
 

 

 

Chlorinated Very Short-Lived 

Substances: Modelling their 

global emissions and impact 

on stratospheric ozone 
 

 

 

Tom Claxton MSci, MA, MSc 

Lancaster Environment Centre, Lancaster University, UK 

September 2020 

 

 

This dissertation is submitted for the degree of Doctor of Philosophy 

 

This thesis is the work of the author, except where otherwise stated. It has not 

been submitted for the award of a higher degree at this or any other institution. 

Excerpts of the thesis have been published in journals, as indicated within. 



i 
 

Abstract 

 

Chlorinated Very Short-Lived Substances: Modelling their global 

emissions and impact on stratospheric ozone 

Tom Claxton MSci, MA, MSc 

Lancaster Environment Centre, Lancaster University, UK 

September 2020 

 

Since the discovery of the damaging effects of chlorofluorocarbons, 

stratospheric ozone has been studied extensively in the last 50 years. While the 

Montreal Protocol and amendments have largely nullified the threat from long-

lived ozone-depleting gases, emerging evidence suggests uncontrolled 

chlorinated compounds, Very Short-Lived Substances (Cl-VSLS), present a 

barrier to timely ozone recovery. This thesis extends scientific understanding of 

Cl-VSLS emissions and impacts, combining observations, inversion methods 

and a 3-D chemistry transport model. 

This work calculates policy-relevant ozone depletion potentials (ODPs) of four 

Cl-VSLS (CH2Cl2, CHCl3, C2Cl4, C2H4Cl2) using a troposphere-stratosphere 

modelling system. The influence of emission location and season on the ODPs 

is investigated. Whilst little seasonal variability exists, the location of emissions 

exerts a strong influence, with the largest ODPs due to Tropical Asian 

emissions. Chloroform (CHCl3) and dichloromethane (CH2Cl2) have the largest 

ODPs (up to ~0.02-0.03), comparable to some long-lived halocarbons restricted 

by the Montreal Protocol. 

A synthesis inversion is used to calculate regional Cl-VSLS fluxes based on 

minimising differences between modelled and observed abundances with prior 

constraints. Over 2007-2017, global CH2Cl2 emissions increase significantly 

due to increasing Asian emissions, while C2Cl4 emissions decrease, from 

diminishing uses in Europe and North America. The emissions are evaluated 

and provide a good match to assimilated observations and those independent 

to the inversion. 

Stratospheric impacts of Cl-VSLS are investigated using time-varying 

emissions. The stratospheric input of chlorine from Cl-VSLS and products 

increased by 43% between 2007 and 2017, from 92.3 ± 5.0 ppt Cl to 132.1 ± 

8.9 ppt Cl. Stratospheric model simulations show marked decrease in lower 

stratospheric ozone due to Cl-VSLS. In 2017, over Antarctica, Cl-VSLS reduced 

lower stratospheric ozone by 1.2% and the global mean column reduction was 

0.4% (-1.2 DU). Increasing Asian emissions indicate potential for greater future 

impacts. Hence, Cl-VSLS should continue to be monitored. 
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Chapter 1  

 

Introduction and Thesis Aims 

 

The work in this thesis concerns chlorinated very short-lived substances (Cl-

VSLS), gases which have not been included in the regulation of ozone-depleting 

substances (ODSs) by the UN Montreal Protocol and its amendments. This 

work includes investigation into the time-varying regional and global emissions 

of Cl-VSLS, the transport of these gases to the stratosphere, and their impact 

on stratospheric ozone. 

The Earth’s atmosphere is separated into multiple different layers, with the two 

lowest layers, the troposphere and stratosphere, the most vital for life. The 

troposphere is closest to the surface and comprises ~80% of the total mass of 

the atmosphere [Pandis et al., 1995]. At roughly 10-17 km, depending on 

latitude, the troposphere ends and the stratosphere begins, with the boundary 

between the two layers known as the tropopause [Gettelman et al., 2011]. 

Tropospheric chemistry and composition are strongly influenced by emissions 

from the surface. These emissions can come from a range of natural sources; 

however, in the last several centuries anthropogenic emissions have played an 

increasingly important role in contributing to several environmental issues, 

including air pollution and climate change. Although the stratosphere is not as 

directly impacted by surface emissions, its composition has been vastly altered 

by the production and emission of ODSs, such as chlorofluorocarbons (CFCs), 

in the mid-20th Century.  

The ozone layer, which lies between 19-30 km in altitude [Sivasakthivel and 

Reddy, 2011], wholly in the stratosphere, forms a protective shield around the 

planet from damaging high energy UV solar radiation. The ozone layer absorbs 

93-99% of this radiation [WMO, 1998], which means that should this layer 

disappear or be seriously depleted, life on Earth will be severely affected. Most 

long-lived ODSs (e.g. CFCs) are inert in the troposphere. However, in the 

stratosphere they photolyse to produce chlorine (Cl) and/or bromine (Br) atoms 
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[Molina and Rowland, 1974; Yung et al., 1980]. Significant global ozone 

depletion throughout the middle of the 20th Century led to increased springtime 

Antarctic ozone loss, known as the “ozone hole” phenomenon. As a 

consequence, the Montreal Protocol was enacted to prevent the production and 

consumption of CFCs and similarly destructive compounds. Due to this widely 

successful legislation, ozone levels are expected to recover to pre-depletion 

levels towards the end of this century [Dhomse et al., 2018]. However, Cl-VSLS 

may alter the predicted recovery time by at least several years, but possibly 

much longer [Hossaini et al., 2017].  

Cl-VSLS are substances with short tropospheric lifetimes, defined as less than 

6 months [Carpenter et al., 2014]. This is in contrast with the much longer 

lifetimes, of the order of decades, of most gases synonymous with ozone 

depletion (e.g. CFCs). However, transport from the troposphere to the 

stratosphere can be sufficiently rapid such that Cl-VSLS can reach the lower 

stratosphere despite their short tropospheric lifetimes, as evidenced by aircraft 

measurements [e.g. Leedham Elvidge et al., 2015; Oram et al., 2017]. Although 

relative ozone concentrations are greatest at around 25 km, due to atmospheric 

mass decreasing with pressure the greatest absolute ozone concentrations are 

at 15-20 km [Jia et al., 2015]. Therefore, Cl-VSLS – which are thought to 

breakdown in the lowermost stratosphere – may pose a greater potential to 

destroy ozone than previously thought. Since the Montreal Protocol does not 

regulate these substances, their increased atmospheric emissions in recent 

years could lead to increased significance as sources of stratospheric chlorine, 

despite currently only contributing 3% of total tropospheric chlorine [Carpenter 

et al., 2014; Leedham Elvidge et al., 2015]. 

The regional distribution and magnitude of Cl-VSLS emissions are not well 

understood, despite steady increases over the last decade [Engel et al., 2018]. 

Important Cl-VSLS include dichloromethane (CH2Cl2), chloroform (CHCl3) and 

perchloroethylene (C2Cl4). These are all used industrially as solvents, in a 

variety of applications; however, 50-90% of CHCl3 emissions are thought to be 

natural [McCulloch, 2003; Worton et al, 2006], as opposed to mainly 

anthropogenic sources for CH2Cl2 and C2Cl4. Global emissions of Cl-VSLS 

have previously been categorised and quantified by source type [Keene et al., 
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1999; Khalil et al., 1999]; however, there has been little concerted effort to 

quantify global Cl-VSLS emissions since these older studies. Regionally, there 

have been select studies on European [Simmonds et al., 2006] and East Asian 

[Feng et al., 2019; Oram et al., 2017; Say et al., 2019] emissions, but these do 

not paint a global picture. In addition, the impacts of Cl-VSLS on ozone are 

poorly quantified.  

The overarching aim of this thesis is to provide new scientific understanding 

and policy-relevant information on the sources of Cl-VSLS and their impact on 

stratospheric ozone. The specific thesis aims are to: 

• Quantify the ozone-depletion potential (ODP) of key Cl-VSLS as a 

function of emission location and season. ODP is an important metric 

for discussing policy implications for halogenated compounds, as each 

halocarbon can be compared and ranked based on their ability to destroy 

stratospheric ozone. For short-lived compounds, such as Cl-VSLS, 

ODPs are not well known, despite being thought to cause ozone 

destruction.  

 

• Investigate regional and global trends in Cl-VSLS emissions using 

atmospheric observations and an inverse modelling framework. 

This framework, known as “synthesis inversion”, uses a chemical 

transport model to determine the sensitivity of the Cl-VSLS abundance 

at global measurement sites to regional surface emissions. Posterior 

emissions are generated based on minimising the difference between 

the model and assimilated observations, within prior emission 

constraints. An inversion results in a series of optimised transient 

emission fields that accurately captures trends in Cl-VSLS and can be 

used as input in models for further Cl-VSLS studies. 

 

• Quantify the contribution of Cl-VSLS to stratospheric chlorine and 

assess their impact on stratospheric ozone in the present day and 

recent past. Using the newly optimised emissions, perform an end-to-

end model study to determine how the stratospheric injection of chlorine 
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from Cl-VSLS and their products has changed over time. Particular 

emphasis will be placed on comparing recent ozone depletion based on 

scenarios with and without the influence of transient Cl-VSLS emissions.  

 

The remainder of this thesis is organised as follows. Chapter 2 presents the 

background to this thesis and our current understanding. It describes the main 

chemistry schemes present in both the stratosphere and troposphere, and the 

impacts chlorine have on stratospheric ozone. It also provides an introduction 

to several Cl-VSLS studied during my PhD, and our current understanding of 

their emissions, chemistry, and projected impacts on ozone. There is also a 

brief description of chemistry transport models and previous use of the 

synthesis inversion process. 

Chapter 3 is chiefly adapted from my lead-author paper [Claxton et al., 2019] 

that quantifies new ODP values for four Cl-VSLS; CH2Cl2, CHCl3, C2Cl4 and 

ethylene dichloride (C2H4Cl2). These are quantified using (a) the TOMCAT 

model to assess the transport of chlorine to the stratosphere due to surface Cl-

VSLS emissions and (b) SLIMCAT to investigate the impact of these chlorine 

perturbations on column ozone levels. Particular attention is given to 

understanding how the location and season of Cl-VSLS emission may affect the 

ODP. 

Chapter 4 presents results from a synthesis inversion to calculate optimised 

CH2Cl2 and C2Cl4 emissions for the period 2006-17, chiefly adapted from my 

lead-author paper [Claxton et al., 2020]. The chapter details the inputs to the 

inversion, including (a) prior emission fields derived from bottom-up industry 

estimates and the Reactive Chlorine Emissions Inventory (RCEI), (b) 

assimilated observations of Cl-VSLS from two separate global measurement 

networks, and (c) TOMCAT model output to determine the gridded sensitivity of 

Cl-VSLS concentrations to emissions from different geographical regions. The 

performance of posterior emissions is evaluated using a range of datasets and 

the success of the inversion is discussed. This study is also subjected to various 

sensitivity tests, including the addition of an uncertain CH2Cl2 ocean source and 

an added chemical loss reaction for C2Cl4 (C2Cl4 + Cl). 
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Chapter 5 assesses the impacts of Cl-VSLS on stratospheric ozone. It is chiefly 

adapted from my in-preparation lead-author paper [Claxton et al., in prep]. The 

chapter uses the optimised CH2Cl2 and C2Cl4 emissions from Chapter 4. It 

further develops a simple gridded 12-year CHCl3 emission field based on 

industry emission estimates and literature values for natural emissions. These 

CHCl3 emissions are evaluated using observational data. The chapter then 

quantifies (a) the transient stratospheric chlorine injection from all 3 Cl-VSLS 

(CH2Cl2, C2Cl4 and CHCl3) and their product gases (COCl2, Cly) using 

TOMCAT, and (b) the resulting impact these compounds have had on ozone in 

the recent past, using SLIMCAT. 

Finally, the thesis is summarised and evaluated in a concluding chapter 

(Chapter 6), which discusses the overall success of the thesis, the scientific 

impact the thesis has on current understanding of Cl-VSLS, what could have 

been improved upon, and any future work that the thesis could lead to. 
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Chapter 2 

 

Literature Review 
 

To investigate the impact chlorinated Very Short-Lived Substances (Cl-VSLS) 

have on the atmosphere requires an understanding of the effect of chlorine on 

both stratospheric and tropospheric chemistry, and how Cl-VSLS add to the 

total chlorine budget. Transport and other dynamical processes affecting Cl-

VSLS also need to be understood, as the impact of chlorine from Cl-VSLS on 

stratospheric ozone depends on the prevalence of transport from the surface 

into the stratosphere. Current scientific knowledge of Cl-VSLS emissions is 

unfortunately sparse; a primary goal of this thesis is to expand on that 

knowledge. Despite limited global coverage, observational records of a few Cl-

VSLS have been established with records covering a few decades in some 

locations. Adding to this data, numerical models are able simulate historical Cl-

VSLS concentrations using emission inventories as input, as well as making 

projections of what concentrations are likely to be in the future. This thesis 

provides new insight into Cl-VSLS emissions and atmospheric impacts by 

combining both atmospheric measurement data and model experiments.  

In this chapter, I introduce the current understanding behind the above topics, 

which will prove useful for the experiments in later chapters. Section 2.1 

presents the background to the key chemistry and dynamical processes that 

affect the stratosphere, particularly discussing ozone and the impact of 

halogens, with a small aside to tropospheric ozone chemistry. In Section 2.2, I 

introduce Cl-VSLS, covering their abundances in the atmosphere, their 

chemistry, and their impacts, before I discuss the current knowledge of Cl-VSLS 

emissions in Section 2.3. In Section 2.4 I briefly introduce chemistry transport 

models and “synthesis inversion”, an analysis technique I will be using in 

subsequent chapters to aid with my thesis. Finally, Section 2.5 summarises the 

chapter. 
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2.1 Stratospheric Ozone 

This section contains a background to some of the key processes affecting 

stratospheric ozone. Section 2.1.1 introduces the stratospheric ozone layer 

and ozone distribution, and Section 2.1.2 discusses basic stratospheric ozone 

chemistry. Section 2.1.3 adds to the discussion by introducing the impact of 

chlorine on stratospheric ozone. In Section 2.1.4, processes influencing the 

Antarctic ozone hole are discussed. Ozone layer recovery is discussed in 

Section 2.1.5. Section 2.1.6 briefly covers the main chemistry that governs 

ozone production and loss in the troposphere. 

 

2.1.1 Stratospheric Ozone  

The stratosphere begins at roughly 10-17 km, depending on latitude, and 

extends to about 50 km above the surface. The tropopause, the lower boundary 

of the stratosphere, is found at lower altitudes in higher latitude regions 

compared to the tropics. The stratosphere is characterised by steadily 

increasing temperatures with altitude, due to the absorption of high energy UV 

radiation by ozone, O3 [Hartley, 1880]. A layer of relatively high ozone 

abundance in the stratosphere is observed (Figure 2.1) and is called the ozone 

layer. This layer forms a vital protective shield for Earth’s surface from UV 

radiation, and is a reason why varied life on Earth can exist above water 

[Matsumi and Kawasaki, 2003]. Although Figure 2.1 highlights that the relative 

ozone concentrations are greatest at about 25 km, since the mass of the 

atmosphere exponentially decays from the surface, the largest absolute ozone 

concentrations are in the lower stratosphere (15-20 km) [Jia et al., 2015]. Figure 

2.1 also shows that outside the stratosphere there is significant abundance of 

ozone in the troposphere, particularly near Earth’s surface.  
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Figure 2.1. Schematic of the vertical profile of ozone in the atmosphere. Taken from 

Figure 1 in Frequently Asked Questions About Ozone in the 1998 WMO Ozone 

Assessment Report [WMO, 1998]. 

 

The ozone layer is vital for life as it absorbs high energy UV-B radiation, which 

otherwise has the potential to damage DNA. The ozone layer absorbs 93-99% 

of this radiation [WMO, 1998], therefore it is important that ozone levels in the 

stratosphere are unaffected by human activity. Column ozone is an important 

measure when considering UV fluxes and it is typically expressed in Dobson 

Units (DU) [Dobson, 1968]. This is defined as the thickness of atmospheric 

ozone over a point on Earth’s surface if it were brought down to surface 

temperature and pressure, such that 1 DU = 0.01 mm at 298 K and 1 atm of 

pressure, or rather 1 DU = 2.69 x 106 molecules cm-2 of ozone. Observations of 

column ozone were traditionally made using spectrometers, which can be taken 

from the surface, or more recently from satellite platforms, which supplements 

high-resolution surface calculations with extensive global coverage [Davis et al., 

2016]. Such measurements have allowed a fairly long historical ozone record 

to be established spanning over 50 years. A typical column ozone abundance 

is roughly 300-350 DU [Sivasakthivel and Reddy, 2011], though can vary 

between 200-500 DU based on location and season [McPeters and Labow, 

1996]. Since Dobson Units are a measure of an entire column of ozone, from 
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surface to the top of the atmosphere, measurements also include tropospheric 

ozone, which comprises 10% of total ozone [WMO, 1998].  

Generally, air enters the stratosphere through the tropical tropopause, and 

descends back into the troposphere in mid-latitude regions [Butchart, 2014]. For 

the distribution of stratospheric ozone, this overriding circulation pattern is 

called Brewer-Dobson Circulation, and transports ozone formed in the tropics 

towards the polar regions [Brewer, 1949; Dobson, 1956]. As ozone cannot be 

created without sunlight, poleward transport of ozone is necessary for keeping 

the ozone layer intact. Figure 2.2 highlights the distribution of ozone in the 

stratosphere as a result of Brewer-Dobson circulation. However, just as Brewer-

Dobson circulation governs how stratospheric ozone is distributed, it also acts 

to distribute many of the compounds that have the ability to deplete it. These 

circulatory movements can take several months or even years to complete. This 

is more than enough time for many long-lived compounds, such as CFCs, with 

mean lifetimes of the order of several decades [Carpenter et al., 2014], and their 

products, to reach the polar stratosphere. In addition to large-scale circulations, 

tropical convective systems are vitally important to injecting air quickly into the 

stratosphere [Levine et al., 2007]. 

 

 

Figure 2.2. Latitude-pressure cross section schematic of stratospheric ozone 

distribution (satellite data October 2004-2016). Black arrows indicate Brewer-Dobson 

circulation, indicating an enhanced flow of ozone towards the winter pole. Taken from 

Figure 1 of Chipperfield et al. [2017]. 
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2.1.2 Ozone Photochemistry 

Ozone is produced and destroyed in the stratosphere by a series of 

photochemical reactions. The original reaction sequence (Equations 2.01-2.04), 

proposed by Chapman [1930] involves just oxygen-containing species. It begins 

with the photolysis of O2: 

                               O2 + hν (λ < 242 nm) → O(3P) + O(3P)                       (2.01) 

where hν is a photon, and O(3P) represents the ground electronic state of an 

oxygen atom, in which the four 2p electrons are arranged such that two are 

paired in one 2p orbital, and two are unpaired in each of the other 2p orbitals. 

This reaction can only occur with high energy (short wavelength) UV radiation 

present. One of the resultant oxygen atoms can rapidly react with O2, in 

presence of a third body (M), to form ozone, O3. This third body stabilises the 

reaction by absorbing the excess energy produced. 

  O(3P) + O2 + M → O3 + M                                  (2.02) 

However, ozone photolysis by high energy UV radiation is also rapid, which 

gives the products O2 and O(1D), the first excited state of an oxygen atom.  

                         O3 + hν (λ < 340 nm) → O2 + O(1D)                          (2.03) 

This excited state differs from the ground state by pairing the two previously 

unpaired electrons, and can relax into the ground state by quenching with a 

third body M. The resulting energy released contributes to the overall 

temperature increase in the stratosphere. Alternatively, O(3P) can be directly 

produced from the photolysis of ozone, at wavelengths larger than 340 nm 

[Matsumi and Kawasaki, 2003]. O(3P) and O3 are usually categorised as Ox, or 

the odd oxygen family, as the interconversion between them in the above two 

reactions (Equations 2.02 and 2.03) is very fast. However, O3 and O(3P) can 

also react together to form two O2 molecules. 

                                O3 + O(3P) → 2O2                                                         (2.04) 

Although Equation 2.04 occurs at a much slower rate than the preceding 

reactions, this leads to a stable system in which O3 is both produced and 

destroyed to reach a steady state.  
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2.1.3 Chlorine in the Stratosphere 

The Chapman reaction scheme was found to overestimate the correct observed 

concentrations of ozone in the stratosphere. It was later discovered that there 

are numerous other species that can react to primarily destroy ozone (or Ox in 

general). In the stratosphere, common species include oxidised hydrogen-

containing species (HOx, created from stratosphere methane and water vapour) 

[Bates and Nicolet, 1950], oxidised nitrogen-containing species (NOx, created 

from stratospheric N2O) [Crutzen, 1970], and halogen-containing species 

(chlorine - ClOx, and bromine - BrOx) [Stolarski and Cicerone, 1974; Yung et al., 

1980].  

These species form catalytic cycles with Ox, aiding in the destruction of Ox by 

way of Equations 2.05 and 2.06, without the need of the slow direct reaction 

between O(3P) and O3 in Equation 2.04. 

                                  XO + O(3P) → X + O2                                                        (2.05) 

                                 X + O3 → XO + O2                                                          (2.06) 

Net: O(3P) + O3 → 2O2 

X represents the possible different molecules involved in the cycle (X = H, OH, 

NO, Cl, Br). This combination of reactions (Equations 2.01-2.06) forms the basis 

of contemporary stratospheric ozone loss and production. Since the advent of 

the industrial age, sources of stratospheric HOx and NOx compounds have 

changed, in particular due to increases in methane emissions for the former 

[Hartmann et al., 2013], and increases in N2O for the latter [Portmann et al., 

2012]. However, the major impact on stratospheric ozone in recent decades is 

due to halogens, particularly chlorine. 

The ClOx catalytic cycle was not described until the 1970s [Stolarski and 

Cicerone, 1974], and discoveries at roughly the same time linked emissions of 

chlorofluorocarbons (CFCs) to increased atmospheric chlorine, and 

hypothetically to increased ozone destruction [Molina and Rowland, 1974]. 

CFCs were used as relatively cheap, inert, nontoxic and non-flammable 

refrigerants and propellants, and their use expanded dramatically worldwide 

post late 1950s. Although they are inert at Earth’s surface and throughout the 
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troposphere, in the stratosphere UV radiation carries sufficient energy to 

photolyse CFCs and release Cl atoms.  

In addition, HOx and NOx cycles can interact with ClOx and BrOx to lead to 

increased ozone destruction, by the following reaction scheme, in which 

generally X represents either HO or NO, and Y represents Cl or Br [Johnson et 

al., 1995]: 

                            X + O3 → XO + O2                                     (2.06) 

                    XO + YO → XY + O2                                   (2.07) 

                               XY + hν → X + Y                                       (2.08) 

                                   Y + O3 → YO + O2                                      (2.09) 

Net: 2O3 → 3O2 

The above cycle avoids the requirement of having O atoms present to react with 

the initial XO molecule. Lower down in the stratosphere the photolysis of O2 is 

less efficient because of absorbing molecules overhead reducing transmission 

of high energy UV radiation. What is important to note is that these reaction 

cycles are catalytic with respect to both X and Y, and one atom of chlorine, for 

example, can destroy many molecules of ozone before the cycle terminates 

[Lary, 1997]. Termination reactions for chlorine atoms in the stratosphere 

include reaction with HO2 or CH4 to form HCl, or ClO can react with NO2 to form 

ClONO2. These are examples of chlorine reservoir compounds, as they 

themselves do not directly destroy ozone. However, they can photolyse to re-

release reactive Cl, or form other photolabile gas-phase compounds following 

heterogenous chemistry. Certain chlorine reservoirs, e.g. HCl, are also water 

soluble and can physically leave the stratosphere by way of water vapour and 

deposition processes. Such processes act to cycle chlorine out of the 

stratosphere and into the troposphere. 

 

2.1.4 Antarctic Ozone Hole 

Even though the above cycles lead to global ozone destruction, it was observed 

that there were comparatively very large local reductions of ozone 
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concentrations in the Antarctic spring [Farman et al., 1985; Solomon et al., 

1986]. This phenomenon became known as the “ozone hole”. The ozone hole 

is generally defined as the region where column ozone falls to under 220 DU 

[Sivasakthivel and Reddy, 2011]. It was proposed that the explanation for these 

large ozone reductions involved heterogeneous reactions occurring on high 

altitude polar stratospheric clouds (PSCs) [Molina and Molina, 1987]. These 

clouds require very cold temperatures (below 200 K), cold enough to freeze 

both water vapour and nitric acid, which constitute the two main types of PSCs 

[Solomon, 1999]. Examples of heterogeneous reactions facilitated by PSCs are 

listed below [von Clarmann, 2013]: 

HCl(s) + ClONO2(g) → Cl2(g) + HNO3(s)                         (2.10) 

ClONO2(g) + H2O(l,s) → HOCl(g) + HNO3(s)                     (2.11) 

 HCl(l,s) + HOCl(g) → H2O(s) + Cl2(g)                           (2.12) 

The chlorinated end-reaction product, Cl2, is far more photoreactive than the 

reservoir species HCl and ClONO2. This allows for more effective release of Cl 

under sunlight. Once Cl is generated, the reaction cycle in Equations 2.06-2.09 

is possible; however, a dimeric cycle is more common at lower altitudes: 

                                 2Cl + 2O3 → 2ClO + 2O2                                 (2.13) 

               ClO + ClO + M → Cl2O2 + M                                (2.14) 

                           Cl2O2 + hν → Cl + ClO2                                   (2.15) 

                        ClO2 + M → Cl + O2 + M                                  (2.16) 

Just as with Equations 2.06-2.09, the net result is the same, converting two O3 

molecules into three O2 molecules. The reason why enhanced ozone 

destruction occurs during springtime is that any photolysis reaction (Equation 

2.15, and the conversion of Cl2 formed from Equations 2.10 and 2.12 into Cl) 

cannot occur until the polar night is over. A dimer reaction cycle can also occur 

with ClO and BrO species interacting with one another [McElroy et al., 1986], 

and the general coupling of ClOx and BrOx reaction cycles is important in 

depleting Antarctic ozone [Sinnhuber et al., 2009]. The meteorology of the polar 

regions is able to sustain the low temperatures required to form PSCs by the 
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generation of strong polar vortices, which isolate the poles from the rest of the 

stratosphere, resulting in a sharp temperature gradient between the poles and 

mid-latitudes [Solomon, 1999]. The above processes explain why polar ozone 

is most impacted by halogen chemistry, compared to ozone in the tropics and 

mid-latitudes. 

 

2.1.5 Montreal Protocol and Ozone Recovery 

Molina and Rowland [1974] first hypothesised a possible link between CFCs 

and ozone depletion, a year before CFCs were found to be present in the 

stratosphere. As such the global scientific community began investigating this 

growing threat to the ozone layer. In 1985 the Vienna Convention for the 

Protection of the Ozone Layer was the first unified government response to 

tackle ozone depletion, crucial as Farman et al. [1985] and Solomon et al. 

[1986] had reported significant depletion over Antarctica [Salawitch et al., 2018]. 

In 1987 the Montreal Protocol on Substances that Deplete the Ozone Layer, an 

international treaty to control the use of CFCs and other ozone depleting 

substances, was enacted. Figure 2.3 shows the evolution of equivalent 

effective stratospheric chlorine due to the original Protocol and subsequent 

amendments. At first CFC production was only partially limited with phased out 

timetables for CFCs and halon use. Subsequent amendments, for instance in 

London and Copenhagen expanded the Protocol to cover additional ozone 

depleting compounds, including methyl chloroform and carbon tetrachloride, 

with an eventual ban on all CFC production [Salawitch et al., 2018]. 
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Figure 2.3. Time series of the implementation of the Montreal Protocol and its 

subsequent amendments. Each key amendment shown depicts their projected 

impacts on EESC (equivalent effective stratospheric chlorine), trending towards the 

ideal scenario of zero emissions (dashed line). Taken from Figure Q14-1 from WMO 

Ozone Assessment Report, 2018 [Salawitch et al., 2018]. 

 

Alternatives, such as HCFCs (Hydrochlorofluorocarbons), were the first 

generation of alternatives for CFCs brought in by industry as a response to the 

earlier Montreal Protocol amendments. HCFCs are more reactive in the 

troposphere as they contain weaker C-H bonds. This means that their 

tropospheric lifetimes are shorter than for CFCs, approximately 5-20 years 

[Harris et al., 2014]. But HCFCs still transport into the stratosphere, and can 

contribute to ozone destruction [Engel et al., 2013]. Therefore, the Montreal 
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Protocol has started placing restrictions on the production of HCFCs [Engel et 

al., 2018], with a complete phase out scheduled by 2030. The most recent 

amendment of the Montreal Protocol, agreed in Kigali in 2016, sought to phase 

down global production of many common HFCs (hydrofluorocarbons) from 

2019. These are the second generation of CFC replacements introduced that 

contain no chlorine or bromine and hence have zero ozone depletion potential. 

However, their large Global Warming Potential has led to restrictions introduced 

to minimise their contribution towards climate change [Salawitch et al., 2018]. 

Many studies have been undertaken to investigate ozone recovery in lieu of the 

success of the Montreal Protocol [Pawson et al., 2014]. Observations of extra-

polar (mid-latitudes and tropics) total column ozone show a positive trend in 

ozone from 2000-2013, of 1 ± 1.7% [Pawson et al., 2014], and present-day 

ozone levels are only 2% lower than 1960-1980 levels. However, these values 

do not include polar ozone changes and focus on the changes primarily in mid-

latitude ozone. For polar ozone, total column ozone over Antarctica during 

October, when the ozone hole is at its greatest extent, has decreased by over 

50% from the 1960s to the 1990s [Montzka, Reimann, et al., 2011]. The majority 

of this depletion occurs in the lower stratosphere (15-20 km), where PSCs are 

most commonly found. The characteristics (e.g. size and strength) of the 

Antarctic ozone hole in recent years are still within the same ranges observed 

since the 1990s, subject to interannual variation, indicating a plateau in 

Antarctic ozone depletion [Langematz et al., 2018].  

As CFC concentrations continue to decrease (Figure 2.3), the ozone hole is 

expected to close gradually, with total springtime column ozone recovering to 

1980 levels by around 2060 [WMO, 2018], and global ozone levels are expected 

to reach their previous levels in the coming decades [e.g. Dhomse et al., 2018]. 

Dhomse et al. [2018] estimate that column ozone levels return to their 1980 

concentrations by 2032 for northern hemisphere mid-latitudes, 2045 for 

southern hemisphere mid-latitudes, 2059 for the tropics, and 2049 globally. In 

the upper stratosphere specifically, ozone has increased by 1-3% decade-1 

since 2000, with the greatest confidence in the northern mid-latitudes between 

35 and 45 km [WMO, 2018]. However only half of this increase is attributable to 

decline in ozone depleting substances, with the other half because of upper 
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stratospheric cooling slowing down the reactions destroying ozone (e.g. 

Equation 2.04). Due to the gradual decrease of chlorine due to the Montreal 

Protocol, the biggest drivers of future ozone changes are the main greenhouses 

gases CO2 and CH4, whose increases act to increase stratospheric ozone 

production via stratospheric cooling, and N2O, the primary source of 

stratospheric NOx, whose increase contributes to ozone depletion [WMO, 

2018]. 

Although the Montreal Protocol has been very successful in reducing 

stratospheric chlorine, this progress could be under threat. One possibility is by 

returning emissions of CFCs [Montzka et al., 2018], and another is by the influx 

of traditionally less-important chlorine containing substances capable of 

destroying ozone. A series of such compounds are Chlorinated Very Short-

Lived Substances, or Cl-VSLS [e.g. Hossaini et al., 2017; Laube et al., 2008; 

Sturges et al., 2000; Wales et al., 2018]. 

 

2.1.6 Tropospheric Ozone Chemistry 

As well as ozone forming an integral part of stratospheric composition, it is 

present in the troposphere. About 10% of total planetary ozone lies in the 

troposphere (Figure 2.1). Here it acts as a greenhouse gas, absorbing IR 

radiation, and as a surface pollutant, with approximately 1 million people 

estimated to be killed every year from the polluting effects of ozone [Malley et 

al., 2017]. A large source of tropospheric ozone comes from descent of 

stratospheric air [e.g. Butchart, 2014]; however, tropospheric ozone can be 

produced photochemically, particularly near the surface. This production (and 

loss) is governed by a series of photochemical reactions that link volatile organic 

compounds (VOCs), NOx, and HOx [Crutzen, 1974; Liu et al., 1987]. The main 

difference between tropospheric ozone production and stratospheric ozone 

production is that O2 photolysis (Equation 2.01) is not easily achieved in the 

troposphere. This is because the required high energy UV radiation (λ < 242 

nm) is very unlikely to pass through into the troposphere. Two reaction paths 

are available, however. The first involves the photolysis of NO2, which can occur 

at wavelengths below 400 nm: 
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                  NO2 + hν (λ < 400 nm) → O(3P) + NO                         (2.17) 

This yields oxygen atoms able to form ozone as in Equation 2.02. The ozone 

formed can react with NO to complete this cycle, a null cycle in which there is 

no net ozone created or destroyed. 

                         O(3P) + O2 + M → O3 + M                                 (2.02) 

                                O3 + NO → O2 + NO2                                     (2.18) 

In the additional presence of organic compounds, e.g. VOCs, methane (CH4), 

a second reaction path is available. The following sequence of reactions 

(Equations 2.19-2.22) show a small selection of possible reactions, which in this 

example starts with the reaction of methane with the hydroxyl radical OH [e.g. 

Ravishankara, 1988]: 

                                 CH4 + OH → CH3 + H2O                                 (2.19) 

OH is far more abundant in the troposphere than in the stratosphere, with an 

average concentration of 11 x 105 molecules cm-3, a whole order of magnitude 

greater than the average 1.1 x 105 molecules cm-3 in the stratosphere [Li et al., 

2018]. It is primarily sourced by the reaction between O(1D) and H2O, and O(1D) 

is created by the photolysis of tropospheric ozone (i.e. Equation 2.03). The 

stratosphere does not block all UV radiation with wavelengths shorter than 340 

nm, allowing O(1D) formation [e.g. Hofzumahaus et al., 2002]. However, at 

wavelengths longer than 310 nm, the O(1D) quantum yield is no greater than 

0.1, resulting in O(3P) as the dominant photolysis product [Matsumi and 

Kawasaki, 2003]. In addition, the reaction of O(1D) with H2O is competed for by 

the quenching of O(1D) with a third body M to form O(3P). In the marine 

boundary layer, where H2O is abundant, only 10% of O(1D) reacts to form OH 

[Monks, 2005]. Due to the interconversion between HOx and NOx compounds 

(Equation 2.23), higher OH concentrations are also correlated with higher 

concentrations of NO [Ren et al., 2008].  

The primary photochemical sinks of OH are CH4, as in Equation 2.19, and CO, 

carbon monoxide. Therefore, the global distribution of OH is dependent on 

many factors. Figure 2.4 shows a modelled surface distribution of OH, where it 

is possible to highlight the influence of the key sources and sinks. Low OH 
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occurs where photolysis rates are low, over polar regions, and where CO 

concentrations are high, over tropical rainforests. Common ship routes in the 

Atlantic Ocean, Indian Ocean, and South China Sea show regions where both 

NO and H2O concentrations are high, leading to noticeably elevated OH. Large 

OH concentrations over land can be linked to main sources of surface ozone, 

e.g. over Asia. Figure 2.5 depicts the importance of convection towards OH 

production with an example modelled vertical distribution of OH concentration 

from Lieleveld et al. [2016]. The largest convective systems occur over the 

Northern Tropics, particularly the Maritime Continent [Levine et al., 2007], 

injecting both O3 and H2O throughout the troposphere, providing a column of 

high OH concentrations. 

 

Figure 2.4. Modelled global distribution of annual surface mean OH concentrations, 

for 2008. Taken from Figure 3 of Monks et al. [2017]. 
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Figure 2.5. Modelled annual zonal mean OH concentrations, in units of 105 molecules 

cm-3. Taken from Figure 1 of Lieleveld et al. [2016]. 

 

As a radical species OH is very reactive, and will oxidise most organic 

compounds. This occurs primarily by hydrogen abstraction, as in Equation 2.19. 

The resulting CH3 from this reaction can combine with O2 rapidly to form a 

methylperoxy radical: 

                               CH3 + O2 + M → CH3O2 + M                              (2.20) 

                            CH3O2 + NO → CH3O + NO2                             (2.21) 

                               CH3O + O2 → CH2O + HO2                                              (2.22) 

Peroxy radicals are reactive, and in the presence of NOx can react instead of 

O3 in Equation 2.18 to form NO2, in Equation 2.21. The presence of a large 

amount of NOx implies a polluted atmosphere, with significant sources of NOx 

primarily from industrial and agricultural sources, such as traffic emissions and 

fertiliser. Without NOx, ozone production is not favourable from VOCs alone, 
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and CH3O2 can convert into CH2O via cycling with just HOx species, without 

involving Ox (i.e. ozone) [Ravishankara, 1988]. The HO2 product from Equation 

2.22 can also react with NO, in Equation 2.23. This generates two molecules of 

NO2, which can lead to two molecules of ozone formed, as shown below. Unlike 

the null cycle from Equations 2.17-2.18, the terminating reaction of O3 with NO 

to reform NO2 (Equation 2.18) is bypassed. 

                HO2 + NO → OH + NO2                                  (2.23) 

                  2NO2 + 2hν → 2O(3P) + 2NO                               (2.17) 

                                  2O(3P) + 2O2 + 2M → 2O3 + 2M                            (2.02) 

Net: CH4 + 4O2 → CH2O + H2O + 2O3 

The net reaction from adding up Equations 2.16 through to 2.02 above uses up 

NOx catalytically. Formaldehyde (CH2O) is a toxic compound, and can wash out 

and deposit onto the surface. In addition to chemical sinks, dry deposition is a 

key loss process for ozone, and plants are able to uptake it through stomata, 

where it can be chemically converted [Cho et al., 2011], damaging plant 

physiology. Over water, ozone can deposit onto oceans where it dissolves 

[Hardacre et al., 2015].  

 

2.2 Chlorinated VSLS: An Overview 

This section presents an overview of the current scientific understanding of 

Chlorinated Very Short-Lived Substances (Cl-VSLS), introducing the most 

abundant compounds and their uses in Section 2.2.1. Section 2.2.2 focuses 

on the chemical processes and Section 2.2.3 on the transport processes that 

most affect these compounds, in both the stratosphere and troposphere. 

Section 2.2.4 discusses the impact Cl-VSLS have on stratospheric ozone. In 

Section 2.2.5, similar impacts but due to Brominated VSLS are briefly 

discussed. Finally, Section 2.2.6 introduces the concept of ‘ozone depletion 

potential’ with regards to Cl-VSLS, an important metric for policymakers when 

considering different compounds that can impact stratospheric ozone. 
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2.2.1 Chlorinated VSLS Uses and Concentrations 

Halogenated VSLS are defined as substances with surface lifetimes below 6 

months [Ko et al., 2003]. They include chlorinated (Cl-VSLS), brominated (Br-

VSLS) and iodinated compounds, all of which have both natural and 

anthropogenic sources and the potential to destroy stratospheric ozone if 

transported to the stratosphere [Chipperfield et al., 2018; Hossaini et al., 2017]. 

In this thesis, I am mostly concerned with Cl-VSLS, which include many 

compounds commonly used as industrial solvents, owing to their high volatility 

[IARC, 2016; Ko et al., 2003; Simmonds et al., 2006]. VSLS have been widely 

thought throughout previous decades to not impact stratospheric ozone. For 

instance, the US Environmental Protection Agency (EPA) in 1995 listed 

dichloromethane (CH2Cl2, a key Cl-VSLS), amongst other Cl-VSLS, as a 

compound not in consideration to deplete stratospheric ozone [EPA, 1995]. 

