location (Lewis et al., 2016; 
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Singer and Delp, 2018) have the potential to take equivalent measurements to reference 

instruments while capturing additional spatial variability (Piedrahita et al., 2014). Start-

up companies have begun producing low-cost air quality monitors housing low-cost 

sensors which aim to provide information in real-time at a resolution not previously 

observed (Kumar et al., 2016; Lewis and Edwards, 2016). A number of recent studies 

have examined the value of low-cost sensors in indoor air science. These studies are 

mostly assessment based and often evaluate inter-sensor comparability and their 

performance against reference-grade instrumentation. However, the findings from these 

studies have been contradictory. The cost and flexibility of deployment of low-cost 

sensors are often cited as major advantages, however, it is not yet known how useful 

they will be in the future of indoor air pollution monitoring. Further studies could 

evaluate the use of these sensors in the field, which is currently missing, and the use of 

multi-parameter field calibrations to improve reported measurements. 

Some of most advanced air quality sensors are seen to recreate general patterns of 

pollutant behaviour captured by reference instruments over short timescales (Lewis et 

al., 2016; Smith et al., 2017). Singer and Delp (2018) found four consumer AQ monitors 

(AirBeam, AirVisual, Foobot, and Purple Air II) provided quantitative or nearly 

quantitative measurements that were time correlated and within a factor of 2 for most 

sources investigated and were therefore seen to be of sufficient accuracy and reliability 

to detect large sources. Two consumer monitors (Air Quality Egg and Awair) responded 

to most sources but reported mass concentrations less than half of the estimated true 

values (Singer and Delp, 2018). All the consumer and research monitors in this study 

substantially under‐reported or missed events when much of the emitted mass consisted 

of particles smaller than 0.3 μm diameter; however, as many UFP sources also emit 

particles above this size fraction, the monitors could still help reduce UFP exposures 
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(Singer and Delp, 2018). The performance of these monitors needs to be evaluated in 

occupied homes and quantified over longer periods. 

It is difficult to make trace gas measurements to a usable degree of accuracy and 

precision and with stability over time (Lewis et al., 2016). Sensor performance is 

affected by effects such as drifts of zero and calibration slope as well as cross 

sensitivities and interferences to and with other gases (co-pollutants) and environmental 

or meteorological parameters (e.g., water vapour, temperature) (Williams et al., 2013; 

Lewis and Edwards., 2016; Smith et al., 2017; Batterman et al., 2017). Over time the 

ranking of individual sensors changes since sensors each respond to different 

environmental conditions with slightly different sensitivities to each parameter (Smith 

et al., 2017). Lewis et al. (2016) found interference from stable longer-lived gases that 

were not the target analyte such as CO2 and H2 were small, but a high ratio of these co-

pollutants to the measurand could cause large artefact responses. Poor agreement 

between NO2 electrochemical sensor measurements to reference NO2 suggests this 

sensor is also responding to another pollution metric, in this instance ambient CO2 

(Lewis et al., 2016). Mead et al. (2013) shows that although electrochemical sensors 

used to measure NO and NO2 agree well with reference techniques (provided cross 

sensitivities are accounted for) there is interference for O3 (100%) (Mead et al., 2013). 

Interferences can be reduced by using filters and co-locating with reference analysers. 

Castell et al. (2017) used an NO2 sensor with filter to reduce or eliminate O3 cross-

interference and found no cross-sensitivity with O3. 

Responses induced on each sensor by individual interferences do not change 

substantially over timescales of seconds to a few hours however they vary considerably 

over the >6 hour to 1–2-day timescale (Smith et al., 2017). Smith et al. (2017) highlight 
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that the inter-sensor spread of observed values increased as the sensor signals drifted 

apart over the 3-week timescale. Time-averaging sensor signals can address short-term 

random noise but not medium-term drift in sensor sensitivities to measurand or 

interferences (Smith et al., 2017). Emerging literature highlights the importance of 

regular (once a day) multi-parameter calibration for individual sensors to be comparable 

to one another and to reference instrumentation due to their non-linear relationship with 

cross-interferences (co-pollutants and environmental parameters) and drift over time 

(Smith et al., 2017). Calibration must be of the target compound and all other possible 

interferences (Lewis and Edwards, 2016; Smith et al., 2017). Castell et al. (2017) show 

multivariate field calibration is necessary to reduce bias and measurement errors which 

is difficult since sensors have sensitivity to surrounding environmental conditions and 

do not normally have access to in-service reference materials for calibration (Smith et 

al., 2017). The practicalities of such calibrations conflict with the concept of low-cost 

sensors (Smith et al., 2017). The inclusion of multiple different sensors in a clustered 

approach could bring the performance of sensor technologies closer to reference 

instruments, thereby improving the quality of observations (Smith et al., 2017). Using 

the median concentration of the cluster of sensor signals largely eliminates variability 

of individual sensors on the hour-to-day timescale (Smith et al., 2017). The remaining 

systematic decline in response can be corrected for by linear interpolation between 

infrequent calibrations (Smith et al., 2017). Emerging literature shows corrections for 

chemical and environmental factors can be improved using more complex statistical 

models; partial least squares, neural networks, or Gaussian process emulation (Smith et 

al., 2017). 

Sensor systems for VOCs have a particular attraction due to the expense and 

practicalities of using GC/MS in the field (Smith et al., 2017) and thus limited 
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observational datasets of VOCs (Lewis et al., 2016). Sensors could deliver something 

complementary to existing approaches, a direct measurement with a degraded level of 

chemical detail with well-resolved time and spatial resolution (Lewis et al., 2016). 

Lewis et al. (2016) discussed the difficulty in defining what these sensors are 

responding to when measuring TVOC; the values they are reporting are also not easy 

to compare to reference instruments (Smith et al., 2017).  

2.4.3. Modelling 

Indoor air pollutant measurement techniques are unable to measure multiple pollutants 

at sufficient temporal resolution and with the required specificity in a wide range of 

buildings to provide a representative understanding of processes occurring indoors 

(Bekö et al., 2020). Computer simulation techniques have been used to estimate indoor 

concentrations or exposures and predict the impacts of intervention (O’Leary et al., 

2019b). Computational Fluid Dynamics (CFD) modelling techniques can be used to 

simultaneously predict indoor and outdoor airflows, heat transfer and contaminant 

distribution and transportation in and around buildings (Zhai, 2006).  

2.5. Improving Indoor Air Quality 

Studies that evaluate the many ways we can improve IAQ through source control, 

ventilation and air cleaning are widespread. However, fewer of these consider the 

practical implications of these solutions in real world situations. 

2.5.1. Standards and Guidelines for Indoor Contaminants 

Indoor air has not been regulated like outdoor air (Langer and Bekö, 2013). Indoor air 

standards are not widely reviewed in the literature possibly due to the lack of 

information about them. A number of countries have described target concentrations for 
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various indoor pollutants (Harrison, 2002), many of which are adopted or derived from 

outdoor air contaminant standards set by the WHO and ASHRAE. The UK Air Quality 

Strategy set targets for reducing ambient concentrations of PM2.5 and other pollutants 

to comply with EU legislation (O’Leary et al., 2019b). In 2019, Public Health England 

issued IAQ guidelines derived from scientific literature for selected VOCs to control 

their levels in the indoor environment through informing discussions on source control 

and raising awareness (Public Health England, 2019). Furthermore, since people are 

exposed to various substances at work, some of which are potentially harmful, 

indicative occupational health exposure limit values (IOELVs) have been introduced 

under the Chemical Agents Directive (98/24/EC) (Health and Safety Executive, 2018) 

through Workplace Exposure Limits (WELs), which are considered to a limited extent 

in the literature. Exposure concentrations need to be placed in context with toxicological 

information and given guidelines accordingly.  

2.5.2. Source Reduction and Control 

Source control helps eliminate or reduce individual sources of contamination 

(Levasseur et al., 2017) and is noted as the most effective strategy for improving IAQ 

(Matson and Sherman, 2004). The history of home heating is a good example, with 

sealed modern fireplaces being considered more effective at reducing emissions in the 

living space than older open fireplaces (Guyot et al., 2018). Reducing or eliminating 

unnecessary pollutants at source and using low pollution products and materials 

(Seppänen, 2008) is generally considered more effective than diluting pollutant 

concentrations by ventilation (Dimitroulopoulou, 2012; Guyot et al., 2018). High 

emission rates can produce poor IAQ irrespective of ventilation characteristics 

(Nazaroff, 2013). Effective source control can also reduce ventilation energy 
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requirements (Seppänen, 2008). Optimizing the building envelope (insulation and 

airtightness) is another method of source reduction, since it limits the occupants’ 

exposure to physical stresses and external contaminants (Lavasseur et al., 2017; 

Nazaroff, 2018). 

Product information on material emissions from manufacturers can be used to predict 

IAQ in the building design stage through modelling (Altaf et al., 2014). Empirical 

models, based on analysis of emissions data from environmental chamber or cell testing, 

have enabled characterisation of VOC emissions from building materials and consumer 

products (Liu et al., 2013) according to international standards; EN180 16000-9:2006 

or EN180 16000-10:2006. Testing of single building products and materials under 

standard conditions may help reduce VOC emissions, but may not give realistic results 

due to indoor chemistry (Uhde and Salthammer, 2007).  Adhesives and floor coverings 

could be ranked as low-emitting materials under single product chamber testing but in 

the real world interactions between these materials could give rise to new chemicals 

(Uhde and Salthammer, 2007). Empirical models have been seen to be difficult to scale 

from chamber to building conditions (Xu and Zhang, 2003). Furthermore, emission 

testing provides little insight into the mechanisms controlling emissions (Liu et al., 

2013). Mass transfer theory models can predict VOC emissions for various conditions 

when physical parameters are known (Xu and Zhang, 2003). 

Building materials considered to be better for IAQ include durable materials with clean 

non-toxic materials, low VOC emissions, low moisture content and moisture 

absorptivity, and low toxic chemical and fibre content (Spengler and Chen, 2000). Han 

et al. (2010) found using ‘exterior-grade’ pressed wood products or coating pressed 

wood products with polyurethane was better for IAQ than traditional materials. 
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Reduced concentrations of VOCs in indoor air relative to permissible limits in a study 

by Vasile et al. (2016) could be explained by the low emissions from relevant internal 

surfaces finishing or furniture, taking into account that there had been no recent 

renovations in the monitored spaces. Materials used in older construction were more 

forgiving of temperature and humidity variations and they often acted as sponges for 

absorbing contaminants (Spengler and Chen, 2000). Those used in newly constructed 

buildings have a reduced sink area for contaminant absorption and impervious surfaces 

are then covered with many non-natural finish products glued in place (Spengler and 

Chen, 2000). Determining the sorption of building materials is important to quantify 

IAQ (Yang and Chen, 2001). Equilibrium models assume sorption and desorption are 

confined on the material surface and an equilibrium is achieved between phases at the 

interface (Yang and Chen, 2001). Kinetic models take VOC diffusion mechanisms into 

consideration but are largely based on the assumption that indoor air is well-mixed 

(Yang and Chen, 2001; Lee et al., 2005).  

Labelling and certification of building materials and products concerning their 

emissions has proven useful in minimising emissions through incentivisation but there 

is no agreed labelling procedure, only suggestions by relevant associations including 

Business and Institutional Furniture Manufacturer’s Association who attach labels to 

materials to confirm testing by an independent laboratory and meeting of requirements 

(Avgelis and Papadopoulos, 2004; Levasseur et al., 2017). Bekö et al. (2020) compares 

13 labelling schemes for construction products worldwide. However, whilst no study at 

present has examined the efficiency of labelling schemes to significantly reduce the 

occupants’ exposure to contaminants, selecting less-emissive materials is still 

considered an incentive measure to reduce contaminants at the source (Lavasseur et al., 

2017). Several countries have adopted legislation regarding aspects of building 
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construction and IAQ e.g., all construction materials and interior decoration products 

sold in France must have standardized labels to provide information on VOC emissions 

(Levasseur et al., 2017). 

Occupant behaviour is important. Source control can be achieved through selecting and 

using low-emitting equipment (for example fuel switching to electric hobs (Wilkinson 

et al., 2009)) and appliances in pollutant-generating activities. In cooking it is possible 

to reduce PM2.5 emissions by using methods that do not brown or char the food and 

frying with non‐stick pans (O’Leary et al., 2019b). Other methods: replacing oil with 

liquid margarine and adding salt have a minimal effect on PM2.5 emission rates 

(O’Leary et al., 2019a). Other occupant choices including avoiding smoking indoors, 

avoiding the use of unvented stoves, fireplaces or space heaters, limiting candle or 

incense burning indoors, correctly using and storing potentially toxic household and 

pest control products and avoiding the use of air fresheners, cleaning products and 

fragrances with a pine or citrus scent (Lavasseur et al., 2017) are important. Fragrance-

free policies restricting the use of fragranced products have been implemented in 

buildings worldwide (Steinemann et al., 2017).  

2.5.3. Ventilation and Ventilation Standards 

Airflow in houses comprises ventilation through purpose–provided openings, 

infiltration and exfiltration through adventitious openings, and airflow through 

mechanical systems (O’Leary et al., 2019b). Adequate airflow or ventilation, involving 

introducing and circulating fresh air through a building and removing or diluting 

contaminated indoor air, is needed to provide a healthy and comfortable environment 

within a building (Dimitroulopoulou, 2012). Ventilation should be sufficient to dilute 

contaminant concentrations to below harmful thresholds (Spengler and Chen, 2000). 
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Ventilation rate, expressed as air changes per hour (ACH) or air exchange rate (AER), 

is an important determinant for the ingress of outdoor air pollutants and removal of 

indoor pollutants (Breen et al., 2014). A common working hypothesis is that the larger 

the supplied ventilation rates, the greater the indoor pollutant removal efficiency. This 

is provided outdoor or supplied air is clean. Increased ventilation may worsen IAQ if 

there are significant outdoor sources of air pollution or outdoor air pollution burdens. 

Increasing the ventilation rate is often the first line of defence to improve IAQ (Matson 

and Sherman, 2004) and has been shown to reduce the proportion of people dissatisfied 

with poor IAQ (Wargocki et al., 2000b). Designers may specify higher ventilation rates 

before and during initial occupancy of newly constructed or recently renovated 

buildings since this period is often accompanied by the presence of strong emission 

sources (Levin, 1991). 

There is no guarantee that an occupant will use installed ventilation so many studies 

consider infiltration-only as a means of ventilation (O’Leary et al., 2018). Traditionally 

houses were so “leaky” that air infiltration could provide dilution of indoor-generated 

pollutants even when windows were closed (Singer et al., 2006) but now infiltration is 

considered a poor mechanism because infiltration airflow rates are low (due to 

airtightness) and these rates cannot be increased due to concerns over heating energy 

demand (O’Leary et al., 2018). While 47% of English houses have a fan in their kitchen, 

the majority solely rely on infiltration for dilution during the heating season (in the UK, 

this is usually from October–March) when windows are usually closed (O’Leary et al., 

2019b). In these circumstances, occupants are likely exposed to 

pollutant concentrations that exceed WHO daily indoor and outdoor guidelines (World 

Health Organisation, 2020). Canha et al. (2017) report that infiltration-only ventilation 
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(closed doors and windows) has resulted in mean VOC levels above the limit value of 

0.6 mg/m3 established by the legislation.  

Natural ventilation (NV) occurs through air infiltration in unintentional leaks in the 

building envelope, through intentional openings (such as open windows, ventilation 

ducts) and via coupled spaces such as crawlspaces, basements, and attics (Liu et al., 

2018a). NV, driven by wind and thermally-generated pressures has in the past has met 

ventilation needs (Dimitroulopoulou, 2012). Apart from in the north, the European 

ventilation system is mainly attributed to uncontrolled air infiltration and natural 

ventilation (window opening) (Dimitroulopoulou, 2012). NV or window opening, 

increasingly promoted as an environmentally and economically sustainable practice to 

meet home cooling requirements, particularly in a warming climate, significantly 

increases the ventilation rate in dwellings and can prevent under-ventilation even in 

airtight buildings (Lowe, 2000; Fortenberry et al., 2019). However naturally ventilated 

buildings are generally seen to be older and constructed from traditional materials which 

can result in lower pollution loads (Wargocki et al., 2002) and this is important to 

consider in terms of its efficiency. Human occupancy presents challenges to assessing 

NV impacts on IAQ (Fortenberry et al., 2019).  

Residents play an important role in controlling ventilation rates in their own homes 

(Dimitroulopoulou, 2012). Efforts from the occupants to manually open windows and 

control the natural ventilation and their tendency to do so only when perceiving a 

problem with IAQ or comfort affect the efficiency of natural ventilation (Sundell et al., 

2011; Liu et al., 2018a). Natural ventilation consumes little energy and provided the 

outside air is clean, can provide a larger amount of fresh air than mechanical ventilation 

(Spengler and Chen, 2000). NV is, however, difficult to control due to reliance on 
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unreliable driving forces, which can result in periods of insufficient ventilation and 

periods of over-ventilation and excessive energy waste (heat loss) (Liddament, 1996; 

Lowe, 2000). Nasir and Colbeck (2013) note that ventilation rates were more stable 

when the windows were closed than open. Furthermore, whilst window opening can 

reduce concentrations of some indoor-originating pollutants, it can allow ingress of 

harmful pollutants from the outdoor environment, including ozone and particulate 

matter, and increase emission rates of semi- and intermediately volatile species and 

oxidation products (Canha et al., 2017; Liu et al., 2018a; Kruza and Carslaw, 2018; 

Fortenberry et al., 2019). 

Changes in building design aimed at improving energy efficiency and conversation 

since the 1970s have led to modern homes and offices becoming more airtight which 

has reduced exchanges between outdoor and indoor air (Zhang and Smith, 2003). It has 

been suggested that many modern homes and offices built to tight envelope 

specifications are under-ventilated and may not provide sufficient outdoor (ventilation) 

air to dilute indoor-generated contaminants (Mudarri, 2010). Whilst in Britain’s 

temperate climate, houses used to be so leaky that whole-house mechanical ventilation 

was not economic, as new builds are more airtight, these systems are being installed 

(Dimitroulopoulou, 2012). Mechanical ventilation and other measures such as 

extractors can compensate for reductions in NV rate caused by improvements in 

airtightness (Levasseur et al., 2017). Improving building airtightness without providing 

additional ventilation leads to lower ventilation rates and poorer IAQ (O’Leary et al., 

2019a). 

Mechanical ventilation, airflow in and out of a building caused by a fan through intake 

and/or exhaust vents (Seppänen, 2008), adds to the energy demands of a building but 
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can provide controlled rates of air change in response to the varying occupant needs and 

pollutant loads (Liddament, 1996). In colder climates, where houses need to be airtight 

to conserve heat, whole house mechanical ventilation systems have been installed since 

NV is not adequate (Dimitrouloupou, 2012). This is also the case in warmer regions 

where buildings are airtight to reduce energy consumption. Higher ventilation rates 

have been measured in mechanically ventilated dwellings compared to the naturally 

ventilated dwellings in many countries (e.g., Netherlands, Portugal, Sweden) 

(Dimitrouloupou, 2012). Mechanical ventilation systems are becoming installed in 

more residential buildings, in particular mechanical ventilation with heat recovery 

(MVHR) and mechanical extract ventilation (MEV) (Sullivan et al., 2012). In the 

Netherlands, these systems have been fitted to nearly all new homes built in the past 10 

years (Sullivan et al., 2012). In Western Europe, the payback time for investments in 

heat recovery ventilation is significant (Laverge et al., 2011). 

Available literature discusses the history of ventilation standards and requirements 

around the world which receive major attention in building regulations. Building 

ventilation recommendations were transformed into more rigorous standards in the 

20th century (Sundell, et al., 2011). In Europe, the European Committee for 

Standardization (CEN) is responsible for most standards relating to ventilation 

including EN13779: Ventilation for Non-Residential Buildings and EN13799: Specific 

Design Guidelines and Requirements to Ventilation Systems (Olesen, 2011). Minimum 

ventilation requirements, including passive ventilation plus exhaust provisions for 

known contaminant sources, are the principle way in which building codes address IAQ 

concerns (Mudarri, 2010). Hypothetically, the ventilation rate for an indoor space in the 

absence of any pollutant sources would equal the outdoor air supply rate necessary for 

human metabolism, which ranges from 0.1 to 0.9 l/s per person (Wargocki et al., 2002). 
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It is difficult to set ventilation rates that would meet requirements for health in all indoor 

environments (Wargocki et al., 2002). The rate in both naturally and mechanically 

ventilated buildings can be affected by time-varying factors including internal heating 

and cooling loads, outdoor temperature, and indoor-outdoor temperature differences 

(Godwin and Batterman, 2007). In most European countries the minimal ventilation 

rate for new buildings with mechanical ventilation is 0.5 air changes per hour (ACH). 

Sufficiently high ventilation rates are needed so as to not compromise IEQ and cause 

health, comfort, absenteeism and productivity problems (Godwin and Batterman, 2007). 

Ventilation measurements across Europe show that ventilation is in practice often poor, 

falling in below recommended minimum levels resulting in reduced ventilation rates 

(lower than 0.5 ACH), increased concentrations of indoor pollutants and exposure to 

health risks (Godwin and Batterman. 2007; Dimitroulopoulou, 2012). Langer and Bekö 

(2013) similarly found that 80% of the houses they studied did not conform to the 

building code that requires 0.5 ACH. Similarly, a BRE study investigating the adequacy 

of ventilation in homes built since 1995 (when Building Regulations were revised) 

found that 68% of homes in the winter and 30% of homes in the summer had whole 

house ventilation rates below 0.5 ACH (Dimitroulopoulou, 2012).  

Temporal air exchange rates (AERs) vary in commercial buildings as a result of 

occupancy level and behaviour (Breen et al., 2014). AER variations across residential 

buildings may be explained by differences in occupant behaviour and building 

characteristics, but also by seasonality and meteorological conditions; wind speed and 

outdoor temperature (Breen et al., 2014). Occupants are ambivalent when it comes to 

saving energy (reducing heat losses during winter and preserving coolness in summer) 

(Sundell et al., 2011; O’Leary et al., 2019b). Dimitrouloupou (2012) found that 

naturally ventilated British dwellings were better ventilated in summer (70% > 0.5 
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ACH) than in winter (68% < 0.5 ACH), as expected, showing that occupant behaviour 

(window opening) affects whole building ventilation. Liu et al. (2018) similarly found 

that the number of window and door openings was the most important first-order 

predictor of residential AER. In terms of meteorology, in summer, temperature 

differences and open windows increase AER. In winter, large indoor-outdoor 

temperature differences and high wind speeds can be equally effective in increasing 

AER (Breen et al., 2014). AERs are lower in other seasons as windows are closed, and 

the driving forces (primarily the temperature difference) are small (Breen et al., 2014; 

Chin et al., 2014).  

Since ventilation practices vary between seasons, there is a consequential effect on 

indoor pollutant concentrations. During the AIRMEX study, there was a general 

increase in VOC concentrations (dependent on specific VOC, emission rate and 

building type) in the cold (winter) season owing to lower ventilation and air exchange 

rates (Geiss et al., 2011). For terpenes, the lowest indoor concentrations were measured 

during warmer seasons owing to higher ventilation rates and reactions with ozone from 

outdoor air, which is more abundant in warmer periods (Geiss et al., 2011).  Missia et 

al. (2010) similarly observed an increase in pollutant concentrations in winter in 

response to indoor pollutant-generating activities and building materials and furnishings, 

as a consequence of the increased air tightness of buildings. Mandin et al. (2017) 

similarly indicated higher concentrations of some pollutants in summer e.g., 

formaldehyde and ozone and others in winter e.g., benzene, α-pinene, and nitrogen 

dioxide owing to differential abundance of some pollutants due to seasonality and 

increasing building airtightness over winter.  

2.5.3.1. Exhaust Ventilation and Range Hoods 
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In addition to considering whole-house or building ventilation, localised ventilation 

systems are important to limit pollutant transport through local exhausting of air. 

Workplaces can benefit from local exhaust, for example, in spaces with copies and 

printers, preventing pollutant transport and dispersion (Spengler and Chen, 2000). The 

use of local exhaust fans in bathrooms and range hoods above cooking appliances 

represent practical illustrations of efficient ventilation (Nazaroff, 2013; Lunden et al., 

2015) which can remove contaminants at the source and limit their dispersal (Rim et al., 

2012; Levasseur et al., 2017).  

Sometimes source control is not feasible. Reducing or eliminating the processes 

involved in cooking in order to improve IAQ is unrealistic since cooking is necessary 

for the safety and enhancement of quality of a substantial number of food products 

(Hager and Morawicki, 2013). Houses are often too airtight to dilute pollutants from 

cooking by infiltration (O’Leary et al., 2019b). Studies by Vasile et al. (2016) and 

O’Leary et al. (2019a) have highlighted high concentrations of CO and CO2 and high 

source strengths of UFP and PM2.5 due to cooking without adequate ventilation, with 

the potential to negatively affect occupant health. Devices designed to remove cooking-

related contaminants include range or exhaust hoods/fans (which may be mounted 

above the cooktop, in a kitchen wall or ceiling) and venting ovens (Singer and Delp, 

2012). Kitchen exhaust fans reduce cooking related contaminant concentrations by 

removing emissions directly at the stove before they mix into the surrounding air and 

by increasing overall air exchange in the home to remove pollutants from the indoor 

environment (Dobbin et al., 2018).  

The efficiency of exhaust fans to capture cooking-related pollutants can vary widely 

given consideration to a number of factors; equipment type and design, configuration, 
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size and location, exhaust flow rate, house geometry and user behaviour (Dobbin et al., 

2018). Singer and Delp (2012) demonstrate the importance of considering multiple 

performance metrics to evaluate cooking exhaust hood performance including airflow, 

loudness, power consumption and effectiveness at removing contaminants before they 

mix throughout the home, the ‘capture efficiency’ (CE) (Singer and Delp, 2012). 

Capture efficiency is seen to be a better metric than airflow alone to evaluate range hood 

performance (Kim et al., 2018) which is a function of fan design, installed configuration, 

burner position and fan speed setting (Rim et al., 2012). For a given device, higher 

airflow generally leads to higher CE (Kim et al., 2018), though the effect varies with 

particle size. At the same exhaust flow rate, particle reduction is less effective for 

smaller particles, likely due to molecular and turbulent diffusion (Rim et al., 2012).  

Experimental and simulation studies show range hoods mounted over the cooktop are 

essential to use during cooking to maintain good IAQ by extracting pollutants at their 

source before they mix into the general air of the kitchen and home (Rim et al., 2012; 

Logue and Singer, 2014; Lunden et al., 2015; Dobbin et al., 2018). A device that does 

not cover the in-use burners suffers a large penalty in CE, increasing the quantity of 

pollutants released into the room or residence during cooking and increasing rates of 

secondary pollutant formation, leading to higher concentrations throughout the post-

cooking period (Singer et al., 2011; Kim et al., 2012; O’Leary et al., 2019a). When 

meals were prepared whilst using an extracting cooker hood located immediately over 

the burner particle reductions have reached >90% in each instance (Singer et al., 2011; 

O’Leary et al., 2019a). Hager and Morawska (2013) observed greater removal of UFP 

from the back burner than the front burner. Lunden et al. (2015) confirms this, with 

capture efficiencies of 70–99% and 4–39% for back burners and front burners 

respectively. 
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The higher rate of air exchange introduced by a fan leads to reductions in concentration. 

Lower exhaust flow rates can lead to elevated indoor pollution levels (Rim et al., 2012). 

When using an intermittent ventilation strategy, continuing to ventilate using an exhaust 

fan for a period of time after cooking has a significant effect on pollutant concentrations 

(Dobbin et al., 2018). O’Leary et al. (2019b) showed that continuing to ventilate with a 

cooker hood for 10 minutes after cooking has a significant effect. Choosing to continue 

ventilation for 10 minutes after cooking is a balance between maximising the rate of 

concentration reduction and psycho-social factors, such as memory and noise (O’Leary 

et al, 2019b). However, continuing to ventilate has been seen to have a relatively little 

effect on integrated exposures compared to the effects of fan flow rate and the specific 

fan used (Dobbin et al., 2018). For PM2.5, the effect of running an exhaust fan for 15 

minutes after cooking was similar in magnitude to the impact of a 100 cfm increase in 

the flow rate used while cooking (Dobbin et al., 2018). 

Ventilation requirements for kitchens vary around the world (O’Leary et al., 2019a). 

Several building codes require that a range hood be installed in new homes to control 

cooking-related pollutants, and specify required airflow rates (Kim et al., 2018). In 

Europe, legislation addresses fan energy with minimum requirements and a labelling 

system for exhaust hood energy efficiency (Jacobs et al., 2016). In the UK, under the 

English Building Regulations and statutory Approved Document F, kitchens in new 

dwellings need an intermittent extract rate of 60 l/s or 30 l/s through a cooker hood, 

however there is no requirement to modify ventilation in existing dwellings (O’Leary 

et al., 2019b). Rates were chosen to remove moisture with the expectation they will 

dilute NO2 and CO emitted by gas cooking however PM2.5 and other pollutants were 

not considered (O’Leary et al., 2019b). O’Leary et al. (2019b) find ventilation strategies 
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prescribed by English Building Regulations and ASHRAE 62.2 are adequate for <12% 

and 75% of houses respectively when applied during cooking. 

Regular and appropriate intermittent use of a kitchen exhaust fan during cooking can 

reduce pollutant exposure, however, decisions about their design and use requires 

consideration of IAQ and energy costs (Rim et al., 2012). Using extract ventilation 

during cooking is especially important in airtight dwellings and during the heating 

season when occupants reduce ventilation rates for thermal comfort and to minimise 

fuel heating costs (O’Leary et al., 2019a). Increasing range hood use will impact the 

residential energy demand though Logue and Singer (2014) showed this increase would 

be negligible on the total site energy. Oversized exhaust fans and over-use can 

significantly increase energy consumption (Rim et al., 2012). Further work needs to 

estimate how mechanical ventilation will affect energy demand (O’Leary et al., 2019a). 

2.5.4. Air Cleaning 

Where outdoor air is contaminated, or the measures outlined above are insufficient,  air 

cleaning using filtration techniques (including electrostatic precipitation, adsorption 

and excitation/acceleration) have proven effective in removing contaminants 

originating in indoor and outdoor environments (Levin, 1991; Shaw et al., 2005; 

Levasseur et al., 2017). Air cleaning and filtering devices have been increasingly used 

in HVAC components (Singer et al., 2016; Fazil et al., 2019) whilst portable air cleaners 

that clean contaminated air in rooms, are especially important for vulnerable individuals 

(EPA, 2017b; Lavesseur et al., 2017). Air cleaning technology is important, especially 

when building ventilation rates are lowered to conserve energy (Zhang et al., 2011). 

Mechanical air filters remove particles by capturing them on filter material whereas 

electronic air cleaners such as electrostatic precipitators (ESP) use electrostatic 
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attraction to trap charged particles (Wallace et al., 2004; EPA, 2017b). Whereas a 

central fan is seen to reduce particle concentrations by 25–50%, use of an in-duct ESP 

can reduce particle concentrations by 55–85% compared to off-fan conditions (Howard-

Reed et al., 2003). The efficiency of a particle removal air filter is measured by the 

minimum efficiency reporting value (MERV) developed by ASHRAE (EPA, 2017b). 

Fazil et al. (2019) evaluated particle air filters used in central residential forced-air 

systems for their removal efficiencies, revealing filters with the same ratings from 

different manufacturers had different efficiencies for PM2.5 and UFPs. HEPA (High-

efficiency particulate air filters) have been installed in many office, laboratory and 

hospital buildings and clean rooms (Shaw et al., 2005). 

Gas phase air filters remove gases and odours by using a sorbent (EPA, 2017b). Some 

of these cleaners have the potential to generate submicron particles indoors owing to 

reactions between ozone and VOCs. Recently phytoremediation has been proposed as 

an efficient and cost-effective way to remove toxins from air (Lui et al., 2007). 

2.5.5. Conflicts with Energy Efficiency 

Buildings consume a significant fraction of final energy consumption worldwide and 

are responsible for much of the anthropogenic carbon dioxide emitted that contributes 

to climate change (Thomsen et al., 2016). Understanding building energy performance 

is important in design and retrofit (Marshall et al., 2017). It is well established that 

ventilation represents a significant proportion (30–60%) of total energy used in 

mechanically ventilated buildings, and space heating dominates energy use in the home 

(> 60%) (Cao et al., 2016; Marshall et al., 2017). The need to reduce energy use, driven 

by rising energy costs and the desire to eliminate dependence on fossil fuels has become 

a global and national priority (Frey et al., 2014). Energy efficiency measures in 
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buildings focus on reducing heating and cooling loads through improving the thermal 

integrity of the envelope, increasing efficiency of heating and cooling equipment and 

reducing system energy use (Persily and Emmerich, 2012). Public policies address 

decarbonisation through improving airtightness and promoting energy efficient 

buildings (Persily and Emmerich, 2012) including the “Energy Performance Building 

Directive” (EPBD) which requires all new buildings to be nearly zero-energy by 2020 

(Thomsen et al., 2016; Hamilton et al., 2013; Derbez et al., 2017). The inadequate 

thermal performance and energy efficiency of existing buildings poses a huge challenge 

(Vasile et al., 2016) and to meet energy efficiency targets the energy performance of 

nearly all dwellings needs be improved by 2030 (Hamilton et al., 2015).  

Many organisations are struggling to deal with reducing energy use (lowering 

ventilation) and maintaining acceptable indoor air quality (IAQ) (increasing ventilation) 

(Spengler and Chen, 2000; Seppänen, 2008). Increased airtightness of building 

envelopes to reduce air infiltration or natural and mechanical ventilation rates saves 

energy but worsens IAQ since it will increase indoor contaminant concentrations for 

contaminants with indoor sources (Seppänen, 2008; Persily and Emmerich, 2012; 

Langer et al., 2015; Hamilton et al., 2017; Awbi, 2017). It is not desirable to increase 

infiltration to improve IAQ since it is associated with increased energy demand 

(O’Leary et al., 2019b; Dimitroulopoulou, 2012). Increasing ventilation rates to 25 l/s 

per person has been seen to increase energy costs (if heat recovery systems are not used) 

and building running costs (Wargocki et al., 2002). Strategies that improve IAQ with 

no significant energy impacts or that also improve energy efficiency have been 

considered in the literature, driven by priorities to reduce building energy consumption, 

including reducing contaminants at the source, improving ventilation and purifying the 

indoor environment (Lavasseur et al., 2017). 
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2.5.5.1. Smart and Lower Ventilation 

Ventilation makes up a large proportion of the energy consumption in buildings (Guyot 

et al., 2018) and is an attractive target for energy saving. More efficient ventilation 

systems are the focus of strategies to improve IAQ and energy efficiency. Natural 

ventilation (NV) has the potential to save fan electrical energy and NV rates can be 

much higher than mechanical ventilation (MV) (Schulze and Eicker, 2013) however 

there may be problems with ventilation heat loss. To reduce energy penalties in MV it 

is necessary to improve pollutant removal performance without increasing air flows and 

ventilation rate (Singer and Delp, 2012). To better address energy and IAQ issues, 

ventilation needs to be smarter. A key smart ventilation concept is to promote higher 

ventilation rates at times when it provides an energy and/or IAQ advantage and lower 

ventilation rates when it provides an energy and/or IAQ disadvantage (Guyot et al., 

2018). It is favourable to include smart ventilation strategies in standards. European 

buildings with low energy consumption can have lower rates of building related health 

symptoms indicating the importance of proper design, installation and qualified, well 

trained operational personnel who understand the requirements for good IAQ and 

energy efficiency (Seppänen, 2008). 

Reducing ventilation rates has negative impacts on IAQ, as such ventilation can be 

better controlled by sensible temperature-based-air-side economizers, enthalpy-based-

air-side economizers and demand controlled ventilation (DCV), which are 

demonstrated in many buildings (Chao and Hu, 2004). DCV, a smart ventilation 

strategy, has been considered in the literature as a cost effective, energy efficient 

measure that also promotes good IAQ (Guyot et al., 2018). These systems adjust outside 

ventilation air based on the number of occupants and their ventilation demands (Guyot 
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et al., 2018). Traditional DCV systems use CO2 sensors to measure occupancy as it is 

seen as a good surrogate for occupant-related contaminant concentrations, however 

these systems only guarantee that fresh air intake is sufficient to dilute these pollutants 

(Chao and Hu, 2004). Chao and Hu (2004) overcame the issue of reducing non-occupant 

related contaminants by developing a dual-mode DCV system targeting buildings where 

the number of occupants varies frequently. CO2 and radon are used for sensor control 

to indicate the demand for fresh air to dilute non-occupant related indoor contaminants 

(Chao and Hu, 2004). Acceptable IAQ can be achieved using this dual-mode system 

and when compared to fixed-rate ventilation 8.3–28.3% of the daily electrical energy 

was saved (Chao and Hu, 2004).  

Hesaraki and Holmberg (2015) highlight the consequences on IAQ and energy when 

using DCV in new housing. Results indicated that when reducing ventilation rates for 

the entire period of un-occupancy, VOC concentrations were unacceptable, so it was 

suggested that they were increased to normal requirements 2 hours before occupancy 

(Hesaraki and Holmberg, 2015).  However, it should be noted that VOC concentrations 

were expected to be higher in this new building (Hesaraki and Holmberg, 2015). 

Laverge et al. (2011) found DCV strategies that combined manipulation of supply, vent 

and exhaust fan had an energy saving potential of 60% (Laverge et al., 2011).  

2.5.5.2. Energy-Related Building and Retrofits 

An increase in building energy performance in the EU is important to alleviate energy 

import and comply with the Kyoto Protocol and European Directive (2002/91/EC) on 

the EPBD (2018/344/EU) (Poel et al., 2007; Ekins and Lees, 2008; Langer and Bekö, 

2013). The most significant impact of the EPBD is the requirement for buildings to have 

an energy performance certificate, indicating its energy performance, when sold or 
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rented, and for existing buildings over a certain size to upgrade their energy 

performance when renovated (Ekins and Lees, 2008) to influence the market towards 

energy efficient buildings (Marshall et al., 2017). Low-energy and passive houses have 

become more common in recent years which utilize numerous technologies including 

efficient insulation, advanced window technology, airtightness, and heat recovery 

techniques to significantly reduce energy consumption (Langer and Bekö, 2013). 

