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The Fermi National Accelerator Laboratory (FNAL) Muon g−2 Experiment has measured the
anomalous precession frequency aµ ≡ (gµ−2)/2 of the muon to a combined precision of 0.46 parts
per million with data collected during its first physics run in 2018. This paper documents the
measurement of the magnetic field in the muon storage ring. The magnetic field is monitored by
nuclear magnetic resonance systems and calibrated in terms of the equivalent proton spin precession
frequency in a spherical water sample at 34.7 °C. The measured field is weighted by the muon distri-
bution resulting in ω̃′p, the denominator in the ratio ωa/ω̃′p that together with known fundamental
constants yields aµ. The reported uncertainty on ω̃′p for the Run-1 data set is 114 ppb consisting of
uncertainty contributions from frequency extraction, calibration, mapping, tracking, and averaging
of 56 ppb, and contributions from fast transient fields of 99 ppb.
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I. INTRODUCTION

The Muon g − 2 collaboration reports a new mea-
surement of the positive muon magnetic anomaly aµ

= (gµ−2)/2 [1]. The result is based on the Run-1 data
set analysis, collected from March through July of 2018.
The data are divided into four subsets grouped by dif-
ferent operating parameters of the experiment. These
data subsets are analyzed separately and give consistent
results for aµ. The combined Run-1 result is

aµ(FNAL) = 116 592 040 (54)× 10−11(0.46 ppm). (1)

Three companion papers to Ref. [1] provide the details
for the key inputs to this result. Reference [2] details the
analysis of the precision determination of the anomalous
spin-precession frequency, ωa. Reference [3] provides cor-
rections to the aµ measurement that arise from effects
of the muon beam dynamics. This paper provides data
reconstruction, analysis, and systematic uncertainties of
the measurement of the magnetic field in the muon stor-
age ring.

The goal of the Fermi National Accelerator Labora-
tory (FNAL) Muon g−2 Experiment is the determination
of the muon magnetic anomaly with high precision [4].
There is great interest in this quantity because the stan-
dard model of particle physics is incomplete; this quan-
tity is sensitive to potential new physics contributions
not present in the current calculations. The previous ex-
periment at Brookhaven National Laboratory (BNL) [5]
shows a tension between the theoretical expectation and
the experimental result of about 3.7σ [6]. Since aµ is
sensitive to a wide array of potential new physics con-
tributions, both experimentalists [1] and theorists [6–26]
have worked to reduce their uncertainties. Contributions
to aµ from quantum electrodynamics (QED), electroweak
theory, and quantum chromodynamics (QCD) loops have
also been calculated to higher precision [6]. This new
result, from the Run-1 data set, differs by 3.3σ from
the standard model prediction and agrees with the BNL
E821 measurement. The combined experimental average
results in a 4.2σ discrepancy with the theoretical calcu-
lation.

A. The Muon g − 2 Experiment

In this experiment, pulses of polarized muons are in-
jected with momentum p = 3.094 GeV/c into the mag-
netic storage ring shown in Fig. 1. In the highly uni-
form vertical magnetic field of magnitude |B| ≈ 1.45 T,
the muons circulate with a mean radius of 7.112 m at
the cyclotron frequency ωc/(2π) = 6.7 MHz. Their spin-
precession frequency ωs/(2π) is the combination of their
Larmor and Thomas precession, and differs slightly from
the cyclotron frequency. The difference between these
two frequencies is the rate at which the muons’ helicity
precesses, and is called the anomalous spin-precession
frequency. For a muon in a uniform vertical magnetic
field and an ideal horizontal orbit, the experimentally
observed anomalous spin-precession frequency is

ωa = ωs − ωc = −aµ
q

mµ
B. (2)
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The measurement of both the magnitude of the anoma-
lous spin-precession frequency ωa = |ωa| and the storage
ring magnetic field B can be used to calculate aµ. Ad-
ditional terms modifying Eq. (2) originate in the experi-
ment due to the electric focusing fields that are needed for
vertical muon confinement and from muon motion that
is not entirely perpendicular to |B|. While the choice
of the momentum strongly suppresses these additional
terms, small corrections are applied when calculating aµ
[3]. Furthermore, the presence of an electric dipole mo-
ment of the muon would give rise to additional terms in
Eq. (2) [27].

FIG. 1: An image of the storage ring as prepared for
Run-1. Credit: Fermilab.

The experiment was designed to balance the statistical
and systematic uncertainties to reach its precision goal.
The measurement of ωa [2] is based on the time depen-
dence of the decay positrons above an energy threshold
measured in 24 electromagnetic calorimeters [28–30] with
gain stabilized by a laser system [31]. Two in-vacuum
straw trackers [32] provide the detailed information about
the distribution of the muons in the storage ring that de-
termines how the magnetic field is weighted and inform
the beam-dynamics corrections to aµ [3].

A central component of the experiment is the preci-
sion superconducting magnetic storage ring that gener-
ates the magnetic field. Its main elements were designed
for the BNL E821 experiment and detailed in [33]. The
temporal stability and spatial homogeneity of the mag-
netic field are essential to the experiment. Because the
muon precession frequency is proportional to the strength
of the magnetic field, we require that the average mag-
netic field experienced by the muons remain stable on the
scale of parts per million (ppm) throughout the experi-
ment. A very homogeneous field is required to minimize
the uncertainty of the magnetic field maps caused by any
nonuniformities in the muon distribution.

The magnet, operated in non-persistent mode, had a
current of ∼5170 A. Over long timescales, the magnetic

FIG. 2: A cross section of the storage ring magnet
featuring the components used to generate the highly
uniform 1.45 T magnetic field in the Run-1
configuration.

field’s stability is driven by thermal expansion and con-
traction of the magnet steel in response to temperature
changes in the experimental hall. The magnetic field is
stabilized by feedback to the magnet current supply from
a set of nuclear magnetic resonance (NMR) magnetome-
ters, described in Sec. I C, distributed around the ring.

The homogeneity of the magnetic field required shim-
ming with a suite of movable elements labeled in Fig. 2
that can fine tune the magnetic field in localized regions
during data collection periods. Precision positioning of
the 72 pole pieces (36 each upper and lower) drives the
overall field strength, while their pitch with respect to
horizontal drives the linear gradients. Additional pieces
of iron were positioned along the surfaces of the pole
pieces (edge shims and iron foil laminations), in the air
gap between the pole pieces and yoke (wedges), and the
top and bottom of the 24 yoke pieces (top hats). These
were used to fine tune the average field as a function of
azimuth and control gradients in the direction transverse
to the beam propagation. A set of coils, called surface
correction coils (SCC), are installed on the surface of the
pole pieces. The SCC consists of 100 individually pow-
ered, concentric coils on each of the upper and lower pole
surfaces. Specific current distributions were used to min-
imize the field variations across the beam aperture to
better than 1 ppm when averaged over the storage ring
azimuth, and updated periodically in response to mag-
netic field drifts. Shimming resulted in a field homogene-
ity over the storage volume of roughly 14 ppm RMS, a
threefold improvement [34] in the azimuthal variation of
the average field compared to the BNL E821 experiment
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Top down view of ring

r, (x)
φ, (z)

y

Azimuthal slice of ring

y

x, (r)

z, (φ)

θ

FIG. 3: The coordinate systems used in this paper. The
muon beam nominal orbital radius is at r = 7.112 m in
the ryφ basis, equivalent to x = 0 cm in the xyz basis.

[5].
Figure 3 shows the coordinate systems we use in this

paper. There are two primary reference frames: a top-
down view of the entire storage ring used mostly for con-
sidering azimuthally dependent effects, and a cross sec-
tion through the ring used for considering the radially
and vertically dependent effects. The coordinate y al-
ways refers to the direction of the axis of the storage ring
in both systems. The coordinate r in the top-down sys-
tem is replaced by the coordinate x in the cross-section
system. They are related by x = r − 7.112 m. The az-
imuthal angle in the top-down system is represented by
φ. In the cross-section system, it is replaced by z.

B. Measuring the Magnetic Field

Equation (2) shows that determining aµ from ωa re-
quires precise knowledge of the magnetic field magni-
tude experienced by the muons, which we measured
with pulsed proton NMR. This technique, pioneered by
Bloch [35] and Purcell [36], has been employed since the
1950s [37] across a wide range of chemical and physical
applications, routinely demonstrating accuracy and pre-
cision at the ppm and even parts per billion (ppb) scales.
The NMR devices (or magnetometers) are called probes.
A careful sequence of calibrations and synchronizations
is performed to relate the magnetic field to the Larmor
precession frequency of protons shielded in a spherical
water sample at a reference temperature T . The average
field over the muon distribution weighted by the detected
decays over time is B̃. The frequency measurements de-
termine B̃ when combined with the shielded proton mag-
netic moment µ′p(T ) via

B̃ =
~ω̃′p(T )

2µ′p(T )
=

~ω̃′p(T )

2

µe(H)

µ′p(T )

µe
µe(H)

1

µe
. (3)

Here, µe(H)/µ′p(T ) is the ratio of the magnetic mo-
ments of an electron bound in hydrogen to that of a
proton shielded in a spherical water sample, measured to
10.5 ppb at a water temperature Tr = 34.7 °C [38]. The
bound-state QED corrections that determine the mag-
netic moment ratio of the electron bound in hydrogen

versus a free electron µe(H)/µe are considered essen-
tially exact [39], and the electron magnetic moment µe
is known to 0.3 ppb [39]. Combining Eqs. (2), (3), and
µe =

ge
2

e
me

~
2 yields

aµ =
ωa

ω̃′p(Tr)

µ′p(Tr)

µe(H)

µe(H)

µe

mµ

me

ge
2
. (4)

The ratio of the mass of the muon and the mass of
the electron mµ/me is known to 22 ppb from the mea-
surement of the hyperfine splitting of muonium [40] and
bound-state QED [39]. Finally, the g factor of the elec-
tron ge is known to 0.28 ppt [41].

To determine ω̃′p(Tr), we perform a sequence of mea-
surements with proton-rich magnetometers:

1. The 17 NMR probes of the in-vacuum trolley are
calibrated in terms of the equivalent ω′p(Tr) with a
precision calibration probe containing a pure water
sample. The calibration probe’s precise measure-
ments are corrected for material effects, tempera-
ture, and field variations during the calibration to
achieve high accuracy and precision.

2. The magnetic field in the muon storage volume is
mapped using the trolley approximately every three
days. The result is called a trolley map or field map.

3. The 378 fixed NMR probes, located in 72 azimuthal
stations, are synchronized to the trolley measure-
ments. These fixed probes are located above and
below the storage volume and regularly spaced
around the ring to track the field’s evolution be-
tween trolley maps.

4. The magnetic-field maps are weighted by the tem-
poral and spatial distributions of those muons in-
cluded in the ωa measurement.

5. Corrections are applied for the presence of fast
transient fields generated by pulsed muon injection
systems that are not resolved by the asynchronous
magnetic-field tracking and not present during the
trolley measurements.

C. Hardware Systems

The precision calibration probe employed in the first
step of the measurement sequence is shown in Fig. 4. This
probe is highly symmetric and uses an ultrapure, cylin-
drical water sample. It is constructed from a combination
of paramagnetic and diamagnetic materials so that the
total correction due to its intrinsic magnetic influence is
less than 10 ppb [42]. The calibration probe’s total un-
certainty on the corrections is less than 20 ppb, corrob-
orated through cross calibrations with both a spherical
water sample [43] and 3He [44]. The calibration probe
is used to generate calibration constants for each of the
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trolley probes. It is operated inside the vacuum cham-
bers and mounted on a three-dimensional (3D) transla-
tion stage that allows it to match each trolley probe’s
position using applied magnetic-field gradients. Details
of the calibration procedure are given in Sec. IV.

FIG. 4: Schematic drawing of the calibration probe
used to calibrate the trolley probe measurements.

Figure 5 shows the design of the trolley and fixed
probes, which are based on a similar design from the
BNL E821 experiment [45]. The cylindrical sample vol-
ume in each probe is filled with petroleum jelly, chosen
for its low volatility. The trolley shell and its mechanical
hardware for the motion (rails and drums) were from the
BNL E821 experiment and the trolley electronics, po-
sition encoders, and controllers were upgraded for this
experiment as detailed in [46].

Outer crimp ring
Base piece w. 

double crimp connection

Inner crimp ringPetroleum jelly volume

End cap with tapped hole

PTFE tuning piece with slot

Serial inductor coil

Parallel inductor coil

8.
00

 m
m

100.00 mm

Inner conductor of capacitor

FIG. 5: Schematic drawing of the NMR probe for field
mapping and monitoring.

The calibrated trolley is used to produce detailed field
maps over the entire azimuth of the storage ring. The
muon storage region extends in the x and y directions
to ±4.5 cm, defined by a set of five circular collimators
placed at various azimuthal positions around the stor-
age ring. In order to determine the magnetic field in
the muon storage region, the trolley’s 17 NMR probes
are arranged in the configuration shown in Fig. 6. The
trolley is pulled by two cables along rails in the storage
ring vacuum chamber, and the field is sampled in ∼9000
azimuthal locations. The analysis of the trolley maps is
detailed in Sec. V.

The trolley system includes electronics to control the
NMR sequence and to read out the digitized free in-
duction decay (FID) signals. The initial ∼61.79 MHz
signal, corresponding to |B| ≈ 1.45 T, is mixed down
to approximately 50 kHz prior to digitization and trans-
ferred through an electronic interface to a data acquisi-
tion (DAQ) computer. A bar code scanner on the trol-
ley reads marks etched into the bottom of the storage
ring vacuum chambers that are analyzed to determine
the trolley’s azimuthal position.

1

2

3

4

5

6
7

8

9

10

11
12

13

14

15

16

17

TI TM TO

BI BM BO

30 mm 30 mm

X [mm]

Y
[m

m
]

0.0-17.5-35.0 45.030.0

-77.0

77.0

0.0

45.0

FIG. 6: The layout of the 17 probes in the trolley.
Positive x is towards higher radius. The fixed probe
locations on the top (T) and bottom (B) of the storage
region are shown as well. For the fixed probes, the
six-probe stations have probes in the inner (I), middle
(M), and outer (O) positions. In the four-probe
stations, only the middle and outer probes are present.

In order to measure the field experienced by the muons,
ideally the trolley maps would be taken under the identi-
cal conditions that exist during muon injections. In real-
ity, three main configuration changes are needed for field
mapping: i) the pulsed beam injection systems [kicker
and electrostatic quadrupole (ESQ)] are switched off, ii)
the beam collimators are moved from their regular po-
sitions because they would physically interfere with the
trolley, and iii) the garage rail is moved into the stor-
age region to insert the trolley. Dedicated measurements
and calculations were made to correct for these modified
conditions and are described in Secs. V B 5 and VIII.

The 378 fixed probes mounted above and below the
storage region to continuously track the field drift are
synchronized with the trolley measurements during each
mapping run. Because trolley runs interrupt muon data
taking, the detailed field mapping is only performed ap-
proximately every three days, driven by the fixed probes’
field tracking capability. The fixed probes provide infor-
mation about the field drift during the muon data taking
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periods between trolley maps. Four or six probes (see
Fig. 6) are installed at 72 azimuthal locations, called
stations, regularly spaced around the storage ring, al-
lowing continuous monitoring of the magnetic field at
each azimuthal station. The fixed probe FIDs are read
out through 20 multiplexers and mixed down to about
50 kHz and digitized. A computer controls the read se-
quence, including the probe selection and the recording
of the digitized waveforms. The synchronization of the
trolley measurements to the fixed probes and the subse-
quent field tracking are discussed in Sec. VI.

The magnetic field DAQ serves as an access point for
controlling individual field measurement systems. These
include fixed probes, trolley control, trolley readout, cal-
ibration probe control, power supply feedback, surface
coil settings, and environmental fluxgate sensors. These
systems are each managed by custom front ends that run
asynchronously and communicates with a common DAQ
core. The field DAQ uses standalone hardware that runs
independently from the detector DAQ, which controls the
rest of the Muon g−2 Experiment. The field DAQ collects
data whenever the magnet is powered and runs decou-
pled from the main DAQ for the calorimeters, trackers,
pulsed injection systems, and other hardware. The field
and main DAQs used a common 10 MHz time reference
disciplined by a Rb-clock and a global positioning sys-
tem, allowing measurement time stamps to be correlated
with data from the detector DAQ with high precision.

D. Magnetic Field Analysis

The data are analyzed to extract ω̃′p(Tr) as one input
for the calculation of aµ. The evaluation of the trolley
and fixed probe data is based on multipole and Carte-
sian moments described in Sec. I D 1. They form the
basis for various steps in the overall analysis, which is
outlined in Sec. I D 2. Throughout the rest of this paper,
we provide the details of these analysis steps and their
implementation. For many steps, there were two or three
parallel analysis implementations by independent teams
that cross checked each other and refined systematic un-
certainties. We highlight important analysis differences
between the independent teams in Sec. I D 3.