Of the numerous different Cl-VSLS that are emitted to the atmosphere, there 

are only a handful whose abundances are routinely monitored. Chloroform 

(CHCl3) is a VSLS which is emitted significantly by natural sources, with 

estimates of the natural component of total global CHCl3 emissions ranging 

from ~90% [McCulloch, 2003] to ~50% [Trudinger et al., 2004], but with few 

recent up-to-date studies. Natural sources include ocean and soil emissions 

[Khalil et al., 1999; Xiao, 2008]. The oceanic source is not well understood or 

quantified, but it is thought to be of a biological nature; e.g. emissions from 

seaweed have been found to be the primary source of coastal CHCl3 emissions 

[McCulloch, 2003]. Soil emissions are also estimated to be from biological 

activity.  

Anthropogenic CHCl3 emissions arise due to its use in the production of HCFC-

22 (a use that is thought to dominate CHCl3 production [ATSDR, 1997]), from 

industrial manufacture of pulp and paper [Worton et al., 2006], and from generic 

industrial and commercial use as a solvent (at least historically in the Western 

hemisphere). Its historic use as one of the first anaesthetics has been banned 

in several countries [WHO, 1994]. Anthropogenic sources tend to occur over 

industrialised countries, in the Northern Hemisphere [Aucott et al., 1999], which 

is evidenced from long-term surface measurements of chloroform that exist via 
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the AGAGE (Advanced Global Atmospheric Gases Experiment) network 

[Carpenter et al., 2014]. Since the turn of the century, CHCl3 atmospheric 

concentrations and emissions have mostly remained fairly constant [Carpenter 

et al., 2014; Worton et al., 2006]; however, since 2010 emissions have 

increased over East Asia [Fang et al., 2019]. This has led to a relatively sharp 

increase in the observed atmospheric CHCl3 concentration at numerous sites, 

as seen in Figure 2.6. There is a significant hemispheric divide between CHCl3 

measurements, reflecting greater industrialisation in the north. Over the last 

decade there has been a steady increase at northern mid-latitude measurement 

sites from ~12 ppt on average in 2010 to ~17 ppt in 2018. There is no such rise 

for southern stations though, and CHCl3 levels there have remained relatively 

constant at ~6 ppt for the last 20 years. 

 

Figure 2.6. Recent observed trends in the atmospheric CHCl3 mole fraction (ppt) at 

global surface sites of the AGAGE monitoring network. The data are available from: 

https://agage.mit.edu/data/agage-data. Accessed September 2020. 

 

Another widely emitted Cl-VSLS and one that has attracted significant recent 

attention is dichloromethane (CH2Cl2). Unlike chloroform, most (~90%) global 

CH2Cl2 emissions are thought to arise from anthropogenic rather than natural 

sources [Montzka, Reimann, et al., 2011]. It is commonly used as an industrial 
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solvent in a wide variety of applications [IARC, 1999; Montzka, Reimann, et al., 

2011]. For instance, historically through solvent applications, CH2Cl2 has been 

used in paint stripper (23-50% of use), aerosol solvents and propellants (10-

25%), process solvents in chemical industry (10-20%), and in metal degreasing 

(8-13%, all c. 1990s) [IARC, 1999; WHO, 1996]. Use of CH2Cl2 had been 

decreasing in Europe and the USA from the 1970s [EPA, 2014; Holbrook, 

1993], possibly related to concern over the compound’s toxicity. However in 

recent years, global concentrations are observed to have increased rapidly 

[Figure 2.7; also Leedham Elvidge et al., 2015]. As a mainly anthropogenic 

emitted species, countries which have recently become more heavily 

industrialised, such as China and India, may have increased their emissions far 

more rapidly compared to other regions [e.g. Leedham Elvidge et al., 2015]. For 

instance, Feng et al. [2019] estimated that Chinese CH2Cl2 emissions increased 

by a factor of 3 between 2005 and 2016, with further increases projected until 

2030. Similarly, Say et al. [2019] estimated that Indian CH2Cl2 emissions 

increased 5-fold between 2008 and 2016. Measurements of CH2Cl2 exist with 

both the AGAGE and the NOAA (National Oceanic and Atmospheric 

Administration) long-term surface networks. Figure 2.7 shows the recent 

observed concentration trends for CH2Cl2. Similarly to CHCl3, there is a clear 

hemispheric divide, with northern hemisphere observations several times 

higher than those in the south, reflecting industrial sources in the north. 

Concentrations of CH2Cl2 have risen on average from ~30 ppt in the early 2000s 

to ~60 ppt in the late 2010s, at northern measurement sites, with proportionally 

similar increases at southern sites.  
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Figure 2.7. Recent observed trends in the atmospheric CH2Cl2 mole fraction (ppt) as a 

function of latitude. Observed data are based on measurements at global surface sites 

from the NOAA long term monitoring network. The data are available from: 

https://www.esrl.noaa.gov/gmd/hats/gases/CH2Cl2.html. Accessed September 2020. 

 

Although they are less abundant than CH2Cl2 and CHCl3, perchloroethylene 

(C2Cl4), ethylene dichloride (C2H4Cl2), and trichloroethylene (C2HCl3) are 

prevalent in the atmosphere. Abundances of C2Cl4 are of the order of 3 ppt in 

the northern hemisphere, and 0.5 ppt in the southern hemisphere, estimated by 

the NOAA and AGAGE networks [Engel et al., 2018]. Dry-cleaning represents 

the main traditional use of C2Cl4 (80% in the 1950s); however, this has shifted 

more towards use as a chemical feedstock for HCFCs (50% as chemical 

feedstock, 15% in dry-cleaning, in the 1990s) [IARC, 2014]. Other uses include 

metal degreasing and as a textile processing solvent. C2H4Cl2 and C2HCl3 are 

not routinely measured at the surface; however, limited boundary layer aircraft 

data shows C2H4Cl2 abundances of 12.8 ppt, similar to that of CHCl3 (10.3 ppt), 

and C2HCl3 has a boundary layer abundance of around 0.2 ppt [Engel et al., 

2018]. Like other Cl-VSLS, these compounds have found use as industrial 

solvents [Montzka, Reimann et al., 2011]. For C2H4Cl2, a major use is a 

chemical feedstock in the production of vinyl chloride (C2H3Cl), the precursor to 

PVC (poly vinyl chloride) plastics [IARC, 1999]. 
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The global average lifetimes of CHCl3, CH2Cl2, C2Cl4, C2HCl3, and C2H4Cl2, 

have been estimated to be 149, 144, 90, 5, and 65 days, respectively [Harris et 

al., 2014]. In recent years, the safety of using several of these compounds in 

commercial and/or domestic settings (e.g. C2Cl4 as a dry-cleaning solvent) has 

been debated, due to possible adverse health effects, and less harmful 

alternatives have been sought. For instance, even CH2Cl2, as the least toxic of 

the three mainly anthropogenic Cl-VSLS, has had regulations passed to limit its 

use as a possible carcinogen [IARC, 1999]. In 2011 the EU banned use of 

CH2Cl2 in paint strippers [European Commission, 2010], with the US EPA in 

2019 announcing its own ban.  

Overall, global tropospheric chlorine from CH2Cl2, CHCl3 and C2Cl4 combined 

was measured in 2016 at 92-100 ppt Cl equivalent, a 4.0 ± 1.5 ppt Cl yr-1 

increase from 2012 [Engel et al., 2018]. This is driven by the increase in CH2Cl2 

by 60% in the last decade, as can be seen in the observed surface 

measurements in Figure 2.7, yet mitigated slightly by decreases in C2Cl4 (not 

shown). VSLS still only provide a small fraction of the total chlorine in the 

troposphere, at 3.3%, compared with CFCs that still provide 60% of Cl, in 2016 

[Engel et al., 2018]. However, CFCs and CCl4, the largest contributors to 

tropospheric chlorine, at 60% and 10% contribution, respectively, are both 

decreasing, which means that in the future Cl-VSLS will become more important 

for tropospheric chlorine. In 2008 the relative contribution of VSLS to total 

chlorine was only 2.4% [Engel et al., 2018]. Methyl chloride, CH3Cl, with a 

lifetime of approximately a year, longer than the definition for a VSLS, 

contributes 17% to tropospheric chlorine, and is also not regulated by the 

Montreal Protocol [Engel et al., 2018]. However, it is mainly emitted by natural 

sources [Khalil et al., 1999]. 

 

2.2.2 Cl-VSLS Chemistry 

Figure 2.8 shows various processes that affect VSLS in the atmosphere. These 

processes are both chemical and dynamical, and occur throughout the 

troposphere and stratosphere. Once they are emitted, the Cl-VSLS source 

gases (SG) can be destroyed through reactions with the hydroxyl radical (OH) 
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or through photolysis. Oxidation by OH is the major sink in the troposphere, due 

to the lack of high energy UV radiation able to easily photolyse Cl-VSLS. 

Common product gases (PG) from these reactions include hydrogen chloride 

(HCl) and phosgene (COCl2). Oxidation by Cl represents a fairly minor sink for 

Cl-VSLS. For CH2Cl2, the reaction scheme for its degradation starts as follows 

[Hossaini et al., 2019]: 

             CH2Cl2 + OH + O2 → CHCl2O2 + H2O                         (2.24) 

                  CH2Cl2 + Cl + O2 → CHCl2O2 + HCl                          (2.25) 

The binding of the CHCl2 intermediate with oxygen occurs very readily [Catoire 

et al., 1996; Hossaini et al., 2019]. The resulting peroxy radical, CHCl2O2, can 

react as follows: 

             CHCl2O2 + NO → CHCl2O + NO2                          (2.26) 

             CHCl2O + M → CHClO + Cl + M                        (2.27) 

CHCl2O2 + HO2 → COCl2 + H2O + O2                       (2.28) 

                       CHClO + OH → Cl + CO + H2O                           (2.29) 

CHClO is also an alternate product from the reaction between CHCl2O2 and 

HO2 in Equation 2.28, and can itself react with OH, Cl, NO3 and hν to form Cl. 

The stable chlorinated end products of this reaction sequence are HCl (rapidly 

formed from reactions between VOCs and Cl) and COCl2. These products are 

water soluble, and are able to washout from clouds as precipitation, removing 

the chlorine from the atmosphere. They could also transport into the 

stratosphere, contributing to Product Gas Injection (PGI), and become a 

secondary source of chlorine in the stratosphere.  
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Figure 2.8. Chemical and dynamical processes affecting VSLS, in both the troposphere 

and stratosphere. Taken from Figure 2-1 of the WMO 2006 Ozone Assessment Report 

[Law et al., 2006]. 

 

Alternatively, Cl atoms can react directly with tropospheric O3 to form ClO. This 

ClO can then compete with O2 for the reaction with O atoms (Equation 2.02) to 

prevent ozone from regenerating. In the troposphere however, there is a greater 

tendency for self-reaction between ClO molecules, by the following two reaction 

pathways [Saiz Lopez and von Glasow, 2012]: 

                           O3 + Cl → ClO + O2                                      (2.06) 

                    ClO + ClO → Cl2 + O2                                    (2.30) 

                   ClO + ClO → OClO + Cl + M → Cl2O2 + M                    (2.31) 

For chlorine, Equation 2.31 is more effective than Equation 2.30. OClO can 

instead photolyse to form ClO and O, the latter rapidly forming O3 as per 

Equation 2.02, which decreases the efficiency of ozone depletion. OClO and 

ClO can feed into HOx and NOx cycles to contribute to further ozone loss, in 

reactions analogous to Equations 2.06-2.09. In the troposphere, chlorine atoms 
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are primarily lost from reacting with CH4, contributing 3-15% towards the global 

methane sink [Lawler et al., 2011; Platt et al., 2004]. In highly polluted 

hydrocarbon environments, Cl can facilitate the formation of peroxy radicals 

(e.g. CH3O2), which lead to the production of O3 from Equations 2.20-2.23 in 

presence of NOx [Saiz Lopez and von Glasow, 2012]. 

 

2.2.3 Cl-VSLS Transport 

Despite the relatively short lifetimes of these substances, Figure 2.8 shows that 

Cl-VSLS can enter the stratosphere, mainly by convection. In the tropics, this 

can occur rather readily, which means that the tropical regions are often studied 

for upper troposphere/lower stratosphere (UTLS) concentrations of Cl-VSLS. 

The Indian and Western Pacific Oceans, along with the Maritime Continent (e.g. 

Indonesia, Malaysia, Philippines) are regions of regular deep convection, and 

are thought to be key regions for stratospheric injections [Levine et al., 2007]. 

The tops of tropical convective systems can reach up to 15 km, into the tropical 

tropopause layer (TTL), where injection into the stratosphere is possible. 

Relatively slow vertical ascent within the TTL allows for the possible increased 

photochemical degradation of SGs and organic PGs to release inorganic 

chlorine, also due to the increased proximity to higher energy UV light. 

Outside of the tropics, deep convection extending into the UTLS is less 

common, but not impossible, and SGs are able to be injected into the lower 

stratosphere at higher latitudes. In addition to convection, frontal systems are 

able to uplift air masses into the extratropical upper troposphere, allowing 

transport into the stratosphere [Gettelman et al., 2011]. As well as vertical 

motion of SGs and PGs via small scale systems, large scale meridional 

transport is possible. This can transport gases from the TTL into the 

extratropical lower stratosphere via meridional circulation as shown in Figure 

2.8.  

Towards the surface, the transport of Cl-VSLS from industrialised emitting 

regions into areas experiencing vertical uplift (e.g. convective regions) is 

important. Numerous studies have shown that the co-location of surface 

hotspots with high VSLS mixing ratios leads to greater stratospheric SGI 
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compared to the zonal average [e.g. Aschmann et al., 2011; Levine et al., 2007; 

Tegtmeier et al., 2013]. Recently, so called “cold surges” have been discovered 

to play an important role in transporting Cl-VSLS meridionally on a regional 

basis from East Asia, where Cl-VSLS abundances are high, to the tropics 

[Ashfold et al., 2015]. However global scale transport of SGs is difficult due to 

the short lifetimes of these species, which can lead to large spatially variability 

of VSLS. Figure 2.7 highlights this with the lack of inter-hemispherical transport 

of CH2Cl2 leading to northern hemisphere concentrations of the order of three 

times larger than southern concentrations. 

 

2.2.4 Impacts of Cl-VSLS  

As Figure 2.8 shows, both Cl-VSLS and their product gases are able to be 

transported into the lower stratosphere via the TTL through Source Gas 

Injection (SGI) and Product Gas Injection (PGI). Once in the stratosphere, Cl-

VSLS are readily photolysed to release chlorine [e.g. Hossaini et al., 2017]. 

Photolysis of Cl-VSLS occurs almost entirely in the lower stratosphere; 

however, the resulting chlorine can mix throughout the entire stratosphere. As 

Cl-VSLS are fairly reactive in the troposphere, it can be assumed that a 

significant proportion will have also reacted before reaching the tropopause. 

Several chlorinated product gases (e.g. HCl and COCl2) are water-soluble, 

therefore the efficiency of stratospheric chlorine PGI depends on the vertical 

level at which the product gases are produced (i.e. whether they are subject to 

wet deposition). Stratospheric chlorine SGI (due to the VSLS themselves) is 

possible to observe from measuring near-tropopause abundances (e.g. from 

aircraft) and hence is relatively well constrained. But PGI attributed to Cl-VSLS 

cannot be measured directly, as the expected major stable product gases are 

also produced from the oxidation of other chlorocarbons. Phosgene (COCl2) is 

a product of not only CHCl3 and CH2Cl2, but also the long-lived gases CH3CCl3 

(methyl chloroform) and CCl4 [Fu et al., 2007]. The current best estimate of 

stratospheric chlorine SGI from all Cl-VSLS is 100 ppt Cl (83-117), for the year 

2016 [Engel et al., 2018]. Stratospheric chlorine PGI due to product gases Cly 

(inorganic chlorine, which typically constitutes HCl) and COCl2, can be 
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estimated from modelling studies, with a current best estimate of 8-50 ppt Cl in 

2016 [Engel et al., 2018]. 

In terms of impacts on ozone, there have been very few modelling studies 

concerned with Cl-VSLS to date. However, the impact of CH2Cl2 specifically has 

been investigated due to its status as a rapidly increasing compound [Hossaini 

et al., 2017]. It was found that if growth of CH2Cl2 continues at the rate observed 

between 2004 and 2014, the time it takes for stratospheric Cly levels to return 

to 1980 levels (a sign of ozone recovery) is at least 17 years longer than if no 

CH2Cl2 was present in the stratosphere. As a consequence, annual mean 

Antarctic lower stratosphere ozone could decrease by ~6% in 2050 compared 

to a scenario with no CH2Cl2 [Hossaini et al., 2017]. 

 

2.2.5 Impacts of Brominated VSLS  

Although the focus of this thesis is on Chlorinated VSLS, Brominated VSLS (Br-

VSLS) have been undergoing more investigation in recent years. This is partly 

due to the overwhelming contribution of natural sources to global emissions, 

thought to be impacted by climate change [e.g. Ziska et al., 2017]. The common 

Br-VSLS are analogous to the common Cl-VSLS, including dibromomethane 

(CH2Br2) and bromoform (CHBr3). Global emissions of these compounds have 

been estimated at 79 and 470 Gg Br yr-1, respectively [Engel et al., 2018], and 

typical abundances are of the order of 0.4-4.0 and 0.6-1.7 ppt in the marine 

boundary layer. Other relatively minor Br-VSLS also contain a chlorine atom; 

e.g. CHBr2Cl, CH2BrCl and CHBrCl2. The important natural sources of the 

above Br-VSLS are ocean plankton and microalgae in coastal waters [Moore et 

al., 1996], similar to the proposed natural sources of Cl-VSLS. 

Compared to Cl-VSLS, whose contribution to total stratospheric Cl is relatively 

small, Br-VSLS represent a much larger relative proportion of total bromine 

injected to the stratosphere [Carpenter et al., 2014; Falk et al., 2017]. Although 

CH3Br and long-lived halons have provided the bulk of the stratospheric 

bromine budget, at around 75%, the rest is from Br-VSLS [Falk et al., 2017]. 

This is in steep contrast to the total stratospheric chlorine budget, for which Cl-

VSLS only contribute about 3% at present [Carpenter et al., 2014], albeit this is 
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likely to increase in coming years. Once in the stratosphere, bromine from VSLS 

causes decreases in stratospheric ozone, particularly in the lower stratosphere 

where Br-VSLS have short lifetimes against photolysis [Salawitch et al., 2005]. 

On a per atom basis, bromine is relatively efficient at destroying ozone, with 

modelling studies suggesting an ‘α-factor’, a metric that describes the relative 

chemical effectiveness of bromine compared to chlorine, of 64 [Sinnhuber et 

al., 2009]. 

Increases in Br-VSLS emissions have been postulated as a result of a changing 

climate [Ziska et al., 2017], as a result of changing sea surface temperatures, 

ocean salinity, and/or surface wind speeds. Under an RCP6.0 climate scenario 

(the second highest CO2 scenario) combined CH2Br2 and CHBr3 fluxes are 

expected to increase on average by 8-10% by the end of the 21st century [Falk 

et al., 2017]. Under an RCP8.0 scenario, the highest scenario, increases in 

6.4% and 9.0% of CH2Br2 and CHBr3 emissions, respectively, are projected in 

the same timeframe [Ziska et al., 2017]. It is plausible that oceanic sources of 

Cl-VSLS are impacted similarly due to changing climate, although natural 

oceanic Cl-VSLS sources are less well understood and any such changes are 

likely to be dwarfed by the sharper changes in industrial emissions, e.g. CH2Cl2 

emissions have been estimated to have increased by approximately 18% 

between 2012 and 2016, just a 4-year period [Engel et al., 2018]. 

 

2.2.6 Ozone Depletion Potentials 

Methods to quantify and communicate the impacts of chlorine on stratospheric 

ozone have been of crucial importance, especially when considering CFCs and 

other long-lived compounds. The Ozone Depletion Potential (ODP) metric was 

developed as a simple measure to assess a compound’s relative ability to 

destroy ozone [Solomon & Albritton, 1992; Wuebbles, 1981, 1983]. It is 

calculated for a compound X according to Equation 2.32 [Wuebbles et al., 

2011]: 

 ODP(X) =
Global mean column ozone change due to unit emissions of X

Global mean column ozone change due to unit emissions of CFC−11
    (2.32) 
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CFC-11 (CCl3F) is used as the reference compound and therefore has an ODP 

of 1. Most compounds have an ODP lower than 1, due to CFC-11’s high potency 

to deplete ozone (e.g. owing to the 3 chlorine atoms in the molecule, and its 

lifetime). In the past, ODPs have been calculated using simple one-dimensional 

or two-dimensional models [Solomon & Albritton, 1992], but the advent of three-

dimensional models has allowed for more accurate calculations of stratospheric 

ozone changes in response to chlorine perturbations, and hence ODPs. These 

models have also allowed consideration of spatial variability of emissions, which 

is especially important for compounds not uniformly mixed in the troposphere, 

such as VSLS [Brioude et al., 2010].  

The ODPs of some important compounds, including Cl-VSLS so far studied, are 

given in Table 2.1. Since Cl-VSLS have only been recently considered as 

compounds that could potentially deplete ozone, not many studies have been 

performed to calculate their ODPs. CHCl3 has been studied on one occasion by 

a now old study [Kindler et al., 1995], yielding an ODP of 0.01. Cl-VSLS make 

up the lower end of ODPs; however, there are substances with ODPs of a 

similar order of magnitude to Cl-VSLS which are being phased out under the 

Montreal Protocol, such as HCFC-22 (CHCl2F). 

Although ODPs are a useful metric, they are only a measure of the potential a 

compound has to deplete ozone, and on their own they cannot be used to 

identify impacts. They have to be used in tandem with global emissions, as a 

compound that is emitted more from the surface will be more dangerous 

towards ozone than one with fewer emissions. HCFC-22 emissions are roughly 

0.4 Tg yr-1, which is of a similar order to the estimated emissions of CHCl3, 0.3 

Tg yr-1 [Engel et al., 2018]. However only the former has been enveloped into 

the Montreal Protocol, despite similar ODPs. 

The restrictions of HCFC-22 production by the Montreal Protocol may impact 

Cl-VSLS in two ways. Firstly, as Cl-VSLS, (i.e. CHCl3) are used as feedstock 

compounds for HCFC-22 [Fang et al., 2019], their production may also 

decrease in turn. The phasing out of HCFC-22 has however led to the 

introduction of an alternative compound, HFC-32 (CH2F2), which is also 

synthesised using Cl-VSLS (i.e. CH2Cl2). Secondly, since the compounds have 
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similar orders of ODP, there is the possibility that Cl-VSLS themselves will be 

regulated in the future. To determine if this is necessary, new and updated 

ODPs of Cl-VSLS will need to be calculated, especially for CH2Cl2.  

 

Table 2.1. ODPs and surface lifetimes of a selected few chlorinated compounds, 

including key CFCs (grey), Cl-VSLS (light blue), and three other chlorocarbons: methyl 

chloroform (CH3CCl3), an industrial solvent; HCFC-22, a key CFC replacement 

compound, both of which are also regulated by the Montreal Protocol; and naturally 

occurring methyl chloride (CH3Cl). Table adapted from Harris et al. [2014].  

Compound ODP Lifetime (years) 

CFC-11 1.0 52 

CFC-12 0.73 102 

CFC-113 0.81 93 

CH3CCl3 0.14 5 

HCFC-22 0.034 12 

CH3Cl 0.015 0.9 

CHCl3 0.01 0.4 

C2Cl4 0.005 (a) 0.25 

C2HCl3 0.0001-0.0041 (b) 0.013 

Note: No ODPs have been calculated for CH2Cl2 or C2H4Cl2. The double line represents 

the boundary between substances controlled (top) and uncontrolled (bottom) by the 

Montreal Protocol. 

(a) Wuebbles et al., 2011.  

(b) Brioude et al., 2010. 

 

2.3 Emissions of Cl-VSLS 

Although the ODP metric gauges the potential relative impact of Cl-VSLS on 

stratospheric ozone, information regarding emissions is needed to assess the 

true impact. Global emissions of Cl-VSLS were first investigated by the Reactive 

Chlorine Emissions Inventory (RCEI) project, back in the late 1990s [Keene et 

al., 1999]. A significant outcome was that a 1° by 1° grid of estimated emissions 

was developed, based on the knowledge of Cl-VSLS sources and the 

distribution of emissions of the day. Section 2.3.1 delves more into the contents 
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of the RCEI, including the accompanying natural emission estimates originally 

supplied by Khalil et al. [1999] in Section 2.3.2. Section 2.3.3 then addresses 

any new estimates of industrial Cl-VSLS emissions that have since been 

calculated on a regional basis. 

 

2.3.1 RCEI Emissions 

Keene et al. [1999] separated global Cl-VSLS emissions by their different 

sources and calculated their relative emission strengths. The Cl-VSLS studied 

included CH2Cl2, CHCl3, C2Cl4, and C2HCl3, in addition to methyl chloride 

CH3Cl, and other slightly longer-lived compounds. The RCEI categorised the 

sources into industrial, soil, ocean, and biomass burning, and Figure 2.9 shows 

the relative contributions for each Cl-VSLS. In compiling the RCEI, industry 

emissions were calculated on a country by country level using 1990 regional 

emission data for select countries and extrapolating to other countries using a 

relationship between emissions and GDP [McCulloch and Midgley, 1996]. 

Ocean emissions were estimated from a limited number of ship cruise missions 

that measured sea-to-air fluxes of chlorinated compounds, reinforced by 

modelling studies, and soil emissions were estimated from direct flux 

measurements [Khalil et al., 1999]. These three sources represent the principal 

contributions to total global Cl-VSLS emissions, with the natural components 

considered to be particularly uncertain.  

As can be seen from Figure 2.9, for CH2Cl2 industry is the greatest source, at 

0.49 Tg Cl yr-1, roughly triple the contribution from ocean emissions. This is 

corollary to CHCl3, in which oceans are by far the greatest source (with 0.32 Tg 

Cl yr-1), with industry providing only 0.062 Tg Cl yr-1. For the other two VSLS of 

interest in the inventory, C2Cl4 and C2HCl3, industrial emissions are an order of 

magnitude greater than ocean emissions. It is important to stress that these 

estimates are applicable to the 1990s and so are now outdated, especially 

considering recent trends in these compounds (Figures 2.6 and 2.7). Figure 

2.9 also shows that by far the greatest loss of tropospheric Cl-VSLS is from 

reaction with OH; however, for CHCl3 and CH2Cl2 injection to the stratosphere 

is a nominal loss.  
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Figure 2.9. Figure taken from Keene et al. [1999] showing the emissions (in Tg Cl yr-1) 

of various chlorine containing compounds separated into different tropospheric 

sources and sinks. The Cl-VSLS of interest are (d) CHCl3, (f) C2Cl4, (g) C2HCl3, and (h) 

CH2Cl2. 

 

2.3.2 Natural Emissions 

Although the RCEI includes natural emission estimates for various Cl-VSLS, 

the global ocean flux and regional distribution is far more uncertain than for 

industrial emissions. Khalil et al. [1999] described the RCEI natural emission 

estimates, separating Cl-VSLS emissions into four different bands, 0-30° and 

30-90° latitude, for both the northern and southern hemispheres. Figure 2.10 

shows the Cl-VSLS ocean emissions from each of these bands, along with land 

(soil) emissions for CHCl3. 
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Figure 2.10. Figure taken from Khalil et al. [1999], showing the natural emissions (Gg 

Cl yr-1) of several Cl-VSLS (and CH3Cl), split into different latitude bands. These emission 

values are used to generate the ocean and land (soil) contributions for Figure 2.9. 

 

Xiao [2008] optimised the RCEI emissions of two Cl-VSLS, with a particular 

focus on the seasonal cycle of natural emissions. Using a synthesis inversion 

process (see Section 2.4.2), Xiao [2008] calculated mean global natural CHCl3 

emissions between 2000 and 2004 of 370 Gg (of source gas) yr-1, markedly 

smaller than the RCEI estimate of 630 Gg yr-1. The sole cause of this difference 

was from natural emissions, which suggests that the earlier RCEI inventory 

overestimated natural emissions, though full verification is difficult. For CH2Cl2, 

a similar inversion was performed that included industrial emissions. This 

resulted in global CH2Cl2 emissions of 629 Gg yr-1 (averaged between 2000 and 

2004), compared to the RCEI estimate of 836 Gg yr-1. Here, the RCEI 

overestimated both industrial and oceanic emissions, although since the Xiao 

[2008] study, CH2Cl2 concentrations have increased dramatically [Carpenter et 

al., 2014; Hossaini et al., 2017], and this industrial estimate now would be 

brought into question. 

More recent determinations of oceanic Cl-VSLS emissions can be used to 

compare to the RCEI and Xiao [2008] estimates, although such comparisons 

must be treated with caution due to limited data. Kolusu et al. [2016] inferred 

CH2Cl2 sea-to-air fluxes during ship cruises of the Tropical South Atlantic Ocean 

in 2009. They calculated the average flux of CH2Cl2 as 81 ± 81.72 nmol m−2 d−1, 
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corresponding to averages of 6.87 μg m−2 d−1 and 197 Gg Cl yr-1. Moore [2004] 

hypothesised that sea-to-air fluxes vary seasonally, and it is entirely possible 

that averaged out over a year, the oceanic flux of CH2Cl2 is negligible. Ooki and 

Yokouchi [2011] took into account these possible interannual variations in sea-

to-air fluxes, calculating just the biogenic CH2Cl2 contribution as 0.29 μg m−2 d−1 

- 0.43 μg m−2 d−1, or 8.3-12.5 Gg Cl yr-1. No such study has been performed for 

C2Cl4, another Cl-VSLS whose ocean sources, whilst minimal, were also based 

on a small amount of data during compilation of the RCEI [Khalil et al., 1999]. 

Without reliable estimates for Cl-VSLS ocean emissions, especially given the 

large variability in observed fluxes, total Cl-VSLS emission estimates are likely 

to be increasingly uncertain. 

 

2.3.3 Regional Industrial Estimates 

Despite the RCEI providing the most recent (1990s) concerted attempt to 

quantify global emissions of Cl-VSLS from different sectors, smaller scale 

studies have since been performed. As a result, some of the RCEI estimates 

have been called into question. For instance, it was found that the original RCEI 

estimate of a global biomass burning CH2Cl2 source of 59 Gg yr-1 [Lobert et al, 

1999] may have been overestimated [Lawson et al., 2015; Simpson et al., 

2011]. In addition, global natural CHCl3 sources may have also been 

overestimated, for both soil and ocean sources [Worton et al, 2006], confirmed 

by Xiao [2008]. Regional estimates of C2Cl4 emissions are rare, with Simmonds 

et al. [2006] providing an industrial estimate of European C2Cl4 emissions in 

2004 of 60 Gg yr-1, and 30 Gg yr-1 based on modelling studies. The RCEI 

estimates European C2Cl4 emissions of 140 Gg yr-1. Indian C2Cl4 emissions 

have been estimated to be 2.9 Gg yr-1 in 2016 [Say et al., 2019]. For CH2Cl2 

and CHCl3 multiple regional studies have been performed, which are detailed 

below. 
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CH2Cl2 

Some industrial regional estimates have been calculated for CH2Cl2 from China 

[Feng et al., 2019, Oram et al., 2017], India [Leedham Elvidge et al., 2015; Say 

et al., 2019], and Europe [Simmonds et al., 2006]. Feng et al. [2019] calculated 

Chinese emissions using bottom-up industry information covering 2005 to 2016, 

with future projections towards 2030. Between 2005 and 2016, Chinese CH2Cl2 

emissions increased from 101 to 318 Gg yr-1, with the 2005 value of 101 Gg yr-

1 similar to the RCEI estimate of 130 Gg yr-1 for the Asian continent as a whole 

[Keene et al., 1999]. Oram et al. [2017] used a combination of industry 

estimates and verification from observations to calculate 2016 CH2Cl2 Chinese 

emissions as 455 Gg yr-1, 1.5 times greater than the Feng et al. [2019] estimate 

in the same year. Oram et al. [2017] also estimates Chinese C2H4Cl2 emissions 

in 2016 of 203 Gg yr-1, based on the observed ratio of C2H4Cl2 with CH2Cl2. 

Alongside Chinese emissions, Japanese CH2Cl2 emissions were reported from 

industrial estimates as ~15 Gg yr-1 in 2011, a decrease from 90 Gg yr-1 in 2001 

[Hase and Kitano, 2013]. Note that in the RCEI, Asian emissions are more 

heavily distributed over Japan than over China, and the vast opposing shifts in 

emissions in these two countries [Feng et al., 2019; Hase and Kitano, 2013] 

contributes to the overall obsolescence of the RCEI. Finally, in India, CH2Cl2 

emissions were estimated in 2016 to be 96.5 Gg yr-1, using atmospheric 

measurements to drive an inversion [Say et al., 2019]. This is a 5-fold increase 

since the previous estimate of 20.3 Gg yr-1, in 2008 [Leedham-Elvidge et al., 

2015] 

Simmonds et al. [2006] used both industrial and model estimates to investigate 

European CH2Cl2 emissions in the early 2000s. Industrial calculations provide 

a European emission estimate of 160 Gg yr-1, roughly two times the size of the 

70 Gg yr-1 calculated from model estimates. Both however depict a significant 

decrease from the RCEI European estimate of 220 Gg yr-1. This decrease is in 

line with theorised global changes in CH2Cl2 use over the last two decades due 

to increased industrialisation over China, and phasing out of CH2Cl2 use over 

Europe and North America in line with EU and EPA regulations.  
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Alternatively to the RCEI, which has estimated CH2Cl2 emissions, the IARC 

(International Agency for Research on Cancer) has documented long-term 

changes in global CH2Cl2 production. Production has increased from 93 Gg yr-

1 in 1960 to 570 Gg yr-1 in 1980 [IARC, 1986], with further increases to 764-814 

Gg yr-1 over the years 2005-2010 [IARC, 2016; OECD, 2011]. On a regional 

manufacturing basis, CH2Cl2 production and imports in the USA were estimated 

as 45-227 Gg yr-1 between 1996 and 2006 [NTP, 2011], and European 

production and imports in 2016 are estimated between 100 and 1000 Gg yr-1 

[ECHA, 2016]. In addition, Japanese production in 2011 was reported at 56 Gg 

yr-1 [METI, 2012]. It is important to note that not all uses of CH2Cl2 are emissive 

in nature e.g. for use as a chemical feedstock, and therefore production and 

import numbers are not a direct equivalent to emissions. For example, 

Japanese emissions of CH2Cl2 were reported as ~15 Gg yr-1 in 2011 [Hase and 

Kitano, 2013], which is 3.5 times lower than the production and import estimate 

in the same year [METI, 2012]; however, production histories do allow insights 

into CH2Cl2 trends.  

 

CHCl3 

For CHCl3, Fang et al. [2019] used inversion processes to determine emissions 

for East Asia, based on long-term surface observations in the region. The study 

found that CHCl3 emissions increased at a rate of 2.5% yr-1 between 2010 and 

2015, primarily due to increases of Eastern Chinese emissions by 41-59 Gg yr-

1 over this time period. The average regional total for 2015 is estimated as 95 

Gg yr-1, larger than the estimate of global industrial CHCl3 emissions in the RCEI 

and the Xiao [2008] inversion study (69 Gg CHCl3 yr-1) [Keene et al., 1999]. 

Additionally, emissions of CHCl3 from just North Central India were estimated 

to be 32 Gg yr-1 in 2016 [Say et al., 2019]. Average CHCl3 Japanese emissions 

of 4.9 Gg yr-1 were estimated from inverse modelling between 2007 and 2011 

[Fang et al., 2019]. However, industry-based emission estimates for Japan over 

this same time period are approximately only 0.8 Gg yr-1 [Hase and Kitano, 

2013]. Simmonds et al. [2006] also estimates CHCl3 emissions for Europe as 

50 Gg yr-1 from industrial calculations and 35 Gg yr-1 from model calculations, 
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compared to 14.5 Gg y-1 estimated from the RCEI [Keene et al., 1999]. On a 

production basis, global production of chloroform amounted to 440 Gg yr-1 in 

1987, with a significant proportion (>200 Gg yr-1) from the United States [IARC, 

2016]. However, unlike CH2Cl2, CHCl3 is primarily used in the production of 

HCFC-22, and not for emissive purposes, which results in low 

production/emission ratios [WHO, 1994].  

 

2.4 Numerical Models and Techniques 

Numerical models have been vital over recent decades in aiding our 

understanding of chemical and physical processes in the atmosphere. Their 

computational ability can quickly calculate the distribution and atmospheric 

impact of a wide range of compounds, and have been instrumental for informing 

us about the past, present and future of atmospheric composition. In particular, 

the details of ozone layer destruction and recovery have been greatly improved 

using models [e.g. Chipperfield et al., 2018; Pawson et al., 2014; Steinbrecht et 

al., 2018]. Numerical models however come in a variety of different types, each 

tailored towards achieving specific goals. Section 2.4.1 will go into further detail 

about Chemistry Transport Models (CTMs), the subset of models I will be 

utilising in my thesis. In order to calculate optimised emissions of Cl-VSLS, one 

of the main aims of this thesis, a mathematical technique called synthesis 

inversion will be used. Section 2.4.2 will present the mathematical background 

to this process, and how it has been used in previous studies. 

 

2.4.1 Chemistry Transport Models 

Chemistry transport models (CTMs) are 3-D (latitude, longitude, altitude) global 

atmospheric models that couple chemistry schemes with transport processes, 

driven by meteorological conditions (e.g. temperature, wind, and humidity). 

These conditions are typically calculated “offline” i.e. by a separate model 

simulation that calculates meteorology, or by reanalysis products, and are then 

inputted into the CTM at regular intervals. At every time step, CTMs calculate 

various chemical and dynamical processes that affect the distribution of emitted 
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source gases and any products gases arising as a result of chemical reactions. 

The more common setup of CTM involves the model calculating fluxes within 

grid boxes (Eulerian), as opposed to calculating the fluxes of parcels of air 

through time (Lagrangian) [Jacob, 1999]. 

A key focus of a CTM is to study a wide range of environmental issues by using 

very detailed chemistry schemes. Ozone is a common compound to model in a 

CTM [e.g. Vautard et al., 2007] because of its environmental importance in both 

the troposphere and stratosphere. For modelling air pollution and climate, 

aerosol schemes are often added to the model [Cuvelier et al., 2007]. The end 

products of CTMs are usually gridded concentration outputs of the target 

compounds, these can be compared to observations to test how well the model 

has performed [e.g. Brunner et al., 2003]. Intercomparison between models is 

common to identify strengths and weaknesses an individual model may have 

relative to others, and this also allows an average value to be presented, that 

minimises the effects of individual model biases [e.g. Chipperfield, 2006; Kuhn, 

1998; Vautard et al., 2007]. Running multiple different models in a single study 

is time and resource expensive, so generally intercomparisons are performed 

just periodically. 

In the early stages of CTMs, they were used for investigating short time periods, 

of the order of months to a few years [Lefèvre et al., 1994; Rood et al., 1989]; 

however, increasing computing power has led to long multi-year global 

simulations. The CTM that will be extensively used in subsequent chapters of 

this thesis is the TOMCAT/SLIMCAT model [Chipperfield, 2006]. This model is 

separated into tropospheric (TOMCAT) and stratospheric (SLIMCAT) 

configurations, driven by meteorology from the European Centre for Medium-

Range Weather Forecasting’s (EMCWF) reanalysis product [Dee et al., 2011]. 