Many countries have committed to constructing energy efficient buildings (Prasauskas 

et al., 2016). Similarly, in an effort to reduce energy consumption under the EPBD, 

many EU member states have introduced building retrofit programmes for existing 

buildings which involve improving airtightness of the building envelope (Prasauskas et 

al., 2016). If properly implemented alongside ventilation, energy retrofits in housing 

can improve thermal comfort and occupant satisfaction (Du et al., 2015), and improve 

mental health and reduce cardiorespiratory disease by reducing pollutant exposure 

(Hamilton et al., 2015). However, energy efficiency retrofits that increase the building 

airtightness may increase exposure to indoor-generated pollutants, negatively impacting 

on those with respiratory conditions (Hamilton et al., 2015). Brokerick et al. (2017) 

suggest that while an energy retrofit had benefits for occupant comfort and building 

temperature; concentrations of some pollutants increased following the retrofit as a 

result of lower building AER caused by improved building airtightness. 

2.6. Summary 

There has been a significant increase over the past decade in both the number of 

publications in indoor air science and the depth and breadth of research in this area, 

largely promoted by increasing awareness of the detrimental health effects attributed to 

poor IAQ. In this chapter, we have fully described and summarised this published 
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literature, highlighting the current knowledge and understanding and identifying new 

and upcoming research opportunities. There are significant contributions in the 

literature on many main themes including understanding the sources of pollutants, the 

ways in which they are measured and ways in which IAQ may be improved. However, 

there are opportunities for further research into source characterisation within and 

between particular micro-environments and into the dichotomy between IAQ and 

energy efficiency and ways these two objectives can be met harmoniously.  These 

opportunities form the basis of the research described in this thesis. 

Firstly, there is a specific need for further research into the dichotomy between energy 

efficiency and IAQ and how these -sometimes- conflicting objectives can be 

harmoniously achieved. Strategies have been discussed that focus on supporting both 

of these objectives or that support improvements in IAQ without compromising energy 

efficiency but there is room for more research in this area. This is of great importance 

owing to the large energy burden that is placed on ventilation and space heating. This 

is particularly important as national targets and policies seek to reduce energy use and 

dependence on fossil fuels. This also becomes crucial as the importance of ventilation 

is heightened in light of the current coronavirus pandemic.  

For the quantification of indoor pollutant concentrations, scientific studies have 

deployed expensive regulation grade monitoring instruments that provide high quality 

measurements, however, there is a paucity of high-resolution monitoring data for a 

range of indoor environments. It would be beneficial to better understand how the 

spatial distribution of pollution varies around a property or building or across properties 

or buildings with varying characteristics. Low-cost sensor technology has been 

examined in recent papers and compared to reference-grade instrumentation. The 



58 

 

possibilities of deploying such technology have also been examined. It has been seen to 

be useful for increasing public awareness of air quality problems and a single unit with 

multiple sensors can provide holistic measurements of multiple pollutants at high spatial 

and temporal resolution. However, there are still questions regarding the reliability and 

accuracy of this sensor technology. 

In terms of volatile organic compounds (VOCs), which are of particular interest because 

of their volatile and carcinogenic nature and widespread prevalence in indoor 

environments, whilst there has been extensive speciation undertaken in a variety of 

micro-environments, there has been less research on the influence of building 

characteristics and the activities that take place in these buildings on the presence of 

specific VOCs and related exposure for building occupants within educational settings 

in the UK. Many studies on VOC emissions have been conducted in chambers and are 

not transferrable to real-world situations. Testing emissions from individual products is 

not reliable for predicting emissions. More work could also focus on assessing the 

relationship between building standards and the concentration and prevalence of VOCs. 

These gaps form the basis and focus of research presented in the following chapters. 
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3.0. Methodology and Instrumentation 

This PhD was undertaken in conjunction with NAQTS who sponsored the research. 

NAQTS is an SME who offer state-of-the-art air quality monitoring technology and 

testing services. The V2000 and its predecessor (V1000) house an array of sensor 

technologies and regulation-grade equipment for multi-pollutant monitoring and played 

a large role in the data collection throughout this thesis. These units were most 

importantly used to investigate the pollutant response to typical household activities 

including cooking in domestic (Chapter 4) and specialist test facility settings (Chapter 

5). This short chapter provides technical specifications for the V1000/V2000 units and 

refers to details of case studies (presented in the Technical Evaluation in Chapter 9) 

undertaken prior to data collection for each thesis chapter. It was important to 

understand the accuracy of the data reported by the V1000/V2000 and their ease of use 

prior to their deployment in real-world environments.  

3.1. V1000/V2000 Technical Specification 

The NAQTS V1000/2000 units measure Particle Numbers (CPC-Based), Particle Mass 

(only in the V2000, laser light scattering based), CO2 (NDIR-Based) and CO, NO2, 

Ozone, Ammonia (only in the V1000) and VOCs using metal oxide (MOX) sensors 

with additional measurements of CO and NO2 using electrochemical (ELECT) sensors. 

Utilising dual technologies for key gas measurements enables improved cross 

sensitivity correction algorithms to be employed. The NAQTS V1000/2000 units are 

also fitted with Temperature, Pressure and Relative Humidity sensors coupled with 3D 

accelerometer and 3D gyro for mobile applications. External GPS and Noise (dBA) 

measurements are facilitated through the available USB ports. There are also an optional 

4 thermal desorption tubes for full VOC speciation (which would involve external 
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analysis by GC–MS or similar technologies). External and internal views of the NAQTS 

V1000/2000 units are presented in Figure 3.1 and a full technical summary is provided 

in Tables 3.1 and 3.2 below. 

 

 

Figure 3.1: NAQTS Air Quality Monitoring Units (V1000/V2000) in cased (a) and uncased 

formats with (b) showing front view and (c) showing rear view. 

Table 3.1: Technical specification of the V1000/V2000 units outlining capabilities and 

accuracies. 

Particles Specifications Carbon Dioxide Specifications 

Technology  Mixing CPC with 

embedded diluter  

Technology  NDIR 

Particle 

Concentration 

Range 

0–1,000,000 particles/cm3  Range 0 to 5000 ppm 

Concentration 

Accuracy  

± 10% compared to 

reference CPC  

Accuracy  ± 30 ppm or ± 3% reading 

whichever is larger 

Operating 

Temperature 

0 to 30 °C Operating Temperature  0 to 50 °C 

Operating Humidity 0 to 95% Operating Humidity 0 to 95% 

Response Time  <3 secs (T10–T90)  Response Time  20 secs diffusion time 

Working Fluid  IPA or Butanol Supplier SenseAir (K30) 

Table 3.2: Technical specification continued 

Environmental Measurements Specifications 

Temperature −10 to 50 °C 

Pressure 800 to 1100 hPa, ± 0.25% 

Humidity  ± 3% RH 

Time Response 1 secs 

Technology Bosch BME-280 

Power <100 W, 12 V DC 

Noise ~55dBA 

a b c 
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Data Storage SD Card, Local MySQL with optional Cloud Storage 

Data Acquisition Rate 1 Hz 

Communications RS232, USB, Ethernet. Web-based GUI 

 

Thermal Desorption Tubes Use 

Tenax TA Vapor phase organics from C6/7 to C26 

Graphitized Carbon Vapor phase organics from C5/6 to C14 

Tenax GR/Carbopack B Vapor phase organics from n-C5/6 to n-C20 (EPA Methods 

TO-14A/TO-15/TO-17) 

Tenax TA/Graphitized Carbon/Carboxen 

1000 

Vapor phase organics from C2/3 to C20 

Carbopack C/Carbopack B/Carbosieve SIII Vapor phase organics from n-C2/3 to n-C16/20 (EPA 

Methods TO-14A/TO-15/TO-17) 

Supplier Restek / Markes 

We largely focused on particle number concentration (PNC) measurements provided by 

these units, which informed a large part of the results presented in Chapters 4 and 5 of 

this thesis. These measurements were provided by a condensation particle counter 

(CPC). A CPC counts aerosol particles by first enlarging them by using the particles as 

nucleation centres to create droplets in a supersaturated gas. A CPC is adjunct to an 

optical particle counter (OPC) that extends the range of the OPC to detect much smaller 

particles. The CPC housed inside the V1000/V2000 units has been calibrated by 

Ricardo AEA (www.ricardo.com) to provide regulatory grade measurements of 

particles, in line with other commercial CPC products on the market (ISO 27891). Other 

V1000/V2000 units used in this thesis were calibrated against the Ricardo AEA 

certified “gold” unit(s) to provide robust measurements with an accuracy listed above. 

We state that the CPC provides measurements of ultrafine particles (UFP, < 0.1 µm). 

We may also get measurements of particles with slightly larger diameter, but not in 

excess of 2.5 µm due to the construction and operation of the system. However, owing 

to the standard size distributions of combustion generated aerosol particles, number 

concentrations are expected to be dominated by the sub-100 nm range. 

We also use carbon dioxide measurements (CO2) provided by a NDIR sensor housed 

inside the units. This was used in some cases to determine air exchange rates (AER) 
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and understand occupancy levels. NDIR stands for ‘Non-Dispersive InfraRed’ and is a 

gas concentration measurement method that uses the unique adsorption wavelength 

range of each gas (CO2 absorbs IR wavelength region 4.26 µm). 

3.2. Case Studies 

The V1000/2000 units were deployed in various indoor environments including 2 

offices in Lancaster Environment Centre (LEC III), student accommodation, and a 

selection of residential properties (that were later used and monitored for the work 

undertaken in this thesis). 

Table 3.3: Case studies that assess and evaluate the use and practicalities of the V1000/V2000 

units and their measurement capabilities (in order of undertaking). 

Date Indoor Location Source Type Layered or 

Sequential 

Pollutants 

Monitored 

May 2017 Student 

Accommodation  

Occupancy and Cooking Sequential CO2, PNC 

July 2017 NAQTS Office Occupancy N/A CO2, PNC NO2, 

VOCs, CO 

November 

2017 

LEC Office Cleaning and Consumer 

Products 

Sequential + 

Layered 

VOCs 

February 

2018 

Residence 5 Household Activities  Sequential CO2, PNC 

May 2018 Residence 1 Household Activities 

and Occupancy 

Layered CO2, PNC 

May 2018 Residence 2 Household Activities Sequential CO2, PNC 

December 

2018 

Residence 2 Cooking and Log 

Burner 

Sequential  CO2, PNC 

December 

2018 

Residence 4 Household Activities  Layered CO2, PNC 

This chapter provided technical specifications for the V1000/V2000 units. The 

aforementioned case studies that were undertaken prior to data collection are described 

in detail in the Technical Evaluation (Chapter 9). Each of the proceeding thesis chapters 

(Chapters 4-6) involves the explicit use of or reference to these monitoring units to 

capture high resolution air quality information in residential and commercial 

environments, in large informing us about pollution from typical activities. We also see 

the practical use of this novel equipment in the real world. 
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4.0. Characterising Pollutant Response to Discrete Cooking Events 

and Exploring the Effects of Ventilation in Residential Environments 

Farr, C. 1 Booker, D. 2 Whyatt, J.D. 1 and Sweetman, A.1 

1 Lancaster Environment Centre, Lancaster University, Lancaster UK, LA1 4YQ 

2 National Air Quality Testing Service, Lancaster Environment Centre, Lancaster, LA1 4YQ 

Manuscript has been prepared for potential submission. This study was conceived and designed by PhD 

Student Charlotte Farr with extensive collaboration from my supervisory team at Lancaster University; 

Prof Duncan Whyatt, Dr Andrew Sweetman and Douglas Booker. The manuscript was written by 

Charlotte Farr, with editing and corrections made by the supervisory team. 

Abstract 

In the developed world, we spend most of our time indoors where we are subjected to a 

variety of particles mainly generated by occupants, through combustion and thermal 

related activities. This pilot study deploys multiple high-resolution air quality 

monitoring units across a number of UK residences to characterise temporal and spatial 

particle responses to typical episodic cooking activities, and to assess the controls on 

particle concentrations including natural and mechanical ventilation and housing layout. 

We evaluated particle number concentration trends for different source and ventilation 

scenarios across eight houses and used 5 key metrics to assess critical differences 

between them. Results indicate that residents can be exposed to particle number 

concentrations up to 100 times higher than background concentrations during cooking 

activities, but these can effectively be reduced through natural or mechanical ventilation 

within a few minutes of peak concentrations being reached, with natural ventilation 

most effective in this respect. Results also indicate that high particle number 
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concentrations can persist for extended periods elsewhere in the house, depending on 

the layout of the house, which has implications for exposure reduction.  

Key words: particulates, ultrafine particles, cooking, residential, indoor air quality, 

ventilation 

4.1. Introduction 

In the western world we spend approximately 65% of our lives in our homes, where we 

are subjected to various airborne particles (Klepeis et al., 2001). Indoor air quality 

(IAQ) is influenced by ambient concentrations, including particles associated with 

vehicular traffic and industrial activities which ingress into the built environment by 

infiltration and/or ventilation systems (Cincinelli and Martinelli, 2017). Particles also 

originate inside buildings from building materials and furnishings, activities undertaken 

within buildings and the presence and behaviour of occupants (Han et al., 2010; Kumar 

et al., 2016; Cincinelli and Martinelli, 2017). Existing research has focused on ambient 

particle sources, but there has been a growing interest in risks posed by indoor particle 

sources as people typically spend most of their time indoors. The majority of airborne 

particles in residences, when expressed as particle number concentrations (PNC) are 

generated by the residents themselves through combustion/thermal related activities 

including cooking, wood-burning, candle burning and smoking (Isaxon et al., 2015; 

Fantke et al., 2017). Numerous studies have evaluated particle response to these 

activities (Hussein et al., 2006; Wallace, 2006; Wierzbicka, 2008). 

Cooking is seen as the most important indoor episodic activity to affect particle 

concentrations and is one of the most significant sources of particle emissions in homes 

(Dennekamp et al., 2001; Wheeler et al., 2011; Rim et al., 2012; Klein et al., 2019). 

Particle concentrations can reach potentially hazardous levels in the kitchen space and 
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throughout the building and contribute significantly to personal exposure and adversely 

affect health if concentrations are not maintained below health-based thresholds (Logue 

and Singer, 2014; Lunden et al., 2015; O’Leary et al., 2019a). The processes used in 

cooking such as frying, roasting, grilling, boiling and broiling contribute to particle 

emissions. These are also affected by ingredients, recipes and procedures, fuel types, 

cooking temperature and extraction/ventilation equipment (Abdullahi et al., 2013; 

O’Leary et al., 2019a; Klein et al., 2019).  

Particles generated by combustion-related activities such as cooking are generally 

within the ultrafine (diameter < 0.1 µm) and fine (PM2.5) size ranges (Abdullahi et al., 

2013). The harmful effects of these particles has been reviewed in the available 

epidemiological literature. Due to their small size, ultrafine particles (UFP) are believed 

to exert higher toxicity than larger particles (Ohlwein et al., 2019). They can penetrate 

deeper into the respiratory system and can deposit there with a higher probability than 

larger particles because of their diffusion co-efficient, causing inflammatory effects 

(Afshari et al., 2005). UFP can also be carriers for air pollutants such as polycyclic 

aromatic hydrocarbons, some of which are known carcinogens. Particle Number 

Concentration (PNC) is the most commonly used particle metric to evaluate UFP 

responses. Most studies analyse particle mass and size distributions and as such data 

collection of UFPs is not found everywhere and epidemiology is not as solid as it is for 

other pollutants (e.g., PM2.5). 

Cooking has been seen to cause the highest particle concentrations in many IAQ studies 

and to explain most of the variation in exposure among houses (Bhanger et al., 2011). 

The influence of various processes on cooking emissions has been examined in the 

literature including the effect of different fuel types. Studies have consistently found 
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that gas stoves emit more particles than electric stoves (Buonanno et al., 2009; 

Dennekamp et al., 2001). Isaxon et al. (2015) took time resolved PNC measurements 

for 22 Swedish homes and found source strengths of cooking activities associated with 

toasting, boiling and frying activities to be highest, ranging from 1.6 × 1012 to 4.5 × 1012 

particles per min-1. Other researchers have also investigated cooking emissions and 

influencing factors and have found emission rates to be highly variable for single 

ingredients (Afshari et al., 2005; Isaxon et al., 2015; Dennekamp et al., 2001). Garrett 

et al. (1998) concluded that peak concentrations may be more important for health 

effects than long‐term concentration averages. Studies have also assessed PM2.5 

emissions from complete meals (He et al., 2005; O’Leary et al., 2019a), finding PM2.5 

concentrations to be 30–90 times higher than background levels during frying and 

grilling. The Home Observations of Microbial and Environmental Chemistry study 

(HOMEChem) recently examined the influence of everyday activities on the emission, 

and found cooking was a large source of VOCs, CO2, NOx and particles, which were 

predominantly in the ultrafine mode (Farmer et al., 2019). 

A limited number of studies have examined the effects of cooking in the kitchen on 

concentrations in other rooms. Hussein et al. (2006) found cooking activities produced 

total PNC (predominantly UFP) exceeding 1.8 × 106 particles/cm3 in the kitchen with a 

lifetime of between 4–6 hours. This study highlighted that PNC in the living room were 

affected significantly when the living room door was opened, and to a lesser extent 

when it was closed (Hussein et al., 2006). Wan et al. (2011) similarly found cooking 

activities increased the PNC in the kitchen and living room after cooking, with PNC in 

the kitchen and living room about 20–40 times and 10 times the background level 

respectively (Wan et al., 2011).  
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Eliminating the processes involved in cooking in order to improve IAQ is unrealistic 

since cooking is necessary for the safety and enhancement of quality of a substantial 

number of food products (Hager and Morawicki, 2013). There are, however, ways to 

reduce emissions in domestic kitchens, including using different fuel sources, non-stick 

frying pans and cooking methods that avoid the browning or charring of food (O’Leary 

et al., 2019a). Effective mitigation strategies including natural ventilation and 

mechanical ventilation are therefore necessary to reduce exposure to particles. The 

former occurs through unintentional leaks in the building envelope, intentional 

openings such as windows and via coupled spaces such as basements (Liu et al., 2018a). 

Mechanical ventilation is particularly important during the heating season when 

occupants seek to reduce natural ventilation rates to enhance thermal comfort or 

minimize heating fuel costs (O’Leary et al., 2019a).  

It has been found to be most effective to extract particle emissions at source using a 

cooker hood since the added air exchange introduced by the exhaust fan leads to 

reductions in concentrations (Dobbin et al., 2018). The efficiency of exhaust fans to 

capture cooking-related pollutants can vary widely based on a number of factors 

including equipment type and design, configuration, size and location, exhaust flow rate, 

exhaust ducting, installation details and use behaviour and house geometry (Dobbin et 

al., 2018). Higher range hood flow rates are generally more effective for UFP reduction, 

though the reduction varies with particle diameter due to molecular and turbulent 

diffusion (Rim et al., 2012). The ability of a cooker hood to capture particles is indicated 

by its capture efficiency (CE). O’Leary et al. (2019a) found that particle emissions could 

be reduced most significantly using a cooker hood with a CE of > 90% and a non-stick 

frying pan. 
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The extent to which the exhaust device extends over the burners being used has a large 

influence on CE.  A device that does not cover the in-use burners suffers a large penalty 

in CE, increasing the quantity of pollutants released into the room during cooking, and 

leading to higher concentrations during the post-cooking period (Singer et al., 2011; 

Rim et al., 2012; Dobbin et al., 2018; O’Leary et al., 2019a). When adopting an 

intermittent ventilation strategy, using an exhaust fan for an extended period of time 

once cooking has ceased can more notably reduce pollutant concentrations (Dobbin et 

al., 2018). Dobbin et al. (2018) found that 15 minutes of additional fan use significantly 

reduced integrated exposure to UFP and PM2.5. O’Leary et al. (2019b) showed that 

continuing to ventilate with a cooker hood for a further 10 minutes after cooking had a 

greater effect on reducing particle concentrations. However, the decision to continue to 

ventilate for a further 10 minutes was somewhat random, being a trade-off between 

maximizing the rate of concentration reduction and psycho-social factors, such as noise 

(O’Leary et al., 2019b). 

It is important to understanding cooking-related emissions so we can assess the best and 

most appropriate mitigation strategies. Whilst considerable research effort has been 

expended on monitoring indoor particle concentrations resulting from episodic 

household activities, few studies have utilised multiple high-resolution monitors 

simultaneously in the indoor environment. Furthermore, few researchers have explored 

how exposure mitigation varies between properties of varying age and structure. The 

main aim of the study is therefore to analyse particle number concentrations (PNC) 

associated with a series of discrete cooking events, and the ways in which these change 

in response to different types of ventilation in houses with different characteristics.  

The objectives of this study are therefore to; 
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1. Take high time-resolved measurements of PNC associated with discrete cooking 

events within different microenvironments for a selection of houses in NW 

England; 

2. Develop a series of metrics that can be used to quantify differences in PNC 

caused by different source types and different forms of ventilation;  

3. Evaluate the influence of natural and mechanical ventilation on the decay of 

PNC concentrations across houses of varying age and structure; 

4. Explore how PNC within an individual household may be influenced by other 

factors including housing layout. 

4.2. Methodology  

4.2.1. Measurements and Instrumentation 

For 7 non-consecutive days, high resolution (1-second) measurements of PNC were 

taken from fixed locations within 8 purposely selected houses in NW England that were 

accessible for monitoring. All houses were occupied during the monitoring period, but 

un-occupied during active periods of monitoring aside from the investigator. The 

characteristics of the individual houses are summarised in Table 4.1. The measurements 

were taken between July 2018 and April 2019.  

Table 4.1: Characteristics of the residences monitored over the course of this study; type, age, 

hob type (Gas vs Electric), oven type (Gas vs Electric), ventilation strategy, kitchen volume. 

House Type  Age 

(years) 

Hob Oven Vent Kitchen Volume (m3) 

1 Terrace  120 Gas Electric A 48 

2 Detached 17 Gas Electric B 56 

3 Terrace 5 Gas Electric B 65 

4 Semi-Detached  60 Gas Electric A 47 

5 Detached 26 Gas Electric B 123 

6 Semi-Detached  60 Gas Electric A 29 

7 Flat 20 Electric Electric A 86 

8 Terrace  120 Gas Gas B 15 
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A: Mechanical ventilation in kitchen (re-circulating) plus natural ventilation  

B: Mechanical ventilation in kitchen (venting) plus natural ventilation 

 

PNC were monitored with a condensation particle counter (CPC henceforth), housed 

inside an NAQTS V2000 unit. Notwithstanding the epidemiological evidence that UFPs 

may be more harmful to health than large particles, combustion generated particles tend 

to be considerably smaller than 2.5 µm. This justifies the use of PNC as a more relevant 

metric than mass concentration to determine residential exposure.  

4.2.2. Experimental Design 

Occupants were asked to complete a structured questionnaire prior to monitoring. This 

was used to capture information on construction year, floor and wall materials, and 

ventilation systems of the individual houses. Floor plans were provided by the 

occupants where available. A laser distance meter was used to measure kitchen area and 

volume. 

PNC were recorded for a series of discrete cooking events (Table 4.2). The cooking 

activities included toasting bread in a toaster, frying an egg on a hob, and cooking bacon 

in an oven. The ingredients were selected because they are typically used across most 

UK households and the activities could easily be replicated. During toasting, two pieces 

of bread were cooked on the highest toaster setting for 5 minutes. This process is simple 

and repeatable with fewer variables than many other cooking processes (O’Leary and 

Jones, 2017). During frying, an egg was fried on a hob with a small amount of olive oil 

for 6 minutes after heating the oil in a frying pan for 2 minutes. During oven cooking, 

three rashers of bacon were cooked at 200 °C for 10 minutes after pre-heating the oven 

for 10 minutes. Each activity was performed under two ventilation scenarios (no 

ventilation, natural ventilation) and frying and oven-cooking activities were also 
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performed under mechanical ventilation. To reproduce real-world conditions, in 

naturally ventilated scenarios, windows were opened once cooking was complete, 

whilst mechanical ventilation was activated prior to the onset of cooking.  

During the initial phase of experimentation two NAQTS V2000 (hereafter V2000) units 

were independently placed in the kitchen to investigate PNC whilst internal doors 

remain closed (this was not feasible in an open plan property). One unit was placed 

close to the cooking source and one unit was placed at the other end of the kitchen. 

During the second phase of experimentation, additional V2000 units were placed 

around the house. V2000 units placed in the same room as the cooking sources (kitchen) 

are herein referred to as ‘near-field’ monitors. Far-field monitors were typically placed 

in an upstairs bedroom or stairway (or in house 7 in a secondary room) with internal 

doors left open to promote air flow around the whole house. 

Table 4.2: Episodic cooking experiments (that include toasting, frying and cooking bacon) 

conducted within each house under various ventilation scenarios and within one room 

(kitchen) and around the house (whole house). Experiment, ventilation characteristics and 

locality indicated. 

Expt Location Internal 

Doors 

Source Ventilation Ventilation Operated From 

A Kitchen  Closed Toast  None  

B Kitchen  Closed Toast Natural  Opened after episodic cooking 

C Kitchen  Closed Fried Egg None  

D Kitchen  Closed Fried Egg Natural  Opened after episodic cooking 

E Kitchen  Closed Fried Egg Mechanical  Beginning of frying 

F Kitchen  Closed Bacon None  

G Kitchen  Closed Bacon Natural  Opened after episodic cooking 

H Kitchen  Closed Bacon Mechanical  Start of pre-heating 

      

A Whole House  Open Toast None  

B Whole House Open Toast Natural  Opened after episodic cooking 

C Whole House Open Fried Egg None  

D Whole House  Open Fried Egg Natural  Opened after episodic cooking 

E Whole House  Open Fried Egg Mechanical  Beginning of frying 

F Whole house  Open Bacon None  

G Whole House  Open Bacon Natural  Opened after episodic cooking 

H Whole House  Open Bacon Mechanical  Start of pre-heating 
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Before each experiment, the pans and cooking utensils were cleaned in warm water with 

standard dishwashing soap, rinsed with tap water and dried. At the end of each cooking 

event all cooking appliances were turned off and the frying pans/baking trays were 

moved aside to reduce continued emissions and to give a clear end to the experiment. 

In addition, after each test, once PNC had declined to background levels, each house 

was ‘flushed’ through an extended period of natural ventilation prior to the next 

experiment being conducted. 

4.2.3. Data Processing and Analysis 

All PNC profiles were visually assessed prior to further analysis. A series of key metrics 

were adopted to enable comparisons to be made between different source and 

ventilation combinations across the various houses. These metrics are similar to those 

used in hydrology; namely time to peak (TTP), peak concentration (PKC), time to 

background (TTB), rate of decay (RTE) and area-under-curve (AUC). These are 

illustrated in Figure 4.1. TTP and TTB are self-explanatory, relative to the timing of the 

peak concentration.  RTE was estimated for each experiment where there was a clear 

rise and fall in particle numbers observed, by using a linear regression of the natural 

logarithm (Dobbin et al., 2018). The area-under-the-curve (AUC) is representative of 

the integral between two points in time, namely the start of a cooking event and the time 

when PNC returned to background levels. The sum of the area-under-the-curve is 

therefore a surrogate to source strength. An emission rate is the source strength divided 

by the time (duration) of cooking activity. Source strength and emission rates have been 

calculated in a similar manner to O’Leary et al. (2019a).  
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Figure 4.1: Schematic of PNC curve over time generated by a discrete cooking activity with 

the following key metrics highlighted; time to peak (TTP), time to background (TTB), peak 

concentration (PKC), rate of decay (RTE) and area-under-the-curve (AUC). 

Air exchange rate (AER) calculations were based upon the slope of the logarithmic 

decay of PNC within a boundary where the r-squared is above 0.95 (Table 4.3). This 

was more reliable than the CO2 method due the consistency in nature of exponential 

decay. We calculated AER under different ventilation scenarios to determine the likely 

dominant PN removal processes. Under no ventilation, we see a low AER (Table 4.3) 

and assume that particles are mainly removed by natural infiltration, more so in older 

buildings than new ones, and deposition. For natural and mechanical ventilation, we see 

higher AER (Table 4.3) and assume dispersion to be the dominant process. Houses 1, 

4, 6 and 8 are older and seem to be more “leaky”.  

Deposition rates are considered; these are simply modelled based on the work of He et 

al. (2005) and also use AER calculations as a way to infer relative influences of 

deposition (to ventilation). We also gain some understanding of the influence of decay 

by subtracting the ventilated AUC from the non-ventilated AUC which eliminates the 

influence of ventilation. 

Peak Concentration (PKC) 

PNC 

(particles/cm3) 

Elapsed Time (seconds) 

Background Concentration 

Area-under-curve (AUC) 

Source Rate of Decay (RTE) 

Time to 

Peak (TTP) 
Time to Background (TTB) 
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Table 4.3: Representative Air Exchange Rate (AER) based on logarithmic decay of PNC, 

from oven cooking (ACH h-1) 

House No Ventilation Mechanical Ventilation Natural Ventilation 

1 0.72 0.72 2.16 

2 0.36 1.44 3.24 

3 0.36 1.08 4.32 

4 1.08 1.08 5.40 

5 0.72 4.32 8.64 

6 1.44 2.88 9.72 

7 0.72 1.08 6.84 

8 1.80 2.52 5.04 

Mean 0.90 1.89 5.67 

The raw data were compiled into summary tables for each metric. These tables were 

then imported into IBM SPSS Statistics version 26 to look at differences between means 

per house (for all source types and ventilation scenarios) and means per scenario (for 

all houses and source types). Before conducting any statistical tests the distribution of 

each group of data was tested to see if it was normally distributed using the Shapiro 

Wilks test. If the significance (p) value was < 0.05 then the data were significantly 

different from the normal distribution and the nonparametric Mann Whitney U test for 

two or more independent samples was used to determine whether the means were 

different. If the significance (p) value was > 0.05 then the data were normally 

distributed, and the parametric Independent Samples T-test was used to determine 

whether means were different. In both cases, a significance (p) value of 0.05 was used 

to determine whether tested means - e.g., for a ventilated and unventilated scenario - 

were significantly different.   

4.3. Results and Interpretation 

4.3.1. Characteristics of Cooking Emissions 

A total of 128 discrete cooking events were characterised. These show large 

enhancements of UFPs (indicated by PNC) which can persist within the kitchen and 
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elsewhere around the house for significant periods of time. During cooking, particles 

can originate from both the heat source and the food, leading to some distinguishing 

source-specific characteristics. However, all the PNC time-series show similar profiles 

over time (Figure 4.2) and can be divided into three distinct periods; [1] initial 

background period, [2] cooking activity period, and [3] post-cooking period of decline 

to background, similar to periods described by Zhang et al. (2010).  The PNC increases 

rapidly with the onset of cooking then decays at rates mainly determined by air 

exchange and deposition onto interior surfaces. We focus primarily on air exchange in 

our exploration of source-ventilation-house specific influences (Figure 4.3) however, 

we also consider the influence of deposition through a basic model.  

Figure 4.2: Typical temporal PNC response over an episodic period of cooking. Data taken 

from House 3 based on egg frying with no ventilation but indicative of PNC response across all 

experiments. Green [1] Background concentrations, with absence of activity, and overall good 

IAQ. Activity then begins at the boundary of the green and red sections. Red [2] Greatly 

enhanced concentrations, with cooking activities and worsening IAQ. Orange [3] Decaying 

concentrations, following cooking activities with improving IAQ. 
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Figure 4.3: PNC response to (a) toasting bread (b) frying eggs and (c) oven cooking bacon 

under different ventilation scenarios. Data from near-field monitor in House 2. 

 

Across all houses, prior to cooking, PNC typically varied between 1000 and 10,000 

particles/cm3 (often below 5,000 particles/cm3). With the onset of cooking, PNC 

remained low for a short period of time (on average ~5 mins), then rose rapidly until 

peak concentrations were reached. PNC were typically > 105
 higher than background 
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levels during cooking activities with the highest PNC higher than those reported 

outdoors in the world’s most polluted cities (de Jesus et al. 2019). However, peak levels 

were short lived (on average ~5 mins). Our results reveal that peak concentration varies 

considerably with source type, ventilation type, placement of monitor (near and far-

field), and type of housing. Emission rates varied over time as cooking continued, which 

was the result of a range of factors (O’Leary et al., 2019b).  

Once cooking has stopped, PNC decay towards background levels. The increase in PNC 

immediately after the onset of cooking is typically more rapid than the decrease in PNC 

once cooking has ceased with the rate of decay being governed by dispersion 

(sometimes promoted by ventilation), deposition, and in some (high temperature) cases, 

coagulation. Deposition to indoor surfaces is a key sink, though much less of a 

significant influence than ventilation, which we know from differential air change rates 

between ventilated and non-ventilated scenarios (Table 4.4) as well as particle loss 

calculations (Table 4.5). Liu et al. (2018b) have recently established that deposition rate 

is linearly correlated with natural ventilation rate, but we, like many other researchers, 

assume a constant rate of deposition in our calculations, and expect deposition will stay 

roughly constant between tests for any individual house (Dobbin et al., 2018). 

Dispersion promoted by air exchange and ventilation is therefore likely the most 

dominant process for reducing PNC, and the biggest cause for variability between 

scenarios and houses. In general, dispersion promoted by natural or mechanical extract 

ventilation ensured that particles were only present in high numbers for relatively short 

periods of time in all houses included in this study (~30 minutes). Using a simple model, 

we can quantify the significance of ventilation as a removal process (Table 4.5), 
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showing a much more rapid reduction in particles from an example initial peak of 

1,000,000 particles/cm3.  

Table 4.4: Natural decay rates (h-1) for non-ventilated and ventilated toasted scenarios. 

Percentage (%) of particles lost after an hour in each ventilation situation for each house. Both 

of which indicate the efficiency of ventilation and a reflection of the contributions of 

deposition and ventilation. Highlighted rows did not have strong correlation rate for 

calculations. 

  Non ventilated  Ventilated  

House Decay Rate (h-1) 

% particles lost 

after hour Decay Rate (h-1) 

% particles lost 

after hour 

1         

2 0.72 51.3 3.96 98.1 

3 1.08 66.0 4.32 98.7 

4 1.8 83.5 7.56 99.9 

5 1.08 66.0 2.88 94.4 

6 2.52 92.0 10.08 99.9 

7     4.32 98.7 

8 3.6 97.3 9.72 99.9 

 

Table 4.5: Modelled particle concentrations given an example starting or peak concentration 

of 1,000,000 particles/cm3 overtime highlighting the significance of the greater air change rate 

given during ventilation that removes many more particles over shorter time scales (given to 

closest thousand). 

  Model Particle Concentration (particles/cm3) 

Hour Non-ventilation  Ventilation  

0 1000000 100000 

1 165000 0 

2 27000 0 

3 5000 0 

4 1000 0 

5 0 0 

6 0 0 

 

4.3.2. Evaluation of Metrics and Ventilation Measures  

We have applied statistical tests of difference to compare and contrast our metrics for 

the different source and ventilation scenarios (summarised in Table 4.2) for the 8 houses 
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(summarised in Table 4.1).  Summary statistics (minimum, maximum, mean, standard 

deviation) were generated for data captured by i) near and far-field monitors located in 

a single room (kitchen) and ii) near and far-field monitors located in two rooms (kitchen 

and one other room).  We used SPSS to determine statistically significant differences 

between mean values for the hypotheses we were testing. We also used descriptive 

statistics to isolate unusual outcomes which we explored in more detail.   

4.3.2.1. Near and Far-Field  

Single Room (Kitchen) 

Here we aimed to test whether there was a statistically significant difference between 

the mean value per metric for each house (based on all source type and ventilation 

scenarios) based on data from near- and far-field monitors deployed in the same room 

(with internal doors closed where possible to restrict particle movements elsewhere 

around the house). These tests were used to determine whether 2 units located in the 

same room monitored similar PNC at similar times. Table 4.6 summarises peak 

concentrations per house for each source type and each ventilation scenario based on 

data derived from the 2 units located in the kitchen. Summaries of the other metrics are 

illustrated in Appendix A1.  

Table 4.6: Peak particle number concentrations (PKC) across all activities (toasting, frying, 

oven-cooking) and ventilation scenarios (no ventilation, natural ventilation and mechanical 

ventilation) and houses for one room at (proximal [distal]) locations (particles/cm3 x 105). 

 
H1 H2 H3 H4 H5 H6 H7 H8 

Toast No Ventilation 2.6 

[3.6] 

1.9 

[2.8] 

0.4 

[3.3] 

10.9 

[5.4] 

1.3 

[2.0] 

6.0 

[10.6] 

4.0 

[9.5] 

10.8 

[21.7] 

Toast Natural Ventilation 1.9 

[4.0] 

1.3 

[1.6] 

0.8 

[1.4] 

13.0 

[2.8] 

      0.7    

[1.4] 

6.2 

[6.1] 

2.3 

[7.8] 

11.4 

[20.3] 

Eggs No Ventilation 0.8 

[0.5] 

10.7 

[5.8] 

29.2 

[4.7] 

19.8 

[9.1] 

2.3 

[6.1] 

15.5 

[11.9] 

3.9 

[7.2] 

16.2 

[25.8] 

Eggs Mechanical 

Ventilation 

1.9 

[1.3] 

6.6 

[3.8] 

23.2 

[6.4] 

25.1 

[12.9] 

1.2 

[3.8] 

11.3 

[8.47] 

1.3 

[3.7] 

16.8 

[22.4] 
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The results of statistical analyses reveal that almost all p-values across all metrics are > 

0.05 (Table 4.7). Therefore, this informs us that although we independently measured 

PNC at two locations in the same room (kitchen), they generally show similar values 

and provide data that align with one another. We therefore conclude that generally the 

mean values derived from the 2 monitors were not statistically significantly different, 

and we broadly see the same magnitude and temporal response in PNC to our discrete 

cooking events in both units. Therefore, we take the measurements from the near-field 

monitor to be representative of the room as a whole.  

Table 4.7: Summary of statistical tests to determine whether differences between the mean 

values derived from near- and far-field monitors were significant across all scenarios (p < 

0.05) (p values < 0.05 highlighted in bold font) for each key metric. 

