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We elaborate on the theory developed in the main paper, for those readers who are interested in
greater detail. We first discuss the statistical properties including the possible ion configurations
in the pore and the link between our free energy and the potential of mean force (PMF). Then
we derive the equations governing ionic conductivity at small applied potentials (linear response),
and consider three important examples to further illuminate understanding the central figure of the
main paper (Figure 3.). Finally we briefly review the important parameters ∆µ̄K,1−4 and ∆µ̄Na,1−4

and place them in the context of other results.
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DERIVATION OF THE STATISTICAL THEORY

Definition of the system

The system is described by Fig. 1 which is copied from the main text. It represents the selectivity filter (SF) of a
biological channel. This pore (denoted by (c)) is thermally and diffusively coupled to the left (L) and right (R) bulk
reservoirs (b) . Each bulk contains mixed solutions of S total ionic species where s ∈ 1, · · · , S. The system as a whole
is characterized by the canonical ensemble with constant total particle number Ns, volume V and temperature T .
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FIG. 1. Structure of open KcsA (5vk6.pdb) [2] visualised using chimera [3]. (a) Two chains (blue ribbons) spanning a lipid
membrane (yellow strands) between two aqueous ionic solutions. The SF is located within the box, and K+ (purple), Na+

(orange), and Cl− (green) ions alongside water molecules are included. (b) Structure of the SF for wild type KcsA and (c) the
T75C mutant, with indicated amino acids at binding sites. (d) Lattice model used to define the system.

Ions are free to leave the bulk solution and bind at specific sites in the pore, with nbs being the number of ions in
either bulk. Due to the narrowness of the pore, ionic motion is confined to one dimensional conduction via a finite
number of binding sites M , where each site m ∈ 1, · · · ,M can hold a single ion at most. Therefore, the total number
of ions in the pore is n =

∑M
m

∑S
s nsm ≤M , where

∑S
s=1 nsm ∈ 0, 1 and ns =

∑M
m=1 nsm. All possible configurations

of ionic binding in the pore {nsm} (or {nj} to simplify notations) are mutually exclusive leading to Fermi statistics [1].
As a result the total energy of each configuration in the system is found by explicitly counting the number of ions of
each species that leave the left (n′′sm) and right (n′sm) bulks and enter site m in the pore (keeping the total number
of ions constant),

E({nj}) = E0 +

S∑
s

(nLs µ
L
s + nRSµ

R
s ) +

S∑
s

M∑
m

(n′sm + n′′sm)µcsm (1)

Here we define E0 = TS−pV , to be the thermodynamic contribution to the energy of the whole system; with entropy
S, pressure p. Terms: µbs, µ

c
sm correspond to the species electrochemical potentials in either bulk and site m in the

pore respectively.
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Configurations in the pore

The number of possible states corresponding to the total number of possible configurations {nj} of ions binding to
the pore can be calculated explicitly. If we consider indistinguishable ions and empty sites (or holes) then we can use
the multinomial theorem with each of the i = 1 · · ·S species plus empty sites n0 contributing to the total number of
states. We note that if the system is reduced to a single species then we can count the number of states using the
Binomial theorem. Thus, for n =

∑
s ns ions in a pore with M binding sites, the number of states can be calculated

from,

M(M,n1, · · ·nS , n0) =

(
M

n1, · · · , nS , n0

)
=

M !

n0!
∏
s ns!

, (2)

where n0 = M −
∑
s ns. It is clear that Eq. (2) already accounts for the indistinguishability of ions and is the reason

why the kT log(ns)! term is included in the expression for the total energy (see (1) of the main text). Therefore the
total number of states N is given by the sum of this coefficient over all possible numbers of ions and configurations of
species inside the pore. Hence, N is given by the sum over all possible values of ns and n0 that satisfy the condition
n0 +

∑
s ns = M ,

N =
∑

n0+
∑

s ns=M

M(M,n1, · · ·nS , n0). (3)

There are four binding sites in the selectivity filter of KcsA (M = 4) [4] and so, if we consider a single species of
permeant ions, then we find 15 possible states. This number rises to 65 if we consider two conducting species.

Derivation of the ensemble and its properties

The electrochemical potential in the bulk takes the standard form defined [5–7] as the sum of ideal, excess, and
electrostatic parts

µbs = kT ln

(
(Λbs)

3xbs

qint,b
s

)
+ µ̄bs + qzsφ

b, (4)

where Λbs, q
int,b
s , xbs, zs, φ

b and µ̄bs denote the thermal wavelength, internal partition function, mole fraction, valence,
external electric and excess chemical potential respectively.

Since the number of ions inside the pore is less than M and small typically M ∼ O(1), the energy to add an ion to
site m, can be defined from the discrete difference in the energy of the pore between n and n+ 1 states [8]

µcsm({nj}) = kT ln
(Λcs)

3∆f ({nj})
qint,c
s

+ µ̄csm + qzsφ
c
m + ∆E . (5)

In this expression Λcs, q
int,c
s , φcm and µ̄csm are as defined previously except for the pore and site m. Since we assume that:

(Λbs)
3/qint,b

s ∼ (Λcss)
3/qint,c

s , we can cancel these terms in the energy expression and so shall ignore their contribution
in all future expressions. The remaining two terms ∆f ({nj}) and ∆E ({nj}) are the differences in number of ions in
the pore and electrostatic energy respectively. Thus ∆f is related to the indistinguishably of ions in the pore

∆f{nj} = kT log

(
ns + 1

n0 − 1

)
(6)

where we recall that n0 is the number of ‘holes’ or empty sites n0 = M −
∑S
s ns. Clearly these two terms depend on

the initial state of the system before adding an ion. As a result the energy corresponding to ions inside the pore can
be expressed as follows,

S∑
s

M∑
m

(n′sm + n′′sm)µcsm({nj}) =

S∑
s

M∑
m

(n′sm + n′′sm) [µ̄csm + qzsφ
c
m]

+ f({nj}) + E({nj})− E(0)− f(0) (7)
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where E(0) and f(0) denote the electrostatic energy and factor f to have zero ions in the pore. These two terms are
constant, and will be factored out of the expression and so we shall neglect their presence hereafter.

With these terms in mind, we can now rewrite the total energy Eqn. (1) by introducing N b
s defined as the number

of ions in either bulk if the pore is empty i.e.,

NL
s = nLs +

M∑
m

n′′sm (8)

and similarly for NR
s . Thus, the energy becomes

E({nj}) = E0 +

S∑
s

[(NL
s − n′′sm)µLs + (NR

S − n′sm)µRs ] +

M∑
m

(n′sm + n′′sm)µcm (9)

which can be written as,

E({nj}) = E0 + E({nj}) +

S∑
s=1

(
NL
s −

M∑
m=1

n′′sm

)
µLs +

∑
s=1

(NR
s −

M∑
m=1

n′sm)µRs + kT ln(n0)! +

S∑
s=1

kT lnns!