The model has been used extensively to study many different compounds, 

including NO2 [Savage et al., 2004], acetone [Arnold et al., 2005], lead 

[Giannakopoulos et al., 1999], and several chlorinated and brominated 

compounds [e.g. Chipperfield et al., 1997; Hossaini et al., 2010, 2013, 2017; 

Yang et al., 2005].  
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The TOMCAT/SLIMCAT model typically has a horizontal resolution of 2.8° x 

2.8°. With a fairly coarse resolution, many dynamical processes occur on a sub-

grid scale and therefore cannot be accurately resolved. Therefore, these 

processes are parameterised using the variables that can be modelled, such as 

humidity, temperature, wind speed and direction, etc. In TOMCAT, various 

convective systems are parameterised by a mass flux scheme from Tiedtke 

[1989]. This scheme combines thermodynamic representations of convective 

updrafts and downdrafts with equations dictating cloud formation. Boundary 

layer turbulent mixing is parameterised by Holtslag and Boville [1993], 

determining local eddy diffusivity using potential temperature and vertical wind 

gradient, generally describing boundary layer convection, and hence can be 

used in tandem with the Tiedtke [1989] parameterisation. Other linked 

processes that TOMCAT parameterises include rainfall and wet deposition 

[Giannakopoulos et al., 2004]. 

As discussed in Section 2.1.6., OH is an integral component of tropospheric 

chemistry, and has to be accurately described by a model. CTMs such as 

TOMCAT can read in offline concentration fields of OH, instead of having to 

include and calculate every key chemical process that affects OH. An OH field 

commonly used in TOMCAT is originally based on a climatology derived field 

by Spivakovsky et al. [2000], computed based on observed concentrations of 

related variables (including O3, CO, NOx, temperature). In the TransCom-CH4 

model intercomparison, Patra et al. [2011] adapted this field so that it provided 

optimal agreement to CH3CCl3 (methyl chloroform) trends [Huijnen et al., 2010]. 

Figure 2.11 depicts the latitude-pressure profile of this distribution. Similarly to 

Figure 2.5, there is a greater OH concentration over the Northern Hemisphere 

Tropics, where convective uplift is strongest. However, unlike Figure 2.5, the 

TOMCAT OH field depicts a concentration at 600 hPa twice as large than at the 

surface. Multi-model global OH concentration models can deviate by as much 

as 20% from the mean [Zhao et al., 2019]. 
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Figure 2.11. Annual zonal mean OH distribution (106 molecules cm-3) commonly used 

in TOMCAT simulations. The field is described by Patra et al. [2011] and was originally 

derived from Spivakovsky et al. [2000]. Taken from Figure 3 of Yin et al. [2015]. 

 

2.4.2 Synthesis Inversion 

Synthesis inversion is a mathematical technique that is used to optimise 

emissions of a given compound, based on knowledge of: (a) a prior estimate of 

emissions, (b) modelled concentrations calculated from these prior emissions, 

and (c) a network of observational data over the time period studied [Enting et 

al., 1995]. The mathematical process works on minimising the “cost function”, a 

variable (J) that weighs the mismatches between two pairs of variables: (a) the 

assimilated observations and the optimised emissions estimate, against (b) 

both the optimised and prior emissions estimates [Baker et al., 2006; Wang et 

al., 2018]. An example of the cost function equation is given in Equation 2.33 

below: 

            𝑱(𝑥) =  
1

2
(𝒙 − 𝒙𝒃).  𝑩−1. (𝒙 − 𝒙𝒃) +  

1

2
(𝒚 − 𝑮. 𝒙).  𝑹−1. (𝒚 − 𝑮. 𝒙)     (2.33) 
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where 𝒙 represents a new posterior emission estimate, 𝒙𝒃 the prior emissions, 𝑮 

a model concentration output calculated from the prior emissions, co-located 

with the corresponding observations, 𝒚, and R and B represent the 

observational and prior emission error covariance matrices, respectively. 

Observational errors provide information on how effective each observation is 

in constraining the optimised emissions, with the smaller the error, the more 

constraint there is on the inversion process. This is similarly the case for the 

errors in the prior emissions. The goal of synthesis inversion is to find the 

smallest least-squares Bayesian solution for 𝒙, which is achieved by minimising 

Equation 2.33, i.e. setting 
𝑑𝑱

𝑑𝒙
= 0, and then solving for 𝒙. 

Synthesis inversion is popular for long-lived atmospheric gases, such as CO2 

[Enting et al., 1995; Wang et al., 2018], H2 [Bousquet et al., 2011], and CH4 

[McNorton et al., 2018; Patra et al., 2011]. The process works best with large 

observational networks, which allows emissions estimates to be more finely 

tuned. Synthesis inversions are performed using regional tracers, as this allows 

each region to be individually finely tuned by incremental amounts to optimise 

emissions. Therefore, the more regions there are, the more effective the 

inversion, given there are enough observations to constrain each region 

successfully. 

 

2.5 Summary 

In this chapter, I have presented an overview of the main topics that will be 

investigated in the subsequent chapters. I have introduced stratospheric 

chemistry and processes, with the focus of chlorine chemistry (Section 2.1), 

and a small overview of tropospheric ozone chemistry. With Cl-VSLS as the 

primary subject of this thesis, I have then presented background scientific 

information we have on their uses, observed concentrations, and impact 

(Section 2.2), before discussing the current knowledge regarding emissions 

(Section 2.3). Finally, I have briefly discussed chemistry transport models and 

the synthesis inversion procedure, both of which will be widely used in later 

chapters (Section 2.4). 
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Abstract 

Chloroform (CHCl3), dichloromethane (CH2Cl2), perchloroethylene (C2Cl4), and 

1,2-dichloroethane (C2H4Cl2) are chlorinated Very Short-Lived Substances (Cl-

VSLS) with a range of commercial/industrial applications. Recent studies 

highlight the increasing influence of Cl-VSLS on the stratospheric chlorine 

budget and therefore their possible role in ozone depletion. Here we evaluate 

the ozone depletion potential (ODP) of these Cl-VSLS using a three-

dimensional chemical transport model and investigate sensitivity to emission 

location/season. The seasonal dependence of the ODPs is small, but ODPs 

vary by a factor of 2-3 depending on the continent of emission: 0.0143-0.0264 

(CHCl3), 0.0097-0.0208 (CH2Cl2), 0.0057-0.0198 (C2Cl4), and 0.0029-0.0119 

(C2H4Cl2). Asian emissions produce the largest ODPs owing to proximity to the 

tropics and efficient troposphere-to-stratosphere transport of air originating from 

industrialised East Asia. The Cl-VSLS ODPs are generally small, but the upper 

ends of the CHCl3 and CH2Cl2 ranges are comparable to the mean ODP of 

methyl chloride (0.02), a longer-lived ozone-depleting substance.  

 

Plain Language Summary 

Anthropogenic emissions of long-lived chlorinated substances (e.g. 

chlorofluorocarbons) have led to global ozone layer depletion since the 

1970s/1980s, including the Antarctic Ozone Hole phenomenon. The 1987 

Montreal Protocol was enacted to ban production of major ozone-depleting 

gases, and in consequence, there are signs that the ozone layer is recovering. 

However, emissions of so-called very short-lived substances, such as 

dichloromethane, have increased in recent years. Historically, these 

compounds have not been considered a major threat to stratospheric ozone, 

due to relatively short lifetimes, and they are not controlled by the Protocol. 

Given that production of these compounds is projected to increase, it is 

important to determine their ability to affect stratospheric ozone. We quantify 

the ozone depletion potential (ODP) of chloroform and perchloroethylene and, 

for the first time, dichloromethane and 1,2-dichloroethane, the main chlorinated 

very short-lived substances. We show that their ODPs vary depending on where 
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the emission occurs. For example, the ODP from Asian dichloromethane 

emissions is up to a factor of two greater than that from European emissions. 

This reflects the relative efficiency of troposphere to stratosphere transport 

between different geographical areas; the transport of polluted boundary layer 

air from continental East Asia being one relatively efficient route. 

 

3.1 Introduction 

Chlorinated Very Short-Lived Substances (Cl-VSLS), including chloroform 

(CHCl3) and dichloromethane (CH2Cl2), are a significant source of stratospheric 

chlorine [e.g. Hossaini et al., 2015; Laube et al., 2008] and therefore contribute 

to ozone depletion [e.g. Chipperfield et al., 2018; Hossaini et al., 2017]. These 

compounds have surface atmospheric lifetimes of ~6 months or less [e.g. Ko et 

al., 2003] and are used in a variety of commercial and industrial applications. 

CH2Cl2 is a common solvent [e.g. Simmonds et al., 2006], used as a paint 

stripper and in foam production, among other applications [e.g. Feng et al., 

2019; Montzka, Reimann, et al., 2011]. CHCl3 has historically been used in the 

production of HCFC-22 and is a by-product of paper manufacturing. Other Cl-

VSLS include perchloroethylene (C2Cl4) and 1,2-dichloroethane (C2H4Cl2), both 

of which also have significant anthropogenic sources, though shorter 

atmospheric lifetimes [Montzka, Reimann, et al., 2011]. 

Owing to increasing emissions, tropospheric CH2Cl2 mixing ratios have 

approximately doubled since the early 2000s, evidenced by long-term surface 

monitoring data [e.g. Hossaini et al., 2015, 2017] and measurements in the 

upper troposphere [Leedham Elvidge et al., 2015]. Although the influence of 

CH2Cl2 on ozone has been modest in the recent past [Chipperfield et al., 2018], 

if sustained CH2Cl2 growth continues in coming decades, ozone layer recovery 

could be delayed [Hossaini et al., 2017]. A substantial portion of CH2Cl2 

emissions, estimated globally at ~0.8 Tg/year in 2012 [Carpenter et al., 2014], 

is believed to occur in Asia [Oram et al., 2017]. CH2Cl2 emissions from China, 

for example, are thought to have increased by a factor of ~3 between 2005 and 

2016, with further increases projected until 2030 [Feng et al., 2019]. 
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The ozone depletion potential (ODP) concept [Solomon & Albritton, 1992; 

Wuebbles, 1981, 1983] was introduced as a relative means to assess a 

compound's ability to destroy stratospheric ozone. ODP assessment is integral 

to policy frameworks, notably the Montreal Protocol, which prohibits the 

production of numerous ozone-depleting substances. For long-lived gases that 

are well mixed in the troposphere (e.g. chlorofluorocarbons [CFCs]), ODPs are 

generally independent of emission location and season. However, for VSLS, 

owing to their short lifetimes, emission location and season have been shown 

to be important factors [e.g. Brioude et al., 2010; Ko et al., 2003; Pisso et al., 

2010]. For particularly short-lived VSLS (e.g. CH3I, lifetime of days-weeks), the 

ODP can vary by a factor of ~30 depending on where the emission occurs 

[Brioude et al., 2010; Harris et al., 2014]. 

Despite recent interest in Cl-VSLS, very little information on their ODP is 

present in the literature, and there are no estimates for CH2Cl2 and C2H4Cl2, to 

our knowledge. In this study we use a three-dimensional (3-D) chemical 

transport model (CTM) to quantify the ODP of four Cl-VSLS (CHCl3, CH2Cl2, 

C2Cl4, and C2H4Cl2). We consider how their ODPs vary with emission location 

(and season) from five major industrialised geographical areas. Sections 3.2 

and 3.3 describe the CTM setup and the ODP procedure. Results are presented 

in Section 3.4 and conclusions in Section 3.5. We also calculate the ODP of 

methyl chloride, a longer-lived chlorocarbon, with a lifetime of ~1 year [Montzka, 

Reimann, et al., 2011]. 

 

3.2 TOMCAT/SLIMCAT 3-D CTM 

We performed a series of experiments with the TOMCAT/SLIMCAT 3-D CTM 

[Chipperfield, 2006; Monks et al., 2016], widely used in VSLS-related studies 

[e.g. Hossaini, Chipperfield, et al., 2016, Hossaini, Patra, et al., 2016]. The CTM 

is forced by wind and temperature fields from the European Centre for Medium-

Range Weather Forecasts ERA-Interim reanalysis [Dee et al., 2011]. 

Simulations were performed at a horizontal resolution of 2.8° × 2.8°, with 60 

vertical levels extending from the surface to ~60 km. The CTM exists in both 

tropospheric and stratospheric configurations. In tropospheric mode, convective 
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transport is parameterised based on Tiedtke [1989] and turbulent boundary 

layer mixing follows Holtslag and Boville [1993]. This model configuration was 

used to quantify the stratospheric chlorine input due to Cl-VSLS and their 

product gases, phosgene (COCl2) and inorganic chlorine (Cly). COCl2 is an 

oxidation product of CH2Cl2, CHCl3, and C2Cl4 (Table 3.S1, Supporting 

Information), with an assumed tropospheric lifetime of 58 days [Kindler et al., 

1995] due to wet deposition. For Cly, the assumed lifetime is 5 days [Sherwen 

et al., 2016]. 

The stratospheric configuration of TOMCAT/SLIMCAT contains a detailed 

chemistry scheme covering all major processes relevant to stratospheric ozone 

loss (e.g. heterogeneous reactions on sulfate aerosols and polar stratospheric 

clouds). The model version employed here was used by Chipperfield et al. 

[2018] to investigate long-term ozone trends. Here it is used to determine the 

response of ozone to stratospheric chlorine perturbations from Cl-VSLS (and 

products) and to therefore evaluate ODPs. The Cl-VSLS chemistry is consistent 

between both CTM configurations, with kinetic data mostly from Burkholder et 

al. [2015]. 

 

3.3 ODP Calculation 

The steady-state ODP (Equation 3.01) of a compound, X, is defined as the 

global column ozone change due to a unit emission of X, relative to the global 

column ozone change due to a unit emission of CFC-11 at equilibrium [e.g. 

Wuebbles et al., 2011]. The ODP of X can therefore be calculated from a 

reference stratospheric model run, a model run with X perturbed relative to the 

reference, and a run with CFC-11 perturbed relative to the reference.  

      ODP(X) =
Global mean column ozone change due to unit emissions of X

Global mean column ozone change due to unit emissions of CFC−11
        (3.01) 

The tropospheric TOMCAT/SLIMCAT configuration was first used to calculate 

the steady-state stratospheric input of CH2Cl2, CHCl3, C2Cl4, and C2H4Cl2 and 

their products. These steady-state chlorine perturbations were determined 

using five different years of model meteorology (2013-2017) to assess the 

influence of interannual tropospheric transport variability on our results. As we 
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are principally interested in how chlorine perturbations vary with emission 

location, a series of tagged Cl-VSLS tracers was emitted from five geographical 

areas, each at a continuous rate of 1 Tg/year. The regions (Figure 3.1) are 

based on the TRANSCOM project [e.g. Gurney et al., 2003; Patra et al., 2011] 

and broadly correspond to major industrialised areas: Temperate North 

America (TemNA), Europe (Eur), Temperate Latin America (TemLA), 

Temperate Asia (TemAs), and Tropical Asia (TroAs). A 1-Tg/year emission was 

chosen as it is similar to current global estimates of CH2Cl2 emissions [Hossaini 

et al., 2017]. 

 

Figure 3.1. The 5 regions for the ODP analysis, regions based on the TRANSCOM 

project: Purple = Temperate NA, Blue = Temperate LA, Red = Europe, Light Blue = 

Temperate Asia, Lime Green = Tropical Asia. (Note: Originally included in the 

Supporting Information) 

 

Within regions, the Cl-VSLS emission distribution followed the industrial 

scenario [Keene et al., 1999; McCulloch et al., 1999] of the Reactive Chlorine 

Emissions Inventory (RCEI). For C2H4Cl2, not considered by the RCEI, the 

same distribution as CH2Cl2 was assumed—reasonable given their observed 
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correlation [Oram et al., 2017]. Although the RCEI was undertaken over 20 

years ago, the broadscale industrial emission distribution within our regions is 

unlikely to have changed to such a degree to significantly affect our results. This 

is particularly true of Europe and North America, though Asian regions may 

have seen larger changes to the distribution. To test the influence of emission 

distributions, we also considered Cl-VSLS tracers emitted with uniformly 

distributed fluxes within each region; that is, an extreme departure from the 

RCEI case. 

The above approach was also used to calculate the steady-state CFC-11 

stratospheric perturbation following a continuous 50-Gg/year surface emission. 

This moderate emission rate was chosen to (a) avoid any possible nonlinearities 

in the ozone response for large chlorine perturbations and (b) give a response 

above the model's numerical noise [e.g. Wuebbles et al., 1998]. The resulting 

stratospheric CFC-11 perturbation (~100 ppt) produces a global mean column 

ozone decrease of ~1%, consistent with previous work [Wuebbles et al., 1998]. 

The calculated range (due to different emission locations/distribution) of 

stratospheric Cl-VSLS perturbations (and the CFC-11 perturbation) were used 

as input to the detailed stratospheric chemistry model (Section 3.2). For each 

chlorine perturbation, the ozone response was calculated relative to a reference 

unperturbed stratosphere, allowing ODPs to be quantified from Equation 3.01. 

 

3.4 Results 

3.4.1 Hemispheric and Zonal Source Gas Distributions 

A key consideration is whether anthropogenic emissions from Northern 

Hemisphere (NH) midlatitudes and subtropics (including major Asian 

economies) can sustain significant Cl-VSLS mixing ratios in the tropics, where 

troposphere-to-stratosphere transport takes place. Figure 3.2 compares the 

modelled CH2Cl2 abundance at the surface and at 90 hPa (~17 km, location of 

tropical tropopause), resulting from a 1-Tg/year emission from four of the five 

regions considered. Note Temperate North America, not shown for clarity, 

shows a similar hemispheric distribution to Europe. Similar figures for other Cl-

VSLS are given in Figures 3.S1-3.S3 (Supporting Information). 



53 
 

 

Figure 3.2. Modelled 5-year annual mean steady-state mixing ratio (ppt) of CH2Cl2 at 

the surface (left) and at 90 hPa (right) based on a 1-Tg/year emission from (a, b) 

Europe, (c, d) Temperate Asia, (e, f) Temperate Latin America, and (g, h) Tropical Asia. 

 

Emissions from midlatitude and subtropical regions establish a strong CH2Cl2 

hemispheric gradient at the surface (Figure 3.2, left column). Zonally, surface 

CH2Cl2 is relatively well mixed away from main industrialised areas where clear 

maxima occur. The tropical (±20°) 5-year mean surface CH2Cl2 mixing ratios at 

steady state are 29 ppt (emission from TemNA), 26 ppt (Eur), 30 ppt (TemAs), 

39 ppt (TroAs), and 37 ppt (TemLA). Proximity to the tropics is clearly a large 

influence on these values, with TroAs emissions sustaining the largest tropical 

CH2Cl2 levels. The spread in these values is ~40%, with Eur and TemNA 

emissions resulting in similar tropical surface CH2Cl2 abundances that are a 

factor of 1.5 lower than that resulting from TroAs emissions. While transport of 

Cl-VSLS to the stratosphere will be relatively inefficient over these regions, the 

CH2Cl2 lifetime is sufficiently long to allow meridional transport to sustain 

nonnegligible CH2Cl2 abundances in the tropical boundary layer (e.g. Figure 
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3.2a). Once in the tropical troposphere, vertical gradients in zonally averaged 

CH2Cl2 are generally small [Hossaini, Chipperfield, et al., 2016; also Figure 3.3]. 

 

 

Figure 3.3. Vertical profile of the contribution (%) of source and product gases to total 

chlorine from (a) CH2Cl2, (b) CHCl3, (c) C2Cl4, and (d) C2H4Cl2. Contributions are tropical 

(20°N-20°S) 5-year means calculated at steady state following a continuous 1-Tg/year 

emission from Europe. Red is the proportion for source gases, blue for Cly, and green 

for COCl2 (see text in Supporting Information). 

 

Tropical CH2Cl2 is reasonably well mixed at 90 hPa, the approximate tropical 

tropopause. Compared to analogous brominated compounds such as CHBr3 

(24-day lifetime in tropical boundary layer) and CH2Br2 (94 days), Cl-VSLS are 

relatively long-lived, thus subgrid scale transport processes (e.g. convection) 

are a less important influence for their troposphere-to-stratosphere transport. 

For CHBr3, for example, previous model studies highlighted strong zonal 

variability in its tropical near-tropopause abundance [e.g. Aschmann et al., 

2011; Hossaini, Patra, et al., 2016]. The largest levels have been predicted in 
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strong convective regions, including the Indian Ocean, Central America, and 

the Maritime Continent [e.g. Aschmann et al., 2011; Gettelman et al., 2009; 

Hosking et al., 2010; Liang et al., 2014]. Such strong zonal variability is less 

apparent for CH2Cl2 apart from in the case of Asia emissions (particularly 

tropical) which co-located with such transport processes (Figure 3.2h). 

 

3.4.2 Stratospheric Chlorine Perturbations 

A summary of modelled stratospheric Cl perturbations from Cl-VSLS is given in 

Table 3.1. These steady state perturbations are calculated as the sum of 

chlorine in both source and product gases, expressed as annual/seasonal 

means over a 5-year period, 2013-2017. Due to the latter, these values are 

more representative than considering a single year of meteorology. Regardless 

of emission location, the Cl perturbation is greatest for CHCl3 (91.9 ppt Cl), 

followed by CH2Cl2 (69.4 ppt Cl), C2Cl4 (33.7 ppt Cl), and C2H4Cl2 (23.6 ppt Cl). 

Recall these perturbations are based on a 1-Tg/year source gas emission, with 

the values quoted above being all-region averages, assuming the RCEI 

emission distribution. For a given region, differing Cl perturbations across 

species reflects the different chlorine atomicity and tropospheric lifetimes of the 

compounds. In the tropical boundary layer, local lifetimes of CHCl3, CH2Cl2, 

C2Cl4, and C2H4Cl2 were assessed to be 112, 109, 67, and 47 days, respectively 

[Carpenter et al., 2014], consistent with the relative importance of each 

compound described above and in good agreement to our model estimates 

(Table 3.S2, Supporting Information). 
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Table 3.1. Modelled Stratospheric Cl Perturbations (ppt Cl) Due to 1-Tg/ year VSLS 

Emission from Different Regions. 

  Annual mean 

stratospheric Cl 

perturbation (ppt Cl) 

Seasonal mean (RCEI distr.) stratospheric Cl 

perturbation (ppt Cl) 

 

Species 
Emission 

region 

Evenly 

distributed 

emission 

RCEI 

distributed 

emissions 

DJF MAM JJA SON 

SGI 

(%; 

RCEI 

distr.) 

CHCl3 

Eur 79.2 ± 1.0 79.1 ± 1.0 73.6 ± 0.7 75.2 ± 2.2 82.7 ± 1.5 84.9 ± 0.9 61.6 

TemAs 97.6 ± 2.1 99.5 ± 2.0 93.7 ± 1.7 89.8 ± 2.9 102.1 ± 

2.7 

112.4 ± 

3.4 
65.3 

TemLA 79.1 ± 0.6 78.7 ± 0.6 82.0 ± 0.8 84.2 ± 0.9 74.5 ± 1.0 74.0 ± 1.2 60.8 

TemNA 84.1 ± 0.9 82.0 ± 0.8 77.4 ± 0.7 78.6 ± 1.8 85.1 ± 1.2 86.9 ± 1.1 61.9 

TroAs 130.5 ± 5.5 120.0 ± 4.8 118.9 ± 

4.5 

113.3 ± 

7.3 

120.3 ± 

5.7 

127.3 ± 

6.4 
68.4 

CH2Cl2 

Eur 59.1 ± 0.9 55.8 ± 0.8 51.2 ± 0.7 54.3 ± 1.8 59.4 ± 1.0 58.3 ± 0.7 76.5 

TemAs 75.3 ± 1.7 71.0 ± 1.3 67.8 ± 0.8 66.4 ± 2.2 72.5 ± 1.5 77.2 ± 2.2 77.6 

TemLA 59.6 ± 0.5 58.9 ± 0.5 60.9 ± 0.7 62.6 ± 1.1 56.0 ± 0.8 56.1 ± 1.1 75.1 

TemNA 63.3 ± 0.8 61.8 ± 0.8 57.8 ± 1.0 60.6 ± 1.8 65.0 ± 0.8 63.6 ± 1.2 76.6 

TroAs 105.5 ± 4.9 99.3 ± 4.8 99.9 ± 4.5 95.0 ± 7.3 99.4 ± 5.9 102.8 ± 

6.2 
80.0 

C2Cl4 

Eur 24.0 ± 0.5 22.6 ± 0.5 20.7 ± 0.5 22.4 ± 1.2 23.9 ± 0.6 23.4 ± 0.4 38.2 

TemAs 37.7 ± 1.5 34.3 ± 1.1 32.8 ± 0.7 30.4 ± 1.6 34.3 ± 1.3 39.7 ± 2.1 42.5 

TemLA 25.5 ± 0.4 24.8 ± 0.4 25.7 ± 0.6 27.2 ± 0.9 22.9 ± 0.5 23.4 ± 0.8 38.5 

TemNA 27.1 ± 0.6 25.9 ± 0.6 24.7 ± 0.9 25.8 ± 1.4 26.7 ± 0.4 26.3 ± 0.8 39.3 

TroAs 66.1 ± 4.6 60.7 ± 4.6 62.9 ± 4.1 56.8 ± 6.7 59.3 ± 5.7 64.0 ± 6.0 48.1 

C2H4Cl2 

Eur 16.8 ± 0.5 15.7 ± 0.4 13.8 ± 0.6 17.0 ± 1.1 17.5 ± 0.4 14.4 ± 0.4 75.7 

TemAs 27.1 ± 1.1 24.0 ± 0.8 23.0 ± 0.5 22.5 ± 1.4 24.1 ± 0.8 26.4 ± 1.6 76.8 

TemLA 16.5 ± 0.3 15.8 ± 0.4 16.1 ± 0.5 17.0 ± 0.7 14.8 ± 0.4 15.2 ± 0.7 75.7 

TemNA 18.8 ± 0.5 17.8 ± 0.5 16.5 ± 0.8 19.2 ± 1.2 19.2 ± 0.3 16.5 ± 0.7 76.1 

TroAs 49.8 ± 3.9 44.9 ± 3.7 46.5 ± 3.4 41.7 ± 5.4 43.9 ± 4.5 47.7 ± 5.0 78.5 

Note: Steady-state perturbations derived as sum of chlorine from source and product 

gases at the tropical (±20° latitude) tropopause (16.5-17.5km). Perturbations are 

annual 5-year means (2013-2017 meteorology, ±1σ) and are presented for the evenly 

distributed and the RCEI-distributed emissions. Seasonal values (5-year mean ±1σ) 

assume RCEI distribution. Final column gives annual total Cl perturbation due to SGI 

(%). DJF=December-January-February; MAM=March-April-May; JJA=June-July-August; 

SON=September-October-November; TemNA=Temperate North America; Eur=Europe 

(Eur); TemLA=Temperate Latin America; TemAs=Temperate Asia; TroAs=Tropical Asia; 

RCEI=Reactive Chlorine Emissions Inventory; SGI =source gas injection. 
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Table 3.1 reveals that differences between tracers with the RCEI emission 

distribution and those evenly distributed are small; for example, the all-region 

mean Cl perturbation from CH2Cl2 is 69.4 ppt Cl (RCEI) and 72.6 ppt Cl (even), 

agreeing to within 4.6%. We focus herein on the RCEI case, noting that small 

differences between the scenarios are likely caused by how close the emissions 

are distributed to the tropics, where troposphere-to-stratosphere transport takes 

place. Indeed, for this reason, calculated Cl perturbations exhibit significant 

sensitivity to the continental scale location of emission, consistent with the 

known dependence of VSLS emission location on their ODPs [e.g. Bridgeman 

et al., 2000; Brioude et al., 2010]. The spread in stratospheric Cl perturbations 

due to emission location is 52% (CHCl3), 78% (CH2Cl2), 169% (C2Cl4), and 

186% (C2H4Cl2), with longer-lived compounds exhibiting a lower sensitivity. The 

seasonal dependence of stratospheric Cl perturbations is far smaller. For 

example, for a given region of CH2Cl2 emission, the seasonal spread is ~10% 

or less. Therefore, we do not overinterpret our findings in terms of seasonality, 

though note that seasonal differences reflect the complex interaction of (a) 

seasonality in transit times for NH air reaching the tropics [Orbe et al., 2016], 

low level flow into areas of convection [Pisso et al., 2010], seasonality in vertical 

transport efficiency through the tropical tropopause layer [e.g. Bergman et al., 

2012; Hosking et al., 2010; Krüger et al., 2009], and interaction of such 

processes with region-dependent Cl-VSLS lifetimes [Brioude et al., 2010]. 

Tropical Asia emissions lead to the largest stratospheric Cl injections, coinciding 

with efficient troposphere-to-stratosphere transport over the Maritime Continent 

[e.g. Hosking et al., 2010; Wright et al., 2011]. Temperate Asia is the second 

most efficient region, most likely due to its locality toward tropical Asia and 

reflecting the efficient transport of polluted airmasses originating from 

continental East Asia to the deep tropics and tropical upper troposphere 

[Ashfold et al., 2015; Oram et al., 2017; Orbe et al., 2015]. Note our 

stratospheric chlorine perturbations are somewhat, but not strongly, influenced 

by the year of meteorology under consideration, as evident by the ±1σ values 

in Table 3.1. These standard deviations (σ) are calculated on the 5-year mean 

Cl perturbations and in relative terms (the ratio of σ to the mean) range from 

0.8-8%. The two Asian regions are impacted the largest by interannual 
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variability, indicating that transport processes have greater leverage to 

influence VSLS troposphere-to-stratosphere transport from these regions 

compared to others. 

 

3.4.3 SGI Versus PGI 

Table 3.1 also shows the percentage of total chlorine that enters the 

stratosphere via source gas injection (SGI). For a given species, the regional 

spread in these values is generally small, with emissions from tropical Asia 

resulting in the largest SGI components. CH2Cl2 has the largest proportion of 

SGI (75-80%) and C2Cl4 (38-48%) the least. The relative importance of SGI 

versus Product Gas Injection (PGI) depends on both the lifetime of the source 

gases and the different combination of product gases (COCl2 and Cly) 

produced. Figure 3.3 shows vertically resolved tropical mean profiles of the 

contribution of SGI versus PGI, using European emissions as an example. 

In terms of the total tropospheric chlorine budget arising from CHCl3 and 

CH2Cl2, source gases are the most important component (accounting for ~60-

80% at the tropical tropopause, Table 3.1), followed by phosgene. CHCl3 and 

CH2Cl2 have similar lifetimes, and the larger phosgene component in the budget 

of the former reflects the larger phosgene yield from the CHCl3 + OH sink, 

compared to that from CH2Cl2 oxidation (see Supporting Information, Section 

3.6). For C2Cl4, delivery of chlorine to the stratosphere via SGI and PGI is 

comparable, with the latter slightly larger. This reflects the shorter C2Cl4 lifetime 

compared to CHCl3 and CH2Cl2 and the significant phosgene yield from C2Cl4 

oxidation [Tuazon et al., 1988]. Note a source of uncertainty (see also Section 

3.4.4) in our model is the assumed tropospheric washout lifetimes of phosgene 

and Cly products (Section 3.6). This uncertainty is more relevant to the two 

shortest-lived compounds under consideration (C2Cl4 and C2H4Cl2). 

 

3.4.4 ODP Calculations 

The stratospheric chlorine injections discussed in Section 3.4.2 were added as 

tropopause boundary conditions in the stratospheric TOMCAT/SLICMAT model 
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configuration. For each Cl-VSLS, three stratospheric simulations were 

performed, the first with the mean Cl perturbation from the five (RCEI-

distributed) regions (Table 3.1). The second and third experiments were 

designed to represent the lower and upper bounds of the Cl perturbations, 

incorporating the regional/seasonal spread. Thus, the mean Cl perturbations 

were multiplied by 0.5 and 1.5 to approximate the lower and upper bounds, 

respectively (Table 3.S3, Supporting Information). Each perturbation 

experiment was run for 25 years to allow a new ozone steady state to be 

established with respect to the reference run (Figure 3.S4, Supporting 

Information). 

There is a strong linearity (|R|>0.999) between stratospheric Cl from Cl-VSLS 

and the resulting global mean column ozone change (Dobson Units; see Figure 

3.S5, Supporting Information). For each Cl-VSLS considered, the linear ozone 

responses allow the ozone change due to any chlorine perturbations in Table 

3.1 to be calculated. Note that the global average loss of ozone due to the CFC-

11 perturbation was -3.8 Dobson Units, based on a 50-Gg/year surface 

emission. As the ozone responses are proportional to the emissions, the 

corresponding ozone change for a 1-Tg/year CFC-11 emission is readily 

calculated, allowing ODPs to be derived using Equation 3.01. An example 

latitude-height cross section of ozone changes due to VSLS and due to CFC-

11 is given in Figure 3.S6 (Supporting Information). Chlorine derived from either 

compound depletes ozone in the same regions that is where ozone loss cycles 

involving chlorine are efficient; that is, notably the polar lower stratosphere and 

upper stratosphere. 

Figure 3.4 shows the range of ODPs for each Cl-VSLS grouped by emission 

location and season (see also Table 3.S4, Supporting Information). Our results 

are in qualitative agreement with previous studies, highlighting an emission 

location and seasonal dependence of VSLS ODPs in general [e.g. Brioude et 

al., 2010; Pisso et al., 2010]. However, as those previous studies have largely 

focused on particularly short-lived VSLS, it is notable that the spread in derived 

ODPs for Cl-VSLS assessed here is generally smaller, particularly for seasonal 

variations. For example, Pisso et al. [2010] showed that the ODP of n-propyl 

bromide (~20-day lifetime), when emitted from NH midlatitudes (30-60°N), 
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varied by a factor of ~2.5 between NH summer and winter. In contrast, the 

seasonal spread in Cl-VSLS here is far smaller, and a factor of ~2.5 is more 

similar to the total ODP spread taking into account the larger variability 

introduced by emission location. 

 

 

Figure 3.4. Calculated ODPs for (a) CHCl3, (b) CH2Cl2, (c) C2Cl4, and (d) C2H4Cl2, as a 

function of emission region and season. Horizontal lines represent literature values: 

CHCl3 from Kindler et al. [1995] and C2Cl4 from Kindler et al. [1995; upper] and 

Wuebbles et al. [2011; lower]. Error bars incorporate uncertainty due to tropospheric 

and stratospheric interannual variability. ODP=ozone depletion potential; 

DJF=December-January-February; MAM=March-April-May; JJA=June-July-August; 

SON=September-October-November; TemNA=Temperate North America; Eur=Europe 

(Eur); TemLA=Temperate Latin America; TemAs =Temperate Asia; TroAs =Tropical 

Asia. 
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Few ODP estimates for Cl-VSLS are available in the literature. For CHCl3 and 

C2Cl4, Kindler et al. [1995] reported values of ~0.01 and ~0.006, respectively. 

Our CHCl3 ODP range (0.0143-0.0264) is larger than these semiempirical 

Kindler et al. [1995] estimates, though our C2Cl4 range (0.0057-0.0198) 

incorporates their estimate at the lower limit. Our lower ODP limit for C2Cl4 is 

also 14% larger than the 0.005 reported by a previous 3-D model study 

[Wuebbles et al., 2011]. However, that work assumed that all chlorine released 

from tropospheric C2Cl4 oxidation was in the form of Cly, which is subject to 

deposition. Our study also considered phosgene as an intermediate, which is 

expected to have a longer tropospheric lifetime versus deposition [Kindler et al., 

1995] and is thus a relatively efficient carrier of chlorine to the stratosphere. 

Our derived ODP range for CH2Cl2 is 0.0097-0.0208, and to the best of our 

knowledge, this is the first estimate for this compound. The range is skewed by 

the larger values from the Asian emission scenarios, particularly tropical Asia, 

as is the case for each Cl-VSLS considered. For example, CH2Cl2 ODPs are a 

factor of two larger when emissions are concentrated in tropical Asia as 

opposed to Europe, with emissions from the latter resulting in the lowest ODPs. 

The CH2Cl2 ODPs from the temperate Asia emission scenario (Figure 3.4) are 

also larger with respect to the all-region all-season mean (Table 3.S4); 

significant as (a) efficient troposphere-to-stratosphere transport routes exist for 

emissions from this region [Ashfold et al., 2015; Oram et al., 2017; Figure 3.2], 

and (b) regional CH2Cl2 emissions are expected to further increase in coming 

years [Feng et al., 2019]. The derived ODPs for C2H4Cl2 are in the range 0.0029-

0.0119 and are the lowest of the species considered. 

Our study shows Cl-VSLS have generally small ODPs. For context, the ODPs 

of some major substances controlled by the Montreal Protocol [Harris et al., 

2014] are 1.0 (CFC-11), 0.73 (CFC-12), and 0.81 (CFC-113). We also 

calculated the ODP of methyl chloride (CH3Cl) using the same experimental 

setup as for Cl-VSLS (Table 3.S4). The CH3Cl ODP range is 0.0188-0.0262, 

with an average ODP of 0.02. This is in good agreement with previous estimates 

of ~0.02 [Harris et al., 2014] and shows that, at the upper limit, CHCl3 and 

CH2Cl2 have comparable ODPs to CH3Cl despite their shorter atmospheric 

lifetimes (reflecting the multiple Cl atoms of these Cl-VSLS). It is important to 
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note that product gases account for a significant portion of the chlorine injected 

into the stratosphere from VSLS (Table 3.1). As details of product chemistry 

are uncertain, we also quantified ODPs under the assumption that no product 

gases reach the stratosphere. Naturally, these ODPs are smaller and represent 

lower limits (Table 3.S4). Finally, while ODPs for Cl-VSLS are not strongly 

influenced by interannual variability in our model, details of tropospheric 

transport can vary greatly between models, including those running with the 

same reanalysis meteorology [Orbe et al., 2016]. On this basis, we recommend 

other modelling groups quantify VSLS ODPs to corroborate our findings. 

 

3.5 Concluding Remarks 

A 3-D CTM was used to quantify the ODPs of CHCl3, CH2Cl2, C2Cl4, and 

C2H4Cl2 and to investigate sensitivity to emissions location and season. 

Determining the ability of these compounds to influence stratospheric ozone is 

important given recently reported increases in CH2Cl2 emissions and 

projections of further increases [Feng et al., 2019]. The derived ODP ranges 

reveal a small but significant potential for Cl-VSLS to influence ozone, 

particularly if emissions are located in close proximity to the tropics: CHCl3 

(0.0143-0.0264), CH2Cl2 (0.0098-0.0208), C2Cl4 (0.0057-0.0198), and C2H4Cl2 

(0.0029-0.0119). Our simulations indicate (a) relatively efficient transport of Cl-

VSLS originating from continental east Asia to the lower stratosphere, in support 

of recently proposed transport pathways, and (b) that VSLS emissions resulting 

from the industrialisation of South East Asia have up to a factor of 3 times 

greater potential to influence stratospheric ozone than emissions from Europe. 
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(doi:10.17635/lancaster/researchdata/283). The supporting information 

consists of six figures and four tables. 

 

3.6 Supporting Information 

This supporting information includes some text describing the Cl-VSLS 

chemistry in TOMCAT/SLIMCAT. The chemical reactions, including rate 

constants used in the scheme, are summarised in Table 3.S1. The modelled 

Cl-VSLS lifetimes are compared to literature values in Table 3.S2. A summary 

of stratospheric model experiments that used different chlorine perturbations 

calculated by the tropospheric model configuration, is given in Table 3.S3. The 

derived ODP for the four Cl-VSLS are given in Table 3.S4. The modelled 

surface and near-tropopause abundance of CHCl3, C2Cl4 and C2H4Cl2 is shown 

in Figures 3.S1-3.S3. Figure 3.S4 shows the transient stratospheric ozone 

response to CH2Cl2 and CFC-11 perturbations before a steady state is reached. 