House TTP PKC AUC RTE TTB 

1 0.726 0.645 1.000 1.000 0.707 

2 0.467 0.402 0.645 0.435 0.895 

3 0.629 0.014 0.145 0.959 0.804 

4 0.328 0.004 0.321 0.442 0.952 

5 0.007 0.035 0.021 0.645 0.534 

6 0.721 0.431 0.835 0.645 0.731 

7 1.000 0.878 0.721 0.878 0.898 

8 1.000 0.488 0.979 0.574 0.845 

 

We have illustrated the data for each cooking activity and calculated summary statistics 

and we conclude that a single V2000 monitor can provide a representative measure of 

IAQ in a single room. However, we also make some interesting observations and 

Eggs Natural Ventilation 1.6 

[1.0] 

4.8 

[4.8] 

15.8 

[5.8] 

22.5 

[8.4] 

2.0 

[5.9] 

12.1 

[10.6] 

3.2 

[8.2] 

16.5 

[26.3] 

Bacon No Ventilation 12.7 

[6.1] 

3.2 

[2.8] 

18.5 

[3.7] 

7.6 

[2.4] 

0.9 

[2.3] 

6.1 

[3.6]  

22.6 

[2.2] 

31.8 

[18.1] 

Bacon Mechanical 

Ventilation 

16.5 

[8.9] 

3.2 

[1.9] 

14.1 

[5.2] 

11.5 

[6.5] 

1.9 

[1.2] 

6.1 

[1.4] 

16.5 

[2.2] 

24.5 

[18.1] 

Bacon Natural Ventilation 11.4 

[11.3] 

1.3 

[0.9] 

12.4 

[3.0] 

14.2 

[3.6] 

1.2 

[2.24] 

4.4 

[1.9] 

29.5 

[5.0] 

25.6 

[17.5] 

Mean 6.2 

[4.6] 

4.1 

[3.0] 

14.8 

[4.2] 

15.6 

[6.4] 

1.4 

[3.1] 

8.5 

[6.8] 

10.4 

[5.7] 

19.2 

[21.3] 
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observe some variability in individual events. For example, emissions associated with 

cooking bacon in an oven are always higher close to the source, whilst emissions 

associated with frying an egg or toasting bread are usually higher at a distance. This 

was particularly noticeable for House 5 and 7. This is likely a product of the way in 

which the food is cooked and way the pollutant plume evolves. 

Multiple Rooms (Kitchen and Other Room) 

Here we explored spatio-temporal variation in PNC around individual houses. In multi-

room scenarios we observe high PNC throughout the property. Persistence of these 

particles, particularly upstairs, highlights concern with regards to health consequences 

since people will spend a significant amount of time here (sleeping). Here we aim to 

test whether there is a statistically significant difference between mean values per metric 

for each house (based on all source type and ventilation scenarios) for near- and far-

field monitors deployed in separate rooms (with internal doors open where possible to 

promote particle movements elsewhere around the house) (Table 4.8). PNC data from 

a near-field (kitchen) and far-field (upstairs) location tells us something about the 

relationship between ventilation and airflow throughout a residence more generally 

(Appendix A2). 

Table 4.8: Summary of statistical tests to determine whether differences between the mean 

values derived from near- and far-field monitors were significant (p < 0.05) (p values < 0.05 

highlighted in bold font) for each key metric. 

House TTP PKC AUC RTE TTB 

1 0.347 0.105 0.218 0.279 0.787 

2 0.040 0.000 0.103 0.015 0.682 

3 0.018 0.002 0.019 0.279 0.533 

4 0.105 0.000 0.196 0.505 0.825 

5 0.007 0.721 0.721 0.234 0.878 

6 0.094 0.000 0.005 0.095 0.770 

7 0.959 0.021 0.056 0.442 0.832 
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8 0.038 0.000 0.025 0.030 0.060 

 

When we consider two room scenarios, we inherently increase the variability, likely as 

a function of floor plan and area. This variability is higher for some houses than others. 

We see statistical differences between mean values for TTP, PKC and to a lesser extent 

AUC (Table 4.8). However, no single metric shows statistically significant differences 

for every house, and no house shows statistically significant differences for all metrics. 

TTP seems moderately variable, with some houses showing significant differences 

between near- and far-field monitors whilst others do not. TTP is known to depend on 

many factors such as cooking method, particle size, relative location between the source 

and sampling area and indoor airflow (buoyancy and convection) (Lai and Ho, 2008). 

PKC differ significantly between near and far-field locations, probably because the 

further the particles travel before being sampled, the greater the likelihood that they will 

be dispersed, coagulated or deposited (Lai and Ho, 2008). This holds true for some 

houses in our study, but not for others, and we observe some interesting spatial patterns 

resulting from particle dynamics (particularly in House 1). We conclude generally that 

mean values for some metrics derived from the near- and far-field monitors are very 

different (statistically so), suggesting that the units are measuring different levels of 

particle pollution, though note some houses respond differently. 

We used the mean value per metric across the eight houses to calculate average near-

field (kitchen) and far-field (upstairs) values (Table 4.9). From TTP we see it takes 

almost twice as long to reach the peak concentration in the far-field. This makes sense 

given the extended distance from source. PKC and AUC values are much higher at the 

near-field monitor which is not surprising given the proximity of the source to the 

monitor and the potential for dispersion and deposition en-route to the far-field monitor. 
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The RTE is quickest in the near-field, driven by the operation of local ventilation in the 

near-field and initial dispersion to other regions of the house.  

Table 4.9: Metrics derived from near-field (kitchen) and far-field (upstairs/elsewhere) 

monitors averaged across all houses. 

Metric Near-Field Far-Field 

TTP 12 mins  22 mins  

PKC 1,000,000 cm3  400,000 cm3 

AUC 700,000,000 cm3 300,000,000 cm3 

RTE 36.30 particles 

cm3/s  

21.86 particles 

cm3/s  

TTB 79 mins  81 mins  

 

4.3.2.2. Source-Ventilation Dynamics 

Single Room (Kitchen) 

Here, we aim to test whether there are statistically significant differences between the 

mean values for each metric for different types of ventilation (no ventilation, natural 

ventilation, mechanical ventilation) for all sources (toast, fried eggs, oven-cooked 

bacon) and all houses based on a single near-field monitor placed in the kitchen (with 

internal doors closed where possible to restrict particle movements elsewhere around 

the house) (Table 4.10). We evaluated most of the metrics we have previously used but 

excluded those that were not of relevance to ventilation and did not show significant 

differences. 

Table 4.10:  Summary of statistical tests to determine whether differences between the mean 

values derived from near- and far-field monitors were significant (p < 0.05) (p values < 0.05 

highlighted in bold font) for relevant metrics; TTP – Time to Peak; PKC – Peak 

Concentration; RTE – Rate of Decay. 

Source Ventilation AUC RTE TTB 

Toast NON v NAT 0.001 0.000 0.001 

Eggs NON v NAT 0.016 0.007 0.001 
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Eggs NON v MEC 0.231 0.108 0.038 

Eggs NAT v MEC 0.168 0.011 0.004 

Bacon NON v NAT 0.065 0.010 0.007 

Bacon NON v MEC 0.721 0.173 0.279 

Bacon NAT v MEC 0.195 0.018 0.002 

 

We see statistically significant differences in RTE and TTB but not in the other metrics 

(Table 4.10). Differences between TTP and PKC in near- and far-field locations are not 

statistically significant, which makes sense given that these metrics relate to source 

strength which is broadly similar across source types and ventilation scenarios. We 

observe a longer TTP for oven cooking in response to the prolonged cooking period (20 

minutes) and hence ‘mixing’ duration. We tend to observe higher peak concentrations 

(PKC) in non-ventilated scenarios when the kitchen exhaust fan is turned off and the 

windows remain closed. Peak concentrations are not maintained for long periods, 

particularly with the onset of ventilation. Generally, for most houses, we see higher 

peak concentrations when oven cooking bacon (0.86 × 105 – 31.5 × 105 particle/cm3) 

than for the other food types with an unusual concentration profile over time (Table 4.6; 

Figure 4.3), with two distinct peaks in response to opening and closing the oven door 

which promotes particle dispersion within the kitchen space. This is consistent with 

findings from the HOMEChem study where there are rapid increases in PNC and ammonia 

concentrations as the oven is opened which the researchers relate to the thermal 

decomposition of amino acids in meat proteins (Ampollini et al., 2019).  

Despite not simultaneously measuring PNC outside of the residences, infiltration rates 

are expected to be low across the eight houses included in this study, as PNC took more 

than an hour on average (but sometimes significantly longer) to decay to background 

levels (see Appendix A1) under non-ventilated scenarios with deposition the dominant 

removal mechanism. This indicates that the houses are relatively airtight, despite the 
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age of some of the properties. Air exchange rates (AER) measured under non-ventilated 

conditions support this assertion (mean of 0.90 ACH per hour, Table 4.3). The main 

control on AER was provided by natural ventilation (window opening) or mechanical 

ventilation (range hood or exhaust fan) with mean AER of 5.67 and 1.89 ACH per hour, 

respectively. Enhanced rates of air exchange provided by natural or mechanical 

ventilation ensured that PNC were present in high concentrations for relatively short 

periods of time.  

In the context of ventilation, we see significant differences in RTE and TTB as expected 

(Table 4.10). The decay rate (RTE) reflects the removal rate of particles. This was 

largely controlled and enhanced by the type of ventilation and is a key mechanism for 

particle removal (Zhang et al., 2010). Considering each cooking activity individually, 

the fastest RTE are associated with natural ventilation irrespective of source (Appendix 

A1). On average, across all houses, PNC reduced to background levels much more 

rapidly under conditions of natural ventilation than conditions of no ventilation (101 

minutes more rapidly for toast and 106 minutes more rapidly for frying) due to increased 

rates of air exchange. From this we conclude that natural ventilation is the best strategy 

for reducing cooking-generated particles. Mechanical ventilation was also found to 

significantly reduce PNC in the kitchen. On average, across all houses, PNC reduced to 

background levels much more rapidly under conditions of mechanical ventilation than 

under conditions of no ventilation (28 minutes more rapidly for oven cooking and 54 

minutes more rapidly for frying). However, these rates were highly variable across 

houses.  

AUC shows some significant differences between near- and far-field monitors (Table 

4.10) which can be related to the effectiveness of ventilation. The AUC ranged from 
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2.17 × 107 to 2.40 × 109 particles/cm3. These numbers are slightly lower than those 

previously reported by Zhang et al. (2010). Under non-ventilated scenarios (particularly 

egg frying and oven cooking) we see high PNC and large AUC values. However, we 

cannot compare our values to health-based standards because these do not currently 

exist for PNC.  

In summary, we do not observe significant variations in source strength.  The V2000 

monitor records similar PNC for toast, fried eggs and oven-cooked bacon across all 

houses and our statistical analysis of our source-based metrics TTP and PKC confirms 

this.  In contrast, we do observe statistically significant differences in our ventilation-

based metrics RTE, TTB and AUC. We conclude that natural ventilation is most 

effective at reducing potential exposures.  

Multiple Rooms (Kitchen and Other Room) 

Here we aim to test whether there are statistically significant differences between the 

mean values of each metric for different types of ventilation (no ventilation, natural 

ventilation, mechanical ventilation) for all sources (toast, fried eggs, oven-cooked 

bacon) across all houses based on a near-field monitor placed in the kitchen and a far-

field monitor placed elsewhere in the house (with internal doors open where possible to 

promote particle movements around the house) (Figure 4.11). 

Table 4.11:  Summary of statistical tests to determine whether differences between the mean 

values derived from near- and far-field monitors were significant (p < 0.05) (p values < 0.05 

highlighted in bold font) for each of our key metrics. 

Source Ventilation TTP PKC AUC RTE TTB 

Toast NON 0.041 0.038 0.029 0.075 0.712 

Toast NAT 0.024 0.001 0.020 0.027 0.846 

Eggs NON 0.004 0.015 0.100 0.054 0.362 

Eggs NAT 0.021 0.021 0.247 0.147 0.303 
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Eggs MEC 0.032 0.010 0.074 0.007 0.969 

Bacon NON 0.000 0.004 0.028 0.190 0.716 

Bacon NAT 0.008 0.006 0.141 0.529 1.000 

Bacon MEC 0.000 0.006 0.033 0.083 0.721 

We expected the far-field monitor (typically located upstairs) to record lower PNC than 

the near-field monitor, and this is usually the case (Appendix A2). Differences between 

mean values of TTP, PKC and AUC derived from near-field and far-field monitors were 

generally statistically significant (less so for AUC). TTP was generally quicker at the 

near field monitor due to the short distance between the source and the monitor, leaving 

little time for removal processes. Similarly, PKC and AUC were higher at the near-field 

monitor for the same reason. There were also statistically significant differences 

between the near- and far-field monitors caused by local ventilation in the near-field 

only. RTE was faster in the near field in response to local ventilation. We observed 

variability in decay rates across all houses under naturally ventilated scenarios due to 

the higher rates of decay in the kitchen than elsewhere around the house. This was in 

part due to faster initial decay rates which includes dispersion around the kitchen and 

the rest of the property. This was to some extent a function of housing volume, which 

we later discuss. As before, we are reasonably confident in the assertion that natural 

ventilation is more effective at reducing PNC than mechanical ventilation in the 

kitchens of the eight houses we tested based on analysis of these metrics and assessment 

of raw data.  

4.4. Discussion 

4.4.1. Indoor Sources and Particle Dynamics 

The factors governing indoor PNC include direct emissions from indoor sources, 

ventilation supply from outdoor air, filtration, deposition onto indoor surfaces, and 



88 

 

removal from indoor air by means of ventilation (Nazaroff, 2004). In this study, cooking 

is seen to be a large source of (ultrafine) particles as high concentrations were observed, 

as has similarly been noted in numerous other studies including HOMEChem (Farmer 

et al., 2019) where cooking was seen to be a large source of VOCs, CO2, NO2, and 

particles of various sizes (Farmer et al., 2019; Patel et al., 2020). Particle emissions 

from cooking events are intermittent, episodic and localized. The effects of emissions 

on inhalation exposure depend, to an extent, on indoor-air mixing processes (Nazaroff, 

2004), which can be influenced by ventilation and occupancy. Following emission, the 

concentrations of particles indoors are the result of several processes where the 

production of particles is balanced by loss through various removal or transformation 

mechanisms (Ruzer and Harley., 2012). 

Airborne particles deposit on indoor surfaces after collision and adhesion (Nazaroff, 

2004; Ruzer and Harley, 2012). Surfaces therefore play important roles in the lifetime 

and reactivity of pollutant emissions (Farmer et al., 2019). In our study we expect 

variable deposition rates from house to house as a function of the varying surfaces and 

as a result of house volume. We suspect that larger kitchens with more surfaces for 

deposition could in part contribute to lower AUC values. However, on the whole, owing 

to the ultrafine nature of particles generated in our study by cooking activities we do 

not expect deposition to be a significant influence on PNC decay. We indeed attribute 

less than one third of particle loss to deposition, based on the variable air change rates 

between ventilated and non-ventilated scenarios and our particle loss calculations 

support this assertion (Table 4.5). Previous work also supports this conclusion. 

Respirable particles (diameter < 2.5 µm) such as those generated by cooking processes 

will remain entrained in room air movement even at higher AER (Ruzer and Harley, 

2012). Indeed, settling velocities show that respirable particles (diameter < 2.5 µm) do 
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not deposit onto the floor quickly under the influence of gravity (Ruzer and Harley, 

2012). Previous work highlights that the lowest deposition rates were found for particles 

in the size range from 0.2 to 0.3 µm for both minimum (AER: 0.61 ± 0.45 h−1) and more 

typical (AER: 3.00 ± 1.23 h−1) ventilation conditions (He et al., 2005). Coagulation is 

another potential removal mechanism (Rim et al., 2012), particularly for UFP in high 

concentrations. However, we were not able to include measurements of particle size in 

our study, with our monitor recording PNC only. Therefore, we were unable to measure 

the changes in size distribution over time to look at coagulation effects. 

The volume of the house, the activities of its residents and methods of ventilation can 

have a significant effect on the concentration of indoor particles (Nasir and Colbeck, 

2013). We now examine the influences of ventilation rates and house volumes on IAQ. 

4.4.2. Ventilation and Air Exchange 

Most houses are ventilated by a combination of natural ventilation through windows 

and other design openings plus infiltration and intermittent extract ventilation, including 

those in this study. In our study, leakage flow or infiltration appears to be low, with 

greater exposure to elevated PN under non-ventilated scenarios (Appendix A1 and A2) 

where removal is dependent upon deposition and infiltration, indicating that all houses 

are generally airtight (as also indicated by our low AER, Table 4.3). Therefore, 

infiltration is not a major mechanism for particle removal i.e., is not as effective as 

purpose provided ventilation. Natural ventilation, driven by wind and thermally 

generated pressures, seems to meet ventilation needs in this study with window opening 

significantly increasing the rate of air exchange in even the most airtight of houses 

following episodic cooking activities. Similarly, when using an extract ventilation 

strategy, we see significant removal of particles. We found that continuing to run the 
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extraction fan for the duration of PNC decay significantly accelerated the decay. We 

know in our experiments that the exhaust ventilation was directly over the hob so we 

are getting a larger reduction in particle concentration that might otherwise be expected 

(Singer et al., 2011; Kim et al., 2018; O’Leary et al., 2019a). 

Whether the range hood is venting, or recirculating has important impacts on IAQ. 

Venting range hoods that exhaust kitchen contaminants directly to the outside 

environment (Kim et al., 2018) are most effective. Some homes in this study did not 

have venting systems, or the venting systems were not enabled. However, we found that 

even re-circulating range hoods or range hoods that did not vent properly outside (e.g., 

House 4) were still effective at removing particles, more so than if they were not in 

operation. Regardless of whether a cooker hood is venting properly or not, we observed 

a significantly enhanced rate of particle removal. In fact, we do not discern significant 

differences in pollutant removal rate irrespective of whether the cooker hood is venting 

outside or recirculating. 

In the UK, under the English Building Regulations and Approved Document F, kitchens 

in new dwellings are required to have an intermittent extraction rate of 60 l/s or 30 l/s 

through a cooker hood (Kim et al., 2018; O’Leary et al., 2019a; UK Government, 

2014a). Only one such property would have been designed with these regulations in 

mind (House 3). All other properties investigated in this study were built before these 

regulations came into place, so we cannot compare between guidelines and real-world 

situations. There is also the issue of maintenance and as such few extractor fans will be 

operating at published CE. Actual usage of intermittent extract ventilation also needs 

be considered. In reality, occupants use extraction fans in their homes and apartments 
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less frequently than might be expected.  For example, Park and Kim (2012) found that 

only 31% of occupants used their fans in a study based in Korea. 

4.4.3. Monitoring Room and House Volume 

Another consideration in relation to IAQ is the floor area and room volume. We focus 

here on the toast source only and kitchen volume (total of 16 observations). Home or 

room volume has been evaluated in relation to IAQ in previous studies (e.g., Hubuyo et 

al., 2011). Consistent with such studies we find the smaller the volume of the room in 

which the monitor is placed, the higher the PNC (Figure 4.4) (Haghighat and Kim, 

2009). Whilst our results show a low degree of correlation (R2 of 0.15) between AUC 

and kitchen volume under non-ventilated conditions, they show a moderate correlation 

(R2 of 0.51) under naturally ventilated conditions, indicating that as kitchen volume 

increases, AUC decreases. The non-linearity in this trend is consistent with the variation 

in source and ventilation between homes. It is possible that variations in source strength 

or more likely ventilation rate (and air exchange provided by window opening) could 

have some influence on this trend, however, we assert some influence driven by 

differences in volume.   
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Figure 4.4: Correlations between kitchen volume and area-under-the-curve plots (which is 

indicative of total amount of toast-generated PNC in the room and surrogate for source strength) 

for each of the eight houses monitored in this study under non-ventilated and ventilated 

scenarios. 

Klepeis et al. (2017) similarly found at lower room volumes some homes have much 

higher particle levels than others. A recent study of particle size in relation to building 

characteristics by Urso et al. (2015) likewise found lower levels of fine particles were 

associated with larger houses and the use of kitchen air-exhaust systems. Jetter et al. 

(2002) also found that particle emissions from burning incense were high in small, 

poorly ventilated rooms.  We conclude that in our study this is because (assuming 

roughly similar source strengths), we see a much larger accumulation of particles in 

smaller rooms (per unit of air) which can be reduced to background levels much more 

rapidly than an equivalent number of particles in a larger room. This is also indicated 

by the moderate correlations between RTE and kitchen volume for non-ventilated (R2 

= 0.50) and ventilated (R2 = 0.58) results (Figure 4.5). We attribute slower decay rates 

in larger kitchens to smaller source impacts (despite larger mixing volumes for diluting 

pollutant concentrations (Klepeis et al., 2017)) due to larger volumes of air and thus 

smaller concentration gradients. Slower decay rates in larger kitchens might also 

indicate deposition is more of a controlling factor that we previously asserted. This 
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contradicts the findings of Jovasevic-Stojanovic and Bartonova (2017) who found that 

smaller free space areas were associated with longer residence times and prolonged 

exposure.  

 

Figure 4.5: Correlation between kitchen volume and decay rate for toasting activities under 

non ventilated and naturally ventilated scenarios across all eight houses in this study. 

The size of the room will also dictate the available surface area for deposition. We 

hypothesise that increasing the room volume will increase the number of surfaces 

available for interactions and deposition. For example, Thatcher et al. (2002) found that 

surface area of a bare space (nominal surface area of 35 m2) could be increased by 12 

m2 through the addition of furniture which increased the deposition rate by a factor of 

2.6.  This would mean that we would expect lower particle exposures associated with 

larger monitoring room volumes, which is what we see in our AUC metric (Figure 4.4) 

but not in our RTE metric (Figure 4.5). However, since we do not quantitatively 

consider the influence of deposition (due to our focus on PNC measurements) and assert 

the influence of deposition to be negligible in comparison to ventilation, we are 

confident in this assertion. We take the air change to volume ratio to be important, not 

volume alone. 
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When considering whole house dynamics, we expect higher PNC in houses with smaller 

volumes and lower PNC in houses with higher volumes for the reasons stated earlier. 

Klepeis et al. (2017) found that houses with more doors, bedrooms, or bathrooms were 

generally bigger and that particle levels tended to be lower as a consequence of the 

greater mixing volume for diluting pollutants. We reach the same conclusion. The type 

of home also appears to influence PNC in the upper quartiles of the distributions with 

apartments having higher PNC than detached houses (Klepeis et al. 2017). We do not 

discern this effect between detached houses and apartments, but this could be attributed 

to our small sample size. 

These results and our interpretation might not match those for other sources (eggs, 

bacon) or extended spaces. Correlations between kitchen volume and our metrics 

derived for frying eggs and oven cooking bacon are weaker (Appendix A3). These 

activities occur over longer periods of time and are more complicated than toasting.  It 

is conceivable that rather than observing ‘pencil-like’ plumes as we did with toasting, 

we might see much broader spread of particulates from these activities that would 

evolve in a different manner. The particle size and composition are also likely to be 

more complex given the nature of these sources.  

4.4.4. Housing Structure and Layout 

When windows and internal doors were closed PNC in the kitchen remained at high 

levels for longer periods of time, since the limited airflow restricted the dispersion of 

pollutants elsewhere around the house, effectively compartmentalising the house 

(Zhang et al., 2010). However, our results also suggest that relatively intermittent 

cooking activities can have a significant effect on PNC elsewhere throughout the house 

and that exposure to PNC from cooking activities is not necessarily confined to the 



95 

 

kitchen, particularly in the case of open plan layouts or when interior doors are left open 

to promote wider dispersion (Nasir and Colbeck, 2013).  

Layouts can vary substantially between homes (Klepeis et al., 2017): some have open 

plan kitchens whilst others have separate kitchens (Nasir and Colbeck, 2013). Far-field 

measurements (typically upstairs) confirm that particles emitted in the kitchen were 

easily dispersed to other rooms in houses with and without open plan layouts, most 

notably when interior doors are opened. Even though PNC elsewhere in houses were 

generally lower than those in the kitchen, they were still up to 100 times higher than 

those monitored during periods of no cooking activity. Therefore, the health risk from 

cooking emissions may be underestimated if human exposure is only considered in the 

kitchen. This highlights the importance of more measurements to better capture spatial 

distribution of pollutants indoors, to better inform IAQ models. 

We find exposure to cooking-generated PNC is significant for house occupants away 

from the kitchen area even in those residences with a separate kitchen. This study 

highlights how cooking can increase PNC concentrations from background levels in 

both living and upstairs rooms of a house or apartment. We observed that PNC profiles 

were similar in the kitchen and in other rooms when interior doors were opened, with a 

TTP of approximately 10 minutes. We see airflow as significant in this characterisation. 

Airflow between rooms, driven by pressure differences, can strongly influence indoor 

pollutant concentrations and fates (Nazaroff, 2004). Few studies have explored 

concentration variability between rooms and the factors that influence them (Nazaroff, 

2004). Miller and Nazaroff (2001) found that closing a door between two rooms reduced 

the rate of airflow between them from 60 m3/h to 1 m3/h. With an open doorway, 
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tobacco smoke particles released in one room became rapidly mixed throughout both. 

We observed a similar pattern from episodic cooking.  

The decay rate not only represents the effects of ventilation and particle deposition, but 

also the combined effects of different particle removal processes due to the interaction 

between the kitchen and other areas of the house (Hussein et al., 2006). The kitchen 

itself is an open area to the hallway and rest of the house so when cooking activities 

occur in the kitchen and interior doors are opened, PNC are elevated throughout the 

house as a result of air exchange between the kitchen and whole house (Hussein et al., 

2006). We often observe faster initial decay rates, particularly where some kitchens 

were part of an open floor plan or where there is mixing throughout the rest of the living 

space when interior doors are opened. 

We observed that cooking emitted particles dispersed quickly from the kitchen to 

upstairs, indicating that potential health impacts are not limited to occupants in the 

kitchen. Other researchers have also found that PNC in other regions of the house were 

also affected when the living room door was opened (Wan et al., 2011; Hubuyo et al., 

2011; Hussein et al., 2006). Wan et al. (2011) found UFPs increased by 10-fold from 

background levels in the living room and by 20–40-fold in the kitchen for 60 and 90 

minutes respectively. Hussein et al. (2006) found the lifetime of cooking particles in the 

kitchen varied between 4-6 hours with a peak in the living room that was at least 30% 

its value in the kitchen. Similarly, Klepeis et al. (2017) identified a peak in particle 

concentrations in the study room was 40% of that in the kitchen. Whilst exposure to 

cooking emitted particles elsewhere in the house is much lower, this is not always the 

case for every house.  
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PNC measured in or near a room with an active source are expected to be higher than 

PNC measured in a room more distant from the source. However, we observed peak 

concentrations that were sometimes comparable between the near-field (kitchen) and 

far-field (upstairs) locations and conclude that this is a consequence of housing layout. 

We observed some interesting and conflicting results with regards to the influence of 

housing layout on trends in cooking-generated pollutants through comparisons across 

individual houses as we will now demonstrate with reference to Houses 1 and 2.  

Generally, for most houses, lower peak concentrations and prolonged times to peak 

were observed in the upstairs (far-field) location relative to the near-field (kitchen) 

location. This is due to the relative distance between pollutant source and sampling 

location, and hence the distance travelled by particles, given them time to be dispersed, 

deposited or coagulated. This is the case for House 2. However, we observe a different 

trend for House 1 which appears to show different behaviour across most scenarios and 

metrics. Surprisingly, higher peak concentrations were recorded upstairs (far-field 

monitor) in House 1, which were 66–91 times higher than background concentrations 

(average background of ~5000 particles/cm3) when measured 4–5 minutes after the start 

of the toasting events in non-ventilated and ventilated scenarios. Such rapid times to 

peak in House 1 are unusual for an upstairs location, and this outcome was not 

reproduced in any of the other houses studied. Unusually, in House 1, we also observed 

higher peak concentrations under the naturally ventilated scenario (4.56 × 105 

particles/cm3) than we did under the non-ventilated toasting scenario (3.34 × 105 

particles/cm3). These trends have been consistently observed in House 1 – replicated in 

other experiments conducted in this house prior to this study, but the geometry is 

particular to this house only. We would further need to repeat experiment with same 

source and monitor placings to confirm or otherwise refute these observations. 
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In terms of decay rates around the residence, we generally saw lower decay rates 

upstairs for both residences, which could be a response to local ventilation operating in 

the near field (kitchen) only. Natural ventilation reduced the period of exposure (TTB) 

by 1 hour 10 minutes in the near field for both houses, but 2 hours 32 minutes and 1 

hour 39 minutes in the far field (upstairs) for Houses 1 and 2 respectively. In the far-

field, we observed significantly longer periods of decay for House 1 irrespective of 

ventilation. This is attributed to enhanced peak concentrations owing to lower influence 

of particle removal processes (due to more proximal distance to far-field monitor) with 

possible influence of housing volume (smaller volume). In the absence of ventilation, 

the decay rates in the kitchen and upstairs were more similar. 

 

Figure 4.6: Temporal PNC trends for toasting activities for House 1 (left) and House 2 (right). 

Each ventilation scenario appears on a separate plot for comparison purposes. Upper plots 

illustrate non ventilated scenarios, lower plots illustrate ventilated scenarios. 
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We examine critical differences between these two properties to assess what might be 

responsible for some of the differences in behaviour. We find housing structure and 

layout to be significant factors controlling the dispersion of cooking-related particles. 

House 1 has an open-plan kitchen with the toaster located directly adjacent to a stairwell. 

Due to the low AER, there is strong spatial heterogeneity in concentrations. The air flow 

inside the kitchen is buoyancy driven whereas convection driven flow is weak (Lai and 

Ho, 2008). Therefore air (and particles) make very strong upward flows due to this 

buoyancy force. The direct pathway for the particulate plume provided by the location 

of the toaster, and buoyancy driven flow created as a result of the toasting activity, 

generates rapid plume rise which is detected first by the upstairs (far-field) monitor 

before the plume evolves and is dispersed more widely around the kitchen and being 

detected by the near-field monitor. The open plan nature of House 1 could also in part 

account for the enhanced decay rate. The initial decay rate includes mixing of the air 

throughout the rest of the living space (larger mixing volume) so this could have 

increased overall ventilation rate. House 2, in contrast, and like most of the other houses 

studied, has a separate kitchen that can be isolated from the rest of the house, so the 

particles have longer to travel to reach the upstairs (far-field) monitor and since the 

pollution plume is not able to travel directly, dispersion and other removal processes 

occur first. Practically speaking, these results may be of particular interest to owners or 

occupiers of refurbished buildings, particularly where internal spaces have been 

reconfigured to accommodate multiple occupants, as well as provide guidance of new 

building design and planning decisions with respect to the placement and type of 

ventilation and appliances. Location of ventilation in relation to source around a 

residence is important (hence why we see longer decay rates upstairs or distal locations) 

as well as type, efficiency (CE) and venting ability amongst other factors. 
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4.5. Implications  

We analysed trends in time-integrated measurements of cooking-generated PNC and 

manipulated the data in SPSS to examine differences per metric between near and far-

field monitors in a single room and in two rooms per house to differentiate between 

individual houses and between individual scenarios within a single house.  

Results highlight that residents can be exposed to high levels of UFP, up to 100 times 

background concentrations when cooking in a poorly ventilated kitchen. These UFP 

concentrations can persist for many hours after a cooking event in the absence of 

adequate ventilation, and extend beyond the kitchen, particularly once internal doors 

are opened, or in the case of an open-plan living space. Where the kitchen is not isolated 

from the rest of the house, UFPs generated by cooking activities can be transported to 

other rooms in the same house. Therefore, the health risk from cooking emissions may 

be underestimated if human exposure is only considered in the kitchen. Even though 

PNC were generally lower elsewhere in the house than in the kitchen, they can still be 

100 times higher than background levels. Time spent in other rooms, such as upstairs 

(bedrooms) may be considerable (such as overnight) and therefore this is an important 

consideration.  

UFPs are a serious health concern because of their small size and large surface area. 

The general public therefore needs to be reminded to ventilate effectively, either by 

natural or mechanical means, when cooking or undertaking other UFP-generating 

activities to avoid potentially detrimental health effects. Based on analysis of our data 

collected and our metrics, it appears that natural ventilation is generally more effective 

at removing particles than either no ventilation or mechanical ventilation for the 

majority of the time. Mechanical ventilation is also effective at reducing exposure to 
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cooking-generated particles, and we note that this strategy could be highly effective 

during the heating season when outdoor temperatures are low (hence the energy 

consequences of natural ventilation could be high) or where houses are built to airtight 

specifications. Widespread use of mechanical ventilation will impact upon the energy 

demand of the housing stock since range hoods use energy to move air and as such 

decisions about the design and use of such fans should consider the additional costs of 

IAQ improvement (Rim et al., 2012). The trade-off between improved IAQ and 

increased energy use will be explored in the next chapter. We have learnt a lot about 

the effectiveness of ventilation across our 8 houses with their different characteristics – 

both in terms of overall efficiencies (natural, mechanical and no ventilation) and 

effectiveness in reducing PN in the near field and far field depending on the layout of 

the house. 

In this study we highlight the importance of ventilation with regard to ultrafine 

particulate pollution generated by cooking activities. However, the importance of 

ventilation is not limited to such pollutants, and ventilation is indeed significant in 

indoor air improvements with regards to many viral, chemical and particulate pollutants 

generated by a range of natural and anthropogenic sources. Ventilation has taken on 

increased importance in the current coronavirus pandemic as a means of reducing the 

risk of transmission in indoor spaces.  

4.6. Limitations 

This pilot study only considered a limited number of properties due to time constraints 

and invasive nature of monitoring in real-world environments. This limited our ability 

to find statistically significant differences between houses based on size, age, and other 

characteristics.  Indeed, some parameters need careful interpretation, for example, a 
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small house can contain a large kitchen whereas a large house can contain a small 

kitchen. Since the experiments were conducted under real-world conditions, there are 

many confounding and influencing factors that could have influenced pollutant 

concentrations, some of which could not be controlled, making interpretation difficult. 

It would therefore be beneficial to replicate the cooking and ventilation scenarios 

described here in a controlled environment. The following chapter describes how these 

scenarios were replicated in the Salford Energy House, a specialist test facility. 

4.7. Conclusions and Recommendations 

This pilot field campaign involved deployment of novel multiple high resolution air 

quality monitoring devices across multiple residences in the NW of England to examine 

the particle response to discrete cooking events and the influences on the temporal and 

spatial patterns of this response including mitigation responses (natural and mechanical 

ventilation) and housing layout.  

During episodic cooking activities, large increases of PNC occur. Peaks in 

concentration were generated quickly after the onset of cooking and decayed at a rate 

mainly determined by the air exchange rate and to a lesser extent, deposition on interior 

surfaces. We use 5 key metrics to evaluate differences between different source types 

and different forms of ventilation: Time to Peak (TTP), Peak Concentration (PKC), 

TTB (Time to Background), RTE (Rate of Decay) and Area-Under-Curve (AUC). TTP, 

PKC and AUC provide interesting insights into source strength and source variability 

within a single room or across multiple rooms. RTE and TTB provide interesting 

insights into the impacts of ventilation and other removal processes. We conclude there 

are significant differences in particle response with regards to ventilation. UFP 

emissions arising from our discrete cooking events suggest that cooking in a house with 
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inadequate ventilation could lead to indoor concentrations that significantly exceed 

those outside and could negatively affect the health of occupants. A cooker hood can be 

effective in reducing ultrafine emissions into the kitchen environment and preventing 

UFPs persisting for extended periods of time. However, the most effective strategy to 

reduce exposure to ultrafine emissions is clearly natural ventilation. 

When we independently measured PNC at two locations in a single room, we concluded 

that a single V2000 monitor could give us a representative measure of IAQ. The 

exception to this is houses with open plan layouts, where airflows can be very different. 

In multi-room scenarios where we deployed multiple V2000 monitors around a house, 

we found cooking-generated particles at high concentrations elsewhere around the 

house and conclude in most instances that metrics derived from our near- and far-field 

monitors are generally statistically significantly different from each other. Higher peak 

concentrations and shorter times to peak were experienced in the far-field (upstairs) 

location in House 1, contrasting results from all the other houses which we see as the 

norm. We explained that this was a consequence of a buoyancy dominated flow and 

favourable housing layout and geometry. 

This study provides insights into controlling influences on cooking emissions and the 

influence of housing dynamics, though the limited sample size inhibits firm 

conclusions. We recommend that this research could be repeated in the future, adopting 

a similar protocol but within a greater number and range of houses to enable statistical 

analysis to assess and evaluate the influence of housing characteristics on pollutant 

concentrations. It would also be beneficial to have more information on particle mass 

and particle size distributions and how these change over the course of a cooking event 

to interpret particle dynamics and understand processes at play including deposition and 
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coagulation more quantitatively. This, however, comes with its own shortfalls and 

difficulties in accessing properties without significant disruption, which we did. Whilst 

natural ventilation is seen as the most effective strategy for reducing exposure to 

cooking-generated particles, we understand that this has energy implications, and we 

need to consider the quality of the ambient air.  Owing to temperature and pressure 

differentials, ventilation heat loss from natural ventilation can be considerable, 

especially during cold winter periods, and the energy consequences of reheating lost air 

could be high.  This will be the focus of research presented in the next chapter. 
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Sweetman and Douglas Booker. CO2 decay measurements and energy penalties were calculated by David 
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results.  

Abstract  

Residential cooking activities generate significant amounts of particles that may cause 

serious health effects. Epidemiological studies highlight the importance of good 

exposure mitigation measures to reduce acute or chronic health effects. Natural and 

mechanical ventilation have been shown to be effective in reducing pollutants below 

harmful levels, however, both increase air exchange with the external environment, 

leading to heat loss, the extent to which varies depending on ventilation type and 

ventilation period.  This pilot study replicates residential cooking activities within the 

Salford Energy House under different ventilation regimes to assess trade-offs between 

indoor air quality and energy efficiency. We focus on assessing exposure mitigation to 

cooking generated particles by calculating energy penalties associated with heat loss 

and determine which strategies and combinations of behavioural and technological 
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interventions can simultaneously balance the competing demands of reducing pollution 

levels whilst maintaining energy efficiency.   

We find that natural ventilation results in modest energy penalties, which increase for 

longer periods of ventilation, and suggest that windows may be opened for up to 20 

minutes to improve indoor air quality after cooking with no significant loss in energy. 

We indeed observe an energy surplus in some instances when considering the additional 

energy generated by cooking processes. We find that mechanical ventilation results in 

lower energy penalties than natural ventilation for all periods. We suggest an optimum 

of 20 minutes of extract operation, which is when we observe the highest particle decay 

rates, which yields good IAQ benefits at little detriment to energy efficiency. This pilot 

study makes key associations between indoor air quality and energy efficiency which 

has wider application. The findings and implications are only applicable to houses 

similar to the test house under certain environmental conditions. 

Keywords: indoor air quality, ultrafine particles, ventilation, heat loss, energy penalties 

5.1. Introduction  

The domestic sector is responsible for 32% of UK energy consumption, most of which 

is attributable to space heating demand (BEIS, 2018). As such, public policies and 

programs have been introduced to address decarbonisation through promoting energy 

efficient buildings (Persily and Emmerich, 2012), including the EC Energy 

Performance Building Directive (EPBD, 2010/31/EU). Energy saving measures within 

residences target improvements in the thermal integrity of the envelope, as well as 

increasing the efficiency of heating and cooling equipment and reducing system energy 

use (Persily and Emmerich, 2012; Vasile et al., 2016). Recent legislation focuses on 
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increasing insulation levels and improving airtightness to prevent uncontrolled heating 

losses (Shrubsole et al., 2014). Whilst building standards have been established, many 

residential buildings, especially older ones, do not meet these standards (Fortenberry et 

al., 2019). Problems with the thermal integrity of the envelope cause high infiltration 

losses and low energy efficiency in the existing building stock (Fitton et al., 2014). 