1. Multipole and Cartesian Moments

The NMR probes measure the magnitude of the mag-

netic field, |B| =
√
B2
x +B2

y +B2
z , and are often referred

to as “scalar magnetometers.” Due to the design of the
magnet and the shimming, the magnetic field is predom-
inantly in the y direction, i.e., Bx, Bz � By. The dif-
ference between the NMR measurement of |B| and the
field component in the y direction can be approximated

to first order as

|B| −By ≈
B2
x +B2

z

2By
. (5)

During the shimming procedure, measurements of the ra-
dial and longitudinal components, Bx and Bz, were per-
formed at ≈ 100 azimuthal locations. The azimuthally
averaged radial field was determined to be Bx/ |B| <
40 ppm during Run-1 with the applied SCC settings,
and the measurement of the average longitudinal field
was consistent with zero. Local variations in the longitu-
dinal component were typically Bz/ |B| < 100 ppm with
respect to |B|, leading to (|B| − By)/ |B| = O(10 ppb).
Therefore, it is well-justified (at our desired accuracy)
to replace |B| with By and focus on its extraction from
the data. From here forward, we will use the convention
B = |B| and make the approximation B ≈ By.

The measurements from the trolley and fixed probes
represent the field magnitudes B(x, y, φ = φk) at an az-
imuthal slice φk. We can extract the field’s spatial de-
pendence in these two-dimensional (2D) slices in terms of
moments mi of the magnetic field. For the trolley probe
geometry, the parametrization of B in a slice comes from
the general solution to the source-free Laplace equation
for the scalar potential in polar coordinates (r, θ),

B ≈ By = A0 +
∑
n=1

(
r

r0

)n
[An cos(nθ) +Bn sin(nθ)],

(6)

where, here and in Table I only, r =
√
x2 + y2 is the

in-slice radius from the center of the muon orbit and
r0 = 4.5 cm is a normalization to the outer edge of the
muon storage region. The An and Bn parameters are the
multipole strengths, also known as the normal and skew
multipoles, respectively. These names are often written
as “normal/skew (2n+2)-pole,” such as the “normal 2-
pole (normal dipole),” “skew 4-pole (skew quadrupole),”
or “normal 6-pole (normal sextupole).” The 17 trolley
measurements from a given azimuthal slice are trans-
formed into the multipole basis defined by Eq. (6).

The fixed probe geometry for both the four- and six-
probe stations (see Fig. 6) are symmetric in a Carte-
sian coordinate system and are therefore parameterized
as Cartesian field moments, which are analogous to the
multipole moments. These Cartesian moments are the x
and y derivatives of By evaluated at x = y = 0. These
moments are also normalized to r0 in analogy with the
multipole moments. The fixed probe measurements are
used to make discrete estimates of the moments by cal-
culating sums and differences of the measurements.

Table I summarizes the moments mi in terms of the
trolley multipole moments and the fixed probe Cartesian
moments. Only six (four) moments can be calculated
at a six-probe (four-probe) station as indicated in the
Cartesian moment columns. Given the discrete positions
of the fixed probes, it is possible to estimate the values of
these moments at the center of the storage region in terms
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of the multipole strengths defined in Eq. (6), implying
that the fixed probes can be used to track the lower-order
moments up to m6 in the time between the trolley maps.
In practice, we only use the fixed probes to track the
first five moments due to the high uncertainty associated
with the sixth moment and its relative unimportance in
the final result.

2. Analysis Flow

The first step in the magnetic-field analysis represented
in Fig. 7 is the extraction of FID parameters such as
the frequency, amplitude, and length from all NMR mea-
surements, described in Sec. II A. Data quality cuts are
applied on these extracted parameters to discard FID
waveforms that correspond to instrument failures or se-
vere field instabilities. A brief overview of these cuts is
given in Sec. II B.

Throughout this section and the rest of this paper, we
use the symbol δ to refer to systematic and statistical
effects. The uses of these symbols represent both correc-
tions and uncertainties from the effect in question.

In Eq. (4), ω̃′p(Tr) is the average frequency that would
be measured by a spherical water sample at the calibra-
tion reference temperature Tr = 34.7 °C in the same po-
sition as the detected muons. This shielded proton fre-
quency is related to the calibration probe frequency ωcp

through a set of corrections, denoted by δcp(Tr) that ac-
count for the probe materials, effects due to sample shape
and susceptibility, temperature, and other probe related
effects:

ω′p(Tr) = ωcp [1 + δcp(Tr)] . (7)

The determination of δcp(Tr) is the absolute calibra-
tion step in Fig. 7 and was mainly performed in a ded-
icated calibration setup including a solenoid magnet as
discussed in Sec. III.

The calibration probe is then used to calibrate the
trolley probes, detailed in Sec. IV. This step determines
the relationship between each trolley probe n and the
shielded proton frequency via a calibration constant

ω′p(Tr) = ωtr
n

(
1 + δtrn

)
. (8)

Since the moments mi are linear combinations of trolley
probe measurements ωtr

n , we can generalize to

m′p,i = mtr
i

(
1 + δtr

i

)
. (9)

Details of the trolley map analysis step are given in
Sec. V.

The fixed probe field moments mfp
i are synchronized

to the trolley field moments when the trolley passes each
fixed probe station at a specific time t = 0. A first-order
Taylor expansion of the trolley moments in terms of the

fixed probe moment yields

mtr
i (φ, t) = mtr

i (φ, 0) +
∑
j

Jij(φ)
[
mfp
j (t)−mfp

j (0)
]

+εho
i (φ, t), (10)

where the subscripts i and j indicate specific field mo-

ments. The Jacobian Jij(φ) =
∂mtr

i (φ)

∂mfp
j

relates small

changes in fixed probe moments to small changes in the
trolley moments for each station (indicated by the φ de-
pendence) and εho

i (φ, t) represents the effects of higher-
order moments that the fixed probes cannot track. Note
that εho

i (φ, 0) ≡ 0. Because εho
i (φ, t) cannot be tracked

due to the limited number of fixed probes in a station,
we model it as a random walk and include its effect only
as an uncertainty. The full procedure for synchronizing
and tracking the field with the fixed probes is discussed
in Sec. VI. We can rewrite Eq. (10) as

mtr
i (φ, t) = mtr

i (φ, 0) + εfpi (φ, t) + εho
i (φ, t), (11)

where

εfpi (φ, t) =
∑
j

Jij(φ)
[
mfp
j (t)−mfp

j (0)
]
. (12)

Assuming that the trolley calibrations (δtr
n ) do not

change over time, we can combine the fixed probe track-
ing, trolley maps, trolley calibration, and calibration
probe corrections to:

m′p,i(φ, t, Tr) =
[
mtr
i (φ, 0) + εfpi (φ, t) + εho

i (φ, t)
]

×
(
1 + δtr

i

)
, (13)

with the field moment index i. Note that in this equa-
tion, δcp(T ) is absorbed into δtr

i through Eq. (9). These
moments are then weighted by the muon distribution in
space and time and averaged over time t and azimuth φ
to determine ω̃′p(Tr), as described in Sec. VII.

3. Multiple Analysis Approaches

For several of the key analysis steps described above,
the analysis was performed by at least two independent
teams in order to provide important cross checks and
test different algorithms against each other. Compari-
son of the parallel analyses often found a high degree of
consistency. In cases where noticeable differences were
identified, a detailed comparison of the approaches al-
lowed us to develop and implement improved algorithms.
Sections II–VII present the final analysis that led to the
reported result for the measurement of ω̃′p(Tr). Here,
we highlight a few of the notable differences between the
different trolley calibration and field tracking algorithms.
The details associated with these differences will be ex-
plained in the analysis sections of the paper.
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Trolley Fixed probe stations

Moment (common name) multipole Cartesian Multipole Cartesian moment
By(r, θ) derivative By(x, y) 6-probe station 4-probe station

m1 (normal dipole) A0 By A0 A0 A0

m2 (normal quadrupole) A1
r
r0

cos(θ)
∂By

∂x
A1

1
r0
x A1

r0

A1
r0

m3 (skew quadrupole) B1
r
r0

sin(θ)
∂By

∂y
B1

1
r0
y B1

r0

B1
r0

m4 (skew sextupole) B2

(
r
r0

)2

sin(2θ)
∂2By

∂x∂y
2B2

(
1
r0

)2

xy 2B2

r20

2B2

r20

m5 (normal sextupole) A2

(
r
r0

)2

cos(2θ)
∂2By

∂x2
2A2

(
1
r0

)2

(x2 − y2) 2A2

r20
-

m6 (skew octupole) B3

(
r
r0

)3

cos(3θ)
∂3By

∂x2∂y
(Unused) (Unused)

m7 (normal octupole) A3

(
r
r0

)3

sin(3θ)
...

...
...

...

TABLE I: The first measurable moments for both the multipole and Cartesian basis. The parameters An and Bn
are the multipole strengths for the normal and skew moments, respectively, defined in Eq. (6). Here, r =

√
x2 + y2.

In this experiment r0 = 4.5 cm, a scale set by the radius of the collimated muon beam. Notice that evaluating these
moments at (0, 0) recovers the multipole strengths, creating a relationship between the Cartesian and multipole
moments.

Calibrate Trolley with
Calibration Probe: δtr

i

Absolute Cal-
ibration: δcp

Trolley Run:
mtr
i (φ, 0)

Trolley DQC Cuts Field Map: mtr
i (φ, t)

Fixed Probe
DQC Cuts

Muon Production
Run: εfpi (φ, t)

Muon-Weighted
Field Map

Muon Distribu-
tion: ki(φ, t)

ω̃′p(Tr)

Transients:
δkicker, δESQ

FIG. 7: A flow chart of the field analysis showing the calibration chain through the data processing. The muon
distribution is an input that is external to the field analysis, and is required to calculate the muon-weighted field
average. Bold items show input measurements to the analysis. Not shown is the NMR frequency extraction step
required for each of the field measurements.

Three individual analyzers performed the trolley cal-
ibration analysis (see Sec. IV) for our Run-1 data set
with the following main differences:

• One analysis used a zero-crossing counting method
for the frequency extraction of the calibration
probe, while the other two used the Hilbert trans-
form method (see Sec. II A).

• The calibration analysis in Run-1 had to correct
both the normal long-term drift of the magnetic
field due to slow changes in the magnet and a field
oscillation with an amplitude of about 20 ppb and
a period of 2 min. The three analyzers chose differ-
ent approaches for selecting and treating the fixed
probe data used to correct the calibration and trol-
ley probe measurements.

• The analysis needed to account for uncertainties as-
sociated with gradients in the magnetic field that
coupled to the error in the relative positioning of
the probes. The determination of local field gra-
dients was based on polynomial fits to local maps,
and each analyzer chose fits with different orders
and ranges.

All cross-checks showed consistency between the three
analyses at the 10-ppb level for the probe calibration off-
sets.

For synchronizing the trolley and fixed probes and the
subsequent tracking (see Sec. VI), two independent anal-
yses [47, 48] were implemented with the following major
differences:

• Three fixed probe stations located in regions with
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large field gradients exhibited significantly more
noise than typical. One analysis replaced the mea-
surements from these stations with the average of
the stations’ nearest neighbors. The other analysis
relied on long averaging times to improve resolu-
tions.

• The trolley and fixed probes were read out at 2 and
0.7 Hz respectively and were not simultaneous. One
analysis worked with these original asynchronous
times while the second interpolated both to pro-
duce a time series at 1-s intervals.

• During synchronization between the trolley and a
given fixed probe station, the fixed probe station
was tied to a local azimuthal average of trolley
measurements when the trolley was closest to that
station. One analysis used about ± 2.5° of trol-
ley measurements for each station, while the other
analysis only used ± 1° with a secondary synchro-
nization to take into account the unused parts of
the trolley maps.

• While the trolley is near a fixed probe station, its
magnetization distorts the local field measured by
that station. This “trolley footprint” window is ve-
toed in the fixed probe data when the trolley is
nearby. The analyses differed in the implementa-
tion of the veto window, the interpolation across
the missing data, and the usage of other fixed probe
stations to account for short-term field fluctuations.

A blind analysis comparison campaign focused on these
differences to understand each choice’s impact on the fi-
nal results. The treatment of the poor-resolution stations
was the dominant contribution to the difference. The two
analyses differed by maximally 30 ppb over a field track-
ing time interval of about three days and only by 1.5 ppb
after averaging over the entire tracking period.

II. DATA EXTRACTION AND PREPARATION

A. NMR Frequency Extraction

The NMR technique generates FIDs, which are the
signals measured in the probe coil due to the precess-
ing magnetization across the sample. The finite size of
the sample combined with a nonuniform magnetic field
affects the evolution of the frequency and signal ampli-
tude during the FID. Therefore, it is critical to develop
algorithms that determine the relationship between the
frequency evolution and B and to understand features
associated with the observed signal that stem from the
nonuniformities in the magnetic field. The following is a
summary of frequency extraction and its related uncer-
tainties. Further details can be found in [49].

In the first step of the data analysis, the frequency
and other characteristics including the FID length and

FIG. 8: A typical free induction decay (FID) from a
trolley probe. The zoomed inset shows the periodic
behavior that is used to measure ω(t).

amplitude are extracted from the digitized waveforms of
the calibration, fixed, and trolley probes. A typical FID
signal is shown in Fig. 8. Two algorithms were used to
analyze these signals:

• For trolley and fixed probes, the main frequency
extraction algorithm extracts the phase function
Φ(t) = tan−1(f(t)/H(f(t))) from the discrete
Hilbert transform H(f(t)) of the FID signal f(t).
To mitigate effects of a time-varying baseline, finite
FID length, and sampling period, we apply time-
and frequency-domain filters to the extraction of
Φ(t).

• For the calibration probe, an alternative extraction
of the phase function Φ(t) uses an iterative baseline
subtraction and identification of zero-crossing times
in the oscillatory FID signal, which correspond to
a phase advance of π.

The initial frequency of the NMR signal, ω(t = 0), is
related to the phase function by ω(0) = dΦ

dt (0) [50]. A
polynomial fit is used to extract ω(0), shown in Fig. 9.
The truncation order (up to fifth order) and range of
the fit (roughly 40% of the FID length1) were chosen
to optimize the combined statistical and systematic un-
certainties. While a lower truncation order and longer
fit range generally reduce the statistical uncertainty, the
non-linear terms of Φ(t) increase the systematic uncer-
tainty.

We developed the phase-template method for fixed and
trolley probes, which reduces the effect from static, non-
linear terms by subtracting an initial phase template,
Φ0(t) from each Φ(t). In the case of the trolley, only

1 The FID length is defined as the time when the envelope’s am-
plitude falls below 1/e of the initial amplitude.
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FIG. 9: The upper panel shows Φ(t) as extracted from
the Hilbert transform of the signal in Fig. 8. The blue
points in the lower panel are the difference between Φ(t)
and a linear fit Φ(t)lin to Φ(t). The black line is a
polynominal fit to these residuals, the dotted part
shows the extrapolation outside the fit range to t = 0.

static effects extracted in an optimized field are sub-
tracted by Φ0(t). The fixed probes generally observe
small frequency changes due to temporal field changes;
the non-linear terms in Φ(t) change less than the linear

term dΦ(t)
dt , measurement-to-measurement.

The systematic and statistical effects related to the
frequency extraction were extensively studied using sim-
ulated and real FIDs, real noise waveforms recorded in
the magnetic field without initiating the NMR sequence,
and waveforms recorded with the regular NMR sequence
without the main magnetic field present. The following
main uncertainties were identified:

• The systematic fit uncertainty εf is dependent on
the frequency extraction algorithm and quantifies
the difference between the fitted value and the true
ω(0). It originates from approximating the phase
function with a truncated polynomial or from arti-
facts of the applied filter.

• The intrinsic systematic uncertainty from the sim-
ulation εi is the difference between the extracted
ω(0) and the frequency ω0 corresponding to the
magnetic field at the center of the probe. This un-
certainty is driven by the probe geometry and the
magnetic-field inhomogeneity during the measure-
ment and was independent of our choice of algo-
rithm.

• The statistical uncertainty δω(0) is caused by the
noise in the FID waveform. It is determined from
the standard deviation of the fit values for several
FIDs measured in the same magnetic field.

The determination of these uncertainties was per-
formed for the calibration and trolley probes and will be

reported in Secs. IV C 1 and V B 1, respectively. For the
fixed probes, the systematic uncertainties are absorbed in
the synchronization step with the trolley, and statistical
uncertainties are negligible due to long averaging times.

B. Data Quality Control

In preparation for the determination of ω̃′p(Tr) de-
scribed in the following sections, data quality selection
was performed to only include field measurements where
the magnetic field changed slowly with respect to the
measurement period. All analyses apply common data
quality selections that fall into the following two cate-
gories:

• Event Level Effects: Data quality flags were in-
troduced at the individual FID level (see Ap-
pendix A 1) to identify intermittent measurement
failures. These flags are based on the FID parame-
ters; cut thresholds were determined based on iden-
tifying outliers from the distributions of these pa-
rameters over a short period.

• Global Effects: Several types of magnetic-field in-
stabilities were identified over the course of Run-1.
The two main causes of these instabilities were sud-
den magnet coil movements that generated abrupt
changes in the magnetic field and failures in the
fixed probe electronics crates that drove erroneous
changes in the feedback system (see Appendix A 2).
Data analysis is vetoed for ±2 min around these
easily identifiable abrupt changes. Dedicated stud-
ies showed that the field tracking outside the veto
window is uncompromised.

The FID quality cuts are applied to only the ω̃′p(Tr)
analysis and not the ωa analysis because omitting indi-
vidual FIDs has negligible effects on the field tracking and
the final determination of aµ. However, during periods
with magnetic-field instabilities the field is not reliably
tracked. Therefore, these periods must be excluded from
the ωa analysis. Additional veto windows were applied to
all analyses roughly every two hours during the 12-s-long
transitions in the DAQ, during which no field data are
recorded.