The (linear) relationship between stratospheric Cl loading from VSLS and 

column ozone change is given in Figure 3.S5. Figure 3.S6 shows latitude-

height maps detailing the differences in ozone change between the control 

experiment and CFC11 and CH2Cl2 perturbations. 

 

Description of Cl-VSLS chemistry 

The tropospheric configuration of TOMCAT/SLIMCAT includes a simple 

chemistry scheme to calculate loss of Cl-VSLS via OH, Cl and photolysis, and 

conversion into two product gases, Cly (a generic representation of all inorganic 

chlorine), and phosgene (COCl2). In all tropospheric simulations, a 

climatological field of OH concentration from the TransCom-CH4 project was 

used [Patra et al., 2011] and the tropospheric Cl concentration was assumed 

as 1.3103 atoms cm-3 [Hossaini, Chipperfield, et al., 2016]. The chemical loss 

reactions of Cl-VSLS are given in Table 3.S1.  

The ratio between production of phosgene and Cly from CH2Cl2 oxidation varies 

according to a parametrisation of the detailed chemical mechanism described 

by Hossaini, Chipperfield, et al. [2016]. See notes to Table 3.S1. The phosgene 
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yield from CHCl3 and C2Cl4 are taken from the literature [Tuazon et al., 1988; 

Kindler et al., 1995], while C2H4Cl2 oxidation only produces Cly.  

 

Table 3.S1. Summary of reactions/removal processes involving VSLS and their 

products. 

Reaction Rate constant1, k Notes 

CHCl3 + OH     → COCl2 + Cly k(T) = 2.210-12 exp(-920/T) 4 

CHCl3 + Cl       → COCl2 +Cly k(T) = 3.310-12 exp(-990/T) 5 

CHCl3 + hν      → 3Cly - - 

CH2Cl2 + OH    → Y COCl2 + (2-
2Y) Cly 

k(T) = 1.9210-12 exp(-880/T) 6 

CH2Cl2 + Cl      → Y COCl2 + (2-
2Y) Cly 

k(T) = 7.410-12 exp(-910/T) 5, 6 

CH2Cl2 + hν     → 2Cly - - 

C2Cl4 + OH      → 0.47COCl2 + 
3.06Cly 

k(T) = 4.710-12 exp(-990/T) 7 

C2Cl4 + Cl + M → 0.47COCl2 + 
3.06Cly 

k0(T) = 1.410-28 (T/300)-8.5 

kinf(T) = 4.010-11 (T/300)-1.2 

5, 8 

C2Cl4 + hν        → 4Cly - - 

C2H4Cl2 + OH   → 2Cly k(T) = 1.1410-12 exp(-1150/T) - 

C2H4Cl2 + Cl     → 2Cly k(T) = 1.310-12 2, 5 

C2H4Cl2 + hν    → 2Cly - - 

COCl2 + OH     → products k(T) = 510-15  3 

COCl2 + hν      → 2Cly - - 

COCl2               → washout - 9 

Cly                    → washout - 10 

Notes: 

1Units of bimolecular rate constants are cm3 molecules-1 s-1. Units of termolecular rate 
constants: k0 (cm6 molecules-2 s-1) and kinf (cm3 molecules-1 s-1). All rate constants from 
Burkholder et al. [2015] unless noted. 

2Wallington et al. [1996] 

3Ko and Poulet et al. [2003] 

4Assumed COCl2 yield of 1 [Kindler et al., 1995]. 

5In the troposphere, [Cl] assumed as 1.3103 molecules cm-3 based on the tropospheric 
mean calculated by Hossaini, Chipperfield, et al. [2016]. 

6The COCl2 yield (Y) from CH2Cl2 oxidation was calculated in a semi-explicit manner 
from a parametrisation based on Hossaini, Chipperfield, et al. [2016]. Y is calculated 
as: 0.7 k(HO2-CHCl2O2) [HO2] + 0.4 k(RO2-CHCl2O2) [RO2]/{k(HO2-CHCl2O2) [HO2] + 
k(RO2-CHCl2O2) [RO2] + k(NO-CHCl2O2) [NO] + k(NO3-CHCl2O2) [NO3]}, where k(X-
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CHCl2O2) is the rate constant of the reaction between X and the intermediate CHCl2O2, 
which itself is formed from the reaction of CH2Cl2 and OH/Cl in the presence of O2. 

7Assumed COCl2 yield of 0.47 [Tuazon et al., 1988; Kindler et al., 1995]. 

8k0 and kinf are the low pressure limiting and high-pressure limiting rate constants 
[Burkholder et al., 2015]. 

9Assumed 58-day washout lifetime in troposphere based on Kindler et al. [1995]. 

10Assumed 5-day washout lifetime in troposphere based on Sherwen et al. [2016].  

 

Table 3.S2. Comparison of calculated Cl-VSLS lifetimes (days) compared with the 

literature. Tropical lifetimes reported with the seasonal range in brackets, mid-latitude 

seasonal lifetimes reported individually. 

Local lifetime (days) with respect to OH oxidation 

 
Source 

 
VSLS 

Tropics 
(25°S to 

25°N) 
Mid-latitudes (25°N to 65°N) 

Annual 
mean 

JJA SON DJF MAM 

 
This 
work 

CHCl3 107 (97-119) 94 261 829 205 

CH2Cl2 107 (97-119) 93 259 820 204 

C2Cl4 63 (58-71) 56 157 502 124 

C2H4Cl2 45 (41-50) 40 114 372 91 

       

 
WMO 
[2014] 

CHCl3 
112 (100-

136) 
97 240 750 160 

CH2Cl2 109 (98-133) 95 235 725 155 

C2Cl4 67 (60-81) 58 145 450 96 

C2H4Cl2 47 (42-58) 41 103 320 69 
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Table 3.S3. Summary of stratospheric CTM experiments used to calculate ODPs. Also 

shown are the stratospheric Cl perturbations from each experiment and the resulting 

ozone change. Note, all Cl perturbations and ozone changes are based on a 1 Tg/yr 

surface emission apart from the CFC-11 which was based on a 50 Gg/yr emission. 

Experiment 
No. 

Description Stratospheric 
Cl perturbation 

(ppt Cl) 

Global mean 
column ozone 
change (DU) 

0 Control Run - - 

1 CFC-11 perturbation 306.9 -3.78 

2 CH2Cl2 perturbation 69.4 -1.00 

3 CH2Cl2 perturbation  0.5 34.7 -0.50 

4 CH2Cl2 perturbation  1.5 104.0 -1.50 

5 CHCl3 perturbation 91.9 -1.38 

6 CHCl3 perturbation  0.5 45.9 -0.69 

7 CHCl3 perturbation  1.5 137.8 -2.06 

8 C2Cl4 perturbation 33.7 -0.72 

9 C2Cl4 perturbation  0.5 16.8 -0.36 

10 C2Cl4 perturbation  1.5 50.5 -1.09 

11 C2H4Cl2 perturbation 23.6 -0.40 

12 C2H4Cl2 perturbation  0.5 11.8 -0.20 

13 C2H4Cl2 perturbation  1.5 35.5 -0.60 

14 CH3Cl perturbation 165.0 -1.62 

15 CH3Cl perturbation  0.5 82.5 -0.82 

16 CH3Cl perturbation  1.5 247.4 -2.42 
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Table 3.S4. ODPs of the four Cl-VSLS, showing minimum, maximum, mean, mean only 

considering source gas (SG) contributions, and median values from the 20 region-

season combinations (see also Figure 3.4 in main text). The final column is the 

conversion factor between chlorine loading and ODP, calculated from the slope for 

each species in Figure 3.S5, divided by the ozone loss due to 1 Tg/yr emission of CFC-

11 ( -75.6 DU).  

  ODP  

Cl-
VSLS 

Min Max Mean 
Mean, 

SG 
only 

Median 
Cl-ODP 

conversion 
(ppt-1) 

CHCl3 0.0143 0.0264 0.0181 0.0117 0.0168 1.98E-4 

CH2Cl2 0.0097 0.0208 0.0133 0.0103 0.0121 1.91E-4 

C2Cl4 0.0057 0.0198 0.0095 0.0041 0.0075 2.83E-4 

C2H4Cl2 0.0029 0.0119 0.0053 0.0041 0.0041 2.24E-4 

CH3Cl 0.0188 0.0262 0.0215 / 0.0209 1.29E-4 

 

 

 

Figure 3.S1. Modelled 5-year annual mean steady-state mixing ratio (ppt) of CHCl3 at 

the surface (left) and at 90 hPa (right) based on a 1-Tg/year emission from (a, b) 

Europe, (c, d) Temperate Asia, (e, f) Temperate Latin America, and (g, h) Tropical Asia. 
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Figure 3.S2. As Figure 3.S1 but for C2Cl4. 

 

Figure 3.S3. As Figure 3.S1 but for C2H4Cl2. 
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Figure 3.S4. The percentage change of ozone due to a) 50 Gg CFC-11 and b) the three 

1 Tg CH2Cl2 experiments as a function of simulation year. In panel b) EXP2 is the blue 

line, EXP3 in the black line, and EXP4 is the green line. See Table 3.S3 for the list of 

experiments. 
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Figure 3.S5. The relationship between absolute ozone change in Dobson Units (DU) 

and the chlorine loading (ppt) for the four Cl-VSLS, which contain the values for the 

final column of Table 3.S4. 
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Figure 3.S6. Latitude-height plot of annual zonal mean percentage ozone change 

between the control experiment EXP0 and: a) EXP2, the CH2Cl2 base perturbation in 

Table 3.S3, and b) EXP1, CFC-11, weighted to 1 Tg/yr emissions. 
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Abstract 

Dichloromethane (CH2Cl2) and perchloroethylene (C2Cl4) are chlorinated very 

short lived substances (Cl‐VSLS) with anthropogenic sources. Recent studies 

highlight the increasing influence of such compounds, particularly CH2Cl2, on 

the stratospheric chlorine budget and therefore on ozone depletion. Here, a 

multiyear global‐scale synthesis inversion was performed to optimise CH2Cl2 

(2006-2017) and C2Cl4 (2007-2017) emissions. The approach combines long‐

term surface observations from global monitoring networks, output from a three‐

dimensional chemical transport model (TOMCAT), and novel bottom‐up 

information on prior industry emissions. Our posterior results show an increase 

in global CH2Cl2 emissions from 637 ± 36 Gg yr−1 in 2006 to 1,171 ± 45 Gg yr−1 

in 2017, with Asian emissions accounting for 68% and 89% of these totals, 

respectively. In absolute terms, Asian CH2Cl2 emissions increased annually by 
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51 Gg yr−1 over the study period, while European and North American 

emissions declined, indicating a continental‐scale shift in emission distribution 

since the mid‐2000s. For C2Cl4, we estimate a decrease in global emissions 

from 141 ± 14 Gg yr−1 in 2007 to 106 ± 12 Gg yr−1 in 2017. The time‐varying 

posterior emissions offer significant improvements over the prior. Utilising the 

posterior emissions leads to modelled tropospheric CH2Cl2 and C2Cl4 

abundances and trends in good agreement to those observed (including 

independent observations to the inversion). A shorter C2Cl4 lifetime, from 

including an uncertain Cl sink, leads to larger global C2Cl4 emissions by a factor 

of ~1.5, which in some places improves model‐measurement agreement. The 

sensitivity of our findings to assumptions in the inversion procedure, including 

CH2Cl2 oceanic emissions, is discussed. 

 

Plain Language Summary 

The 1987 Montreal Protocol banned production for dispersive uses of major 

ozone‐depleting gases, such as chlorofluorocarbons, due to their role in 

depletion of the stratospheric ozone layer. In consequence, the ozone layer is 

expected to recover in coming decades, as stratospheric chlorine from banned 

substances slowly declines. However, chlorinated very short lived substances 

(Cl‐VSLS), not controlled by the Montreal Protocol, represent a small, but 

growing, source of atmospheric chlorine that could potentially slow ozone 

recovery. It is thus important that the magnitude of emissions of these 

compounds, their spatial distribution, and changes with time are quantified. 

Here, we combined observations of Cl‐VSLS, prior estimates of their emissions, 

and a chemical transport model to produce an optimised set of emission 

estimates on a region‐by‐region basis between 2006 and 2017. We show that 

industrial emissions of dichloromethane, the most abundant Cl‐VSLS, 

increased by ~84% within this period, predominately due to an increase in Asian 

emissions, while European and North American emissions decreased. Over 

2007-2017, emissions of perchloroethylene, a less abundant Cl‐VSLS, 

decreased, particularly in Europe and North America. We show that our new 
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emission estimates lead to better agreement with observational data compared 

to previous estimates. 

 

4.1 Introduction 

Halogenated very short lived substances (VSLS) are organic compounds with 

annual mean atmospheric lifetimes at the planetary surface of ~6 months or less 

[Engel et al., 2018]. These lifetimes are short compared to the principal gases 

synonymous with ozone depletion, such as chlorofluorocarbons (CFCs), which 

were banned under the terms of the 1987 Montreal Protocol and its later 

amendments. However, despite their short lifetimes, over the last two decades, 

a wealth of research has shown that VSLS of both natural and anthropogenic 

origin can reach the stratosphere, where they contribute to stratospheric 

bromine and chlorine and thus ozone depletion [e.g., Claxton et al., 2019; 

Fernandez et al., 2014; Hossaini et al., 2017; Laube et al., 2008; Sturges et al., 

2000; Wales et al., 2018]. Brominated VSLS (e.g., bromoform and 

dibromomethane) are predominately of natural oceanic origin [e.g., Quack & 

Wallace, 2003; Ziska et al., 2013], while chlorinated VSLS (Cl‐VSLS) have 

significant anthropogenic sources [e.g., Engel et al., 2018; McCulloch et al., 

1999]. At present, these compounds account for a small, but growing, portion 

of atmospheric chlorine, and they are not controlled by the Montreal Protocol. 

In 2016, Cl‐VSLS were estimated to provide 115 (75-160) ppt of chlorine to the 

stratosphere, which represents 3.5% of total chlorine in the stratosphere from 

all sources [Engel et al., 2018; Hossaini et al., 2019]. 

The most abundant Cl‐VSLS, dichloromethane (CH2Cl2), is of particular interest 

owing to an observed rapid increase in its global concentration since the mid‐

2000s [Hossaini et al., 2017, 2019; Leedham Elvidge et al., 2015]. As a versatile 

solvent, CH2Cl2 has a range of industrial applications and roughly 90% of total 

emissions have been estimated to be anthropogenic [Montzka, Reimann, et al., 

2011]. Annual global CH2Cl2 emissions have been estimated at ~1,000 Gg yr−1 

in 2016, with a global mean surface mole fraction of 33-39 ppt observed from 

monitoring networks, a factor of ~2 larger compared to the early part of the 

century [Engel et al., 2018]. Biogenic CH2Cl2 sources have also been 
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hypothesised from the ocean [Jones & Carpenter, 2005; Ooki & Yokouchi, 

2011] and from mangrove forests [Kolusu et al., 2018], though the magnitudes 

of these sources are poorly constrained and are expected to be small. A less 

abundant Cl‐VSLS is perchloroethylene, C2Cl4, which is almost solely 

anthropogenic and historically has found use, for example, in dry‐cleaning 

applications. Unlike CH2Cl2, the abundance of C2Cl4 has continually decreased 

over the last few decades [Carpenter et al., 2014; Simpson et al., 2004], due to 

phasing out in favour of less‐toxic alternatives. In 2016, the global mean C2Cl4 

mole fraction was 1.1-1.2 ppt, with global emissions estimated at 83-103 Gg 

yr−1 [Engel et al., 2018] 

Claxton et al. [2019] recently quantified the ozone‐depletion potential (ODP) of 

several Cl‐VSLS, highlighting a strong dependence of the ODP on the location 

of emission. They reported ODP ranges for CH2Cl2 and C2Cl4 of 0.0097-0.0208 

and 0.0057-0.0198, respectively, with emissions from Southern Asia having the 

largest ODPs. This is significant for Cl‐VSLS, as Asian emissions (a) likely 

account for a large fraction of present‐day global total emissions, having grown 

in importance over the last decade [Fang et al., 2019; Leedham Elvidge et al., 

2015; Oram et al., 2017], and (b) may continue to increase in coming years 

[Feng et al., 2019]. On the above basis, it is important that the geographical 

distribution and strength of Cl‐VSLS emissions are investigated and that 

accurate, up‐to‐date inventories are available as input for global modelling 

studies. Such modelling studies examining the stratospheric input of Cl‐VSLS 

have thus far relied on simple surface mixing ratio boundary conditions to 

constrain surface abundances of CH2Cl2 and other compounds based on 

measurements in the remote atmosphere. While these are observationally 

based and have been implemented so that time trends and latitudinal gradients 

are captured [Hossaini et al., 2019], zonal variability is not represented by the 

approach. This includes any potential colocation of large surface emissions with 

regions of efficient transport pathways to the upper troposphere/stratosphere, 

such as from continental East Asia [e.g., Ashfold et al., 2015], which are likely 

relevant to determining accurate ODPs [Claxton et al., 2019]. 

Despite a growing interest in Cl‐VSLS, there have been few recent studies 

examining their emissions at the global scale. Keene et al. [1999] established 
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the Reactive Chlorine Emissions Inventory (RCEI) framework in which global 

emissions were estimated using a bottom‐up approach for a wide range of 

chlorocarbons. Within that framework, industrial emissions of 583 ± 32 Gg yr−1 

CH2Cl2 and 366 ± 20 Gg yr−1 C2Cl4 were estimated [McCulloch et al., 1999]. 

These values, based on analysis relevant to the 1990s, likely underestimate 

present CH2Cl2 emissions and overestimate C2Cl4 emissions, based on recent 

trends [Engel et al., 2018]. Khalil et al. [1999] added to the RCEI framework by 

estimating total oceanic emissions of 191 Gg yr−1 CH2Cl2 and 19 Gg yr−1 C2Cl4. 

However, Cl‐VSLS fluxes from the ocean are highly spatially variable [e.g., 

Kolusu et al., 2016] and a significantly lower CH2Cl2 source (<90 Gg yr−1) has 

been inferred in later work [Trudinger et al., 2004]. Furthermore, while some 

evidence for in situ CH2Cl2 production (related to biological activity) has been 

reported [Ooki & Yokouchi, 2011], the ocean may also take up atmospheric 

CH2Cl2 and re‐emit it elsewhere [Moore, 2004]. This possibly confounds the 

interpretation of observational results that were used to infer the magnitude of 

natural emissions in earlier work. In addition, Lobert et al. [1999] estimated a 

biomass burning CH2Cl2 source of 59 Gg yr−1, though evidence for the existence 

of this source is missing from more recent analyses [Lawson et al., 2015; 

Leedham Elvidge et al., 2015; Mühle et al., 2007; Simpson et al., 2011]. 

There are two core objectives of this study: first, to investigate global and 

regional changes in CH2Cl2 and C2Cl4 emission magnitudes and distributions 

on a multiannual timescale; second, to generate and evaluate a set of up‐to‐

date global emissions for both compounds, suitable for use as input to 

atmospheric models. To accomplish this, we performed a global synthesis 

inversion to optimise Cl‐VSLS emissions over the period 2006-2017. Briefly, 

this approach combines long‐term observations from global monitoring 

networks, prior information on emissions, and a chemical transport model. The 

paper is structured as follows. The 3‐D chemical transport model is described 

in Section 4.2. The inversion procedure is outlined in Section 4.3, including 

both the theory and a description of the different observations used. Our main 

inversion results, including various sensitivity analyses, are presented in 

Section 4.4. These include the addition of ocean sources of CH2Cl2 and an 
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added Cl sink of C2Cl4. Conclusions and recommendations for future work are 

given in Section 4.5. 

 

4.2 Description of the TOMCAT Chemical Transport Model 

TOMCAT is an offline 3‐D Chemistry Transport Model (CTM) [Chipperfield, 

2006; Monks et al., 2017] that has been widely used to investigate tropospheric 

chemistry and transport, including several VSLS‐focused studies [e.g., Hossaini 

et al., 2010, 2019; Claxton et al., 2019]. The CTM is forced by six‐hourly wind, 

temperature, and humidity fields taken from the European Centre for Medium‐

Range Weather Forecasts (ECMWF) ERA‐Interim meteorological reanalyses 

[Dee et al., 2011]. The TOMCAT configuration used had a horizontal resolution 

of 2.8° × 2.8°, with a vertical resolution of 60 levels, up to an altitude of ~64 km. 

Our model configuration also employs a simplified tropospheric chemistry 

scheme, reading an offline monthly varying field of the tropospheric hydroxyl 

radical (OH) concentration [Spivakovsky et al., 2000; Huijnen et al., 2010]. The 

OH field was used in the Atmospheric Tracer Transport Model Intercomparison 

Project (TransCom) study of CH4 [Patra et al., 2011] and leads to an average 

methyl chloroform lifetime (1992-2007) of 4.71 (±0.18) years in TOMCAT, in 

reasonable agreement with recent estimates of ~5 years obtained from inverse 

methods [e.g., Rigby et al., 2013]. Although the model OH field here is fixed in 

time, we note that evidence for interannual OH variability, for instance, due to 

ENSO activity, exists [e.g., Montzka, Krol, et al., 2011; Prinn et al., 2005; Turner 

et al., 2018]. 

Both CH2Cl2 and C2Cl4 are subject to OH oxidation and photolysis sinks in the 

model. An additional inversion experiment (see ensuing discussion) was 

performed for C2Cl4 in which the competing three‐bodied loss reaction of C2Cl4 

with Cl atoms was also included. The inclusion of this reaction in models has 

been shown to be important to reproduce atmospheric C2Cl4 observations in 

the upper troposphere [Hossaini et al., 2019; Rudolph et al., 1996]. In this case, 

the model assumes a fixed tropospheric mean Cl concentration of 1.3 × 103 

atoms cm−3 globally, based on model estimates from Hossaini, Chipperfield, et 

al. [2016]. In practice, the spatial distribution of tropospheric Cl would be 
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nonuniform, and given this uncertainty, this model run is treated as a sensitivity. 

Reaction rate constants were taken from the 2015 Jet Propulsion Laboratory 

(JPL) report [Burkholder et al., 2015]. For the purposes of this study which 

investigates source gas emissions, product gas chemistry was not required. 

 

4.3 Description of the Inversion Technique 

4.3.1 Synthesis Inversion 

The “synthesis inversion” technique optimises model prior emissions of a given 

compound by minimising differences between modelled and observed mixing 

ratios [e.g., Baker et al., 2006]. This top‐down technique is well established and 

has been used to investigate surface emissions of several compounds, 

including CH4 [McNorton et al., 2018], CO2 [Law et al., 2008; Wang et al., 2018], 

CO [Pétron et al., 2002], and H2 [Bousquet et al., 2011]. Here, we apply the 

technique to CH2Cl2 and C2Cl4 to optimise their emissions for 12‐year (2006-

2017) and 11‐year (2007-2017) periods, respectively, over which a wide range 

of tropospheric observations are available (Section 4.3.2). Prior surface CH2Cl2 

and C2Cl4 emissions (Section 4.3.4) were aggregated over a possible 14 

source regions (Figure 4.1(a)). Boundaries for these source regions (10 land 

and four ocean), which are continental in scale, are adapted from previous 

TransCom inversion studies [e.g., Baker et al., 2006]. The four ocean regions 

are defined by the following latitude bands: Extratropical Northern Ocean (30-

90°N), Tropical Northern Ocean (0-30°N), Tropical Southern Ocean (0-30°S), 

and Extratropical Southern Ocean (30-90°S). Given the large uncertainty 

surrounding oceanic CH2Cl2 emissions (see discussion in Section 4.3.2.3), for 

this compound, two different inversions were performed as part of our sensitivity 

analysis. The first did not include any oceanic CH2Cl2 emission (i.e., it assumed 

industry sources only), while the second also considered emissions from the 

ocean regions. 
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Figure 4.1. (a) Map showing the 14 regions (10 land and 4 ocean) used in the inversion. 

NA = North America, LA = Latin America, NO = Northern Ocean, SO = Southern Ocean, 

Extra. = Extratropical, Trop. = Tropical, Temp. = Temperate. (b) Summary of the various 

observations used in this study: weekly flasks at NOAA surface sites (blue plusses); on‐

site high‐frequency measurements at AGAGE surface sites (orange circles); 

approximately daily flasks at NOAA tall tower sites (green squares). Flight campaigns: 

CAST (purple); ATTREX (black); CONTRAST (light blue). Ocean campaigns: AMT‐22 

(green); ACCACIA‐22 (red). 
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Within each source region, the distribution of emission is fixed (see Section 

4.3.4), and the inversion optimises the total emission from each region on an 

annual basis. 

The technique is based on minimising the cost function, 𝐽: 

         𝐽(𝒙) =  
1

2
(𝒙 − 𝒙𝑏). 𝑩−1. (𝒙 − 𝒙𝑏) +  

1

2
(𝒚 − 𝑮. 𝒙). 𝑹−1. (𝒚 − 𝑮. 𝒙)       (4.01) 

where 𝒙 is an emission estimate, 𝒙𝑏 are the prior emissions, 𝑩 is the covariance 

matrix for the errors in emissions, 𝒚 are the observations, 𝑹 is the covariance 

matrix for the errors in observations, and 𝑮 is the normalised model output 

concentration Jacobian matrix. It maps the emission field on to the observation 

vector 𝒚 via the transport model. The cost function is at a minimum at 𝒙 = 𝒙𝒂, 

where 𝒙𝒂 is given as [Tarantola & Valette, 1982]: 

                       𝒙𝒂 = 𝒙𝑏 + [𝑮𝑇 . 𝑹−1. 𝑮 +  𝑩−1]−1. 𝑮𝑇 . 𝑹−1. (𝒚 − 𝑮. 𝒙𝑏)            (4.02) 

Since all the other quantities are known, the posterior emissions for each of the 

14 regions analysed in the inversion can be solved on a year‐by‐year basis. 

Note that our justification for estimating annual emissions (e.g., as opposed to 

monthly resolved) is based on several factors that are outlined in Section 

4.3.2.1 below. This solution of 𝒙𝒂 gives the best match to the observations, while 

reducing the likelihood of straying unrealistically from the prior emissions 𝒙𝑏. A 

successful inversion is indicated by a significant reduction in the posterior 

emission errors compared to the prior emission errors. 

 

4.3.2 Observations 

4.3.2.1 Surface Observations of CH2Cl2 and C2Cl4 

Most of the CH2Cl2 and C2Cl4 observational data considered in this study come 

from remote surface sites, as summarised in Tables 4.1 and 4.2. We consider 

monthly mean measurements of both compounds over the 12‐year period 

obtained from a total of 29 unique surface locations, 19 used as input into the 

inversion, and 10 held back for independent verification. These data are from 

the National Oceanic and Atmospheric Administration (NOAA) and Advanced 

Global Atmospheric Gases Experiment (AGAGE) long‐term monitoring 
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networks, which have been described extensively in the literature [e.g., Montzka 

et al., 2018; Prinn et al., 2018]. AGAGE network monthly mean measurements 

include pollution events, while NOAA measurements are mostly obtained at 

remote sites. Observations obtained from the sites in Table 4.1 were used 

directly in the inversion. Between the two networks, a reasonable level of 

geographical coverage is achieved (see Figure 4.1(b)). Critically, this includes 

sites in each of the main industrialised regions where Cl‐VSLS emissions are 

expected to be greatest, such as the continental USA (four sites), Europe (four 

sites), and East Asia (one site). A conversion factor of 1.1038 was applied to 

the AGAGE CH2Cl2 record to account for a known calibration difference 

between the NOAA‐2003 and AGAGE SIO‐14 calibration scales of ~10% 

[Carpenter et al., 2014; Engel et al., 2018]. Note that four measurement sites 

are shared between the two networks; for this study, we use both 

measurements; however, we convert AGAGE data to NOAA calibration scales. 

For C2Cl4, NOAA and AGAGE use NOAA‐2003 and NOAA‐2003B calibration 

scales, respectively, which have been found to agree to within <1%. We 

additionally considered NOAA measurements of both compounds in 2015 from 

the USA‐based tall tower network (Table 4.2). These data were not assimilated 

in the inversion but rather were used to provide an independent assessment of 

the prior versus posterior emissions over the USA (at 10 sites). 

The availability and abundance of Cl‐VSLS measurement data was a principal 

factor in our decision to estimate annual mean emissions as opposed to monthly 

resolved emissions. The 19 unique observational sites (Table 4.1) provide a 

maximum of 228 monthly mean measurements in a given year. Solving 

emissions for 14 different regions would, in a monthly resolved inversion, 

require 168 (14 × 12) model Cl‐VSLS tracers for each year of our study period. 

This number of tracers (168) is comparable to the number of observations we 

have available to us in a year (maximum of 228 monthly means, assuming no 

missing data) and would lead to a less well constrained inversion process, as 

each month's emissions would only be constrained on average by 1.4 

observations. In addition, we believe that the large computational expense of 

running with such a large number of tracers is not warranted on the basis of (1) 

our study is primarily interested in long‐term interannual emission trends and 
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(2) the seasonal cycle of Cl‐VSLS is found to be reproduced well using our non‐

seasonal posterior emissions (see Sections 4.4.6 and 4.4.7). Finally, we note 

that there is little information in the literature with which to inform any prior 

emission seasonality in our model. Furthermore, for CH2Cl2, no significant 

seasonal variation in industrial emissions has been reported [McCulloch & 

Midgley, 1996]. 

 

Table 4.1. Summary of Surface Observational Sites Used as Input to the Inversion 

(Arranged North to South). 

Code Station Name, Location Lat (°) Lon (°) Elevation 
(m) 

Network 

ALT Alert, Canada 82.5 -62.5 190.0 NOAA 

ZEP Zeppelin, Svalbard, 
Norway 

78.9 11.9 490.0 AGAGE 

SUM Summit, Greenland 72.6 -38.4 3209.5 NOAA 

BRW Barrow, AK, USA 71.3 -156.6 11.0 NOAA 

MHD Mace Head, Ireland 53.3 -9.9 5.0 NOAA, 
AGAGE 

JFJ Jungfraujoch, Switzerland 46.3 8.0 3580.0 AGAGE 

LEF Park Falls, WI, USA 45.9 -90.3 472.0 NOAA 

CMN Monte Cimone, Italy 44.2 10.7 2165.0 AGAGE 

HFM Harvard Forest, MA, USA 42.5 -72.2 340.0 NOAA 

THD Trinidad Head, CA, USA 41.1 -124.2 107.0 NOAA, 
AGAGE 

NWR Niwot Ridge, CO, USA 40.1 -105.6 3523.0 NOAA 

GSN Gosan, Jeju, South Korea 33.3 126.2 89.0 AGAGE 

MLO Mauna Loa, HI, USA 19.5 -155.6 3397.0 NOAA 

KUM Cape Kumukai, HI, USA 19.5 -154.8 3.0 NOAA 

RPB Ragged Point, Barbados 13.2 -59.5 42.0 AGAGE 

SMO Tutuila, American Samoa -14.2 -170.6 42.0 NOAA, 
AGAGE 

CGO Cape Grim, Australia -40.7 144.7 94.0 NOAA, 
AGAGE 

PSA Palmer Station, Antarctica -64.9 -64.0 10.0 NOAA 

SPO South Pole, Antarctica -90.0 -24.8 2810.0 NOAA 
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Table 4.2. Summary of Surface Observational Sites Available in 2015 from the NOAA 

Tall Tower Network (Arranged North to South), not used as Input in the Inversion. 

Code Station Name, Location Lat (°) Lon (°) Elevation 
(m) 

Network 

CRV CARVE, AK, USA 65.0 -147.6 611.4 NOAA 

AMT Argyle, ME, USA 45.0 -68.7 53.0 NOAA 

MBO Mt. Bachelor, OR, USA 44.0 -121.7 2731.0 NOAA 

WBI West Branch, IA, USA 41.7 -91.4 241.7 NOAA 

BAO Boulder, CO, USA 40.1 -105.0 1584.0 NOAA 

WGC Walnut Grove, CA, USA 38.3 -121.5 0.0 NOAA 

STR Sutro Tower, CA, USA 37.8 -122.5 254.0 NOAA 

MWO Mt. Wilson, CA, USA 34.2 -118.1 1728.0 NOAA 

SCT Beech Island, SC, USA 33.4 -81.8 115.2 NOAA 

WKT Moody, TX, USA 31.3 -97.3 251.0 NOAA 

 

 

4.3.2.2 Aircraft Observations of CH2Cl2 and C2Cl4 

We also considered measurements of both Cl‐VSLS from three different flight 

campaigns: the 2014 Co‐ordinated Airborne Studies in the Tropics (CAST) 

mission [Andrews et al., 2016; Harris et al., 2017], the 2014 Convective 

Transport of Active Species in the Tropics (CONTRAST) mission [Pan et al., 

2017], and the 2014 Airborne Tropical Tropopause Experiment (ATTREX) 

mission [Navarro et al., 2015]. The locations of these campaigns are shown in 

Figure 4.1(b). The CAST mission (January-February) centred around Guam in 

the tropical West Pacific and made extensive measurements in the marine 

boundary layer during 22 flights, with vertical profiles extending up to ~10 km. 

Likewise, the CONTRAST (January-February) and ATTREX (January-March) 

missions also sampled the tropical West Pacific in a region centred around 

Guam. However, these campaigns sampled air from higher altitudes, with 

ATTREX extending into the lower stratosphere. Data from these three flight 

campaigns are not used as input to the inversion; instead they are used as 

independent observations to test the posterior results (in the relevant months of 

2014). 
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4.3.2.3 Ocean Emission Data 

As noted in Section 4.1, the ocean is a potential source of CH2Cl2 and C2Cl4. 

However, there are large uncertainties and several important confounding 

issues that require attention. Given that oceanic emissions have been proposed 

to be relatively more important for CH2Cl2 than C2Cl4 [Keene et al., 1999], we 

focus most of the following discussion on CH2Cl2, which provides a rationale for 

performing an inversion with and without an ocean CH2Cl2 source. 

First, there is very limited observational data with which to draw any firm 

conclusions regarding the strength of any oceanic emission. Khalil et al. [1999] 

estimated a total oceanic CH2Cl2 source of ~196 Gg yr−1 distributed in four 

latitude bands: 30-90°N (~24 Gg yr−1), 0-30°N (~50 Gg yr−1), 0-30°S (~50 Gg 

yr−1), and 30-90°S (~72 Gg yr−1). Khalil et al. [1999] acknowledged that the data 

available to them to calculate fluxes, including measured seawater and 

atmosphere concentrations of CH2Cl2 (and C2Cl4), were limited. The calculated 

fluxes were thus deemed to be “extremely uncertain” and later work inferred a 

significantly smaller upper limit to total ocean CH2Cl2 emissions (<90 Gg yr−1) 

based on analysis of firn air samples [Trudinger et al., 2004]. 

Second, in addition to a paucity of measurements, observational results and 

expectations suggest the possibility for very large spatiotemporal variability in 

ocean CH2Cl2 fluxes. For example, based on data collected during a cruise in 

the tropical Atlantic, Kolusu et al. [2016] calculated a mean CH2Cl2 flux of 81 

(±82) nmol m−2 day−1. Given this large variability, short‐term observational 

studies likely lack sufficient spatial and seasonal coverage to provide adequate 

estimates of annual net emissions over large domains. Extrapolation to infer 

regional or global emission totals, while common practice, can be problematic. 

Extrapolating the Kolusu et al. [2016] flux to a tropical ocean band gives ~236 

(±237) Gg yr−1 and to the entire ocean gives a total of ~915 (±468) Gg yr−1. This 

is a similar order to our prior global emission of 1,011.5 Gg yr−1, that includes 

both land and ocean sources. 

Third, another major confounding issue related to the above and relevant to 

drawing inference on the nature of any ocean CH2Cl2 source related to in situ 

production was discussed by Moore [2004]. Due to seasonal changes in CH2Cl2 
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ocean solubility (a decrease in warmer waters) and large seasonal changes in 

the CH2Cl2 concentration, summertime measurements may show ocean 

supersaturations that are unrelated to in situ production. In consequence, 

seasonally resolved data (or analyses accounting for temporary fluxes arising 

from physical effects, e.g., Ooki & Yokouchi, [2011]) are needed to determine 

the degree to which fluxes derived from measured ocean‐water saturation are 

a result of in situ production or simply seasonal changes in solubility and 

atmospheric concentration. Moore [2004] also provided strong evidence that 

dissolved CH2Cl2 persists for extended periods (possibly years to decades) in 

intermediate and deep ocean waters. In consequence, observed CH2Cl2 

supersaturations in seawater may be caused by its transport from colder waters 

at higher latitudes. Based on the above, the inferred oceanic CH2Cl2 source 

reported in previous studies [Keene et al., 1999; Khalil et al., 1999] may reflect 

re‐equilibration processes and does not necessarily provide evidence for 

marine production. 

A plausible mechanism by which CH2Cl2 may be produced in the ocean has 

been proposed and involves the photolysis and subsequent reaction of biogenic 

precursors, such as CH2ICl, in seawater [Jones & Carpenter, 2005]. To our 

knowledge, the only observational study that provides some evidence of marine 

CH2Cl2 production (related to phytoplankton) is that of Ooki and Yokouchi 

[2011]. That study accounted for the physical factors discussed above to derive 

a marine CH2Cl2 in situ source from the Indian Ocean (between 10°S and 40°S) 

of 0.29-0.43 μg m−2 day−1. When extrapolated zonally across the globe, a 

CH2Cl2 source of 10-15 Gg yr−1 was derived for this latitude band. In summary, 

considering the uncertainties mentioned above, we performed inversions with 

and without ocean CH2Cl2 sources. 

For the inversion performed allowing net CH2Cl2 emissions from the ocean, we 

compare posterior emissions from our inversion to novel measurements from 

two recent ship cruises: (a) AMT‐22 (Atlantic Meridional Transect, RRS James 

Cook) and (b) ACCACIA‐2 (Aerosol‐Cloud Coupling And Climate Interactions 

in the Arctic, JR288, RRS James Clark Ross). These campaigns took place in 

October/November 2012 and July/August 2013, respectively. AMT‐22 covered 

a track through the Atlantic Ocean from 45°N to 30°S and ACCACIA‐2 covered 
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the North Atlantic/Arctic Oceans from 70°N to 80°N, including a navigation 

around the archipelago of Svalbard, Norway (Figure 1(b)). Along these cruise 

tracks, sea‐to‐air flux estimates of CH2Cl2 (only) were derived based on in situ 

automated measurements of CH2Cl2 concentrations in surface seawater (from 

the ships' clean underway seawater supply inlets; nominal depth 5-6 m) and in 

air from a continuously pumped air inlet [Hackenberg et al., 2017]. Details of the 

GC‐MS measurement systems are given in Andrews et al. [2015]. The CH2Cl2 

sea‐to‐air flux was calculated following the approach of Johnson [2010] but 

would reflect the combination of both physical effects and any in situ production 

as discussed above. Average fluxes within the latitude limits of our ocean 

regions (Figure 4.1 and Section 4.3.1) were calculated and an estimate of the 

global ocean emission from each latitude band was obtained through a simple 

extrapolation. These integrated fluxes are a starting point to compare to our 

posterior ocean emissions for CH2Cl2 in Section 4.4.4. 

 

4.3.3 Observation Errors 

The covariance matrix for errors in observations (e.g., R in Equation 4.01) is 

made up of various error sources. Our approach to quantifying these follows the 

framework described by Xiao [2008], which considers (1) “sampling frequency” 

errors, (2) “measurement” errors, and (3) “mismatch” errors [Chen & Prinn, 

2006]. Each of these terms are used to define the total observational error and 

are detailed in turn below. 