Therefore, to meet energy efficiency targets the energy performance of nearly all 

dwellings needs be improved by 2030 (Hamilton et al., 2017). 

Ventilation, which involves introducing and circulating fresh air through a building and 

removing or diluting contaminated air is important for a healthy building 

(Dimitroulopoulou, 2012). However, due to the act of ventilation and impacts on the 

heat balance, ventilation makes up a large proportion of the energy consumption in 

buildings and as such is an attractive target for energy saving (Guyot et al., 2018). 

Traditionally, natural ventilation, driven by wind and thermally generated pressures, 

has met ventilation needs (Dimitroulopoulou, 2012). However, natural ventilation is 

difficult to control due to reliance on unreliable driving forces, which can result in 

periods of insufficient ventilation followed by periods of over-ventilation and excessive 

energy waste (Liddament, 1996). In contrast, mechanical ventilation systems provide a 

controlled rate of air change in response to the varying occupant needs and pollutant 

loads (Liddament, 1996).  

Mechanical ventilation, airflow in and out of a building caused by a fan through intake 

and/or exhaust vents (Seppänen, 2008), adds to the energy demands of a building. In 

countries with colder climates, where houses need to be airtight to conserve heat, whole 

house mechanical ventilation systems are more prevalent. In Britain’s temperate climate, 

houses used to be so leaky that whole house mechanical ventilation was not necessary. 
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However, as new builds are more airtight, these systems are now commonplace. Policies 

that focus on air tightness, while decreasing energy requirements have a tendency to 

decrease ventilation rates at the possible expense of adequate indoor air quality (IAQ) 

(Sherman and Matson, 1997). Improving building airtightness without providing 

additional ventilation can lead to lower ventilation rates and poorer IAQ (O’Leary et al., 

2019b).  

Studies exploring the relationships between energy efficiency and air quality are on the 

rise. The conflict between a desire to minimise ventilation rate to reduce energy demand, 

and to maximise ventilation rate to improve IAQ remains a pressing issue (Liddament, 

1996). Increasing the ventilation rate either naturally or mechanically will reduce 

indoor-generated pollutant concentrations but will result in energy ‘penalties’ 

(Dimitroulopoulou, 2012). Epidemiological effects have been studied, with mixed 

results. Low ventilation rates (at or below 10 l/s) may elevate concentrations of indoor-

generated pollutants which are associated with sick building syndrome and detrimental 

health effects (including inflammation, infections, asthma, allergy) (Seppänen et al., 

1999; Dimitroulopoulou, 2012). 

Health gains in Europe attributed to effective implementation of the Energy 

Performance Building Directive, which includes IAQ issues, have been estimated at 

more than 300,000 disability-adjusted life years per year (Guyot et al., 2018).  

Ventilation should not be seen as a complete solution, however; to achieve good IAQ, 

source control must also be considered (Guyot et al., 2018). Eliminating sources or 

using low pollution products and materials where possible could lower ventilation 

energy requirements (Seppänen, 2008). However, it is not always feasible to eliminate 

pollutant generating activities completely.  
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Cooking generates a significant amount of organic and non-organic gaseous and particle 

pollution and is regarded as a major source of pollutants in residential environments 

(Lai and Ho, 2008; Laverge et al., 2011). These pollutants can reach hazardous 

concentrations in the kitchen space as well as elsewhere throughout a house (Logue and 

Singer, 2014). Particles generated by combustion related activities such as cooking are 

generally within the ultrafine (UFP thereafter; diameter < 0.1 µm) and fine (PM2.5; 

diameter < 2.5 µm) particle size ranges (Abdullahi et al., 2013). Due to their small size, 

these particles exert higher toxicity than larger particles, as epidemiological literature 

demonstrates (Ohlwein et al., 2019). This is concerning as peak particle number 

concentrations (PNC) associated with cooking in the indoor environment have been 

found to be higher than peak concentrations in the outdoor environment (Dennekamp 

et al., 2001). 

Researchers have investigated cooking emissions and influencing factors. Studies have 

been carried out in a) real-life kitchens, where the emissions are influenced by many 

factors including room arrangement, building materials, outdoor infiltration, other 

combustion devices, ventilation and cooking methods, and in b) controlled chambers, 

where there are fewer external influences and emissions are influenced by the type of 

fuel and the type of food being cooked (Hubuyo et al., 2011). Reported emission rates 

for the cooking of single ingredients (Dennekamp et al., 2001; Isaxon et al., 2015; 

O’Leary et al., 2019a; Afshari et al., 2005; Wallace et al., 2011) and full meals (He et 

al., 2005) are highly variable. 

Simply reducing or eliminating the processes involved in cooking in order to improve 

IAQ is unrealistic and undesirable. Cooking is conducted on an almost daily basis in 

most residences (O’Leary et al., 2019a) and is necessary for the safety and enjoyment 
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of a substantial number of food products (Hager and Morawicki, 2013). Therefore, 

mitigation measures need be considered, most importantly the use of a cooker hood 

(mechanical extract ventilation), and secondarily the use of non-stick frying pans and 

cooking methods that avoid the browning or charring of food (O’Leary et al., 2019a). 

Natural ventilation is also effective; however, this causes ventilation-related heat loss, 

particularly in the heating season. In the UK, kitchens in new dwellings have to include 

cooker hoods with intermittent extract rate of 30 l/s or have a ventilation rate of 60 l/s 

(UK Government, 2014a). However, there is no requirement to modify ventilation in 

existing dwellings (O’Leary et al., 2019a). 

Range hoods mounted over the cooktop should be used during cooking to maintain good 

IAQ by extracting pollutants at their source, as shown by both experimental and 

modelling studies (Logue and Singer, 2014; Dobbin et al., 2018). Venting range hoods 

that exhaust kitchen contaminants directly to the external environment (Kim et al., 

2018), and that avoid pollutants mixing with kitchen air are most effective (Logue and 

Singer, 2014). Using extract ventilation during cooking is especially important in 

airtight dwellings and in other houses during the heating season when occupants seek 

to reduce ventilation rates to obtain thermal comfort and to minimise fuel heating costs 

(O’Leary et al., 2019a). Increasing range hood use will impact the energy demand of 

the housing stock, since range hoods use energy to move air (Logue and Singer, 2014). 

Further work is required to estimate how mechanical ventilation devices would affect 

the housing stock energy demand in the UK (O’Leary et al., 2019b). 

There has been a lack of research evaluating exposure mitigation to UFP due to the 

invasive nature of such studies in real-world environments. This pilot study replicates a 

series of short-duration cooking activities in a specialist test facility to assess the 
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effectiveness of different forms of ventilation for exposure mitigation and examine the 

trade-offs between good IAQ and energy efficiency. This is the first study of this kind 

to be conducted in such an environment.  The test facility provided us with a unique 

environment in which to measure PNC, space heating and ventilation heat loss in 

unprecedented detail to gain an understanding of the energy penalties associated with 

different mitigation strategies. Our objectives were as follows: 

1. Use high resolution air quality monitors to monitor IAQ in a specialised test 

facility; 

2. Examine PNC response to discrete cooking activities under different ventilation 

scenarios;  

3. Examine the energy penalties of exposure mitigation through measurements of 

spacing heating and ventilation heat loss; 

4. Explore IAQ-energy efficiency trade-offs with time from the onset of cooking. 

5.2. Materials and Methods  

5.2.1. Salford Energy House 

All testing for this study was based at the Salford Energy House. Built in 2011, the 

Energy House is a full-sized two-bedroom end of terrace house, typical of Salford in 

1919 (Fitton et al., 2014). It was built using reclaimed materials inside a climate-

controlled chamber which can replicate a wide range of weather conditions (Figure 5.1). 

In this study the chamber was set to 5.6 °C, typical of wintertime in the UK, when the 

trade-offs between reducing cooking related air pollution exposures and ventilation 

related heat loss are potentially at their greatest. Internal and external conditions were 

kept the same for the IAQ and ventilation rate measurements which were conducted on 

different dates. The Energy House has solid brick walls, suspended timber floors, lath 
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and plaster ceilings, single glazed windows and is uninsulated. Heating is provided by 

a wet central heating system. The house is classed as ‘hard-to-treat’ in terms of energy 

efficiency due to the lack of cavity walls. Therefore, it experiences higher rates of air 

infiltration and has a lower energy efficiency rating than newer housing (Fitton et al., 

2014). It is fully furnished and numerous sensors in each room monitor a range of 

variables (including temperature, air flow velocity, boiler power and energy usage) 

using a custom time series program to provide real time analysis (Fitton et al., 2014). 

Further details of this test facility are discussed in Fitton et al. (2014).  

 

Figure 5.1: The Energy House ground (a) and first (b) floor plans, (c) the 3D Energy House 

model and (d) the Energy House in the chamber (Fitton et al., 2014). Locations of air quality 

monitors are shown in red. Conditioning void attached to the house, is used to replicate typical 

end-terrace environment. 

 

5.2.2. Air Quality Monitoring 

Kitchen 

1 

2 

3 

(d) 
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This study utilised NAQTS V2000 air quality (V2000 thereafter) monitoring units. 

These units house a variety of air quality and environmental sensor which can be used 

to capture data at high (1-second) temporal resolution. Particle number concentrations 

(PNC) were monitored with a condensation particle counter (CPC) housed inside the 

V2000 unit. The CPC does not have a size selective inlet hence counts particles below 

2.5 µm, however most freshly created particles from cooking are indeed UFP. It is also 

well known that combustion-generated particles are considerably smaller than 2.5 µm, 

which justifies monitoring PNC of UFP to determine occupant exposure to cooking-

generated particles (Isaxon et al., 2015).  

During monitoring in the Energy House, the V2000 units were placed in different rooms 

as illustrated in Figure 5.1. Initially the units were run to establish the background PNC. 

They were then used to capture PNC for 3 sets of experiments (Table 5.1). Initial 

experiments were conducted in the kitchen (volume of 35 m3) with the internal door to 

the living room closed. Firstly, bread was toasted for 5 minutes on the highest setting 

under different ventilation scenarios i.e., no ventilation, then natural ventilation with the 

kitchen window opened to its full extent for different periods of time (5, 10, 20 and 40 

minutes). Natural ventilation was used once cooking had ceased. Secondly, a single egg 

was fried over an electric hob for the same ventilation scenarios plus a mechanical 

extract ventilation scenario. Mechanical extract ventilation was used from the onset of 

cooking for 30 minutes. Finally, the toasting experiments were repeated, but with 

internal doors in the Energy House opened to promote free movement of particles 

elsewhere around the house. This increased the volume for dispersion and changed 

airflow throughout the house and subsequently opportunities for ventilation. 
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Table 5.1: Replicated episodic cooking activities (toasting and frying) over the four 

consecutive monitoring days at the Salford Energy House. Further experimental details; 

number of monitors, ventilation scenario and period, and housing configuration are given. 

Experiment Cooking No. 

Monitors 

Ventilation Ventilation 

Period 

Door 

Status 

1A Toast 1 None - Closed 

1B Toast 1 Natural Full Duration Closed 

1C Toast 1 Natural 20 Minutes Closed 

1D Toast 1 Natural 10 Minutes Closed 

1E Toast 1 Natural 5 Minutes Closed 

2A Frying 1 None - Closed 

2B Frying 1 Natural Full Duration Closed 

2C Frying 1 Natural 20 Minutes Closed 

2D Frying 1 Natural 10 Minutes Closed 

2E Frying 1 Natural 5 Minutes Closed 

2F Frying 1 Mechanical  - Closed 

3A Toast 3 None Full Duration Open 

3B Toast 3 Natural 20 Minutes Open 

3C Toast 3 Natural 5 Minutes Open 

 

Before each test, the pans and cooking utensils were cleaned in warm water and hand 

dried. At the end of each cooking period, all burners were turned off and a lid was placed 

on any frying pan to prevent continued emissions, similar to O’Leary et al. (2019a). 

5.2.3. Statistical Analysis 

PNC over time were visually assessed during each cooking experiment. Descriptive 

statistics similar to those used in hydrology and in the previous chapter of this thesis, 

enabled comparisons of metrics of time to peak, peak concentration and time to 

background between ventilation scenarios. A decay rate was estimated for every 

experiment where a clear rise and fall in PNC could be observed by fitting a linear 

regression of the natural logarithm (Dobbin et al., 2018). The impacts of any outliers 

were eliminated by taking temporal measurements 5% below the peak and 5% above 

background. Extending over longer time scales can result in deviations from linearity 
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(Dobbin et al., 2018). UFP source strength and emission rates were calculated similar 

to O’Leary et al. (2019a). The area-under-the-curve of a plot of concentration over time 

is equivalent to the total number of particles emitted, i.e., a surrogate of the source 

strength. An emission rate was calculated as the source strength divided by the time 

(duration) of cooking activity. 

5.2.4. Energy Penalty Measurements 

For the purpose of this study, an energy penalty is defined as the additional energy 

consumption resulting from actions undertaken to reduce the concentration of cooking 

generated pollutants within a dwelling by means of increasing the rate of ventilation 

with the external environment. This study considers increases in energy consumption 

attributable to space heating demand and the operation of natural and mechanical 

ventilation systems. We calculate energy penalties that both exclude and include 

additional energy inputs from the cooking activities themselves. The energy penalty 

resulting from the ventilation regimes employed during the IAQ study was estimated 

using two methods: (a) measuring the increase in space heating energy consumption 

during a period of ventilation, (b) calculating the energy required to heat additional air 

exchange with the external environment based on ventilation rate measurements. These 

measurements were undertaken simultaneously after the IAQ measurement campaign 

and did not involve cooking. 

The internal environment of the Energy House and its adjoining neighbour 

(conditioning void) were maintained at the temperatures used by the UK Government’s 

Standard Assessment Procedure (SAP) methodology for calculating domestic energy 

use of 21 °C in the living room and 18 °C in all other zones (BRE, 2012). The chamber 
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temperature was maintained at 5.6 °C which can be considered representative of the 

external temperature during the heating season.  

5.2.4.1. Space Heating Energy Measurements 

At steady state, any change made to the ventilation of the Energy House should result 

in a change in space heating energy consumption in order to restore the steady state. In 

this case, opening the kitchen window should result in an increase in space heating 

energy consumption, the so-called ‘energy penalty’. Conditioning of the internal and 

external environments commenced 48 hours prior to the ventilation measurements so 

that heat transfer between the internal environment of the Energy House and the 

chamber could be considered akin to steady state (Farmer et al., 2017).  

Electric resistance heaters with thermostatic controllers were placed at the centre of 

each room to provide highly responsive temperature control and an accurate means of 

measuring space heating energy consumption, thus removing uncertainty regarding the 

sensitivity of thermostatic radiator valves and efficiency of the central heating system. 

Electricity consumption to the Energy House was measured at 1 Wh resolution at 

intervals of one minute using energy meters (uncertainty ± 1%).  

5.2.5. Energy Penalty Calculations  

Ventilation Rate Measurements 

This part of the study was designed to measure the increase in the ventilation rate 

resulting from each intervention. The energy penalty can then be obtained by calculating 

the energy required to heat the additional air exchanged with the external environment.  

Natural Ventilation  
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The energy penalty for a window opening ventilation period was obtained using the 

following equation; 

Ep= (Eh − Ec) + Ev 

Where: 

Ep= Energy penalty that includes additional heat input from cooking appliance 

Eh = Energy required to maintain kitchen air temperature with window closed (obtained from 

energy measurements (Section 4.2.4) with Energy House at steady state 

Ec = Heating energy input from cooking device during cooking period 

Ev = Energy required to heat additional air infiltration required for cooking ventilation 

(obtained from ventilation rate measurements) 

Ev is calculated as; 

Ev =  
∆𝑛 𝑐𝑝 𝜌 𝑉 ∆𝑇 𝑡𝑣

3600 ∗ 1000
 

Where: 

∆𝑛 is the measured increase in the air change rate within the ventilated space1 (ACH) 

𝑐𝑝 is the specific heat of air2 (J/kg K) 

𝜌 is the density of air3 (kg/m3) 

𝑉 is the volume of the ventilated space4 (m3) 

∆𝑇 is the temperature difference between the set-point temperature and external environment 

(K) 

𝑡𝑣 is the ventilation period (hours) 

∆𝑛 is the measured difference of the air change rate (𝑛) with the kitchen window in the 

open (cooking ventilation) and closed (baseline) positions. 𝑛 was measured using CO2 

concentration decay measurements following the guidelines detailed in ASTM E741-

11 (2017). The ventilation periods associated with the cooking experiments (Table 5.1) 

 
1 The 3600 value in the denominator accounts for the conversion of ACH to ACS and the 1000 value 

converts Wh to kWh. 
2 Specific heat of air at 5°C is 1002 J/kg K (Engineering Toolbox, 2020) 
3 Density of air at 5°C is 1.268 kg/m3 (Engineering Toolbox, 2020) 
4 Volume of kitchen is 26.92 m3 
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were deemed to be too short to obtain confident measurements of 𝑛 . Therefore, a 

ventilation period of one hour in duration was chosen to undertake the CO2 

concentration decay measurements. This is considered an acceptable approach for 

deriving 𝑛 for shorter periods as the 𝑛 should not vary with time due to the presence of 

constant conditions within the environmental chamber. The measurements were 

undertaken during the space heating energy monitoring period. The procedure for the 

CO2 concentration decay measurements was as follows. A Sauermann Si-AQ Expert 

IAQ monitor (uncertainty ± 2%), set to record CO2 concentration at intervals of 30 

seconds, was positioned in the centre of the kitchen. A fire extinguisher was used to 

release a burst of CO2 into the kitchen. A two-minute period followed in which an air 

circulation fan was used to mix the air within the kitchen. The Energy House was then 

vacated, and the kitchen window opened using the building control system for a period 

of one hour (the window remained closed for the baseline measurements). 𝑛  was 

calculated using the method detailed in the equation below. 

𝑛 =
ln 𝐶(𝑡2) − ln 𝐶(𝑡1)

𝑡2 − 𝑡1
 

Where: 

𝑛 is the air change rate (ACH) 

𝐶 is the CO2 concentration measurement  

𝑡1 is the start of the CO2 concentration decay analysis period   

𝑡2 is the end of the CO2 concentration decay analysis period   

 

A linear regression analysis of the log of the normalised CO2 concentration (𝐶𝑛) against 

time was also performed to test the assumption than 𝑛 remained constant throughout 

each measurement period. 𝐶𝑛  was calculated using equation (Roulet and Foradini, 

2002); 
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𝐶𝑛 =
𝐶(𝑡) − 𝐶(𝑡1)

𝐶(𝑡1) − 𝐶𝑏
 

Where:  

𝐶𝑏 is the background concentration level 

𝑡 is the time of measurement 

Mechanical Ventilation  

The energy penalty for a mechanical extract ventilation period was obtained using the 

following equation; 

Ep= (Eh − Ec) + Ev + Ef 

Where: 

Ev = Energy required to heat additional air infiltration required for cooking ventilation 

(obtained grille flow measurement of extractor fan) 

Ef = Energy required for mechanical ventilation over operational period (based on 

manufacturers literature value of 22.6 W) 

 

5.3. Results and Interpretation 

In this section we first present the results of our PNC measurements under different 

ventilation scenarios, then the results of our energy penalty calculations before going 

on to synthesise trade-offs between IAQ and energy efficiency in the discussion.    

5.3.1. PNC response to ventilation within the kitchen 

All the PNC profiles show similar trends (Figure 5.2). As time progresses after the onset 

of cooking (whether toasting or frying) the concentration remains low for a brief period 

of time, then rises sharply, observed as a rising limb. PNC increases with time as 

cooking continues, indicating ongoing emissions of UFP until a peak concentration is 
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reached. Once cooking has stopped, the PNC decays exponentially towards background 

concentrations with the rate largely governed by air exchange rate.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2: Temporal particle number concentration (PNC) resulting from episodic cooking 

experiments under different ventilation scenarios for (a) toasting and (b) frying in the EH.  Refer 

to Table 5.1 for details of individual experiments and ventilation scenarios corresponding to 

each scenario. 

PNC profiles over time highlight significant differences between ventilation scenarios 

(Figure 5.2). The concentration profile is a product of many factors including the 

cooking method, particle size, the relative location between the source and the V2000 
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monitor and the indoor airflow (Lai and Ho, 2008). In this study, since the cooking 

methods are constant, ventilation rate is the dominant force controlling indoor airflow, 

thereby time to peak. We observe little difference in time to peak between ventilation 

scenarios. Time to peak for toasting experiments was ~5 minutes for each ventilation 

scenario, highlighting fast air mixing. Time to peak was slightly longer for egg frying 

experiments, reflecting the longer event duration. Nonetheless it was fast at around 10 

minutes, expected due to the high oil temperature and large heated surface.  

Each cooking experiment increased PNC to at least a hundred times background levels. 

PNC remained at this magnitude for approximately 5 minutes for toasting and slightly 

longer for frying, reflecting the longer duration of this event, before declining. Peak 

PNC differed between experiments, despite each being conducted in the same way, 

reflecting the influence of ventilation (and perhaps some variations in source strength). 

Decay to background concentrations took up to 100 minutes.  

Our study aimed to investigate different rates of air exchange caused by different 

ventilation regimes and the consequential effects on decay rate. The background air 

exchange rate, estimated from the CO2 measurements reported in the previous section 

was 2.3 air changes per hour (ACH), indicating the Energy House is “leaky” compared 

to newer housing stock and there may be higher infiltration losses. However, the main 

variable to change between tests was the air exchange rate provided by natural or 

mechanical ventilation. Air exchange rates were higher when windows were opened 

(7.4 ACH) or the extract ventilation was operational (7.0 ACH). Enhanced ventilation 

provided by natural ventilation or mechanical ventilation ensured that peak 

concentrations were not maintained for long periods of time. Higher ACH provided by 

ventilation promote indoor-to-outdoor transport and faster dispersion of pollution loads. 
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The time taken for PNC to decline from peak to background levels influences a person’s 

potential exposure to cooking generated particles. The longest time to background is 

associated with the non-ventilated scenarios (Figure 5.3), taking 80 minutes for frying 

and 100 minutes for toasting, in direct response to lower air exchange rates, because the 

indoor airflow is lower, and air exchanges between the kitchen and the chamber is solely 

dependent on infiltration. Due to the property age and background ACH, larger 

infiltration losses could be expected, promoting faster decay but this does not appear to 

be the case. For toasting, much shorter times to background for naturally ventilated 

Scenarios 1B and 1C are observed than Scenario 1A showing that window opening is 

highly effective at removing particles from the kitchen environment and reducing 

potential exposures. 

We see ventilation as a significant influence on decay rate, and the influence of 

deposition is much less significant. This is indicated by the differential decay rates 

between non-ventilated scenarios (where removal mechanism is mainly deposition) and 

ventilated scenarios (where removal mechanisms comprise dispersion across space and 

deposition) and assertions we made in the previous chapter (Section 4.3.1). Particles 

smaller than 2.5 µm are largely uninfluenced by gravitational forces and have very low 

settling velocities (Liddament, 1996). They tend to remain in suspension by continual 

molecular bombardment and display diffusion properties similar to a gas (Liddament, 

1996). Since the majority of freshly generated particles by cooking are smaller than 1 

μm therefore we expect insignificant gravitational settling. 

The rate of particle decay from peak to background concentration highlights slower 

rates of decay for the non-ventilated scenarios because of the reduced airflow. The 

decay rate is fairly uniform for most scenarios especially those non-ventilated, however 
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for some naturally ventilated scenarios; 1B, 1C and 1D in particular the decay appears 

rapid at first but is then slower as PNC decline to background levels. In essence we are 

seeing a much higher initial decay rate (first 20 minutes) relative to subsequent and 

overall average decay period (Appendix B). The initial decay rate is likely to be 

dominated by dispersion, whilst other processes, such as coagulation and deposition are 

more likely to explain the subsequent slower decline to background levels. It was 

expected that opening the window for the longest period would elicit the fastest decay 

rate due to greater ACH between the kitchen and the chamber. This was true for toasting, 

but not for frying, with Scenario 2B (windows open for full duration of cooking 

experiment) producing a slower decay rate than experiments with shorter ventilation 

periods. We find that for frying based on assessment of decay rates and temporal PNC 

data mechanical ventilation is the most effective mitigation strategy. This is particularly 

evident for the first 20 minutes (initial decay rate) where we observe even further 

enhanced decay. Based on decay rates we conclude scenarios 1B and 2F are most 

effective after toasting and during frying respectively for improving IAQ and reducing 

potential exposures to UFP. 

Experiments 1B and 2B and 1C and 2C show the greatest range of PNC and the highest 

peak concentrations. This is unexpected since higher ventilation rates would be thought 

to promote greater air exchanges and suppress high peak concentrations after cooking 

(Appendix B). Experiments 1A and 2A (no ventilation) show the smallest range in PNC 

and the lowest peak concentrations, again unexpected since under these scenarios it 

would be expected that low air exchange rates would promote elevated concentrations. 

These anomalies require further investigation but could perhaps reflect higher rates of 

deposition in the absence of higher airflow and coagulation, as well as infiltration 

through the building envelope. They could also reflect indoor airflow changes between 
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various internal environments, with and without the presence of air exchange with the 

external environment. 

The plot of concentration over time is equivalent to the total number of particles emitted, 

and is taken as a representative measure of exposure and surrogate for source strength 

(Figure 5.3). The emission rate was calculated by dividing the UFP source strength 

(area-under-the-curve) by the emission period (O’Leary et al., 2019a). UFP source 

strengths are similar for each toasting event, which is expected since each experiment 

was conducted in the same environment in the same manner. The source strengths and 

emission rates showed more variability for the frying experiments.  Despite the shorter 

duration of the experiment, toasting generated more particles than frying in every 

instance. 

 

 

 

 

 

 

 

 

 

 

Figure 5.3: Exposure characteristics: area-under-the-curve quantification and emission rates for 

each ventilation scenario (A–F) for each cooking experiment (toasting and frying). Emission 

rates are rounded up to the nearest hundred thousand. 
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5.3.2. PNC response to ventilation across whole house 

 

The PNC data from one near-field (kitchen) and two far-field (living room and upstairs) 

V2000 monitors can tell us something about how cooking activities can impact PNC 

around a house and the relationship between ventilation and airflow throughout the 

house more generally (Figure 5.4). We see that we significantly underestimate the effect 

of cooking-generated particles if we do not consider pollution levels in other rooms of 

the Energy House. Though much lower than in the kitchen, high PNC in the living room 

suggest passive transfer of pollutants and larger than expected indoor airflow velocities 

despite internal doors being closed. This may be a cause for concern due to their 

persistence. Higher PNC have been found in houses with open plan kitchens (Nasir and 

Colbeck, 2013) so it is not surprising to observe even higher concentrations than 

previously found throughout the house when the interior doors are opened. Peak PNC 

differs significantly between the near and far-field locations. For the ventilated scenario, 

the cooking peak is highest in the kitchen, lower in the living room and lower still in 

the bedroom, as we expect and was similarly observed by Dimitroulopoulou (2012). In 

general, the longer the particles travel, the greater the impact of removal processes such 

as deposition and coagulation. For the non-ventilated scenario, it is the upstairs (far-

field) location that experiences the highest peak concentration, suggesting that in the 

absence of air exchange between the kitchen window and external chamber there are 

higher indoor airflows. This is interesting because it makes us also consider the 

importance of air exchange between rooms as much as between internal and external 

environments.  

Higher decay rates throughout the house indicate higher indoor airflows when the 

interior doors are opened (Appendix B). Part of the initial decay rate includes mixing 
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of the air throughout the rest of the living space (larger area for dilution), so faster rates 

of decay are expected, particularly in the kitchen. Since ventilation is only experienced 

in the near-field, the ventilation scenario is less of an influence on PNC in other rooms 

of the house.   

 

Figure 5.4: Temporal trends in PNC at both near field (kitchen) and far-field (living room and 

upstairs) locations resulting from toasting under non-ventilated (Expt 3A) (a) and ventilated 

(Expt 3B) (b) scenarios with internal doors within the Energy House open. 

5.3.3. Energy Penalties 

To reiterate, an energy penalty is defined as additional energy consumption resulting 

from actions undertaken to reduce the concentration of cooking generated pollutants 

within a dwelling by means of increasing the rate of ventilation with the external 

environment. We calculated energy penalties using data derived using 2 different 

methods. 
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Figure 5.5 shows the space heating energy consumption for a) the kitchen and b) the 

entire Energy House during each hour after the 48-hour steady-state stabilisation period 

including two one-hour periods of window opening. Table 5.2 provides the mean space 

heating energy consumption for all periods with the kitchen window in both closed and 

open positions (excluding the hour following ventilation).  

 

Figure 5.5: Hourly space heating energy consumption for (a) the kitchen and (b) the entire 

Energy House during hourly periods with the kitchen window open and closed. 

Table 5.2: Mean space heating energy consumption for the kitchen and the entire Energy 

House for periods with the kitchen window in both the closed and open position. 

 

 

 

 

It can be seen in Figure 5.5 that the two periods where the kitchen window was open 

both coincided with elevated space heating energy consumption in the kitchen and 

throughout the entire Energy House. This elevated energy consumption during window 

opening is in response to ventilation related heat loss. The space heating energy 

consumption measurements show an average increase in space heating energy 

consumption of 0.21 kWh during a one-hour period of window opening, all of which 

can be attributed to additional kitchen space heating consumption. The increase in 

Window position 
Space heating energy consumption (kWh) 

Kitchen Entire Energy House 

Closed  0.634 (± 0.006) 2.452 (± 0.025) 

Open 0.843 (± 0.006) 2.663 (± 0.027) 

 

Difference 0.209 (± 0.008) 0.211 (± 0.037) 

a b 
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energy consumption is entirely attributable to the electric heater during and after the 

window was opened. The increase is significant but lower than that derived from 

ventilation measurements (see results of Method 2). 

Figure 5.5 also shows that kitchen space heating energy consumption remained elevated 

during the one-hour period following window opening. We assume this is because of 

adjustment and continued indoor airflows within the house. After the window was 

closed the temperature in the floor void remained lower for a period and this required 

additional heat input. Temperature measurements suggest that opening the kitchen 

window increased air flow through the entire Energy House, some of which was through 

the underfloor void into the kitchen. The reason for this behaviour could be due to 

cooling of the suspended timber ground floor during the window opening period: air 

temperature measurements in the suspended timber ground floor void below the centre 

of the living room during window opening periods recorded a 0.1 °C reduction from ~ 

10 minutes after the window opening until ~15 minutes after the window closed. It is 

likely that the air temperature in the kitchen floor void (not measured at the time of 

study) experienced a greater reduction. The air temperature of the loft also increased by 

0.1 °C ~30 minutes after window opening until ~15 minutes after closing. This suggests 

that window opening not only resulted in additional ventilation through the window, 

but also increased the drivers for ventilation throughout the dwelling (through 

enhancing the stack effect, caused by thermal differences). The energy and temperature 

measurements suggest that air from the chamber was also drawn into the underfloor 

void via airbricks within the void walls, into the kitchen through gaps in the fabric, then 

passed around gaps around the door and other paths within the building fabric to the 

upper levels of the Energy House. This observation provides an explanation for the 
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higher concentration of cooking-based pollutants measured by the upstairs monitor with 

the kitchen window open during IAQ measurements (Figure 5.4).  

We conclude that the one-hour period used to measure an energy penalty from space 

heating energy measurements was insufficient in duration to allow the EH to reach 

steady-state again or to account for the complexity of air exchange paths between the 

internal and external environment that resulted increased space heating energy 

consumption after the window was closed. This means that any energy penalty derived 

from this method is likely to be an underestimation as it fails to account for dynamic 

processes. For this reason, we now go on to use the ventilation rate measurements, 

which should yield more robust results. 

Method 2: Ventilation Rate Measurements 

Window Opening 

In this instance we use ventilation rate measurements (defined in the methodology) to 

estimate ventilation heat loss and energy required to heat incoming air for window 

opening periods (Figure 5.6). The measurements show that there was a very close 

agreement between 𝑛  and 𝐶𝑛  (Table 5.3). This suggests that the ACH during each 

scenario remained constant and that it is acceptable to base energy penalties for periods 

< 1 hour in duration on ACH measured over a one-hour period. The value for 𝑛 with 

the window in the closed position is in good agreement with the assumed value for 

kitchens within housing of this age group contained within the 2017 CIBSE Domestic 

Heating Design Guide of 2 ACH.  
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Figure 5.6: CO2 decay rates used to calculate ACH when windows were closed (A and C) and 

when windows were open (B and D). 

The increase in energy consumption derived from ventilation rate measurements for a 

one-hour period of window opening is three times greater than the increase in space 

heating energy consumption measured during a one-hour window opening period that 

we identified previously. 

If the one-hour period following window opening (during which space heating energy 

consumption was elevated) is also included in the space heating energy measurement, 

then energy consumption for a one-hour period derived from the ventilation rate 

measurements is still 1.5 times greater reflecting uncertainties around the validity of the 

space heating energy consumption approach and how this method failed to account for 

time lags within the system. We therefore decided to use ventilation rate measurements 

to estimate energy penalties for natural and mechanical ventilation, since the space 

heating consumption methodology appeared to underestimate these penalties. 
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In Table 5.3 we calculate the energy required to heat the incoming air for different 

periods of window opening, without considering additional heat inputs from cooking. 

It is not surprising that we experience ventilation heat loss during all periods of window 

opening and energy requirements increase with duration of window opening.  

Table 5.3: Air change rate (ACH) calculations with windows open and closed, ventilation 

heat loss and therefore the energy required to heat incoming air for different periods of 

ventilation (Ev – ventilation heat loss only). 

Window 

position 
 (ACH)  (ACH) 

Ventilation 

heat loss 

(W) 

Energy required to heat incoming air 

for window opening period (kWh) 

60 

mins 

40 

mins 

20 

mins 

10 

mins 

5 

mins 

Closed 2.3 2.3 293 0.293 0.193 0.097 0.050 0.023 

Open 7.5 7.4 962 0.962 0.635 0.317 0.164 0.077 

Increase 5.2 5.1 669 0.669 0.442 0.221 0.114 0.054 

  

The increase in ventilation heat loss should also be considered alongside the heat gain 

associated with each cooking activity. The energy penalty (Ep) also takes into account 

heat generated by the cooking processes themselves. In this case the power outputs of 

the toaster and hob were 1200 W and 1700 W respectively. The power input from each 

cooking appliance far exceeds the measured rate of heat loss from the kitchen with the 

window closed at steady state of 634 W (this includes fabric and ventilation heat losses). 

This additional heat input from appliance use will result in a rise in kitchen temperature 

(under certain circumstances) and could result in overheating, necessitating the 

requirement for additional ventilation to maintain thermal comfort as well as good IAQ. 

When we consider additional heat input from the cooking processes, we observe lower 

energy penalties which we attribute to lower ventilation heat losses (Table 5.4). We note 

that more heat can be generated from frying activities than is lost by ventilation heat 

loss when a window is open for a 5- or 10- minute period, so we observe an energy 
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surplus (shown as negative numbers in Table 5.4). In all instances of toasting we 

observe an energy penalty, since less energy is generated from this activity, but this is 

negligible for 5- and 10- minute periods of window opening. For extended periods of 

ventilation we lose more heat through ventilation than we gain through the cooking 

processes hence generate higher energy penalties. When periods of natural ventilation 

extend beyond 20-minutes we see larger energy penalties, even when considering the 

energy generated by cooking activities, due to prolonged periods of air exchange with 

the cooler air of the chamber.   

Table 5.4: Energy Penalty (Ep) for toasting and frying per event, and for one event daily over 

the entire heating season (October–March). 

Cooking Events  Energy penalty for window opening period (kWh) 

60 mins  40 mins  20 mins  10 mins 5 mins  No 

Ventilation 

One-Time (Frying) 0.531 0.303 0.082 -0.025 -0.085 -0.139 

Daily over entire 

heating season 

(Toasting) 

96.589 55.176 14.982 -4.507 -15.469 -25.298 

       

One-Time (Toasting) 0.641 0.413 0.193 0.085 0.025 -0.028 

Daily over entire 

heating season 

(Frying) 

116.65 75.24 35.05 15.56 4.60 -5.096 

 

To provide wider context to the findings, the increase in 𝑛 of 5.2 ACH resulting from 

window opening was used to calculate the energy, financial, and CO2e implications for 

each window opening period over an entire heating season for a similar house with gas 

central heating in North West England. These calculations presented in Table 5.5 and 

Table 5.6 are based upon the number of days in each month during the heating season 

(October–April) and temperature difference between the kitchen and external 

environment for each month assumed by SAP 2012 (Government Digital Service, 2014).  
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For space heating, we assumed a gas, as opposed to electric, central heating since this 

is the most common heating method in the UK. We assumed a heating efficiency of 

82.5% based on average efficiency data provided by the Energy Savings Trust (Energy 

Savings Trust, 2021), which means we adjusted our energy demand accordingly. We 

report our results in terms of gas consumption in kWh, pounds sterling, and kilograms 

of CO2 equivalents (using the BEIS methodology (UK Government, 2020) to convert 

gas consumption in kWh to CO2e). Our values report the total energy penalty for one 

event occurring daily over the duration of the heating season. We observe modest 

energy penalties for both frying and toasting activities over the heating season, with 

slightly higher costs associated with toasting due to the larger ventilation heat losses we 

previously calculated. Gas consumption, financial cost and CO2e evaluation increase 

with extended periods of natural ventilation (window opening). In the case of frying, 

owing the energy surplus we noted previously for window opening periods of 5 and 10 

minutes, we see small savings. We observe more elevated financial and energy costs 

for enhanced periods of ventilation longer than 20 minutes.  

Table 5.5: Space heating gas consumption, financial cost and CO2e for one event per day over 

heating season for frying activity. 
 

Window opening period 

60 mins 40 mins 20 mins 10 mins 5 mins 

Gas consumption 

(82.5% efficient boiler) 

117.077 66.880 18.159 -5.463 -18.750 

Financial cost [£] 5.10 2.92 0.79 -0.24 -0.82 

CO2e (kg) 21.52 12.30 3.34 -1.00 -3.45 

 

Table 5.6: Space heating gas consumption, financial cost and CO2e for one event per day over 

heating season for toasting. 
 

