Iron-rich air pollution nanoparticles:An unrecognised environmental risk factor for myocardial mitochondrial dysfunction and cardiac oxidative stress

Maher, B.A. and González-Maciel, A. and Reynoso-Robles, R. and Torres-Jardón, R. and Calderón-Garcidueñas, L. (2020) Iron-rich air pollution nanoparticles:An unrecognised environmental risk factor for myocardial mitochondrial dysfunction and cardiac oxidative stress. Environmental Research, 188. ISSN 0013-9351

Full text not available from this repository.

Abstract

Exposure to particulate air pollution is a major environmental risk factor for cardiovascular mortality and morbidity, on a global scale. Both acute and chronic cardiovascular impacts have so far been attributed to particulate-mediated oxidative stress in the lung and/or via 'secondary' pathways, including endothelial dysfunction, and inflammation. However, increasing evidence indicates the translocation of inhaled nanoparticles to major organs via the circulation. It is essential to identify the composition and intracellular targets of such particles, since these are likely to determine their toxicity and consequent health impacts. Of potential major concern is the abundant presence of iron-rich air pollution nanoparticles, emitted from a range of industry and traffic-related sources. Bioreactive iron can catalyse formation of damaging reactive oxygen species, leading to oxidative stress and cell damage or death. Here, we identify for the first time, in situ, that exogenous nanoparticles (~15-40 nm diameter) within myocardial mitochondria of young, highly-exposed subjects are dominantly iron-rich, and co-associated with other reactive metals including aluminium and titanium. These rounded, electrodense nanoparticles (up to ~ 10 x more abundant than in lower-pollution controls) are located within abnormal myocardial mitochondria (e.g. deformed cristae; ruptured membranes). Measurements of an oxidative stress marker, PrP C and an endoplasmic reticulum stress marker, GRP78, identify significant ventricular up-regulation in the highly-exposed vs lower-pollution controls. In shape/size/composition, the within-mitochondrial particles are indistinguishable from the iron-rich, combustion- and friction-derived nanoparticles prolific in roadside/urban environments, emitted from traffic/industrial sources. Incursion of myocardial mitochondria by inhaled iron-rich air pollution nanoparticles thus appears associated with mitochondrial dysfunction, and excess formation of reactive oxygen species through the iron-catalyzed Fenton reaction. Ventricular oxidative stress, as indicated by PrP C and GRP78 up-regulation, is evident even in children/young adults with minimal risk factors and no co-morbidities. These new findings indicate that myocardial iron overload resulting from inhalation of airborne, metal-rich nanoparticles is a plausible and modifiable environmental risk factor for cardiac oxidative stress and cardiovascular disease, on an international scale.

Item Type:
Journal Article
Journal or Publication Title:
Environmental Research
Uncontrolled Keywords:
/dk/atira/pure/subjectarea/asjc/2300
Subjects:
ID Code:
154052
Deposited By:
Deposited On:
21 Apr 2021 14:50
Refereed?:
Yes
Published?:
Published
Last Modified:
21 Jun 2021 02:10