 

4.3.3.1 Sampling Frequency 

The first error source arises due to the sampling frequency of the observational 

networks. That is, how well the observed monthly mean CH2Cl2 or C2Cl4 mole 

fractions are described by a finite number of measurements [Xiao, 2008]. For 

each site, and each month, the total sampling frequency error, 𝝈𝑠𝑓, for an 

observational monthly mean is given as 

                                                   𝜎𝑠𝑓 =  √𝜎𝑚𝑜𝑛
2

𝑚
                                            (4.03) 
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where 𝜎𝑚𝑜𝑛
2  is the variance of the reported mole fractions over the month and 

m is the number of observations in that month. For AGAGE surface sites, where 

measurements are obtained at relatively high frequency (order of 200 

measurements per month), the sampling frequency error is calculated 

according to Equation 4.03. As it is difficult to assess the independence of 

successive measurements, Equation 4.03 assumes uncorrelated observations. 

This might lead to an underestimation in 𝝈𝑠𝑓, but this is likely to be small 

compared to the overall error. For the NOAA surface sites, mole fractions are 

obtained based on paired flask samples obtained approximately weekly (i.e., 

relatively low frequency). Therefore, following Xiao [2008] sampling frequency 

errors for the NOAA data points were generated from the TOMCAT model, 

using 30‐min averaged output at each of the NOAA locations. 

 

4.3.3.2 Measurement Error 

A second source of error arises from errors in the measurements. These can 

result from instrument precision or other uncertainties in the measuring 

techniques, such as calibration imperfections. Every observation will have a 

measurement error, although these are often difficult to fully estimate. In terms 

of precisions, the AGAGE network reports 0.5% for both CH2Cl2 and C2Cl4 

based on the measurement precisions of the working standard used [Prinn et 

al., 2018], while the NOAA network reports precision for each individual 

measurement, which is aggregated over each month (typically around 0.7%). 

In this study, we assume a minimum overall 5% measurement error (𝝈𝑚𝑒𝑎𝑠) for 

both compounds. This value is based on the study of Andrews et al. [2016] who 

performed an intercomparison of CH2Cl2 mole fractions obtained by four 

different instruments, operated by four different groups, using the same 

standards. The results indicated that the mean absolute percentage error 

between the four instruments was ~5% in the troposphere. 
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4.3.3.3 Mismatch Error 

An additional source of error is the mismatch between the observations and the 

model. This arises when comparing relatively low spatial resolution model 

output to point observations. An observational site could be unrepresentative of 

the model grid cell that it is located in. For example, the Harvard Forest (HFM) 

surface site is in the same TOMCAT grid cell as New York and other parts of 

the US Eastern seaboard. However, the site lies in the middle of a forest with 

presumably lower emissions and concentrations more characteristic of other 

rural observations. To take this into account, a mismatch error can be defined 

using the neighbouring grid cells [Chen & Prinn, 2006]. This is defined in 

Equation 4.04: 

                                    𝜎𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ =  √
1

9
 ∑ (𝑐𝑖 −  𝑐̅)9

𝑖=1

2
                                (4.04) 

where 𝑐𝑖 is the model concentration output for each of the eight neighbouring 

grid cells, taken as an annual mean, and 𝑐̅ is the mean model output over the 

nine cells. The mismatch error equation is a measure of the spatial variance, 

and although it is not a perfect metric, it helps to place uncertainty on 

observations with significant variation in their locality. 

The three sources of error are combined in Equation 4.05 to give a total 

observational error: 

                              𝜎𝑡𝑜𝑡𝑎𝑙 =  √𝜎𝑠𝑓
2 +  𝜎𝑚𝑒𝑎𝑠

2 +  𝜎𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ
2                         (4.05) 

Of the three error terms contributing in Equation 4.05, the sampling frequency 

term is typically small (<0.1% relative to observations) compared to, for 

example, the measurement error (5%). The size of the mismatch error is on 

average 2% but can vary strongly across sites. For some sites, particularly ones 

that neighbour urban locations, it can be as large as 15%, or even up to 150% 

at one site in particular (GSN). For more remote sites (e.g., in the Arctic), the 

mismatch error could be as low as 0.5%, 10 times lower than the measurement 

error. 
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4.3.4 Prior Emissions: Magnitude and Errors 

Our prior emission estimates for CH2Cl2 and C2Cl4 are summarised in Tables 

4.3 and 4.4, respectively. Note that these annual priors are held constant over 

each year of the inversion period. For CH2Cl2, prior estimates of Asian, 

European, and North American emissions (i.e., the expected three most 

significant industrialised regions) are 671, 50, and 55 Gg yr−1, respectively 

(based on data from Nolan Sherry Associates, NSA). These bottom‐up 

estimates (see also Table 4.S1 in Supporting Information) were commissioned 

for this study and represent expected industrial emissions in 2016, based on a 

global industry database of chloromethane production and production capacity 

available to NSA. Production figures are calculated and refined by a 

combination of this extensive database, industry dialogue, trade data, and back‐

calculations based on known feedstock applications and quantities. These are 

entered into a chloromethanes mass balance scheme which is checked against 

industry capacity and closely calculated production ratios. Of the 671 Gg yr−1 

industry estimate of total Asian CH2Cl2 emissions from NSA, 621 Gg yr−1 (~93%) 

is set as the inversion prior estimate for our Temperate Asia region 

(incorporating the NSA data for China, India, Japan, and Korea). The remaining 

50 Gg yr−1 is taken as the prior for our Tropical Asian region (where NSA 

analysis shows the major markets for CH2Cl2 are Thailand, Indonesia, 

Singapore, Malaysia, and Vietnam). For the other six land regions, in the 

absence of more recent up‐to‐date data, prior industry CH2Cl2 emissions are 

taken from the RCEI, as summarised by Keene et al. [1999].  

Recall that for CH2Cl2, two inversions are performed, one without ocean 

emissions and one with. For the without ocean case, our global total CH2Cl2 

prior is ~815 Gg yr−1 (Table 4.3), that is, considering industrial emissions only. 

For the with ocean case, prior estimates of ocean CH2Cl2 emissions from four 

different ocean regions (see also Sections 4.3.1 and 4.3.2) are taken from 

Khalil et al. [1999], also part of the RCEI framework. The total ocean CH2Cl2 

prior is 197 Gg yr−1, increasing the global total prior to 1,012 Gg yr−1 in the “with 

ocean” inversion case (Table 4.S2, Supporting Information). Note that the 

original RCEI inventory also included a small biomass burning CH2Cl2 source 

of 59 Gg yr−1 [Lobert et al., 1999]. However, this estimate was based on an 
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assumed single global CH2Cl2/CO emission ratio for all fuel types. Subsequent 

studies have reported a lower (by two orders of magnitude) CH2Cl2/CO ratio 

[Simmonds et al., 2006] or have found no evidence for significant CH2Cl2 

enhancements in biomass burning plumes [Lawson et al., 2015; Leedham 

Elvidge et al., 2015; Mühle et al., 2007; Simpson et al., 2011]. On this basis, a 

biomass burning CH2Cl2 source was not considered in the present work. 

 

Table 4.3. A Summary of Prior (2016 Best Estimate) and Posterior CH2Cl2 Emissions (Gg 

yr−1) and their Uncertainties, from the Synthesis Inversion not Allowing for an Oceanic 

CH2Cl2 Source. 

 
Region 

 2006 2017 

Prior 
Emissions 

Posterior 
Emissions 

Error 
Reduction 

Posterior 
Emissions 

Error 
Reduction 

Europe 50.0 112.0 ± 9.1 81.9% 75.1 ± 11.4 77.3% 

Africa 9.18 16.6 ± 8.4 8.0% 19.2 ± 8.7 5.2% 

Australia 4.85 3.90 ± 2.22 54.2% 3.41 ± 2.62 45.9% 

Boreal Asia 6.81 -19.8 ± 5.4 20.5% -21.8 ± 6.2 9.3% 

Boreal NA 1.11 0.002 ± 1.08 3.0% 0.14 ± 1.11 1.1% 

Temperate 
Asia 

621.0 89.9 ± 22.8 96.3% 590.7 ± 
28.4 

95.4% 

Temperate 
LA 

8.43 -2.57 ± 4.68 44.5% 0.96 ± 5.62 33.4% 

Temperate 
NA 

55.0 71.1 ± 4.9 91.1% 32.1 ± 5.9 89.3% 

Tropical 
Asia 

50.0 341.4 ± 22.7 54.5% 454.2 ± 
28.7 

42.6% 

Tropical LA 8.67 24.1 ± 7.8 10.1% 17.1 ± 8.1 7.0% 

Combined 
Asia 

671.0 431.3 ± 32.2 - 1044.9 ± 
40.4 

- 

Global 
Total 

815.1 636.6 ± 36.5 - 1171.2 ± 
44.9 

- 

Note. See the main text for a description of the prior emissions. NA = North America; 

LA = Latin America. Combined Asia = Temperate + Tropical. 

 

For C2Cl4, a similar approach was adopted whereby prior industry emission 

estimates for our Asia, Europe, and North American regions are adapted from 

2016 bottom‐up estimates obtained from NSA (Tables 4.4 and 4.S1). Similarly 

to CH2Cl2, the Asia estimate is distributed among our Temperate and Tropical 

Asian regions as 93.3 and 15.0 Gg yr−1, respectively. For the other six land 

regions, prior C2Cl4 emissions were formulated by reducing industrial emissions 
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from the RCEI inventory by a factor of 2. This reduction was performed because 

tropospheric C2Cl4 mixing ratios have been observed to be declining since 2000 

or earlier [e.g., Simpson et al., 2004; Simmonds et al., 2006], meaning the older 

RCEI estimates (formulated in the 1990s) are very likely to overestimate 

present‐day emissions. The magnitude of our resultant global total C2Cl4 prior 

emission (207 Gg yr−1), of which 9% is from the ocean, is therefore in closer 

agreement to more recent independent global estimates [e.g., Engel et al., 

2018]. 

 

Table 4.4. A Summary of Prior (2016 Best Estimate) and Posterior C2Cl4 Emissions (Gg 

yr−1) and their Uncertainties, from the Synthesis Inversion. 

 
Region 

 2007 2017 

Prior 
Emissions 

Posterior 
Emissions 

Error 
Reduction 

Posterior 
Emissions 

Error 
Reduction 

Europe 48.0 65.2 ± 4.4 90.9% 36.6 ± 2.6 94.6% 

Africa 2.30 3.77 ± 2.20 4.5% 3.65 ± 2.09 9.2% 

Australia 0.62 1.44 ± 0.33 47.1% 0.52 ± 0.25 59.7% 

Boreal Asia 1.80 -2.34 ± 
1.66 

7.6% -2.69 ± 
1.60 

10.9% 

Boreal NA 0.50 -0.06 ± 
0.48 

5.3% 0.52 ± 0.47 6.7% 

Temperate 
Asia 

93.3 1.92 ± 8.80 90.6% 6.47 ± 7.35 92.1% 

Temperate 
LA 

1.06 2.00 ± 1.03 2.8% 2.04 ± 0.97 9.1% 

Temperate 
NA 

24.0 44.8 ± 2.7 88.6% 33.5 ± 1.8 92.3% 

Tropical Asia 15.0 38.1 ± 8.0 45.1% 35.0 ± 7.9 46.1% 

Tropical LA 1.58 2.73 ± 1.55 2.1% 2.29 ± 1.53 3.3% 

Extratropical 
NO 

3.51 -16.5 ± 2.2 37.8% -12.6 ± 1.7 51.2% 

Extratropical 
SO 

5.85 -0.50 ± 
0.79 

86.4% -0.14 ± 
0.65 

89.0% 

Tropical NO 3.51 -0.63 ± 
1.66 

52.7% 1.06 ± 1.59 54.5% 

Tropical SO 5.85 0.93 ± 1.25 78.7% -0.09 ± 
1.25 

78.7% 

Combined 
Asia 

108.3 40.0 ± 11.9 - 41.4 ± 10.8 - 

Global Total 206.5 140.8 ± 
13.8 

- 106.1 ± 
12.0 

- 

Note: Results are based on inversion that did not include the C2Cl4 + Cl sink. 
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In addition to the observational errors necessary to the inversion procedure 

(Section 4.3.3), there are also errors in the prior emission estimates discussed 

above. As these are generally poorly quantified in inversion studies, they are 

set to ±100% for all regions as default. The sensitivity of our results to 

assumptions about prior errors is discussed in Section 4.4.3. 

 

4.3.5 Prior Emissions: Distribution 

Within the continental‐scale regions considered in this study (Figure 4.1(a)), 

CH2Cl2 emissions are distributed according to a recent 1° × 1° global HCFC‐22 

emissions inventory reported by Xiang et al. [2014]. The rationale behind this 

choice is that CH2Cl2 is coproduced by industry with CHCl3 [Oram et al., 2017], 

and the latter is used almost exclusively as a feedstock in the production of 

HCFC‐22 and fluoropolymers [Fang et al., 2019; Mühle et al., 2019; Tsai, 2017], 

despite CH2Cl2 emissions likely being primarily associated with use, not 

production. On this basis, the use of the HCFC‐22 emission distribution can be 

used as a reasonable proxy for CH2Cl2 and is a desirable alternative to the far 

older RCEI distribution. We understand that HCFC‐22 is also likely to be emitted 

where it is used, not where it is produced, which makes this a rough 

approximation. In the similar absence of more recent data, the HCFC‐22 

distribution was used as a proxy for C2Cl4. It is important to stress that (a) these 

distributions only affect fluxes within regions (Figure 4.1(a)) and (b) that the 

inversion procedure adjusts the integrated regional total emissions, on a region‐

by‐region basis. The distribution of our prior CH2Cl2 emissions is presented in 

Figure 4.S1 (Supporting Information). It is assumed that the within‐region 

distribution does not change over our study period (2006-2017). 

 

4.4 Results and Discussion 

4.4.1 Posterior CH2Cl2 Emissions and Trends 

The synthesis inversion produces regional emission estimates, on an annual 

basis, for each of the 12 years studied. We investigated the degree to which our 

inversion was able to differentiate between emissions arising from one region 
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over another. A strong negative covariance was found for the closely located 

regions, Temperate Asia and Tropical Asia, which implies a difficulty in 

differentiating between these two regions. On this basis, in the ensuing 

discussion results from these regions are combined and referred to as 

“combined Asia.” We first consider results from the “no ocean” CH2Cl2 inversion. 

Table 4.3 compares prior and posterior CH2Cl2 emissions for 2006 and 2017, 

the first and last years of our study, highlighting an increase in posterior global 

total CH2Cl2 emissions from 637 ± 37 Gg yr−1 (2006) to 1,171 ± 45 Gg yr−1 

(2017). This 84% increase is largely due to increasing emissions from combined 

Asia, estimated to rise from 431 ± 32 Gg yr−1 in 2006 to 1,045 ± 40 Gg yr−1 in 

2017. Our results thus imply that combined Asian emissions more than doubled 

during the study period and account for ~70% of global total CH2Cl2 emissions 

in 2006 and ~90% in 2017. The latter is a similar relative proportion to that 

derived from the bottom‐up information from NSA presented in Table 4.S1. 

While there are no other estimates of total Asian CH2Cl2 emissions in the 

literature, to our knowledge, some country‐specific estimates have been 

reported. Oram et al. [2017] roughly estimated Chinese CH2Cl2 emissions of 

455 (410-500) Gg yr−1 in 2015 from bottom‐up information from NSA. However, 

significantly smaller Chinese CH2Cl2 emissions in 2016 of 318 (254-384) Gg 

yr−1 have also been reported, apparently also based on bottom‐up information 

[Feng et al., 2019], thus highlighting the uncertainty in the regional budget. Our 

estimate of total Asian emissions (1,045 Gg yr−1 in 2017) includes emissions 

from other major economies, such as India, expected to be significant emitters 

of CH2Cl2 [e.g., Leedham Elvidge et al., 2015]. The sensitivity of the above 

findings to inclusion of ocean emissions in our inversion is discussed in Section 

4.4.4. 

For other major industrialised regions, North America and Europe, our posterior 

emissions show a decrease over the 12‐year study period (2006-2017). CH2Cl2 

emissions from North America decreased from 71 ± 5 to 32 ± 6 Gg yr−1 (−55%) 

and from Europe decreased from 112 ± 9 to 75 ± 11 Gg yr−1 (−33%). Again, 

there is limited information in the literature to compare these findings to. 

Combining surface observations, model calculations, and CO ratio methods, 

Simmonds et al. [2006] derived European top‐down CH2Cl2 emissions of 51-61 
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Gg yr−1 over the 2002-2004 period. Our estimate of European CH2Cl2 

emissions, for the closest year to their study (2006), is larger at 112 Gg yr−1. 

Simmonds et al. [2006] also reported a bottom‐up estimate of industrial CH2Cl2 

emissions of 139 Gg yr−1 from Europe, based on industry sales, in 2002/2003. 

We note that this is a very similar figure to our bottom‐up estimate from NSA 

(albeit for 2007, Table 4.S1). 

Figure 4.2 presents a time series of annual posterior CH2Cl2 emissions for a 

selection of the most important regions. The top panel shows the global total 

CH2Cl2 emission over the 12‐year study period, the middle panel the 

contribution from our combined Asian region, and the bottom panel European 

and North American emissions. Also shown in the top panel are independent 

estimates of global CH2Cl2 emissions (2006-2016 only) calculated from a 12‐

box model forced by either NOAA or AGAGE long‐term surface measurements 

[e.g., Cunnold et al., 1983; Rigby et al., 2013]. These annual emission data were 

prepared for the 2018 WMO/UNEP Scientific Assessment of Ozone Depletion 

and show CH2Cl2 emissions increasing from 442-759 Gg yr−1 in 2006 to 698-

1,256 Gg yr−1 in 2016, with the ranges in each period reflecting results obtained 

considering the two different observational networks analysed by the 12‐box 

model [Engel et al., 2018]. Good agreement between results from this study 

and those of the 12‐box model is found, particularly when the latter assimilates 

NOAA data, which is plausible as our model also incorporates CH2Cl2 data on 

the NOAA calibration scale. For example, our global total CH2Cl2 emission in 

2006 (637 ± 37 Gg yr−1) and 2016 (1,117 ± 41 Gg yr−1) fall within the 12‐box 

model ranges noted above. In the most recent years, our posterior emissions 

fall towards the upper bound of the full uncertainty range of the 12‐box model 

calculations (Figure 4.2). The relative increase in global CH2Cl2 emissions 

between 2006 and 2016 is 61% (12‐box model average) and 75% (this work), 

and the mean annual differences (±1 SD) between our total emissions and the 

12‐box model AGAGE and NOAA estimates are 159 ± 51 and 42 ± 36 Gg yr−1, 

respectively. 
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Figure 4.2. Timeseries of posterior CH2Cl2 emissions (Gg yr−1) over the 12‐year (2006-

2017) study period. (a) Global total emissions from the inversion (black line, this work) 

alongside estimates from a 12‐box model (circles) forced by NOAA (dark grey) and 

AGAGE (light grey) observations, as reported in Engel et al. (2018). The full 12‐box 

model uncertainty range is represented by pale grey shading. (b) Asian emissions from 

the inversion showing Combined Asia (Temperate + Tropical), alongside bottom‐up 

estimates from NSA (circles). (c) European and North American emissions, alongside 

bottom‐up estimates from NSA (circles). See Section 4.3.4 for a description of the 

bottom‐up data. Note that the CH2Cl2 results shown here are for the no oceanic 

emission scenario. Error bars represent uncertainty ranges included in Table 4.3. 

 

Our inversion approach allows us to examine the regional drivers of the 

increase in global CH2Cl2 emissions, which—as apparent from Figure 4.2(b)—

are strongly driven by increasing emissions from Asia. In contrast, the relative 

changes in emissions from Europe and North America over the study period are 

relatively small. As previously noted, both these latter regions experienced an 

overall decrease in emissions, though the time series is also characterised by 
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significant interannual variability (Figure 4.2(c)). Figure 4.2 also includes, on a 

regional basis, the bottom‐up estimates of CH2Cl2 emissions from NSA for Asia, 

Europe, and North America in the years 2007 and 2016 (Table 4.S1). Recall 

that these 2016 inventory‐based estimates were used as the prior emissions for 

these three respective regions in our inversion (see Section 4.3.4). Like top‐

down estimates, any bottom‐up inventory‐based emission data is subject to 

uncertainty. Therefore, we do not overinterpret these data, though note (a) that 

they imply a striking decrease in European CH2Cl2 emissions between 2007 

and 2016 that is larger than predicted by our posterior emissions and (b) that 

discrepancies between top‐down CH2Cl2 emissions (from Europe) and bottom‐

up estimates have been previously reported [Simmonds et al., 2006]. Our North 

American posterior emissions in 2007 more closely relate to the bottom‐up 

estimate; however, our posterior emissions in 2016 are slightly lower than the 

bottom‐up estimate but agree within the uncertainty range of the inversion 

(Figure 4.2(c)). 

 

4.4.2 Posterior C2Cl4 Emissions and Trends 

The posterior C2Cl4 emissions are summarised in Table 4.4 and Figure 4.3. 

The tabulated results are based on an inversion that only included loss of C2Cl4 

by OH and photolysis, ignoring the C2Cl4 + Cl sink. Correlations between 

regions were analysed in the same manner as for CH2Cl2, and a strong negative 

covariance was found between the Temperate and Tropical Asia regions. 

Therefore, we also employ the same “Combined Asia” for the ensuing 

discussion. Based on this inversion setup, global total C2Cl4 emissions 

decreased from 141 ± 14 Gg yr−1 in 2007 to 106 ± 12 Gg yr−1 in 2017. Both are 

significant reductions compared to our prior estimate of 207 Gg yr−1. Also shown 

in Figure 4.3 are (a) emission estimates prepared using a 12‐box model as 

reported by Engel et al. [2018] and (b) regional bottom‐up estimates of C2Cl4 

emissions commissioned for this work (Table 4.S1). The 12‐box model results 

show global C2Cl4 emissions decreasing from 95-199 Gg yr−1 in 2007 to 66-160 

Gg yr−1 in 2016. The ranges in these values reflect the two different 

observational datasets used to force the model. Our posterior emissions show 
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similar absolute decreases, from 141 ± 14 to 104 ± 10 Gg yr−1 over the same 

period. Similarly, the relative decrease in global C2Cl4 emissions (2007-2016) 

is 24% (12‐box model average) and 26% (this work), and the mean annual 

differences (±1 SD) between our total emissions and the 12‐box model AGAGE 

and NOAA estimates are 26 ± 6 and 13 ± 7 Gg yr−1, respectively. As described 

above, there is very good agreement between global C2Cl4 emissions derived 

in this work and those from Engel et al. [2018], which used primarily the same 

observations, though analysed with a simpler (12‐box) model. 

 

Figure 4.3. As Figure 4.2 but for C2Cl4. Results are shown for simulations with (dashed 

line) and without (solid line) the C2Cl4 + Cl sink reaction. 

 

However, there are clear discrepancies between our regional posterior 

emissions and the regional bottom‐up estimates from NSA shown in Figure 4.3. 

First, our posterior results for Europe show declining emissions over the study 

period. While a decline is consistent with the bottom‐up data, the magnitude of 

emissions is not in agreement, with the inversion showing lower C2Cl4 

emissions in both 2007 and 2016 (in 2016 by a factor of ~2.2 lower). Second, 
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our inversion produces far lower Asian emissions than implied from the bottom‐

up data. The latter show an increase in Asian C2Cl4 emissions from 66 Gg yr−1 

in 2007 to 108 Gg yr−1 in 2016. For comparison, our posterior combined Asian 

emissions in the same years are 40 ± 12 and 41 ± 9 Gg yr−1, respectively. The 

bottom‐up Asian 2016 estimate (108 Gg yr−1) is larger than the 2016 global total 

emissions calculated from both our inversion and from the average of the 12‐

box model estimates [Engel et al., 2018]. Better agreement is found for North 

American emissions (Figure 4.3). 

Unlike for CH2Cl2, tropospheric loss of C2Cl4 via Cl radicals (in addition to OH 

oxidation) can be a significant sink, although its magnitude is not well 

constrained as the concentration of tropospheric Cl radicals is uncertain. Its 

inclusion in global models has been shown to lead to better agreement with 

C2Cl4 observations, particularly in the upper troposphere [e.g., Hossaini et al., 

2019]. The main inversion results discussed above did not consider this sink, 

nor did the 12‐box model estimates [Engel et al., 2018]. A second inversion was 

performed that did include this additional C2Cl4 sink. The posterior results from 

that inversion are presented in Table 4.S3 (Supporting Information) and shown 

with dashed lines in Figure 4.3. It is evident that inclusion of the Cl atom sink 

for C2Cl4 significantly changes the predicted global total C2Cl4 emissions. As 

would be expected, emissions are larger in the presence of an additional 

atmospheric loss process. For example, we estimate global total C2Cl4 

emissions of 106 ± 12 Gg yr−1 in 2017 without the Cl sink (Table 4.4) and 162 

± 12 Gg yr−1 with it (Table 4.8, i.e., 53% larger). On a regional basis, Asian 

emissions provide the bulk of this increase, with 90% larger combined Asian 

C2Cl4 in 2017 when the C2Cl4 + Cl sink is included compared to without it. 

Inclusion of the sink reduces the discrepancy between our posterior Asian 

emissions and the NSA bottom‐up estimates (Figure 4.3(b)), though our 

emissions are still lower in the present day. Better agreement is also obtained 

for Europe, while North American emissions are broadly unchanged. It is 

expected that agreement between our posterior C2Cl4 emissions and the 12‐

box model are poorer in absolute magnitude when the Cl sink is included, as 

this sink is absent in the 12‐box model study. However, we note that the trends 

remain similar. 
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4.4.3 Posterior Errors 

Our inversion procedure calculates the error in the posterior emissions from the 

terms in Equation 4.01, using the relationship in Equation 4.06: 

                      Posterior error matrix, 𝑨 = [𝑮𝑇 . 𝑹−1. 𝑮 +  𝑩−1]−1           (4.06) 

To find the regional emission error, the square root of the leading diagonal 

elements of A is taken. Tables 4.3 and 4.4 show the regional posterior errors 

for CH2Cl2 and C2Cl4, respectively. The percentage reductions between the 

prior error and the posterior errors are also given in these tables. A large error 

reduction implies more confidence in the posterior solution, and for CH2Cl2, the 

largest reductions occur for the main emitting regions where observations are 

available, for example, Temperate North America (89% error reduction for 

CH2Cl2 in 2017), Temperate Asia (95%), and Europe (77%). Note that these 

values should be considered in tandem with the posterior errors themselves. 

For example, although Europe has a significant error reduction (e.g., in 2017 a 

reduction of 77%), this results in a posterior error of ±11 Gg yr−1, which is 15% 

of the actual posterior CH2Cl2 emission from this region. The inverse is true for 

Temperate Asia, where relatively large posterior emissions (591 Gg yr−1 in 

2017) and a large error reduction (95%) lead to a very small (5%) error in the 

posterior emission. The C2Cl4 errors generally show a similar behaviour, with 

the largest prior versus posterior error reduction achieved for the main industrial 

regions where large emissions are derived. 

A small error reduction corollary is a sign of less confidence in the posterior 

emissions. For both compounds, these generally apply to regions that are 

minimally constrained by local observations, such as Africa and tropical Latin 

America. Fortunately, as it is assumed that these regions do not contribute 

much to the total global emissions, relatively large uncertainty in their regional 

posterior emissions have minimal impact on our findings. That said, we highlight 

Boreal Asia, a region that is a small net source in our prior emissions (6.8 Gg 

yr−1 for CH2Cl2, 1.8 Gg yr−1 for C2Cl4) but becomes a net sink for both 

compounds in our posterior solution. In 2017, our posterior emissions for Boreal 

Asia are -22 (±6) Gg yr−1 for CH2Cl2 and -2.7 (±1.6) Gg yr−1 for C2Cl4. For this 

region, the percentage reductions between the prior error and the posterior error 
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are small (Tables 4.3 and 4.4). While some chlorocarbons are taken up by 

terrestrial ecosystems [e.g., Khalil & Rasmussen, 1999], no terrestrial sinks of 

CH2Cl2 have been reported, and the lack of observational constraints in this 

region could point towards a small inversion artifact. An analysis of covariances 

did not reveal a strong coupling between Boreal Asia and another region. 

 

4.4.4 Ocean Emissions 

Thus far, we have largely focused on our posterior emissions from land (in the 

“no ocean” inversion for CH2Cl2). In this section, we examine ocean emissions. 

A summary of posterior CH2Cl2 emissions with the ocean source included is 

given in Table 4.S2 (Supporting Information) and can be compared to the 

equivalent no ocean case (Table 4.3). In the inversion in which net emissions 

from the ocean are allowed, oceanic CH2Cl2 emissions (sum from all four ocean 

bands) account for 197 Gg yr−1 (19%) of our prior global total emission, 

decreasing to 162 Gg yr−1 (14%) in our posterior solution in 2017. The global 

total CH2Cl2 emission is relatively insensitive to the inclusion of the ocean 

source, 1,171 ± 45 Gg yr−1 (no ocean) versus 1,166 ± 64 Gg yr−1 (with ocean) 

for 2017. However, inclusion of the ocean decreases the combined Asia 

posterior emissions by ~18%, from 1,045 ± 40 Gg yr−1 (no ocean) in 2017 to 

886 ± 53 Gg yr−1 (with ocean). This effect is largely explained by the inversion 

placing emissions of CH2Cl2 in the tropical Northern Ocean (0-30°N latitude). 

As was the case in the “no ocean” inversion, Figure 4.S2 (Supporting 

Information) highlights increasing Asian emissions over our study period, while 

European and North American emissions decrease. With the ocean included, 

the Combined Asian emissions provide a closer match to the bottom‐up NSA 

estimates of industrial Asian emissions (i.e., our prior) in 2016 (Figure 4.S2). 

However, as mentioned later in Section 4.4.6, there is no discernible difference 

in performance between the inversions with and without the ocean source, 

when compared with observations (even independent data), despite these 

changes in Asian emissions. 
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Table 4.5. Optimised CH2Cl2 Oceanic Emissions (Gg yr−1) Derived from Positive Prior 

Fluxes for this Inversion, a Previous Inversion [Xiao, 2008], and Measurements from 

Four Observational Studies. 

 
Ocean band 

This 
worka 

Xiao 
[2008]b 

AMT-22 
Campaignc 

ACCACIA-2 
Campaignc 

Kolusu 
et al. 

[2016]c 

Ooki and 
Yokouchi 
[2011]d 

Extratropical 
NO 

-64.4 
± 10.9 

3.5 ± 
3.0 

14.7 ± 26.9 -47.9 ± 32.7   

Tropical NO 111.8 
± 43.1 

88 ± 29 70.9 ± 63.6  236 ± 
237 

 

Tropical SO 9.9 ± 
12.7 

31 ± 24 64.0 ± 43.3  12.5 ± 2.5 

Extratropical 
SO 

4.3 ± 
3.9 

2 ± 5     

Note: All measurements converted into Gg yr−1. Reported uncertainties for inversion 
calculations and campaign ocean tracks of 1 SD. NO = Northern Ocean; SO = Southern 
Ocean. 

aTwelve‐year average posterior emission. 

bFive‐year average posterior emission from 2000-2005. 

cAtlantic Ocean sea‐to‐air flux measurements, originally reported as nmol m−2 day−1, 
and converted into Gg band−1 yr−1 for the relevant ocean latitude bands. AMT‐22 
campaign measurements took place in October-November 2012, ACCACIA‐2 campaign 
measurements in July-August 2013, and Kolusu et al. [2016] measurements in April-
May 2009. 

dIndian Ocean biogenic production from phytoplankton, reported between 10°S and 
40°S in μg m−2 day−1. These measurements were taken from November 2009 to 
January 2010 and account for physical effects that are the likely principal source in the 
sea‐to‐air flux measurements.  

 

The geographical distribution of our posterior ocean CH2Cl2 emissions differs 

significantly from the prior in the inversion that allows nonzero ocean fluxes. For 

example, when averaged over the entire 12‐year study period, the Extratropical 

Northern Ocean represents a net sink of CH2Cl2 (Table 4.5). In the extratropical 

Southern Ocean, the derived net flux is significantly lower than the prior but 

remains positive. Also shown in Table 4.5 are results from the inversion study 

of AGAGE and NOAA observations by Xiao [2008], who allowed nonzero fluxes 

from the ocean and tabulated ocean CH2Cl2 emissions from these same latitude 

bands. Posterior emissions for the Tropical Northern and Extratropical Southern 

Oceans from our study fall within the Xiao [2008] uncertainty ranges. However, 
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notably the significant mean CH2Cl2 sink we derive to the Extratropical Northern 

Ocean is not apparent in the Xiao [2008] study for the observations during 2000-

2005, a period before the large atmospheric increase in CH2Cl2 occurred. 

It is also possible to perform a basic comparison of our posterior ocean CH2Cl2 

emissions to observed estimates based on (limited) cruise data. As noted in 

Section 4.3.2.3, ocean CH2Cl2 sea‐to‐air fluxes from the AMT‐22 and 

ACCACIA‐2 ship cruises (see tracks in Figure 4.1(b)) were derived based on 

concentration measurements without consideration of the potential influence of 

physical effects on the derived fluxes. These cruises sampled in three out of the 

four ocean bands used in our inversion and the integrated flux from each ocean 

band is presented in Table 4.5. Broadly, the sign of the emissions agrees in all 

three regions observed; however, it is important to note that this comparison is 

potentially confounded by considering annual average inversion results to 

cruise data that we expect could be influenced by seasonally varying sea‐to‐air 

fluxes based on seasonal changes in solubility and atmospheric concentrations 

[Moore, 2004]. 

Xiao [2008] reports a large seasonal cycle in ocean emissions, and for the 30-

90°N region, there is a maximum of approximately 20 Gg yr−1 in the summer 

and a minimum of −10 Gg yr−1 in the winter. We note that ACCACIA‐2 took 

place during July-August, and reported an average flux of −48 Gg yr−1, which is 

contrary to what the seasonal cycle states. However, neither our inversion nor 

that of Xiao [2008] can resolve between 60° and 80°N, where ACCACIA‐2 took 

place. AMT‐22, measuring from 30° to 50°N in autumn, calculates an average 

flux of 15 Gg yr−1, which is close to the average autumnal values from Xiao 

[2008]. In the original RCEI estimates, none of the ocean tracks used to infer 

CH2Cl2 fluxes took place above 60°N [Khalil et al., 1999]; therefore, the large 

summer sink observed by ACCACIA‐2 at these very high latitudes could be 

evidence for the significant interregional variation we see in our inversion 

results. 

Also presented in Table 4.5 is an estimate of an ocean CH2Cl2 source based 

on measurements in the tropical Atlantic from April to May in 2009 [Kolusu et 

al., 2016]. This source is very uncertain and is generally much higher than any 
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single ocean band emission derived from the inversion. As with the cruises 

previously discussed, these data do not necessarily support marine CH2Cl2 

production because of the strong potential for changes in sea‐to‐air flux related 

to seasonality in solubility and atmospheric concentrations. Rather, this data 

simply highlights an ocean region where a significant quantity of CH2Cl2 may 

enter the atmosphere (at least during the period of the campaign of April-May). 

Due to the large uncertainty, it is difficult to say how representative the 

observations are, as the study showed there was a strong latitudinal gradient, 

especially when crossing the Equator [Kolusu et al., 2016]. Lastly, in Table 4.5, 

are estimated biogenic CH2Cl2 emissions reported by Ooki and Yokouchi [2011] 

based on data collected in the tropical Southern Indian Ocean (10-40°S). 

Factoring in the uncertainty ranges, our inversion emissions from the tropical 

Southern Ocean are comparable. 

In summary, our posterior CH2Cl2 net ocean source (11% of the global total 

from all sources in 2017 or 125 Gg yr−1) is comparable to previous inversion 

estimates and to a small set of available oceanic observations. However, while 

the total source magnitude is comparable, the distribution shifts the majority of 

the emissions into the Tropical NO region and very few emissions into the 

Tropical SO region. This distribution is likely a consequence of the large driving 

force of Combined Asian land emissions; practically, it is plausible that the 

tropical distribution is more even, as observations suggest. For C2Cl4, the 

posterior ocean source is negligible and often negative (Table 4.4). For both 

compounds, our inversion does not distinguish between ocean re‐emission and, 

if it exists, “true” marine production. 

 

4.4.5 Sensitivity to Prior Uncertainty 

Our prior emission errors were set to ±100% for all regions (Section 4.3.4), and 

we tested the sensitivity of our posterior emissions to this value. Figure 4.4 

illustrates this by presenting posterior CH2Cl2 and C2Cl4 emissions for seven of 

the most important inversion regions under different prior error assumptions 

applied to each region simultaneously. Note that for this analysis, a 0% error 

simply represents the prior emission. As errors are progressively increased, 
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each of the inversion regions is given a greater degree of freedom to reach a 

target.  

 

 

Figure 4.4. Summary of results testing the sensitivity of posterior emissions to the 

assumed error in the prior emissions for (a) CH2Cl2 and (b) C2Cl4. Results are shown 

indicatively for the year 2007 and for seven different regions (five for CH2Cl2), including 

a Combined Asian result. Note that a 0% prior emission error equates to the prior 

emissions. For CH2Cl2, results are shown for the no ocean inversion scenario. 

 

There are several features apparent in Figure 4.4 that warrant attention. For 

CH2Cl2, Temperate North America and Europe are examples of regions whose 

emission magnitudes are insensitive to the uncertainty assumed for the prior 

when it is above ~50%. The Temperate and Tropical Asian regions were found 

to vary more with the assumed prior uncertainty, and the derived emissions are 

slightly anticorrelated. However, our Combined Asia region is insensitive to prior 

error when assumed to be equal or larger than ±100% (Figure 4.4(a)). 

Temperate Latin America is an example of a region that reaches its optimum 
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emission value at a larger emissions error than ±100%, and at further increased 

error drifts negatively. As previously noted, our posterior CH2Cl2 emissions from 

this region are negative, possibly reflecting a small inversion artifact due to the 

lack of data, but are also very small and thus of limited global importance: -0.96 

(±5.62) Gg yr−1 in 2017. A similar sensitivity analysis to prior errors for the with 

ocean CH2Cl2 case was also performed (Figure 4.S3, Supporting Information). 

For C2Cl4, the posterior emissions are generally stable beyond ±100% prior 

error. Again, Temperate and Tropical Asia have a small tendency to drift 

towards each other, though likewise, the Combined Asia region is insensitive to 

prior error, justifying our initial assumption, but only at errors beyond ±200% 

(Figure 4.4(b)). 

 

4.4.6 Posterior Versus Prior Emissions Performance 

With prior and posterior CH2Cl2 and C2Cl4 emissions calculated, their 

performance can be evaluated by comparing modelled mixing ratios obtained 

with each to observations. We first focus on a single year (2016) and consider 

how well the posterior emissions reproduce background NOAA and AGAGE 

surface observations. Both the NOAA and AGAGE data used in these 

comparisons were assimilated by the inversion (i.e., to construct the posterior 

emissions). Comparisons to independent observational data are considered in 

Section 4.4.7. Modelled monthly mean CH2Cl2 (“no ocean” inversion) and C2Cl4 

are compared to NOAA measurements in Figures 4.S4 and 4.S5, respectively. 