Window opening period 

60 mins 40 mins 20 mins 10 mins 5 mins 

Gas consumption 

(82.5% efficient boiler) 

141.40 91.20 42.48 18.86 5.57 

Financial cost [£] 6.17 3.98 1.85 0.82 0.24 
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CO2e (kg) 26.00 16.77 7.81 3.47 1.02 

Mechanical Ventilation  

In using mechanical extract ventilation, we need to consider both the energy associated 

with additional space energy consumption (in response to air exchange and ventilation 

heat loss) (Table 5.7) and the energy that goes into the extract operation. In this instance 

the 22.6 W power rating of the extract fan makes a small contribution to the energy 

penalties. The calculations in Table 5.8 include energy lost through additional space 

heating, energy lost through fan operation and energy gained through frying activities. 

Taking all these factors into account we still see minimal energy penalties which are 

much lower than those incurred by natural ventilation for similar ventilation periods in 

all events. 

Table 5.7: Air change rates with extract ventilation on and off, ventilation heat loss 

quantified, and energy required to heat incoming air for operation period (Ev). 

 

 (ACH) 

Ventilation 

heat loss 

(W) 

 Energy required to heat incoming air for 

extract operational period (kWh) 

60 

mins 

40 

mins 

30 

mins 

20 

mins 

10 

mins 

8 

mins 

Extract off 2.3 293 0.293 0.193 0.146 0.097 0.050 0.038 

Extract on 7.0 888 0.888 0.586 0.444 0.293 0.151 0.115 

Increase 4.7 596 0.596 0.393 0.298 0.197 0.101 0.077 

 

Table 5.8: Energy penalty (Ep) for frying per event and for one event daily over heating season. 

 

Cooking events  Energy penalty for extract operation period (kWh) 

60 

mins 

40 

mins 

 

30 mins 
20 

mins 

10 

mins 
8 mins 

No 

extract 

One-time 0.480 0.270 0.171 0.063 -0.036 -0.061 -0.139 

Daily over entire 

heating season 

87.308 49.051 31.048 11.457 -6.631 -11.100 -25.298 
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Similar to natural ventilation, when we consider shorter (8- and 10-minute) periods of 

mechanical ventilation we observe an energy surplus due to additional heat generated 

by frying activities. When we operate the extract ventilation for periods of 20 minutes 

or more these costs increase, but still do not exceed those attributed to natural ventilation 

(window opening). We therefore see mechanical extract ventilation as the most 

appropriate strategy for meeting the dual objectives of good IAQ and energy efficiency. 

In addition to our observation of modest energy requirements for ventilation heat loss 

and extract operation associated with the mechanical ventilation (Table 5.8), 

particularly over shorter “intermittent” periods of operation, we also incur lower space 

heating gas consumption requirements for the same equivalent periods of operation as 

window opening (natural ventilation) in all instances, again with energy surpluses when 

operating extract ventilation for only 8- or 10-minute periods (Table 5.9). We also 

observe lower or similar financial costs for an equivalent period of ventilation. This 

strengthens our previous assertion and leads us to re-iterate that this form of ventilation 

may help achieve the dual objectives of improved IAQ and energy efficiency.  

We know from our PNC profiles that mechanical extract ventilation is more than 

capable of providing significant IAQ benefits. In fact, in the instance of frying we saw 

mechanical ventilation as most effective at mitigating exposure to particle number 

concentrations. This is despite mechanical ventilation having a slightly lower ACH than 

natural ventilation.  However, we know the rate of ventilation is much more consistent 

when mechanically driven. The first 20 minutes appear to be the most significant for 

reducing particle concentrations. We only observe negligible energy penalties during 

this period. This leads us to conclude that this initial 20-minute period of extract 
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ventilation after cooking represents the ideal time to balance the dual objectives of good 

IAQ and energy efficiency.  

Table 5.9: Space heating gas consumption, financial cost and CO2e for one event per day over 

heating season for frying for various periods of mechanical extract ventilation. 
 

 Extract operation period 

60 mins 40 mins 30 mins 20 mins 10 mins 8 mins 

Gas consumption 

(82.5% efficient 

boiler) [kWh] 

100.842 56.165 35.140 12.802 -8.223 -13.479 

Financial cost (inc. 

fan) [£] 

5.07 2.89 1.87 0.70 -0.33 -0.58 

CO2e (inc fan) [kg] 19.6 11.0 7.0 2.6 -1.5 -2.5 

 

It is important to consider (as we later discuss) that the energy penalties from natural 

ventilation may be underestimated compared to real-world situations where we would 

experience greater pressure and temperature differentials, whereas mechanical 

ventilation estimates are likely to be robust and better reflect real-world situations. 

Mechanical ventilation will also provide a more constant rate of air exchange than 

window opening, which will be more greatly influenced by external forces.  We 

therefore assert that mechanical ventilation can be used to provide a cost-effective way 

to improve IAQ (and negate any negative consequences of cooking-generated 

pollutants) without adversely impacting upon energy efficiency. 

5.4. Discussion 

In the present study we observed that residential cooking, which is conducted daily in 

most homes, generates significant particle number concentrations (PNC). Therefore, we 

can see how it is regarded as a major pollutant source in residential microenvironments. 

Since source removal is not possible, effective removal of air contaminants generated 

inside residences by cooking is needed to provide good IAQ and protect the health and 
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safety of occupants (Singer et al., 2011). In any house with its purpose-provided 

openings closed and mechanical systems switched off, the total airflow rate is equal to 

the infiltration rate (O’Leary et al., 2019). Pollutants can be diluted by infiltration of 

outside air which is desirable to save energy. Whilst infiltration alone is typically not 

sufficient to dilute particles (O’Leary et al., 2018), the greater ACH of the “leaky” 

Energy House can reduce PNC to some degree, albeit not as effectively as purpose-

provided ventilation, in either natural or mechanical form. When windows are opened, 

the air exchange rate increases from 2.3 to 7.4 ACH and we observe significant 

dispersion of cooking-generated particles through indoor-to-outdoor transport. Window 

opening has a more significant effect of reducing particle exposures for the first 20 

minutes which we observe through higher initial decay rates (Appendix B).  

No energy penalties are associated with non-ventilated scenarios, however, the IAQ 

penalty may be considerable as we have seen PNC up to 100 times greater than 

background concentrations during our episodic cooking events with more prolonged 

persistence. Some ventilation is clearly better than no ventilation from an IAQ 

perspective. If we exclude the energy inputs associated with cooking events, we see 

modest energy penalties which increase over time with extended periods of natural 

ventilation. If we include the heat generated through cooking activities in our 

calculations, then we lower the energy penalties associated with natural ventilation. 

There is a negligible effect on ventilation heat loss when windows are opened for short 

periods of time (Figure 5.7). This is particularly evident for frying activities, as a 

consequence of the greater heat generated during this activity. However, whilst our 

energy penalties are low on the order of a single experiment, they increase when we 

scale up to realistic values over a heating season. It is also important to note that our 

scaling is based on a single, short-lived cooking event per day. When cooking for longer 
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durations or more complex meals, we would expect different pollutant and particulate 

responses, and also a different corresponding energy response or implication, how 

negative or positive this may be, has not been quantified (Farmer et al., 2019). 

 

 

 

 

 

 

 

 

 

Figure 5.7: Particle number concentration averaged for all natural, mechanical and no 

ventilation scenarios for frying to illustrate the correlation between energy cost and implication 

and IAQ benefit. Gas consumption (considering space heating energy consumption and for 

mechanical extract ventilation, extract operation) illustrated relative to particle concentrations 

in squares. Severity of energy penalty is colour coded. 

 

The amount of heat generated by cooking activities can exceed the amount of heat lost 

through ventilation heat loss during periods of window opening, giving an energy 

surplus (assuming energy is lost to the air). The energy required to fry an egg was 

greater than the additional energy required to heat the air exchanged with the chamber 

during both a 5- and 10-minute period of natural ventilation. Whilst there are no energy 

penalties associated with opening a window for a 5 or 10-minute period, there are 
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significant IAQ benefits (Figure 5.7). In terms of PNC, after peak concentrations have 

been reached, ventilation is most important in reducing them to lower levels through 

the process of enhanced air exchange. Therefore, what we have shown here is that even 

a ventilation period of 5 minutes can yield significant benefits in terms of IAQ 

improvements with no detriment to energy efficiency. This echoes a key 

recommendation from a study by Guyot et al. (2018) that ventilation needs be smarter, 

ventilating less when it does not provide an IAQ advantage. We could potentially stop 

ventilation after a 5- or 10- minute period having improved IAQ, without any energy 

penalties.  

Again, for toasting activities we observe no energy penalty for no ventilation. However, 

the IAQ penalty would be considerable. The energy required for toasting was less than 

the additional heat loss even over a minimal (5-minute) ventilation period. There was 

no energy surplus associated with toasting activities due to the lower amount of energy 

generated by this activity. We observe modest energy penalties for periods of window 

opening, however these are minimal for 5- and 10-minute periods, suggesting natural 

ventilation can also be used over such timescales to improve IAQ at no real detriment 

to energy efficiency.   

It was important to estimate an initial decay rate since this is when pollutant 

concentrations are highest and when a user may benefit most from using ventilation 

(Dobbin et al., 2018) (Appendix B). Opening a window for more than 20 minutes 

appears to offer fewer additional benefits in terms of improved IAQ but does result in a 

higher energy penalty. In our experiments we observe the same time to background 

when we open the window for 20 and 40 minutes and similar decay rates (particular for 

frying) (Appendix  B). We might be observing the same overall time to background due 
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to initial decay rates being significantly higher for the first 20 minutes, driven initially 

by dispersion, then more slowly thereafter as a result of deposition and other removal 

processes. With regards to energy savings, we can see that opening a window for 40 

minutes requires much more energy to maintain room temperature than opening a 

window for 20 minutes. Therefore, we conclude that there are financial and 

environmental benefits to closing windows 20 minutes after a cooking activity. 

Providing ventilation via window opening for 20 minutes after cooking can provide 

significant IAQ improvements without being at a significant cost to energy and we 

observe this delicate balance and the merging of these parameters in Figure 5.7 and see 

how a 20-minute period of ventilation can be complementary to both objectives. This 

finding is consistent with other papers that suggest between 10–15 minutes of additional 

ventilation following cooking practices to increase decay rates without leading to any 

problems associated with long-term ventilation including energy use and uncomfortable 

noise levels (Dobbin et al., 2018; O’Leary et al., 2019a).  

Emitted pollutants can be extracted at their source using a cooker hood which reduces 

exposure risks by capturing emitted pollutants (O’Leary et al., 2019a) and by increasing 

overall air exchange in the home to remove pollutants from the indoor environment 

(Dobbin et al., 2018). Previous studies have shown that exhaust devices that do not 

cover the in-use burners suffer a large penalty in capture efficiency (O’Leary et al., 

2019a). In this study, we use intermittent extract ventilation away from the stove, but 

still observe significant increases in air exchange (to 7.0 ACH) which promote rapid 

decay of PNC. This could highlight fan flow rate is more important than fan position, 

but we do not have comparative data to support this assertion. Regular and appropriate 

intermittent usage of a kitchen exhaust fan during cooking can reduce exposure to 

particles as we have observed in this study, but decisions about the design and use of 
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such fans needs to take IAQ improvements and energy costs into consideration (Rim et 

al., 2012).  

Mechanical ventilation incurs low energy penalties.  These are lower than those incurred 

by natural ventilation, even when the combined energy costs of extract operation and 

additional space heating consumption are considered. We even see an energy surplus 

when operated for 10 minutes or less. Energy penalties increase for periods of operation 

longer than 10 minutes but do not exceed those attributed to window opening in any 

event. We therefore suggest the use of mechanical extract ventilation over natural 

ventilation to better achieve the dual objectives of good IAQ and energy efficiency.  

When considering energy consequences in isolation we find it would be best to operate 

extract ventilation for relatively short periods of time (8- or 10-minute periods), 

however, when we give consideration to IAQ issues we acknowledge it would be better 

to operate it for longer time periods to increase air changes and reduce potential 

exposures. Whilst we operated mechanical extract ventilation for a 30-minute period 

and found this to be an appropriate length of time to yield considerable air quality 

improvements, we know that the first 20-minutes are the most important for reducing 

particle concentrations. Whilst we incur only modest energy penalties for 30-minutes 

of extract operation, we suggest that an optimum period of 20-minutes could better 

balance the complimentary goals of improved IAQ and increased energy efficiency. 

This will yield significant improvements in IAQ with no significant or detrimental 

energy penalties. Mechanical ventilation also has a significant role to play in 

maintaining thermal comfort. We must consider its operation, particularly in colder 

climates, where we would experience and incur greater energy penalties and problems 

of thermal comfort if we were to rely solely on natural ventilation.  



142 

 

These findings and conclusions are similar to other papers that address IAQ concerns 

from cooking. Dobbin et al. (2018) and O’Leary et al. (2019a) have previously reported 

that exposure to UFP and PM2.5 can be reduced by continuing to ventilate for 10–15 

minutes after cooking. These papers acknowledge the trade-offs in long-term exhaust 

fan use, including the noise it generates and energy it uses, and acknowledge that it may 

be impractical to suggest residents use their exhaust fan for long periods after cooking 

(O’Leary et al., 2019a). Therefore, these represent optimum timings where the kitchen 

fan incurs only a small cost and the benefits of ventilation are considerable and the costs 

of ventilation (and associated heat loss) are negligible (Dobbin et al., 2018). O’Leary et 

al. (2019a) similarly showed daily average particle concentrations reduce by 58% for 

10 minutes of extra ventilation after cooking ends when compared to ventilation during 

cooking alone but increasing the additional ventilation period of 15 minutes only 

reduces concentrations by a further 8% giving a total reduction of 66%. This is similar 

to our previous finding about ventilating for over 20 minutes with window opening. 

It is important to consider that energy penalties of mechanical extract ventilation will 

increase during long-term use, though we do not yet understand what this might look 

like, and when scaled up to represent real-world use as we experience. However, the 

energy penalties of mechanical ventilation are robust and likely to reflect real-world 

situations, whereas those for natural ventilation may be an underestimated due to the 

characteristics of the chamber (and under-estimations of pressure differentials) in which 

the Energy House is located.  

This pilot study makes key associations between IAQ and energy efficiency, but there 

are limitations. It is important to note that the assumptions and calculations made in this 

study are only applicable to houses similar to the test house under certain environmental 
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conditions. We cannot make generalisations for other types of housing, with regards to 

ventilation heat loss calculations. In the real world, we would expect that wind pressures 

would result in higher ventilation heat loss than we saw in our chamber experiments, 

particularly in winter months and under conditions of natural ventilation. We might 

therefore observe greater energy penalties. However, it might also be the case that the 

area by which a window is opened by an occupant may be dictated by external 

conditions (e.g., only by a small amount on a windy day).  

Issues of experimental design, data collection error and fieldwork practicalities are not 

uncommon to studies of this type. Large scale in-situ monitoring of this type is invasive, 

cost and time prohibitive. One main limitation of this pilot study is the small number of 

cooking tests performed that limited the ability to find statistically significant 

differences between test conditions. The range of cooking activities is also limited. In 

the experimental design it was decided that mechanical ventilation would be controlled 

through an extractor fan mounted to the exterior kitchen wall. In reality a range hood 

would operate above the cooker, removing particles before they disperse with the 

kitchen air, so we would expect lower PNC.  

The insights provided in this study are restricted to wintertime in the UK and single-

order experiments. Whilst we did not consider seasonal variations, we can make 

inferences based on temperature changes.  We would expect increased air exchanges in 

the summer due to frequent window opening, which would drive faster decay rates. 

Higher outside temperatures would also result in lower energy penalties with less need 

for any temperature recovery. Further work could quantitatively examine the effect of 

seasonality on energy penalties to exposure mitigation. We could also think of taking a 

similar approach to cooking as HOMEChem and examine the energy consequences of 
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layered or more complex cooking events (Farmer et al., 2019). We have introduced a 

method that could be adapted for more complex cooking events and the energy 

consequences we observe could be very different as a result. For more prolonged 

cooking events or for a mixture of food types, we might expect prolonged pollutant 

profiles, and enhanced pollution, and therefore might need a more prolonged ventilation 

strategy. This may be counteracted in part by enhanced heat generated by the cooking 

processes.  

5.5. Conclusions    

This pilot study brings new data on dealing with the -sometimes- conflicting objectives 

of good IAQ and energy efficiency in existing dwellings. Through examining temporal 

indoor pollutant concentrations from discontinuous cooking activities, we examined the 

energy penalties of ventilation, that is the additional energy consumption resulting from 

actions undertaken to reduce the concentration of cooking generated pollutants. We 

highlight how the apparently conflicting objectives of good indoor air quality and 

energy efficiency can be achieved through, most importantly, intermittent mechanical 

ventilation in this type of house. We highlight how natural ventilation can also be 

important, particularly for the first 20 minutes after cooking in this study, despite 

incurring slightly higher energy penalties.  

We do not want gains in IAQ to be made at the expense of energy efficiency and our 

study has generally shown that for short periods of time (up to 20 minutes) this is 

generally not the case.  Considering both IAQ and energy efficiency, we conclude that 

ventilating for 20 minutes after a cooking event can yield significant IAQ benefits with 

negligible energy penalties. Ventilation for an additional 20 minutes appears 

appropriate and may be memorable as it is simple, which could make it a potentially 
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suitable guideline. With these conclusions in mind, it is important to consider that the 

choice of ventilation and its use over time depends on the behaviour of the occupant, 

and modification of occupant behaviour will be important moving forward. The 

implications of this study are significant in the context of residential energy use and 

plans to meet UK energy reduction targets by 2050 (Eyre and Baruah., 2015).  
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Abstract 

BREEAM is the world’s leading sustainability assessment method for buildings. Indoor 

air quality (IAQ) is one component evaluated in BREEAM assessment, however only a 

few credits relate to IAQ, and emission levels of volatile organic compounds (VOCs).  

This study investigated the prevalence and concentration of volatile organic compounds 

at a medium sized British university within BREEAM certified buildings using a sieve 

mapping approach that involved sampling over occupied (activity-related) and non-

occupied (building-related) time periods. The aim was to evaluate sources of VOCs and 

the relevance of IAQ credits in BREEAM accreditation in order to determine whether 

the current accreditation approach is fit-for-purpose and a reflection of IAQ. 

Low VOC concentrations were observed, below stated guideline values and BREEAM 

limits. Buildings housing laboratories generally experienced higher volatile organic 

compound concentrations, particularly the Chemistry building where synthetic 

chemicals and solvents were being used. Relatively higher benzene, toluene, 

ethylbenzene, xylene, and monoterpene concentrations in locations adjacent to 



147 

 

laboratories in the Chemistry building suggests enhanced dilution of building and 

cleaning-related contaminants by local laboratory exhaust systems rather than passive 

transfer from the laboratory as we would have observed other quantified volatile 

compounds at higher concentrations. The most prevalent carbonyl compounds appeared 

to be weakly correlated to recent refurbishments within the Physics building. This study 

provided insights into the prevalence and concentration of volatile organic compounds 

in a multi-functional building environment and a solid foundation for further work 

quantifying VOCs within indoor environments. 

The lack of association between a building’s chemical footprint (VOC concentrations) 

and BREEAM certification leads us to question the value of IAQ credits in BREEAM 

standards. The novelty of this research lies in the suggestions made to develop the IAQ 

credits to provide a more relevant assessment of IAQ within buildings. This includes 

the recommendation for a new approach to quantifying VOCs in sustainable building 

assessments that involves simultaneous temporal measurements with sensitive TVOC 

detectors alongside detailed speciation with reference instrumentation over longer time 

scales and occupied periods. 

Keywords: indoor environments, sustainable buildings, BREEAM, indoor air quality, 

volatile organic compounds, BTEX 

6.1. Introduction 

The UK population spends on average 80–90% of their time inside buildings 

(Dimitroulopoulou et al., 2017), where they are exposed to many pollutants. Whilst 

indoor air quality (IAQ) is less well characterised and understood than ambient air 

quality, it has become an emerging focus of research since the built environment is an 

important determinant of population health. It is well understood that indoor pollutants 
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act as respiratory irritants, toxicants, adjuvants or carriers of allergen and can lead to 

lung cancer, chronic obstructive pulmonary and cardiovascular disease (Spinazze et al., 

2019). The effects of poor IAQ on performance, productivity, and well-being of 

occupants have also been studied (Wargocki and Wyon, 2017; Eitland et al., 2018; 

Gupta et al., 2018). The existence of a wide range of indoor micro-environments, each 

impacted by one or more pollutant source, complicates exposure studies (Kim et al., 

2001). Whilst there is a plethora of indoor pollutants; the current work focusses on 

volatile organic compounds (VOCs thereafter). 

VOCs are a main category of indoor air pollutant (Goodman et al., 2017). Documented 

sources include consumer products (air fresheners, cleaning supplies and personal care 

products are associated with emissions of limonene, α-pinene, acetone, acetaldehyde 

and ethanol) and building materials; wood (MDFs and particle boards), thermal and 

acoustic insulations, carpets, paints, coatings, industrial solvents, adhesives, fireproof 

materials, PVC, flooring and furnishings (Shaw et al., 2005; Cacho et al., 2013; 

Yurdakul et al., 2017; Goodman et al., 2018). Even environmentally friendly materials 

(also known as “green” building materials) can emit potentially hazardous VOCs. 

Formaldehyde, (a known human carcinogen) whose indoor concentrations typically 

exceeds outdoor concentrations, is often treated separately as it is not detected by the 

gas chromatographic methods typically used to quantify VOCs (Shaw et al., 2005). 

Sources include the degradation of resins and additives used in wood‐based building 

materials, furniture, sealants and combustion and chemical reactions (Destaillats 

et al., 2006; Singer et al., 2006; Kruza and Carslaw, 2019). Many of these sources are 

pervasive in new buildings (Verriele et al., 2016). The concentration of individual 

VOCs in the indoor environment is dependent on their emission rates from various 

indoor sources, the rate at which they are transported from outdoors to indoors and the 
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rate at which they are scavenged by indoor surfaces, subjected to chemical and 

photodegradation and removed by ventilation or filtration (Weschler, 2009). Given the 

plentiful sources, VOC levels are usually 2–5 times higher in indoor air than in ambient 

air, but during certain activities can even be 1000 times higher (EPA, 2017a). If there 

were no indoor sources of VOCs their concentration would be lower than outdoor 

concentrations as VOCs are expected to adsorb on surfaces, and some are chemically 

degraded (Yurdakul et al., 2017). 

Many VOCs frequently detected in indoor environments are associated with acute and 

chronic health effects such as sensory and skin irritation, headaches, breathing 

difficulties, asthma and cancer (Goodman et al., 2017). In the United Kingdom (UK), 

there are currently no enforced IAQ limits for individual VOCs. A statement issued by 

Public Health England in 2019 presents IAQ guidelines derived from scientific 

literature for selected VOCs to control their levels in the indoor environment through 

informing discussions on source control and raising awareness (Public Health England, 

2019). Since many people are exposed to various substances at work, some of which 

are potentially harmful, indicative occupational health exposure limit values (IOELVs) 

have been introduced under the Chemical Agents Directive (98/24/EC) through 

Workplace Exposure Limits (WELs) (Health and Safety Executive, 2018). Exposure 

concentrations should be placed in context with these guidelines. 

There has been a significant shift towards energy efficient construction and buildings 

in recent years which has led to building codes that target energy conservation and 

resulted in the tightening of building envelopes to reduce air infiltration and leakage 

(Mudarri, 2010). Recent decades have seen the introduction and growth in use of green 

building certification schemes which aim to promote the development of healthy, 
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energy saving and environmentally friendly sustainable buildings (Wei et al., 2015). 

The earliest certification scheme, BREEAM (Building Research Establishment 

Environmental Assessment Methodology), was established in the UK in 1990 and is the 

world’s leading sustainability assessment method for assessing, rating and certifying 

the sustainability of buildings. Rating systems are universally used in sustainable 

certification schemes; whereby the requirements are divided into several categories and 

a scoring system is used to evaluate to what extent individual attributes within each 

category are achieved (Wei et al., 2015). Categories evaluated in the BREEAM 

assessment include energy and water use, health and wellbeing, pollution, transport, 

materials, waste, ecology, and management processes. 

Since the introduction of these benchmarking schemes, IAQ has been included as a 

default element, though, on average contributes only 7.5% to the credit total 

(Steinemann et al., 2017; Zhong et al., 2017). IAQ is included in the health and 

wellbeing category in BREEAM. To gain any of the IAQ points in a BREEAM 

assessment, certain testing and performance requirements must be complied with (e.g., 

EU Directive 2004/42/CE (“Paints Directive”)), TVOC and formaldehyde levels must 

meet certain requirements post construction (pre-occupancy) and manufacturers must 

confirm certain requirements such as the absence of prohibited wood 

preservatives/biocides (BREEAM, 2016). Points are also awarded for an IAQ plan and 

design and implementation of ventilation. In general, occupants of green buildings rate 

IAQ higher than occupants in conventional buildings (Steinemann et al., 2017). Some 

studies, however, highlight no observed effect of certification on the rating of IAQ. 

In parallel with green building rating systems, newer designs, construction practices and 

building materials and the use of environmentally friendly products offer the potential 
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of lowering chemical exposure (Zhong et al., 2017). Supported research shows low 

VOC emitting building materials and consumer products can reduce VOC 

concentrations, and certification schemes provide credits for the use of low-emitting 

materials (Zhong et al., 2017). However, even though some products are marketed as 

green, this does not guarantee healthier products or better IAQ. Recent studies have 

found that products with green credentials can emit hazardous compounds, sometimes 

comparable to their conventional counterparts (Steinemnan et al., 2017). For example, 

green cleaning products often contain fragrance chemicals e.g., terpenes, that are 

primary and secondary pollutants (Steinemann et al., 2017). Even zero or low-VOC 

paints can still emit VOCs similar to regular paints since the paint tinting process can 

sometimes add some VOCs, as well as other problematic chemicals such as semi-

volatile organic compounds (SVOCs; such as perfluorinated alkyl substances (PFASs) 

and siloxanes) (Steinemann et al., 2017). 

Exposure to VOCs has been an important research issue because of the prevalence of 

these compounds in various micro-environments and their associated adverse health 

effects (Jo et al., 2010). Educational institutions are one of the most studied indoor 

environments with a focus on primary and high schools as they house high density 

populations and the young are considered particularly vulnerable in terms of exposure 

to pollutants (Akal et al., 2015; Goodman et al., 2018; Godwin and Batterman, 2007; 

Kolarik et al., 2015; Yurdakul et al., 2017). Zhong et al. (2017) examined VOCs in 144 

classrooms in 37 conventional and sustainable US elementary schools. Most VOCs had 

a mean concentration below 5 µg/m3 and the most prevalent VOCs were aromatic 

compounds including toluene, benzene, m/p-xylene and 1,2,4-trimethylbenzene (Zhong 

et al., 2017). Overall, no major differences in VOC concentrations were found between 

conventional buildings and buildings with sustainability credentials (Zhong et al., 2017). 
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Good IAQ across universities and university campuses is important due to the long time 

spent by staff and students in these buildings. Campus sustainability has recently 

become an important issue as many universities foster the development “green-

campuses” and sustainable concepts (Park et al., 2014). Several universities have begun 

to construct new buildings and renovate old buildings to attain sustainability 

certification to reduce energy consumption and improve the environment and health and 

well-being of employees and students (Zhong et al., 2017), but there are questions 

around the impact of sustainability certification on IAQ. Several international studies 

have examined indoor air pollution in university buildings (Yurdakul et al., 2017) 

consistently finding indoor environments in university settings may be important 

sources of pollutants (Goodman et al., 2018). 

Chan et al. (2007) quantified VOCs within classrooms, offices, canteens, workshops, 

laboratories and a library on a university campus in Hong Kong. The main VOCs 

detected were toluene and benzene, which were attributed to ingress from outdoors. 

Solomon et al. (2008) measured IAQ within the Department of Physics and Electrical 

Engineering at the University of Bremen. Whilst tobacco smoke was seen to be a 

dominant factor in indoor pollution, pollutants commonly associated with cleaning 

products and materials exhibited higher indoor than outdoor concentrations (Solomon 

et al., 2008). Similarly, Goodman et al. (2018) conducted novel research into the 

prevalence and concentration of VOCs at an Australian University within campus 

services, restrooms, renovated offices, a green building, meeting areas and classrooms. 

Analysis of 41 VOCs across 20 locations revealed higher indoor concentrations than 

outdoors. The most prevalent VOCs (e.g., ethanol, d-limonene and formaldehyde) were 

found to have links with building materials, furnishings and fragranced consumer 

products such as air fresheners and cleaning supplies (Goodman et al., 2018). Tang et 
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al. (2016) examined the full spectrum of VOCs emitted indoors in a university 

classroom and found human occupants were the major contributor to the mass of indoor 

VOCs (by mass, 57%). Among the most abundant species detected were compounds 

associated with personal care products but human metabolic emissions such as isoprene, 

methanol, acetone and acetic acid were also prominent (Tang et al., 2016). 

On-campus chemical use is a major challenge for university environment management 

programmes. Most science and engineering laboratory activities necessitate the daily 

use of various types and amounts of chemicals including acidic and basic materials 

(Park et al., 2014). In laboratories specific pollutant concentrations may be high 

depending on the nature of the experiments conducted and number of people working; 

according to cited literature, due to the use of volatile solvents and chemicals, higher 

VOC levels have been detected in most university buildings housing laboratories (Park 

et al., 2014). Pollution in (university) laboratories is particularly important to those who 

work there including technicians, specialists and teaching/research assistants and 

students who may be exposed to pollutants which may adversely affect health (Ugranli 

et al., 2015). IAQ and occupational safety guidelines may be used to evaluate IAQ 

within laboratories as they are considered an occupational micro-environment for those 

who work there and a general micro-environment for students (Urganli et al., 2015). 

Most chemicals are handled in fume hoods installed as a part of the local exhaust 

ventilation system to protect the researchers’ health and prevent deterioration of IAQ 

however these are adequate only for odoriferous and volatile chemicals in the restricted 

area of their enclosure and have been seen as a potential outdoor pollution source (Park 

et al., 2014). 
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It is important to understand the spatial distribution of VOCs within any building as this 

is a reflection of their indoor sources (Yurdakul et al., 2017). Spatial variations have 

been seen to be significant. Limited investigations involve (university) laboratories and 

examine the effect of chemicals and associated VOCs on IAQ. Park et al. (2014) 

investigated IAQ in university laboratories, noting the concentrations of 11 VOCs were 

significantly higher within buildings housing laboratories (Mean: 185 µg/m3) than those 

that did not (Mean: 12 µg/m3) owing to frequently used laboratory chemicals. Rumchev 

et al. (2003) and Valavanidis and Vatista (2006) investigated IAQ in university 

laboratories in Western Australia and Athens respectively, showing occupants can be 

exposed to higher particle concentrations and TVOC levels but reported that air 

conditioning reduced VOC concentrations.  

The lack of research discussing the distribution patterns of VOCs within sustainably 

accredited buildings is concerning. To remedy this and address the knowledge gap 

between green building practice and potential, this study aimed to quantify VOCs 

between and within sustainably accredited (BREEAM) buildings. A university provides 

a useful mix of building ages, uses and accreditations for this study. Through examining 

the prevalence and concentration of numerous pollutants, with a focus on BTEX, 

terpenes and carbonyl compounds between buildings, this work will contribute insights 

on university indoor environments in the UK. This study will adopt a sieve mapping 

approach, starting broad and refining during the course of investigation. Based on 

interpretation of initial results, sampling locations were refined to the building and room 

scale. In particular this work builds on that undertaken by Rumchev et al. (2003) which 

assessed IAQ in university laboratories to assess the implications of chemical use on 

the building. In assessing the relationship between VOC concentrations (and sources) 

and BREEAM accreditation this study aimed to evaluate the relevance of IAQ credits 
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in BREEAM accreditation and whether the current approach is fit for assessing the 

sustainability of buildings and reflecting good IAQ and positive health related outcomes. 

The following objectives are identified for this study: 

1. Determine the concentration of VOCs for selected buildings at a UK University 

(sustainably accredited BREEAM buildings and otherwise) to assess the 

association between VOCs and BREEAM standards 

2. Determine concentration of VOCs and potential VOC sources (activity-related 

and building-related) at a building level (multiple buildings) and a room level 

(multiple spaces within one building) 

3. Assess the relevance and validity of IAQ credits in BREEAM standards 

4. Assess the implications of the results, and potential future monitoring or 

BREEAM modifications 

6.2. Methodology 

6.2.1. Study Location 

This study was undertaken at Lancaster University, a medium sized public research 

university in the City of Lancaster, Lancashire, England. The university was established 

by Royal Charter in 1964 and currently has a student population of around 14,000 and 

a staff population of around 5,000. The Bailrigg Campus is 360-acres and is located 3 

miles south of the City of Lancaster.  

6.2.2. Study Design 

6.2.2.1. Selection and Characterisation of University Buildings 
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All of the buildings investigated in this study are used for administrative, research, or 

teaching purposes (Appendix C). The sample of buildings chosen were taken as 

representative of the wider university building stock. Most of the buildings chosen have 

BREEAM certification however two conventional non-BREEAM certified buildings 

were also used in this study for comparative purposes. The building typologies differed 

greatly but there are similarities in characteristics (Table 6.1). The eight buildings with 

various BREEAM certifications were built between 1960 and 2018. Some of these 

buildings are refurbished (3 buildings), and some are new builds (5 buildings). These 

BREEAM certified buildings were constructed with sustainable designs, featuring high 

standards of thermal and mechanical ventilation influenced by BREEAM Excellent and 

Very Good principles. Many of the buildings make use of natural light and natural 

ventilation. The two conventionally designed buildings which did not have any 

BREEAM certification were built in the late 1960s. These buildings were also 

mechanically ventilated.  

Table 6.1: Typology for each Lancaster University building that has been sampled in this 

study; year built, refurbishment; BREEAM status, and presence of laboratories. 

 

 

 

 

 

 

 

 

 

 

6.2.2.2. Sampling Periods, Sites and Sample Collection 

N Name Built Refurbished BREEAM Labs 

1 Physics 1964 Y Y Y 

2 Chemistry 1964 Y Y Y 

3 Engineering 2011 N/A Y Y 

4 LEC 2006 N/A Y Y 

5 FST 1964 Y N N 

6 Management 1964 Y N N 

7 Infolab 2010 N/A Y N 

8 Charles Carter 2011 N/A Y N 

9 LICA 2010 N/A Y N 

10 Faraday 1964 Y Y N 
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Time-integrated samples were collected through active sampling over several non-

consecutive days in 2018/2019. A sieve mapping approach to sampling was adopted, 

starting off with broad sampling in a range of university buildings, followed up by 

refined sampling in locations or hotspots of interest. University-wide VOCs sampling 

was initially undertaken during periods of low-occupancy, during university vacation 

periods to place a larger emphasis on assessing the influence of the building fabric on 

IAQ. Subsequent sampling was undertaken during periods of higher occupancy (term 

time) in order to place emphasis on capturing pollutant-generating activities as well. For 

VOC sampling (other than carbonyl compounds) a multi absorbent tube (Markes 

Tenax/Carbograph) was connected to a SKC Pocket Pump 210 (Eighty Four PA, USA) 

initially at a flow rate of 500 ml/min for 20 minutes (10 L) and then for subsequent 

sampling at a flow rate of 300 ml/min for 15 minutes (4.5 L) which is within the range 

recommended by HSE (Health and Safety Executive, 2016).  

For carbonyl compounds, the sampling protocol was the same as for VOCs with regard 

to a broad approach across multiple university buildings, and then refined sampling in 

locations of interest. Air was sampled onto 2,4-dinitrophenylhydrazine (DNPH)-treated 

silica cartridges from stable derivatives in situ, connected to an SKC Pocket Pump at a 

flow rate of 500 ml/min for 4 hours (120L). Sampling took place over weekends during 

periods of low occupancy from 8am–12pm and 12pm–4pm each day. An ozone 

scrubber was placed in front of the cartridge to prevent ozone interference. After 

exposure the glass tubes were sealed. The methods used for analysing VOCs and 

carbonyls are consistent with international protocols (e.g., U.S. EPA Methods TO-17). 

During university-wide sampling in periods of high and low occupancy, indoor 

samplers were set up in open access locations within the foyers of buildings (free from 
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significant polluting activities, and consistent across all buildings). Throughout all of 

the sampling, samplers were set at approximately 1 m in height and away from windows, 

doors and potential emission sources (where possible during refined sampling), out of 

direct sunlight and at least 0.5 m away from bookshelves and other potentially stagnant 

areas. Locations were also chosen that were secure from tampering. This protocol is the 

same as used by Godwin and Batterman (2007). 

Following initial campus-wide sampling, higher resolution sampling was undertaken in 

“hotspots” of activity. Two buildings were selected for this purpose. With regards to 

VOC sampling, the Chemistry building was revisited three further times for sampling 

(Figure 6.1) during occupied periods to capture activity related influences. This building 

was selected for further analysis based on initial results of elevated concentrations, and 

because of the volatile and carcinogenic chemicals used by staff and students in the 

laboratories. Laboratories are also situated close to classrooms and personnel offices, 

and hence there is obvious interaction and possible transference. We specifically 

intended to investigate this. For carbonyl compounds, based on initial results, samples 

were taken at a higher spatial resolution within the Physics Building (Figure 6.2) during 

an unoccupied period to place larger emphasis on capturing building related influences. 
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Figure 6.1: Floor Plans of the Chemistry Building [Floor B [2] & Floor C [3]]. Floor plans are 

scaled and edited based upon CAD drawings obtained from the University. The locations of 

samples from Survey 1 & 2 are illustrated with orange circles. The following acronyms are used 

throughout the paper: RL – Research Laboratory, TL – Teaching Laboratory, SR – Student 

Room, PhD – PhD Working Room and Floor Number illustrated by [2], B Floor and [3], C 

Floor. 
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Figure 6.2: Floor Plans of the Physics Building [Floor B [2] and Floor C [3]]. Floor plans are 

scaled and edited based upon CAD drawings obtained from the University. The locations of 

samplers are shown with blue circles. Room numbers of these locations are also given. 

6.2.2.3. Analytical Methods 

A total of 40 VOC tubes and 20 carbonyl cartridges were analysed. For quantifying 

individual species of VOC, thermal desorption tubes were analysed using a Markes 

automated thermal desorber (ATD) TD100-xr and an Agilent 7890A gas 

chromatography and Agilent 5975C mass spectrometer. This thermal desorber involved 
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sample desorption and transport into the GC column. An Agilent DB VRX fused silica 

capillary column was used for compound separation. The procedure was developed in 

house at Marchwood Scientific. 