C. Run-1 Datasets

During the Run-1 data taking period, experimental
conditions were varied in each of the pulsed high volt-
age systems, the ESQ and the fast kicker. The Run-1
data are grouped into four distinct subsets according to
the ESQ and kicker high voltages as shown in Table II.
For the analysis of ωa, periods with different set points
are analyzed individually, and separate beam-dynamics
corrections are applied [3]. The magnetic-field analysis
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produces a separate result for each of these data subsets
in Sec. IX for ω̃′p(Tr).

Run-1 ESQ Kicker
data subset (kV) (kV)

Run-1a 18.3 130
Run-1b 20.4 137
Run-1c 20.4 130
Run-1d 18.3 125

TABLE II: Summary of the Run-1 data subsets. The
different voltages on the beam-injection systems impact
the ωa analysis, and the magnetic-field analysis is
grouped accordingly.

III. THE CALIBRATION PROBE

To determine aµ as written in Eq. (4), a well-
characterized NMR standard is required. For that pur-
pose, the calibration probe with a cylindrical high-purity
water sample was constructed. Its material perturbations
were characterized so that its measured Larmor frequen-
cies can be corrected to those expected of a shielded pro-
ton in a spherical water sample ω′p(Tr = 34.7 °C) with
high accuracy and precision. The local magnetic field is
then obtained using Eq. (3). The calibration of this probe
is transferred to each of the 17 trolley probes, compensat-
ing for the trolley probes’ material effects and differences
in diamagnetic shielding.

A. Systematic Effects

A set of corrections, described below, are required to
relate the NMR frequencies measured by the calibration
probe ωcp

p (T ) to ω′p(Tr) via2

ω′p(Tr) = ωcp
p (T )× [ 1 + δT (Tr − T )

+δb (H2O, T ) + δt
]
, (14)

where δT corrects for the temperature dependence of the
diamagnetic shielding of H2O between the temperature
T of the measurement and the chosen reference tempera-
ture Tr = 34.7 °C [38, 51, 52]; δb is a correction dependent
on water magnetic susceptibility and sample shape; and
δt is the sum of corrections for the probe materials and
other effects related to the probe. The probe tempera-
ture T , typically close to 26 °C, was measured to 0.5 °C

2 In principle, the corrections would be multiplicative but we use
the approximation (1 + δ1) · (1 + δ2) ≈ (1 + δ1 + δ2) because the
corrections δ1 and δ2 are O(ppm) or less and the term δ1 · δ2 is
hence negligible.

with a PT-1000 sensor installed in the probe near the
sample.

The correction δt consists of several contributions:

δt = δs + δp + δRD + δd. (15)

Here, δs denotes the correction for effects due to the
probe materials, the probe’s angular orientation about
its long axis, the pitch angle relative to the field axis,
and the magnetic images it induces in the surround-
ing magnet’s iron. We split this term into two parts
δs = δs, intr + δs, config. Here, δs, intr corrects for the
effects that are intrinsic to the probe and δs, config cor-
rects for the specific probe configuration when used in the
experiment at Fermilab. The correction δp is due to the
water sample and the water sample holder and δRD is the
contribution from radiation damping [53], an effect where
the NMR-induced signal in the radio frequency (RF) coil
affects the proton spin precession. Finally, δd is the pro-
ton dipolar field perturbation [54].

1. Intrinsic Effects: δb (H2O) , δs, intr, δp, δRD, δd

Intrinsic systematic effects in the calibration probe are
terms that affect the probe’s measured frequency inde-
pendent of its environment. These corrections and un-
certainties were measured at Argonne National Labo-
ratory (ANL) in a dedicated magnetic resonance imag-
ing (MRI) solenoid and include the bulk magnetization
and several of the material perturbations.

A correction due to the bulk magnetic susceptibility δb

is required because the calibration probe uses a cylindri-
cal water sample perpendicular to the field, not a spher-
ical sample. The magnetization of the water molecules
in one location of the sample perturbs the field at other
locations, and the magnitude depends on the shape and
volume susceptibility of the NMR sample. In SI units:

δb (H2O, T ) =

(
ε− 1

3

)
χ (H2O, T ) , (16)

where ε is the shape factor of the sample. For a sphere
ε = 1/3 so the field perturbation from this effect would
vanish, whereas ε = 1/2 for an infinite cylinder perpen-
dicular to the field [55–57].

The recommended value for the volume magnetic sus-
ceptibility of water χ (H2O, T = 20 °C) = −9.032× 10−6

was measured at temperature of T = 20 °C [58]. A com-
parison with an additional measurement taken at an un-
known temperature, χ (H2O) = −9.060(3)× 10−6 [59] is
used to estimate an uncertainty of 3 × 10−8. The mea-
sured, small, temperature dependence of the magnetic
susceptibility [60] is used to determine the magnetic sus-
ceptibility of water at an experimental measurement tem-
perature T .

The intrinsic probe correction δs, intr was measured in
the MRI magnet by removing the 5-mm-diameter cylin-
drical water sample and measuring the field shift caused
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by the remaining calibration probe materials, when a test
probe was inserted inside the calibration probe. The de-
pendence on the probe’s roll and pitch3 was measured.

For the estimation of δp, ASTM type-1 water from
different vendors was utilized, and degassed and non-
degassed water samples were examined. A variety of
additional tests were performed in which the glass wa-
ter sample tube was rotated, and different sample tubes
were used. No systematic shifts were observed within
an uncertainty of 2 ppb. The δRD term was estimated
by varying the magnetization tip angle and detuning the
probe’s resonant circuit. No relevant effects larger than
3 ppb were observed, consistent with expectations [53].
The value for δd is based on estimates for the specific
probe geometry described in Sec. I B, and the effect is
estimated to be less than 2.5 ppb [54].

The results for all of the terms described in this section
are shown in Table III and δs is evaluated for the config-
uration used at FNAL as described in the next section.

2. Configuration Effects: δs, config

The configuration specific δs, config accounts for four
additional corrections, which arise when the calibration
probe is used in the storage ring magnet at FNAL. First,
new materials were added to support the probe whose
field perturbation must be determined: an aluminum
holder clamped around the probe, a long aluminum rod
used to move the probe into the measurement region, and
a new SMA connector and cable. The perturbations of
the aluminum holder, SMA connector, and cable were
measured in the MRI solenoid, and were consistent with
expectations based on the volumes, distances from the
NMR sample, and magnetic susceptibilities of the mate-
rials.

Second, when inserted between the iron magnet poles,
magnetic images of the magnetized components of the
probe perturb the field at the water sample. The image
effects were measured in the MRI solenoid by observing
the field perturbation from the calibration probe on a
test probe located one image distance (18 cm) away, and
were consistent with calculations. The total correction
δs including the probe, holder, and rod and their images
was also measured directly in the storage volume, and
was consistent with the measurements performed with
the ANL solenoid. The effect of the rod could not be
verified in the solenoid, but the measurement result in the
storage ring magnet was consistent with expectations.

Third, when installed on the long rod, the long axis
of the probe is not exactly perpendicular to the field so
its pitch angle is nonzero. The probe angle with respect
to the vertical field was measured using a camera and

3 The roll is the angle of the rotation around the probe’s long axis
and the pitch is the long axis’ angle with respect to horizontal.

plate with fiducial markings, and found to be offset by
0.7°. The material effects for a probe pitched at 2.5°
were measured at ANL and scaled linearly, yielding a
difference of 4(4) ppb with respect to a probe aligned with
the field.

The fourth correction arises because the material per-
turbation measurements involve the probe displacing air,
which is paramagnetic due to the molecular oxygen,
whereas the probe displaces vacuum when used during
the calibration procedure. This vacuum shift is effec-
tively the magnetic perturbation due to a volume of air
in the shape of the probe, estimated as −2(2) ppb.

3. Correcting the Measurement to the Shielded Proton
Frequency: δT (Tr − T )

To extract the shielded-proton precession frequency
from calibration probe measurements, we solve Eq. (14),
applying all corrections. With δT (Tr − T ) =
−10.36(30) ppb/°C×(Tr−T ) and calibration probe tem-
peratures of around 26 °C, the typical value for this cor-
rection was δT ≈ 90 ppb. These shielded-proton frequen-
cies are then transferred to the trolley via a detailed cal-
ibration program, which we discuss in Sec. IV.

B. Cross Checks with Spherical Water Sample and
3He

The difference between cylindrical and spherical sam-
ples was verified by comparing cylindrical calibration
probe frequencies with those of the spherical sample
probe used in the BNL E821 experiment [43]. The mea-
surements were taken in the stable homogeneous field
of an MRI magnet at 1.45 T at ANL. The measured
difference 1514(15) ppb agrees with expectations from
Eq. (16), with the uncertainty dominated by the as-
phericity of the BNL water sample. To account for the
finite length of our water sample, a small correction of
0.02% was applied to the shape factor ε = 1/2 of an
infinte cylinder [57].

As a cross check with considerably different systemat-
ics, a 3He probe described in [44, 61] was also compared
with the BNL spherical water probe. After correcting
the BNL probe to 25 °C and for material effects, the ra-
tio of 3He to spherical probe frequencies was measured
to be 0.761 786 139(29)(38 ppb). This result agrees with
a previous measurement [62] of the ratio of frequencies
from 3He and water in a spherical sample,

µh(3He)

µ′p
= −0.761 786 1313(33)(4.3 ppb).

The cylindrical calibration probe was therefore calibrated
to 3He indirectly through the BNL spherical probe, ef-
fectively validating the calibration probe to 10(38) ppb.
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Quantity Symbol Correction (ppb) Uncertainty (ppb)

Bulk Magnetic Susceptibility δb (H2O, T ) -1505.9 to -1505.6 6
T Dependence of Diamagnetic Shielding δT (Tr − T ) -99.1 to -86.0 5
Intrinsic and Configuration-Specific Probe Effects δs 15.2 12
Water Sample δp 0 2
Radiation Damping δRD 0 3
Proton Dipolar Field δd 0 2
Total -1589.8 to -1576.4 15

TABLE III: The calibration probe corrections due to effects described in the text. The temperature-dependent
entries were evaluated for the calibration probe’s temperatures ranging from T = 25.13 °C to 26.4 °C during the
calibration of the trolley probes. Positive values indicate that the field measurements are increased to correct a
given effect.

IV. TROLLEY CALIBRATION

The field measured by each of the 17 trolley probes
is a combination of the storage ring magnetic field and
additional perturbations introduced by the NMR probes,
their sample shape, and surrounding magnetized materi-
als in the trolley. The trolley probe calibration procedure
described in this section provides a set of offsets δtr

j (Tr)
(see Eq. (8)), used to correct the measured frequency of
probe j to the shielded proton frequency at Tr = 34.7 °C.
The offsets are due primarily to differences in diamag-
netic shielding of protons in water versus petroleum jelly,
sample shape, and magnetic perturbations from magne-
tization of the materials used in the NMR probes and
trolley body. This procedure allows the trolley frequency
maps to be converted into maps of the magnetic field in
the storage volume. The trolley calibration constants are
extracted from the difference of trolley probe frequencies
ωtr
j and calibration probe measurements corrected to the

shielded proton frequency ω′p,j(Tr), with the two probes
swapped into the same position. Remaining misalign-
ments and magnetic footprints of the calibration probe
on the trolley and vice versa during the actual calibration

measurement lead to procedure specific corrections δalign
j

and δfp
j . The ωtr

j in Eq. (8) have to be expressed in terms

of the actual measured trolley frequencies ωtr, meas
j via

ωtr
j = ωtr, meas

j

(
1− δalign

j − δfp
j

)
. The difference in trol-

ley probe temperature between calibration and trolley
field mapping is taken into account in the trolley map
analysis (see Sec. V B). The trolley calibration constants
are extracted as

δtr
j (Tr) =

ω′p,j(Tr)− ω
tr, meas
j

ωtr, meas
j

+ δalign
j + δfp

j . (17)

The calibration procedure described in Sec. IV A was
performed for all 17 trolley probes. The full campaign
took about two weeks to complete, meaning it was not
feasible to repeat the procedure often. For the Run-1
analysis, the calibration campaign was performed during
the FNAL accelerator summer shutdown following the
production period. The calibration of the central probe

was performed multiple times as a cross check. We have
performed four calibration campaigns, associated with
each annual running period, and preliminary analyses of
the Run-2 and Run-3 calibration data show good consis-
tency with the Run-1 results discussed here.

A. Calibration Procedure

Each trolley probe was calibrated with the following
procedure:

1. The calibration probe (Sec. III) was mounted on
a translation stage in the vacuum chamber. The
translation stage allowed the calibration probe to
be moved to each trolley probe position at a specific
azimuthal location.

2. The SCC and a set of local azimuthal coils were
used to impose known, large field gradients in the
calibration region, allowing precision determination
of the two probes’ positions.

3. The field was shimmed locally with the SCC based
on a local field map by the calibration probe.

4. The trolley and calibration probe were rapidly
swapped back and forth into the same position.
Several measurements were taken with each probe
in this calibration position.

5. Nearby fixed probes tracked the magnetic-field drift
during the calibration procedure.

To determine the probe’s position, we imposed large
gradients in all three directions using the SCC and az-
imuthal coils to colocate the calibration probe and the
target trolley probe j. The difference of the field with
and without these large gradients uniquely determined
the probe position. This procedure allowed the position
to be determined with a precision of typically 0.5 mm.

With the large external gradients turned off, remaining
spatial field gradients in the storage region will couple to
small position offsets between the probes. To minimize
this systematic uncertainty, the field in the vicinity of
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a target trolley probe was mapped using the calibration
probe and shimmed locally with the SCC and a set of
azimuthal coils to reduce local field gradients to less than
30 nT/mm (21 ppb/mm). The calibration probe mapped
the residual field gradients so we could correct any errors
from the remaining misalignment between the probes.

The magnetic field in the muon storage region drifts
over time. We used the power supply feedback to sup-
press this drift and monitored the remaining magnetic-
field drift using the fixed probes. Repeated “rapid swaps”
between the trolley and the calibration probe help miti-
gate the effects of long-term drifts in “ABA”-style mea-
surements [63]. Measurements were taken with the trol-
ley at the calibration location for 30 s, then the trolley
was retracted upstream azimuthally by ≈ 4° ' 50 cm.
The calibration probe was then moved into the calibra-
tion location and we took measurements for 30 s. We
repeated this sequence at least 4 times per probe and up
to 10 times for some probes.

B. Analysis

To extract δtr
j for a trolley probe j via Eq. (8), the

data taken during the rapid swapping are analyzed as
discussed in Sec. IV B 1. Since both probes cannot be
placed exactly at the same position when they are moved
into the measurement position, the analysis must also ac-
count for the small, relative position misalignments of the
trolley probe j and the calibration probe. This analysis
is described in Sec. IV B 2.

1. Rapid Swapping Analysis

From the ABA. . . series of measurements, the A and B
measurements are interpolated to common times, which
allows us to correct for linear drifts that occured while the
two probes were being swapped. In these measurements,
the drift rate was up to 100 ppb/h.

During Run-1, we observed an oscillation in the mag-
netic field with an amplitude of 10 ppb to 20 ppb and a
period of 2 min, which is shorter than the measurement
and swapping periods of ∼10 min. Therefore, the ABA
method does not remove this oscillation. However, the
oscillation is not a localized effect in the calibration re-
gion but coherent around the entire ring and it can be
removed using data from the fixed probes. The shape of
the oscillation is shown in Fig. 10, where the slow field
drift has already been corrected. Table IV shows the
statistical uncertainty from this procedure for all trolley
probes.

2. Misalignment Correction: δalign
j

The difference between the frequencies with and with-
out imposed gradients are calculated using an ABA

FIG. 10: Oscillatory signal as measured by the fixed
probes (black dots), where linear drift corrections have
been applied. The calibration probe data before (blue
diamonds) and after (orange crosses) the correction is
overlaid to show the typical size of corrections.

method. The drift-corrected differences are called ∆ωtr
j,q,

where q ranges over x, y, and φ and j indicates the probe
number. The transverse gradients were fitted across the
17 trolley probes. For the azimuthal gradient, the trolley
was moved azimuthally through the calibration region in
≈ 0.5 cm steps.

FIG. 11: ∆ωtr
j,x (left) and ∆ωtr

j,y (right) measured by the
trolley. The graphs were fitted to a two-dimensional
polynomial to extract the large imposed field gradient.
These gradients are used to uniquely identify a probe’s
location in the xy plane.

Figure 11 shows the field gradients used to locate each
trolley probe in the x and y directions. The combination
of the two uniquely determines each probe’s xy position.
This uniqueness can be extended to xyz by including
the azimuthal gradient measurement. From these mea-
surements, we obtain the strength of the imposed gra-

dients
∂ωgrad

q

∂q . The calibration probe was moved in the

field with the same imposed gradient to find the loca-
tion where its ∆ω′cp,q values matched the trolley’s ∆ωtr

j,q.
In practice, the calibration probe’s position was iterated
until |∆ω′cp,q −∆ωtr

j,q|/2π ≤ 20 Hz (324 ppb) for x and y
directions and ≤ 5 Hz (81 ppb) for the φ direction, cor-
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responding to a position alignment better than 0.5 mm.
The remaining difference determines the two probes’ mis-
alignment sq. Using the measured gradients, the mis-
alignment in each direction can be extracted via:

sqj =
(
∆ω′cp,q −∆ωtr

j,q

)/∂ωgrad
q

∂q
. (18)

Prior to the rapid swapping, the local field inho-
mogeneities around each trolley probe’s position were
mapped with the calibration probe. Additional im-
posed fields generated with the SCC and the azimuthal
coils reduced the local gradients to less than 21 ppb/mm
(30 nT/mm). The calibration probe was used to map the
residual local shimmed field ωlocal. The misalignment be-
tween the target trolley probe and the calibration probe
together with the local gradients created an error that is
corrected since we measure both the misalignment and
gradient. The misalignment correction is then

δalign
j = ∇ωlocal · sj .