+

S∑
s=1

M∑
m=1

(n′sm + n′′sm)(µ̄csm + qzsφ
c
m), (10)

where we have introduced f =
∑
s kT log(ns!) + kT log(n0!). If we now collect terms proportional to N b

s , and because
at equilibrium, µLs = µRs = µbs, we can write,

E({nj}) = E0 + E({nj}) +

S∑
s=1

(
NL
s +NR

s −
M∑
m=1

(n′′sm + n′sm)

)
µbs + kT ln(n0)! +

S∑
s=1

kT lnns!

+

S∑
s=1

M∑
m=1

(n′sm + n′′sm)(µ̄csm + qzsφ
c
m). (11)

We recall that total number of particles is defined by: Ns = NL
s +NR

s , and hence, we can rewrite Nsµ
b
s as a constant.

Constant terms can be factored out of the total energy, and thus we arrive at the total energy of the system,

E({nj}) = E0 + E({nj}) + kT ln(n0)! +

S∑
s=1

kT lnns!

+

S∑
s=1

M∑
m=1

(nsm)(µ̄csm + qzsφ
c
m − µbs), (12)

where we have reintroduced the number of ions in each site m of the pore, nsm = n′sm + n′′sm. The stationary
equilibrium probability-distribution function P ({nj}) for particular occupation configurations is given by the Gibbs
distribution,

P ({nj}) = e−E({nj})/kTZ−1. (13)

However, we note that there is explicitly a constant term in E({nj}) and because we shall assume that the thermo-
dynamic contribution E0 does not depend on the state of the system, we can factor this term and write the effective
grand canonical ensemble (GCE) distribution function as,

P ({nj}) =
1

n0!
∏S
s ns!

e−(E({nj})+
∑S

s=1

∑M
m=1(nsm)(µ̄c

sm+qzsφ
c
m−µ

b
s))/kTZ−1. (14)

The partition function Z takes the form,

Z =
∑
{nj}

1

n0!
∏S
s ns!

e−(E({nj})+
∑S

s=1

∑M
m=1(nsm)(µ̄c

sm+qzsφ
c
m−µ

b
s))/kT . (15)

Finally the Gibb’s free energy (G=E-TS+pV) can be written as,

G({nj}) = E({nj}) + kT ln(n0)! +

S∑
s=1

kT lnns! +

S∑
s=1

M∑
m=1

(nsm)(µ̄csm + qzsφ
c
m − µbs). (16)
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DERIVATION OF THE IONIC CONDUCTIVITY

In this section, we aim to derive the conduction properties of our system in the linear response limit. We consider
a small applied electric potential held constant for a long time, and follow Kubo and Zwanzig to investigate the
static response using equilibrium statistical mechanics [9–11]. Thus we start by perturbing the total energy of the
system Eqn. (10) by a static potential δφ, and since the system stays in chemical equilibrium it is defined by
δφ = φL − φR = µL − µR. We shall perturb φb symmetrically by ±δφ/2. The potential at each site in the pore φcm,
is defined by αmδφ, where αm is the distance between the left bulk and each binding site. Hence we can write,

E({nj}, δφ) = E0 + E({nj}) +

S∑
s=1

(
NL
s −

M∑
m=1

n′′sm

)
(+qzsδφ/2 + µ̄Ls + kT log(xLs ))

+
∑
s=1

(NR
s −

M∑
m=1

n′sm)(−qzsδφ/2 + µ̄Rs + kT log(xRs ))

+ kT ln(n0)! +

S∑
s=1

kT lnns! +

S∑
s=1

M∑
m=1

(n′sm + n′′sm)(µ̄csm + qzsαmδφ), (17)

Since the only difference between bulks is the electrostatic potential, we can simplify notation by writing µ0
s =

µ̄bs + kT log(xbs). Hence we by collecting terms with respect to δφ we can write

E({nj}, δφ) = E0 + E({nj})

+

S∑
s=1

(
NL
s −

M∑
m=1

n′′sm

)
(+qzsδφ/2) +

∑
s=1

(NR
s −

M∑
m=1

n′sm)(−qzsδφ/2) +

S∑
s=1

M∑
m=1

(n′sm + n′′sm)qzsαmδφ,

+

S∑
s=1

(
NL
s +NR

s −
M∑
m=1

(n′′sm + n′sm)

)
(µ̄0
s + kT log(x0

s)) + kT ln(n0)! +

S∑
s=1

kT lnns! +

S∑
s=1

M∑
m=1

(n′sm + n′′sm)µ̄csm,

(18)

since in this instance the bulks are identical apart from the electrical potential: NL
s = NR

s and so we can simplify the
terms to write,

E({nj}, δφ) = E0 + E({nj})

+

S∑
s=1

(

M∑
m=1

(n′sm − n′′sm))(qzsδφ/2) +

S∑
s=1

M∑
m=1

(n′sm + n′′sm)qzsαmδφ,

+

S∑
s=1

(
NL
s +NR

s −
M∑
m=1

(n′′sm + n′sm)

)
(µ̄0
s + kT log(x0

s)) + kT ln(n0)! +

S∑
s=1

kT lnns! +

S∑
s=1

M∑
m=1

(n′sm + n′′sm)µ̄csm,

(19)

We shall now introduce the parameter υbsm. This is defined for an ion entering the pore from the left and right bulk
respectively and for each species separately [1/2−αm, αm + 1/2]. We can write the following free energy, distribution
and partition functions,

G({nj};nf ;φ) = E({nj}) + kT
∑
s

lnns! + kT lnn0!−
∑
s

∑
m

nsm[∆µ̄sm + kT ln(xs)± qzsυbsmδφ], (20)

P ({nj};nf ;φ) = Z−1

(
1

n0!

∏
s

(xbs)
ns

ns!

)
× exp

[(
S∑
s=1

M∑
m=1

nsm
(
∆µ̄bsm ± qzsυbsmδφ

)
− E({nj};nf )

)
/kT

]
(21)

Z({nj};nf ;φ) =
∑
{nj}

(
1

n0!

∏
s

(xbs)
ns

ns!

)
× exp

[(
S∑
s=1

M∑
m=1

nsm
(
∆µ̄bsm ± qzsυbsmδφ

)
− E({nj};nf )

)
/kT

]
. (22)

In the limit of small δφ these expressions can be linearised,

Z(δφ) ≈ Z

[
1± qδφ

kT

〈∑
s

∑
m

zsnsmυ
b
sm

〉]
(23)
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and,

P (δφ) ≈ P

[
1± qδφ

kT

(∑
s

∑
m

zsnsmυ
b
sm −

〈∑
s

∑
m

zsnsmυ
b
sm

〉)]
, (24)

These expressions can be further simplified because parameter υbsm can be averaged for each species around all sites
in the pore:

∑
m nsmυ

b
sm = nsυ̂

b
s. We note that if the pore has evenly distributed sites i.e. i.e. a symmetrical pore,

then υ̂bs = 1/2. In this publication we only consider a symmetrical pore, and the effects of varying this parameter will
be investigated in future work.