For comparative purposes we focused on analysis of the most prevalent and most 

extensively studied VOCs including BTEX and monoterpenes (Verriele et al., 2016) so 

these compounds were fully quantified in all samples. The same compounds were 

quantified in a similar study undertaken at the University of Birmingham (Kim et al., 

2001). Certified gas standards were used for this external calibration, including benzene, 

toluene, ethylbenzene, and xylene (BTEX) standards and standards for monoterpenes. 

For semi-quantification of the top 10 most prevalent compounds in each sample, 

deuterium substituted hydrocarbons were used as internal standards. The mass 

spectrometry response of these substances in each sample is used to quantify what is 

observed in the sample itself. To determine blank values, a non-exposed cartridge was 

analysed for each batch of samples.  

For the analysis of carbonyls (which in this study included formaldehyde, acetaldehyde, 

propionaldehyde, crotonaldehyde, butylaldehyde, benzaldehyde, isovaleraldehyde, 

valeraldehyde, hexaldehyde and 2,5-dimehtylbenzaldehyde) high performance liquid 

chromatography with ultra-violet detection (HPLC-UV) was used. An Agilent 

1100/1200 HPLC system was used in conjunction with a C-18 reverse phase column 

and UV/diode array detector. This method has been validated based on standard 

protocols. 

6.3. Results and Interpretation 

6.3.1. Concentration and Prevalence of Compounds between Buildings 
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Overall, we observe good indoor air quality (IAQ) across the range of buildings 

monitored, which we largely attribute to relatively high air exchange rates owing to 

mechanical ventilation. Full quantification of BTEX and monoterpene compounds in 

initial samples from across the University revealed that for many compounds 

concentrations were close to limit of detection (LOD) of 0.005 µg/m3 although 

relatively higher individual and total VOC levels were found in buildings housing 

laboratories; Chemistry (7.1 µg/m3), Physics (3.8 µg/m3) and LEC (4.5 µg/m3) 

compared to other non-laboratory buildings (Figure 6.3). Heightened VOC levels thus 

positively correlate with buildings where strong VOC emission sources are most likely 

present. This finding is consistent with the findings of Park et al. (2014) and Yurdakul 

et al. (2017) who found higher VOC concentrations in university buildings housing 

laboratories due to the use of volatile solvents and chemicals. VOC concentrations in 

each building housing a laboratory differed from one another because of the unique 

experiments conducted and materials used within each building. Since samples were 

taken from the foyer of each building the results suggest that volatile chemicals from 

laboratories influence the air in other areas of these buildings (Valavanidis and Vatistas., 

2006).  

 

0

1

2

3

4

5

6

7

8

C
o

n
ce

n
tr

at
io

n
 (

µ
g/

m
3 )

University Building

Limonene
Beta-Pinene
Alpha-Pinene
O-Xylene
M/P-Xylene
Ethylbenzene
Toluene
Benzene

LOD



163 

 

Figure 6.3: Quantification of BTEX, and mono-terpene compounds across university buildings 

(ordered alphabetically). *All buildings BREEAM-certified with the exception of FST 

(Appendix C1). **Based on 1 20-minute “grab” sample at a flow rate of 500 ml/min per 

building, that being a single sample or measurement taken at a specific time or over as short a 

period as feasible, taken August 2018. 

The monoterpenes; limonene and α-pinene were the most prevalent compounds in the 

samples taken across the university campus. Wang et al. (2017) also saw higher 

variability in monoterpene concentrations compared to other species. The strong 

presence of monoterpene compounds likely reflects cleaning activities. Previous studies 

(Nazaroff, 2004) attribute the presence of these compounds to fragranced consumer 

products and cleaning products, so it not unusual to expect them to be prevalent here. 

Additional analysis highlighted there were other terpene compounds found at similar 

concentrations to limonene and pinene as well as significant levels of isopropyl alcohol 

(60 µg/m3) in the sample from the Infolab which is unexplained. Toluene, a component 

of household products and used in renovation activities is present in several of the 

samples, though at low concentrations which is not unexpected. A higher level of 

toluene in science buildings or buildings housing laboratories is not uncommon as it 

used as a solvent. Since the samples are taken in the entrance foyer, they are unlikely to 

have been influenced by smoking due to the smoke-free workplaces and public spaces 

around the university. Toluene and monoterpenes have similarly been the identified as 

the most prevalent VOCs in numerous studies (Godwin and Batterman, 2007). 

Relative to other buildings, higher levels of most individual VOC species were observed 

in the Chemistry building. Again, this is not unexpected since the laboratory 

environments in the Chemistry building are likely to provide strong sources of VOC 

emissions. Activities here play a crucial role in VOC emissions especially the storage, 

use and application of chemicals and solvents. The presence of these compounds could 
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highlight the influence of laboratory environments on the IAQ of the building as a whole 

since the sample was taken from the foyer, but there may also be a VOC influence from 

the building fabric. Whilst this sample is considered representative of the building as a 

whole and we can see that it likely reflects activities within the building, it does not 

reflect potential spatial variability within the building. As relative VOC concentrations 

were higher in Chemistry than other buildings, this prompted further detailed 

investigation (section 6.3.2). 

Common aldehydes were quantified in similar locations to traditional VOCs (Figure 

6.4). All aldehyde concentrations were well below health and occupational exposure 

limits. Although there are no direct occupational health exposure limits based on the 

duration of sampling (4 hours), much lower formaldehyde and acetaldehyde levels were 

observed than prescribed by WELS long-term exposure limits (8 hours). 

The most prevalent aldehyde was formaldehyde. The prevalence of carbonyl 

compounds in general and formaldehyde in particular is confirmed in the literature by 

Geiss et al. (2011) who measured high concentrations for these species in public 

buildings and schools (Verriele et al., 2016). Formaldehyde is ubiquitous and can be 

emitted from a range of building, furnishing and decoration materials (Singer et al., 

2006; Kruza and Carslaw, 2018) and has been identified in numerous indoor 

environments. Indoor formaldehyde levels have been found to be 2–3 times higher in 

newly built schools than existing buildings (Verriele et al., 2016). This statement holds 

partially true in this study. Newer or newly refurbished buildings (Physics (42 µg/m3), 

LICA (13 µg/m3), Charles Carter (14 µg/m3) and LEC (13 µg/m3)) have elevated 

formaldehyde concentrations. Newer furniture and construction materials are postulated 

to be responsible for elevated concentrations. Recent refurbishment (2016) of the 
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Physics building prior to the sampling period (2018/2019) is likely to have resulted in 

elevated concentrations and a maximum formaldehyde concentration of 42 µg/m3. 

Figure 6.4: Concentrations of aldehyde compounds from samples taken within buildings on 

Lancaster University campus. *All buildings BREEAM-certified with the exception of FST and 

Management. **Data based on 1 4-hour “grab” sample at 500 ml/min per building, and 

measurements taken February 2019. 

Higher levels of aldehyde compounds (including commonly identified formaldehyde 

and acetaldehyde) have been related to pressed wood products, urea-formaldehyde foam 

insulation, particle-board furniture and interior finishing materials and surface 

coverings of walls, floors and ceilings, and other textiles and adhesives (Derbez et al., 

2014). Although the actual sources of aldehyde compounds cannot be conclusively 

identified due to the vast array of potential sources, most buildings have plenty of 

materials, plastic and foam furnishing which can slowly emit these chemicals overtime. 

When averaging concentrations, we observe greater aldehyde concentrations in 

sustainably accredited BREEAM certified buildings than non-BREEAM certified 

buildings. This could be attributed to the greater number of green certified buildings 

monitored. However, we see that even in green buildings, where construction and 

0

10

20

30

40

50

60

C
o

n
ce

n
tr

at
io

n
 (

µ
g/

m
3 )

University Building

2,5-Dimethhylbenzaldehyde

Hexaldehyde

Valeraldehdye

Isovaleraldehyde

Benzaldehyde

Butylraldehyde

Crotonaldehdye

Propionaldehyde

Acetaldehyde

Formaldehyde



166 

 

finishing materials are selected based on performance and environmental parameters, 

the highest formaldehyde and acetaldehyde concentrations have been found to be 

associated with compressed wood products, wood finishing materials, adhesives and 

occupant density (Goodman et al., 2017). 

The results from this study are consistent with the findings in previous studies (Kaden 

et al., 2010). In a prior study at an Australian University formaldehyde had geometric 

mean concentrations in classrooms (16.9 µg/m3), renovated offices (14.2 µg/m3), and a 

green building (13.6 µg/m3) with a range in other locations from 4.5–7.2 µg/m3 

(Goodman et al., 2018). These levels are within the magnitude of those observed in the 

present study across all building types. At a new university campus located in China, 

the average formaldehyde concentration in teaching buildings was 46.0 µg/m3 (Kang et 

al., 2017). The average formaldehyde concentration for similar spaces in this study was 

17.8 µg/m3. Higher levels in the Chinese study when compared to our own may be 

partly attributed to the more recent construction of the university. Other studies have 

shown higher VOC levels typically occur post-renovation or in the first few years post-

construction. 

6.3.2. Concentration and Prevalence of Compounds within Buildings 

6.3.2.1. Chemistry Building 

Results highlight comparatively higher concentrations of BTEX and monoterpene 

compounds outside of laboratory environments in some locations (RL [2] vs PhD [2]) 

but not in others (PhD [3] vs RL [3]) in the first survey (Figure 6.5a). Results in the 

following surveys were similar though concentrations of BTEX and monoterpene 

compounds were generally higher, despite a lower sampling period and sampling 

volume, and spatial patterns clearly emerged, with significantly higher concentrations 
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outside of the laboratory (PhD [2] vs RL [2], SR [2] vs TL [2] and PhD [3] vs RL [3]) 

(Figure 6.5b). In general, these concentrations are higher than observed previously 

within this study with the exception of limonene which generally exhibits lower 

concentrations suggesting the presence of strong emission sources or activities. Higher 

BTEX and monoterpene concentrations outside of laboratory environments in the 

Chemistry building suggest some passive transfer of chemicals from the laboratories 

into nearby and adjoining environments. Whilst these chemicals are also associated with 

building materials and cleaning products which are detected at relatively low levels 

throughout the rest of the building, higher concentrations here suggest they originated 

in the laboratory where there are numerous additional sources related to ongoing 

activities.
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Figure 6.5: Concentrations of BTEX and mono-terpene compounds measured in different 

rooms within the Chemistry building.  The locations of samples from Survey 1 (A) and 2 (B) 

are illustrated in Figure 6.1. A singular sample was taken from each location. Two samples are 

taken from RL2 and RL3 hence the duplication in records. Each concentration based on 1 “grab” 

sample taken from each location in November 2018 (20 minute grab sample at 500 ml/min) (A) 

and January 2019 (15 minute grab sample at 300 ml/min) (B). 

Benzene and toluene were the most prevalent compounds in both surveys, which were 

found at the highest concentrations in the PhD [3] and RL [3] locations respectively. 

The Student Room (SR) (2nd Floor [2]) had the highest total VOC concentrations of all 

the locations investigated when making a summation of these eight fully quantified 

compounds, and highest concentrations of limonene (5.8 µg/m3), α-pinene (7.3 µg/m3), 

o-xylene (1.6 µg/m3), m/p-xylene (3.6 µg/m3), ethylbenzene (1.3 µg/m3) and toluene 

(14 µg/m3) (Figure 6.5). 

Since the highest concentrations were measured within the Student Room (SR) 

adjoining the Teaching Laboratory (TL) possible transference out of the laboratory was 

investigated by taking concurrent samples throughout the day (over 5 hours; before, 

during and after activity) from this laboratory and the adjoining Student Room. Higher 

concentrations of BTEX and monoterpene compounds were found outside of the 

laboratory than inside the laboratory (Figure 6.6). However, this is largely attributed to 
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the presence of monoterpenes (2.9–6 µg/m3) in these samples, which were absent from 

those taken from within the laboratory. These monoterpene compounds are widely used 

in cleaning products. Their absence in the laboratory highlights that the laboratory may 

have been cleaned less recently and/or the compounds have been removed through 

enhanced ventilation by local exhaust systems.  

 

Figure 6.6: Concurrent samples throughout the day from inside and outside of teaching 

laboratory [B Floor] over course of several hours before, during and after known activities. Each 

concentration based on 1 15 minute “grab” sample (at a flow rate of 300 ml/min) taken in March 

2019. 

Using the semi-quantified methods on samples taken in the previous surveys, 

concentrations of the top 10 most prevalent compounds can be compared (Figure 6.7–

6.9). In the first survey it was very unusual and unexpected to observe the very high 

levels of menthol (49,000 µg/m3; 2400 µg/m3) and glycerol (30,000 µg/m3, 19,000 

µg/m3) in the PhD [3] and Synthetics Laboratory (RL) on C Floor [3]. Whilst it is 

postulated that this could have reflected an e-cigarette or vaping signature no visual 

observation was made of this at the time of sampling. It could also be that these 

chemicals were used in experimental work. These elevated concentrations could not be 

replicated through repeat sampling, suggesting the source was an isolated event. The 
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lowest VOC concentrations were observed in the Non-Synthetics Research Lab on B 

Floor, likely due to inactivity in this room during the sampling period.  

As expected, higher VOC concentrations were found inside the laboratory than outside 

(Figure 6.8; RL vs Other Rooms). This finding contradicts the previous assertion that 

there is a large amount of passive transfer or transference from the laboratory to the 

surrounding or adjoining areas. The differing prevalence and concentration of VOCs 

between the laboratory and adjoining PhD Room on this occasion highlights that there 

is enhanced dilution in the laboratory due to local exhaust ventilation systems (fume 

hoods) that indeed reduces transference out of the laboratory. It can also be assumed 

that this was the reason for enhanced concentrations of BTEX and monoterpene 

concentrations outside the laboratory noted previously. 

 

Figure 6.7: Semi-quantified (top 10 most prevalent compounds) from samples taken around the 

Chemistry building in Survey 1. Only compounds with concentrations above 100 µg/m3 are 

shown, for further information see Supplementary Information 1. 
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Figure 6.8: Most prevalent compounds for samples taken around the Chemistry building in 

Survey 2. Only compounds with concentrations above 50 µg/m3 are shown, for further 

information see Supplementary Information 1. 

The highest VOC concentrations were consistently observed in the Synthetics Research 

Lab (Floor C; RL [3]) which was to be expected due to the numerous known VOC 

emission sources. During sampling, multiple activities were being undertaken in the 

laboratory that would have contributed to this chemical footprint. Solvent and chemical 

use in the laboratories is thought to be responsible for higher VOC levels, as similarly 

found by Yurdakul et al. (2017). Chemical and solvent bottles exposed on shelves, 

disposal of small volumes of waste down the sink or bottles being left open for 

prolonged periods of time are all known to increase VOC levels (Valantidis and Vatistas, 

2006). Even in fume hoods, heating of organic materials has been shown to increase 

VOC levels in previous studies (Yurdakul et al., 2017). It is difficult to attribute specific 

compounds to specific sources because there is no audit trail for the use of many 

compounds, and we are unaware of their use and location within the laboratory. We are 

therefore missing a level of granularity that would otherwise aid interpretation. 
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Figure 6.9: Most prevalent compounds from Survey 3 samples taken concurrently from inside 

and outside a laboratory over the course of a period of activity. Only compounds with 

concentrations above 5 µg/m3 are shown, for further information see Supplementary 

Information 1. 

The concentrations of VOCs observed in this study have been compared to national and 

international indoor air quality guidelines and occupational health exposure limits. No 

VOC levels exceed UK and EU occupational health exposure limits with the exception 

of benzene as the WHO guideline of “no safe limit” was exceeded in all indoor locations 

sampled. This no safe limit is established because of the carcinogenic nature of benzene. 

The concentrations of hazardous air pollutants measured in this study are similar to 

those observed in other university studies of air quality (Goodman et al., 2018; Godwin 

and Batterman, 2007; Zhang et al., 2006). Some studies only quantified a limited 

number of compounds, making comparisons difficult (Park et al., 2014; Goodman et al., 

2018). Our initial extremely high levels of menthol and glycerol are not comparable 

with any other literature and these compounds are not in the top 10 most prevalent in 

all studies. 
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Zhong et al. (2017) observed low VOC concentrations in conventional schools and 

sustainable schools (mean < 5 µg/m3) with the most prevalent compounds being the 

aromatics e.g., toluene, benzene, m/p-xylene and 1,2,4-trimethylbenzene (Zhong et al., 

2017). Whilst similar compounds and concentrations were found initially during 

campus-wide sampling, much higher concentrations were observed during repeated 

sampling in the Chemistry building due to known strong emission sources. 

Concentrations recorded in this study were similar to those reported by Park et al. (2014) 

including for acetone and toluene. Benzene concentrations were lower than those 

reported by Park et al. (2014) but are not widely different; xylene concentrations were 

similar for both laboratories and corridors. It is postulated that the VOC compounds we 

identified could be attributed to similar sources identified previously, including off-

gassing from building materials and household and cleaning products, and find high 

polluting activities that involve the storage and application of chemicals and solvents to 

be a significant source in laboratories (Bari et al., 2015; Rumchev et al., 2003; 

Valantidis and Vatistas 2006). 

6.3.2.2. Physics Building 

Owing to the recent (2016) refurbishments in the Physics building, not long before the 

sampling period (2018/2019), it is likely concentrations measured are a result of primary 

emission from building materials, products and furnishings. Building age has been 

shown to influence the concentration of carbonyl compounds. Molloy et al. (2012) and 

Langer et al. (2015) found that compared to older conventional dwellings, recently 

refurbished and energy efficient dwellings had increased concentrations of carbonyl 

compounds owing to increased ventilation and lower building related emissions in older 

dwellings. Higher VOC concentrations are also observed in new or renovated buildings 
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because of the application of many materials that are significant pollution sources, 

including water-based paints, adhesives and wood-based panels.  

In terms of the spatial distribution, higher total and individual aldehyde concentrations 

were observed on C Floor [3] where was anecdotal evidence suggests there have been 

more recent refurbishments (Figure 6.10). In some circumstances, smaller rooms, or 

those with lower air change rates (those used infrequently or that remain closed/locked) 

have higher concentrations, with the exception of the atrium. This was to be expected 

as lower air change rates promote accumulation of indoor contaminants such as those 

emitted from building materials and furnishings. The low air change within C064 and 

C020 in particular are postulated to have an effect on pollutant concentrations. 

 

Figure 6.10: Quantification of eight aldehydes in each sample locality within the Physics 

building. Each concentration based on a single grab sample with a sampling period of 4 hours 

at a flow rate of 500 ml/min taken from June 2019. 

The most prevalent aldehyde found was formaldehyde, with highest concentrations in 

Room C064 (40 µg/m3) and the atrium (30 µg/m3) (Figure 6.10). This was not 

unexpected since formaldehyde is ubiquitously found in the environment and a common 

component in many building materials and furnishings. Although the actual sources of 
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the formaldehyde could not be identified, most laboratories, classrooms and offices 

have plenty of structural materials (such as foam insulation and wood-based materials), 

furniture, interior finishing materials, and chemicals which can slowly emit 

formaldehyde (Valantidis and Vatistias, 2006; Kang et al., 2017; Destaillats et al., 2006; 

Singer et al., 2006; Kruza and Carslaw, 2019). Formaldehyde has also been associated 

with emissions from motor vehicle exhaust, (Kaden et al., 2010) but this is unlikely the 

case here due to the absence of vehicular traffic. Acetaldehyde is similarly prevalent in 

most samples, the highest concentrations in rooms C064 (21 µg/m3) and C020 (20 

µg/m3). Its presence is similarly likely to be a consequence of recent refurbishments 

made throughout this building and indoor chemistry. 

There is considerable guidance and advice on the use of materials such as timber/wood 

flooring which may contain formaldehyde in BREEAM assessment notes. However, it 

has not been possible to gain further information on the building and construction 

materials used in each building or area investigated in this study and therefore it is 

difficult to make any conclusions about their potential for formaldehyde contamination 

and difficult to assess the relationship between IAQ credits and formaldehyde sources. 

The lack of an audit trail collected at an institutional level for formaldehyde alongside 

other aldehyde sources makes interpretation difficult. An assumption is made that 

guidance was followed based on BREEAM assessment, and that contractors were 

working under best practice, but the poor records and difficulty in retrospectively trying 

to assess and identify sources makes it challenging. 

This study found similar concentrations of formaldehyde to those found by Goodman 

et al. (2018) in meeting areas, classrooms and renovated offices, and restrooms and 

Shendell et al. (2004) in classrooms but Akal et al. (2015) identified higher 
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concentrations. Indoor formaldehyde concentrations ranged from 3.1 to 46.1 µg/m3 and 

from 4 to 100 µg/m3 in classrooms in Germany and France respectively and between 

10.5 to 70 µg/m3 in university offices and lecture theatres (Kaden et al., 2010). In the 

EXPOLIS study in Helsinki, similar levels of formaldehyde (15 µg/m3) were found in 

the workplace (Kaden et al., 2010). These concentrations are within the range of those 

we observed from the Physics building.  

6.4. Discussion and Critiques of Guidelines and BREEAM 

6.4.1. Concentrations of Concern and IAQ Guidelines 

Air quality guidelines are based on a review and interpretation of globally accumulated 

scientific evidence linking exposure to a selected pollutant with the health outcomes of 

that exposure (World Health Organisation, 2010). There are guidelines for some indoor 

pollutants, but these are not often enforced. Short and long-term indoor concentration 

guidelines are given, by the UK Government and the WHO (World Health Organisation, 

2020). Long-term concentrations are not exceeded however there is no direct 

comparison between the time period of sampling and exposure periods for the 

guidelines.  

The WHO has issued indoor air quality guideline values (World Health Organisation., 

2010). A 30-minute guideline of 0.1 mg/m3 of formaldehyde is been recommended to 

prevent sensory irritation in the general population. In our study we do not observe any 

formaldehyde concentrations above this limit, however there is a discrepancy between 

our sampling period and the WHO exposure time guideline recommendation. Benzene 

is a genotoxic carcinogen in humans and no safe level of exposure can be recommended. 

In the present study, the presence of any concentration of benzene can be considered 

unsafe due to the nature of this pollutant. However, there is no information on long term 
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concentrations. IAQ standards for important VOCs such as benzene and formaldehyde 

need to be developed for non-occupational exposure which often occurs over much 

longer time scales. 

Short (30 minutes/1 hour) air quality guidelines have recently been proposed by the UK 

government for individual VOCs including formaldehyde, acetaldehyde, limonene and 

α-pinene (Public Health England, 2019). A comparison of concentrations from this 

study against these guideline values can be made.  Short term concentrations of α-pinene 

(45,000 µg/m3; 30 minutes), d-limonene (100 µg/m3; 30 minutes), formaldehyde (100 

µg/m3; 30 minutes), acetaldehyde (1,420 µg/m3; 1 hour) and toluene (15,000 µg/m3; 8 

hour) were not exceeded; however, there is a discrepancy between our sampling period 

(15 minutes) and the toxicological guidelines. Our sampling methodology did not 

account for the variability of concentrations over time and so extrapolation from a 15-

minute sample is difficult. Wider implementation of these guidelines would be 

beneficial for assessing concentrations of concern in the context of toxicological 

information.  

6.4.2. BREEAM Certification 

In general, the chemical patterns or footprints are building dependant, with no clear 

relation to varying sustainability credentials. Similarly, building type (conventional vs 

high performance) did not appear to significantly influence VOC concentrations in 

studies by Zhong et al. (2017) or Verielle et al. (2016). The lack of an association 

between VOC concentrations and BREEAM certification could be related to the large 

diversity of buildings and associated characteristics but also to the process of BREEAM 

certification. Postulated reasons for this lack of relationship between BREEAM 

certification and VOC concentrations are discussed along with some clear thoughts 
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about how useful BREEAM guidance and air quality standards are for reflecting good 

IAQ and improving IAQ. Whilst this study is not necessarily providing new evidence 

around building performance in relation to IAQ, recommendations are made that would 

improve the assessment of IAQ in BREEAM accreditation in the post construction and 

post-occupancy stages of a building. 

6.4.2.1. Is Current BREEAM Certification Fit-for-Purpose and a True Reflection of 

Good IAQ? 

There are many useful attributes to BREEAM certification. It covers a vast array of 

topics on building sustainability and recognises and reflects the value in higher 

performing assets across the building environment lifecycle, from new construction to 

in-use and refurbishment. However, BREEAM is designed for performance buildings 

with a broad appreciation of IAQ that may not necessarily translate into something 

meaningful for building users. In other words, the value of an “Excellent” rating may 

be at best questionable and at worst misleading to building users.  Many questions arise; 

is this the rating in the buildings current form? How is the building’s sustainability and 

its IAQ changing over time? What does this mean for health and well-being, bearing in 

mind that there are no official IAQ standards to relate back to. The lack of an association 

between BREEAM certification and VOC levels has highlighted their divergence.  

Credits are awarded to performance areas in each category that meet or exceed good 

practice (Bunz et al., 2006). These credits are weighted to take into account the 

importance of that particular issue in the overall environmental impact of a building 

(Bunz et al., 2006). There are only a few credits attributed to air quality and these are 

split between minimising sources of air pollution and ventilation (natural and provision 

of fume cupboards) (BREEAM, 2016). There are only four credits that relate to 
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minimising sources of air pollution, two of which relate to VOC emissions, one for the 

products used in buildings and one for post construction measurement (BREEAM, 

2016). The former requires that all decorative paints and varnishes specified must meet 

certain criteria. The latter requires measurement of formaldehyde and total volatile 

organic compounds (TVOC). There are two standards that provide guideline values for 

these compounds. Formaldehyde has to be less than or equal to 100 µg/m3. This is the 

same as the WHO air quality standard. TVOC concentrations have to be less than 300 

µg/m3. Where VOC and formaldehyde levels exceed these limits defined, the project 

team must confirm the measures that have or will be taken in accordance with the IAQ 

plan to reduce levels to within these limits (BREEAM, 2016). The guidance provided 

by BREEAM includes some specific information about “removal and/or dilution of 

sources” (BREEAM, 2016). 

6.4.2.2. Critiques of BREEAM and Key Recommendations 

It has been previously postulated that conventional and sustainable buildings do not 

show systematic differences in VOC levels and that there is no effect of building type 

discerned, due to the large diversity of university buildings and their building systems 

(Zhong et al., 2017). Buildings within a building type (similar age and airtightness) vary 

in terms of typology, HVAC system, furnishings, use, degree of crowding and other 

factors (Zhong et al., 2017). The characteristics of the building and the activities 

occurring within them contribute to their unique chemical footprint. A main finding 

from this study is that new and recently refurnished buildings and their building systems 

are diverse and not easily generalisable and separable from an IAQ perspective. We also 

see groups of VOCs are not very different i.e., building related and activity related 

VOCs. 
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Buildings can receive high BREEAM certification without consideration to good IAQ 

and without regard to VOC emission levels. Therefore, perhaps there would not be any 

expected relationship. This could explain the reason for the lack of association between 

VOC concentrations and BREEAM certification observed in this study. It could be that 

these credits do not fully reflect the importance of IAQ and thus do not reflect good 

IAQ. It could be argued that current credits are unsuitable for promoting better IAQ in 

green buildings and it is questionable as to whether BREEAM offers adequate 

incentives in the credit system for improving IAQ and pursuing these credits 

(Steinemann et al., 2017). 

Questions have arisen regarding the usefulness and relevance of current BREEAM 

certification regarding these aspects. It is important to consider ways in which 

BREEAM assessment could be made more relevant for IAQ assessment without 

impacting other important IEQ parameters. 

Recommendation 1: Integration of Continuous TVOC and Detailed Speciation 

How useful a TVOC measurement might be in regards to BREEAM standards is a 

matter for debate. TVOC is used as a measure giving a possible indication of poor/good 

indoor air quality; furthermore, it is proposed as an indicator for the calculation of 

ventilation rate. However, TVOCs reveal little regarding the nature of the individual 

compounds, their concentrations and their possible toxicity to humans. It is clear that 

speciation is important due to the health effects of specific compounds, but these are 

currently not considered in BREEAM certification (with the exception of 

formaldehyde). This study found differing levels of a wide range of compounds 

attributed to numerous sources, but these data need to be combined with toxicological 

information to determine any risk. Benzene, a prevalent VOC in this study, is a 
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genotoxic carcinogen, where no safe level of exposure can be recommended, 

highlighting the importance of understanding concentrations of some specific 

compounds. 

With the advent and rise in use of low-cost sensors it is now possible to achieve high 

temporal and spatially resolved measurements of TVOC concentrations to an accuracy 

comparable to reference instrumentation. It is possible that as sensor technology 

improves it will be possible to characterise (and understand) the TVOC signal. This 

could allow continuous TVOC monitoring throughout a building, which might tell us 

something about VOC exposure over time (as we investigated in this study) pre and 

during occupancy which BREEAM does not currently consider. 

Understanding temporal patterns of VOCs in this way would give a starting point to 

isolate activity-based VOC signals from background VOCs. This could be 

complimented by tube sampling and detailed VOC speciation which was undertaken in 

this study. Grab samples currently used to assess IAQ credits in BREEAM only provide 

limited insights into sources of VOCs. Speciation and continuous TVOC monitoring 

with the advent of low-cost sensors could provide a better understanding of VOC 

patterns in space and time which could complement existing BREEAM approaches and 

in the longer-term lead to more meaningful BREEAM standards. This is an important 

recommendation from this study seeing as the current BREEAM guidance and air 

quality standards need to be improved for improving IAQ. 

Recommendation 2: Inadequate Consideration of Activities and Location 

To achieve BREEAM IAQ credits, measurements of TVOC and formaldehyde 

emissions are undertaken. However, assessment for BREEAM certification takes place 

in either the design or post-construction stage of a building. There is currently no 
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assessment of air quality in the post-occupancy stage. As we observe in this study there 

are significant differences and pollution signals between occupied and un-occupied 

monitoring periods especially in locations where strong polluting activities occur. 

Certain activities strongly influence pollutant concentrations within buildings. 

Activities within buildings, which occur independently of any certification, as seen in 

this study, play an important role in the prevalence and concentration of VOCs, and are 

not currently considered in BREEAM certification. This is a major limitation of 

BREEAM assessment.  How people interact with buildings is an important determinant 

of IAQ and pollutant concentrations and it should be factored into the design of 

buildings for example, improvements in air handling. 

It is therefore important to take measurements of pollutant concentrations in the post-

occupancy stage to assess relationships between pollutant concentrations and activities 

(and building related emissions overtime). This is an important recommendation for 

BREEAM accreditation. A key recommendation would be that additional credits need 

to be awarded to various aspects of IAQ including the monitoring of emissions, 

particularly during polluting activities. BREEAM accreditation is awarded at the point 

a building was assessed, but it is not known how the building will change over time, 

and how pollutant concentrations will change as a result of changes as the building ages 

and different activities are undertaken. It would be beneficial to provide further 

quantitative assessment in the post-occupancy stage and then follow-up sampling of 

VOCs and IAQ in order for the building to maintain the BREEAM status further on. An 

expiry date for a BREEAM certification could be beneficial. The responsibility for post-

build IAQ would lie with the occupants/renters or building managers, and monitoring 

could be undertaken by a team of trained professionals within BREEAM. 
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The locations of measurements around and within a building need consideration. Whilst 

it is important to measure IAQ in general facilities and areas, IAQ also needs be 

investigated in specialised (e.g., laboratory) areas with high polluting activities. 

Temporal and spatial signatures of the source can be elucidated, enabling better source 

control. 

Recommendation 3: More Credits Awarded For Volatile Organic Compounds 

Whilst concentrations in this study remained within those required by BREEAM VOC 

emission credits and occupational health exposure limits, this study was highly time 

sensitive, and it could be said that BREEAM and other schemes need to place more 

emphasis on VOC emissions as a subset of IAQ due to the health effects of enhanced 

VOC levels. This is especially important as “green” does not guarantee good IAQ. 

Whilst green and sustainable buildings may promote energy efficiency and 

sustainability, they do not necessarily promote the health and wellbeing of occupants 

through better air quality (Steinemann et al., 2017). Certain green practices and products 

can impair IAQ since green products do not need to disclose all ingredients, which can 

include hazardous air pollutants such as waste-based or recycled materials and they may 

lack verification and monitoring of their emissions (Steinemann et al., 2017).   

Recommendation 4: Greater Emphasis on Source Control 

This paper shows the challenge of source identification and therefore why control is so 

difficult. Source control is relatively straightforward in cases where sources are obvious 

and easily replaceable but difficult where the primary sources are construction materials 

and the building fabric as in this study. Nonetheless source control is important, often 

noted as the first line of defence for removing emissions. The focus on ventilation in 
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BREEAM certification may overlook opportunities for source control (Steinemann et 

al., 2017).  

6.5. Limitations 

There are several limitations associated with the methodology, in particular the 

sampling design and analytical method chosen. The duration of sampling required to 

collect sufficient volumes to meet MDLs differed from duration for health-based 

guidelines preventing direct comparisons in some situations. With regards to using the 

GC-MS for quantification of VOCs, oxidised compounds and carbon compounds below 

C4 including ethanol were not measured. Due to the numerous possible VOCs that could 

have been observed, semi-quantitative methods were chosen alongside full 

quantification to focus on identification of compounds. Semi-quantitative methods are 

less accurate than full quantification with external standards. Further research could 

focus on full quantification of the compounds identified in this study. A further 

limitation of this present study was a difficulty in retrospectively associating sources of 

VOCs to VOC concentrations, particularly where there may be simultaneous presence 

of multiple potential primary and secondary emission sources. Whilst frequently used 

chemicals in each laboratory were investigated it was not possible to find out exact 

amounts of chemical used during sampling and how they were used as well as 

laboratory conditions therefore source characterisation was difficult. 

6.6. Conclusion 

The aim of this study was to assess the concentration of VOCs in sustainably accredited 

buildings, to evaluate VOC sources and assess the extent to which BREEAM 

accreditation is a reflection of good IAQ, and whether IAQ credits are fit for assessing 

building sustainability and promoting health and well-being related outcomes. 
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In conclusion university indoor environments can be important sources of pollutants. 

However, in this study overall VOC concentrations were low, and in many cases not 

higher than the limit of detection. This study postulates VOC emission sources though 

it is difficult to provide a definitive association between source and concentration due 

to the vast number of potential emission sources. The majority of VOCs were thought 

to be attributed to activities within and throughout the buildings. A lack of audit trail on 

materials used and ongoing activities collected at an institutional level hindered this 

investigation. The VOC concentrations within buildings housing laboratories were 

much higher than concentrations within non-laboratory buildings due to the large 

amounts of chemicals and solvents used within these buildings. It was interesting to 

observe higher concentrations of BTEX and monoterpene concentrations in PhD Write 

Up or Student Rooms adjoining but closed off from laboratory environments (with 

known VOC emission sources).  It was originally postulated this could be attributed to 

passive transfer out of the laboratory. Further sampling suggested enhanced dilution of 

building and cleaning product contaminant emissions in the laboratory due to local 

exhaust systems was responsible. Formaldehyde and acetaldehyde were the most 

prevalent aldehyde compounds seen, which are ubiquitous in the indoor environment. 

Tentative conclusions are made between the spatial distribution of these compounds 

and recent refurbishment in the Physics building, which experienced the highest 

aldehyde concentrations around campus.  

There appeared to be no association between BREEAM certification and VOC levels, 

and no significant differences noted in the chemical footprint between recently built, 

energy efficient university buildings, recently refurbished BREEAM certified buildings 

and conventional buildings.  The lack of discernible difference in VOC concentrations 

between buildings of various sustainable accreditations and those without was not 
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necessarily surprising and could be attributed to the large diversity of buildings and 

their systems.  We conclude that green buildings with sustainability credentials do not 

necessarily have better IAQ than conventional buildings and this is largely in response 

to the activities undertaken within individual buildings. We postulate that the lack of 

significant IAQ differences between buildings owes much to the way in which 

BREEAM accreditation is constructed and could be a response to the lack of credits 

awarded for IAQ and VOC emission levels. Activities within buildings, which occur 

independently of any certification, as seen in this study, play an important role in the 

prevalence and concentration of VOCs, and are not currently considered in BREEAM 

assessment. More consideration could be given to activities within buildings, and not 

solely the building fabric, in the certification process. This study makes 

recommendations as to how BREEAM certification can widely encompass VOC 

emission levels based on observations made. A framework of integrated continuous 

TVOC monitoring and detailed speciation of specific VOCs in both the post-

construction and post-occupancy stages of a building is suggested to better understand 

spatial and temporal VOC patterns and differentiate between fabric-related and activity 

related emissions to give a better measure of IAQ. 

6.6.1. Recommendations  

A limitation of the present study was the difficulty in retrospectively associating sources 

of VOCs to VOC concentrations, particularly where there may be simultaneous 

presence of multiple potential primary emission sources, from the building or occupants, 

and potential secondary source (Verielle et al., 2016) or where there may be no obvious 

emission sources. This made source apportionment and characterisation difficult. If 

information about experimental conditions, physiochemical properties of the chemicals, 



187 

 

and by-products caused by chemical reactions could be obtained, the source of target 

VOC compounds could be identified more accurately. This could be a focus of future 

work. Reliable conclusions could not be taken from this study based on statistical 

analysis regarding VOC levels across different building types (conventional vs 

sustainable buildings) and within buildings due to limited sample size. To be fully 

comprehensive and generalisable, a larger set of buildings should be studied and more 

homogeneity in season and building attributes (energy consumption or ventilation 

control schemes) should be incorporated (Verrielle et al., 2016). 

Finally, a key recommendation is to test the methods prescribed here that target better 

characterisation of VOCs and IAQ for BREEAM accreditation through a combination 

of continuously monitoring TVOC signals and taking grab samples for detailed VOC 

speciation in the post-occupancy stage of a building. Long term VOC exposure was not 

within the scope of this present investigation but through combining these two 

techniques we could better understand long term exposure patterns. Capturing long-

term exposure and toxicological information would enable better understanding of 

activity related influences and primary and secondary building related emissions that 

may last over longer periods (Sundell, 2004; Prasaukas et al., 2016). 
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7.0. Summary and Recommendations 

This thesis encompassed a broad range of research that focussed on and addressed 

research gaps within the field of indoor air quality (IAQ). Prior to undertaking the 

research, a literature review was conducted to summarise existing knowledge and 

identify knowledge gaps that were assessed in subsequent chapters. Through this review, 

the need for further research into source characterisation was identified, along with 

research into trade-offs between IAQ and energy efficiency.   