To minimize the time between the rapid swaps, the
measurements of ∆ω′cp,q and ∆ωtr

j,q were only performed
prior to the first swap. While the calibration probe can
be placed into the same position repeatedly with a preci-
sion of < 0.1 mm, the trolley positioning during the rapid
swapping was based on the less precise encoder readings.
This results in position variations of O(1 mm). To cor-
rect for this position variation, the more precise bar code
position was used offline to determine an additional az-
imuthal position offset δtr

j,s, for each placement of the
trolley during the swap s in the sequence. This leads to
a modification of Eq. (18) for q = φ:

sφj,s =
(
∆ω′cp,φ −∆ωtr

j,φ

)/∂ωgrad
φ

∂φ
+ δtr

j,s. (19)

C. Systematic Effects

Multiple systematic uncertainties arise from the trolley
calibration procedure. They comprise a statistical com-
ponent from the rapid swapping in ω′p,j(Tr) − ωtr

j and
systematic uncertainties arising from the analysis of the
FIDs, from the misalignment, and the remaining mag-
netic footprints of the probes.

1. Frequency Extraction Uncertainty: εi, εf

The calibration constants are based on a zero-crossing
algorithm for the frequency extraction of the calibration
probe and the Hilbert transform algorithm for the trol-
ley. The systematic fit uncertainty (εf ) and the intrinsic

systematic uncertainty (εi) (see Sec. II A) are estimated
based on simulated FIDs. The large gradients required

to colocate the probes produce large field nonuniformi-
ties over the probe samples. Thus systematic effects from
frequency extraction are larger for these measurements
than in the well-shimmed field during the rapid swap-
ping. The full calibration procedure was compared with
an independent analysis utilizing the Hilbert transform
for the calibration probe frequency extraction. The re-
sults agreed within the stated uncertainties.

2. Position Misalignment Uncertainty: δalign
j

The determination of the position misalignment is

based on imposing additional large gradients
∂ωq−grad

∂q

with the SCC and the azimuthal coils. These large gra-
dients degrade the field uniformity and result in larger
systematic effects from FID frequency extraction. How-
ever, the same gradients in the denominator of Eqs. (18)
and (19) suppress the effect of the frequency uncertainty
on the actual misalignment, leading to a misalignment
uncertainty of less than 0.4 mm.

A set of local measurements of the shimmed field ωlocal

in the vicinity of the probe’s location is used to evaluate
the local gradient ∇ωlocal at the actual position of the
probe. A lack of knowledge of higher-order and cross-
term derivatives in this local field map causes system-
atic effects in this evaluation. The residual field was only
measured at two positions along some directions for some
probes, hence not constraining second- and higher-order
gradients along this axis. For those probes and direc-
tions, the largest observed gradient is used to estimate
an upper limit for the uncertainty of 3 ppb/mm, which
then couples to the misalignments sxj and syj . The az-
imuthal direction was not mapped for all probes. The
observed variations in gradient of up to 22 ppb/mm are
used as an uncertainty, which couples to the azimuthal

misalignment sφj . The resulting uncertainties range of
0 ppb to 13 ppb.

No second-order cross-terms (e.g., ∂2ω
∂x∂y ) were explic-

itly measured. They are estimated from quadratic terms
measured along the x and y directions. The cross terms
are assumed to be smaller than two times the largest

quadratic derivative along the x and y axes ( ∂2

∂x2 , ∂2

∂y2 ).

The largest uncertainty generated by the cross term
is εcross = 12 ppb/mm2, leading to an uncertainty of
εcross∆qi∆qj for i 6= j in a range of 0 to 8 ppb.

3. Trolley and Calibration Probe Magnetic Footprints

During the calibration probe measurements in the
rapid swapping procedure the trolley was azimuthally
retracted by ∼ 4°. The calibration probe was used to
measure the remaining magnetic footprint of the trol-
ley in situ as a function of relative trolley position in a
range from 3° to 100°. No perturbations are observed
for relative distances larger than ∼ 25°. The probe-
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independent correction due to the perturbation from the
magnetic footprint of the trolley retracted by ∼ 4° is
δfp,tr = 40(8) ppb.

During the trolley measurements the calibration probe
is retracted radially inwards. The material of the probe
itself and its aluminum fixture perturb the field at the
location of the trolley probes slightly. The size of the

resulting corrections δfp, cp
j ranges from 2 to 7 ppb de-

pending on the trolley probe location and the uncertain-
ties were in the range of 1 to 6 ppb. Table IV lists the
associated uncertainties of the total footprint correction

δfp
j = δfp, tr

j − δfp, cp
j for all trolley probes.

D. Results

The final calibration coefficients δtr
j (Tr) were deter-

mined via Eq. (17) and are shown Table IV along with the
statistical and systematic uncertainties described above.
The total uncertainty also includes the uncertainty of
15 ppb from the corrections to ω′p,j(34.7 °C) from Ta-
ble III.

While most probes have total uncertainties of about
20 to 30 ppb, a few of the probes on the outer circle have
total uncertainties as large as 48 ppb, which is driven by
large field nonuniformities for probes located nearest to
the trolley rails and the iron pole pieces. Many measure-
ments of the field gradient at the outer probes were per-
formed after the main calibration campaign to determine
the misalignment, and the drift of the azimuthal gradient
contributes significantly to the systematic uncertainty.

V. TROLLEY FIELD MAPPING

The determination of ω̃′p(Tr) requires precision mea-
surement of the field in the region in which the muons
are stored. However, continuous field measurements with
NMR in the storage region would physically interfere
with the muons. The trolley provides detailed frequency
maps over the entire storage region. We determined the
azimuthally averaged field with a precision of 30 ppb.
Critically, the trolley is also retracted from the storage re-
gion during muon injection periods. While mapping, the
set of probes in the fixed probe station are synchronized
to the trolley probes. Trolley runs take about four hours
in total to execute and are performed approximately ev-
ery three days to minimize interruptions to muon data
taking. The fixed probes continuously track field drifts
between the trolley runs. Therefore, we have occasional
precise measurements of the field in the storage volume
that are interpolated with continuous, less precise mea-
surements. This section covers the analysis of the trolley
frequency maps and the corresponding systematic cor-
rections and uncertainties. The relationship between the
trolley map and the fixed probe measurements is dis-
cussed in Sec. VI.

A. Trolley Maps: ωtr
j (φ, 0)

FIG. 12: A typical field map from a trolley run (25th of
April 2018, approximately at 3 a.m.). On top, the raw,
relative frequency (ωj(φ, 0)− 〈ωj〉)/ 〈ωj〉 for the central
trolley probe, j = 1. The lower three plots show the
corresponding lowest-order multipoles, dipole (black),
normal quadrupole (green), and skew quadrupole (red),
as a function of azimuth. The dipole distribution has an
RMS of 16 ppm with a peak-to-peak variation of
101 ppm.

The trolley moment maps mtr
i (φ, t = 0) in Eq. (13)

are extracted from the frequency maps ωtr
j (φ, 0) that are

directly measured in the continuous trolley runs by the
17 probes (index j). Note that the part of a trolley run,
that generates the baseline trolley maps, takes about an
hour. Therefore, calling a trolley run time t = 0 is a
notational convenience. The finite duration of the trolley
run is taken into account in Sec. VI. Figure 12 shows the
results from a typical trolley run. The top panel shows
the raw, relative frequency (ωtr

j (φ, 0) −
〈
ωtr
j

〉
)/
〈
ωtr
j

〉
for

the central probe (j = 1), where
〈
ωtr
j

〉
is the azimuthal

average frequency of that probe. The bottom three plots
show the extracted multipole moments mtr

i (φ, 0) for the
dipole (i = 1), normal quadrupole (i = 2), and skew
quadrupole (i = 3), normalized to the dipole moment.

An azimuthally averaged relative frequency distribu-
tion for a typical trolley run is shown in Fig. 13. The cor-
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Probe δtr
j (Tr) Statistical Uncertainty Systematic Uncertainties Total

Misalignment Freq. Extr. Footprint
[ppb] [ppb] [ppb] [ppb] [ppb] [ppb]

1 1470 6 27 6 9 33
2 1363 11 3 7 9 22
3 1538 9 29 11 8 36
4 1392 4 11 2 9 21
5 1504 8 3 2 9 20
6 1719 7 4 13 8 23
7 1888 16 4 19 8 30
8 1236 10 6 7 8 22
9 1352 4 18 8 8 27
10 389 22 2 11 8 30
11 2873 4 21 18 8 32
12 1794 7 15 17 8 29
13 1989 34 14 22 9 46
14 1248 9 13 21 9 32
15 1211 17 15 10 10 31
16 329 7 40 18 9 48
17 2786 20 14 22 9 37

TABLE IV: Calibration coefficients δtr
j (Tr) and their statistical and systematic uncertainties. The total uncertainties

in the last column are the quadrature sum of the statistical and systematic uncertainties listed and the uncertainty
of 15 ppb for the corrections to ω′p,j(Tr) from Table III.

FIG. 13: Variations in the azimuthally averaged,
relative frequency (ωtr

j (φ, 0)−
〈
ωtr
j

〉
)/
〈
ωtr
j

〉
, for the

central probe (j = 1). The locations of the 17 trolley
probes are indicated by (x). Their raw frequencies are
averaged and the field variations are interpolated.

responding azimuthally averaged quadrupole moments
are 6.7 ppb/mm (normal) and 8.87 ppb/mm (skew), and
higher-order moments are shown in Table V.

The frequency maps are an integral part of the mag-
netic field tracking described in Sec. VI. Specifically,
they provide precise baseline measurements of the field,
which are interpolated using the fixed probes. The trol-
ley maps are averaged over 5° of azimuth into 72 bins

Normalized moment strength normal skew
[ppb] [ppb]

Dipole (A0/A0, −) 1 000 000 000 -
Quadrupole (A1/A0, B1/A0) 300 399
Sextupole (A2/A0, B2/A0) -1 247 395
Octupole (A3/A0, B3/A0) 14 273
Decupole (A4/A0, B4/A0) 39 -1 319
Dodecupole (A5/A0, B5/A0) -756 -187
Tetradecupole (A6/A0, B6/A0) -1 067 -0

TABLE V: Strength of each moment from the fit in
Fig. 13 with r0 = 4.5 cm and normalized to the strength
of the dipole A0 (see Eq. (6) and Table I), and averaged
over azimuth.

that correspond to each fixed probe station. The edges
of the bins are defined by the midpoints between adja-
cent fixed probe stations. Azimuthal averages of the 72
bins are used for the systematic uncertainty evaluation
(Sec. V B), but do not enter directly into the determina-
tion of ω̃′p(Tr), which is mainly based on fixed probe data
and a synchronization of each station to the trolley data
as discussed in Sec. VI.

B. Systematic Effects: δtr, syst
i

The final field moment maps mtr
i (φ, t = 0) that enter

in Eq. (13) can be derived from the measured maps via

mtr
i (φ, 0) = mtr, meas

i (φ)
(
1 + δtr, syst

i

)
, where δtr, syst

i is
the sum of systematic corrections and their uncertainties
caused by the following effects:
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• δfreq
i : frequency extraction biases and uncertainties

from the FIDs from the trolley NMR probes,

• δmotion
i : effects that are introduced by the continu-

ous trolley motion and dominated by eddy currents
in the trolley shell,

• δpos
i : corrections for transverse and azimuthal trol-

ley position offsets,

• δtemp
i : corrections due to the temperature of the

trolley NMR probes during the field mapping,

• δmultipole
i : field variations that are not described by

the moments in Table V,

• δconfig
i : differences in the experiment configuration

during a trolley run from nominal muon storage
conditions.

The uncertainties associated with the field maps in
Run-1 are treated conservatively and combined as corre-
lated uncertainties. The following sections discuss these
systematics in more depth. An overview of their numer-
ical values for both the correction and associated uncer-
tainty is given in Table VI.

1. Trolley Frequency Extraction: δfreq
i

The uncertainty in the extracted NMR frequency can

be split into δfreq
i (φ) = δfreq, stat

i (φ) + δfreq, syst
i (φ), the

statistical uncertainty and the systematic uncertainty
which combines the fit uncertainty εf and the intrinsic
uncertainty εi (see Sec. II A). The systematic contribu-
tion is evaluated based on FID simulation, taking into
account the local field shape around the azimuth φ as de-
scribed in Sec. II A. Systematic stop-and-go trolley runs
collect frequency data while the trolley is stationary be-
fore being moved to the next position. These measure-
ments are free of motion effects described below and are
used to extract the probes’ statistical resolution. The
resulting uncertainties are statistically independent for
each field map but sampled from the same underlying
distribution. The probe resolution is extracted from the
variance of measurements taken over 5 s while the trolley
is stationary; the field drift is negligible on this timescale.

2. Trolley Motion: δmotion
i

The trolley movement through the nonuniform mag-
netic field generates eddy currents in the conducting com-
ponents, most significantly the aluminum shell. These
produce transient field variations that affect the trolley
map leading to the correction δmotion

i . It was determined
in two ways: 1) comparison of the frequency measure-
ments from two trolley-run modes, one with continuous
motion (standard trolley run) and one in stop-and-go,

(a)

(b)

FIG. 14: The difference between moving and static
trolley measurements. (a) Comparison of the
frequencies measured in a selected azimuthal region for
the normal trolley motion and the stop-and-go
operation. (b) The distribution of the dipole differences
between motion and static measurements over the full
ring.

and 2) the comparison of maps taken in the clockwise
and counterclockwise directions.

Figure 14a shows a comparison of the continuous and
stop-and-go modes over a narrow azimuthal range. Tak-
ing the differences of these frequencies for each probe
allows the construction of the azimuthally averaged dif-
ferences in the field moments shown in Fig. 14b for the
dipole moment. The resolution for the moving trolley is
two orders of magnitude worse than what is observed
in the static situation. Additionally, large eddy cur-
rent spikes generate fluctuations of the measured trolley
probe frequencies of up to 20 ppm with decay constants
on the order of 100 ms. The statistical and systematic
uncertainties are determined from the statistics-scaled
RMS and dedicated studies that removed spikes from
the maps, respectively. The dipole moment correction
is δmotion

1 = −15(2)(17) ppb.
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Quantity Dipole Normal Quadrupole Skew Quadrupole
< δXi > Corr. [ppb] Unc. [ppb] Corr. [ppb] Unc. [ppb] Corr. [ppb] Unc. [ppb]

freq
syst, fit < 1 10 1 0 0 0
stat 0.0 0.1 0.0 0.2 0.0 0.2

motion -15 18 21 10 -8 12
position

transverse 0 12 0 27 0 4
azimuthal 0 4 0 2 0 4

temperature 0 15− 27 - - - -
multipoles 0 1 0 1 0 1
config

garage -5 22 - - - -
collimators < 1 < 1 - - - -
ground loop -2 0 -2 0 3 0

Total -21 36− 43 20 29 -5 13

TABLE VI: Overview of all contributions to < δtr, syst
i >. Uncertainties from different trolley regions are treated as

correlated uncertainties, leading to a conservative uncertainty estimate. Ranges are specified for uncertainties that
vary between data subsets; the range is defined by the minimum and maximum uncertainties from the Run-1a
through Run-1d data subsets.

3. Trolley Position: δposition
i

Extracting moments from trolley data requires knowl-
edge of its position in x, y, and φ for each measure-
ment. The trolley’s azimuthal position is determined
from the bar code reader, and the uncertainty in the
trolley’s azimuthal location propagated into the uncer-
tainty δpos, azi

i in the field maps. Position deviations in
the transverse directions from the ideal circular muon
orbit of radius 7.112 m predominantly originate from the
location and shapes of the rails, generating an uncer-
tainty δpos, vert

i . The total trolley position uncertainty is

δposition
i = δpos, azi

i + δpos, vert
i .

a. Transverse Trolley Position: δpos, vert
i The trol-

ley rails have shape distortions with respect to their de-
sign curvature and limitations on the precision of their
placement inside the vacuum chambers. Extensive rail
surveillance data were collected prior to installation us-
ing laser tracking, and additional trolley motion verifica-
tion was performed during installation. The vertical and
radial offsets of the rails and their corresponding roll of
the trolley are shown in Fig. 15. These data are analyzed
to determine the trolley probes’ vertical and radial dis-
placements and any roll movement during trolley motion.