To linear order the average of any dynamical variable A in an applied field E can be written in terms of the static
susceptibility χAM [9],

〈A〉E = 〈A〉+ χAME. (25)

The response or χAM describes the average linear response produced by the applied field, and contains information
about the coupling M to the field.

We shall calculate the static susceptibility for the whole pore and the binding site m, in response to the field
generated by the scalar potential δφ. As a result, in accordance with Kubo, we shall be looking for a relation of the
form,

〈n〉φ = 〈n〉+ qχδφ. (26)

where χ has units of [kT−1] or [(m3kT )−1] depending on if it is the response for particle number or density.
If we first consider the the full pore, then we must average over total particle number inside the pore 〈ns〉δφ,

〈ns〉φ =
∑
{nj}

nsP (δφ) = 〈ns〉 ±
qδφ

kT

(〈
ns

(∑
s

zsnsυ̂
b
s

)〉
−

〈∑
s

zsnsυ̂
b
s

〉
〈ns〉

)
, (27)

whereas at each site we must average over total particle number inside the site 〈nsm〉φ

〈nsm〉δφ =
∑
{nj}

nsmP (δφ) = 〈nsm〉 ±
qδφ

kT

(〈
nsm

(∑
s

zsnsυ̂
b
s

)〉
−

〈∑
s

zsnsυ̂
b
s

〉
〈nsm〉

)
. (28)

The resulting static density susceptibilities are written as,

χsm =

(〈
nsm

(∑
s

∑
m

zsnsmυ
b
sm

)〉
−

〈∑
s

∑
m

zsnsmυ
b
sm

〉
〈nsm〉

)
1

VsmkT
. (29)

χs =

(〈
ns

(∑
s

∑
m

zsnsmυ
b
sm

)〉
−

〈∑
s

∑
m

zsnsmυ
b
sm

〉
〈ns〉

)
1

V kT
(30)

We note that Vsm is the site volume for each respective species s. The total volume of the pore is constant, but we
allow the volume of each site to vary with species such that we can write

∑
m Vsm ≡ V . In both of these susceptibilities

we have explicitly included correlations between ions of different species and between ions at different sites because
both of these may be non-negligible. We can also write these functions using equilibrium statistical mechanics,

χsm =

υ̂bszs ∂〈ns〉∂∆µ̄sm
+

S∑
j 6=s

υ̂bjzj
∂〈nj〉
∂∆µ̄sm

 1

VsmkT
(31)

χs =

υ̂bszs M∑
m=1

∂〈ns〉
∂∆µ̄sm

+

S∑
j 6=s

υ̂bjzj

M∑
m=1

∂〈nj〉
∂∆µ̄sm

 1

V kT
. (32)

In total, the pore can be represented by a series of connected binding sites, and charge must be conserved meaning
that current can only flow through the pore if all sites are conducting. Thus the pore is analogous to resistors in
series and the resistivity Rsm and conductivity σsm can be determined at each binding site. The reciprocal values of
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σsm can be summed to obtain the total species conductivity. According to linear response theory the conductivity
of a system can be calculated from the Einstein relation which relates the diffusivity D to the susceptibility. This
is derived in [10, 11] for a system of volume V as σ = q2D〈(∆n)2〉/(V kT ) where the static density susceptibility is
defined as χ = 〈(∆n)2〉/(V kT ). However, in our system χs or total variance in particle density may remain non-zero
and even large when a binding site becomes non-conductive, which is in clear violation of Kirchoff’s laws. Clearly,
then, we need to determine the conductivity at each binding site in order to compute the total. Hence, we use the
Einstein relation to calculate site-conductivity σsm in terms of χsm Eqn. (31),

σsm = zsq
2χsmDsm. (33)

Total species conductivity σTs can be computed, and this must be summed over species in order to obtain the total
conductivity of the pore,

1

σTs
=
∑
m

1

σsm
, σT =

∑
s

σTs . (34)

We note that if all ion types and sites become indistinguishable, then each site conductivity and hence σT becomes
proportional to the variance in total particle number as derived in [10, 11].

This result is in full agreement with numerous experimental examples within the literature. For example, point
mutations affecting conduction in K+ or NaK channels [12], or C-type inactivation in KcsA [13]. It is clear from
Eqn. (31) that the conductivity is being written for a strongly correlated system, including single particle (self)
and inter-particle correlations (perhaps between ions of different species). Furthermore, local pore volume can also
determine conductivity/selectivity and the effects of mutation can be described.

Conductivity and hence electrical current can be defined at each site,

Gsm =
Asm
Lsm

σsm, Ism = GsmVm (35)

where Asm, Lsm and Vm are surface area, length and applied voltage at each site m respectively. Since total current
across the whole pore equals current across each site, we can write the total current as,

Is = GTs V, where: GTs =

(
M∑
m

1

Gsm

)−1

. (36)

Here V =
∑
m Vm is the total applied voltage.

If we consider a pore consisting of M sites of identical geometry, and constant diffusivity throughout the pore, then
the current simplifies to,

Is =
zsq

2

L2
sm

Dc
s

(
M∑
m=1

1

χ̃sm

)−1

V, (37)

where Lsm = 〈Lsm〉 is the average length of the binding site and χ̃sm is the number susceptibility equal to χsm
multiplied by the volume at each site (which is equal for each species and site in this instance). Furthermore, if each
site shares binding affinity such that, χ̃s ≡ χ̃1 = χ̃M , then one can write,

Is = zsq
2 D

c
s

L2
sm

χ̃sV. (38)

Let us consider our example of KcsA with 4 sites and a single conducting species. If site 4 has volume V4 and sites
1-3 share volume Vm, then by introducing parameter β defined as: V4 = βVm, we can write,

σT =
Dzq2

Vm

χ̃1χ̃2χ̃3χ̃4

βχ̃1χ̃2χ̃3 + (χ̃1χ̃2χ̃4 + χ̃1χ̃3χ̃4 + χ̃2χ̃3χ̃4)
. (39)

Interestingly when we consider the total conductance then this change in volume only affects the conductance if the
length is varied. Thus, if we introduce L4 = γLm we can write total conductivity as,

GT =
Dzq2

L2
m

χ̃1χ̃2χ̃3χ̃4

γχ̃1χ̃2χ̃3 + (χ̃1χ̃2χ̃4 + χ̃1χ̃3χ̃4 + χ̃2χ̃3χ̃4)
. (40)
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In the main paper we fit experimental current-voltage relations found for wild-type (WT) KcsA and a mutant
(MuT). Mackinnon et. al. [14] states that the cysteine replaces threonine without significantly altering the side-chain
volume. As a result we assume that all four sites S1-4 in the WT and S1-3 in the MuT have the same volumes, and
consider S4 in the MuT to be slightly perturbed with γ = 1.2. Furthermore we assume that both channels remain
fully symmetrical with respect to the applied voltage, meaning that υ̂bm = 1/2.