The overall aim of this thesis was to evaluate the sources of indoor air pollution (with a 

particular focus on ultrafine particles and volatile organic compounds) and the controls 

on IAQ within residential and educational micro-environments. It also aimed to 

evaluate the potential consequences of improving IAQ through examining the 

dichotomy between good IAQ and energy efficiency. To achieve these overall aims, the 

research addressed two main objectives. First, to better understand the spatio-temporal 

patterns of indoor air pollution from typical household activities in both real-world and 

controlled residential micro-environments. Second, to better understand the prevalence 

and concentration of volatile organic compounds (VOCs) across a University campus 

and establish whether any relationship existed between BREEAM building 

accreditation and VOC levels. A further objective was to evaluate the practicalities of 

using V2000 air quality monitoring units developed by NAQTS (a start-up company 

who partially funded this research). These units show potential to bridge gaps in IAQ 

monitoring knowledge and raise public awareness of IAQ issues in public and private 

settings. 

This thesis adopted a range of different research methods including a critical evaluation 

of existing literature into themes including source characterisation, IAQ monitoring 
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technologies and exposure mitigation. An extensive field campaign was undertaken 

across 8 residences in the NW of England using NAQTS V1000/V2000 monitoring 

units. This was followed by a more focussed study within a controlled residential 

environment using the same sampling protocol. Finally, VOCs and carbonyl 

compounds were sampled within 10 buildings across a university campus, with further 

localised sampling within hotspots of activity, in accordance with regulatory methods 

and standards. 

This chapter summarises the research that has been carried out in this thesis and 

discusses key findings and implications. Each of the experimental chapters (Chapter 4, 

Chapter 5, and Chapter 6) contains a unique discussion.  This chapter summarises the 

main research outcomes, considers overarching themes and the implications of the 

research findings. Suggestions for further research are also presented, in response to, 

these findings. 

7.1. Summary of Research Outcomes 

Chapter 1 provided an introduction and context and statement of the problem. It also 

gave a brief overview of the knowledge gaps and a summary of the main research aims. 

This was expounded in Chapter 2 which provided a detailed literature review that 

identified key knowledge gaps addressed in this research. Chapter 3 provides a technical 

specification of the instrumentation used to evaluate indoor air quality in residential 

micro-environments in Chapters 4 and 5 of this thesis. 

Chapter 4 presented the results of a pilot study that aimed to evaluate spatio-temporal 

patterns of indoor air pollution associated with typical episodic household cooking 

activities. It assessed the controls on particle number concentrations (PNC) including 

ventilation and housing layout. It is important to understand potential exposure to 
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particles generated by cooking to understand the health implications. The objectives 

were to assess the influence of episodic cooking activities on particle number 

concentrations, taking high time-resolved measurements for 7 non-consecutive days in 

8 homes in NW England, and to evaluate the influences of natural and mechanical 

ventilation, and housing structure on the decay of ultrafine particles. 

In this study we observed that episodic cooking activities generated high peaks in PNC 

quickly after the onset of cooking activities which decayed at a rate strongly dependent 

on the air exchange rate. We computed descriptive and analytical statistics across all 

source categories and ventilation scenarios and found that significant differences in 

PNC could be attributed to differences in ventilation. Ultrafine particle emissions 

resulting from the three cooking methods suggest that cooking in a house with 

inadequate ventilation could lead to indoor concentrations that exceed those outside, 

and that could negatively affect the health of occupants. Natural ventilation was 

generally seen to be the most effective means of reducing PNCs associated with discrete 

cooking activities.  

We conclude that a single V2000 monitor can gain a representative measure of PNC in 

a single room in a domestic setting. In multi-room scenarios, where we simultaneously 

monitor PNC response to cooking in multiple locations, we find cooking-generated 

PNC are not only high in the kitchen, but in other locations around the house, which we 

attribute to housing layout. Potential health consequences may be underestimated if 

whole house dynamics are not considered. 

This study provided insights into controlling influences on cooking emissions and the 

influence of housing layout on internal airflow. In this pilot study only a limited number 

of properties were considered due to time constraints and sensitivities involved in 
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monitoring in real-world environments. This limited our ability to statistically assess 

differences in PNC between different types of housing. In the future, this study could 

be repeated with a larger and more diverse range of properties. Whilst natural 

ventilation was seen to be the most effective strategy for reducing exposure to cooking-

generated particulates, the energy consequences of this are potentially high, particularly 

in the heating season. 

Chapter 5 explored the energy consequences of exposure mitigation to particles 

generated by typical household cooking events in a controlled residential environment. 

V2000 units were deployed within The Salford Energy House to examine PNC response 

to discrete cooking activities under different ventilation scenarios and assess the 

potential energy penalties associated with these different ventilation strategies.  

In the previous chapter we made a recommendation to understand the practical 

implications of using ventilation including the energy consequences. The novelty of this 

chapter lies in its attempt to better understand the energy consequences of ventilation 

and ventilation heat loss to better manage sometimes conflicting objectives of 

promoting healthy IAQ and maintaining energy efficiency. Independent measurements 

of PNC and ventilation heat loss were conducted under different ventilation scenarios 

and energy penalties were calculated based on the amount of heat lost to the external 

environment. Regardless of the type, we highlight the importance of ventilation for 

improved IAQ.  

Generally, energy penalties from either natural or mechanical ventilation were low on 

the order of a single experiment. Energy generated by cooking processes led to an 

energy surplus in some instances when opening windows or operating extract 

ventilation for short periods of up to 10 minutes. We identified an optimal period of up 
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to 20 minutes of window opening when ventilation delivers an improvement to IAQ 

with no significant energy consequences. Beyond this, we observed more significant 

heat losses. The energy used by an extractor fan is also negligible and energy penalties 

are much lower, even given consideration to both space heating consumption and that 

used to operate the extract fan, than natural ventilation. Intermittent mechanical 

ventilation is therefore seen to be an important mechanism for improving IAQ without 

incurring energy penalties. Whilst we experience a negligible energy penalty for the 

period of operation we used (30-minutes) we suggest an optimal period of 20 minutes 

to better balance the dual objectives of good IAQ and energy efficiency. 

We conclude that the energy penalty associated with natural or mechanical ventilation 

is negligible in the specific case of Salford Energy House, but acknowledge that in the 

real-world, these penalties (particularly for natural ventilation) could be significant 

given the greater pressure differential between internal and external environments. This 

study is applicable to a mid-terrace typical 1940s build in the UK and therefore does 

not extend to other dwellings. We cannot make any generalised assumptions or 

approximations for other housing types and this could be the focus of future research. 

There were limitations to using the EH as a testing facility, with regards to its operation 

compared to the real world. Driving forces operate differently in the EH, with respect 

to natural ventilation and pressure and temperature differentials which may have 

resulted in an under-estimation of energy penalties. Despite these shortcomings, this 

chapter helped to develop a methodology for promoting a balanced approach to building 

management that prioritises IAQ and energy efficiency. This balanced approach will be 

particularly important in the post-COVID world where the built environment and 

ventilation is seen as vital in minimising community transmission. 
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Chapter 6 investigated the prevalence and concentration of VOCs, including carbonyls, 

within a variety of indoor environments at a medium-sized UK University campus using 

a sieve mapping approach. The study aimed to evaluate sources of VOCs and the 

relevance of IAQ credits in BREEAM accreditation to determine whether the current 

accreditation approach was fit-for-purpose. The objectives were to determine the 

concentration of VOCs for selected buildings around a university campus (sustainably 

accredited BREEAM buildings and otherwise), to assess the association between VOCs 

and BREEAM standards, and assess the relevance and validity of IAQ credits in 

BREEAM standards. 

University buildings can be important sources of air pollutants. However, low VOC 

concentrations below stated guideline values and BREEAM limits were observed across 

all buildings. High ventilation rates could be responsible. Buildings housing 

laboratories generally experienced higher VOC concentrations, particularly the 

Chemistry building, where synthetic chemicals and solvents were being used. 

Relatively higher BTEX and monoterpene concentrations were also measured in 

locations adjacent to laboratories in the Chemistry building, suggesting enhanced 

dilution of building and cleaning-related contaminants by local laboratory exhaust 

systems rather than passive transfer from the laboratory. Potential VOC emission 

sources were identified, although the lack of audit trail on materials used and ongoing 

activities collected at an institutional level hindered this investigation. 

This study provided insights into the prevalence and concentration of VOCs in a multi-

functional building environment and a solid foundation for further work quantifying 

VOCs within indoor environments. There appeared to be no association between 

BREEAM certification and VOC levels, and no significant differences noted in the 
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chemical footprint between recently built, energy efficient university buildings, recently 

refurbished BREEAM certified buildings and conventional buildings. The lack of 

association between a building’s chemical footprint (VOC concentrations) and 

BREEAM certification leads us to question the value of IAQ credits in BREEAM 

standards. The novelty of this research lies in the suggestions made to develop the IAQ 

credits to provide a more relevant assessment of IAQ within buildings. Activities within 

buildings, which occur independently of any certification, play an important role in the 

prevalence and concentration of VOCs, and are not currently considered in BREEAM 

assessment. More consideration could be given to activities within buildings, and not 

solely the building fabric, in the certification process. While building accreditation 

schemes are principally concerned with building related emissions and minimising the 

ingress of outdoor air pollutants, this thesis suggests that to divorce the actions of people 

inside a building with the structure itself is short-sighted, particularly with regards to 

VOCs measurements. To facilitate activity-based assessments of IAQ, this study also 

recommends a new approach to quantifying VOCs that combines simultaneous 

temporal measurements with sensitive TVOC detectors alongside detailed speciation 

with reference instrumentation over longer time periods. This has been recognised in 

the WELL Standard, an international assessment method that encourages healthy 

choices and lifestyles as well promoting high standard of air quality (AECOM, 2020).  

This PhD was part funded by National Air Quality Testing Services Ltd, and their 

involvement has been important throughout. Whilst the first two analytical chapters 

(Chapter 4, and Chapter 5) are clearly linked and highly reliant on the V1000/V2000 

units, this chapter uses more conventional approaches to studying this aspect of IAQ. 

However, our recommendations were in part influenced by the potential capabilities of 
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these V2000 units which could be used to measure TVOC in real-time and collect 

thermal desorption samples of air for subsequent speciation through GC-MS. 

7.2. Overarching Themes and Implications of Research 

In the literature review we identified several areas for further research that focused upon 

understanding the causes, controls, and consequences of managing indoor air quality 

and energy efficiency dichotomies. Our evaluation of the research shows VOCs and 

particulates can be abundant indoors, suggesting a need to better understand emission 

sources and reduction strategies of these pollutants. However, improving IAQ should 

not come at the expense of energy efficiency, hence the importance of understanding 

the causes of poor IAQ and the ways in which it may be improved without incurring 

significant energy penalties.  

This research utilised novel technology (V2000) that encompassed a variety of low-cost 

sensor technologies and regulation grade equipment for the monitoring of indoor air 

pollutants at high spatio-temporal resolution. We characterised sources and identified 

primary indoor air pollutants in residential and university micro-environments. We 

demonstrated that we could measure key indoor air pollutants to a reasonable degree of 

accuracy for multiple locations in an affordable manner. Importantly, we provided an 

understanding of the spatio-temporal evolution of air pollution episodes in properties of 

varying age and characteristics. We have also demonstrated how air pollution levels can 

be influenced by both local ventilation decisions (none, natural, mechanical) in the 

kitchen and air flows around a house (integration of Chapters 4 and 5). We have also 

begun to understand the costs of mitigation (the “energy penalty”), putting a financial 

and environmental value on decisions made to improve IAQ. As such, we begin to 
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understand ways in which we can harmoniously achieve the conflicting objectives of 

good IAQ and energy efficiency.  

We can see how better information on IAQ can inform behaviour in both residential 

and non-residential environments, for both activity-related (e.g., cooking, cleaning, 

chemical-use) and building-related sources of pollution. We can also see how better and 

more easily accessible information on IAQ can better inform policy decisions at an 

institutional level and above. We consider it important to have IAQ information at a 

building level given the differences we observe between and within buildings, although 

we acknowledge the potential impracticalities of delivering this. It has been noted that 

significant differences exist between buildings based on age of construction, and that 

modern buildings are generally more airtight, potentially increasing air pollution levels 

in the absence of adequate ventilation. IAQ standards are emerging, but more work 

needs to be done in this area (BRE, 2019). These standards are important to assess IAQ 

in terms of negative health and well-being consequences. As more information becomes 

available, IAQ standards will be easier to identify, implement and regulate.  

We can see how consideration of IAQ is important when designing new buildings, or 

retrofitting old ones, whether Passivhaus, BREEAM-rated or otherwise. Our research 

presents evidence to suggest that green buildings do not necessarily guarantee better 

IAQ. We can see that there are challenges for the building sector, for suppliers as well 

as developers, and that current green credentials may not be sufficient. We highlight the 

need for better integration of temporal and spatial VOC signatures when undertaking 

BREEAM assessments or other building assessments. 

We know IAQ can be a problem and have demonstrated some of its characteristics and 

ways in which it can be controlled. We have shown that indoor air quality monitoring 
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can lead to better understanding of causes, controls, and consequences which in turn 

may lead to behavioural change (e.g., in domestic setting) and perhaps sectoral change 

in building construction and maintenance. This study has been important for raising 

awareness of IAQ and IAQ problems. 

This thesis has also highlighted the importance of reducing domestic energy use to meet 

ambitious climate change targets. This research has shown how policy decisions should 

be sensitive to IAQ issues in addition to energy savings such that we can maintain 

healthy indoor environments in an energy efficient manner. 

7.3. Opportunities for Further Research 

The work presented in this thesis addresses some of the current research gaps in IAQ. 

There has been a notable increase in the number of publications on various aspects of 

IAQ in recent years, highlighting the rising importance of this emerging research area. 

Poor air quality is the largest environmental risk to public health in the UK, according 

to DEFRA’s Clean Air Strategy (UK Government, 2019). However, this strategy is 

focussed very much on the external environment. There are many benefits to improving 

and maintaining good IAQ which include health and well-being outcomes. However, 

many important research challenges remain.   

It is first and foremost of great importance that we promote awareness of IAQ and IAQ 

issues more generally, through widespread and affordable indoor air quality monitoring. 

Companies such as NAQTS have made significant progress in air quality consulting 

and wider air quality monitoring. They have recently been doing field campaigns in 

schools to understand the relationship between air pollutants and exposures. There are 

plans to lease monitors to clients for fixed periods of time to give them a better 

understanding of air quality issues. Creating or building an online database for such a 
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client base could lead to a better understanding of IAQ across the whole building sector, 

leading to performance ratings relative to sector norms for different types of buildings. 

This need has been recognised by UK bodies with much more emphasis on addressing 

air quality challenges at the indoor/outdoor interface of late. For example, as recently 

as July 2020, UK Research and Innovation has awarded £3 million to support 

multidisciplinary research networks to tackle major air quality challenges within both 

indoor and outdoor spaces including home, school, work, and public transport 

environments. The Small Business Research Initiative, delivered by Innovate UK also 

provides opportunities to innovate through emerging technologies (UK Research and 

Innovation, 2020).  

The evaluation of PNC response to typical cooking activities (Chapter 4) revealed that 

the spatial pattern of the response is not well understood across houses of different 

characteristics. Further research could characterise household sources in a greater 

number of residences with varying characteristics, using a similar approach to the one 

adopted in Chapter 4. Understanding and having a means of comparative assessment 

(through a database perhaps) spatial patterns of particulates generated from cooking and 

other household activities is important as an activity in one room (e.g., kitchen) can 

impact on the IAQ in other rooms (e.g., living room, bedroom) and has potential 

exposure implications as residents may unwittingly spend long periods of time (e.g., 

overnight) in rooms with poor IAQ (e.g., bedroom). Modelling could also have a role 

to play here, for example, computational fluid dynamics models could be used to 

simulate air flows and pollutant concentrations in complex indoor environments. 

We made some interesting observations in Chapter 5 and wider monitoring in similar 

controlled circumstances and also in real-world settings (though this comes with its 
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challenges) could enable more generalisations and approximations of the energy 

penalties and consequences of air quality exposure mitigation to be made for the wider 

building stock. During the lifetime of this PhD we were approached by Passivhaus to 

conduct IAQ measurements in their low energy houses (Passivhaus, n.d.). With strong 

airtightness requirements and better temperature control we may expect to see lower 

energy penalties than in conventional houses, though air pollution from human activities 

or building fabric and furnishings may still remain an issue. We would then also have 

to consider we may get further enhanced energy surpluses from cooking activities, and 

that we would then need to use ventilation for the purpose of thermal comfort. 

In Chapter 6 we saw a need for a more integrated temporal VOC monitoring (with low-

cost sensor technologies) and speciation (with GC-MS or similar technology) to assess 

VOC exposure in buildings and assess BREEAM certification. It is important to 

differentiate between fabric (building) related and activity related VOCs. The temporal 

VOC signal used in conjunction with activity diaries (and lack of activity records) is 

key to differentiating activity-related VOC spikes from other longer-term building 

fabric-related signals. We could not easily do this with our grab samples because of the 

time integration issue and lack of audit trails, but this could be a focus for future research.  
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9.0. Technical Evaluation 

This chapter discusses the case studies that are referred to in Chapter 3 that evaluate the 

use and practicalities of the NAQTS V1000/V2000 monitoring units that inform their 

use in the thesis.  

Case Study 1: Student Accommodation (May 2017) 

This case study was carried out on the 3rd May 2017 in a Lancaster University managed 

residence. The aim of this case study was to become familiar with the operation of the 

V1000 units in a real-world environment and to examine sensor response to occupancy 

and “light” cooking activities. As we can see from Figure 9.1 there are clear CO2 spikes 

in response to occupancy in the bedroom (enhancements of 100–200 ppm) when in 

close proximity to the sensor. We can also clearly observe peak responses in PNC 

(Figure 9.2) from light cooking activities (toasting) in the kitchen followed by a 

significant reduction or decay owing to increased air exchange (window opening) after 

these events. We observed corresponding increases in CO2 and CO in response to 

cooking activities and to a lesser extent, occupancy in the kitchen (Figure 9.3). 
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Figure 9.1: Temporal fluctuations in CO2 concentration in response to occupancy in a student 

bedroom over several hours, as reported by the V1000 sensors. 

 

Figure 9.2: Temporal particle number concentration (PNC) response to light cooking activities 

(toasting activity) in a student residence kitchen over approximately an hour. Timing of cooking 

activities indicated as well as point of increased AER following toasting. 

 

Figure 9.3: Temporal CO2 and CO response, corresponding to PNC response previously shown 

(Figure 9.2), to light cooking activities and occupancy in a student residence kitchen over the 

period of just over an hour. 

In this case study we noted the importance of regularly checking the reporting of the 
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We also saw the importance of regularly ensuring fluid levels (IPA) were sufficient for 

the operation of the CPC.  

Case Study 2: NAQTS Office (July 2017) 

From the 17th July onwards a V1000 unit was placed in the NAQTS Office in the 

Gordon Manley Building in Lancaster Environment Centre (LEC) to monitor indoor air 

quality and measure pollutant concentrations. This case study was undertaken to look 

at sensor responses in a relatively pristine environment, free of known strong 

contaminant sources. This study was undertaken over several weeks to look at long-

term trends in air quality data obtained by the V1000 units. Data were obtained at a 

resolution of 10 seconds. This report summarises results from the 17th–31st July 2017. 

Carbon Dioxide 

Carbon dioxide (CO2) concentration is related to occupancy as expected. During periods 

of non-occupancy CO2 concentrations remain at background concentrations, which are 

about 400 ppm (Figure 9.4). During periods of occupancy, CO2 concentrations vary 

between 500 and 1900 ppm depending on occupancy level and occupant behaviour. 

Occupancy level significantly effects maximum CO2 concentration for a given period. 

Once more than one person is in the office, there is a heightened CO2 concentration as 

expected. It is the increase per person that is key not the overall concentration. 

Considering this CO2 concentration appears to double in response to a doubling in 

occupancy level with the subtraction of background concentration. Occupant behaviour, 

including opening of windows (enhanced ventilation), affects CO2 concentrations 

owing to its control (and effect) on CO2 decay. Once closed, CO2 concentrations can 

reach as high as 900 ppm and 1900 ppm for one and two persons in the office, 



232 

 

respectively. When windows are opened we see faster CO2 decay attributed to 

dispersion and air exchange with external air with lower CO2 levels. 

 

 

 

 

 

 

 

 

Figure 9.1: Carbon Dioxide (CO2) concentration over the measurement period (17th July at 11:13 to 31st  

 

Figure 9.4: Carbon Dioxide (CO2) concentration provided by NAQTS V1000 units over the 

measurement period (17th July at 11:13 to 31st July at 11:00am).  Data is divided according to 

days of monitoring and these are labelled. Background CO2 concentration highlighted at 

400ppm. 

Air exchange rate (AER) was calculated on several days (20th, 21st, 26th, and 27th) to 

establish an AER for the office and evaluate how it is affected by occupancy and 

occupant behaviour.  We define air exchange rate or air changes per hour (which we 

abbreviate to AER) as a measure of the air volume added to or removed from a space 

(room or house). We calculate AER as a function of the logarithmic decay of CO2 and 

subtracting the background value. AER is lowest on the 21st July (0.07 air changes per 

hour) (Figure 9.5A). Following occupancy on the 21st July the windows were closed so 

the CO2 attains a higher level, attributed to occupancy, and thus we assume takes longer 

to decay. AER equals around 0.5 air changes per hour on the 20th (Figure 9.5B) and 27th 

July (Figure 9.5D) when the windows were left open following periods of occupancy, 
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permitting rapid CO2 decay from the office (due to enhanced ventilation). AER reaches 

0.2 air changes per hour on the 26th July as although the windows were left open 

following occupancy, we have significant inputs and concentrations of CO2 which then 

decline from a much higher initial value (Figure 9.5C).  Although not considered here, 

external wind speed would also be an influencing factor, controlling pressure 

differentials and hence air exchange between the indoors and outdoors. We conclude 

that we see higher AER rates during periods of enhanced ventilation (via window 

opening), likely attributed to greater pressure differentials driving the exchange.  

 

Figure 9.5: Air Exchange Rates (AER) at various periods throughout the measurement period, 

(A) 20th July; (B) 21st July; (C) 26th July; (D) 27th July calculated using CO2 measurements and 

CO2 decay after occupancy. 
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Particle Number Concentrations (PNC) illustrate notable fluctuations (Figure 9.6). Very 

large, randomised peaks throughout the measurement period may be due to equipment 

error (in part random noise, and in part due to the technical errors) and can be removed 

from the time series by filtering data on diagnostic error flags (for example an 

inconsistent dilution ratio). Generally, PNC were below 10,000 particles/cm3, which is 

typical for an indoor environment with no active sources or known pollutant activities 

occurring. During occupancy, the PNC was significantly higher due to human activity 

(such as walking on the carpeted floor) and the influence of outdoor sources. The PNC 

was lowest when the windows were closed, and the office is unoccupied. In this case 

study, the PNC was also considerably lower when the windows were closed, regardless 

of human activity, suggesting that a large number of UFPs measured indoors originated 

from the external environment.  

 

 

 

 

  

 

 

 

 

 

Figure 9.6: Temporal Particle Number Concentrations (particles/cm3) over the measurement 

period from 11:13 on 17th July to 11:00 on 31st July.  Data is divided up into days of monitoring 

over the two-week period. PNC scale is logged. Values below dotted line are background 

concentrations.  
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Electrochemical Sensors 

Although uncalibrated at this point and for this particular study, we can examine the 

response of the electrochemical sensors to inorganic gaseous pollutants. We particularly 

wanted to focus on the temporal response rather than the precise readings due to the 

uncalibrated nature of the sensors. First, it is noticeable that the temperature of the 

electrochemical sensor fluctuates between 20 and 30 °C which may affect the outputs 

(Figure 9.7). This variation is expected while the sensor is “warming up”. However, in 

this case study the sensor temperature fluctuated throughout the period of measurement.  

Figure 9.7: Temporal temperature fluctuations (°C) of the NO2 electrochemical sensor over 

the full two-week measurement period. 

Although uncalibrated, Figure 9.8 illustrates temporal trends in CO, VOC and NO2 

concentrations measured by the electrochemical sensors. In general, temporal 

fluctuations are small. The large peak in VOC measured during the morning of the 25th 

July is likely in response to the unit being filled with IPA solution. No significant source 

of pollution was introduced into the room throughout the measurement period and the 

three pollutants follow similar trends over time. We do, however, observe some drift in 

the measurement response which highlights the need for regular calibration if the 
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sensors were to be used for prolonged periods to enable reporting of reliable results. 

Some of this drift can also be attributed to sensor warm-up, which has been observed 

for 48 hours in previous times (such as Lewis et al., 2016). 

 

 

 

 

 

 

 

Figure 9.8: Temporal concentrations of Carbon Monoxide (CO), Nitrogen Dioxide (NO2) and 

Volatile Organic Compounds (VOC) as TVOC (Total Volatile Organic Compounds) measured 

by the electrochemical sensors housed in the V1000 units over the entire measurement period.  

Case Study 3: VOC Response Case Study (November 2017) 

On the 10th November, a case study was undertaken in order to investigate the response 

of the electrochemical and metal oxide VOC sensors housed in the V1000 units 

following activation of VOCs in common household products (Figure 9.9). The aim of 

this case study was to examine the detection capabilities of the sensors, which would 

inform our understanding of a) the value of these sensors and b) the value of these 

sensors when linked with active sampling of air and VOC speciation through TD GC-

MS. Both sensors have capabilities to quantify TVOC (total volatile organic 

compounds) so we anticipated seeing a heightened response in measurand (VOC) 

concentration after activation of a VOC source despite the sensors being uncalibrated 

at the time of measurement (so we are not confident in the absolute values reported). 
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This case study was undertaken in an office in LEC 3 that is not normally occupied, and 

thus is a relatively “clean” environment, free of known strong contaminant sources, to 

enable us to focus on and characterise the sensor response to the VOCs in common 

household products.  

 

 

 

 

 

 

 

 

 

 

The above products are known to contain VOCs and therefore likely to or expected to 

illicit a response by the (T)VOC sensors in the V1000 units. The chemicals listed on the 

products have been reproduced here. It is clear to see there are VOCs, sometimes a 

variety of species, in each product.  

VOC Response  

Visually, we observe that the VOC electrochemical sensors show the smallest response 

following the activation of VOC sources at different release distances (Figure 9.10). It 

is unknown at this stage why this is the case. There is some evidence of response, but 

this is not clear through interpretation of the data. 

 

 

Products Used; 

 
(1) Air Freshener – Air Wick 6 in 1 Air Freshener: Contains Benzisothiazolinone 

(2) Deodorant – Sure Women’s Bright Bouquet Deodorant: Butane, Isobutane, 

Propane, Aluminium chlorohydrate, Cyclopentasiloxane, PPG-14, Butyl Ether, 

Parfum, Disteardimonium Hectorite, Propylene Carbonate, Caprylic/Capric 

Triglyceride, Gelatin Crosspolymer, Cellulose Gum, Sodium Benzoate, Aqua, 

Hydrated silica, Sodium Starch Octenylsuccinate, Maltodextrin, Hydrolysed Corn 

Starch, Silica, BHT, Alpha-Isomethyl Ionone, Benzene Alcohol, Benzyl Salicylate, 

Citronellol, Coumarin, Geraniol, Hexyl Cinnamal, Limonene, Linalool. 

(3) Polish – Mr Sheen Surface Polish: 5-15% Aliphatic Hydrocarbons, <5% Non-Ionic 

Surfactants, Perfumes, Geraniol, Limonene, Hexyl Cinnamaldehyde, Preservative, 

Chloromethylisothiazolinone, Methylisothiazolinone. 

 

 
Figure 9.9: Products that contain known sources of VOCs (products and specific compounds 

contained within them listed) that will be activated in an attempt to illicit response by sensors 

within the V1000 units to evaluate their performance. 
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Figure 9.10: VOC response detected by electrochemical VOC sensors (A) and metal oxide 

(MOS) VOC sensors (B). There are three phases of compound release. In each phase sources 

were released at increasing distance from the monitoring unit to assess the influence of mixing 

times. Each dashed line within each phase represents release of products known to contain 

VOCs and known to illicit a VOC response.  

Visually the VOC metal oxide sensor shows a clear response to activation of the VOC 

sources in all phases (Figure 9.10). There is a heightened peak in VOC concentration 

following source activation. Sources activated with greater distance from the 

monitoring unit took longer to reach peak concentrations due to the increased time for 

-2

0

2

4

6

8

10

09:53:00 10:23:00 10:53:00 11:23:00 11:53:00 12:23:00 12:53:00 13:23:00 13:53:00 14:23:00

El
ec

tr
o

ch
em

ic
al

 V
O

C
 (

p
p

m
) A

-20

-10

0

10

20

30

40

50

09:53:00 10:23:00 10:53:00 11:23:00 11:53:00 12:23:00 12:53:00 13:23:00 13:53:00 14:23:00

M
et

al
 O

xi
d

e 
V

O
C

 C
o

n
ce

n
tr

at
io

n
 (

p
p

m
)

Time

B 

Phase 2 Phase 3 
Phase 1 



239 

 

mixing of the air in the room. Sources activated the furthest away from the units incurred 

the smallest increases in concentration due to dispersion of pollutants. 

There is also a clear correspondence by the CO metal oxide sensor. Since this case study 

occurred in an environment with no known CO sources it is likely this is due to CO 

sensor cross interferences with VOCs. There is a very high correlation of 0.79 between 

MOX CO and MOX VOC sensor measurements which is even higher (0.94) if the first 

hour of “warm-up” measurements are removed. Cross interference on sensor response 

has similarly been highlighted in the literature (Lewis et al., 2016). 

It is difficult to look at comparative statistics in this case study since there was no return 

to background concentration following the activation of each source. However, 

statistics can be used to determine whether there was a statistically significant difference 

in the means of the sensor response before and after activation the first VOC source. 

This would confirm whether the sensors had detected or responded to activation of the 

source. A paired t-test was run since the samples are dependent or essentially connected. 

For the electrochemical sensor the t-stat (calculated t-value) is less (1.68) than the t 

critical two-tailed (2.05) statistic so we can retain the null hypothesis that states there is 

no difference between the means of the samples. This highlights that there is no clear 

response by the electrochemical sensor after initial activation of the source. However, 

for metal oxide sensors, the t-stat (calculated t-value) is more (16.81) than the t critical 

two-tailed (2.05) statistic so we can reject the null hypothesis and confirm that there is 

a statistically significant difference between the means of the samples. This highlights 

that there is clear response by the MOx sensor following activation of the source. 

Attributed to sensor drift overtime, and since there is no return to background levels, 

we cannot perform statistical testing at any other time.  
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Temporal Trends in CO2 

Temporal trends in CO2, although not the focus of this case study, were also examined. 

We can see the clear relationship between CO2 and occupancy (Figure 9.11). The CO2 

concentration reaches ~ 900 pm during occupancy by one person. Background CO2 

concentration is typically ~ 500 ppm. During periods of non-occupancy CO2 declines 

to background levels, with decay rates enhanced when windows are opened to promote 

air exchange.  

 

Figure 9.11: Temporal CO2 concentration fluctuations during the VOC case study and thus 

activation of VOC sources, with periods of occupancy highlighted (when sources where being 

activated), that tend to correspond with heighted CO2 responses. 

Air exchange rate was calculated between 12:00 pm and 12:30 pm during a period of 

non-occupancy. During this time, the windows were open, resulting in approximately 

1.6 air changes per hour. This is a relatively high air exchange rate in comparison with 

those previously calculated from a similar sized office. This is attributed to the fact that 

both windows were wide open (wider window size opening (larger area for exchange)) 

and there was a rapid dispersion and decay of CO2.  
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This case study was designed to investigate the PNC response to typical household 

activities as a precursor to generating data from household activities for the thesis 

(Chapter 4 and 5). While initially it was hoped this case study would continue over 

multiple days, there was a problem with particle concentration reporting and therefore 

only two days of reliable data were captured (Figures 9.12 and 9.13). On the first day 

we can see clear responses to cooking activities in both the PNC response and CO2 

response. We see large peaks in PNC response but there are much more interesting 

kinetics than these large-scale peaks and troughs, namely, the dynamics of particle 

response and varying rates of production and removal. We interpret the variability as a 

function of source characteristics and fluctuations in source strength as well as particle 

dynamics, most importantly dispersion, but also deposition and coagulation. On the 

second day we see one short but very clear response to cooking followed by a prolonged 

period of decline. Baseline PN is usually between 1–10,000 particles/cm3 on both days.  

 

Figure 9.12: Temporal particle number concentration (PNC) response and corresponding CO2 

response to household cooking activities (the undertaking of which is highlighted by shading) 

on Day 1 of this case study (between 17:00 and 24:00). 
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Figure 9.13: Temporal particle number concentration (PNC) response and corresponding CO2 

response to household cooking activities (the undertaking of which is highlighted by shading) 

on Day 2 of this case study (between 00:00 and 24:00). Sharp rise and slower decline in PNC 

clearly identified. 

In this case study, which used the V1000, we saw the regular filling of the CPC with 

IPA solution as important. Unless there is an external tank attached to the CPC with 

additional fluid, we can only expect the units to continue running and reporting reliable 

PNC data for between 2 and 3 days. NAQTS incorporated these findings into the 

development of its V2000 device which includes a larger internal tank and other 

software features that minimise working fluid consumption. 

Case Study 5: House 1 – (May 2018) 

This case study was designed to investigate PNC response to typical household 

activities conducted in series (succession) without interspersed periods of ventilation. 

On reflection this took a similar approach to that taken by the HOMEChem team during 

their study at the University of Texas (Farmer et al., 2019). Two V1000 monitors were 

0

200

400

600

800

1000

1200

1400

1600

1000

10000

100000

1000000

0
0

:0
0

:0
0

0
0

:4
0

:0
0

0
1

:2
0

:0
0

0
2

:0
0

:0
0

0
2

:4
0

:0
0

0
3

:2
0

:0
0

0
4

:0
0

:0
0

0
4

:4
0

:0
0

0
5

:2
0

:0
0

0
6

:0
0

:0
0

0
6

:4
0

:0
0

0
7

:2
0

:0
0

0
8

:0
0

:0
0

0
8

:4
0

:0
0

0
9

:2
0

:0
0

1
0

:0
0

:0
0

1
0

:4
0

:0
0

1
1

:2
0

:0
0

1
2

:0
0

:0
0

1
2

:4
0

:0
0

1
3

:2
0

:0
0

1
4

:0
0

:0
0

1
4

:4
0

:0
0

1
5

:2
0

:0
0

1
6

:0
0

:0
0

1
6

:4
0

:0
0

1
7

:2
0

:0
0

1
8

:0
0

:0
0

1
8

:4
0

:0
0

1
9

:2
0

:0
0

2
0

:0
0

:0
0

2
0

:4
0

:0
0

2
1

:2
0

:0
0

2
2

:0
0

:0
0

2
2

:4
0

:0
0

2
3

:2
0

:0
0

C
O

2
C

o
n

ce
n

tr
at

io
n

 (
p

p
m

)

P
ar

ti
cl

e 
N

u
m

b
er

 C
o

n
ce

n
tr

at
io

n
 (

p
ar

ti
cl

es
/c

m
3
)

Time

Particles CO2



243 

 

deployed to capture spatial variation around the residence in question (later termed 

House 1 in Chapter 4). The monitoring was undertaken over a period of 7 hours (17:00-

24:00). The activities were conducted as follows (vacuuming 17:44–17:50, toasting 

17:48, oven cooking 18:30 (with the oven door opened at 18:43, 19:04) and egg frying 

commencing at 19:17). These events cumulatively enhance PNC making it difficult to 

determine how much each event contributes to PNC given their close occurrence. 

However, we do see a discrete peak for oven cooking activity that occurred in isolation 

between 18:30 and 19:04. We observe that there is a steady decline in PNC at the end 

of each phase of activity (firstly following vacuuming and toasting, and then following 

oven cooking and egg frying). There is close correspondence in the PNC readings 

reported by both V1000 monitors, even though one monitor is located downstairs and 

the other upstairs (Figure 9.14, 9.15). It is also interesting, however, to note that the 

upstairs V1000 monitor reports a much stronger PNC response despite being further 

away from most of the sources activated. This we attribute to the influence of housing 

structure, which we also make reference to in one of the papers after further 

experimental investigation (Chapter 4). We similarly observe enhanced CO2 

concentrations during periods of cooking activity and occupancy and following declines 

in response to non-occupancy in the evening (Figure 9.16). 
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Figure 9.14: Temporal particle number concentration (PNC) response during the undertaking 

of multiple household activities (vacuuming 17:44–17:50, toasting 17:48, oven cooking 18:30 

(with the oven door opened at 18:43, 19:04) and egg frying at 19:17) in a house (later referred 

to as House 1 in the main thesis) conducted in succession (the occurrence of which is 

highlighted). 

Figure 9.15: Correlation in particle number concentration (PNC) measurements reported by the 
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two V1000 monitoring units at near field (downstairs) and far field (upstairs) locations in the 

house investigated.  

 

Figure 9.16: Temporal CO2 concentrations taken simultaneously with the particle 

measurements that are displayed in Figure 9.15 (between 17:30 and 23:15). The undertaking of 

household activities previously mentioned are highlighted. 

Case Study 6: House 2 - (May 2018) 

This case study was designed to test the practicalities of using the NAQTS V1000/2000 

monitors in a real-world home situation, and to examine the response of the equipment 

to ultrafine particles (UFP) generated by episodic toasting events which are interspersed 

with periods of ventilation and “flushing” between events. This case study was 

undertaken at a house that was later used in the thesis for further experimental work. 

One monitor was placed in the kitchen whilst the other was placed upstairs. The 

scenarios were conducted as follows: A) Toasting (No Ventilation), B) Toasting 

(Ventilation with Extractor Fan), C) Toasting (Ventilation with Window Opening) and 

D) Gas Hob (No Ventilation). Differences in source strengths are attributed to 

differences in toasting activity and variable air exchange provided by ventilation and 

600

650

700

750

800

850

900

950

1000

1050

17:30:00 18:10:00 18:50:00 19:30:00 20:10:00 20:50:00 21:30:00 22:10:00 22:50:00

C
O

2
C

o
n

ce
n

tr
at

io
n

 (
p

p
m

)

Time

Downstairs Upstairs



246 

 

the fact that air is not uniformly mixed. Equipment error may play a minor role. We see 

ventilation significantly enhanced PNC decay rate (Figure 9.17). Mechanical 

ventilation would not typically be used in conjunction with toasting. However, we 

wanted to look at the effectiveness of using this strategy to reduce exposure to PNC 

generated by toasting, despite the distance between the toaster and extractor fan, 

because we know with increasing airtightness of buildings, mechanical ventilation will 

become a more common form of ventilation in the future. We see the fastest PNC decay 

rate when opening windows for enhanced ventilation as expected. In addition to this 

window opening immediately after toasting appeared to inhibit high peak 

concentrations being reached. 