The multipole moment extraction is performed with-
out accounting for the positional distortions. By repeat-
ing the multipole fits with slightly different probe posi-
tions determined by including linearly interpolated dis-
placement information at each azimuthal location, sys-
tematic uncertainties are determined for the azimuthally-
averaged dipole (12 ppb), normal quadrupole (27 ppb),
and skew quadrupole (4 ppb).

b. Azimuthal trolley position: δpos, azi
i The bar code

reader provides the azimuthal position via the recording
of regular, 2-mm-wide alternating dark and bright marks

FIG. 15: Surveyed offsets (top: radial with a mean of
0.2 mm and RMS of 0.5 mm, middle: vertical with a
mean of −0.6 mm and RMS of 0.6 mm) and rotation
(bottom: roll with a mean of −0.3° and a RMS of 0.6°)
of the trolley rails.

etched into the vacuum chambers. The bar code reader
is equipped with two sensor groups that are 12 cm apart
and record the same bar code patterns with a small time
delay. In the Run-1 analysis, only one group is used to
determine the azimuthal position, resolving about 80%
of the full azimuth. For the remaining 20%, the posi-
tion information is determined using less precise rotary
encoders installed in the cable winding mechanism. The
differences between reconstructed bar code positions for
the two sensor groups determines the precision of the bar
code reader to be 0.2 mm.

Because there are small gaps between adjacent vacuum
chambers and some regions that rely on the encoders, a
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conservative overall position resolution of 2 mm is used.
A random variation of the azimuthal trolley positions
with a 2-mm-wide Gaussian distribution is used to esti-
mate a systematic uncertainty of 4 ppb on the average
dipole field.

4. Temperature Correction: δtemp
i

The temperature of the trolley probes increases during
operation due to the trolley’s electronics’ power dissipa-
tion. The precession frequency produced by these NMR
probes has a temperature dependency of 0(5) ppb/°C
which was measured with a dedicated setup in the stable
and homogeneous solenoid at ANL. Because the trol-
ley temperature during the field mapping runs differed
from the temperature during the trolley calibration, a
run-specific uncertainty δtemp

i (Trun) is applied.
The mean temperatures of all trolley runs, linearly in-

terpolated and weighted by the corresponding number of
decay muons, are grouped into data subsets shown in Ta-
ble VII. The temperature also varies during the one-hour
duration of a trolley run and adds an additional uncer-
tainty. Temperature changes on the order of 1.59 °C to
1.70 °C are observed during the trolley runs. This corre-
sponds to assigned systematic uncertainty δtemp

i (∆T ) of
4 ppb. The data-subset-specific systematic uncertainty
from the temperature is the sum of these two parts:
δtemp
i = δtemp

i (Trun) + δtemp
i (∆T ).

5. Other Systematic Corrections: δconfig
i , δmultipoles

i

Other systematic effects include those that arise from
the experiment’s different configuration during field map-
ping compared to muon data taking. The configuration
differences during the trolley measurement generate three
systematic contributions from (1) the change in the con-
figuration of the garage, (2) the change in the orienta-
tion of the beam collimators, and (3) an electrical ground
loop. All of these effects are constant for all trolley runs.
An additional systematic is caused because the truncated
moment expansion does not completely describe the mag-
netic field. The trolley is unable to measure higher-order

moments accurately, leading to an uncertainty δmultipoles
i .

The trolley was moved radially in and out of the stor-
age region by a sliding rail section and only measured the
magnetic field when this segment of the rails was inserted.
However, the segment of the rails was retracted during
muon injection. The magnetization of this rail section
changed the magnetic field during the trolley measure-
ment in a way that the muons do not experience. A sim-
ilar systematic effect is caused by three copper collima-
tors4. The collimators are retracted during field mapping

4 The experiment is equipped with five collimators but in Run-1
only three of them were used.

measurements to prevent interference with the trolley’s
motion, but inserted during muon injection.

Corrections and uncertainties are determined for both
the garage and collimator effects by modeling their mag-
netization and estimating the two configurations’ differ-
ences. Additionally, the effect from the garage was mea-
sured by the fixed probe system. The systematic effects
are −5(22) ppb for the garage and less than 1(1) ppb for
the collimators.

Over a small azimuthal extent of ≈ 5°, the trolley shell
makes contact with the grounded kicker plates. This
provides an additional ground path for the return cur-
rent of the trolley power, which normally flows through
the coaxial cable connected to the trolley. The imbal-
ance in current paths generates a small magnetic field
and affects the trolley probes and all fixed probe stations
between the trolley and the end of the coaxial cable at
the trolley drive. Dedicated measurements that broke the
ground loop showed systematic shifts for the azimuthally-
averaged dipole (−2 ppb), normal quadrupole (−2 ppb),
and skew quadrupole (3 ppb). The electrical contact
causing the ground loop effect has since been corrected
for future datasets.

VI. MAGNETIC FIELD TRACKING

Changes of ω̃′p between trolley map measurements
are predominantly due to changes of the magnetization
and geometry of the magnet’s ferromagnetic components
and may include hysteresis. We track ω̃′p with the 72
fixed probe stations, each containing four or six probes
mounted outside the vacuum chambers (see Fig. 6). The
procedure of synchronizing the fixed probes during the
trolley run and tracking certain moments accounts for
the changes of ω̃′p during muon storage, up to uncertain-
ties that are discussed in Sec. VI B 3.

The tracking procedure incorporates the following
main steps, which will be described in more detail in
Secs. VI A and VI B:

1. After the application of all data quality cuts (see
Sec. II B) and the trolley probe calibration offsets,
all NMR measurements obtained from the trolley
mapping and fixed probes are converted into 2D
moments according to the prescription in Sec. I D 1.

2. Because the magnetization of the trolley’s mate-
rials and eddy currents in its shell distort a fixed
probe station’s local field, algorithms are applied
to remove this magnetic footprint from the fixed
probe measurements.

3. The four or five moments tracked at each four- or
six-probe station shown in Table I are synchronized
to the moments measured by the trolley during a
trolley run using a Jacobian described below (and
in Appendix B).
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Data Subset Temperature < δtemp
dipole(Trun) > < δtemp

dipole(∆T ) >
[C] Corr. [ppb] Unc. [ppb] Corr. [ppb] Unc. [ppb]

Run-1a 27.44 0 27 0 4
Run-1b 27.99 0 25 0 4
Run-1c 28.79 0 20 0 4
Run-1d 30.06 0 14 0 4

TABLE VII: The mean temperature and uncertainties per data subset. The different trolley runs are linearly
interpolated weighted by the number of decay muons.

4. The field’s evolution is interpolated by tracking the
changes in the fixed probe measurements from the
baseline measured during a trolley run mtr

s (0).

5. Corrections are added to the interpolated field map
for systematic sources such as temperature varia-
tions, magnetic configuration changes, trolley sys-
tematic effects, and fast field transients.

The tracking procedure combined with the calibration
probe corrections from Sec. III provide the field moments
m′p,i(φk, t, T ) = mtr

i (φk, t) (1 + δtr
i ) [see also Eq. (13)],

where φk refers to the azimuthal locations of the kth fixed

probe station. As a reminder, mtr
i (φ, t) and mfp

j (φ, t) de-

note the ith multipole (trolley) and jth Cartesian (fixed
probe) moment, respectively. Additionally, mtr(φ, t) and
mfp(φ, t) denote vectors in the vector space of moments
in a slice of azimuth φ and time t. These vectors are,
in principle, elements of R17 (trolley), R6 (six-probe sta-
tions), or R4 (four-probe stations). However, in practice,
we truncate the trolley and six-probe stations to only R9

and R5 due to the large uncertainties in the tracking of
the higher-order moments. The effect of this truncation
is negligible because the influence of the higher-order mo-
ments on the average magnetic field is suppressed when
the field is weighted by the muon distribution, discussed
in Sec. VII.

For a specific station s at φ = φs, the field moments are
mtr
s (t) = mtr(φs, t) and mfp

s (t) = mfp(φs, t). In practice,
mtr
s (0) is averaged over ∼ 5° of azimuth and mfp

s (0) is
averaged over the amount of time it takes the trolley to
traverse that azimuth, about 40 s. With this notation and
neglecting the untrackable higher order moments εho

s (t)
for now, Eq. (10) from Sec. I D 2 becomes

mtr
s (t) = mtr

s (0) + Js ·
[
mfp
s (t)−mfp

s (0)
]
, (20)

where t = 0 is the synchronization time during the trolley
run for that particular station. Js is the Jacobian with

elements Js, ij =
∂mtr

i (φs)

∂mfp
j (φs)

. The Jacobian matrix is 9× 5

for the six-probe stations and 9 × 4 for the four-probe
stations. Because the fixed probes can only track lower-
order moments, Js, ij = 0 for i ≥ 6 (i ≥ 5 for the four-
probe stations). For moments that are measurable by
the trolley but not the six-probe stations, we linearly
interpolate between the two trolley runs. The moment
m5, which can be tracked by a six-probe station but not a

four-probe station, is estimated in four-probe stations to
be the average of m5 from the nearest neighbors (which
are always six-probe stations). This approximation is
mathematically equivalent to increasing the weight of six-
probe stations that neighbor four-probe stations.

When considering the azimuthal average over the full
storage ring, we sum over the stations weighted by their
azimuthal spacing Ws = ∆φs/2π,〈

mtr(t)
〉
φ

=
∑
s

Ws

{
mtr
s (0) + Js ·

[
mfp
s (t)−mfp

s (0)
]}

.

(21)

Equation (21) has four quantities of interest: mtr
s (0),

mfp
s (0), mfp

s (t), and the Jacobian matrix Js. The base-
line measurements mtr

s (0) and mfp
s (0) for each fixed

probe station are measured simultaneously during a trol-
ley run. Trolley measurements are grouped according to
the closest fixed probe station (∼ ±2.5° around a fixed
probe station), establishing t = 0 for each station and
synchronizing the two sets of probes. From the fixed
probe stations’ measurements, mfp

s (t) is calculated for
times between the two trolley runs. The Jacobian matrix
is determined analytically from each fixed probe station’s
geometry. Details of the explicit Jacobians for the gen-
eral six- and four-probe stations and some stations with
special geometry are given in Appendix B.

A. Tracking Analysis

The tracking analysis has five primary steps outlined
above. This section addresses the first four, which are
needed as inputs to Eq. (20). The final step is to de-
termine systematic corrections and uncertainties and is
covered in detail in Sec. VI B.

1. Data Preparation

Before beginning the tracking analysis, the data qual-
ity selection described in Sec. II B is performed. Then,
the trolley calibration offsets described in Sec. IV are
added to the frequency measurements from the trolley as
shown in Eq. (7). The trolley and fixed probe NMR mea-
surements are converted into the multipole moment and
the Cartesian moment bases, respectively. During trol-
ley runs, there are ≈9000 sets of moments for the trolley
and each of the 72 fixed probe stations; during the muon
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FIG. 16: The trolley footprint as seen by the fixed
probe station, and the replacement data after vetoing
the perturbed region.

production runs, there are 72 sets of moments every 1.4 s
between each pair of trolley runs.

2. Trolley Footprint Replacement

As the trolley is pulled past fixed probe station s, the
trolley’s magnetization and eddy currents in its shell per-
turb the field at the location of the station’s probes.
This perturbation, the “trolley footprint”, needs to be
removed from the fixed probe data before performing
the time averaging of the station moments to calculate
mfp
s (0). All measurements from the fixed probes are ve-

toed during the time when the trolley was close enough
to influence the station measurably (±12.5° of azimuth
about the fixed probe location, approximately 200 s).
The vetoed data are replaced by an estimate of the fixed
probe moments’ unperturbed values. We use data from
outside the veto window when the trolley is sufficiently
far away not to perturb the measurements and interpo-
late over the vetoed data points. The interpolating func-
tion is a model of the local drift of the station during the
veto window. The local model is a fifth order polynomial
fit to the unperturbed data from the station. It is cor-
rected with data measured over the rest of the ring to
account for global field transients that would otherwise
be missed in the veto region. An example of a footprint
replacement for one of the fixed probe stations is shown
in Fig. 16. A subset of the interpolated points are used
to calculate the fixed probe baseline moments mfp

s (0).

3. Synchronization and Tracking

In the synchronization step, we find the trolley and
fixed probe baseline (t = 0) moments mtr

s (0) and mfp
s (0)

in Eq. (20) for each of the 72 fixed probe stations. The
trolley measurements closest to each station, ∼ 5° per
station, are averaged with a weight determined by the az-
imuthal step-size of each trolley measurement. These az-
imuthal averages are the baseline trolley moments mtr

s (0)
for that station. During the time interval when the trol-
ley is closest to the station, the footprint-corrected fixed
probe measurements are averaged over time to calculate
the baseline fixed probe moments mfp

s (0).
Equation (20) can be rearranged to group baseline

terms together

mtr
s (t) = Js ·mfp

s (t) + [mtr
s (0)− Js ·mfp

s (0)]

= Js ·mfp
s (t) + cs(0). (22)

In this form, cs(0) is a synchronization constant for sta-
tion s, measured entirely during the trolley run. During
Run-1, there was one production trolley pair that only
had a trolley one before the period due to magnet is-
sues preventing us from bookending the period. How-
ever, trolley runs bookend most production data sets, so
two synchronization constants can be calculated for those
data sets, one from each adjacent trolley run. In general
the two values are not equal, implying that the synchro-
nization drifted over the course of the production period.
This effect is the “tracking error.” Because the goal is
to track the field between one trolley run at time t = 0
and the next at t = T , we replace cs in Eq. (22) with
a time-dependent form cs(t). With no additional infor-
mation about this term between times t = 0 and t = T ,
we express cs(t) as a linear interpolation from cs(0) to
cs(T ). The time-dependent synchronization is

mtr
s (t) =Js ·mfp

s (t) + cs(t)

=Js ·mfp
s (t)

+

[
cs(0) +

cs(T )− cs(0)

T
t

]
+ ∆s(t), (23)

where ∆s(t) is the non-linear component of the drift of
moments that the fixed probes cannot track, which leads
to the tracking error. This term is the leading source
of uncertainty in the field tracking analysis. The pro-
cess described in Eq. (23) is called “backward interpo-
lation” because it involves correcting for drift from the
first (“forward”) synchronization by interpolating back-
ward in time from the second (see Fig. 17 for an example
of the effect). Long stationary trolley runs to measure the
tracking error rate suggest that it follows the statistics of
a random walk with known initial and final constraints;
we approximate ∆s(t) as a Brownian bridge [64]. The
distribution of the differences cs(T )−cs(0) from 11 trol-
ley pairs is used to parameterize the rate of the random
walk for each station, and therefore estimate the uncer-
tainty on our time averages of mtr

s from not knowing
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FIG. 17: Before the backward correction, the
uncorrected tracking curve (light) can disagree with the
measurement from the second trolley run. After the
correction (dark), mtr

s (t) is equal to the corresponding
trolley measurements mtr

s (0) (left diamond) and
mtr
s (T = 74 h) (right diamond) at both bookending

trolley runs. Note that this plot shows only a single
station.

the functional form of ∆s(t). With the time-dependent
tracking error, the Jacobians, and the fixed probe mea-
surements, Eq. (23) is evaluated to determine each sta-
tion’s mtr

s (t). This quantity is an estimate of what the
trolley would measure at station s at time t. The set of
all 72 mtr

s (t) for a given time constitutes our field map
at time t.

Figure 18 shows the results of the tracking analysis
over all four major data subsets in Run-1. The dipole
and the normal quadrupole are each averaged over az-
imuth and shown as a function of time. The dipole trend
generally behaves smoothly and the drift is understood
to be caused by the selection of probes used in the sta-
bilizing power supply feedback algorithm. The normal
quadrupole term is sensitive to temperature variations
and exhibits a diurnal structure in addition to slow drifts.
The moments are used as inputs in the muon weighting
in Sec.VII.

B. Systematic Effects

The systematic uncertainties are presented by the term
they enter in Eq. (20). The shown values of the correc-
tions and uncertainties are for the azimuthally and time-
averaged field (the averaging procedure is discussed in
Sec. VII). The trolley baseline systematics are discussed
in Sec. V B and shown in Table VI. Fixed probe baseline
and fixed probe run systematic uncertainties refer to un-
certainties on the relevant terms in Eq. (20). An overview
of their numerical values for both the correction and as-
sociated uncertainty is given in Table VIII. The tracking

FIG. 18: The first two moments (dipole and normal
quadrupole), each azimuthally averaged, tracked over
the four major data subsets in Run-1. The average field
m1 is reported as ppm away from a reference value of
61.79 MHz, so the value is (f − 61.79 MHz)/61.79 MHz.
The moment m2 is also reported as ppm of 61.79 MHz,
but with a central value of 0 Hz. The major
discontinuities coincide with magnet ramps and major
configuration changes.

Quantity Corr. [ppb] Unc. [ppb]

mfp(0)
trolley footprint 0 8

mfp(t)
fixed probe resolution 0 1

∆s(t) 0 22–43

TABLE VIII: The systematic corrections and
uncertainties from the field tracking analysis. The
uncertainties are categorized by where they enter in
Eq. (20). The trolley baseline systematics can be found
in Table VI.

error systematic refers to the uncertainty related to the
untrackable term ∆s(t) in Eq. (23).

1. Fixed Probe Baseline Systematic Effects: mfp
s (0)

The fixed probe baseline systematic is driven by the
trolley footprint replacement and short (∼1 h) averag-
ing times of the fixed probe noise during the trolley
run. We estimate these effects by implementing the
same footprint-replacement algorithm used during the
trolley run on fixed probe data in which the trolley is
not present. The fixed probe baseline calculated from
the replacement data can then be directly compared to a
baseline calculated from the measured value. This pro-
cess can be repeated for all the fixed probe stations and
all moments over many sample data sets. The resulting
uncertainty is 8 ppb.