ELECTROSTATICS AND EFFECTS OF IONIC BINDING

In this section we shall briefly review the effects of ion binding, and the choice of electrostatics used within our
theory.

Effects of ion binding and polarisation

The selectivity filter of KcsA is flexible, with structural fluctuations of ∼ 1Å r.m.s. [15], which are larger than the
difference in the Na+/K+ ion size. It is also known that the structure may change in response to the size and type of
ion that is bound to the pore. For example at low K+ concentrations the pore structure is altered because the Val-76
and Gly-77 residue adopt a new conformation resulting in the filter adopting a non-conducting “hour-glass” shape
[16]. Smaller, more subtle effects in relation to polarisation are also expected to be important [17–20]. These effects
can be considered explicitly within our theory, because the free energy contains both long and short range interactions
which clearly depend on the pore structure. Furthermore, the average surface area and volume are used at various
stages in the calculation of current. However, in its current application we have considered each site to share volume
and structure regardless of the ionic configuration, and we will explore the effect of conformational changes in future
applications.

Electrostatic interaction

In our energy expression Eqn. (12), the term E corresponds to the energy of electrostatic interaction between all
the ions in state {nj} and all of the pore charges which total pore charge nf . As stated in the main manuscript
we are free to use any type of interaction, such as those used in Kitzing [21], or Yesylevskyy [22]; but we choose to
consider the ICB-potential [23–26]. This potential takes account of the electric field being effectively reflected by the
dielectric mismatch at the protein surface, analogously to light in an optical fiber. It is an assumption that is valid in
the “short-channel” approximation. A “long” channel has a length exceeding twice the characteristic decay length,
which is seven-times the radius of a water-filled pore [23]. Biological channels such as KcsA can be considered as
short because their lengths are of order 10-15Å , which is around the characteristic decay length. This interaction
takes the form Q2/2C where Q is total charge inside the pore and C is its capacitance. We label it as interaction (1)
for the purpose of comparison,

E(1) =
q2(
∑
s zsns + nf )2

2C
. (41)

We note that this interaction is identical to that used in the analogous study of electron transport through quantum
dots, cf. Beenakker [27, 28].

As stated we are free to use any form of interaction, and we so have selected the most appropriate one. To
demonstrate this let us consider a simple example: a 2-site pore with up to 2 ions inside it. We compare the energy
Eqn. (41) (with nf = −2.5) to that of [22] which is comprised of two terms,

E(2) =

N∑
n=1

[
U(xn) +

N∑
k>n

V (|rn − rk|)

]
. (42)

The first, U , is an inverted Gaussian potential designed to replicate the single-ion potential of mean force (PMF) of
the pore,

U(x) = −U0e
−(x/a)2 . (43)
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We note that in this potential U is designed to replicate the potential well created by attraction to the negatively
charged pore, and parameters U0 and a corresponding to the value of the energy minima and width of the potential
well, are determined by comparison to the single-ion potential of mean force (PMF). The second term, V , is the
energy from the screened ion-ion Coulomb interaction between ions,

V (r) =
z1z2q

2

4πε0r
e−r/d. (44)

Here: x, d and zs correspond to the axial position in the pore, the shielding constant which is depenent on the electrical
permittivity in the pore and the ionic valence. Although these are fitting parameters we shall simply consider the
values used in [29]; and so d = 2.8Å , U0 = 10.5kT and a = 9Å. Since Eqn. (42) assumes a pore centred on x = 0 the
ions occupy sites at x =-2Å and +2Å with the ion-to-ion separation being 4Å if both sites are occupied.

In Fig. 2 we compare the results using Eqns. (41) (top row) and (42) (bottom row), by plotting the total
conductivity and occupancy vs. the affinities at each site ∆µ̃m. Note that in the Conductivity Examples section, we
discuss these surfaces in detail and provide a series of examples. Clearly the qualitative behaviour of the occupancy
and conductivity is identical, with only a slight difference in the precise values of ∆µ̃m at which conduction occurs.
This difference is to be expected because each potential contains a couple of fitting parameters, and so the energy
barriers for the first and second ions to enter the pore slightly differ between the potentials. However, in each case the
peaks form at the midpoint of the occupancy staircase when the difference in site affinities is small. We would expect
similar qualitative agreement if we described the ion-pore interaction with V , and we shall analyse these interactions
in a separate manuscript. One should not be surprised at the qualitative agreement between different potentials
because the statistical properties are functions of the total energy and not simply of E .

FIG. 2. Test of electrostatic interaction choice with potentials 1 and 2 given by Eqns. (41) and (42) respectively. (a) and (c)
correspond to normalised total conductivity, meanwhile (b) and (d) are the total occupancies. With both potentials peaks form
when the energy barrier to enter each site is close to being barrier-less and when the sites share affinity.

NOVEL INSIGHTS FROM THE THEORY

Fundamental importance of structure

The selectivity filter (SF) of a biological ion channel contains a large number of important parameters: number
and position of binding sites, binding site geometry and volume, short-range interactions at each site and long-range
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FIG. 3. Comparison of NaChBac [40] (a), and open KcsA (5vk6.pdb) (b) [2] visualised using chimera [3] and coloured by
residue.

interactions in the pore [30–32]. Each of these is made more complicated by the facts that: the pore structure
fluctuates; the electrical permittivity inside the pore is unknown; quantum mechanical interactions and polarisation
of charge effects may occur; and these properties may vary with the ion type [17–20, 33, 34, 36–39, 81]. Furthermore,
different channel types such as K+, Na+, Ca++ channels or even slightly mutated channels have large differences in
function. It is very clear that structure, and small changes in structure, can significantly affect the overall function of
the pore.

In Fig. 3 we compare the structures of open KcsA (5vk6.pdb) [2] and the bacterial Na+ channel NaChBac taken
from [40]. Although the comparison is not to scale, it is known that NaChBac is roughly the same length as KcsA,
but is wider, with a less uniform pore. Furthermore, Na+ channels contain a strong and permanent glutatmate charge
which directly interacts with the ions. However, its effective charge value is unknown due to possible polarisation and
protonation effects [41–45]. The alteration in structure results in NaChBac favouring Na+ over K+ [44]. It is worth
noting that the related NaVaB channel differs again in structure from NaChBac, and is almost non-selective between
Na+ and K+ [46].