For CH2Cl2, Figure 4.S4 reveals generally very good agreement between the 

model (posterior emissions) and the observations. At several sites, particularly 

those at midlatitude and high latitude in the Northern Hemisphere (NH), the prior 

and posterior emissions perform similarly. However, a clear improvement is 

obtained when using the posterior emissions in the tropics and in the Southern 

Hemisphere (SH). For C2Cl4, posterior improvements at NOAA sites are more 

striking. Figure 4.S5 shows that our prior C2Cl4 emissions were too large, 

leading to a significant overestimation of observed mole fractions. 
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Similar comparisons but for AGAGE observations (converted to the NOAA 

calibration scale) are shown in Figures 4.S6 and 4.S7. These comparisons are 

also for the year 2016, with the exception of the Gosan (GSN) site in South 

Korea (2015). For CH2Cl2, the measurements are better reproduced using our 

posterior emissions at most sites, except for ZEP, though as noted above, the 

differences between prior and posterior results are relatively small in the NH. 

For C2Cl4, again, the posterior emissions lead to much better agreement 

between the model and observations. A notable feature for CH2Cl2 in Figure 

4.S6, apparent when using both the prior and posterior emissions, is the model 

overestimation of baseline CH2Cl2 observations at Gosan. This site is heavily 

influenced by several large nearby sources, and the mismatch errors in the 

inversion are particularly large. However, significantly improved agreement to 

the Gosan data is obtained when the “raw” measurements are used to construct 

monthly means (i.e., without filtering out pollution events). Such events are 

inherently included in the model monthly means. 

The comparisons discussed above focused on a single recent year. A more 

informative approach is to consider the performance of the posterior emissions 

over the entire study period. To quantify this performance, we calculate the 

mean absolute deviation (Equation 4.07) over the full study periods at each 

available NOAA site (14 for CH2Cl2 and 12 for C2Cl4) based on monthly means: 

                  𝑚𝑒𝑎𝑛 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =  
∑ |𝑚𝑜𝑑𝑒𝑙 − 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛|𝑚𝑜𝑛𝑡ℎ𝑠

𝑛𝑚𝑜𝑛𝑡ℎ𝑠
             (4.07) 

For CH2Cl2, the posterior emissions provide much improved agreement to the 

observations at all sites, reducing the model/observation deviation to below ~5 

ppt at most NH sites and below ~0.9 ppt at all SH sites (Figure 4.5(a)). This is 

not entirely unexpected given that these observations were included in the 

inversion itself. However, overall, the reduction of the prior deviations by roughly 

60% in the posterior indicates that the inversion procedure has been successful. 

C2Cl4 is equally successful, also with an average deviation reduction of roughly 

80% and 40% when the C2Cl4 + Cl sink is included (Figure 4.5(b)). Evident from 

the same figure, the magnitude of these improvements is not overly sensitive to 

inclusion of the +Cl sink, but the decreased reduction is due to the reduction in 

the prior deviations. 
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Figure 4.5. Mean absolute deviation (ppt) between modelled and observed (a) CH2Cl2 

and (b) C2Cl4, at NOAA sites. The deviations are averages calculated from monthly 

mean data over the study periods (2006-2017 for CH2Cl2 and 2007-2017 for C2Cl4) and 

are shown for model output generated using the prior emissions and the posterior 

emissions. The C2Cl4 + Cl sink comparisons are inset in (b). For CH2Cl2, results are 

generated using the posterior emissions from the no ocean inversion scenario. 

 

In addition to the above deviations, it is important that the time‐dependent 

posterior emissions adequately capture trends. The four NOAA sites shown in 

Figure 4.6 for CH2Cl2 are a selection from various geographical locations 

(Table 4.1): a high latitude NH site (ALT), a midlatitude NH site (LEF), a tropical 

site (KUM), and an SH site (CGO). The posterior CH2Cl2 model output is far 

better at matching with the observations over the 12‐year period compared to 

the prior model output. This is especially true of the earlier parts of our study 

period given that our prior emissions (for the main industrialised regions) were 

based on bottom‐up data from 2016. Annotated in Figure 4.6 are the modelled 

(posterior) and observed CH2Cl2 trends over the 2006-2017 period, calculated 
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using a simple least squares regression. The modelled and observed trends are 

3.0 and 2.9 ppt yr−1 at ALT, 2.8 and 3.0 ppt yr−1 at LEF, 2.6 and 2.9 ppt yr−1 at 

KUM, and 0.7 and 0.7 ppt yr−1 at CGO and thus are in excellent agreement. 

Despite the geographical range of the three NH sites, similar trends, roughly 3 

ppt yr−1, are found. 

 

 

Figure 4.6. Comparison of modelled monthly mean CH2Cl2 mixing ratio (ppt) versus 

NOAA observations (2006-2017) at stations (a) ALT, (b) LEF, (c) KUM, and (d) CGO. Each 

panel contains model output based on the prior (blue) and the posterior (red) 

emissions, with annual trends (ppt yr−1) in the model (posterior) and observations 

annotated. For CH2Cl2, results are generated using the posterior emissions from the 

no ocean inversion scenario. 

 

A similar analysis for C2Cl4 was performed at the same four sites, with again 

good agreement between the model (with posterior emissions) and the 

observations (Figure 4.7). The modelled and observed trends without the C2Cl4 

+ Cl sink reaction included are -0.14 and -0.13 ppt yr−1 at ALT, -0.15 and -0.12 
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ppt yr−1 at LEF, -0.07 and -0.08 ppt yr−1 at KUM, and -0.02 and -0.01 ppt yr−1 at 

CGO. In addition, Figure 4.7 includes the Cl sink of C2Cl4. The trends are 

slightly improved in the posterior for three of the sites (except KUM), and the 

figure shows the stark contrast between the two prior model outputs. The 

addition of the Cl sink leads to a decreased lifetime of C2Cl4 [Hossaini et al., 

2019], and therefore, prior concentrations are decreased. The inversion 

compensates for this by increasing posterior emissions, as shown in Figure 4.3. 

Despite two very different prior positions, the two almost identical C2Cl4 

posterior outputs (in Figures 4.5(b) and 4.7) indicate how effective the inversion 

process can be. 

 

Figure 4.7. Comparison of modelled monthly mean C2Cl4 mixing ratio (ppt) versus 

NOAA observations (2007-2017) at the same stations as in Figure 4.6. Panels (a)-(d) 

are comparisons without the C2Cl4 + Cl reaction, and (e)-(h) are with the reaction. 

 

For every year of the model, TOMCAT assumes the same offline OH field. In 

practice this is not the case, and OH can vary annually on average by 2-3% 

[Montzka, Krol, et al., 2011]. The cause of this is primarily due to variation in the 

major source compounds towards OH generation, i.e. NOx, H2O, O3, CO, and 

CH4. Periodic phenomena such as the El Nino Southern Oscillation direct 
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changes in H2O, for example. As a result of assuming constant OH, the 

modelled concentrations of CH2Cl2 and C2Cl4 would not include any interannual 

variability. If for a given year the model was underestimating OH at a certain 

location, the resulting inversion would underestimate Cl-VSLS emissions. There 

has been a general increasing trend in OH concentrations between 1990 and 

2010, particularly over East and Southeast Asia, of the order of 1% yr-1 [Zhao 

et al., 2019]. This suggests that Asian Cl-VSLS emissions could in fact be a 

fraction larger than calculated. 

Note that for CH2Cl2, the discussion above has focused on the “no ocean” 

inversion. The posterior modelled CH2Cl2 mixing ratios from the with ocean 

inversion (not shown) are found to be almost identical; thus, the performance of 

the two inversions is very similar. This implies that it cannot be concluded (or 

excluded) that a significant ocean CH2Cl2 source exists from this analysis. 

 

4.4.7 Independent Observations 

In the previous section, we compared modelled CH2Cl2 and C2Cl4 mixing ratios, 

generated using our posterior emissions, to observations used in the inversion 

itself. Here, we examine independent observations, first considering aircraft 

measurements during the 2014 CAST, CONTRAST, and ATTREX missions 

over the tropical West Pacific (Section 4.3.2). Modelled and observed vertical 

profiles (surface to ~20 km) are displayed in Figure 4.8. For each aircraft 

observation, the monthly mean concentration in the corresponding model grid 

cell was extracted. These monthly mean concentrations and observations were 

then averaged over 1 km vertical bins, providing the blue squares and black 

lines in Figure 4.8, respectively. Throughout the vertical extent of these profiles, 

there is (a) near‐perfect agreement between modelled CH2Cl2 using the 

posterior emissions (“no ocean” inversion) compared to the observations and 

(b) a significant improvement over the prior. The latter presumably reflects the 

larger Asian emissions in our posterior model occurring in the vicinity to the 

measurement campaigns. For C2Cl4 (CONTRAST and ATTREX only), Figure 

4.8(b) shows results from the model both with and without the Cl sink. In both 

cases, the posterior emissions outperform the prior. The Cl sink case matches 
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with the observations more effectively at higher altitudes, whereas both cases 

are similar towards the surface. On average, the model output overestimates 

C2Cl4 by 0.53 ppt for the no Cl sink and by 0.47 ppt for the Cl sink case. This 

overestimation could be caused by the large Combined Asia emissions, which 

heavily influence these observations. 

 

Figure 4.8. Modelled versus observed vertical profiles of (a) CH2Cl2 and(b) C2Cl4 volume 

mixing ratio (ppt) during the 2014 CAST/CONTRAST/ATTREX field missions in the West 

Pacific (see Section 4.3.2). Model output has been averaged in 1 km vertical bins and 

is shown for both the prior and posterior emissions. Note that these aircraft data are 

“independent” in that they were not used in the inversion to produce the posterior 

emissions. The C2Cl4 + Cl sink data are inset in (b). For CH2Cl2, results are generated 

using the posterior emissions from the no ocean inversion scenario. 
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Figure 4.9. Comparison between monthly mean NOAA tall tower observations of 

CH2Cl2 (ppt) in 2015 (independent observations) and modelled values obtained using 

the prior and posterior emissions. The vertical bars on the observations indicate ±1 SD 

of all measurements acquired at that site during that month. Annotated for each site 

are the average annual deviations (Dev) between the two model outputs and the 

observations, and the correlation coefficient, R. Results are generated using the 

posterior emissions from the no ocean inversion scenario. 

 

The second test for our inversion is from the independent network of NOAA tall 

tower sites (USA‐based, e.g., see Figure 4.1). At each of the 10 sites where 

CH2Cl2 observations are available, the posterior model provides a reasonable 

representation of the measurements in 2015 (Figure 4.9). Annotated on this 

figure are the mean absolute deviations at each site between the model (with 

prior and with posterior emissions) versus the observations, in that year. At most 

sites, the posterior model outperforms the prior, but generally, only small 

improvements in the CH2Cl2 average deviation are achieved. The correlations 

between model and observations (also annotated) also show a consistent 
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improvement for the posterior. At certain sites, large standard deviations on the 

monthly mean observations coincide with poor model‐measurement 

agreement, in some months. For example, the proximity of the MWO site to 

large urban areas may partly explain why the monthly mean observations are 

consistently larger than the model outputs, and for the other instances where 

large standard deviations occur, the model outputs lie at the lower range of the 

observations.  

 

Figure 4.10. As Figure 4.9 but for C2Cl4. Note that the model results here did not 

include the C2Cl4 + Cl sink. 

 

For C2Cl4, a similar analysis was performed and reveals a more varied picture 

(Figure 4.10). As prior emissions generally overestimate C2Cl4, this leads to 

large improvements in the posterior output at most sites. However, at some 

sites the modelled‐observed C2Cl4 deviations are larger for the posterior 

compared to the prior (e.g., BAO and MWO). As for CH2Cl2, this is largely due 

to the close proximity of substantial sources influencing observations that are 

likely not well captured by the model. However, at most sites, we note that our 
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posterior model output lies within the observed variability. We further note that 

as with all comparisons of relatively coarse global‐scale models with point‐

based observations, sampling errors in the model can affect such comparisons. 

For Europe, beyond the NOAA and AGAGE observational data used in the 

inversion, there are few long‐term surface measurements of CH2Cl2 and C2Cl4. 

However, a recent network addition is the establishment of a CH2Cl2 record at 

the Taunus Observatory (50.22°N, 8.44°E, at 825 m) in central Germany 

[Schuck et al., 2018]. Taunus reports CH2Cl2 measurements using the AGAGE 

SIO‐14 scale (here converted to the NOAA scale). Figure 4.11(a) compares 

modelled and observed monthly mean CH2Cl2 at the Taunus site between 2014 

and 2017. The agreement between the model (with posterior emissions) and 

observations is reasonable, with the shape of the seasonal cycle generally well 

captured. The model does overestimate CH2Cl2 at this particular site during 

some periods. Since sampling errors in the model could cause this 

overestimation, Figure 4.11 also investigates model variability by including the 

standard deviation between the eight neighbouring model grid cells, using 

Equation 4.04. At this particular site, variability introduced from neighbouring 

model grid cells is reasonably small and does not fully rationalise the small 

discrepancies between the model and observations, including apparent slight 

offsets in the seasonal cycle. However, we note that at other NH sites—

including from the USA‐based tall tower network—the CH2Cl2 seasonal cycle is 

very well captured (e.g., Figures 4.S4, 4.S6, and 4.9).  
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Figure 4.11. A comparison between modelled and observed monthly mean mixing 

ratios (ppt) of CH2Cl2 and C2Cl4 at independent measurement sites. (a) CH2Cl2 at the 

Taunus Observatory in central Germany [Schuck et al., 2018], (b) CH2Cl2 at Hateruma, 

Japan, (c) C2Cl4 at Hateruma (no C2Cl4 + Cl sink), and (d) C2Cl4 at Hateruma (including 

+Cl sink). The model output was generated using the posterior emissions from the 

inversion. In the case of CH2Cl2, results from the no ocean inversion scenario are shown 

(see main text). Model variability (light orange) was calculated from the standard 

deviation of the surrounding eight model grid cells (Equation 4.04). All observations 

here are calibrated to NOAA scales. 

 

Also included in Figure 4.11 are comparisons of modelled CH2Cl2 and C2Cl4 

using our posterior emissions to baseline measurements obtained from the 

AGAGE‐affiliated site in Hateruma, Japan (HAT, 24.1°N, 123.8°E, at 46.5 m). 

Hateruma is calibrated with the NIES‐08 scale and for CH2Cl2 can be converted 

to the AGAGE SIO‐14 scale by a factor of 1.066 ± 0.008. The conversion factor 

between the NIES‐08 scale and AGAGE's NOAA‐2003B scale for C2Cl4 is 0.994 

± 0.010. Given that the number of monitoring stations in Asia is limited and that 
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this is where the largest Cl‐VSLS emissions are predicted to occur, these 

independent comparisons are particularly useful. For CH2Cl2, model‐

observation agreement is generally good, though in the most recent years of 

our study period, the model underestimates observed CH2Cl2 mixing ratios, 

particularly in winter. This wintertime disparity could represent a combination of 

uncaptured seasonality in CH2Cl2 emissions and underestimated model CH2Cl2 

lifetime and is apparent even when considering the model sampling/mismatch 

issues noted above. For C2Cl4, comparisons to the Hateruma data are shown 

for the model with and without the Cl sink used to construct the posterior 

emissions. Both cases lead to adequate model‐measurement agreement, 

though including the Cl sink provides far better agreement in the most recent 

years. 

 

4.5 Summary and Conclusions 

Combining long‐term surface observations and a chemical transport model, we 

have performed a global‐scale synthesis inversion to (a) constrain 

regional/global emissions of CH2Cl2 and C2Cl4, (b) investigate emission trends 

over the 2006 to 2017 period, and (c) produce a set of evaluated emission 

inventories for future global modelling studies. Our main findings are the 

following: 

• For an inversion in which only industrial CH2Cl2 emissions are 

considered, we estimate that global CH2Cl2 emissions increased from 

637 ± 37 Gg yr−1 in 2006 to 1,171 ± 45 Gg yr−1 in 2017, with reasonably 

good agreement between our results and those reported in the recent 

WMO Ozone Assessment with a simplified model and similar data as 

input [Engel et al., 2018]. This increase is largely attributed to an increase 

in Asian emissions, while relatively small European and North American 

emissions decrease over the same period. This geographical shift in the 

emission distribution is broadly consistent with studies that have 

highlighted the growing importance of major Asian economies as a 

CH2Cl2 source [e.g., Leedham Elvidge et al., 2015; Feng et al., 2019]. In 

2017, we estimate Asian emissions accounted for 89% (1,045 ± 40 Gg 
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yr−1) of total CH2Cl2 emissions, up from 68% (431 ± 32 Gg yr−1) in 2006. 

CH2Cl2 emissions from Europe and North America combined 

represented 9% of the global total in 2017, down from 29% in 2006. 

Decreases in these regions may, in part, reflect recent concerns over the 

compound's toxicity in consumer products. 

 

• For an inversion in which both oceanic and industrial CH2Cl2 sources are 

considered, we estimate global CH2Cl2 emissions of 1,166 ± 64 Gg yr−1 

in 2017, that is, very similar to the no ocean case. However, including 

the ocean source reduces the estimate of 2017 Asian emissions from 

1,045 ± 40 to 886 ± 53 Gg yr−1 (a reduction of 15%). A large portion of 

this difference is explained by the inversion placing a significant emission 

of CH2Cl2 in the tropical Northern Ocean (0-30°N latitude). Averaged 

over our study period, oceanic CH2Cl2 emissions from this latitude band 

are approximately 123 (±45) Gg yr−1, which is comparable to 88 (±29) 

Gg yr−1 for the same band estimated from a previous inversion study 

using primarily the same observational data as input but for an earlier 

time period [Xiao, 2008]. The inclusion of an ocean source does not 

affect our overarching conclusions on a shift in global CH2Cl2 emissions, 

with an increasing contribution from Asia, and a declining contribution 

from Europe and North America since the mid‐2000s. Additionally, 

comparisons of atmospheric measurements between this and the “no 

ocean” inversion lead to no evidence for (or against) an ocean CH2Cl2 

source. 

 

• Unlike CH2Cl2, which has increased in the atmosphere since the 

early/mid‐2000s, C2Cl4 has been in long‐term decline. Our results 

indicate a decrease in global emissions from 141 ± 14 Gg yr−1 in 2007 to 

106 ± 12 Gg yr−1 in 2017. These values were obtained from an inversion 

setup in which the C2Cl4 + Cl sink reaction was not included and agree 

well with estimates produced for the recent WMO Ozone Assessment 

using a simplified model and similar input data [Engel et al., 2018]. 

Inclusion of the C2Cl4 + Cl reaction, shown to be an important, albeit 

uncertain, sink of C2Cl4 in recent modelling studies [Hossaini et al., 
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2019], increases the estimated global C2Cl4 emissions to 216 ± 14 Gg 

yr−1 in 2007 and 162 ± 12 Gg yr−1 in 2017, that is, around 50% larger. 

Further work to constrain tropospheric Cl atom concentrations may help 

to constrain top‐down emission estimates for C2Cl4. Inclusion of the Cl 

sink generally leads to slight improvements compared to the default 

inversion when comparing against atmospheric measurements. 

 

• Using observational data not included in the inversion, the performance 

of the posterior CH2Cl2 and C2Cl4 emissions was evaluated. For both 

compounds, observed surface trends between the mid‐2000s and 2017 

are well reproduced: ~3 ppt CH2Cl2 yr−1 and ~−0.1 ppt C2Cl4 yr−1 at NH 

sites. Independent measurements from the 2014 

CAST/CONTRAST/ATTREX aircraft missions over the tropical West 

Pacific are also reproduced very well throughout the vertical extent of the 

troposphere for CH2Cl2, but do not allow any constraint on the magnitude 

of an oceanic source. These independent data are reproduced relatively 

less successfully for C2Cl4. Similarly, the posterior emissions show 

improvement over the prior at numerous USA‐based NOAA tall tower 

sites in 2015. Comparisons for other surface sites were performed, 

including Taunus Observatory (Germany) and Hateruma (Japan), and 

reveal generally good agreement. Our emissions are thus suitable for 

inclusion in global atmospheric modelling studies. 

 

In conclusion, emissions of CH2Cl2—a substance known to cause ozone 

depletion—have increased significantly since the mid‐2000s. Given that Asian 

emissions lead to a relatively large CH2Cl2 ODP compared to emissions from 

other regions [Claxton et al., 2019], its regional and global abundance should 

continue to be monitored. As emissions from the Asian continent are by far the 

largest, a denser set of measurements, from the surface to the tropopause, 

would be beneficial to distinguish emissions from different subregions and 

ultimately constrain the troposphere‐to‐stratosphere input of chlorine from 

VSLS. A consideration of how emissions are likely to change in coming decades 

would also help constrain the influence of CH2Cl2 on the timescale of 

stratospheric ozone recovery. Future work should also focus on elucidating the 
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mechanism by which CH2Cl2 is recycled through the ocean and quantifying the 

magnitude and distribution of biogenic sources. 
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4.6 Supporting Information 

This supporting information summarises bottom-up estimates of the two Cl-

VSLS studied in Table 4.S1. Table 4.S2 summarises inversion results for a 

CH2Cl2 inversion ran with ocean regions included. Table 4.S3 summarises 

inversion results for a C2Cl4 inversion with a theorised Cl sink included. An 

example, for CH2Cl2, of the emissions distribution used in the study is given in 

Figure 4.S1. Figure 4.S2 shows the emissions time series for the 

aforementioned CH2Cl2 including ocean inversion. The sensitivity testing with 

regards to prior emissions error for this inversion is then shown in Figure 4.S3. 

Figures 4.S4-4.S5 show a single year comparison over the NOAA 

observational sites that were used in the inversion process, between the model 

output based on the prior emissions, and the output based on the resulting 

optimised posterior emissions, for CH2Cl2 and C2Cl4 respectively. Figures 4.S6-

4.S7 show the same comparison, but over the AGAGE sites used in the 

inversion instead. 

 

Table 4.S1. Bottom-up estimates of industrial CH2Cl2 and C2Cl4 emissions (Gg yr-1) in 

2007 and 2016 adapted from Nolan Sherry Associates, NSA analysis (see Section 4.3.4). 

Region 
CH2Cl2 (Gg yr-1) C2Cl4 (Gg yr-1) 

2007 2016 2007 2016 

Europe 140 50 70 48 

North America 58 55 35 24 

Asia 
(Temperate) 

453 621 52 93.3 

Asia (Tropical) 55 50 14 15 
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Table 4.S2. As Table 4.3 but based on a CH2Cl2 inversion that includes ocean regions. 

NO = Northern Ocean, SO = Southern Ocean. 

 
Region 

 2006 2017 

Prior 
Emissions 

Posterior 
Emissions 

Error 
Reduction 

Posterior 
Emissions 

Error 
Reduction 

Europe 50.0 140.6 ± 
10.5 

79.1% 109.6 ± 
12.5 

75.1% 

Africa 9.18 1.72 ± 8.62 6.0% 9.71 ± 8.95 2.5% 

Australia 4.85 5.34 ± 1.99 59.0% 3.64 ± 2.50 48.4% 

Boreal Asia 6.81 -3.94 ± 
6.10 

10.4% -5.95 ± 
6.52 

4.3% 

Boreal NA 1.11 0.73 ± 1.09 2.3% 0.82 ± 1.11 0.8% 

Temperate 
Asia 

621.0 182.9 ± 
26.6 

95.7% 626.3 ± 
36.1 

94.2% 

Temperate LA 8.43 -10.9 ± 6.9 18.4% -3.83 ± 
7.69 

8.8% 

Temperate NA 55.0 67.8 ± 4.9 91.0% 32.8 ± 5.9 89.2% 

Tropical Asia 50.0 163.7 ± 
30.9 

38.1% 259.8 ± 
38.7 

22.6% 

Tropical LA 8.67 3.91 ± 8.47 2.4% 7.40 ± 8.53 1.6% 

Extratropical 
NO 

24.0 -54.0 ± 8.5 64.3% -58.3 ± 
11.5 

52.1% 

Extratropical 
SO 

71.9 5.27 ± 2.80 96.1% 6.17 ± 4.09 94.3% 

Tropical NO 50.3 71.6 ± 15.6 69.0% 177.5 ± 
23.2 

53.8% 

Tropical SO 50.3 39.4 ± 6.8 86.4% 0.08 ± 9.99 80.1% 

Combined 
Asia 

671.0 346.6 ± 
40.8 

- 886.1 ± 
52.9 

- 

Global Total 1011.5 614.2 ± 
49.0 

- 1165.8 ± 
63.5 

- 
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Table 4.S3. As Table 4.4 but based on an inversion that included the C2Cl4 + Cl sink 

reaction. 

 
Region 

 2007 2017 

Prior 
Emissions 

Posterior 
Emissions 

Error 
Reduction 

Posterior 
Emissions 

Error 
Reduction 

Europe 48.0 89.3 ± 4.6 90.4% 46.4 ± 2.7 94.3% 

Africa 2.30 4.93 ± 2.22 3.6% 5.36 ± 2.13 7.5% 

Australia 0.62 1.04 ± 0.33 46.3% 0.57 ± 0.26 57.6% 

Boreal Asia 1.80 -2.66 ± 1.67 6.9% -2.33 ± 1.61 10.5% 

Boreal NA 0.50 -0.09 ± 0.48 5.3% 0.49 ± 0.47 6.1% 

Temperate 
Asia 

93.3 27.6 ± 9.2 90.2% 29.5 ± 7.7 91.8% 

Temperate LA 1.06 2.64 ± 1.04 2..2% 3.05 ± 0.99 7.0% 

Temperate 
NA 

24.0 46.7 ± 2.8 88.3% 34.4 ± 1.9 92.1% 

Tropical Asia 15.0 46.7 ± 8.5 42.1% 42.6 ± 8.1 44.7% 

Tropical LA 1.58 2.90 ± 1.55 1.9% 2.49 ± 1.53 3.4% 

Extratropical 
NO 

3.51 -14.7 ± 2.1 41.4% -10.2 ± 1.7 52.6% 

Extratropical 
SO 

5.85 4.87 ± 0.82 86.0% 3.22 ± 0.71 87.8% 

Tropical NO 3.51 -0.51 ± 1.52 56.7% 1.36 ± 1.40 60.2% 

Tropical SO 5.85 7.44 ± 1.12 80.9% 5.47 ± 1.10 81.2% 

Combined 
Asia 

108.3 74.3 ± 12.5 - 72.1 ± 11.2 - 

Global Total 206.5 216.3 ± 
14.3 

- 162.5 ± 
12.4 

- 
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Figure 4.S1. Prior emission distribution of CH2Cl2 (g m-2 yr-1) used in the inversion. The 

distribution is based on present day HCFC-22 emissions [Xiang et al., 2014]. Note the 

logarithmic scale. 
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Figure 4.S2. Global and regional emissions for CH2Cl2, as Figure 4.2, but including the 

four ocean regions in the inversion. In (b) the total ocean emissions are included. 
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Figure 4.S3. Sensitivity testing of posterior emissions with respect to varying prior 

emission error for CH2Cl2 in 2007, as Figure 4.4, but for the “with-ocean” inversion 

scenario.  
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Figure 4.S4. Comparison of modelled monthly mean CH2Cl2 mixing ratio (ppt) and 

observed CH2Cl2 using both the prior and posterior emissions. The observational data 

are from the NOAA global network (see site summary in Table 4.1) and the 

comparisons are for the year 2016. 
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Figure 4.S5. As Figure 4.S4 but for C2Cl4. Note, the model results here did not include 

the C2Cl4 + Cl sink. 
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Figure 4.S6. Comparison of observed and modelled monthly mean CH2Cl2 mixing ratio 

(ppt) using both the prior and posterior emissions. The observational data are from 

the AGAGE global network (see site summary in Table 4.1) and vertical bars denote ±1 

SD. Comparisons are for the year 2016 for all sites, with exception of GSN (2015). All 

monthly mean observations are calculated using “raw” pollution events included; for 

GSN, baseline observations (filtered for pollution events) are also added, in green. 
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Figure 4.S7. Same as Figure 4.S6 except for C2Cl4. 
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Abstract 

Chlorinated Very Short-Lived Substances (Cl-VSLS), such as dichloromethane 

(CH2Cl2) and chloroform (CHCl3), have increasing influence on the 

stratospheric chlorine budget, and hence possibly ozone depletion. In this 

study, a gridded 12-year (2006-2017) estimate of global CHCl3 emissions was 
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aggregated from the literature. Global CHCl3 emissions total 416 ± 120 Gg yr-1 

in 2017 (of which 73% come from natural emissions), increasing at a rate of 6 

Gg yr-1 between 2006 and 2017, primarily due to increases in East Asian 

emissions. Alongside our previously calculated emissions of CH2Cl2 and 

perchloroethylene (C2Cl4), emissions of these three Cl-VSLS were implemented 

into a three-dimensional chemical transport model (TOMCAT/SLIMCAT) to 

determine surface concentration trends and the stratospheric chlorine injection 

over an 11-year (2007-2017) period. We find Cl-VSLS contribute 96.9 ± 8.3 ppt 

Cl to the stratosphere via source gas injection, and through key product gases 

Cly and phosgene, an additional 35.2 ± 3.3 ppt Cl, in 2017. Total stratospheric 

chlorine from Cl-VSLS in 2017 is estimated at 132.1 ± 8.9 ppt Cl (43% larger 

than in 2007). The time-varying stratospheric chlorine injections were entered 

as tropopause boundary conditions in one of two SLIMCAT model runs 

designed to investigate the impact of Cl-VSLS on ozone, the other assuming 

zero Cl-VSLS. Comparing the two, we find 2017 annual mean lower 

stratosphere ozone changes due to Cl-VSLS of -0.56% (globally), with larger 

changes up to a maximum of about -18% in the Antarctic lower stratosphere 

during spring. In terms of column changes, 2017 mean column ozone drops by 

1.23 DU (-0.4%) globally, and by 3.44 DU over Antarctica. These impacts and 

their significance in terms of regional mortality are discussed. 

 

5.1 Introduction 

Chlorinated Very Short-Lived Substances (Cl-VSLS) are a group of chlorine-

containing compounds with tropospheric lifetimes of less than approximately 6 

months [e.g. Ko et al., 2003]. Due to the phasing out of CFCs 

(chlorofluorocarbons) and other long-lived Ozone-Depleting Substances 

(ODSs) under the Montreal Protocol and its amendments, uncontrolled Cl-

VSLS are of increasing policy interest as they provide a growing source of 

anthropogenic chlorine to the atmosphere [e.g. Claxton et al., 2019; Hossaini et 

al., 2017; Laube et al., 2008]. Between 2012 and 2016, Cl-VSLS have been 

estimated to account for around 3.0-3.5% of the total chlorine injected into the 

stratosphere [Engel et al., 2018; Hossaini et al., 2015]. In absolute terms, 
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stratospheric injections of Cl-VSLS have increased from 26-77 ppt Cl to 75-160 

ppt Cl between 2010 and 2016 [Engel et al., 2018; Montzka, Reimann, et al., 

2011]. This increase is primarily due to dichloromethane (CH2Cl2) emissions, 

the most abundant Cl-VSLS, rapidly rising over recent years [Claxton et al., 

2020; Hossaini et al., 2017; Leedham Elvidge et al., 2015]. CH2Cl2 is commonly 

used as a versatile industrial solvent and roughly 90% of total emissions are 

estimated to be anthropogenic [Claxton et al., 2020; Montzka, Reimann, et al., 

2011]. The bulk of these emissions have been estimated to occur in Asia, with 

modelling studies suggesting a contribution of 89% of the global total emission 

in 2017 [Claxton et al., 2020].  

In addition to CH2Cl2, chloroform (CHCl3), perchloroethylene (C2Cl4), and 

ethylene dichloride (C2H4Cl2) are three other key Cl-VSLS that contribute to the 

atmospheric chlorine budget [Engel et al., 2018]. Whilst CHCl3 has significant 

natural sources, such as from oceans and soils [Khalil et al., 1999; McCulloch, 

2003], there is an increasing anthropogenic source [Fang et al., 2019]. As well 

as emissive applications as solvents, CHCl3 and CH2Cl2 are involved as 

chemical feedstocks in HCFC-22 and HFC-32 production, respectively [Feng et 

al., 2019; McCulloch et al., 1999]. To date, there has only been one modelling 

study that has quantified the time-varying stratospheric injection of chlorine due 

to VSLS. Hossaini et al. [2019] found that total stratospheric chlorine from the 

above four VSLS and their products increased from 69 ± 14 ppt Cl in 2000 to 

111 ± 22 ppt Cl in 2017. However, that study used a highly simplified treatment 

of Cl-VSLS at the model surface, prescribing zonal mean surface mixing ratio 

boundary conditions (based on surface monitoring network data), as opposed 

to considering spatially varying emission fluxes (e.g. as diagnosed by Claxton 

et al. [2020]). It is unlikely that this simple approach is able to capture the co-

location of surface emission ‘hot spots’ with areas of rapid vertical uplift, such 

as convectively active regions. 

Claxton et al. [2019] assessed the ozone depletion potential (ODP) of the four 

aforementioned Cl-VSLS, using a 3D chemistry transport model (CTM). The 

results showed that ODPs of Cl-VSLS experience regional variation depending 

on the location of emission, with emissions of Cl-VSLS from Southeast Asia 

having the greatest ODP, owing to increased vertical transport over the region 
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[e.g. Aschmann et al., 2011; Gettelman et al., 2009; Liang et al., 2014]. For the 

three Cl-VSLS, CHCl3 was found to have the largest ODP range of 0.0143-

0.0264, CH2Cl2 had a range of 0.0097-0.0208, C2Cl4 had a range of 0.0057-

0.0198, and C2H4Cl2 had a range of 0.0029-0.0119. These ODP ranges reflect 

variability due to both the season and the geographical region of emission, with 

the latter being more significant [Claxton et al., 2019]. There have yet to be any 

comprehensive end-to-end studies that link time-varying surface Cl-VSLS 

emissions to time-varying impacts on ozone. However, Hossaini et al. [2017] 

explored the impact on stratospheric ozone from possible future changes in 

surface CH2Cl2 in a series of model sensitivity studies. The study found that 

compared with a scenario with no CH2Cl2, holding CH2Cl2 concentrations at 

2016 levels into the future leads to an increase in the time it takes for Antarctic 

ozone levels to recover to 1980 levels by 5 years. Increasing CH2Cl2 emissions 

[Claxton et al., 2020; Feng et al., 2019] are likely to extend this period of time 

further, potentially by several decades if large and sustained emission growth 

continues throughout the century [Hossaini et al., 2017]. 

In our previous study, a set of multi-year gridded surface emissions for CH2Cl2 

(2006-2017) and C2Cl4 (2007-2017) were optimised using observations from 

the NOAA and AGAGE global monitoring networks and a 3D CTM, through 

‘synthesis inversion’ [Claxton et al., 2020]. With these emission fields, 

calculating injections of Cl-VSLS into the stratosphere is more effective than the 

simpler approach adopted by Hossaini et al. [2019]. In this study, we first 

describe and evaluate a simple gridded set of CHCl3 emissions, extending 

Claxton et al. [2020], though using a more empirical approach. These emissions 

are then implemented into the TOMCAT/SLIMCAT CTM, in conjunction with the 

CH2Cl2 and C2Cl4 emissions from Claxton et al. [2020], to perform an end-to-

end study quantifying (a) the time-varying contribution of Cl-VSLS and their 

products to stratosphere chlorine, and (b) the impact of changes in Cl-VSLS 

emissions on stratospheric ozone. The paper is structured as follows. Section 

5.2 discusses the CTM set-up, including briefly the assumptions made 

regarding product gases. Section 5.3 describes and evaluates a set of global 

CHCl3 emissions. Our main results are presented in Section 5.4, where first we 

consider trends in the surface concentration of CH2Cl2, C2Cl4 and CHCl3 from 
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our forward model runs, before calculating time-varying stratospheric chlorine 

injections. The sensitivity of total chlorine from Cl-VSLS that reaches the 

stratosphere to a range of factors (e.g. oxidant concentrations) are discussed 

and quantified. We then quantify the impact of this chlorine on stratospheric 

ozone, comparing model scenarios with and without Cl-VSLS. Conclusions and 

recommendations of further work are given in Section 5.5. 

 

5.2 TOMCAT/SLIMCAT 3D CTM 

We have used the TOMCAT 3D CTM to (1) develop and test a set of CHCl3 

emissions and (2) quantify the time-varying input of chlorine from CH2Cl2, C2Cl4, 

and CHCl3, along with their degradation products, into the stratosphere. The 

model configuration has been extensively used in many VSLS focused studied 

[e.g. Hossaini et al., 2010, 2019], and the tropospheric configuration used here 

is identical to that of Claxton et al. [2020] (Section 4.2). Briefly, the model uses 

offline meteorology, including 6-hourly wind, temperature and humidity fields, 

taken from the European Centre for Medium-Range Weather Forecasts 

(ECMWF) ERA-Interim reanalyses [Dee et al., 2011]. The model contains 

treatments of turbulent boundary layer mixing and convective transport, 

parameterised based on Holtslag and Boville [1993] and Tiedtke [1989], 

respectively. The model was run at a horizontal resolution of 2.8° x 2.8°, with 

60 vertical levels spanning from 7 m to 67 km. 

For the purpose of developing and testing the validity of CHCl3 emissions 

estimates (see Section 5.3), only a simple CHCl3 photochemical loss scheme 

was used and product gas chemistry was not considered. The reaction rate 

constant for the CHCl3 + OH sink was taken from the Jet Propulsion Laboratory 

(JPL) report [Burkholder et al., 2015]. An offline monthly-varying tropospheric 

OH field is implemented in this TOMCAT configuration [Huijnen et al., 2010; 

Spivakovsky et al., 2000], which has been previously used and evaluated in a 

TransCom study of CH4 [Patra et al., 2011]. 

For the purpose of quantifying stratospheric chlorine injections, an extended 

version of the above TOMCAT model configuration was used that considers 

both source gas (CH2Cl2, C2Cl4, and CHCl3) surface emissions/chemistry and 
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product gas chemistry [e.g. Claxton et al., 2019]. The two product gases 

considered are phosgene (COCl2) and a generic inorganic chlorine (Cly) tracer. 

In practice, the latter is representative of HCl as this is the dominant 

tropospheric inorganic chlorine reservoir [Wang et al., 2019]. All three Cl-VSLS 

studied are eventually degraded into either COCl2 or HCl; however, the relative 

proportions of the two products are different for each source gas. CH2Cl2 

degradation follows a relationship discussed in Hossaini et al. [2019]. For each 

CH2Cl2 molecule oxidised, the amount of COCl2 produced is related to the 

competing reactions of the initial CHCl2O2 intermediate. This amount is roughly 

0.05-0.1 over industrial regions, and >0.3 over the oceans, with the amount of 

Cly produced equal to 2 – (2Y), where Y is the COCl2 proportion. For CHCl3 

oxidation the ratio is simply 1 COCl2 : 1 Cly [Kindler et al., 1995], and for C2Cl4 

oxidation the ratio is 0.47 COCl2 : 3.06 Cly [Tuazon et al., 1988]. Further details 

of the chemistry scheme are given in the Supporting Information of Claxton et 

al. [2019] (Section 3.6). 

The eventual photolysis of COCl2 into Cly is considered and a washout lifetime 

of 58 days in the troposphere is assumed for COCl2 [Kindler et al., 1995]. For 

Cly, there are two different modelled estimates of its tropospheric lifetime in 

recent literature: 5 days based on Sherwen et al. [2016], and 37 hours based 

on Wang et al. [2019]. Our forward runs to quantify time-varying stratospheric 

chlorine injections from VSLS and their products assumed the 5-day lifetime for 

Cly as default, and the 37 hours lifetime was considered in a further sensitivity 

experiment. An additional sensitivity test was performed to investigate the 

inclusion of a C2Cl4 + Cl sink reaction (in addition to the main C2Cl4 + OH sink). 

Claxton et al. [2020] previously calculated emissions of C2Cl4 with and without 

this sink (see ensuing discussion), assuming a global tropospheric Cl 

concentration of 1.3 x 103 atoms cm-3 [Hossaini, Chipperfield, et al., 2016]. 