25

2. Fixed Probe Run Systematic Effects: mfp
s (t)

The primary source of uncertainty on the fixed probe
measurement is caused by the measurement noise on the
fixed probes. Here, noise is defined as the standard de-
viation of a measurement over times short enough for
field drift to be negligible. Despite some fixed probes be-
ing quite noisy from measurement to measurement, over
very long averaging times (3 days) the contribution to
the uncertainty on the azimuthal average is reduced to
under 1 ppb.

3. Tracking Error Systematic Effects: ∆s(t)

The dominant source of uncertainty in the field track-
ing comes from the tracking error between the trolley and
fixed probes, discussed in Sec. VI A 3. This drift is pa-
rameterized by the difference in the synchronization con-
stants cs from Eq. (22) between trolley runs, cs(T )−cs(0)
and is modeled as a Brownian bridge. Its uncertainty is
derived analytically, using the equations for the variance
and covariance of points in a Brownian bridge process
[64]. One time period during Run-1d did not have a trol-
ley run after the muon data period due to the magnet’s
safety monitoring systems triggering a ramp down, so the
tracking error for that period is instead modeled as a ran-
dom walk. Because each trolley baseline is corrected for
temperature (see Sec. V B 4), this model also accounts
for temperature drift in the fixed probes that influence
their frequency measurements.

To averageN measurements x with normalized weights
a, we need to know the N×N covariance matrix Σ. Then
the average of the measurements is a ·x, and the variance
of the average is a ·Σ · a. In our case, the weights a are
related to the number of muons in the storage ring at a
given time (described in detail in Sec. VII). The expecta-
tion value of a random walk or Brownian bridge is zero, so
there is no correction associated with the tracking error.
However, the variance of either process is not zero. For a
Brownian bridge between times 0 and T , the covariance
between any two times during the process t1 ≤ t2 is

σ(t1, t2) = M
(T − t2)t1

T
, (24)

where M parametrizes the rate of the process. The value
peaks at t1 = t2 = T/2, showing that the variance of the
Brownian bridge is largest in the middle of the process
and decreases to zero at either bound. We use this func-
tional form to construct the covariance matrix for all the
measurements between adjacent trolley runs, and then
use that matrix to calculate the variance on the average
of the measurements described above; the tracking error
uncertainty is the square root of the variance on the aver-
age. The same process is repeated for the unbookended
data period, except the drift is modeled as a random
walk instead of a Brownian bridge. The covariance of a

Data subset Number of Tracking error ∆
trolley pairs (ppb)

Run-1a 1 43
Run-1b 2 34
Run-1c 3 25
Run-1d 5 22

TABLE IX: The tracking error uncertainty for each data
subset in Run-1. Note that the uncertainty decreases
with the number of trolley pairs in the subrun.

random walk is

σ(t1, t2) = Mt1 (25)

for t1 ≤ t2 and the same M as above. The variance
during a random walk increases linearly in time.

To use either Eq. (24) or (25), we must have an es-
timate of the parameter M . As alluded to above, M
is estimated by considering the differences cs(T )− cs(0)
for each trolley run pair. These differences for each of
the 72 × 9 station-(trolley) moment combinations can
be interpreted as sampling the random walk space and
can be normalized by the square root of the time be-
tween the measurement for each trolley pair, which varies
from 54 to 88 h. For each station-moment combination,
the RMS of the normalized samples is taken as an esti-
mate of the random walk rate. The azimuthal average
of the random walk rate is calculated for each moment,
taking into account correlations between adjacent sta-
tions using an autocorrelation function of the differences
cs(t = T ) − cs(t = 0) over s. It is then used in the
equations above to calculate the covariance matrix Σ.

Any two separate random walks (or Brownian bridges)
are uncorrelated with each other. When we average mul-
tiple trolley pairs within each data subset, the tracking
error uncertainties become smaller. The more trolley
pairs averaged in a single data subset, the lower the un-
certainty will be for that subset. Therefore, despite the
uncertainty being ∼40 ppb for a single trolley pair (or
73 ppb for the period with no closing trolley run), the
uncertainties for the four data subsets are significantly
lower, 22 to 43 ppb. The values of the synchronization
uncertainty for each subset are shown in Table IX.

VII. THE MUON-WEIGHTED MAGNETIC
FIELD

The average magnetic field experienced by the muons
as they precess in the storage ring is expressed in terms
of ω̃′p (see Eq. (3)). It is determined by weighting the
frequency maps with the muon distribution and averag-
ing over space and time. The quantities needed for this
determination are the muon distribution as a function
of space and time, ρµ(r, y, φ, t) and calibrated, interpo-
lated frequency maps ω′p(r, y, φ, t) that represent the field
in the ryφ basis (see Fig. 3). Over a time interval [0, T ],
with a muon distribution bounded radially and vertically,
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FIG. 19: A typical example of the muon distribution
measured by the trackers after integrating for several
hours. This distribution is used to weight the field map.

the resulting muon-weighted magnetic field, expressed in
terms of the shielded proton precession frequency is,

ω̃′p =

∫ T
0

dt
∫ 2π

0
dφ
∫ r2
r1

dr
∫ y0
−y0

dy rρµ(r, y, φ, t)ω′p(r, y, φ, t)∫ T
0

dt
∫ 2π

0
dφ
∫ r2
r1

dr
∫ y0
−y0

dy rρµ(r, y, φ, t)
.

(26)

A. Time Averaging

Before evaluating the integral over t in Eq. (26), we
consider the relevant timescales involved. The storage
time of a muon injection (the intrafill time) is on the order
of hundreds of microseconds and is considered in-depth in
Appendix C. On the submillisecond timescale, the mag-
netic field can be considered constant (see Sec. VIII for
small corrections to this assumption). On the timescale
of tens of seconds, the magnetic field drifts, but the
muons’ spatial distribution remains constant, except for
fluctuations in the total number of muon decays detected.
The calorimeter data acquisition produces data binned
on this timescale, allowing us to track the number of
muon decays detected. On the timescale of hours, the
trackers sum the muons’ spatial distribution information,
generating distributions such as the one shown in Fig. 19.
On the timescale of days, driven by the time between trol-
ley runs, we produce a value for ω̃′p for each trolley pair,
and then combine the results from multiple trolley pairs
into four data subsets, Run-1a–d. These timescales are
summarized in Table X

Each trolley run pair is broken down into the same
time bins as the tracker data. These bins, indicated by
index q, span the time intervals bounded by sq ≤ t ≤ uq,
where uq−sq ≈ 3 h. Equation (26) is evaluated assuming
that the muons’ spatial distribution is constant, but the
overall number varies. Essentially, ρµ is factored into a

FIG. 20: The number of muons integrated per bin over
a typical trolley run pair and the azimuthally averaged
dipole field over the same time. The number of
integrated muons, represented by the number of
observed decay positrons, is used to weight the field
when evaluating the integral over time in Eq. (26).

time-dependent and a time-independent part,

ρµ(r, y, φ, t) = N(t)σµ(r, y, φ). (27)

The time-averaged field for each time bin q is the aver-
age of the field weighted by the number of muon decays
detected in that bin,

ω′p,q(r, y, φ) =

∫ uq

sq
dt ω′p(r, y, φ, t)N(t)∫ uq

sq
dt N(t)

, (28)

where the subscript q indicates the average of the quan-
tity in bin q.

The decay positrons detected in the calorimeter are
used as a proxy measurement for the number of muons
in the storage region N(t). These data are available in
the intermediate time bins (approximately 10 s) and are
integrated for each tracker bin q. Figure 20 shows a typ-
ical detected muon decay time series and the dipole field
over a 60-h time interval.

Using Eqs. (27) and (28), we can write Eq. (26) for an
individual bin q:

ω̃
′

p,q =

∫ 2π

0
dφ

∫ r2
r1

dr
∫ y0
−y0dy rσµq (r, y, φ)ω′p,q(r, y, φ)∫ 2π

0
dφ

∫ r2
r1

dr
∫ y0
−y0dy rσµq (r, y, φ)

.

(29)
Note that σµq is the density determined by the trackers
and beam dynamics, and the finest binning we have for
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Name Duration Usage

Intrafill ∼ 700 µs Storage time for each muon injection
Magnetic-Field Measurements ∼ 1 s Measurements of magnetic field
Calorimeter Bins ∼ 10 s Tracking field drift, muon distribution time-dependence
Tracker Bins ∼ 3 h Tracking drift of muon distribution
Trolley Pairs ∼ 3 d Resynchronization of the fixed probes by the trolley
Data Set 1-5 trolley pairs Combination of ωa and ω̃′p

TABLE X: The six relevant timescales used in the muon-weighted averaging and magnetic-field analysis. Each time
scale is averaged over and then binned into the next highest scale. This procedure is repeated up to the data set
level.

the muon distribution. The muon distribution is recon-
structed from tracker profiles and propagated to other
azimuthal locations using beam dynamics simulations.
After the three spatial integrals in Eq. (29) are evaluated
for each of the tracker bins q (see next Sec. VII B), the
resulting set of ω̃′p,q are averaged together, weighted by
the total number of detected positrons in each bin, to
determine ω̃′p over the trolley run pair interval [0, T ],

ω̃′p =

∑
q Nqω̃

′
p,q∑

q Nq
, (30)

with Nq =
∫ uq

sq
dt N(t).

B. Spatial Averaging

The spatial averaging procedure described here is per-
formed for each time bin q described above. The result
of the spatial averaging is ω̃

′

p,q for each time bin, used
as input for Eq. (30). The azimuthal part of the integral
is broken down into azimuthal bins, indexed by j, set by
the spacing between the fixed probe stations. Bin j is de-
fined by bounds ηj ≤ φ ≤ ψj with ψj − ηj ≈ 2π/72 rad.
We average the muon distribution within each azimuthal
bin and use that average value σµq,j(r, y) for all positions
in the bin, so the azimuthal portion of the spatial integral
is

1

ψj − ηj

∫ ψj

ηj

dφ σµq ω
′
p,q(r, y, φ) = σµq,j(r, y)ω′p,q,j , (31)

with

ω′p,q,j(r, y) =
1

ψj − ηj

∫ ψj

ηj

dφ ω′p,q(r, y, φ) (32)

is the frequency map azimuthally averaged over a given
fixed probe station. As before, the subscript j indicates
that the quantity has been averaged over azimuthal bin
j (and the subscript q continues to mean the quantity
is averaged over time bin q). The azimuthal average in
these bins is the natural product of the field tracking
described in Sec. VI. The full azimuthal integral is then
just the sum over j for all 72 stations, weighted by each

station’s azimuthal extent
ψj−ηj

2π .

The two-dimensional integral of r and y is also per-
formed per azimuthal bin. Assuming that the muon dis-
tribution is independent of azimuth within a bin j, the
integral can be written

ω̃′p,q,j =

∫ r2
r1

dr
∫ y0
−y0dy rσµq,j(r, y)ω′p,q,j(r, y)∫ r2

r1
dr
∫ y0
−y0dy rσµq,j(r, y)

. (33)

The magnetic field is parametrized with moments, dis-
cussed in Sec. I D 1, so the field ω′p,q,j(r, y) can be written

ω′p,q,j(r, y) =
∑
i

mi,q,jfi(r, y), (34)

where the functions fi(r, y) encode the spatial depen-
dence of the moments, i, in Eq. (6) (shown explicitly in
Table I) and the mi,q,j are the moment strengths aver-
aged in bins q and j. The sum runs over all of the tracked
moments. Combining Eqs. (33) and Eq. (34) yields

ω̃′p,q,j =
∑
i

mi,q,j

∫ r2

r1

dr

∫ y0

−y0
dy rσµq,j(r, y)fi(r, y)

=
∑
i

mi,q,jki,q,j , (35)

with

ki,q,j =

∫ r2

r1

dr

∫ y0

−y0
dy rσµq,j(r, y)fi(r, y). (36)

These k parameters are calculated for each azimuthal
bin j in each time bin q. The values in the time and
azimuthal bins are combined as described above, yielding
the value of ω̃′p for the full trolley run pair. The average
field experienced by the muons in a given dataset is

ω̃′p =

〈∑
i

ki,q,jmi,q,j

〉
q,j

, (37)

where the index i is summed over all moments and the
brackets indicate the quantity is averaged over the time
bins q and azimuthal bins j. The averaging is performed
as prescribed in Eq. (30). Sample values of the ki param-
eters (averaged over all bins) are shown in Fig. 21. Note
that k1 = 1 analytically.
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FIG. 21: The amplitudes of the muon beam moments ki
decrease as i increases. The moments with positive
(negative) amplitudes are shown in dark (light). This
decrease implies that the effect of higher-order moments
on the average field is suppressed by the muon
distribution. The muon distribution can be thought of
as a low-pass filter on the moments of the field. The
vertical line show the truncation order. All moments
(and beam parameters) to the right of the vertical line
are truncated.

C. Systematic Effects

Table XI shows the corrections and uncertainties re-
lated to the muon beam distribution. Because the field
is highly uniform, ω̃′p is dominated by the dipole field
contribution. The corresponding uncertainties, δω̃′p can
be grouped into terms that include uncertainties in the
field moment (kiδmi) and terms that include uncertain-
ties in the muon beam moments (miδki). The beam and
field moments are uncorrelated and thus no cross terms
contribute to the overall uncertainty for ω̃′p.

Contribution Correction [ppb] Uncertainty [ppb]
Uncorrelated Uncertainties

δin-fill -1 – -4 0
Correlated Uncertainties

δtracker x 0 1 – 9
δtracker y 0 7 – 19
δtracker accept 0 1 – 2
δy cod B-rad 0 2 – 3
δcod ESQ 1 – 2 4 – 5
δcalo accept 0 0 – 3

Total -3 – 1 11 – 20

TABLE XI: The contributions to the uncertainty on ω̃′p
from miδki terms are shown. Ranges are specified when
the corrections or uncertainties vary across the four
Run-1 data subsets.

The systematic effects from the field moment uncer-

tainties have been described in detail in the previous
sections on the frequency extraction (Sec. II A), probe
calibration (Secs. III and IV B), trolley measurements
(Sec. V), and the magnetic field tracking (Sec. VI).
When weighted by the muon distribution, terms corre-
lated across measurements contribute 50-55 ppb per data
subset. Additional terms are uncorrelated for each trol-
ley pair and generate contributions between 22-43 ppb for
the four Run-1 data subsets. These results are collected
in the final uncertainty table in Sec. IX.

The remaining systematic effects from the muon dis-
tribution uncertainties δki are due to the uncertainty in
the muon decay position reconstruction from the track-
ers and the uncertainty from beam dynamics simulations
used to propagate the tracker profiles to other azimuthal
locations. The general process for estimating these sys-
tematic uncertainties is to introduce reasonable pertur-
bations to the distributions before calculating the ki. The
resulting variation of the beam parameters is used to es-
timate the uncertainty on the muon weighting.

1. Muon Tracker Systematics: δtracker

The trackers used to measure the muon distribution
are affected by several sources of uncertainty estimated
by simulation, including misalignment of the physical de-
vices, their resolution, and their spatial acceptance based
on the decay position of the parent muon. For each vari-
ation, the measured muon distribution is modified based
on the uncertainty of the parameter being studied. New
ki parameters are determined for the resulting muon dis-
tribution. The resulting variation of the beam param-
eters is used to estimate the uncertainty on the muon
weighting.

Uncertainty in the tracker alignment leads to a
±0.6 mm horizontal and vertical position uncertainty in
the measured muon distribution. The vertical position
uncertainty couples to the skew quadrupole resulting in
an uncertainty δtracker y. For the different conditions of
the four data subsets, this uncertainty was typically 7
to 19 ppb. A similar procedure was followed to estimate
the uncertainty from the trackers’ horizontal alignment,
resulting in δtracker x =1 to 9 ppb. The trackers’ spa-
tial acceptance uncertainty results in δtracker accept = 1
to 2 ppb.

2. Closed Orbit Distortion: δcod

Several effects can distort the muon beam’s closed or-
bit away from its ideal orbit, leading to an azimuth-
dependent mean position of the muon distribution. This
azimuthal dependence on the beam can couple to az-
imuthally dependent variations in the field gradients,
leading to a shift in ω̃′p. The dominant closed orbit dis-
tortion (COD) contribution is the lowest-order Fourier
component of the dipole moment vs azimuth, and is in-
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cluded in the standard muon distributions used for muon
weighting. Additional distortions lead to corrections and
uncertainties. The presence of a radial mean field with
azimuthal variation would cause a vertical COD; a mis-
alignment of the ESQ plates causes both a radial and ver-
tical COD by steering the beam. The discrete structure
of the ESQs, as well as higher-order Fourier terms, also
cause small distortions. Corrections and uncertainties
due to COD effects are evaluated by generating a distri-
bution of possible CODs based on each error source, shift-
ing the muon distribution in each azimuthal bin, and cal-
culating the resulting distribution of ki parameters which
is used to propagate the uncertainty. The radial and ver-
tical CODs due to ESQ plate misalignment contribute
corrections of ' 2 ppb with uncertainties of δi,cod ESQ =
2 to 4 ppb. An additional uncertainty is attributed to the
beam distortions generated by the radial component of
the magnetic field and its uncertainties, δy cod B-rad = 2
to 3 ppb.