The importance of structure is perhaps most keenly observed in slightly mutated channels because, often, only a
single residue is affected and yet it can lead to significantly altered channel properties. As described in the main
paper, wild-type (WT) mutating (MuT) the threonine at residue 75 to cysteine does not significantly affect the side-
chain volume but strongly reduces the occupancy of S4 and alters the electrostatic properties by removing 4 hydroxyl
ligands [14]. In Fig. 4 we use a figure taken from [47] which compares the SF’s of the WT in the closed configuration
to the G77A and G77C mutants. Mutating the glycine at residue 77 had 3 interesting structural effects vs. the WT:
the main-chain carbonyl group of V76 is prevented from pointing directly inwards into the channel’s pore; the K+

ion at S2 is only coordinated by 4-main chain carbonyl groups from the A- or C-77 residues; and finally the SF’s had
a large reduction of occupancy at S1 in addition to S3 where the main mutation took place. The authors concluded
that the ions must have been energetically coupled, thus stabilising the S2-S4 configuration. All three mutations also
affect significantly the total conductivity of the pore. These three examples of mutated KcsA display vastly different
function with both the site-occupancy and total conductivity being affected.

Principal results of the main paper

With these examples in mind we now consider Fig. 3 from the main text, which shows selective knock-on conduction
within the pore. This figure is re-plotted in Fig. 5 with K+ (blue) and Na+ (red) occupancies (top) and conductivities
(bottom) of (a), being plotted vs. nf and ∆∆µ̄K,Na;S4. We have also added 2-D cuts of total occupancy and species
conductivity vs. nf in (b) and (c) respectively. In the cuts the solid lines are calculated with the extracted parameters
for the WT and so ∆µ̄K,S4 = 6.2kT and ∆µ̄Na,S4 = 0.2kT ; and the blue and red stars correspond to the positions
of K+ and Na+ conductivity predicted for KcsA. As discussed in the main text and in the examples below, the
conductivity peak occurs at the degeneracy between neighbouring states, and thus we observe 3 steps and peaks
corresponding to 0-1, 1-2, 2-3 ion knock-on transitions. It is worth emphasising that the conductivity mechanism
explicitly relies on the electrostatic correlations between ions and the structure of the pore. As can clearly be seen
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FIG. 4. Figure taken with permission from [47]. The closed wild-type KcsA channel (A) is compared to G77A (B) and G77C
(C) mutations. In both mutations the main-chain carbonyl group of V76 is prevented from pointing directly inwards into the
channel’s pore, part of the coordinating oxygens at S2 have been removed, and the occupancy at S3 (and also S1) has been
reduced alongside the overall conductivity.

from the figure, the total selectivity of the pore can be varied, and even reversed, simply by varying the selectivity
of S4, although we note that the conductivity in this instance is negligible when compared to a K+ favoured pore.
For example, at ∆∆µ̄K,Na;S4 = −10kT we find that the ratio of conductivity’s σTNa/σ

T
K to be 17 in favour of Na+,

however the overall conductivity is around 104 times smaller than at the peak.
The predicted conductivity in the mutated channel is also plotted in the figures, and is shown by the green star. As

a consequence of the mutation, we assumed the pore volume and affinity at S4 to change, resulting in ∆µ̄K,S4 = 5.2kT .
Therefore, the green star should not fit exactly onto the curve because this is calculated with parameters corresponding
to the WT: it is simply a guide to the reader. In fact, this highlights the two contributors to the reduced conductivity:
(1) a reduced pore charge and (2) a difference in site affinity/geometry. The green star is below the theoretical line and
so the difference in site affinity/geometry reduces the conductivity of the mutant relative to the WT at nf = −2.32
by around 25%. However, the overall reduction in conductivity of the MuT vs. the WT is increased by the change in
nf , with the overall MuT/WT conductivity ratio being ∼0.075.

Proposed future work

A subset of readers may find it useful to know how our general theory can be extended in the future, and we outline
some promising directions below –

• Different binding sites for different species. Na+ ions have been observed to bind at different sites within
the pore [20, 33, 34, 81]. These sites, form in the plane of the coordinating ligands and are Na+ selective. The
effects of additional binding sites, and their potential role in selectivity [12], can be investigated and explored
within our theory, simply by increasing the number of available binding sites and hence states of the system,
and considering a different selectivity. For example, adding 1 planar site would increase the number of states
for 0-3 K+ or Na+ ions in the pore from 65 to 111. It is important to note that the derivation of occupancy and
conductivity remains the same, and so one would simply need to recalculate these properties.

• The optimal conduction mechanism in KcsA. Currently, there is debate as to the nature of the conduction
mechanism inside KcsA [4, 48–50]. In our main paper, we only consider 0-3 ions inside the pore and observe
2-3 ion conduction with nf = −2.5, based on the ideas of MacKinnon [51]. We can equally easily consider 0-4
ions in the pore, however, and identify the range of pore properties required to observe either 2-3 or 3-4 ion
conduction events.

• Modelling the K+ channel family. It is known that K+ channels, which are likely to be present in every
living being [52], have conserved selectivity filters sharing the xxGYG sequence and, in most cases, sharing
the full TVGYG sequence[82]. Despite, the similarities in structure of the SF, these channels can have vastly
different conductivity and selectivity properties, for example the conductivity can vary from 5 to 270 pS [54]. It
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has been shown experimentally that the cavity contributes significantly to the pore resistance, thus lowering the
conductance of Shaker; and this conductance is increased when mutations are made to the cavity [55]. Thus,
the cavity is expected to play a key role in determining the differences of conductance [54, 55]. Wee plan to
incorporate the cavity into our theory by adding it as a separate subsystem. We would be free to alter the
interaction strength and cavity geometry, and could test if varying the cavity dimensions significantly affects
the overall conductivity, or if changes to the binding affinities in the cavities are also needed.

• Developing a Kinetic model and deriving self-consistent transition rates. Kinetic models are widely
used to investigate the ionic currents and selectivities far from equilibrium [56–58]. However, such theories all
depend on ionic transition rates which, unlike their electronic counterparts, can not easily be rigorously derived
and, as a result, are a source of criticism [59, 60]. Our theory provides an excellent basis on which to derive
these rates, as we have shown recently [61]. The kinetic model starts from the set of states used in the statistical
theory and, by comparing the current at linear response to the current in our manuscript, one can identify
the form of transition rates required. In [61] we developed this logic through application to NaChBac. Note,
however, that we considered a simplified geometry and neglected the effects of correlations between ions at
different sites. Further work is needed.

• Incorporating polarisation. At present most of the available force fields, such as AMBER or CHARM [62–
65], do not include polarisation. Yet ions inside the pore may face localised electrostatic effects so that account
should be taken of [66, 67]. In our theory each binding state is characterised by the location, number and type
of ions present inside a pore with a given structure, as well as the local electrical permittivity. Hence there are
several possible approaches to taking account of polarisation. The simplest one is to vary the local polarisation
in our energy term due to the binding state of the pore. Alternatively we can modify the parameters separately
for ion-ion and ion-fixed charge interactions. At a more fundamental level, the state of polarisation is included
within multi-ion PMFs calculated using polarisable force-fields. Accordingly, the energy term can be calculated
explicitly using polarised multi-ion PMFs. We plan to estimate analytically a multi-ion PMF that includes
polarisation. We will do so by extending the results from [68, 69], and using the Drude model introduced by
Roux [70, 71]. In addition polarisation can be included explicitly within the linear response formalism [11] via
fluctuations of energy which account for the changes in structure and polarisation.

