Modeling and Reasoning of Contexts in Smart Spaces

Lee, J.W. and Helal, S. (2020) Modeling and Reasoning of Contexts in Smart Spaces. In: 2020 IEEE International Conference on Pervasive Computing and Communications Workshops, PerCom Workshops 2020 :. IEEE. ISBN 9781728147178

Full text not available from this repository.

Abstract

Context can be defined to be a meaningful and descriptive state of a physical space, in which relevant activities of the humans and movements of objects in the same space are consecutively performed. Context aware computing thus requires the instantiation and use of a suitable context model and algorithms capable of discerning a most relevant context at the present time. In our previous research, we developed a method based on stochastic analysis, for inferring contexts from sensor datasets collected from a given smart space. By utilizing three statistical techniques including conditional probability table (CPT), K-means clustering, and Principal Component Analysis (PCA), our inference method is able to predict and generate contexts which can potentially happen. Generated contexts are then used as references when the present context needs to be found. In this paper, we build on our prior work and propose a method that analyzes the current state space and determines the present context guided by the collection of generated potential contexts. We first reconsolidate our context models and context graph in which contexts are structured, and then introduce reasoning methods which apply Euclidean distance and Cosine Similarity. PCA is also used to statistically analyze the state space, which helps to achieve better performance. Using experimental evaluation, we validated the accuracy of our proposed approach in identifying the present context.

Item Type:
Contribution in Book/Report/Proceedings
Additional Information:
©2020 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
Subjects:
?? citiesstochastic systemsubiquitous computingconditional probability tablescontext-aware computingeuclidean distanceexperimental evaluationinference methodsreasoning methodsstatistical techniquesstochastic analysisk-means clustering ??
ID Code:
154122
Deposited By:
Deposited On:
22 Apr 2021 16:00
Refereed?:
Yes
Published?:
Published
Last Modified:
16 Jul 2024 05:01