 

 

Figure 9.17: Temporal particle response (PNC) from each discrete cooking activity and 

following ventilation; A) Toasting (No Ventilation), B) Toasting (Ventilation with Extractor 

Fan), C) Toasting (Ventilation with Window Opening) and D) Gas Hob (No Ventilation) within 
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the house monitored PNC is measured in the near field (kitchen) and also far field (upstairs) 

locations to capture spatial variability around the house. Activation of toasting or gas cooking 

is indicated by dashed lines. 

 

Considering all the toasting activities, we see the smallest range in PNC when 

ventilating with window opening (Figure 9.18). It is postulated that window opening, 

through promoting dispersion of toasting generated particulates, suppresses high PNC 

being reached. The largest range in PNC occurs when the extractor fan is used. This 

could be attributed to the recycling of particles and pollutants if the extract fan does not 

vent outside. We observe enhancements in CO2 in response to cooking activities, with 

the most significant increase in response to gas cooking at 18:00, as expected (Figure 

9.19). 

 

Figure 9.18: Boxplots for each cooking activity illustrating the distribution of particle 

concentration data. Upper and lower bounds of box represent 25% and 75% of particle data, 

and the line on each box represents the median value for each event. Upper and lower particle 

limits reached are also shown for each event. 
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Figure 9.19: Corresponding temporal CO2 trends from each discrete cooking activity and 

following ventilation; A) Toasting (No Ventilation), B) Toasting (Ventilation with Extractor 

Fan), C) Toasting (Ventilation with Window Opening) and D) Gas Hob (No Ventilation). 

Activation of toasting or gas cooking is indicated by dashed lines. 

Case Study 7 – House 2 – (December 2018) 

This case study was designed to investigate the application of V1000/2000 monitoring 

units in the real world with other members of the supervisory team (to also investigate 

ease of use) using House 2 as a base with a variety of polluting sources. During this 

case study, combustion-related sources were activated, and the PNC response was 

examined. Cooking activities were captured at around 18:00 (with the monitor being in 

the living room). A log burner was then lit in the living room, with the PNC peaks 

indicating where additional fuel was added to the burner prior to the fire being allowed 

to burn out (20:00-23:30) (Figure 9.20). Fluctuations in PNC response from the log 

burner are likely to relate to heterogeneity in burning as we would similarly experience 

from the burning of a candle in response to heterogeneity in the wick, candle wax or in 
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the case of scented candles, the added fragrance (Wallace et al., 2019). As the log fire 

dwindles we see a steady decline to background concentrations. It takes over 4 hours to 

decay to background PNC. We observe corresponding increases in CO2 concentration, 

particularly during the cooking events (Figure 9.21) which remain relatively consistent 

until the fire burnt out. 

 

Figure 9.20: Temporal particle number concentration response to combustion related activities; 

cooking activities in the kitchen (18:15 onwards) and log-burning (19:55 onwards) with 

monitoring in the living room. Dashed lines indicate start of each activity. 
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Figure 9.21: Temporal CO2 measurements corresponding particle number concentration data 

(Figure 9.20) throughout combustion related activities – cooking activity (18:00 onwards) and 

operation of a log burner (19:55 onwards). Dashed lines indicate initiation of such activities. 

We recognised that the noise of the CPC on the V1000 unit, ~60dB was problematic, 

being disruptive in the home environment. We also experienced some connectivity 

issues between the V1000 monitors and computers used to control the data logging 

process. We therefore decided to conduct subsequent studies during periods of non-

occupancy with the sole investigators being the supervisory team and close contacts. 

Case Study 8 – House 4- Layered Data Experiments (December 2018) 

This case study was undertaken at House 4 and involved testing a protocol that although 

not subsequently adopted, did inform the ways in which data were eventually collected.  

It took a layered approach, based on that approach taken during by the HOMEChem 

project (Farmer et al. 2019), to assess PNC response to various cooking activities 

throughout the day under periods of no ventilation (Figure 9.22) interspersed with 

periods of ventilation (Figure 9.23). Again, two V1000 monitors were deployed, one at 

a near-field location close to the source (kitchen) and another at a far-field location 

(upstairs). We observe significant enhancements of PNC in response to each individual 

event, and persistence over long periods under no ventilation resulting in significant 

concentrations but consistently lower concentrations for the far-field monitor (located 

further from the source). We cannot discern the specific influence of individual sources 

completely due to the interactions and overlapping nature of the experiments, but this 

is nonetheless important to understanding exposure in the real-world where sources will 

interact and overlap. We observe much more rapid declines in PNC response during 

interspersed periods of ventilation (window opening) and lower exposures. During 
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ventilation we often saw PNC return to background levels before activation of another 

source. However, this was not the case under conditions of no ventilation.  

 

Figure 9.22: Temporal particle number concentration (PNC) response from typical household 

cooking activities under no ventilation. (A) Toasting; (B) Frying; (C) Microwave and (D and 

E) More complex dinnertime cooking involving frying and oven cooking. Activities are 

conducted consequentially without necessitating a return to background levels. Dashed lines 

indicate source activation i.e., the start of cooking activity. 
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Figure 9.23: Temporal particle number concentration (PNC) response from typical household 

activities under a naturally ventilated regime (each activity is interspersed with periods of 

ventilation i.e., window opening). The same activities are repeated as previously; (A) Toasting; 

(B) Frying; (C) Microwave and (D and E) More complex dinnertime cooking involving frying 

and oven cooking. Activities are conducted consequentially without necessitating a return to 

background levels. Dashed lines indicate source activation i.e., the start of cooking activity. 

Summary 

This chapter has presented several case studies showing the application of NAQTS 

V1000/V2000 monitoring units in real-world settings. These V1000/V2000 air quality 

monitoring units have been tested here for their effectiveness and accuracy largely in 

detecting and representing typical household cooking activities. These case studies 

informed the way we conducted our research in the main body of the thesis. They inform 

us about the use of the units in Chapters 4 and 5, and to a lesser extent, Chapter 6. These 

units have multiple pollutant monitoring capabilities, but we largely focus on the PNC 

response given by these units which is determined by the CPC housed inside the units. 

When carrying out research throughout this thesis we use these units to investigate the 

particulate response to typical household cooking activities within real-life and 

controlled kitchen environments. We focus on PNC response due to the confirmed 

accuracy and confidence in the reported results. We do not rely or use the 

electrochemical or metal oxide sensor data. As the literature review discusses, despite 

the opportunities raised by the use of “low-cost” sensor technologies, there are many 

problems associated with them, even though there have been some attempts to compare 

against reference instrumentation. We observed significant drift in sensor response in 

the case studies, which would mean that the sensors would require frequent multi-

parameter calibration for us to be confident in reporting absolute values. The 

complexities of this calibration are at odds with the aims of the thesis which aims to 
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promote widespread public understanding of IAQ and gain high time and spatially 

resolved data. However, this sensor technology does hold some promise for reporting 

IAQ, and we should not discount their potential in the future for being able to reliably 

report pollutant concentrations at a great spatial and temporal resolution.  

We therefore conclude; 

• PNC: CPC was calibrated by Ricardo AEA (according to ISO 27891) and 

therefore provides high quality, high temporal resolution PNC data. 

V1000/V2000 Units were collocated to normalise data between them for 

increased accuracy.  We are confident in the PNC data provided for studies on 

cooking and ventilation in domestic and specialised settings. Outliers can be 

removed prior to analysis by flag detection. 

• CO2 NDIR sensor – provides a useful measure and indicator of occupancy and 

used to calculate air exchange rates. 

• VOC – not used in this thesis (as uncalibrated, and not seen to be confident in 

results) – however sensor technology shows promise for VOC detection and 

understanding temporal signatures (which we allude to in Chapter 6) especially 

when integrated with VOC speciation (via thermal desorption tubes, which can 

be attached to the units for time integrated sampling). 

Based on these case studies we decided to further evaluate discrete cooking activities 

for 3 easily replicable sources (toast, eggs, bacon) under conditions of no ventilation, 

natural ventilation, and mechanical ventilation in sequential experiments (to better 

enable source characterisation). Flushing between events enabled us to easily separate 

events (and understanding individual event characteristics and exposures) whereas 

layered experiments (closer to mimicking real-life) were harder to interpret due to added 
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complexities. The case studies reported in this technical evaluation also helped us 

develop a protocol for sampling around a residence. We deployed multiple 

V1000/V2000 units in near and far field locations in a single room (kitchen) and around 

a residence. We are confident in the reporting abilities of the units, made through 

correlations between them. The protocol established to run these monitors and their 

locations for sampling has informed the protocol and decisions for subsequent sampling. 

We found problems associated with the units which included noise and practicalities of 

the user interface. Therefore, we ultimately made the decision to restrict sampling to be 

undertaken by members of the supervisory team and not the wider public. The problems 

with noise have since been reduced in adaptations made to the units.  
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Appendix A1: Key Metrics Reported from Data in Chapter 3 (Supplementary 

Information) 

In this section we present the metrics devised from the raw temporal particulate data 

reported from two monitors in one room (Kitchen – Near and Far to Source).  

Table S1: Area-under-the-curve (AUC), which is taken as a cumulative total of pollutants 

emitted and surrogate of source strength, for near-field (kitchen) location, reported to 3 

significant figures (x 108 cm3). 
 

H1 H2 H3 H4 H5 H6 H7 H8 

Toast No Ventilation 5.04 8.61 12.2 9.75 1.48 5.91 9.64 8.77 

Toast Natural Ventilation 0.63 1.31 1.12 3.36 0.19 1.45 0.21 3.93 

Eggs No Ventilation 1.26 17.5 21.4 19.4 5.48 15.8 5.59 14.3 

Eggs Mechanical Ventilation 2.17 6.74 12.6 21.2 1.02 8.62 2.17 10.6 

Eggs Natural Ventilation 2.19 2.23 8.34 9.58 0.60 3.13 1.68 5.75 

Bacon No Ventilation 12.5 6.46 15.7 4.28 2.02 3.72 13.6 24.1 

Bacon Mechanical Ventilation 15.3 4.18 7.21 7.65 0.65 2.86 10.6 17.8 

Bacon Natural Ventilation 1.07 1.34 3.88 3.78 0.54 1.43 8.54 15.5 

         

Mean  5.03 6.05 10.3 9.86 1.50 5.36 6.50 12.6 

Table S2: Area-under-the-curve (AUC), which is taken as a cumulative total of pollutants 

emitted and surrogate of source strength, for far-field (kitchen) location, reported to 3 

significant figures (x 108 cm3). 
 

H1 H2 H3 H4 H5 H6 H7 H8 

Toast No Ventilation 9.20 10.7 9.22 6.82 5.47 6.83 13.2 9.76 

Toast Natural Ventilation 0.95 9.31 0.58 1.47 0.87 1.54 3.57 5.88 

Eggs No Ventilation 0.64 18.2 10.9 12.9 17.6 15.2 7.79 15.4 

Eggs Mechanical Ventilation 1.07 4.84 6.68 14.8 3.50 7.51 2.56 10.8 

Eggs Natural Ventilation 1.22 2.04 3.27 4.47 2.47 3.81 2.63 8.62 

Bacon No Ventilation 11.6 5.23 9.61 3.95 7.02 2.26 5.44 20.6 

Bacon Mechanical Ventilation 15.1 2.15 6.38 7.24 1.50 1.02 3.83 16.8 

Bacon Natural Ventilation 9.87 0.76 2.32 2.60 2.03 0.53 1.80 13.4 

         

Mean 6.20 6.65 6.12 6.78 5.06 4.84 5.10 12.65 

Table S3: Time to background (TTB) metric, which is a measure of the time from peak particle 

concentration to background particle concentration for near-field kitchen location (min). 
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Table S4: Time to background (TTB) metric, which is taken as a measure of the time from peak 

particle concentration to background particle concentration for far-field kitchen location (min). 

 

 

Table S5: Time to peak (TTP) metric, which is taken as a measure of the time from the start of 

activity until peak particle concentrations are reached for near-field kitchen location (min). 

Table S6: Time to peak (TTP) metric, which is taken as a measure of the time from the start of 

activity until peak particle concentrations are reached for far-field kitchen location (min). 

 

 
H1 H2 H3 H4 H5 H6 H7 H8 

Toast No Ventilation 133 210 183 120 95 67 160 77 

Toast Natural Ventilation 12 41 35 34 17 16 47 29 

Eggs No Ventilation 79 218 150 172 218 116 88 82 

Eggs Mechanical Ventilation 133 112 78 126 43 59 61 63 

Eggs Natural Ventilation 73 31 39 40 18 17 33 23 

Bacon No Ventilation 242 108 208 60 101 54 112 78 

Bacon Mechanical Ventilation 210 67 105 83 60 51 84 57 

Bacon Natural Ventilation 83 42 31 20 8 8 24 29          

Mean  121 104 104 82 70 49 76 55 

 
H1 H2 H3 H4 H5 H6 H7 H8 

Toast No Ventilation 193  216 166 119  163 70 162  72 

Toast Natural Ventilation 22  37  30  31  33  17  43  27  

Eggs No Ventilation 47 197 123 167 226 100 74  74 

Eggs Mechanical Ventilation 50  94 78 124 67 69 65 56  

Eggs Natural Ventilation 49  27  37 39  29  18 33  22  

Bacon No Ventilation 252 109 200 60 140 30  108 79 

Bacon Mechanical Ventilation 147 83 98  86 50  30  75 60 

Bacon Natural Ventilation 83 26  30  16  35  6  15  29  

         

Mean 105 99 95 80 93 43 72 52 

 
H1 H2 H3 H4 H5 H6 H7 H8 

Toast No Ventilation 7 11 12 5 4 5 8 5 

Toast Natural Ventilation 7.5 10 5 4 5 4 8 6 

Eggs No Ventilation 14 11 8 8 8 7 9 7 

Eggs Mechanical Ventilation 9 5 6 5 7 23 12 8 

Eggs Natural Ventilation 14 8 6 7 4 6 5 10 

Bacon No Ventilation 21 24 16 20 9 18 21 19 

Bacon Mechanical Ventilation 10 24 13 10 2 22 20 20 

Bacon Natural Ventilation 22 22 21 21 18 20 20 19 
         

Mean 13 14 11 10 7 13 13 12 
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Table S7: The rate of decay (RTE) metric, which is taken as a measure of the rate of particle 

decay from peak to background, for near-field kitchen location, reported to 3 s.f. (cm3/s). 

 

 

 

Table S8: The rate of decay (RTE) metric, which is taken as a measure of the rate of particle 

decay from peak to background, for far-field kitchen location, reported to 3 s.f. (cm3/s). 
 

H1 H2 H3 H4 H5 H6 H7 H8 

Toast No Ventilation 8.51 7.08 10.8 18.2 8.35 25.6 9.90 37.2 

Toast Ventilation 99.9 39.5 43.1 61.0 34.7 97.8 42.8 124 

Eggs No Ventilation 15.6 8.32 13.3 10.5 7.10 15.9 23.7 38.1 

Eggs Mechanical Ventilation 21.8 17.1 27.2 13.3 29.5 38.0 22.4 49.1 

Eggs Natural Ventilation 21.3 2.98 63.6 63.1 75.6 137 53.1 164 

Bacon No Ventilation 8.21 11.2 9.69 16.3 9.78 29.6 11.3 26.2 

Bacon Mechanical Ventilation 8.22 22.4 18.8 18.8 25.6 14.9 19.0 49.2 

Bacon Natural Ventilation 28.0 31.2 75.0 106 43.7 372 98.9 114 

         

Mean 26.4 17.5 32.7 38.4 29.3 91.4 35.1 75.2 

 

Appendix A2: Temporal particulate metrics as above for near and far-field monitors in 

two rooms  

 
H1 H2 H3 H4 H5 H6 H7 H8 

Toast No Ventilation 7  18  12  7  10  5  4  3  

Toast Natural Ventilation 8  5  4  5  10  5  3  4  

Eggs No Ventilation 12  28  10  9  13  8  14  6  

Eggs Mechanical Ventilation 11 10  6  8  10  22  8  7  

Eggs Natural Ventilation 13  9 9  9  9  6  6  9  

Bacon No Ventilation 11  23  20  23  10  19  22  23  

Bacon Mechanical Ventilation 13  23 16  11  18 23  24  20  

Bacon Natural Ventilation 22  23  22  26  20  23  22  21  

         

Mean 12 17 12 12 13 14 13 12 

 
H1 H2 H3 H4 H5 H6 H7 H8 

Toast No Ventilation 8.98 6.41 10.3 19.6 9.07 26.9 9.98 35.1 

Toast Ventilation 99.9 37.1 36.2 71.7 35.0 91.6 51.5 104 

Eggs No Ventilation 11.4 9.80 16.6 12.5 7.54 17.8 22.9 37.2 

Eggs Mechanical Ventilation 9.97 18.0 31.4 15.7 31.6 41.4 19.6 46.5 

Eggs Natural Ventilation 17.6 44.7 76.4 73.0 77.6 120 45.8 161 

Bacon No Ventilation 8.47 11.3 10.1 23.5 10.6 32.8 16.0 36.7 

Bacon Mechanical Ventilation 8.40 26.6 17.5 20.8 30.0 47.6 23.5 45.8 

Bacon Natural Ventilation 29.8 28.5 73.3 110 68.9 222 116 104 
         

Mean 24.3 22.8 34.0 43.3 33.7 75.0 38.16 71.4 
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Table S9: Area-under-the-curve (AUC), which is taken as a cumulative total of pollutants 

emitted and surrogate of source strength, for near-field (kitchen) location, reported to 3 

significant figures (x 108 cm3). 

 

 

 

 

 

 

 

Table S10: Area-under-the-curve (AUC), which is taken as a cumulative total of pollutants 

emitted and surrogate of source strength, for far-field monitor (upstairs), reported to 3 

significant figures (x 108 cm3). 
 

H1 H2 H3 H4 H5 H6 H7 H8 

Toast No Ventilation 8.14 3.42 3.11 4.43 2.22 2.29 4.46 0.71 

Toast Natural Ventilation 3.19 0.93 1.17 0.83 0.49 0.71 0.79 2.15 

Eggs No Ventilation 4.35 7.41 6.72 7.91 2.26 N/A 3.32 4.24 

Eggs Mechanical Ventilation 1.78 1.89 0.89 6.53 0.98 2.65 1.09 1.96 

Eggs Natural Ventilation 2.56 3.26 2.83 1.82 1.23 1.30 0.44 4.22 

Bacon No Ventilation 7.58 2.84 4.53 3.39 2.43 1.85 5.65 5.11 

Bacon Mechanical 

Ventilation 

10.4 2.23 4.49 3.52 0.52 3.12 3.39 3.15 

Bacon Natural Ventilation 8.67 1.31 2.26 1.93 1.02 3.53 1.98 7.55 

         

Mean  5.83 2.91 3.25 3.80 1.39 1.93 2.64 3.64 

Table S11: Time to background (TTB) metric, which is a measure of the time from peak particle 

concentration to background particle concentration for near-field location (min). 
 

H1 H2 H3 H4 H5 H6 H7 H8 

Toast No Ventilation 120 142 127 90 150 85 120 65 

Toast Ventilation 50  72 39  30  39  26  28  22  

Eggs No Ventilation 198 82 127 120 68 93 138 32  

Eggs Mechanical Ventilation 146 115 86 93 35  74 63 62 

Eggs Natural Ventilation 85 46  48  30  10  16  21  30  

Bacon No Ventilation 198 179 120 78 41  60 120 88 

Bacon Mechanical 

Ventilation 

184 116 103 60 25  49  102 67 

 
H1 H2 H3 H4 H5 H6 H7 H8 

Toast No Ventilation 3.30 3.58 6.82 7.71 10.2 5.22 6.85 6.88 

Toast Natural Ventilation 2.14 1.39 3.18 2.98 4.64 1.94 1.60 2.83 

Eggs No Ventilation 7.10 4.97 11.9 10.8 1.66 13.2 6.85 7.56 

Eggs Mechanical Ventilation 4.83 6.29 5.37 9.24 0.56 6.27 2.03 5.09 

Eggs Natural Ventilation 3.55 2.65 4.10 2.80 0.41 9.38 0.74 4.70 

Bacon No Ventilation 22.6 10.6 8.81 5.45 1.69 6.31 14.4 16.1 

Bacon Mechanical 

Ventilation 

19.2 7.21 12.6 4.74 0.36 7.19 10.9 16.3 

Bacon Natural Ventilation 17.1 4.22 4.87 2.14 0.21 5.27 13.9 13.9 

         

Mean 10.0 5.11 7.21 5.73 2.47 6.85 7.16 9.17 
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Bacon Natural Ventilation 222 38  26  28  16  27  55  43 

         

Mean 150 98.8 84.5 66.1 48.0 53.8 80.9 51.1 

Table S12: Time to background (TTB) metric, which is a measure of the time from peak particle 

concentration to background particle concentration for far-field (upstairs) location (min). 
 

H1 H2 H3 H4 H5 H6 H7 H8 

Toast No Ventilation 230 154 97 90 137 84 118 55  

Toast Ventilation 78 55  38  21  37  24  25  42  

Eggs No Ventilation 185 216 133 110 70 N/A 133 81 

Eggs Mechanical Ventilation 125 98 60 90 41  84 62 109 

Eggs Natural Ventilation 104 95 48  28  16  28  18  80 

Bacon No Ventilation 191 135  89 76 56  48  120 93 

Bacon Mechanical 

Ventilation 

181 100 87 55  16  46  88 61 

Bacon Natural Ventilation 171 27  25  28  12  33  44  70 

         

Mean 158 110 72.1 62.3 48.1 43.4 76.0 73.9 

Table S13: Time to peak (TTP) metric, which is taken as a measure of the time from the start of 

activity until peak particle concentrations are reached for near-field location (min). 
 

H1 H2 H3 H4 H5 H6 H7 H8 

Toast No Ventilation 8  10  4  9  7  8  12  5  

Toast Ventilation 3  3  3  4  8  7  7  5  

Eggs No Ventilation 11  7  7  7  7  8  14  6  

Eggs Mechanical Ventilation 10  7  15  4  11  9  15  6  

Eggs Natural Ventilation 11  12  9  5  6  5  12  6  

Bacon No Ventilation 15  21  23  21  22  19  21  22  

Bacon Mechanical Ventilation 22  17 22  20  18  21  22  22  

Bacon Natural Ventilation 16  20  25  18  9  21  25  23  

         

Mean 12.0 12.0 13.5 11.0 11.0 12.3 16.0 11.9 

Table S14: Time to peak (TTP) metric, which is taken as a measure of the time from the start of 

activity until peak particle concentrations are reached for far-field (upstairs) location (min). 
 

H1 H2 H3 H4 H5 H6 H7 H8 

Toast No Ventilation 4  45  24  15  20 12  11  19  

Toast Natural Ventilation 5  30  15  8 11  13  7  14  

Eggs No Ventilation 11  8  20  15  33  N/A 15  18  

Eggs Mechanical Ventilation 19  25  54  10  16  12  12  32  

Eggs Natural Ventilation 12 24  13  9  12  11 11  13  

Bacon No Ventilation 25  49  49  26  44  30  31  32  
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Bacon Mechanical Ventilation 25  37  39  23  29  24  32  29  

Bacon Natural Ventilation 24  33  34  26  23  21  28  33  

         

Mean 15.6 31.4 31.0 16.5 23.5 15.4 18.4 23.8 

 

Table S15: The rate of decay (RTE) metric, which is taken as a measure of the rate of particle 

decay from peak to background, for near-field kitchen location, reported to 3 s.f. (cm3/s). 
 

H1 H2 H3 H4 H5 H6 H7 H8 

Toast No Ventilation 6.66 10.5 10.7 21.0 9.71 24.5 11.4 35.8 

Toast Natural Ventilation 27.9 11.8 81.2 62.8 47.0 102 77.1 79.2 

Eggs No Ventilation 9.11 17.9 10.3 14.5 18.8 22.3 8.96 105 

Eggs Mechanical Ventilation 11.5 17.9 18.09 15.9 25.5 28.4 16.2 35.7 

Eggs Natural Ventilation 11.2 41.5 48.1 79.0 116 97.0 76.6 90.1 

Bacon No Ventilation 12.5 12.5 11.8 17.9 42.6 27.6 15.6 27.4 

Bacon Mechanical Ventilation 12.8 14.5 18.1 25.2 40.1 48.7 16.6 40.1 

Bacon Natural Ventilation 10.5 12.5 74.8 65.2 57.7 65.7 26.1 71.9 

         

Mean 12.8 17.4 34.1 37.7 44.7 52.0 31.1 60.7 

 

Table S16: The rate of decay (RTE) metric, which is taken as a measure of the rate of particle 

decay from peak to background, for far-field location (upstairs), reported to 3 s.f. (cm3/s). 
 

H1 H2 H3 H4 H5 H6 H7 H8 

Toast No Ventilation 10.1 6.87 7.79 17.0 4.72 9.80 9.97 2.44 

Toast Ventilation 23.3 12.6 25.9 50.8 12.5 27.0 63.3 20.3 

Eggs No Ventilation 8.15 8.32 12.6 11.7 10.2 N/A 6.83 11.8 

Eggs Mechanical Ventilation 7.17 6.45 4.54 14.2 13.1 12.4 12.5 13.3 

Eggs Natural Ventilation 11.2 16.1 32.4 65.3 100 57.2 60.8 14.7 

Bacon No Ventilation 9.68 6.16 9.17 16.4 24.1 25.6 11.5 14.6 

Bacon Mechanical Ventilation 10.3 6.82 13.3 23.9 16.1 29.4 14.7 16.2 

Bacon Natural Ventilation 10.6 6.16 44.4 54.5 109 35.2 24.0 23.3 

         

Mean 11.3 8.69 18.8 31.7 36.2 24.6 25.5 14.6 

 

Table S17: The peak concentration (PKC) or maximum concentration metric, which is taken 

as a measure of the significance of pollutant source or source strength, near to source in 

kitchen to 3 s.f. (x 105 particles/cm3). 
 

H1 H2 H3 H4 H5 H6 H7 H8 

Toast No Ventilation 1.84 3.42 9.25 10.2 3.93 7.48 3.20 9.77 

Toast Natural Ventilation 2.87 7.07 7.21 6.69 9.65 7.68 2.82 10.5 

Eggs No Ventilation 4.06 3.27 14.4 11.3 1.49 15.5 3.12 16.9 

Eggs Mechanical Ventilation 5.29 5.97 3.18 17.7 0.48 9.18 1.36 9.24 

Eggs Natural Ventilation 2.68 6.12 9.63 8.39 2.93 16.26 1.18 15.6 
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Bacon No Ventilation 27.3 7.10 11.8 15.2 1.69 9.60 14.1 22.6 

Bacon Mechanical Ventilation 17.9 4.00 21.5 11.3 0.33 13.0 24.5 26.3 

Bacon Natural Ventilation 20.1 5.12 20.7 9.08 0.74 17.1 27.3 18.4 

         

Mean 10.3 5.26 12.2 11.2 2.66 12.0 9.70 16.2 

 

Table S18: The peak concentration (PKC) or maximum concentration metric, which is taken 

as a measure of the significance of pollutant source or source strength, far from source in 

other room (upstairs) to 3 s.f. (x 105 particles/cm3). 
 

H1 H2 H3 H4 H5 H6 H7 H8 

Toast No Ventilation 3.34 0.49 0.75 2.93 121 0.80 2.56 0.32 

Toast Natural Ventilation 4.56 0.28 0.84 1.59 1.48 0.51 1.62 1.17 

Eggs No Ventilation 1.24 1.75 1.97 2.70 0.57 N/A 1.07 1.48 

Eggs Mechanical Ventilation 0.42 0.37 0.19 4.85 0.54 1.40 0.64 0.83 

Eggs Natural Ventilation 1.15 1.07 2.25 3.02 3.00 1.41 0.79 1.53 

Bacon No Ventilation 2.75 0.48 1.22 1.72 0.78 2.04 2.44 2.12 

Bacon Mechanical Ventilation 3.39 0.49 1.61 2.16 0.34 3.23 1.40 1.83 

Bacon Natural Ventilation 4.43 0.68 1.89 1.56 1.43 4.15 1.68 4.05 

         

Mean 2.66 0.701 1.34 2.57 16.1 1.69 1.53 1.67 

 

Appendix A3: Correlations between Kitchen Volume and Metrics 

Figure S1: Correlation of Time to Background (TTB) metric for toasting activities 

across all eight houses monitored in Chapter 4 vs kitchen volume. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S2: Correlation of Rate of Decay (RTE) metric for frying activities across all 

eight houses monitored in Chapter 4 vs kitchen volume.  
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Figure S3: Correlation of Rate of Decay (RTE) metric from oven cooking activities 

across all eight houses monitored in Chapter 4 vs kitchen volume. 

 

Appendix B: Initial and Full Decay Rates 

Table S19: Decay rates (RTE); decay rates for the full duration of decay, for the first 

20 minutes (initial decay rate), for the duration of ventilation (corresponding to 

scenario) and for the period after ventilation, for toasting activities replicated in the 

Salford Energy House. Rates given to 3 significant figures. 

 A Full Duration 
First 20 

Minutes 

Ventilation 

Duration 

After 

Ventilation 

Windows 31.5 62.6 31.5 31.5 

No Ventilation 22.5 29.1 22.5 22.5 

Windows [20] 15.5 62.5 62.5 15.9 

Windows [10] 22.7 72.6 62.1 18.0 

Windows [5] 21.9 53.5 12.5 20.7 
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Table S20: Decay rates (RTE); decay rates for the full duration of decay, for the first 

20 minutes (initial decay rate), for the duration of ventilation (corresponding to 

scenario) and for the period after ventilation, for frying activities replicated in the 

Salford Energy House. Rates reported to 3 significant figures. 

 B Full Duration 
First 20 

Minutes 

Ventilation 

Duration 

After 

Ventilation 

Windows 60.9 72.2 60.9 60.9 

Mechanical 

Vent 
83.9 84.8 82.9 82.9 

No Ventilation 33.6 47.2 33.6 33.6 

Windows [20] 81.8 88.4 88.3 16.1 

Windows [10] 58.1 78.9 84.3 31.0 

Windows [5] 45.5 71.1 39.5 28.8 

 Table S21: Decay rates (RTE); decay rates for the full duration of decay, for the first 

20 minutes (initial decay rate), for the duration of ventilation (corresponding to 

scenario) and for the period after ventilation, for repeated toasting activities replicated 

in the Salford Energy House. Rates reported to 3 significant figures. 

 

C Full Duration First 20 Minutes 

Windows 62.3 125.1 

Windows [20] 20.1 118.7 

Windows [5] 32.8 105.7 

  

Table S22: Decay rates (RTE); decay rates for the full duration of decay, for the first 

20 minutes (initial decay rate), for the duration of ventilation (corresponding to 

scenario) and for the period after ventilation, for repeated frying activities replicated 

in the Salford Energy House. Rates reported to 3 significant figures. 

D Full Duration First 20 Minutes 

Windows 51.6 69.8 

No Ventilation 28.1 47.8 

Windows [20] 28.1 60.2 

Windows [5] 29.1 50.6 

 

Table S23: Decay rates (RTE) for PNC attributed to toasting activities in the Salford 

Energy House in the kitchen, living room and upstairs for various ventilation scenarios. 

Rates reported to 3 significant figures. 

 Kitchen 

Living 

Room Upstairs 



264 

 

No Ventilation 17.4 16.6 25.0 

Windows [20] 10.5 20.0 19.4 

Windows [5] 12.8 12.8 63.2 

Windows 34.1 29.3 23.3 

 

Appendix C1 

Figure S4: Lancaster University campus map highlighting locations of BREEAM and 

Non-BREEAM certified campus departmental and other buildings that were 

investigated over the course of this study (PHS – Physics, CHE – Chemistry, FAR – 

Faraday, PSC – Postgraduate Statistics Centre, INF – Infolab, CHC  - Charles Carter, 

MAN – Management School, LEC – Lancaster Environment Centre, LIC – LICA) 

 

 

Supplementary Information: Raw Data (Semi-Quantification – Top 10 Most Prevalent 

Compounds) – Full Spectrum – Concentrations given in µg/m3 

 

Table S24: Full spectrum of semi-quantified VOCs (top 10 most prevalent VOC 

compounds in each sample) for first round of sampling in Chemistry building (Survey 

1). 
 

PhD 

[2] 

RL 

[2] 

TL 

[2] 

RL 

[2] 

PhD 

[3] 

RL 

[3] 

RL 

[3] 

TL [3] Corridor 

[2] 

Blank 

Isopropanol 5.9 1 
 

1.2 
      

Acetic Acid 1.8 1.1 1 1.7 
      

Hexanal 1.4 
         

Trans-Carene 1.7 1.3 0.9 0.9 
  

2.5 
  

110 

2-Ethyl-1-hexanol 9 3.5 1.5 3.3 
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Benzyl Alcohol 6 
         

Nonanol 1.5 0.9 
 

0.8 
      

Isomenthol 2.2 2.6 1.9 9.7 
  

5.6 
   

2-Phenoxy-ethanol 5.8 0.9 1.6 1 
      

Tetradecane 2.5 3.6 2.4 2.9 
 

31 
    

Acetone 
 

2.6 21 4.2 15 100 48 
   

Unidentified Containing 'O' 

circa C13 

1.3 
        

Ethanol 
  

0.8 
       

Decanal 
  

0.8 
       

Branched alkane circa C14 
 

1 
       

para-3-Methene 
   

1.1 
      

Methyl formate 
    

28 
     

Formic acid 
    

390 
     

2,3-Butanedione 
    

33 
     

Hydroxyacetone 
    

35 
     

Glycidol 
    

10 
     

Acetol Acetate 
    

4.2 
     

Glycerol 
    

>30000 19000 110 4800 
 

55 

1-Monoacetin 
    

3600 
  

220 
  

Menthol 
    

>49000 2400 550 >11000 5000 1900 

Hexane  
     

380 310 
   

Ethyl Acetate 
     

33 85 
   

Unidentified branched alcohol circa C5 
   

370 
    

4-Ethyl-3-hexanol 
     

80 
    

para-3-Methene 
     

22 
 

1900 1800 31 

Butyl levulinate 
     

30 
    

Ethyl ether 
      

4.4 
   

2-Methyl pentane 
      

6.9 
   

3-Methyl pentane 
      

6 
   

1-Methyl-3-(2-methyl-2-propenyl)-cyclopentane 
    

340 230 9 

1-Methyl-3-(2-methyl-1-propenyl)-cyclopentane 
    

540 370 18 

Cyclohexyl-1-butanol 
      

76 
  

Isopulegol 
       

130 
  

para-Menthan-3-one 
      

140 
  

Menthylchloroformate 
      

79 
  

para-8-methene 
        

110 
 

ortho-Menth-8-ene 
        

67 
 

para-1-Methene 
        

170 7.4 

Carane 
        

240 8 

1-Cyclohexyl-1-butanol 
       

68 
 

para-Menthan-3-one 
       

77 
 

para-Cymene 
         

3.9 

Menthylchloroformate 
        

7.3 

 

Table S25: Full spectrum of semi-quantified VOCs (top 10 most prevalent VOC 

compounds in each sample) for first round of sampling in Chemistry building (Survey 

2). 

  PhD 

[3] 

RL [3] RL [3] Corridor 

[2] 

TL 

[2] 

TL 

[3] 

Corridor 

[3] 

RL 

[2] 

PhD 

[2] 

SR 

[2] 

1-Butoxy-2-Propanol 2.7                 11 

1-Methoxy-2-Propanol 3.1                 8.2 

2,2-Dimethylbutane   15                 

2-Ethyl-1-hexanol 2.4       3.6     1 9.1 3.6 

2-Methylpentane   111 12 2.9         3.3 6 
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2-Phenoxyethanol         3.8       4.2   

3-Methylpentane   49               3.3 

Acetic acid         2.9 2.4 2.7     4.7 

Acetone 7.3 102 21 4.7 6.4 2.7 2.9   8 8.4 

Benzyl alcohol         3.6           

Branched alkane circa 

C14 

              2.9     

Branched alkane 

containing o circa C11 

                4.9   

Branched alkane 

containing O circa C12 

2.4     2.7     2.4   2.9 3.6 

Branched benzene circa 

C10 

    10 3.3             

Branched cyclic 

alcohol circa C10 

51                   

Branched cycloalkane 

circa C10 

8.9   13               

Branched cycloalkene 
circa C10 

2.9           2.7   6   

Dichloromethane   44 49               

Ethyl acetate   140 867 2.2   3.8         

Hexane   356 53 2.9         2.4 4.7 

Methyl acetate 2.4               2.2   

Nonanal                   3.1 

Nonanoic acid         4.7 2.9         

Octanoic acid         2.4 2.2         

Tetradecane 3.1     2.7 3.8   2.9 2.9 2.7   

Tetrahydrofuran   91 1022               

Trichloromethane   84 22               

Trichloromethane-d   93 6.4     2.4         

 

Table S26: Full spectrum of semi-quantified VOCs (top 10 most prevalent VOC 

compounds in each sample) for concurrent samples taken from inside and outside the 

laboratory in the chemistry building (Survey 3). 
 

1A - 

OUT 

1B – 

IN 

2A - 

OUT 

2B - 

IN 

3A - 

OUT 

3B – 

IN 

4A - 

OUT 

4B - 

IN  

5A - 

OUT 

5B - IN  

1-Butoxy-2-propanol 2.4 
   

3.1 
     

1-Methoxy-2-propanol 2.9 
 

2.9 
 

3.1 
     

2-Ethyl-1-hexanol 
 

5.3 
 

4.2 2.2 3.1 
 

6.2 
 

4 

2-Methylpentane 2.4 2.9 
 

2.2 
 

3.6 
   

4.7 

2-Phenoxyethanol 
 

7.8 
 

12 
   

4.4 
 

5.3 

3-carene 2.4 
 

2.4 
       

Acetaldehyde 
 

4.9 
        

Acetic acid 
  

3.8 
   

3.8 2.2 3.1 
 

Acetone 3.6 4.4 4.2 3.3 8.2 102 4.9 21 3.1 4.2 

Decanal 2.4 
  

2.4 3.3 2.4 
   

2.9 

Ethanol 
 

6.4 
 

3.3 
 

2.4 
 

2.4 
  

Hexane 4.4 7.3 4.7 7.6 7.3 8.2 7.6 6.2 5.1 7.1 

Isomenthol 
 

5.3 
        

Methyl acetate 2.7 
   

2.7 
     

Nonanal 3.6 2.7 4 2.9 4 
 

2.9 2.4 
 

2.7 

p-Cymene 
   

4 
      

p-Menthan-1-ol 
 

71 
    

2.4 
 

2.4 
 

Tetradecane 
        

3.6 3.1 

trans-carene 
   

3.1 
      

 

 