Even in its current form, as presented in the main paper, the theory illuminates the transport properties of narrow
biological channels quite generally, including in particular the K+-channel family – and it also provides a robust basis
for future developments.

CONDUCTIVITY EXAMPLES

The occupancy and conductivity highlighted by Fig. 3 of the main paper, exhibit rich and complex behaviour. To
explore and explain these phenomena in the greater detail that a subset of readers may find useful, we now consider
3 important examples outlining the conductivity-occupancy relationship, and the effects of allowing more ions and
ion types inside the pore. Note that we assume KcsA geometry with 4 sites and a total channel length and radius
of 12Å and 2Å respectively. Although not necessary, we also consider the limit where all site volumes are identical
and equal to the total pore volume divided by the number of sites, Vsm ≡ V c/M , and where the diffusivities are also
equal in each site.

Example 1: One species, one ion, multiple binding sites

In this example we investigate the system under the 0-1 ion transport mechanism, for a pore with two binding sites.
We consider the binding affinity in site 1 to be fixed but mutate site 2 and thus allow ∆µ̃2 = ∆µ̄2 + kT log(x) to
vary in accordance with Fig. 3 of the main paper. The aim is to describe the effect on the conduction mechanism of
the interplay of distinguishable binding sites. In this system the partition function comprises of one empty and two
singly-occupied states. We denote the number of ions and their location within the free energy,

Z = e−G(0)/kT + e−G(1K,m=1)/kT + e−G(1K,m=2)/kT (45)

In Fig. 6 we consider the energy spectra vs. charge of the pore nf . The black dashed curve represents the state
without ions; the purple and green curves represent states with an ion at site 1 and 2 respectively. When the ion is in
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site 2 we showcase the spectra when ∆µ̃2 = 1.5kT . Coloured circles highlight the occurrence of degeneracy between
the zero and strongly occupied states. At each of these points we find that the respective energy barrier is zero i.e.
∆G = 0. Here, the system is degenerate because either state is equally probable and, under certain conditions that
we will elucidate later, may yield conduction. Due to the difference in ∆µ̃, splitting between the single ion states
occurs, resulting in a shift of the degeneracy point. However, it is clear that when such a degeneracy occurs at a
higher energy than another i.e. the purple curve in this figure; then the probabilities of the states in question are
smaller than the probability for the ion to be in site 2. Thus we can establish the following energy barrier at each
degeneracy point,

∆Gm = ∆E + kT log[(n+ 1)/n0]−∆µ̄m − kT log(x) = 0. (46)

Let us consider the occupancy and conductivity of each site (see Fig. 7). Occupancy ((a) and (c)) forms a step-like
function vs. both ∆µ̃2 and nf labelled in the figure as step 1 and 2 respectively. Step 1 also corresponds to a step
in total particle number, but step 2 does not because here the single ion states are always favoured and it is just
the pore favouring site 1 or 2. The conductivity forms a sharp peak close to the midpoint of step 1. Therefore, we
can conclude that conduction maximises at the degeneracy condition (46) and when the site is favoured. When a
difference between site affinities exists, conduction may still occur but it is reduced.

The total conductivity and occupancy are considered in Fig. 8. Panels (a) and (b) show the total occupancy and
normalised conductivity through the pore vs.nf and ∆µ̃2. It is clear from both figures that the ∆µ̄2 = 0 plane is
important because it is around this that conductivity is peaked and where occupancy starts to vary due to the growing
importance of the state with the ion occupying site 2.

Total conductivity is given by the inverse of the sum of the reciprocal conductivities at individual sites. For this
example we can write,

σT =
σ1σ2

σ1 + σ2
(47)

where we remind the reader that each conductivity is proportional to the susceptibility into the given site. Therefore
as the difference in affinity between sites grows i.e. the limit |∆µ̃1 − ∆µ̃2| � 0 the susceptibility and conductivity
into the least favoured site tends to zero and the total conductivity drops to zero. Thus, in contrast to conduction
into the individual sites, conduction now occurs close to the degeneracy condition (46) provided that the difference
in site affinities is small |∆µ̃1 −∆µ̃2| ∼ 0. In fact, it is not exactly zero because we have omitted a small factor ε due
to the entropy of mixing of binding sites.

To gain further insight, we now consider the conductivity and occupancy of site 1 only and examine the limit that
site 1 is more favoured than site 2 i.e. ∆µ̃1 � ∆µ̃2,

〈n1〉 =
e−∆G1/kT

1 + e−∆G1/kT
(48)

σ1 ∝
e−∆G1/kT

(1 + e−∆G1/kT )2
. (49)

Here, ∆Gm = G(1K,m)−G(0). Therefore it is evident that conductivity into each site maximises at the midpoint of
the occupancy step, i.e. ∆Gm = 0 when this is the favoured site. If we consider the total occupancy and conductivity
then we would find,

〈n〉 → 〈n1〉 (50)

σ → 0. (51)

If we consider the total conductivity and occupancy when the site affinities are equal i.e. ∆G1 = ∆G2 = ∆G then we
can write,

〈n〉 =
2e−∆G/kT

1 + 2e−∆G/kT
(52)

σ ∝ e−∆G/kT

(1 + 2e−∆G/kT )2
. (53)

Therefore, it is clear the the peak of the total conductivity is slightly offset from the condition ∆G = 0, due to a
factor of kT ln(2). This occurs due to the degeneracy between sites which results in multiple (2 in this instance)
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possible transitions. However, these contributions are often small and so we neglect them and write the following two
conditions for maximal conductivity,

∆G = 0 (54)

∆µ̄s1 ∼ ∆µ̄sm′ ,∈ m′ = 2, · · · ,M (55)

Finally it is worth noting that here the fixed charge here plays an identical role to that of the gate voltage in quantum
dots and transistors. As a result the conductivity peak and occupancy step correspond to ionic Coulomb blockade.
This ionic analogue of electronic Coulomb blockade has been already been identified as an important classical ionic
transport process found in artificial and biological channels [25, 26, 72, 73]. This is clearly observed in (c) of Fig. 8
where two traces at ∆µ̃2 = 0 and ∆µ̃2 = 1.5kT produced shifted conductivity peaks and Coulomb steps in occupancy.

Example 2: One species, two ions, two binding sites

In this next example we shall restrict ourselves to a single species, but allow up to two ions inside the pore. The
aim is to investigate changes in conductivity when varying the number of ions inside the pore and the conduction
mechanism i.e. 0-1 to 1-2 transitions through the pore. The parameters are identical to those used in the previous
example. The partition function is slightly extended to include a fourth double ion state,

Z = e−G(0)/kT + e−G(1K,m=1)/kT + e−G(1K,m=2)/kT + e−G(2K,m=1,2)/kT (56)

In Fig. 9 we plot the energy spectra again vs. nf . Purple and green curves correspond respectively to single ions at
sites 1 and 2 when ∆µ̃2 = +1.5kT . The black dashed line is again the state with zero ions and the red spectrum
corresponds to ions in both sites and again ∆µ̃2 = +1.5kT . We covered the first transition in the earlier example and
so here we shall focus on the second.