Although, in practice the distribution of Cl is very likely to be non-uniform. For 

the forward run in this study, this Cl concentration was again assumed, 

therefore propagating the C2Cl4 + Cl sink scenario from Claxton et al. [2020]. A 

final sensitivity test was performed to determine the sensitivity of Cl-VSLS 

injection to model OH concentration. Global mean tropospheric OH 
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concentrations can vary by as much as ± 20%, depending on the model [Zhao 

et al., 2019]. 

In addition to the TOMCAT model configuration described above, which was 

used the determine the tropospheric chemistry and transport of Cl-VSLS and 

their products, the SLIMCAT model configuration was used to investigate the 

stratospheric impact of Cl-VSLS on ozone. SLIMCAT has been extensively 

used for assessments of stratospheric composition, including recent studies 

calculating long-term ozone trends [e.g. Chipperfield et al., 2018]. The base 

resolution is alike to TOMCAT, with a 2.8° x 2.8° horizontal resolution, but with 

32 vertical levels, up to an altitude of 65 km. The model includes a 

comprehensive treatment of stratospheric processes, with an extensive series 

of reactions involving ozone creation and destruction, including heterogeneous 

reactions on aerosols and polar stratospheric clouds relevant for polar ozone 

loss. Two SLIMCAT experiments were performed. One included a prescribed 

(at the tropopause) time-varying contribution of Cl-VSLS to stratospheric 

chlorine, calculated by the forward TOMCAT experiments, and one excluded 

this ‘additional’ chlorine. In both experiments, the model contained time-varying 

treatments of all other major sources of chlorine, such as long-lived 

anthropogenic (e.g. CFCs, HCFCs) and natural (e.g. CH3Cl) chlorocarbons, as 

well as major long-lived bromocarbons (e.g. CH3Br, halons) and other relevant 

source gases (e.g. CH4, N2O). SLIMCAT simulations were performed over the 

period 2007 to 2017. The model was “spun up” over sixteen years prior to the 

start year of the study. 

 

5.3 Description and Evaluation of CHCl3 Emissions (2006-2017) 

5.3.1 Background 

Unlike CH2Cl2 and C2Cl4, whose global emissions were recently quantified by 

Claxton et al. [2020], chloroform (CHCl3) has significant natural sources. Soil 

and ocean emissions, from biological activity, together represent between 50-

90% of total CHCl3 emissions [Khalil et al., 1999; McCulloch, 2003; Trudinger 

et al., 2004]. Throughout this century, until about 2011, global anthropogenic 

emissions of CHCl3 have been fairly constant, estimated at 90 Gg yr-1 
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[Carpenter et al., 2014; Worton et al., 2006]. However, recent increases in Asian 

emissions have been inferred based on inverse modelling from two East Asian 

measurement sites [Fang et al., 2019], rising from on average 46.2 ± 2.3 Gg yr-

1 over 2007-2010 to 95.2 ± 9.1 Gg yr-1 in 2016. For other industrialised regions 

of the world, e.g. Europe and North America, a similar increase has not been 

found [Fang et al., 2019].  

‘Synthesis inversion’ is a technique that optimises model prior emission 

estimates by minimising differences between modelled and observed 

concentrations [e.g. Baker et al., 2006]. The efficacy of synthesis inversion 

generally improves with an increasing number of observations. For many long-

lived gases, such as CH4 and CO2, synthesis inversion approaches are very 

effective due to a relative abundance of surface measurements [Law et al., 

2008; McNorton et al., 2017; Wang et al., 2018]. However, for Cl-VSLS, there 

are limited long term observational data. The NOAA (National Oceanic and 

Atmospheric Administration) and AGAGE (Advanced Global Atmospheric Gas 

Exchange) networks provide the bulk of available Cl-VSLS measurement 

stations. For CH2Cl2 and C2Cl4, both networks were used to constrain emissions 

in our previous work [Claxton et al., 2020]. However, for CHCl3, only AGAGE 

measurements exist.  

Spatial coverage is another important aspect for synthesis inversion. Ideally, 

observations should cover as much of the planet as possible, and at a minimum, 

observations should exist in key emitting regions. For CH2Cl2 and C2Cl4, a 

synthesis inversion was feasible to this regard, as the NOAA and AGAGE 

networks (including some affiliate sites, e.g. Hateruma, Japan) cover the main 

industrial regions of East Asia, Europe, and North America [Claxton et al., 

2020]. However, the AGAGE network does not individually have enough global 

coverage, with only 9 long term measurement sites, 4 of which are in Europe, 

to constrain the regional breakdown of global CHCl3 emissions. As a result, a 

synthesis inversion approach for addressing CHCl3 emissions was found to be 

too unconstrained in our exploratory work.  

Creation of a gridded set of CHCl3 emissions using a more empirical approach 

is somewhat simplified by the fact that surface concentrations of CHCl3 were 
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relatively stable over the period 2002-2010 [Carpenter et al., 2014]. With ~70% 

of emissions natural, these can be assumed to be fixed from year to year, with 

the assumption that any land use and oceanic changes have not yielded 

significant deviations in emissions. For the remaining 30%, industry estimates 

and literature calculations can be compiled to form a “best guess” of 

anthropogenic emissions over the recent past. In order to test these emissions, 

they are run forward in a TOMCAT simulation and the model output is compared 

to the CHCl3 observations that are available. 

 

5.3.2 Natural CHCl3 Emissions 

The CHCl3 emission field is compiled from various different source 

contributions: soil, ocean, and industrial. The soil and ocean emissions are 

base-derived from Khalil et al. [1999], which described the natural component 

of the Reactive Chlorine Emissions Inventory (RCEI) for several Cl-VSLS. The 

ocean emissions were produced from calculating the average sea-to-air flux 

from several ocean measurement campaigns, separated into 4 latitudinal 

bands: 30-90°N, 0-30°N, 0-30°S, and 30-90°S. The associated annual CHCl3 

ocean emissions were reported to be 20.2, 150.4, 150.4, and 40.4 Gg yr-1, 

respectively (totalling 361.3 Gg yr-1) [Khalil et al., 1999]. The RCEI also reported 

annual soil CHCl3 emissions from the same four latitude bands: 67.3, 67.3, 56.1, 

and 11.2 Gg yr-1, respectively (totalling 202.0 Gg yr-1). Since these estimates 

published in the late 1990s, the size of these natural emissions has been called 

into question [Worton et al., 2006]. Through intercomparison between 

measurement sites, it was found that the CHCl3 calibration scale used by Khalil 

et al. [1999] was a factor of 2 greater than used in observations from the AGAGE 

network [O’Doherty et al., 2001]. Worton et al. [2006] therefore roughly halved 

the CHCl3 natural emissions from Khalil et al. [1999], providing a revised global 

ocean estimate of 180 Gg yr-1 and a global soil estimate of 100 Gg yr-1. 

Xiao [2008] updated and optimised the RCEI natural CHCl3 emissions for the 

years 2000-2004 using a synthesis inversion, also considering the same four 

latitude bands (Table 5.1). The resulting global ocean emissions, totalling 167.9 

± 106.0 Gg yr-1, were on average 54% smaller compared to Khalil et al. [1999]. 
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The global soil emissions from Xiao [2008], totalling 135.7 ± 56.4 Gg yr-1, were 

33% smaller. In addition to this, the Xiao inversion generated monthly 

emissions, to investigate the seasonal cycle of both the soil and ocean sources. 

The latitudinally-varying emissions from Xiao [2008] were gridded for this study 

and form the basis of the natural component of the total CHCl3 emission field in 

TOMCAT. A soil distribution based on the distribution of methyl bromide soil 

emissions, developed by Lee-Taylor et al. [1998], was used as a proxy to grid 

(1°×1°) the CHCl3 soil emissions. The ocean CHCl3 emissions were evenly 

distributed on this grid across their respective latitude bands.  

 

Table 5.1. CHCl3 emissions (Gg yr-1) from the ocean and soil in 4 latitude bands 

averaged over the 2000-2004 period. These optimised emissions are from the 

modelling study of Xiao [2008]. Errors in the global totals are propagated from the 1 

s.d. errors in each latitude band. 

Latitude Ocean emission 

(Gg yr-1) 

Soil emission  

(Gg yr-1) 

Total natural 

emission (Gg yr-1) 

30-90°N 11.5 ± 9.7 55.6 ± 34.0 67.1 ± 35.4 

0-30°N 62.8 ± 68.4 38.2 ± 34.1 101.0 ± 76.4 

0-30°S 70.5 ± 77.8 33.1 ± 28.4 103.6 ± 82.8 

30-90°S 23.1 ± 20.3 8.8 ± 7.1 31.9 ± 21.5 

Global total 167.9 ± 106.0 135.7 ± 56.4 303.6 ± 120.0 

 

Table 5.2 summarises the seasonal cycle of both natural CHCl3 emission 

sources inputted into TOMCAT. On average, the soil emission accounts for 45% 

of the global total natural emissions, with the ocean accounting for the 

remainder. The sensitivity of the performance of the gridded CHCl3 emissions 

to emission seasonality was examined. Tests were performed comparing one 

TOMCAT model run with seasonal ocean and soil emissions, and one with 

simple annually averaged emissions (i.e. aseasonal). Due to the size of the 

seasonality found in Xiao [2008], it is expected that the seasonal case would 

perform better, and particularly for areas more influenced by soil than ocean 

emissions, as the soil seasonality is stronger. 
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Table 5.2. Assumed global monthly averaged CHCl3 emissions (Gg yr-1) from soil and 

ocean sources between 2000-2004 [Xiao, 2008], which repeat annually in our TOMCAT 

experiments. Note that the uncertainties in the annual average (final column) are the 

1 s.d. errors calculated from the 12 months in order to quantify the strength of the 

seasonality, and not from latitudinal band error propagation as in Table 5.1. 

Source Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Ave 

Ocean 162 194 197 204 157 145 160 187 190 169 124 129 
168 ± 

27 

Soil 86 96 100 112 146 233 244 205 153 92 83 80 
136 ± 

60 

 

5.3.3 Industrial CHCl3 Emissions 

For the industrial component of CHCl3 emissions, we assembled regional 

estimates piecewise on an annual basis. The regions used are adapted from 

previous TransCom inversion studies [e.g. Baker et al., 2006]. We only consider 

four of these regions, those linked with industrial production of CHCl3. These 

are Europe, Temperate North America, Temperate Asia, and Temperate Latin 

America [Claxton et al., 2019; Figure 3.1]. Emissions from each region are 

summarised in Table 5.3. For almost every region, estimates are interpolated 

based on analysis from Nolan Sherry Associates (NSA), a chlorocarbon 

consultancy, in 2007 and 2016, which calculated production figures by a 

combination of a global industry database, industry dialogue, trade data, and 

back-calculations based on known feedstock applications and quantities. For 

Temperate Asia, the emissions used are adapted from Fang et al. [2019]. They 

calculated sub-regional estimates from a range of East and Southeast Asian 

countries using two separate inversion processes, from 2007-2015. We take 

the average of the two processes, and extrapolate to 2006 and 2016-2017, to 

form a 12-year record analogous to the length of record for CH2Cl2 in Claxton et 

al. [2020]. The total regional combination of emission is shown in Table 5.3. 

Although the Fang et al. [2019] Asian region and our Temperate Asian region 

are not identical, data from NSA shows that emissions from Asia are 

predominantly from East and South Asia, which mostly lie within the Temperate 

Asia region. NSA data reports emissions of ~13 Gg yr-1 for South Asia, and 25-
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53 Gg yr-1 for East Asia from 2006-2016, compared to the Fang et al. [2019] 

estimates of 49-95 Gg yr-1 from 2007-2015.  

 

Table 5.3. Annual industrial CHCl3 emissions (Gg yr-1) from the main emitting regions 

of Europe, Temperate Latin America, Temperate North America, and Temperate Asia.  

Region 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 

Europe 4.26 4.17 4.07 3.98 3.89 3.79 3.70 3.60 3.51 3.42 3.33 3.23 

Temp. LA 1.11 1.10 1.10 1.09 1.08 1.08 1.07 1.07 1.06 1.06 1.05 1.04 

Temp. NA 2.26 2.20 2.14 2.08 2.02 1.96 1.90 1.83 1.77 1.71 1.65 1.59 

Temp. Asia 43.6 
49.3 

± 4.9 

51.7 

± 4.7 

43.1 

± 4.0 

40.6 

±4.9 

56.3 

± 5.0 

52.3 

± 7.5 

60.8 

± 4.5 

80.8 

± 5.7 

95.2 

± 9.1 
100.9 106.6 

Tot. 

industrial 
51.2 56.8 59.0 50.3 47.7 63.1 59.0 67.3 87.1 101.4 106.9 112.5 

Tot. 

industrial + 

natural 

354.8 360.4 362.6 353.9 351.3 366.7 362.6 370.9 390.7 405.0 410.5 416.1 

Note: Eur, Temp. LA and Temp. NA emissions are adapted from Nolan Sherry 

Associates (NSA) data, and Temp. Asia emissions are adapted from Fang et al. [2019]. 

Also shown is the sum of industrial plus annual average natural emissions (see Table 

5.2). Error values provided for Temperate Asian emissions (2007-2015) are adapted 

from Fang et al. [2019]. Total emission errors are approximately equal to ±120 Gg yr-1 

for every year, almost wholly as a result of errors in natural emissions (Table 5.1). 

 

The distribution of the industrial CHCl3 emissions follows a proxy distribution of 

HCFC-22 [Xiang et al., 2014]. This is an identical approach to that employed for 

industrial CH2Cl2 and C2Cl4 emissions in Claxton et al. [2020], and is a 

reasonable assumption based on observed correlations between several Cl-

VSLS and HCFC-22 [Wang et al., 2014]. This distribution is up to date 

compared to the most recent global CHCl3 distribution from the RCEI [Keene et 

al., 1999], which does not factor in the changing industrialisation of East Asia. 

The HCFC-22 distribution also retains similar emission patterns over North 

America and Europe compared to the RCEI. The emission distribution within 

regions is assumed constant over the full 12-year period. Overall, total CHCl3 
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emissions from all sources vary from 354.8 Gg yr-1 in 2006 to 416.1 Gg yr-1 in 

2017. The bulk proportion of these emissions are from natural sources (ocean 

+ soil), comprising 303.6 Gg yr-1 each year. This represents 73-86% of total 

CHCl3 emissions from all sources, depending on the year. For industrial 

emissions only, Temperate Asia accounts for 86-94% of the total. Whilst 

industrial emissions from other geographical regions not considered in the study 

are likely to exist, these are estimated to be <0.5 Gg yr-1, several orders of 

magnitude below regional soil emissions, for instance. 

 

5.3.4 Evaluation of CHCl3 Emissions 

AGAGE maintains a long-term network of surface measurements of CHCl3 [e.g. 

Prinn et al., 2018]. Whilst the number of measurement sites is too low to 

successfully perform a synthesis inversion [e.g. Claxton et al., 2020], these 

observations can form a basis to judge the success of our gridded CHCl3 

emission field described above. Table 5.4 lists the AGAGE observation sites 

that were used to evaluate the emissions, which were implemented in a forward 

TOMCAT simulation (see Section 5.2). The monthly mean raw (i.e. no filtering 

for ‘pollution events’) observed CHCl3 mole fractions were compared on a site 

by site basis to the corresponding TOMCAT model output. Figure 5.1 shows a 

timeseries of observed and modelled CHCl3 at each AGAGE site, over the 12-

year period 2006-2017. Also annotated on Figure 5.1 are two statistical metrics 

used to determine how well matched the observations (obs) and model output 

(mod) are, mean absolute deviation (MD) and mean percentage error (MPE), 

shown in Equations 5.01 and 5.02: 

𝑀𝐷 =  
∑ |𝑚𝑜𝑑−𝑜𝑏𝑠|𝑚

𝑛𝑚
                                       (5.01) 

𝑀𝑃𝐸 =  
∑

100 × |𝑚𝑜𝑑−𝑜𝑏𝑠|

𝑜𝑏𝑠𝑚

𝑛𝑚
                                    (5.02) 

At some of the measurement sites, the model output matches very closely to 

the observations, particularly over North America and Europe, suggesting that 

the emission estimates are reasonably accurate for these regions. For sites 

ZEP, JFJ, and THD, the mean 12-year percentage errors between the model 
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and observations are only 12%, 6.3%, and 10%, respectively. Southern 

Hemisphere (SH) sites, however, vary greatly from site to site. Whilst CGO has 

a similar percentage error to Northern Hemisphere (NH) sites, at 11%, the 

model output at SMO overestimates the observations, with a mean percentage 

error of 55%. As SMO is heavily influenced by the Pacific Ocean that envelops 

it, it is possible that ocean emissions in the 0-30°S latitude band are in reality 

smaller than what we have assumed.  

 

Table 5.4. Summary of AGAGE surface observational sites used to compare with CHCl3 

model output.  

Code Station Name, Location Lat (°) Lon (°) Elevation (m) 

ZEP Zeppelin, Svalbard, Norway 78.9 11.9 490.0 

MHD Mace Head, Ireland 53.3 -9.9 5.0 

JFJ Jungfraujoch, Switzerland 46.3 8.0 3580.0 

CMN Monte Cimone, Italy 44.2 10.7 2165.0 

THD Trinidad Head, CA, USA 41.1 -124.2 107.0 

GSN Gosan, Jeju, South Korea 33.3 126.2 89.0 

HAT Hateruma, Japan 24.1 123.8 46.5 

RPB Ragged Point, Barbados 13.2 -59.5 42.0 

SMO Tutuila, American Samoa -14.2 -170.6 42.0 

CGO Cape Grim, Australia -40.7 144.7 94.0 

Note that Hateruma uses a separate measurement scale (NIES-11) compared to the 

rest of the AGAGE sites (SIO-98), and Hateruma measurements have been converted 

by a factor of 1.066 ± 0.005 [Fang et al., 2019]. 

 

Gosan, in South Korea, is a key site in determining how effective the emission 

field is over Asia, where measurements of CHCl3 are generally sparse. Here, 

the model output underestimates the observations, with a mean 12-year 

percentage error of 25%. This bias becomes more significant throughout the 

12-year period. It is likely that Gosan is heavily influenced by local pollution 

sources which may not be captured by the model, leading to the 

underestimation [Claxton et al., 2020]. Although a shorter record (2006-2015), 

the model versus observation comparison for Hateruma (Japan) reinforces the 
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Gosan finding, with the model exhibiting a low bias in the most recent years, but 

with generally good agreement in the mid-2000s. It is possible that both sites 

are especially influenced by strong local CHCl3 sources and that the Asian 

emissions estimates, based on Fang et al. [2019], are too low. 

The model/measurement comparisons in Figure 5.1 are based on a model run 

with seasonally varying natural CHCl3 emissions. Testing the performance of 

the model with seasonal natural emissions is an important check, as natural 

sources contribute the majority of the total global CHCl3 emission (Table 5.3). 

Hence, Figure 5.1 also shows a case in which the annual average natural 

emissions (the final column of Table 5.2) were applied to every month equally 

throughout the study period (i.e. aseasonal natural emissions in the model). It 

can be quickly identified that for many sites, particularly in the NH, the seasonal 

cycles no longer match up, and the intraannual variation in the model with 

aseasonal natural emissions is far greater than in the observations (for example 

the mean 12-year percentage errors for ZEP, JFJ and THD are 20%, 13%, and 

14%, respectively, for the aseasonal case). For SH sites, the comparisons are 

fairly unchanged; however, the deviation metrics suggest that seasonal natural 

emissions provide a slightly better agreement. For Gosan and Hateruma, the 

aseasonal case performed more successfully than the seasonal one, but the 

‘improvement’ is small. For tropical and SH sites, given the small differences 

between the two model outputs, it is likely that seasonality is less prominent 

than for extratropical northern sites. Tables 5.1 and 5.2 show that soil emissions 

are the primary source of seasonality, of which 69% are in the NH.  

Figure 5.2 further highlights the differences in modelled surface CHCl3 with 

seasonal and aseasonal natural emissions. This figure compares the monthly 

CHCl3 anomaly, calculated as the departure of monthly mean CHCl3 from the 

annual mean, averaged over all 12 years. Here, it is clear how relatively well 

the seasonal emission scenario performs for NH extratropical sites, although 

the seasonal cycle still isn’t perfectly captured. Despite the large absolute 

deviations for sites such as HAT, RPB, and SMO in Figure 5.1 (up to 55%), the 

seasonal model output matches fairly effectively. 
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Figure 5.1. Timeseries of observed versus modelled surface CHCl3 (ppt) at AGAGE 

monitoring sites. Modelled CHCl3 is shown for two different natural (ocean + soil) 

emission scenarios: where natural emissions have a seasonal cycle (red), and where 

the annual average natural emissions are used for every month (blue, aseasonal case). 

Included for every site are the mean 12-year absolute deviations (MD, Equation 5.01) 

and the mean 12-year percentage errors (MPE, Equation 5.02) between the 

observations and each model output. 

 

In addition to long term surface observations, aircraft data can be used to assist 

the evaluation of the CHCl3 emission estimates. ATTREX (Airborne Tropical 

Tropopause Experiment) [Navarro et al., 2015], CONTRAST (Convective 

Transport of Active Species in the Tropics) [Pan et al., 2017], and CAST (Co-

ordinated Airborne Studies in the Tropics) [Andrews et al., 2016] are three 

aircraft measurement campaigns that took place in Jan-Mar 2014, over the 

West Pacific, centred around Guam. As these campaigns sampled close to the 

key industrial East Asia region, comparisons with the model output provide a 

valuable supplement to the available Asian surface sites.  
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Figure 5.2. 12-year average of monthly anomalies from the annual mean (ppt) at each 

AGAGE site, comparing observed CHCl3 with seasonal and aseasonal CHCl3 model 

outputs. Error bars depict ±1 s.d. from the 12-year average observational monthly 

anomaly. 

 

Figure 5.3 displays all CHCl3 aircraft measurements from the surface into the 

upper troposphere/lower stratosphere (the ATTREX campaign sampled at a 

particularly high altitude, above ~14 km). The observations have also been 

averaged into 1 km bins, as has the corresponding model CHCl3 output. From 

this, it can be seen that the model overestimates the binned observations 

slightly, by 0.7 ppt on average throughout the profile. However, the model lies 

close to the uncertainty range of the observations, and there is good agreement 

in the boundary later and mid-troposphere. Overall, taking into account both the 

surface (Figure 5.1) and aircraft (Figure 5.3) comparisons, our basic estimation 

of CHCl3 emissions has led to good agreement with observed values, with the 

performance of the emissions being of a similar order to the results obtained 
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from the synthesis inversions performed for CH2Cl2 and C2Cl4 [Claxton et al., 

2020]. 

 

Figure 5.3. Modelled versus observed vertical profiles of CHCl3 (ppt) during the 2014 

CAST/CONTRAST/ATTREX field missions. Model output (blue) and the observational 

mean (black) have been averaged into 1 km vertical bins. 

 

5.4 End-to-End Study of Cl-VSLS Emissions and Impact on 

Stratospheric Ozone 

5.4.1 Surface Trends in Cl-VSLS 

With evaluated and reasonably accurate emission fields for the three main Cl-

VSLS (CH2Cl2 and C2Cl4 from Claxton et al. [2020], and CHCl3 from the 

preceding section), the time-varying atmospheric impacts can be investigated. 

Table 5.5 summarises the global source gas emissions for each Cl-VSLS for 

every year of our 12-year study period (2006-2017). These Cl-VSLS emissions 

were implemented in a forward TOMCAT model run using a model configuration 

that contained a simplified treatment of product gas production and removal 
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(see Section 5.2). The TOMCAT model output was first used to investigate 

changes in surface Cl-VSLS concentrations and to diagnose surface trends. 

Figure 5.4 depicts the modelled surface concentration of each species for 2017, 

the final year of the study. 

As Asian CH2Cl2 emissions have increased dramatically over the last 10-15 

years [Claxton et al., 2020], it is unsurprising that East Asia is the region of 

greatest CH2Cl2 concentrations in Figure 5.4. These concentrations reach up 

to 1 ppb, which is of a similar order to local measurements observed under 

polluted conditions [Barletta et al., 2006; Oram et al., 2017; Shao et al., 2011]. 

Background concentrations, e.g. over the NH oceans, are approximately 60 ppt, 

which represent typical values measured by the NOAA observational network 

at similar latitudes [e.g. Claxton et al., 2020; also Figure 2.4]. There is a large 

hemispherical gradient across all Cl-VSLS, due to relatively strong NH sources 

and meridional circulation only occurring at timescales similar to Cl-VSLS 

lifetimes. For CHCl3, maximum concentrations also occur over East Asia, at 

approximately 100 ppt. This is again of a similar order to observations recorded 

in the area (e.g. 232 ppt at Taiwan from polluted air strongly influenced from 

continental East Asia) [Oram et al., 2017]. Despite natural emissions comprising 

80% of total CHCl3 emissions, these industrial peaks are still visible, due to the 

large proportion of Temperate Asia emissions in Table 5.3. For C2Cl4, Asian 

emissions aren’t significantly greater than emissions from any other region 

[Claxton et al., 2020]. As a result, industrial hotspots with concentrations 

reaching over 40 ppt are scattered throughout Europe, Asia, and North America. 

Observed background NH concentrations of C2Cl4 are typically of the order of 3 

ppt [Claxton et al., 2020], which matches the results in Figure 5.4(c). When 

comparing with observational data, it is important to note that the model grid 

cells cover a large area, and an observational point may not be representative 

over the entirety of its surrounding area.  

Also included in Figure 5.4 is the modelled surface concentration of the two 

main product gases studied, Cly and phosgene (expressed as a sum of both 

compounds and in terms of equivalent chlorine). Concentrations of the two 

product gases reach up to 60 ppt Cl equivalent in East Asia, though baseline 

values of 25-30 ppt Cl are estimated between 60°N and 30°S.  
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Table 5.5. Summary of annual emissions (Gg yr-1) for the 3 Cl-VSLS input into forward 

TOMCAT simulations. CH2Cl2 and C2Cl4 emissions are derived from Claxton et al. [2020] 

(Tables 4.3, 4.4, 4.S3).  

Species 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 

CH2Cl2 637 695 748 743 822 832 886 1037 1093 1076 1117 1171 

CHCl3 355 360 363 354 351 367 363 371 391 405 411 416 

C2Cl4 - 141 149 135 131 117 114 109 113 111 104 106 

C2Cl4 + Cl - 216 227 210 198 180 174 171 169 170 161 163 

Note: C2Cl4 + Cl represents the emissions generated with inclusion of a Cl reaction 

sink. CHCl3 emissions are from Table 5.3. 

 

 

Figure 5.4. Modelled 2017 surface mixing ratios (ppt source gas) of (a) CH2Cl2, (b) 

CHCl3, (c) C2Cl4, and (d) sum of product gases Cly and phosgene. For (d), units are ppt 

Cl equivalent. 
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Figure 5.5. Modelled surface mixing ratio trend (ppt source gas yr-1) for (a) CH2Cl2, (b) 

CHCl3, (c) C2Cl4, and (d) sum of product gases Cly + phosgene. Note that the CH2Cl2 and 

CHCl3 trends are for the period 2006-2017, whilst C2Cl4 and product gas trends are for 

2007-2017. For (d), units are ppt Cl equivalent yr-1. White areas represent trends that 

lie below the 95% confidence interval. 

 

Figure 5.5 shows the calculated trend in the surface abundance of all three Cl-

VSLS over the study period 2006-2017 (2007-2017 for C2Cl4), for each model 

grid box. There is a clear increasing trend in CH2Cl2 surface concentration, 

including at background locations. This increasing trend ranges from ~100 ± 6 

ppt yr-1 in areas of East Asia, to 2.5 ± 0.2 ppt yr-1 at NH background locations 

and 0.8 ± 0.04 ppt yr-1 at SH background locations, and a positive trend is 

almost ubiquitous across the globe. The trends in Figure 5.5 were also tested 

for their significance. A Student’s t-test was performed on the trend correlation, 

with a null hypothesis assuming zero correlation. The number of degrees of 

freedom provided was equal to n-2, where n is the number of years for each Cl-

VSLS trend calculation. As each trend was performed using annual means, it is 
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likely that any autocorrelation is minimised. The majority of the CH2Cl2 trends 

lie above the 95% confidence interval, illustrated by the lack of white patches in 

Figure 5.5(a). These non-significant trends are located in Europe, where high 

surface concentrations fluctuate annually. Despite regions such as Europe 

experiencing a negative trend in emissions [Claxton et al., 2020; Figure 4.2], 

the efficient zonal mixing of CH2Cl2 still results in a general increase in the 

surface concentrations over the 12 years.  

For CHCl3, there is also a general increasing trend, due to a relatively strong 

increase in emissions over the later 5 years of the study period (see also Table 

5.5). This trend is noticeably far lower than that for CH2Cl2, with the greatest 

trend reaching only 10.8 ± 1.8 ppt yr-1 in some grid boxes. Similarly to CH2Cl2, 

the maximum trends in CHCl3 surface mixing ratio occur over East Asia. C2Cl4 

experiences a negative trend globally, of up to -2.6 ± 0.5 ppt yr-1, reflecting its 

generally decreasing emissions. As a consequence of the greater relative error 

of the C2Cl4 trend, less confidence in the trends have been found by the 

Student’s t-test, particularly in the Southern Hemisphere. For both CHCl3 and 

C2Cl4, there are regions which experience changes in emissions contrary to 

their respective concentration trends [Table 5.4; Claxton et al., 2020]. However, 

these changes are too small compared to the impact of zonal cross-regional 

transport on surface mixing ratios. The final panel in Figure 5.5 shows that for 

the two main product gases, Cly and phosgene, the trend follows that expected 

of a roughly weighted combination from all three Cl-VSLS (i.e. overall positive), 

with a similar distribution to its analogous surface concentration plot in Figure 

5.4. 

 

5.4.2 Stratospheric Injection of Cl-VSLS and Products 

5.4.2.1 Primary Analysis 

An important source of Cl-VSLS and their product gases, Cly and phosgene, to 

the stratosphere, is via the tropical tropopause [Claxton et al., 2019; Gettelman 

et al., 2009; Hosking et al., 2010]. This is because of efficient transport from 

large-scale convective systems, which originate over warm ocean waters. 

Throughout the tropics, the greatest likelihood of these systems occurs over 
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South East Asia [e.g. Gettelman et al., 2009], and therefore emissions close to 

this region will lead to the largest chlorine injection [Claxton et al., 2019]. As a 

result, it is of key importance to determine the amount of chlorine from Cl-VSLS 

at the tropical tropopause. Here we define the tropical tropopause as between 

the latitudes 20°N and 20°S, and at an altitude between 16.5 and 17.5 km, 

consistent with the altitude range from the WMO definition [Engel et al., 2018]. 

Table 5.6 shows the modelled abundance at the tropical tropopause for each 

of the three Cl-VSLS, and their products, for each year of our study (similar 

values are later used as boundary conditions in the stratospheric configuration, 

SLIMCAT). For C2Cl4, results for 2006 have been excluded as the input 

emission data only starts in 2007. Table 5.6 categorises the stratospheric 

chlorine injection from each source gas (“source gas injection”, SGI) and the 

contributions of both major product gases (“product gas injection”, PGI), each 

expressed in ppt of chlorine equivalent. As can be expected, the tropopause 

abundance is roughly proportional to global emissions, and follows the same 

trend. For CH2Cl2, there is an increase of roughly 3.8 ppt Cl yr-1, resulting in a 

total stratospheric Cl contribution (SGI + PGI) due to CH2Cl2 of 88.0 ± 8.7 ppt 

Cl in 2017, an increase from 49.4 ± 3.2 ppt Cl in 2006. For CHCl3, the yearly 

trend is 0.46 ppt Cl yr-1, with a 2017 total chlorine injection of 39.0 ± 2.1 ppt Cl, 

up from 33.9 ± 1.4 ppt Cl in 2006. Note, a value of 0.84 ppt Cl yr-1 is generated 

when calculating CHCl3 PGI+SGI trend from 2011, the year at which CHCl3 

notably increases. Owing to decreasing emissions between 2007 and 2017, 

there is a negative trend in the stratospheric chlorine injection due to C2Cl4, of -

0.19 ppt Cl yr-1 for its total SGI + PGI contributions, from 6.41 ppt Cl in 2007 to 

5.06 ppt Cl in 2017. 

 

 

 

 

 



155 
 

Table 5.6. Annual modelled stratospheric Cl injections (ppt Cl) due to Cl-VSLS emissions 

from Table 5.5. Injections are derived as the sum of equivalent ppt chlorine at the 

tropical (±20° latitude) tropopause (16.5-17.5 km). The final column summaries 

equivalent data from the most recent WMO/UNEP Ozone Assessment Report, over 

±25° latitude (and 16.5-17.5 km) [Engel et al., 2018]. For each Cl-VSLS, SGI (Source Gas 

Injection) and PGI (Product Gas Injection) from Cly and phosgene are calculated. 

Uncertainties given are ± 1 s.d. from the mean, and do not reflect the uncertainty in 

the emissions. 

 

 

   

2006 

 

2007 

 

2008 

 

2009 

 

2010 

 

2011 

 

2012 

 

2013 

 

2014 

 

2015 

 

2016 

 

2017 

WMO 

[2018] for 

2016 

CH2Cl2 

SGI 
38.7  

± 2.7 

40.4  

± 4.3 

46.0  

± 4.1 

46.3  

± 3.8 

50.9  

± 6.3 

51.3  

± 4.2 

55.4  

± 5.3 

62.1  

± 7.4 

68.6  

± 6.3 

65.0  

± 5.4 

68.9  

± 8.1 

68.5  

± 8.1 
52.6-77.0 

Cly 
5.35  

± 1.55 

5.78  

± 1.75 

6.64  

± 2.08 

6.23  

± 1.61 

6.29  

± 1.98 

7.15  

± 2.14 

7.00  

± 2.04 

7.70  

± 2.51 

8.93  

± 2.64 

8.38  

± 2.43 

8.91  

± 2.72 

10.1  

± 3.08 
 

Phos 
5.32  

± 0.24 

5.47  

± 0.37 

5.85  

± 0.39 

6.30  

± 0.40 

6.61  

± 0.50 

6.90  

± 0.43 

7.27  

± 0.42 

7.96  

± 0.73 

8.83  

± 0.60 

9.12  

± 0.50 

9.29  

± 0.58 

9.35  

± 0.69 
 

Total 
49.4  

± 3.2 

51.6  

± 4.6 

58.4  

± 4.6 

58.8  

± 4.1 

63.8  

± 6.6 

65.3  

± 4.7 

69.7  

± 5.7 

77.7  

± 7.9 

86.3  

± 6.8 

82.5  

± 5.9 

87.1  

± 8.6 

88.0  

± 8.7 
 

CHCl3 

SGI 
21.9  

± 1.2 

22.2  

± 1.5 

22.3  

± 1.5 

22.3  

± 1.2 

22.5  

± 1.3 

22.3  

± 1.6 

22.9  

± 1.3 

23.1  

± 1.5 

23.8  

± 1.7 

24.6  

± 1.5 

25.4  

± 1.6 

25.0  

± 1.9 
17.1-22.5 

Cly 
1.37  

± 0.47 

1.47  

± 0.52 

1.54  

± 0.60 

1.40  

± 0.46 

1.32  

± 0.52 

1.48  

± 0.57 

1.36  

± 0.50 

1.39  

± 0.57 

1.49  

± 0.57 

1.47  

± 0.53 

1.53  

± 0.55 

1.74  

± 0.64 
 

Phos 
10.6  

± 0.5 

10.7  

± 0.5 

10.8  

± 0.5 

10.8  

± 0.5 

10.5  

± 0.5 

10.7  

± 0.6 

10.8  

± 0.5 

10.9  

± 0.7 

11.2  

± 0.7 

11.6  

± 0.8 

12.0  

± 0.8 

12.3  

± 0.8 
 

Total 
33.9 ± 

1.4 

34.3 ± 

1.6 

34.7 ± 

1.7 

34.5 ± 

1.4 

34.4 ± 

1.5 

34.5 ± 

1.7 

35.1 ± 

1.5 

35.3 ± 

1.7 

36.4 ± 

1.9 

37.7 ± 

1.7 

38.9 ± 

1.9 

39.0 ± 

2.1 
 

C2Cl4 

SGI - 
4.24  

± 0.43 

4.78  

± 0.53 

4.85  

± 0.50 

4.38  

± 0.41 

3.91  

± 0.37 

4.04  

± 0.48 

3.97  

± 0.43 

4.15  

± 0.49 

3.65  

± 0.39 

3.47  

± 0.30 

3.35  

± 0.42 
1.52-2.84 

Cly - 
0.84  

± 0.21 

0.94  

± 0.26 

0.90  

± 0.20 

0.78  

± 0.20 

0.78  

± 0.21 

0.73  

± 0.20 

0.71  

± 0.20 

0.76  

± 0.21 

0.68  

± 0.17 

0.65 

 ± 0.17 

0.69  

± 0.19 
 

Phos - 
1.33  

± 0.13 

1.38  

± 0.15 

1.40  

± 0.11 

1.29  

± 0.11 

1.21  

± 0.09 

1.14  

± 0.09 

1.10  

± 0.10 

1.11  

± 0.10 

1.08  

± 0.09 

1.04  

± 0.09 

1.02  

± 0.11 
 

Total - 
6.41  

± 0.49 

7.10  

± 0.61 

7.15  

± 0.54 

6.46  

± 0.47 

5.90  

± 0.43 

5.90  

± 0.53 

5.78  

± 0.48 

6.03  

± 0.54 

5.40  

± 0.43 

5.16  

± 0.35 

5.06  

± 0.48 
 

Total SGI 
 66.8  

± 4.6 

73.1  

± 4.3  

73.5  

± 4.0 

77.8  

± 6.4 

77.5  

± 4.5 

82.3  

± 5.5 

89.2  

± 7.6 

96.6  

± 6.5 

93.3  

± 5.6 

97.8  

± 8.3 

96.9  

± 8.3 
71.8-101.2 

Total PGI 
 25.6  

± 1.9 

27.2  

± 2.3 

27.0  

± 1.8 

26.8  

± 2.2 

28.2  

± 2.3 

28.3  

± 2.2 

29.8  

± 2.8 

32.2  

± 2.9 

32.3  

± 2.7 

33.4  

± 2.9 

35.2  

± 3.3 
8-50 

Total SGI + PGI 
  92.3 ± 

5.0 

100.2 

± 4.9 

100.5 

± 4.4 

104.7 

± 6.8 

105.7 

± 5.1 

110.7 

± 5.9 

118.8 

± 8.1 

128.7 

± 7.1 

125.6 

± 6.2 

131.2 

± 8.8 

132.1 

± 8.9 
89.9-141.1 
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Table 5.6 also includes best estimates from the most recent WMO/UNEP 

Ozone Assessment, based on the simple idealised modelling study of Hossaini 

et al. [2017] and aircraft observations, as reported in Engel et al. [2018]. These 

values are appropriate for the year 2016 and are calculated at the tropopause 

between 25°N and 25°S; i.e. a slightly different latitude range to our study. For 

CH2Cl2, our 2016 estimate of SGI (68.9 ± 8.1 ppt Cl) falls within the range of the 

WMO best estimate (52.6-77.0 ppt Cl). For CHCl3, our 2016 SGI estimate of 

25.4 ± 1.6 ppt Cl is just outside the WMO range (17.1-22.5 ppt Cl), and for C2Cl4 

we calculate SGI of 3.47 ± 0.30 ppt Cl, 1.5× that of the WMO estimate average 

(1.52-2.84 ppt Cl). The total SGI from these three Cl-VSLS is listed in Table 

5.6. Our value for total SGI of 97.8 ± 8.3 ppt Cl lies within the WMO best 

estimated range of 71.8-101.2 ppt Cl, but towards the upper limit. Note, this 

WMO SGI reported estimate is based on the contributions of just these three 

Cl-VSLS, and other Cl-VSLS, such as C2H4Cl2, were not specifically included in 

the calculation [Engel et al., 2018]. 