3. Calorimeter Acceptance: δcalo accept

The muon distributions used for muon weighting rep-
resent the true muon distribution in the ring. A subset of
these muons enter the ωa analysis according to the spa-
tially varying calorimeter acceptance. Each muon in this
subset has a different probability for its decay positron to
be detected by a calorimeter and also experiences a dif-
ferent magnetic field along its trajectory. A set of muon
distributions representing this subset is generated using
spatial weighting based on calorimeter acceptance as a
function of muon beam trajectories. The ki parameters
are calculated for this set of muon distributions and used
to evaluate the resulting uncertainty. A maximum un-
certainty δcalo accept = 3 ppb is identified.

4. In-fill Time Dependence: δin−fill

The spatial muon distribution is approximated as con-
stant over time in the fill. However, during Run-1, it was
changing during the fill due to instabilities in the ESQ
system [3]; this problem was fixed before Run-2. This
leads to a time dependence of the muon-weighted field
over each muon beam pulse.

Time-binned azimuthally averaged muon distributions
are used to calculate the ki and the corresponding muon-
weighted field as a function of time in the fill. The result-
ing time dependence, approximated by a linear fit, leads
to a correction to the muon-weighted field δin-fill < 4 ppb.

D. Results

The muon distribution is highly symmetric but slightly
outside the magic radius around the storage ring, leading
to low values for the ki parameters for i > 1. Because the

beam is not centered, the leading order, nondipole terms
couple to the normal quadrupole and normal sextupole
moments of the field, and are k2 ∼ 0.15 and k5 ∼ 0.09.
All of the other parameters are at least a factor of 10
lower (see Fig. 21). The low-k values combined with the
low values of the higher-order field moments mean that
the effect on the average field experienced by the muons
from their distribution over the nonuniform part of the
field is small. The largest effect comes from the normal
sextupole (∼ 8 Hz, ∼ 128 ppb), which is larger than the
effect of the normal quadrupole due to dedicated shim-
ming efforts to reduce the normal quadrupole around the
ring. The net difference between the average field and the
dipole field is of the same order.

VIII. FAST TRANSIENT FIELDS

Two time-dependent, µs-timescale magnetic fields are
induced by the pulsed magnetic and electric fields from
the kicker and ESQs that are synchronized with each
muon fill. These transient magnetic fields are not present
during the trolley runs and must be included as correc-
tions to ω̃′p. The fixed probe system measures the field at
intervals of 1.2 to 1.4 s, typically asynchronously with re-
spect to muon injection. The fast transient fields change
on much shorter timescales. Additionally, the skin depth
effect in the aluminum vacuum chamber walls shields the
fixed probes from both of these transients, which origi-
nate in the muon storage region. For these reasons, both
transients required unique measurement solutions.

The kicker transient was studied with two dedicated
fast magnetometers for the current experiment. The
transient associated with the ESQs was discovered in
studies of correlations of the fixed probe measurements
with the muon injection. A set of NMR probes was de-
veloped to measure the ESQ transient.

An additional systematic uncertainty is assigned to
transient fields associated with the booster ring near the
muon campus at FNAL. By synchronizing the field mea-
surement systems to the injection cycles with the pulsed
systems turned off, we were able to apply an upper limit
of 7 ppb to any stray transient fields from the booster.

A. Kicker Transient Fields

A set of three kicker magnets reside in the storage ring
vacuum chambers [3]. The kickers reduce the 1.45 T field
locally by roughly 22 mT for 150 ns to deflect the injected
muons onto the stored orbit. This kick consists of a cur-
rent pulse through three pairs of thin curved aluminum
plates, each 1.27 m long, that subtend an angle of 62.5°
at a radius of 4.5 cm in the xy plane. The pulsed field in-
duces eddy currents in the surrounding metal, leading to
field perturbations in the storage volume during the times
muons are stored. The fixed NMR probes are shielded
from this rapid transient field by the skin depth effect
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of the aluminum vacuum chambers and do not have the
required measurement bandwidth.

1. Measurement

We built two Faraday magnetometers to measure this
transient, one similar to the one used in E821 [65] and the
other substantially improved against vibrations caused
by the pulsing systems, which we are going to describe
next. Such magnetometers exploit the rotation of the po-
larization angle θ of linear polarized light that occurs in
almost any isotropic dielectric in a magnetic field B par-
allel to the light propagation direction ∆θ(t) = V B(t)L.
Here L is the length, and V is the Verdet constant of the
dielectric.

The magnetometer (see Fig. 22a) fits between the
kicker plates and was made without any metal. Light
from a 405 nm diode laser passed through a Faraday iso-
lator into a multi-mode fiber. The fiber went through
a vacuum flange to the magnetometer. The unpolarized
light was collimated, polarized by a polarizing beam split-
ter cube (PBSC), and then its plane of polarization was
rotated by a half-wave plate. The light reflected off a
45° mirror, and then passed through two terbium gal-
lium garnet (TGG) crystals, each 5 mm in diameter with
their 14.5 mm long axis parallel to By. The Verdet con-
stant was measured to be V (405 nm) ≈ 450 rad/T ·m.
The beam was reflected and passed through another
PBSC which directed s- and p-polarized light to differ-
ent return fibers. Time dependence in the magnetic field
B(t) changes the plane of polarization and the fraction
of light entering each of the two return fibers. Typ-
ically, ≈ 1 mW was detected in photodiodes attached
to each fiber. The photocurrents were subtracted, am-
plified, and digitized, yielding a voltage signal of the
form V (B) = V0 cos (2V BL+ φ) where φ depends on
the waveplate angle.

The magnetometer was calibrated in two steps. The
magnet was ramped from full field, 1.45 T at 5173 A, to
0 A at a rate of −0.5 A/s while the magnetometer volt-
age was recorded as a function of magnet current V (I).
A Hall sensor was inserted near the magnet gap and
recorded B(I). From the two measurements, the sen-
sitivity dV/dB = (dV/dI) × (dI/dB) was determined.
Prior to calibration, the magnetometer was inserted be-
tween the kicker plates in the storage volume and the λ/2
waveplate adjusted to maximize the sensitivity dV/dB
at the full field. Constraints on the design made precise
waveplate adjustment difficult and the actual maximum
dV/dB occurred at 5124 A, which was used for subse-
quent measurements. The calibration value extracted at
this current was

dV

dB
= (12.5 mV/A)× (1 A/183 µT)

= 68.3(7) mV/mT.

Because the magnetometer baseline voltage depends on

the laser current and the coupling efficiency into the in-
cident fiber, the data were scaled to the voltage observed
during calibration. This correction was less than 7 %.

In addition to showing the expected kicker pulse, the
signals showed a repeatable pattern of oscillations in the
few kHz range that grew after each kicker pulse and
spanned ±1 µT. This pattern is thought to be due to
vibrations in the cages holding the kicker plates that jos-
tled the magnetometer, causing variations in the detected
light. The system was run at magnet currents of 4841 and
4326 A to reduce this background. Here, dV/dB ≈ 0,
corresponding to all of the light going into the lower and
middle return fibers, respectively. At these settings, fluc-
tuations in detected light are ascribed to vibration, with
sensitivity to real magnetic fields reduced by at least a
factor of 20. The final result was assembled by record-
ing data at minimum sensitivity dV/dB ≈ 0 at 4841 and
4326 A, weighting it by 0.5 and subtracting it from the
maximum sensitivity dV/dB ≈ 68 mV/T data acquired
at 5124 A. The result is shown in Fig. 22b.

2. Analysis

The data are fit to a decaying exponential from 30 µs to
700 µs after the kick (t = 0 µs), corresponding to the nom-
inal fit range of the ωa analysis. The total uncertainty
includes those from calibration, fit uncertainty, and back-
ground subtraction. We estimate an uncertainty on the
background subtraction of 0.6 µT.

The kickers subtend about 8.5 % of the storage ring az-
imuth, so the results were scaled by 0.085 to get the av-
erage kicker transient seen by the muons, assuming that
the transients do not extend beyond the kicker plates.
The magnetometer measured the field in the center of
the storage volume. Simple models of the transient’s
spatial dependence suggest it drops off in the horizon-
tal direction from the center but increases in the vertical
when closer to the fields’ sources. A weighted average of
the muon distribution with this transient spatial depen-
dence suggests the average muon sees a slightly smaller
transient, reduced by a factor of 0.94.

For a field perturbation of the form ∆B(t) =
∆B(t0) exp(−(t − t0)/τk), the fractional effect on the
muon anomalous precession frequency for a fit starting
at t = t0 = 30 µs and ending at measurement time
t� (γτµ) is

∆ωa
ωa
≈ ∆B(t0)

B(t0)

(
τk

τk + γτµ

)2

≈ −1.87 µT

1.45 T
× 8.5 %× 0.94×

(
68 µs

68 µs + 64 µs

)2

≈ −27(37) ppb (38)

The uncertainty on the correction is estimated from 15 %
on amplitude, 25% on τk (17 µs), 25 % on azimuthal
weighting factor, 25 % on the transverse weighting fac-
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(a)

(b)

FIG. 22: (a) Schematic of the fiber magnetometer. The
device is about 6 cm tall. (b) The signal measured by
the fiber magnetometer after subtracting the vibration
background. The measurements and a fit to the
transient are shown. The gray shaded band represents
the associated uncertainty of ±0.6 µT. Muon data are
fit from 30 µs to 700 µs after the kick.

tor, and ± 0.6 µT due to uncertainties on the vibrating
background subtraction.

A second Faraday magnetometer gave consistent re-
sults. This magnetometer directed the light through
open-air paths rather than optical fibers. It used TGG
crystals and a free-space laser propagation directed by
mirrors inside the storage volume, while all other opti-
cal elements were on a breadboard outside the storage
volume, allowing excellent control of systematic effects
except for a weak sensitivity to vibration.

B. Electrostatic Quadrupole Transient Fields

During studies of the correlation between the fixed
probe measurements and the muon injection time, a time-
dependent, µs-scale transient magnetic field was discov-
ered. Further studies revealed that the transient field
is caused by mechanical vibrations of the charged plates
induced by pulsing the ESQs. The perturbation caused
by this transient field is large enough to require precise
measurements; however, the fixed probe system cannot
directly measure the field to the required precision, pri-
marily due to the skin depth effect of the aluminum vac-
uum chambers.

The ESQs are arranged into four stations, each con-
sisting of a short section, which subtends 13° in azimuth,
and a long section approximately twice the length of a
short section. The amplitude of the transient field gen-
erated by a short section is maximized near the section’s
azimuthal center. Observations showed that the long sec-
tions can be approximated as two short sections in series.
In total, the ESQs cover 156° (43.3 % of the ring). Av-
eraging the perturbation to the magnetic field over the
whole ring reduces the total effect accordingly.

The dedicated transient measurements were performed
at a lower high voltage (HV) (18.2 kV) than production
runs (18.3 kV and 20.4 kV). From first principles, the
amplitude of the magnetic-field transient scales quadrat-
ically with the ESQ voltage, which was confirmed with
in situ measurements in a range from 0 kV to 18.2 kV.
Therefore, we can correct the measurements to the HV
setting used during any given production period.

1. Measurement

The dedicated measurements were made by a set of
trolley NMR probes sealed inside polyether ether ke-
tone (PEEK) plastic tubes for vacuum compatibility and
read out through the fixed probe NMR system. The
NMR system is synchronized with the ESQ pulsing sys-
tem; the ESQ trigger usually precedes muon injection by
23 µs. The ESQs remain powered for the duration of the
muon precession fit range, which ends 650 µs after beam
injection, corresponding to 673 µs after the trigger. The
ESQs discharge 700 µs after the trigger. The beam is de-
livered in a series of eight such pulses spaced by 10 ms.
The second series of eight pulses occurs 266.7 ms after
the first series. The entire structure of 16 beam pulses
repeats every ≈1.4 s. Reading NMR measurements from
every fixed probe in the ring takes 1.2 s. The frequencies
of the FIDs are extracted in 0.4-ms-long fit windows. No
additional frequency structures with fixed relations to the
ESQ pulsing time are observed within these windows.

The transient’s time dependence was measured by
varying the delay time between the ESQ trigger and the
NMR measurement. Figure 23a shows the time structure
of the transient field, including a closeup in Fig. 23b of
the transient over a single pulse.
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(a)

(b)

FIG. 23: (a) The time structure of the ESQ transient is
determined by scanning the delay time between the
pulse trigger and the NMR measurement. The gray
region corresponds to the time intervals in which the
ESQ are charged and muons can be used for the muon
precession fits. (b) The same time structure zoomed in
to a single beam pulse. The black dashed line indicates
the time of the muon injection, the dotted line the
earliest start of the precession fits.

The measurements of the transient’s dependence on
the azimuthal position within an ESQ were made in one
half of a single long section, chosen for the accessibility
in the vacuum chamber. The long sections are approx-
imated by two identical short sections in series by pins
[66]. The transient was measured at seven positions along
one ESQ section as shown in Fig. 24. Additional mea-
surements were made with one probe in each of the eight
sections.

FIG. 24: The relative field shift caused by the transient
as a function of the azimuthal position with respect to
the center (φ = 0 deg) of a long ESQ. The transient is
strongest in the center of the ESQ section, falling off
toward the edges.

2. Analysis

Because of the skin depth effect at 100 Hz (the ESQs’
pulse rate), the fixed probes’ sensitivities are reduced by
70 %. Harmonics are attenuated even further, making
the fixed probes mostly insensitive to the transient field’s
substructure. By comparison, the trolley probes used in
the dedicated PEEK measurement system have a 0.5-
mm-thick aluminum shell and are attenuated by less than
5 %. The fixed and PEEK probes also experience a phase
delay due to the aluminum skin depth accounted for in
the analysis.

Because each ESQ pulse in the series causes a mechan-
ical vibration in the plates, the transient’s precise struc-
ture is affected by previous pulses. Figure 23b shows
the time structure for the fourth pulse in the series as
an example. The transient field, which was extensively
mapped in a single section, is then averaged over its az-
imuthal extent. The transient at the center of all sections
was measured, but the azimuthal and transverse varia-
tions were only measured in half of one long ESQ; the
volume average of the effect over this section was scaled
by the measurement at the center of each of other seven
sections.

The transient is not constant over the time of a muon
injection. Different weighting methods were developed
to model how the muons sample the transient field over
their lifetime. Each method is propagated through the
analysis as a systematic check. The final determination
produces an accurate correction to ω̃′p and assigns a very
conservative estimate of the uncertainty due to this effect.
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Systematic Source Uncertainty (ppb)

Time and Azimuthal Structure 77
Second Pulse Train 14
Repeatability 13
Skin Depth 13
Field Drift 10
Frequency Extraction 5
Radial Dependence 4
Probe Positioning 2

Total ESQ-Transient Uncertainty 82

TABLE XII: The sources of uncertainty in the
determination of the ESQ transient measured at ESQ
HV=18.2 kV. The total ESQ-Transient uncertainty is
the dominant uncertainty in the determination of the
ω̃′p uncertainties for Run-1.

FIG. 25: The distribution of the observed ESQ transient
effect over all stations and sections. The full width of
the distribution is used as the uncertainty (±178 ppb)
in the ESQ region and scaled down by the geometrical
coverage factor of the ESQ in the storage ring (0.433).

3. Systematic Effects

The uncertainty sources for the Run-1a data subset
are summarized in Table XII. The substructure in time
and azimuth of the ESQ transient is the dominant un-
certainty. It arises because the azimuthal dependence of
only one of the 12 ESQ sections was measured, and the
substructure of the ESQ transient was not measured un-
til Run-3. Because of the length of time between these
measurements and Run-1, we applied a very conservative
estimate of the uncertainty to the Run-1 data. Figure 25
shows the distribution of the observed ESQ transients for
the four ESQ stations.

The ESQ transient studies were performed using the
first train of eight beam pulses. It is expected that the
second group of eight pulses behaves like the first group
because the vibrations and the field transient completely
die out before the next set of pulses begin. A simple study

Data subset Correction (ppb) Uncertainty (ppb)

Run-1a -15 83
Run-1b -19 103
Run-1c -19 103
Run-1d -15 83

TABLE XIII: The total correction and uncertainty on
the determination of ω̃′p from the ESQ transient. The
data subsets have different values because they had
different ESQ HV values. The dedicated measurements
shown in Table XII are scaled for each data subset
using the known quadratic relation between transient
amplitude and HV setting.

was conducted that confirmed this expectation. The av-
erage transient from the first train and a second train
agreed to within 14 ppb, which is used to estimate the
uncertainty.

Other systematic checks include measuring the tran-
sient beyond the azimuthal extent of the ESQ sections
and the radial dependence of the transient. Both of
these observed variations are added as uncertainties. The
measurements were checked for repeatability, which was
found to be at the 13 ppb level. This number was con-
servatively assigned as an uncertainty. Linear drift in
the dipole field during the measurement is removed by
tracking the local fixed probe drift. Higher-order drift is
small on the time scales of these measurements (3 hours).
Estimates of this drift are made using PEEK probe mea-
surements outside of the ESQ stations.

The final correction to each data subset and the uncer-
tainty due to the ESQ transient are shown in Table XIII.
Note that the uncertainty values differ from Table XII
because they are scaled to the HV settings from each
data subset individually.

IX. FINAL RESULTS

This paper has covered the full analysis chain for the
determination of the magnetic field, ω̃′p(Tr), for the Muon
g−2 Experiment. Run-1 was broken down into four data
subsets, Run-1a through Run-1d, defined by the settings
for the kicker and ESQs. The values of ω̃′p(Tr) are com-
bined with the corresponding values of ωa into the ratio
ωa

ω̃′p(Tr) for each data subset. The ratios are then combined

into the single Run-1 value that is input into Eq. (4) to
calculate aµ [1].