We consider the occupancy and fluctuations in (a) and (b) of Fig. 10 respectively. Both functions have an anti-
symmetrical dependence on the ∆µ̃2 = 0. This is because after the first transition, and unless ∆µ̃1 ∼ ∆µ̃2, one site is
more likely to be occupied than the other. To observe this effect we have plotted the occupancy and conductivity of
site 2 when the sites share affinity (c) and when site 1 is more favoured by 1.5kT (d). When sites share binding affinity
the movement of ions into site 2 is equally probable for both the 0-1 and 1-2 transitions. As a result the conductivity
peaks and occupancy steps are equal in magnitude. However, when site 2 is favoured in (d) we can clearly see the
effects of the energy barrier prohibiting the ion from entering site 2 if the pore already contains an ion because its
conductivity is reduced.

We can now also investigate the periodicity of the peaks along the nf plane. Since ∆µ̃ is unchanged with differing
states of the system the periodicity is largely defined by the difference in the longer-range electrostatic interactions of
the pore ∆E . Thus with the approximation used corresponds to the renormalised energy difference in the absence of
charging effects: 2Uc [27]. This is easily seen in Fig 9 if you consider the energy difference between the red and green
curves during the first transition.

Example 3: Two species, multiple ions, multiple binding sites

In our third example we consider the effects of competition inside the pore by allowing for two conducting species,
sodium Na+ and potassium K+. We take: Uc = 10kT , xK = xNa, ∆µ̃1K/Na = 0 for both K+ and Na+ and allow
∆∆µ̃K,Na;S2 to vary (thus mimicking the conditions used in Fig. 3 of the main paper). In this system the partition
function is comprised of the following states,

Z = e−G(0)/kT + e−G(1K,m=1)/kT + e−G(1K,m=2)/kT + e−G(1Na,m=1)/kT + e−G(1Na,m=2)/kT+

e−G(2K,m=1,2)/kT + e−G(2Na,m=1,2)/kT + e−G(1K,m=1;1Na,m=2)/kT + e−G(1K,m=2;1Na,m=1)/kT (57)

We start by considering the energy spectra in Fig. 11. The solid purple and green curves correspond to pure K+ and
Na+ states, the dashed orange represents either K+ or Na+ at site 1, the dashed yellow line is either K+ or Na+ at
site 1 and K+ at site 2, and finally the black line denotes the zero-ion state. There is a major difference to the earlier
examples because the energy spectra can now undergo splitting due to the ion type in addition to the configuration
i.e. sites occupied. As outlined in the central result of the main paper, selectivity at each site can be determined for
a fixed nf and in the case of symmetrical solutions it yields the Eisenman relation |∆µ̃sm −∆µ̃jm|. We also classify
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higher order (n > 1) states into either pure i.e. 2K+ or mixed 1K+1Na+ states. This is apparent from the dashed
purple curve which is the lowest-energy mixed state (the other is not shown) corresponding to K+ at site 2 and Na+

at site 1. As a result mixed species conduction can now occur under specific parameters via pure or mixed states.
In Fig. 12 we consider the total occupancy (a) and conductivity (b) through the pore. As before, an ion can

enter any free site. Thus conduction is again governed by which site has the higher affinity. However, this is not
the complete picture because sites can be selective and by differing amounts. Thus in the limit that an ion can only
enter site m, and this site is strongly favoured for species i, one would expect conduction to occur at the degeneracy
condition for this site and species (again neglecting the small mixing term). So in our example K+ maximally conducts
when ∆µ̃2 ∼ 1.5kT . If the sites are not strongly selective or if selectivity differs at some sites meaning that multiple
possible conduction events are possible then conduction is not maximal unless the system is completely isoenergetic
and non-selective.

So we can conclude that conduction is governed by strict conditions. If we are interested in maximal and selective
conduction for ions of species i then we must require that the following conditions are satisfied,

∆Gm = 0. (58)

∆µ̄s1 ∼ ∆µ̄sm′ ,∈ m′ = 2, · · · ,M (59)

∆µ̄sm � ∆µ̄jm,∈ m = 2, · · · ,M. (60)

RELATION TO PMF

To derive a relationship between our discrete space free energy G and the continuous multi-ion PMFs calculated
from simulation we shall consider the statistical theory developed by Roux [74, 75]. In this work the binding factor Bn
was introduced, representing the ratio of probabilities to have n and 0 ions within the pore. We shall limit ourselves
to a single species occupying up to M binding sites in the pore. In Roux’s theory the binding factor was explicitly
formulated in terms of the multi-ion PMF W,

Bn =
(ρ̄I)n

n!
×
∫
c

dr1 · · ·
∫
c

drne
[nµ̄(I)−W(r1,···rn)]/kT , (61)

such that B0 = 1. In his notation n is the number of ions in the pore, ρ̄I is the density of permeable ions in bulk I and
µ̄(I) is the excess chemical and electrical potential. As a result, we find in our notation that µb ∼ kT log(ρ̄I) + µ̄(I).
The PMF is continuous tracking the positions of all the ions across the whole pore. This differs from our theory which
consider the same number of ions in a set of different configurations as ions occupy any binding sites. As a result we
can introduce the probability to find n ions inside the pore by summing over all possible configurations that contain
n ions,

Pn =
∑
{nj}=n

P ({nj}) (62)

and the same is true for the free energy,

Gn =
∑
{nj}=n

G({nj}). (63)

As a result in our theory the binding factor takes the following form,

Bn = e(G0−Gn)/kT . (64)

Through comparison of binding factors we are able to recover the following relationship,∑
{nj}=n

e[G0−G({nj})]/kT =
1

n!

∫
c

dr1 · · ·
∫
c

drne
[nµb−W(r1,···rn)]/kT . (65)

If we cancel the n! terms we are left with,

+kT log

(
1

n0!

)
+ kT log

 ∑
{nj}=n

e[(E(0)−E({nj})+
∑

m nm∆µ̃m]/kT

 = +kT log

(∫
c

dr1 · · ·
∫
c

drne
[nµb−W(r1,···rn)]/kT

)
.

(66)
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where n0 is the number of empty sites with n ions in the pore. In this relationship E({nj}) represents the total
electrostatic energy produced from all the interactions between ions and pore charges when the ions are in the
specified configuration {nj}. Finally we note that in the limit that there is only one configuration i.e. if n = 1 and
M = 1, then we find,

−∆E + ∆µ̃ = +kT log

(∫
c

dr1e
[µb−W(r1)]/kT

)
or −∆E − µ̄c = +kT log

(∫
c

dr1e
−W(r1)/kT

)
. (67)

In the second equation we have cancelled µb from both sides.