The WMO report also includes estimates of PGI based on the combination of 

several modelling studies [Engel et al., 2018]. The nature of combining results 

from different studies leads to large uncertainty in the WMO estimated PGI 

range of 8-50 ppt Cl. The PGI estimate from this study is 32.2-35.2 ppt Cl (2014-

2017) and hence falls within the WMO range. Our estimate of the total 

contribution (SGI + PGI) of Cl-VSLS to stratospheric chlorine is 132.1 ± 8.9 ppt 

Cl in 2017 which falls towards the upper limit of the equivalent WMO estimate 

(Table 5.6). 
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Figure 5.6. Tropical tropopause Cl-VSLS injection timeseries in ppt Cl, 2006-2017. For 

each Cl-VSLS, the annual contribution from SGI (black), Cly (red) and phosgene (blue) 

is shown. Note for (c) C2Cl4, and (d) total from all Cl-VSLS, the timeseries starts at 2007. 

 

Figure 5.6 summarises the results given in Table 5.6 by visualising the yearly 

chlorine injections due to each source gas, Cly, and phosgene. Here the rise in 

CH2Cl2 concentrations can be more easily identified. What is also apparent is 

the differing proportions of product gases for each Cl-VSLS. Despite CH2Cl2 

and CHCl3 having very similar tropospheric lifetimes, of around 110 days 

[Claxton et al., 2019; Harris et al., 2014], 21% of the total stratospheric chlorine 

injection due to CH2Cl2 is from product gases (10.5% Cly, 10.5% phosgene), 

whilst for CHCl3 this proportion is 35%, and concentrations of phosgene are 8 

times larger than those of Cly. C2Cl4 has a PGI proportion of about 32.5%; 

however, note this value is only based on a scenario in which C2Cl4 is oxidised 

by OH only. 
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5.4.2.2 Sensitivity Testing 

In addition to a sink reaction with OH, there is a likely sink of C2Cl4 with Cl 

radicals [Rudolph et al., 1996]. We tested the effect of this reaction by 

propagating the C2Cl4 + Cl emissions from Claxton et al. [2020], detailed in 

Table 5.5. The results from the inclusion of the C2Cl4 + Cl sink reaction are 

shown in Table 5.7. As the inversion results from the C2Cl4 + Cl sink experiment 

were designed to optimise emissions using the same series of observations as 

the case without the sink, it isn’t surprising that the SGI values in Table 5.7 

match those in Table 5.6 fairly closely, with a maximum deviation from the 

original case of 11%. However, the PGI estimates vary considerably. The Cly 

injections increase by a factor of 3, and phosgene injections increase by a factor 

of 2.1, when the C2Cl4 + Cl sink is included. The 3× increase of Cly cannot be 

rationalised just by the 50% increased C2Cl4 emissions for this scenario. It is 

probable that this extra Cly comes directly from the C2Cl4 + Cl sink reaction. 

Overall, the average PGI proportion has increased from 32.5% to 52%, and total 

stratospheric Cl equivalent from C2Cl4 (SGI + PGI) increased from 5.06 ppt Cl 

to 7.82 ppt Cl in 2017 (i.e. comparing results from Table 5.6 to Table 5.7). 

However, although there is reasonable confidence in the existence of the sink 

[Hossaini, Chipperfield, et al., 2016; Rudolph et al., 1996], the Cl concentration 

field used in the model is far less certain. Recall, 1.3 x 103 atoms cm-3 was 

assumed as a globally uniform troposphere Cl concentration, whereas in 

practice this is unlikely to be accurate. Therefore, we only include the base case 

(without the C2Cl4 + Cl sink) in our calculation of total tropopause chlorine 

injection to study ozone impacts.  

 

Table 5.7. As Table 5.6, but for the additional C2Cl4 + Cl emission scenario. 

  2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 

C2Cl4 + Cl SGI 4.40 5.07 5.36 4.86 4.08 4.40 4.37 4.36 3.86 3.86 3.53 

Cly 2.56 2.88 2.76 2.32 2.26 2.13 2.09 2.24 1.94 1.94 2.09 

Phos 2.90 3.00 3.00 2.71 2.52 2.37 2.31 2.36 2.24 2.21 2.20 

Total 9.86 11.0 11.1 9.88 8.86 8.90 8.76 8.96 8.04 8.02 7.82 
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Table 5.8. As Table 5.6 but for a model sensitivity experiment assuming a Cly lifetime 

of 37 hours [Wang et al., 2019], rather than 5 days [Sherwen et al., 2016].  

  2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 

CH2Cl2 SGI 38.7 40.4 46.0 46.3 50.9 51.3 55.4 62.1 68.6 65.0 68.9 68.5 

Cly 3.60 3.91 4.51 4.14 4.10 4.81 4.55 5.03 5.91 5.54 5.89 6.91 

Phos 5.32 5.47 5.85 6.30 6.61 6.90 7.27 7.96 8.83 9.12 9.29 9.35 

Total 47.6 49.7 56.3 56.8 61.6 62.9 67.2 75.1 83.3 79.7 84.1 84.7 

CHCl3 SGI 21.9 22.2 22.3 22.3 22.5 22.3 22.9 23.1 23.8 24.6 25.4 25.0 

Cly 0.92 1.00 1.06 0.94 0.87 1.01 0.89 0.92 1.00 0.98 1.02 1.20 

Phos 10.6 10.7 10.8 10.8 10.5 10.7 10.8 10.9 11.2 11.6 12.0 12.3 

Total 33.4 33.9 34.2 34.0 33.9 34.0 34.6 34.9 36.0 37.2 38.4 38.5 

C2Cl4 SGI  4.24 4.78 4.85 4.38 3.91 4.04 3.97 4.15 3.65 3.47 3.35 

Cly  0.51 0.57 0.54 0.45 0.47 0.43 0.42 0.46 0.40 0.39 0.43 

Phos  1.33 1.38 1.40 1.29 1.21 1.14 1.10 1.11 1.08 1.04 1.02 

Total  6.07 6.73 6.78 6.13 5.59 5.61 5.49 5.72 5.13 4.90 4.80 

Total SGI  66.8 73.1 73.5 77.8 77.5 82.3 89.2 96.6 93.3 97.8 96.9 

Total PGI  22.9 24.2 24.1 23.8 25.1 25.1 26.3 28.5 28.7 29.6 31.2 

Total  89.7 97.2 97.6 101.6 102.5 107.4 115.5 125.0 122.0 127.4 128.1 

 

An additional sensitivity experiment was performed by changing the lifetime of 

Cly. The lifetime supplied in the base model, of 5 days, was based on modelling 

work by Sherwen et al. [2016]. However, an alternative and much lower 

estimate of 37 hours was found by Wang et al. [2019]. Therefore, the TOMCAT 

model runs were repeated using this lower lifetime estimate. The SGI and 

phosgene injections do not change at all, and despite a change in the assumed 

Cly lifetime by a factor of 3.2 in the model, the Cly stratospheric injections only 

change at most by around a factor of 1.4-1.65 (Table 5.8). Overall, the 

decreased Cly lifetime leads to decreased total Cl-VSLS contributions 

(SGI+PGI, all 3 Cl-VSLS) by only ~3% for each year, which are within the error 

ranges provided in Table 5.6. Therefore, the total chlorine injection into the 

stratosphere due to Cl-VSLS isn’t particularly sensitive to current uncertainty in 

the tropospheric Cly lifetime.  

A final set of sensitivity tests were performed with varying OH concentrations. 

Multi-model global tropospheric mean OH concentrations are approximately 

10.8 ± 2.1 x 105 molecules cm-3 [Zhao et al., 2019]. This uncertainty of ±20% 
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was used to scale our offline OH field in TOMCAT and further forward runs were 

performed that were otherwise identical to the base case. Focusing on the year 

2017, we found from these sensitivity tests that CH2Cl2 SGI ranged from 56.6-

86.0 ppt Cl when OH was altered by 20%, compared to the base case value of 

68.5 ± 8.1 ppt Cl (Table 5.6). Similarly, for CHCl3, SGI ranged from 20.4-31.8 

ppt Cl (c.f. 25.0 ± 1.9 ppt Cl in Table 5.6). Overall, the total SGI from all VSLS 

considered ranges from 79.7-122.2 ppt Cl, and total SGI+PGI ranges from 

114.4-158.1 ppt Cl, compared to 96.6 ± 8.3 and 132.1 ± 8.9 ppt Cl, respectively. 

These ranges are broadly in line with those provided in the 2018 WMO Ozone 

Assessment, in Table 5.6 [Engel et al., 2018]. Compared to changing Cly 

lifetime, Cl-VSLS contributions to stratospheric Cl are far more sensitive to 

uncertainties in OH. In addition, e.g. for the SGI+PGI total contributions, the 

range of 114.4-158.1 ppt Cl far exceeds the ± 8.9 ppt Cl estimate of uncertainty 

from Table 5.6. Therefore, it can be concluded that variations and uncertainty 

in tropospheric OH concentration are significant towards quantifying Cl-VSLS 

injection into the stratosphere. 

 

5.4.3 Stratospheric Ozone Impacts 

5.4.3.1 Ozone Changes due to Cl-VSLS 

With tropopause injection values of Cl-VSLS calculated using TOMCAT (e.g. 

Table 5.6), we entered these as boundary conditions into the stratospheric 

configuration of the model, SLIMCAT. Two simulations were performed with 

SLIMCAT, one with the time series of Cl-VSLS injections from 2007-2017, and 

one with zero Cl-VSLS. Therefore, we can determine the transient impact on 

ozone from Cl-VSLS, assuming accurate levels of Cl-VSLS emissions were 

included. For the “with Cl-VSLS” scenario, the tropopause injection values are 

formed from the total contribution from each Cl-VSLS in Table 5.6. Both source 

gas and product gas contributions are included and are considered separately 

in the model. The evaluation of stratospheric ozone concentrations from the 

model under each scenario was analysed. Figure 5.7(a) shows the annual 

mean percentage ozone difference between the two scenarios in 2017, the final 

year of the model runs, as a function of latitude and altitude. As expected, 
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inclusion of Cl-VSLS leads to a decrease in ozone concentration and this 

decrease is evident throughout the stratosphere. This decrease is particularly 

prominent in the Antarctic lower stratosphere, at around -3.5% at its maximum, 

and in the upper stratosphere, regions where chlorine is relatively efficient at 

destroying ozone [von Clarmann, 2013]. It has been well established that 

dynamical changes are a significant driver of lower stratosphere ozone 

decreases [Shepherd, 2008], and this has also been found to be the case for 

recent ozone trends [Chipperfield et al., 2018]. However, as our two model 

scenarios use the same offline dynamics, the ozone decrease in Figure 5.7 are 

purely due to chemical processes (i.e. the addition of ‘extra’ chlorine from Cl-

VSLS). Overall, in 2017, global mean lower stratosphere ozone loss due to Cl-

VSLS is estimated at -0.56%, which increases to -1.19% when just considering 

ozone changes over Antarctica (60°-90°S, Table 5.9). 

The “ozone hole”, the phenomenon that arises from the unusual Antarctic 

meteorological conditions, combined with chlorine from CFCs and other ODSs, 

is most prominent during the Antarctic spring. The polar winter leads to a build-

up of chlorine reservoir species, such as ClONO2 and HCl [e.g. Lowe and 

MacKenzie, 2008]. These can react inside and on polar stratospheric clouds 

(PSCs) to form more labile compounds, including HOCl, and Cl2. When the sun 

returns in spring, these chlorinated compounds can be readily photolysed, 

releasing large amounts of Cl rapidly, leading to a dramatic decrease in ozone. 

Figure 5.7(b) calculates the difference in ozone concentrations due to Cl-VSLS 

during October of 2017, the peak month of the ozone hole [e.g. Orce and 

Helbling, 1997]. The ozone difference over the Antarctic lower stratosphere 

reaches a maximum of about -18% (and an average of -3.16% at 50 hPa, see 

Table 5.9), although the ozone loss over the Arctic lower stratosphere is 

unsurprisingly far smaller in this month. 
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Figure 5.7. Latitude-height ozone difference (%) between SLIMCAT model runs with 

Cl-VSLS and without. (a) Annual average difference for the final year of the study, 2017; 

(b) difference during October 2017, the peak month of Antarctic ozone loss. 

 

In addition to purely investigating the final year of the study, we can observe 

how O3 concentrations have changed as a result of the changing Cl-VSLS 

emissions from 2007-2017. Table 5.9 calculates changes in ozone over various 

different regions, including the lower stratosphere (50 hPa) [e.g. Eyring et al., 

2010], the lower stratosphere just over the Antarctic (60°-90°S), both annually 

and in October, and the upper stratosphere (5 hPa). As Cl-VSLS are particularly 

reactive compared to most chlorinated ODS, they decompose relatively rapidly 

in the lower stratosphere. However, upper stratosphere ozone loss due to Cl-

VSLS is not negligible, and ozone decreases at a rate of -0.009 % yr-1 at 5 hPa. 

Throughout the 11 years of the study, ozone loss due to the difference between 

the two Cl-VSLS scenarios increases with year, as expected from one of the 

scenarios continually increasing its chlorine injection into the stratosphere. 

However, the loss is not linear, for example 2008 lower stratosphere ozone loss 

is greater than in 2010, despite the inverse being true with regards to chlorine 
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injection from Cl-VSLS in Table 5.6. Therefore, other factors must also act to 

modulate the relative magnitude of Cl-VSLS-induced ozone change, such as 

interannual variability in stratospheric meteorology.  

In the lower stratosphere, Antarctica is more affected by yearly changes in Cl-

VSLS. Over 2007-2017, between the two Cl-VSLS scenarios, the global lower 

stratosphere percentage ozone change decreases at a rate of -0.009 % yr-1, 

whilst just considering the Antarctic, the trend is -0.022 % yr-1, implying that Cl-

VSLS further enhances Antarctic ozone loss. This could be due to the role that 

chlorine plays in Antarctic stratospheric chemistry, including a coupling system 

with bromine [Danilin et al., 1996], and removing chlorine affects this system 

non-lineally. Figure 5.8 illustrates the difference in Antarctic lower stratospheric 

ozone between the two SLIMCAT scenarios through time. Slices of the 

difference in Antarctic ozone at 50 hPa were taken in October over four years 

between 2007 and 2017. Here, it can be seen that Antarctic ozone depletion 

due to Cl-VSLS is fairly similarly structured from year to year, and increases 

over the four chosen years, reaching a maximum in 2017. This is due to the 

increasing stratospheric chlorine from Cl-VSLS over the study period. 

Figure 5.8 also shows a similar representation for the Arctic Spring, using the 

ozone difference due to Cl-VSLS in March over the same four years. Arctic 

ozone loss is more subject to interannual variation than in the Antarctic. This is 

due to the more variable state of the Arctic polar vortex [Langematz et al., 2018]. 

For example, the relatively large ozone decrease in 2011 coincides with an 

anomalously strong Arctic polar vortex, leading to exceedingly cold 

temperatures, and therefore a larger number of polar stratospheric clouds to 

facilitate ozone depletion [Manney et al., 2011]. Also, the position of the Arctic 

ozone hole varies significantly amongst the years. In 2007 the majority of the 

depletion resides directly over the pole, however in the subsequent years of the 

Figure, the centre lies more towards Siberia, a latitude shift of 10-15°.  
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Figure 5.8. Polar spring ozone changes (%) between the two SLIMCAT VSLS scenarios, 

over the lower stratosphere (50 hPa) for four different years. March and October are 

the months chosen for Arctic and Antarctic springs, respectively.  

 

Comparing model runs with and without Cl-VSLS is important in quantifying the 

extent of ozone depletion caused by Cl-VSLS. However, it is equally important 

to check if including Cl-VSLS chemistry leads to better agreement to 

observations. Ozone satellite data from ACE-FTS (Atmospheric Chemistry 

Experiment Fourier Transform Spectrometer) [Bernath et al., 2005; Hegglin et al., 

2008] has been used to compare with SLIMCAT model output on previous 

occasions [Griffin et al., 2019; Singleton et al., 2007]. Figure 5.9 compares the 

two SLIMCAT model outputs with ACE-FTS observations over three locations: 

the Arctic, in March; the Antarctic, in October; and the tropics, annually 

averaged. All three comparisons were performed over 2007-2017. 

Unfortunately, the ACE-FTS instrument does not observe ozone polewards of 

70° latitude at all times [Bernath et al., 2005]. As a large proportion of the 

depletion of ozone caused by Cl-VSLS occurs over the poles, these 

comparisons are not able to take all of this impact into account. Both the 

available observations and model outputs are in fairly good agreement in 
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Figure 5.9, when taking into account the large uncertainty ranges. However, it 

is very difficult to distinguish between the two model outputs, due to the small 

percentage differences highlighted in Table 5.9, even in the Antarctic lower 

stratosphere. Generally, Figure 5.9 suggests that the model outputs 

overestimate the observations towards the lower stratosphere. Because of this 

overestimation, including VSLS into SLIMCAT slightly increases the model 

performance, owing to the decreases in ozone caused by including VSLS 

shown in Figure 5.7. Conversely, in the upper stratosphere, the model outputs 

tend to underestimate the observations.  

 

 

Figure 5.9. Ozone/height profiles comparing SLIMCAT model outputs with and without 

Cl-VSLS with ACE-FTS observations in: (a) the Arctic (60-70°N), in March; (b) the 

Antarctic (60-70°S), in October; (c) and the tropics (30°N - 30°S), over a whole year, all 

averaged over 2007-2017. In (a) and (b) the error bars represent ±2 standard 

deviations for each dataset. In (c) the error bars represent ±1 std. dev. 
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Table 5.9. Differences in ozone between a model run with Cl-VSLS included and one 

with Cl-VSLS excluded, expressed as (a) global zonal mean % change through the LS 

(lower stratosphere, 50 hPa), (b) mean % change over the Antarctic (60°S-90°S) LS, (c) 

mean % change over the Antarctic LS in October (d) global zonal mean % ozone change 

through the US (upper stratosphere, 5 hPa), (e) global mean column change (DU), (f) 

mean column change over the Antarctic (60°S-90°S, DU), and (g) global mean % column 

change.  

Year 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 

(a): %O3 

change, 

LS 

-0.45 -0.49 -0.44 -0.43 -0.47 -0.48 -0.48 -0.51 -0.51 -0.55 -0.56 

(b): %O3 

change, 

Ant. LS 

-0.89 -1.01 -0.89 -0.95 -1.10 -0.93 -1.04 -1.02 -1.19 -1.06 -1.19 

(c): %O3 

change, 

Ant. LS 

Oct 

-1.30 -2.37 -1.27 -2.63 -3.73 -1.85 -2.53 -2.17 -5.17 -2.44 -3.16 

(d): %O3 

change, 

US 

-0.32 -0.31 -0.32 -0.34 -0.33 -0.35 -0.36 -0.36 -0.38 -0.40 -0.40 

(e): O3 

column, 

global 

(DU) 

-0.98 -1.01 -0.96 -0.98 -1.02 -1.05 -1.05 -1.13 -1.14 -1.22 -1.23 

(f): O3 

column, 

Ant. (DU) 

-2.20 -2.35 -2.27 -2.45 -2.54 -2.75 -2.98 -2.91 -2.96 -3.03 -3.44 

(g): %O3 

column, 

global 

-0.33 -0.35 -0.33 -0.33 -0.35 -0.36 -0.36 -0.38 -0.39 -0.42 -0.41 

 

5.4.3.2 Column Ozone Changes 

A useful concept for studying ozone changes is column ozone. This is a 

measure of how much ozone is situated over a unit area and is reported in 

Dobson Units, where 1 DU is 0.01 mm of ozone if the vertical column of ozone 

was brought down to surface temperature and pressure. Natural levels of 

column ozone are approximately 300 DU; however, over the Antarctic during 
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spring, can fall down to <200 DU [Langematz et al., 2018]. Figure 5.10(a) 

depicts the modelled change in the geographical distribution of column ozone 

due to Cl-VSLS in 2017. Figure 5.10(b) shows the change in October 2017, the 

peak of Antarctic spring ozone loss. The column ozone changes in Figure 

5.10(a) are fairly uniform zonally, and the three main areas of the two polar 

regions and the tropics can be identified. There is little annual mean tropical 

column ozone change due to Cl-VSLS, a relatively large Antarctic decrease 

(averaging -3.4 DU, minimum -3.9 DU), and smaller Arctic decreases (reaching 

-2.1 DU). Similarly, in Figure 5.10(b), this Antarctic decrease is deepened (to a 

minimum of -6.9 DU) when just considering October, and the Arctic decrease is 

lessened (to a minimum -1.2 DU). In March, Arctic column ozone differences 

deepen to -5.0 DU. Globally the difference in mean column ozone between the 

two scenarios is -1.23 DU in 2017, or -0.41% of global total column ozone. 

 

 

Figure 5.10. Column ozone difference (DU) between SLIMCAT model runs with Cl-

VSLS and without, expressed as (a) an annual average for 2017 and (b) an October 

2017 average. 
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The time series of column ozone change due to Cl-VSLS can also be studied 

(Figure 5.11). With increasing Cl-VSLS, it is likely that the southern hemisphere 

decrease will become larger year upon year, as should be the case globally. 

Table 5.9 calculates the column ozone change between the two model 

scenarios globally, and over the Antarctic (60°S to 90°S), for each year of study. 

Column ozone change due to Cl-VSLS decreases at a rate of roughly -0.03 DU 

yr-1 globally, and at a rate of -0.10 DU yr-1 over the Antarctic. The 2018 WMO 

Ozone Assessment Report have assessed Antarctic ozone recovery to be 

occurring at a rate of about 0.5-1.0 DU yr-1, between 2000 and 2020 [Langematz 

et al., 2018]. The -0.10 DU yr-1 decrease due to Cl-VSLS therefore represents 

a small, but not insignificant, counteraction against this recovery. 

 

 

Figure 5.11. Modelled zonally averaged column ozone change (DU) between the two 

Cl-VSLS scenarios as a function of latitude.  
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Figure 5.11 plots a time series of monthly column ozone change due to Cl-

VSLS as a function of latitude, which allows for the depiction of the seasonal 

cycle of ozone depletion. The sheer decreases in ozone during Antarctic (and 

Arctic) spring are fully evident here. However, the fairly small rate of change of 

the difference in global column ozone between the two Cl-VSLS scenarios, of -

0.03 DU yr-1 over the 11 years, shows how difficult it is to note significant 

decreases from year to year, and even the -0.10 DU yr-1 trend over Antarctica 

is only a tiny fraction (1-1.5%) of the maximum extent of column ozone loss 

(which varies from -7.0 to -9.9 DU over the 11 years). Over the Arctic, the 

interannual variation seen in Figure 5.8 is far more striking, with the 2011 Arctic 

ozone hole event noticeably standing out, and approaching levels of Antarctic 

ozone depletion [e.g. Manney et al., 2011].  

 

5.5 Conclusions 

Overall, we have quantified the impacts of transient Cl-VSLS emissions on 

stratospheric ozone from utilisation of a chemistry transport model, which 

required a new estimation of global emissions of CHCl3 from 2006-2017. Our 

main findings are the following:  

• A fully empirical estimate of global gridded CHCl3 emissions, based on 

literature values and industrial estimates was developed. When used in 

the TOMCAT CTM, the emission field provides fairly good agreement 

with observational data, particularly at NH sites and when comparing with 

aircraft mission data. Global emissions of CHCl3 are estimated as 355 ± 

120 Gg yr-1 in 2006, rising to 416 ± 120 Gg yr-1 in 2017, with the source 

of this increase pertaining to increases in East Asian emissions. Natural 

sources, from oceans and soil, comprise 73-86% of total emissions, and 

there is a strong natural seasonality of emissions. Further work in refining 

recent industrial emission trends may help with the model 

underestimation of CHCl3 compared with observations at Asian sites. 

 

• Using these CHCl3 emissions, in combination with literature estimates of 

global CH2Cl2 and C2Cl4 emissions [Claxton et al., 2020], the TOMCAT 
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CTM was used to track Cl-VSLS source gases and key product gases 

(phosgene and Cly) and to determine the amount of chlorine that enters 

the stratosphere. We estimate that total stratospheric chlorine from Cl-

VSLS (CH2Cl2, CHCl3 and C2Cl4) increased from 92.3 ± 8.0 ppt Cl in 

2006 to 132.1 ± 8.9 ppt Cl in 2017. These values are within the estimated 

range from the most recent WMO Scientific Assessment of Ozone 

Depletion, of 89.9-141.1 ppt Cl in 2016 from the same three Cl-VSLS. 

We estimate that product gas injection contributes 26.6% of the total 

chlorine injection, with source gases accounting for the remaining 73.4%. 

Of the total chlorine source gas injection, CH2Cl2 provides 70.7% of the 

total and CHCl3 provides 25.8%, in 2017. There are many other known 

Cl-VSLS, but for which accurate emission estimates are not known (e.g. 

C2H4Cl2). Hence, the true contribution of Cl-VSLS to stratospheric 

chlorine is likely larger than modelled here. 

 

• The SLIMCAT stratospheric model was used to quantify Cl-VSLS 

impacts on ozone, using the calculated tropopause chlorine injections 

due to CH2Cl2, CHCl3, C2Cl4, and products. Two scenarios were devised, 

one with these stratospheric chlorine injections, and one without any Cl-

VSLS sources. Global annual mean lower stratosphere ozone loss due 

to Cl-VSLS was found to be -0.56% in 2017, reaching -1.19% over the 

Antarctic (60°-90°S). For October, the peak month of lower stratosphere 

Antarctic ozone loss, the percentage loss of ozone in 2017 extended to 

-18% at its maximum, just from this consideration of Cl-VSLS. Ozone 

column data provided a more absolute change throughout the 

atmosphere, with the inclusion of Cl-VSLS leading to a loss of global 

ozone column of -1.23 DU in 2017, and -3.44 DU over Antarctica in the 

same year. The transient nature of ozone loss was also studied, with the 

difference in global column ozone between the two Cl-VSLS scenarios 

decreasing at a rate of -0.03 DU yr-1.  

In conclusion, rising Cl-VSLS emissions since the mid-2000s have caused a 

steady increase in the injection of chlorine into the stratosphere, and in turn 

have contributed to a decrease in lower stratospheric ozone, predominantly 
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over Antarctica. These ozone losses act against the ozone recovery predicted 

as a result of the Montreal Protocol prohibiting long-lived ozone depleting 

substances, and therefore it is paramount that more investigation of Cl-VSLS 

(e.g. identifying new compounds) and their impacts is performed. In particular, 

results from other models should be used to supplement this single model 

study.  
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Chapter 6 

Conclusions and outlook 

This thesis has generated novel information about emissions of Chlorinated 

Very Short-Lived Substances (Cl-VSLS) and their impacts on stratospheric 

ozone. Chapter 2 presented an overview of the dynamical and chemical 

processes that govern ozone production and loss in the atmosphere, with 

particular focus on chlorine chemistry. This chapter detailed the changing state 

of stratospheric composition as a consequence of ozone depleting substances 

(ODSs), and introduced the role that Cl-VSLS perform in atmospheric 

composition, and in stratospheric ozone destruction. Existing knowledge of Cl-

VSLS emissions, uses, and abundances are described, their specific chemistry 

in the troposphere, and potential impacts in the stratosphere. 

Chapter 3 presented an analysis of the Ozone Depletion Potential (ODP) of four 

major Cl-VSLS: Dichloromethane (CH2Cl2), chloroform (CHCl3), 

perchloroethylene (C2Cl4), and ethylene dichloride (C2H4Cl2). These four 

compounds are among the most abundant Cl-VSLS in the troposphere, yet for 

two of them, CH2Cl2 and C2H4Cl2, there had been no accurate estimation of 

their ODPs. The ODPs of the Cl-VSLS were calculated using the 

TOMCAT/SLIMCAT 3-D chemical transport model (CTM). Briefly the TOMCAT 

model configuration was used to calculate the steady state stratospheric 

injection of each Cl-VSLS and CFC-11 due to a unit emission (in Tg yr-1) of each 

from different geographical regions. These injections were then used in the 

SLIMCAT model configuration to investigate their impact on ozone (as per the 

ODP definition, see Chapter 3).  

Chapter 3 derived ODPs on a regional and seasonal basis, considering five of 

the most significant industrial emitting regions. It was discovered that there was 

very little seasonal variability, and the ODPs instead greatly depended on the 

geographical region of emission. Emissions from Tropical Asia were found to 

lead to the largest ODP, due to its prime location to deep convective systems 

over the Maritime Continent and West Pacific. Here ODPs were between 40% 

and 250% greater than from other world regions, depending on the specific Cl-
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VSLS. Emissions from Temperate Asia, the region thought to be central to 

increasing anthropogenic emissions of Cl-VSLS, led to a higher than average 

ODP. The ODP of CHCl3 ranged from 0.0143-0.0264, which is approaching the 

ODP of some substances already proscribed by the Montreal Protocol, e.g. 

HCFC-22. The ODP of CH2Cl2 is 0.0097-0.0208, for C2Cl4 it is 0.0057-0.0198, 

and for C2H4Cl2 it is 0.0029-0.0119. This novel ODP information should prove 

useful to scientists and policymakers looking to assess the significance of 

growing Cl-VSLS emissions in future years. 

Chapter 4 investigated the emissions of two of the main Cl-VSLS: CH2Cl2, and 

C2Cl4. Previous emissions of Cl-VSLS have been poorly quantified, and with 

rising atmospheric CH2Cl2 concentrations, it is important to determine the 

region(s) driving this trend. For this chapter, this was performed by a technique 

called ‘synthesis inversion’. The technique is used to optimise a gridded set of 

surface emissions by assimilating atmospheric observations, in conjunction with 

output from a global 3-D CTM that uses a prior emission estimate. This prior 

estimate was amalgamated from available industry estimates and literature 

calculations from the 1990s. The observations assimilated were from the NOAA 

and AGAGE surface monitoring networks, and TOMCAT was used to generate 

the concentration model output. The synthesis inversion was performed over a 

12-year period from 2006-2017 to investigate how emissions have changed 

over time, in addition to any regional variability. 

The inversion results show that global total CH2Cl2 emissions increased over 

the 12 years, from 637 ± 36 Gg yr-1 in 2006 to 1171 ± 45 Gg yr-1 in 2017. This 

was due to emission increases over Asia, which have changed from 431.3 ± 

32.2 to 1044.9 ± 40.4 Gr yr-1. Corollary, there were slight decreases in 

emissions over Europe and North America, two historically key CH2Cl2 

producing regions whose productions have declined due to market shifts and 

health concerns over CH2Cl2 use. C2Cl4 emissions had been under steady 

decline for decades, and this chapter details that between 2007 and 2017, 

global emissions decreased from 140.8 ± 13.8 to 106.1 ± 12.0 Gg yr-1, primarily 

due to decreases in Europe and North America; however, Asian emissions have 

remained relatively constant.  
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Calculated global emissions of both Cl-VSLS were compared to estimates 

reported in the 2018 WMO/UNEP Scientific Assessment of Ozone Depletion 

Report using a simpler 12-box model. These inversion results were found to lie 

within the uncertainty ranges. The posterior emissions were evaluated within 

TOMCAT by comparing model output with observations, in order to determine 

the success of the inversion process. As expected, the observations that were 

assimilated were captured well by the posterior model output, and additionally, 

the model output performed almost equally as well against independent 

observations that were ‘held back’ for verification. The results also included a 

test for the veracity of CH2Cl2 ocean sources, where it was concluded that there 

is no evidence for or against ocean emission fluxes existing as a significant 

source of CH2Cl2. Furthermore, an additional test scenario was developed to 

investigate the impact of adding a competing C2Cl4 loss reaction, with Cl. The 

base inversion does not include it, as tropospheric Cl concentrations are 

uncertain; however, this scenario calculated a 50% increase in C2Cl4 emissions 

as a result, and marginally improved performance when comparing to 

observations. 

Chapter 5 built on the previous chapter and considered the impact that changing 

Cl-VSLS emissions have had on stratospheric injection of chlorine. First, a 

simple 12-year amalgamation of CHCl3 emissions was derived from literature 

estimates of natural sources and Asian emissions, and industry estimates for 

other key CHCl3 producing regions. The total derived global CHCl3 emission 

rate was 354.8 ± 120 Gg yr-1 in 2006 and 416.1 ± 120 Gg yr-1 in 2017. These 

emissions were gridded and implemented in the TOMCAT CTM for evaluation, 

and found to perform reasonably well at reproducing available global AGAGE 

observations. Despite not being calculated by an inverse modelling process, the 

CHCl3 emissions performed equally as well as for CH2Cl2 and C2Cl4 in the 

preceding chapter.  

In Chapter 5 the TOMCAT/SLIMCAT modelling framework from Chapter 3 was 

then used to calculate the time-varying injections of Cl-VSLS and their products 

into the stratosphere, and the resulting ozone changes, from 2007 to 2017. The 

total stratospheric chlorine injection due to Cl-VSLS and their products was 

found to have increased at a rate of 4.2 ppt Cl yr-1 over the study period, totalling 
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132.1 ± 8.9 ppt Cl in 2017. For comparison, the 2018 WMO/UNEP Ozone 

Assessment Report estimated total stratospheric chlorine from Cl-VSLS to be 

89.9-141.1 ppt Cl. The SLIMCAT model was used to calculate the ozone 

change resulting from the above Cl injections; i.e. comparing a scenario with 

Cl-VSLS and one with no Cl-VSLS. Between the two cases, lower stratosphere 

ozone changed by -0.56% in 2017 due to Cl-VSLS alone, expressed as a global 

annual mean. Over Antarctica, where the seasonal ozone hole forms, this 

ozone difference reached -1.19%, also as an annual mean, though a larger 

October change was found (-3.2% on average, but up to a -18% minimum). This 

chapter also calculated a difference in global mean column ozone of -1.23 DU 

when comparing the two scenarios in 2017, decreasing at a rate of -0.03 DU yr-

1 between 2007 and 2017.  

Overall, in this thesis I quantified ODP values for several influential Cl-VSLS, 

some for the first time, and showed that there is significant variation in ODP due 

to region of emission. I demonstrated that global emissions of CH2Cl2 have 

increased rapidly, mostly due to Asian emissions, the most important region for 

ozone depletion potential. The emission fields produced in this work have been 

successfully evaluated using a range of observations and found to accurately 

capture observational trends, in addition to being verified to current literature 

estimates. My gridded emissions represent the most up-to-date best estimate 

of Cl-VSLS emissions and should prove useful to other modelling groups. 

Finally, I have demonstrated the atmospheric impact that these uncontrolled Cl-

VSLS have had on ozone to date, using the emission estimates that I had 

calculated. My results show that Cl-VSLS have had a significant impact on 

stratospheric ozone loss. 

 

Considerations for further research 

Uncontrolled emissions of Cl-VSLS are one of the main policy-relevant issues 

in stratospheric ozone research at present. As the atmospheric abundance of 

key controlled ozone depleting compounds (e.g. CFCs) declines – due to the 

success of the Montreal Protocol – substances that were once considered 

unimportant become increasingly prominent as their relative importance rises. 
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However, due to Cl-VSLS research only being explored in recent decades, 

atmospheric observations and information on emissions are limited and subject 

to uncertainty. Ethylene dichloride (C2H4Cl2) and trichloroethylene (C2HCl3) are 

two Cl-VSLS often included in WMO Ozone Assessments, but with very limited 

emissions information and measurement data, investigations into global 

emissions and their impacts are not easily achievable.  

There is also a large sector of compounds that we know even less about. 

Several very short-lived chlorocarbon compounds have been found to exist in 

high levels (approaching ppb levels of concentration) in urban locations, for 

example 1,2-dichloropropane and vinyl chloride. As well as the importance of 

studying urban environments on a human health basis, these large abundances 

of “minor” Cl-VSLS may have wider impacts on tropospheric (and potentially 

stratospheric) composition. These include the altering of the chlorine budget of 

the troposphere. The release of more Cl radicals allows for additional oxidative 

capacity, with consequences towards surface ozone production and air 

pollution.  

Outside of Cl-VSLS, there are several other challenges towards ozone recovery 

that must be considered as part of a greater picture. Sulphate geoengineering 

strategies, in which sulphate aerosol precursor compounds such as SO2 and 

H2S are hypothetically injected into the stratosphere in order to increase 

scattering of solar radiation, have dangerous potential consequences towards 

stratospheric ozone chemistry. Aerosols are key sites for heterogeneous 

chemistry, particularly regarding polar ozone depletion, and any implemented 

schemes are likely to exacerbate depletion. Other threats to stratospheric ozone 

include increasing anthropogenic sources of N2O, the main source of 

stratospheric NOx, and rogue emissions of CFCs. These both will act to 

decrease the expected recovery rate of stratospheric ozone. 

Despite their considerable contribution to total Cl-VSLS emissions, there is a 

general lack of understanding of natural emissions, and there are inadequate 

measurement campaigns and data to get to the bottom of the issue. Until these 

problems are fixed, emission inventories will always be uncertain in this regard. 

Another source of uncertainty has come from the distribution of industrial Cl-
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VSLS emissions. Generally, it has been assumed that distributions of CH2Cl2 

and C2Cl4 emissions are identical, which although is unlikely to be the case, we 

have no data to suggest otherwise. Another problem arises from distributions 

changing rapidly with time, particularly within East Asia. The ability to create 

accurate Cl-VSLS emissions maps at a high spatial and temporal resolution 

would greatly assist any future Cl-VSLS-focused impact studies, both locally 

and globally.  

Observational data has been vital for testing the validity of the results from the 

synthesis inversion process. Despite fairly good global coverage from the 

NOAA and AGAGE networks, there were problems with some of the regions 

lacking any observational data. Although these regions were not thought to be 

significant sources of Cl-VSLS emissions (e.g. Africa, Siberia and South 

America), the synthesis inversion process would have a tendency of shifting 

emissions towards or away from these regions that have little constraint. 

Unfortunately, observations from aircraft campaigns are very short-term, not 

spatially fixed, and are therefore difficult to successfully assimilate in a synthesis 

inversion. A first step would be to support measurements of Cl-VSLS in poorly 

sampled regions (e.g. developing countries in Africa and Latin America). 

Nonetheless, the development of Cl-VSLS emissions allows us to further 

constrain their atmospheric impacts. As more and more short- and long-term 

observational studies are undertaken, our understanding of Cl-VSLS can only 

grow. New observations can be implemented in the synthesis inversion process 

when available, and this will extend the yearly record of emission estimates. 

Additional short-term observations, particularly from aircraft campaigns, can 

supplement the results from the extended inversion. For Cl-VSLS such as 

CHCl3, it may be possible that in the future enough observations exist such that 

a synthesis inversion process can effectively estimate regional emissions.  

Higher resolution models would also greatly assist any impact studies of 

tropospheric Cl-VSLS. Improvements in horizontal resolution would allow for a 

more accurate treatment of sub-grid scale transport processes, including 

convection. Additionally, improvements in vertical resolution can lead to better 

description of boundary layer and processes occurring in the climate-relevant 
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near-tropopause region. High resolution regional models can be set up using 

boundary conditions from a global concentration output e.g. what I generated in 

Chapter 5. Regional models are far more able to determine local sources of 

emission, as well as any potential impacts Cl-VSLS have on human activity, 

particularly in urban environments. Consequently, it would be of significant 

policy interest to research how the composition of the troposphere and urban 

environments varies with Cl-VSLS emissions. Overall, the work of this thesis 

already has important policy implications towards stratospheric considerations 

of Cl-VSLS, and can be used in tandem with the breadth of ongoing research 

on this ever-expanding discipline. 
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