The instrumentation and measurements in this paper
represent a significant improvement over the BNL ex-
periment. They are part of a well-studied chain of cali-
brations and synchronizations where all of our measure-
ments are referenced to the absolute calibration of the
water calibration probe that was cross-checked with a
novel 3He probe.

Several key field analyses (the trolley calibration, field
tracking, and muon weighting) were performed by at
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Dataset ω̃′p(Tr)/2π (Hz) Uncertainty (ppb)

Run-1a 61, 791, 871.2 115

Run-1b 61, 791, 937.8 127

Run-1c 61, 791, 845.4 125

Run-1d 61, 792, 003.4 108

Average Over All Datasets

Field Measurements 56

ESQ Transient 92

Kicker Transient 37

Total 114

TABLE XIV: The final result for ω̃′p(Tr) for each of the
four datasets in Run-1. These numbers represent the
Larmor precession frequency of protons in a spherical
water sample in the same magnetic field experienced by
the muons. The uncertainties are in ppb of the
measured value of ω′p.

least two mutually blinded independent teams that, in
all cases, found agreement below our total uncertainty.

The ESQ transient discovery and measurement repre-
sents a significant effort to characterize each system, as
well as interactions between systems. A dedicated mea-
surement campaign quickly quantified the systematic cor-
rection to the measured field and the corresponding un-
certainties. Additional measurements taken after Run-1
will further constrain the systematic effect of the tran-
sient.

The final results of the field analysis are summarized
in Table XIV. Tables XV and XVI summarize the sys-
tematic corrections and uncertainties covered in this pa-
per. The uncertainty is dominated by the ESQ tran-
sient. These uncertainties are not strictly independent,
leading to correlations between the four data subsets.
Most uncertainties are treated as fully correlated between
the data subsets; only the tracking error discussed in
Sec. VI B is treated as uncorrelated.

The total systematic error on ω̃′p(Tr) for Run-1 is
114 ppb. The contributions from calibration, field track-
ing, and muon weighting total 56 ppb. The contribu-
tion from the ESQ and kicker transients are, respectively,
92 and 37 ppb. Most of the uncertainties in Tables XV
and XVI already meet the design goals. Improvements
to the determination of the ESQ transient are expected
in future analyses and combined with the improved tem-
perature stability of the magnet after Run-1, we expect
to reduce the total uncertainty below the 70 ppb target
for ω̃′p(Tr) in the future.
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Systematic Correction (ppb) Uncertainty (ppb) Reference

Absolute Calibration 0 15 Sec. III A

Trolley Calibration 0 28 Sec. IV C

Configuration -1 23 Sec. V B 5

Trolley Baseline mtr(0) -13 25 Sec. V B

Fixed Probe Baseline mfp(0) 0 8 Sec. VI B

Fixed Probe Runs mfp(t) 0 1 Sec. VI B

Total -14 48

TABLE XV: The systematic corrections and uncertainties on ω̃′p(Tr) that do not vary by dataset.

Run-1a Run-1b Run-1c Run-1d

Systematic Corr. (ppb) Unc. (ppb) Corr. (ppb) Unc. (ppb) Corr. (ppb) Unc. (ppb) Corr. (ppb) Unc. (ppb) Reference

Trolley Temp 0 28 0 25 0 21 0 15 Sec. V B 4

Tracking Error 0 43 0 34 0 25 0 22 Sec. VI B

Muon Weighting 0 11 -1 14 1 16 -3 20 Sec. VII C

Transients -43 91 -46 110 -46 110 -43 91 Sec. VIII

Total -43 105 -47 118 -46 116 -45 97

TABLE XVI: The systematic corrections and uncertainties on ω̃′p(Tr) that vary by dataset.

Appendices
Appendix A: Data Quality Control

1. Instrument Failures

If an instrumentation failure occurs in a single mea-
surement, the corresponding value is dropped. In the
fixed probe system, such failures are caused by the ab-
sence of a proper RF π/2 pulse needed for the NMR
sequence to rotate the sample magnetization, by an out-
of-time triggered pulse or an out-of-time waveform digi-
tization.

The absence of the RF pulse leads to a noise-only wave-
form that is detected by the signal amplitude and power
of the FID. The switches in the multiplexer that swap
between RF pulse and signal path trigger on the ampli-
tude of the RF pulse. If the amplitude of the RF pulse
falls below a threshold, it is not propagated through the
system. The electronics components used show a small
temperature dependence that can cause slight variations
in the π/2-pulse amplitudes. If the RF-pulse amplitude
is close to the threshold, this can lead to isolated mea-
surements with missing π/2 pulses.

A signal from the control board triggers the fixed probe
RF pulse. If interference from other pulsed systems in
the experiment is picked up in these signal cables, an
out-of-time π/2 pulse can be fired. Depending on the
relative timing, this can lead to the superposition of two
RF pulses in the digitization window, or to reduced FID-
amplitude if the spins of the samples are not yet re-
covered fully. Figure 26 shows a comparison between
a waveform with a nominal FID and a waveform with

FIG. 26: FID with two RF pulses overlayed to a
nominal FID (gray) with a single RF pulse for reference.

two π/2 pulses. A second RF pulse, during the FID of
a previous pulse, has not yet decayed, and can lead to
spin-echo-like behaviors of the system. Such measure-
ments are mainly detected by a spike in the power of
the FID of the corresponding waveform. The power of
a waveform is defined as the sum of the squared analog-
to-digital converter (ADC)values. In Run-1, damaged
resistors in the pulsed electrostatic quadrupole systems
induced increased numbers of such false triggers. The re-
placement of the resistors and improved shielding of the
corresponding cables eliminated this issue.

Similar to false triggers of the π/2 pulses, the digitizer
can also be affected by picked up interference signals.
This results in digitization outside of the time window of
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FIG. 27: The field step size as a function of azimuth for
all field jumps during the Run-1a dataset. The vertical
gray lines indicate the positions of the radial stops
(solid: top, dashed: bottom).

the FID and with it in noise-only waveforms.

2. Severe Field Instabilities

Periods around severe field instabilities are not used
for the aµ determination. Such instabilities are driven by
magnetic field jumps, induced by the feedback systems,
or failing hardware.

In addition to the FID-wise quality flags, sudden steps
in the magnetic fields are noted in the “production” in-
dicating field instabilities. Such steps are identified by
frequency changes larger than 7 times the resolution of
a given probe, over a time of up to 8.5 s, in at least
40 probes.

a. Field Steps

Sudden field steps are either caused by external
changes of the environment, for example, a magnetic con-
nector moving into the proximity of the storage volume,
or by internal changes of the magnet. The latter are
denoted field jumps. It is believed that such jumps are
caused by the physical motion of the magnet coils in the
cryostat. The coils are held in place by radial stops [33].
Field jumps are believed to be caused by the coils releas-
ing tension by suddenly slipping radially. Figure 27 shows
the effect of such field jumps as a function of azimuth.
The positions of the jumps correlate with the radial stops.
The azimuthal extent of the jumps is roughly 130°, and
their integral over the whole ring typically cancels.

It has been shown that the fixed probes track the field
equally well before and after a field jump. The period
of 120 s before and after a jump is dropped from the aµ
determination.

b. Instabilities Caused by the Feedback System

Instrumentation failures as described in Appendix A 1
can lead to non-physical frequency determinations in the
online FID analysis. If this happens in a fixed probe
that is part of the feedback system, the un-physical fre-
quencies can impact the proportional–integral–derivative
(PID) loop. In such a case, the feedback reacts to the
non-real change of the magnetic field, driving the mean
magnetic field away from its set point. The control loop
takes some time to stabilize the field after such an excur-
sion.

If the mean over 10 consecutive measurement cycles of
the mean magnetic field as determined by the online FID-
analysis of selected probes is more than 10 Hz (162 ppb)
away from the set point, the control loop switches to
a more aggressive correction mode. These time periods
and 24 s before and 240 s afterward are dropped from the
determination of aµ to guarantee stable conditions.

In addition to instrumentation failures, field changes
on a timescale faster than the reaction time of the feed-
back control loop can also cause the mean frequency to
diverge from the set point. During some periods, the
magnetic field was affected by a roughly 2 min oscilla-
tion of unknown origin. In rare cases, the amplitude of
these field changes crossed the above-mentioned thresh-
old. The DQC also vetoes these periods. Adjustments to
the time constants of the feedback loop mitigated these
issues.

Appendix B: The Jacobian Matrix

As covered in Sec. I D 1, the trolley and fixed probe
systems provide measurements of the By field in differ-
ent bases, respecting the different spatial symmetries of
each set of probes. The two different sets of moments are
equivalent if the moments can be calculated perfectly.
However, because they are calculated as discrete approx-
imations, the two sets are not identical; there is a change-
of-basis matrix that takes moments from one basis to the
other. This is the Jacobian matrix in Eq. (20),

Js =
∂mtr

s

∂mfp
s

, (B1)

where it is important to note that the index s runs over
the number of fixed probe stations (72). Because there
are four different fixed probe configurations, there are
several different Jacobian matrices.

Analytically, it is easier to calculate J−1, which rep-
resents how the measured Cartesian moments change as
a function of the multipole moments. Because the field
is linear in the moment strength parameter, the deriva-
tive with respect to the multipole strength is simply the
measured Cartesian moments given a multipole moment
strength of 1. The Cartesian moments are calculated
from fixed probe measurements assuming a pure multi-
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FIG. 28: This shows a pure normal sextupole (m5)
field. The fixed probes (light circles) are all located in a
low region (dark). If we simply relate the dipole
component in the muon storage region (depicted by the
large circle) to the average of all six fixed probes, then
the presence of a nonzero normal sextupole would bias
the calculation.

pole input field. There are off-diagonal terms in the Ja-
cobian matrix caused by asymmetries in the fixed probe
positions.

There are two reasons that the two different bases are
not identical. First, the NMR probes’ discrete nature can
cause higher-order moments to alias into the extraction
of lower-order moments. The fewer probes used to cal-
culate a moment, the more this aliasing affects the mea-
surement. For example, the normal sextupole m5 causes
a false dipole reading in the fixed probes. Because of
their position above and below the muon storage region
as shown in Fig. 28 the fixed probes are all located in
regions where a shift due to a normal sextupole moment
has the same sign. When the average of all six probes is
taken, the contribution to the average field from a true
normal sextupole moment will be nonzero, causing a bi-
ased magnetic dipole determination. In a six-probe sta-
tion, the fixed probes can estimate the drift in the normal
sextupole. The Jacobian is calculated to determine how
much the sextupole aliases into the dipole measured by
the fixed probes. Then the station’s measurements of the
normal sextupole moment are used to correct the dipole
measurement. However, this correction procedure is im-
possible to repeat for higher-order moments that cannot
be distinguished due to the fixed probes configurations.

The second reason that the two bases are not identi-
cal is that the fixed probes’ position in a given station
is not always symmetric. For example, in standard four-

probe stations the position average is not at (0, 0) but
at (1.5 cm, 0). This radial shift means, for example, that
a simple average of measurements from the four probes
would be an approximation of the field at (1.5 cm, 0), not
at (0, 0). A correction would then need to be made that
mixes the measured moments, using the horizontal gra-
dient (m2) to correct the field on center (m1). There are
other fixed probe stations with geometric configurations
that are not already accounted for in the initial change
of basis. For example, all the fixed probes in the beam
injection vacuum chamber are translated radially inward
by 1 cm with respect to the nominal configuration. This
is shown in Fig. 29 together with the respective Jacobian
that contains off-diagonal elements. Another example is
the probe position in the four-probe stations of the vac-
uum chamber containing the trolley garage. These are
not symmetric across the x axis. Figure 30 summarizes
all relevant Jacobians for the various fixed probe station
configurations present in the experiment.

15.4 cm

3 cm 3 cm

O1 cm

x̂

ŷ

J =


1.0 0.222 0 0 2.681

0 1.0 0 0 0.444

0 0 1.0 0.444 0

0 0 0 1.0 0

0 0 0 0 1.0


FIG. 29: The geometry of an offset six-probe station
and the corresponding Jacobian matrix. The
change-of-basis matrix for offset stations is not
corrected; instead, the correction for the offset is done
with the Jacobian.

Appendix C: Derivation of the Muon Distribution

This appendix details the derivation of the muon distri-
bution used in Sec. VII from first principles. As covered
in Sec. I A, the instantaneous anomalous spin-precession
frequency of a muon in a magnetic field at position
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J6-probe =


1.0 0 0 0 2.632

0 1.0 0 0 0

0 0 1.0 0 0

0 0 0 1.0 0

0 0 0 0 1.0



J6-probe,offset =


1.0 0.222 0 0 2.681

0 1.0 0 0 0.444

0 0 1.0 0.444 0

0 0 0 1.0 0

0 0 0 0 1.0



J4-probe =


1.0 0 0 0 2.928

0 1.0 0 0 −0.667

0 0 1.0 −0.667 0

0 0 0 1.0 0

0 0 0 0 1.0



J4-probe,garage =


1.0 0 0 0 2.928

0 1.0 0 0 0

0 −0.195 1.0 0 0

0 0 0 1.0 −0.195

0 0 0 0 1.0



FIG. 30: The Jacobians for all four different fixed probe
layouts present in the experiment. Recall that m5 at
four-probe stations is estimated using the average of
their nearest neighbors. These estimates are used to
make corrections to the measured values, as seen in the
5× 5 Jacobians for the four-probe stations.

(r, y, φ) is

ωa = −aµ
q

m
B(r, y, φ). (C1)

The muon accumulates a phase as it travels around the
ring until it decays at time T . As the decay times are
short (64 µs), the field drift is negligible over the time of
the fill. The total phase accumulated by the muon from
the beginning of the integration time until its decay is

∆ϕk = aµ
q

m

∫ T

0

dt B(rµk
(t)), (C2)

where rµk
(t) is the muon’s position as a function of time.

The subscript k here indicates that this is a time average
for the kth muon. The average frequency of the kth muon
is

〈ωa〉k =
∆ϕk
T

. (C3)

To convert this to an integral over azimuth instead
of over time, the muon’s path of a function of time is
converted into the muon’s r− y position as a function of

azimuth. The following substitutions are made, assuming
that the path the muon follows is predominantly circular:

dt =
dl

c
=
rµk

(φ)dφ

c
=⇒ T =

R

c
Φ. (C4)

In this equation, Φ is the accumulated azimuth; on aver-
age, it will approach values of thousands of radians. The
term rµk

(φ) is the radius of muon’s path at a given az-
imuth, and R = 〈rµ〉 is the average radius. Making these
substitutions,

〈ωa〉k = aµ
q

m

1

RΦ

∫ Φ

0

dφ B(rµk
(φ))rµk

(φ). (C5)

This integral can be extended to three dimensions by
incorporating the muon path (in both the r and y direc-
tions) as delta functions and integrating r and y over the
muon storage region:

〈ωa〉k = aµ
q

m

1

RΦ

∫ Φ

0

dφ

∫ r2

r1

dr

∫ y0

−y0
dy
[
rB(r, y, φ)

× δ(r − rµk
(φ))δ(y − yµk

(φ))
]
. (C6)

All the information about the muon’s path is encoded in
the delta functions so the field map and volume element
r can be integrated over 3D space. It is useful to split
the integral over φ into a sum of integrals over single
revolutions around the storage ring. These integrals are
over φ ∈ [0, 2π) and are parameterized by n, the number
of cycles the muon makes. The muon makes N + ∆N
total cycles. Going forward, the ∆N fractional cycle is
neglected (it is, on average, less than 1% of the total ac-
cumulated azimuth). Assuming that there are an integer
number of cycles, the sum ranges from n = 0 to N − 1.
Note that Φ ≈ 2πN . The only terms in the integral that
depend on the parameter n are the delta functions, so
the sum can be included in the integrand, yielding

〈ωa〉k = aµ
q

m

∫ 2π

0

dφ

∫ r2

r1

dr

∫ y0

−y0
dy

[
rB(r, y, φ)

× 1

2πNR

(
N−1∑
n=0

δ[r − rµk
(2πn+ φ)]

× δ[y − yµk
(2πn+ φ)]

)]
. (C7)

The sum over delta functions is the distribution of the
kth muon’s position in the ring,

ρk(r, y, φ) =
1

2πNR

(
N−1∑
n=0

δ[r − rµk
(2πn+ φ)]

× δ[y − yµk
(2πn+ φ)]

)
. (C8)

This is the normalized distribution with units of inverse
volume, such that

∫
dV ρk = 1. As a reminder, the sub-

script k indicates that this is the average distribution for
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the kth muon. However, it is easy to see how this gener-
alizes to the case of an average over many muons. The
field map is constant for all muons in a fill, so the only
averaging going from the case of a single muon to many
will be averaging the distributions ρk for each muon in
the fill. Only muons that are included in the ωa analysis
are considered. Then, for a single fill, ρk → ρµ. As the
total number of muon revolutions becomes very large, the

distribution can be approximated as continuous because
the muons average the field in the storage region. The
final result is an average over all of the muons in a fill,
〈ωa〉, where

〈ωa〉 = aµ
q

m

∫ 2π

0

dφ

∫ r2

r1

dr

∫ y0

−y0
dy rρµ(r, y, φ)B(r, y, φ).

(C9)
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