ANALYSIS OF PARAMETERS

The two key parameters within our theory are ∆µ̄Km and ∆µ̄Nam, each of which represents the difference in
excess chemical potential between the bulk reservoir and site m. We derive ∆µ̄Km for sites S1-S4 through fitting
of experimentally calculated occupancy’s and current-voltage relations. In the main text we have established these
parameters for both the wild type (WT) and the mutant (MuT). If we approximate µ̄bK to be equal to the hydration
energy in the bulk −120kT for K+ [76] we can estimate the value of the potential within the channel and these values
are given in table I. Krishnapriya et. al. performed free energy calculations the 1K4C (closed) structure using the
AMBER force field to calculate the binding energies at each site (see the paper for details). The authors also found
that accounting for quantum mechanical effects only slightly varied the binding energies. The binding energies at
S1-S3 were found to be -68, -85 and -117kT respectively and it was found that K+ cannot bind to S4. The latter
result has also been observed in [77] who found that S4 cannot be occupied if the two ions are at S1 and S3. It
is worth noting that these values strongly vary in contrast to the experimental occupancies which slightly fluctuate
around ∼ 0.5 and occupancy of S4 has been observed [14]. Asthagri et. al. [78] calculated the excess chemical
potential in S2 using the potential distribution theorem with two potassium ions placed inside the pore. The average
excess chemical potential was found to be ∼ −150kT for K+ and ∼ −180kT for Na+ although we note that the bulk
hydration energies for K+ and Na+ are different and not included here.

Site selectivity is determined within our theory by the difference in excess chemical potential difference, and hence
includes the difference in site affinity in addition to the difference in solvation energy within the bulk reservoirs. In
[15, 79–81] the site selectivities were calculated using molecular dynamics techniques on the closed 1K4C.pdb KcsA
channel. Typically three K ions were taken to be in either S1-S4 or possibly in site S0 (a fifth extra-cellular sided site
observed in simulation) or in the cavity site close to the pore and a single ion is replace by Na+. The corresponding free
energy change is quoted as the selectivity. Although [81] also considered the selectivities at various locations within
the pore we only consider the values in the oxygen cages that are known to be K+ binding sites. These calculations
were performed at differing temperatures and so we convert them into values of kT at 300K. The values in the table
vary significantly both in terms of magnitude but also sign with S4 in [15, 79] being shown to be Na+ selective. As a
result we consider the values from [81] to calculate ∆µ̄Na,m.

Site Our theory µ̄c,WT
mK [kT ]

m =1 (S1) -126.2

m =2 (S2) -125.7

m =3 (S3) -126

m =4 (S4) -126.2

TABLE I. Local interaction at the site in units of kT .

Site From [15, 79] [kT ] From [81] [kT ] From [78] and ([80]) [kT ]

m =1 (S1) +4.2 +4 (+7.7)

m =2 (S2) +8.5 +8.3 +4.5

m =3 (S3) +2.9 +7.6 N/A

m =4 (S4) -2 +6.1 N/A

TABLE II. Selectivities at each site in units kT .
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FIG. 5. (a) K+ (blue) and Na+ (red) occupancy (top) and conductivity (bottom) vs. nf and ∆µ̄K,Na;S4 in symmetrical 0.2M
mixed bulk solutions. Conductivity and occupancy form a set of resonant peaks and steps respectively. Each step maximises
under the conditions of barrier-less knock on, it being the favoured species and minimal difference in site affinity. Using identical
parameters to Fig. 2. in the main manuscript obtained through experimental comparison, we indicate the WT K+ (blue) and
Na+ (red) and MuT K+ (green) conductivity’s via coloured stars. Selectivity appears via the shift in both occupancy and

conductivity from K+ (blue) to Na+ (red) surfaces, and the conductivity ratio yields σT,WT
K /σT,WT

Na ∼ 2 × 103. Note this
corresponds to Fig. 3. of the main text. (b) and (c) are 2-D cuts of this figure with ∆µK,S4 = 6.2kT ∆µNa,S4 = 0.2kT . Note
that the green star has been added onto this figure and is calculated with ∆µK,S4 = 5.2kT . As a result of this change in affinity
and recalling that the S4 site geometry varied the green star is off the main curve for the WT, but serves as a guide to the
reader.
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FIG. 6. Free energy G vs. the fixed charge nf . The black dashed curve represents the state without ions; the purple and green
curves represent states with an ion at site 1 or 2 respectively. The purple and green circles highlight the degeneracy knock-on
condition between states with 1 and 0 ions (see Eqn. (46)).

FIG. 7. Occupancy (a,c) and normalised conductivity (b,d) into site 1 and 2 respectively, are plotted vs. nf and ∆µ̄2. Two
steps in occupancy form, one when an ion is entering the pore i.e. facing the ∆µ̄2 axis and the second when an ion is in the
pore but is either in site 1 or 2. The former step corresponds to the peak in conductivity into the site.



22

-1-0.8-0.6-0.4-0.20

0

0.5

1

FIG. 8. Occupancy (a) and normalised conductivity (b) plotted vs. nf and ∆µ̃2. Occupancy forms a step that varies dependent
on nf and ∆µ̃2 only when site 2 is more favoured. The midpoint of this step corresponds to the degeneracy between states given
by Eqn. (46). Conductivity forms a peak around this point if the two binding sites also share affinity i.e. |∆µ̃1 −∆µ̃2| ∼ 0. In
analogy with quantum transport through quantum dots the phenomena along the nf axis can be attributed to ionic Coulomb
blockade.
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FIG. 9. (a) Energy spectra vs. nf . The purple and green curves represent the single-ion states with occupation at sites 1 or
2, respectively; the red and black curves represent the dual-ion and zero-ion states. Coloured circles highlight the degeneracy
condition.
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FIG. 10. Occupancy (a), normalised conductivity (b) traces when the sites share affinity (c) and there is a favoured site
(d). Each conductivity peak again forms close to the degeneracy condition or mid-point of occupancy step, and the frequency
between peaks can be calculated from the difference between energy levels. Both functions share an anti-symmetry along the
∆µ̄2 plane because, if either site is full, a transition is only possible to the other one. When sites share affinity the total
conductivity involves transitions at both sites and so each site shares conductivity resulting in a smaller total. If an energy
difference exists between sites then conductivity into each site is only possible provided that the site is empty. As a result in
(d) conductivity is significantly reduced in the 1-2 transition because it is almost filled. If it was filled then the conductivity
would be negligible.
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FIG. 11. Energy Spectra vs. nf . The solid purple and green curves correspond to pure K+ and Na+ states, the dashed orange
represents either K+ or Na+ at site 1, the dashed yellow line is either K+ or Na+ at site 1 and K+ at site 2, and finally the
black line denotes the zero-ion state.

FIG. 12. K+ (blue) and Na+ (red) occupancy (a), and normalised conductivity (b) plotted vs. nf and ∆∆µ̄K,Na;2.


