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Abstract

Most Markov chain Monte Carlo methods operate in discrete time and are reversible with
respect to the target probability. Nevertheless, it is now understood that the use of non-
reversible Markov chains can be beneficial in many contexts. In particular, the recently-
proposed Bouncy Particle Sampler leverages a continuous-time and non-reversible Markov
process and empirically shows state-of-the-art performances when used to explore certain prob-
ability densities; however, its implementation typically requires the computation of local upper
bounds on the gradient of the log target density.

We present the Discrete Bouncy Particle Sampler, a general algorithm based upon a guided
random walk, a partial refreshment of direction, and a delayed-rejection step. We show that
the Bouncy Particle Sampler can be understood as a scaling limit of a special case of our
algorithm. In contrast to the Bouncy Particle Sampler, implementing the Discrete Bouncy
Particle Sampler only requires point-wise evaluation of the target density and its gradient. We
propose extensions of the basic algorithm for situations when the exact gradient of the target
density is not available. In a Gaussian setting, we establish a scaling limit for the radial process
as dimension increases to infinity. We leverage this result to obtain the theoretical efficiency
of the Discrete Bouncy Particle Sampler as a function of the partial-refreshment parameter,
which leads to a simple and robust tuning criterion. A further analysis in a more general setting
suggests that this tuning criterion applies more generally. Theoretical and empirical efficiency
curves are then compared for different targets and algorithm variations.

Key words: Markov Chain Monte-Carlo; Non-reversible Samplers; Bouncy Particle Sampler; Scal-
ing Limit.

1 Introduction
Markov Chain Monte Carlo (MCMC) algorithms provide Monte Carlo approximations to expec-
tations with respect to a given probability distribution, π, via an ergodic Markov chain whose
invariant distribution is π. Non-reversible Markov Chaine Monte Carlo samplers, of which the
Hamiltonian Monte Carlo algorithm (Duane et al., 1987) is perhaps one of the most successful and
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widely-used examples, are known to enjoy desirable mixing properties in several contexts. Indeed,
several theoretical results quantify the advantages of non-reversible samplers. For example, Dia-
conis et al. (2000) obtains rates of convergence for a non-reversible version of the random walk
algorithm; subsequently and inspired by Diaconis et al. (2000), Chen et al. (1999) describes the
best acceleration achievable through the idea of lifting. On a different note, Hwang et al. (2015),
Lelièvre et al. (2013), Rey-Bellet and Spiliopoulos (2015) and Duncan et al. (2016) investigate
and quantify the advantages offered by leveraging (a discretization of) a non-reversible diffusion
process for computing Monte-Carlo averages: in many settings, it can be proved that the standard
reversible Langevin dynamics is the worst in terms of asymptotic variances among a large class
of diffusion processes that are ergodic with respect to a given target distribution. More recently,
different designs of non-reversible MCMC sampler have been proposed. The Zig-Zag sampler, an
instance of the large class of Piecewise-Deterministic-Markov-Processes, first obtained as a scaling
limit of a lifted Metropolis–Hastings Markov chain (Bierkens and Roberts, 2017), is a continuous-
time non-reversible Markov process that can be used for computing ergodic averages, and can be
used for efficiently exploring Bayesian posterior distributions in the Big-Data regime (Bierkens
et al., 2019). Inspired from the physics literature (Peters and de With, 2012), the Bouncy Particle
Sampler (Bouchard-Côté et al., 2017) is another continuous-time non-reversible Monte-Carlo sam-
pler that demonstrates state-of-the-art performance when used to explore certain Bayesian posterior
distributions. Fearnhead et al. (2018) reviews the Zig-Zag sampler and the Bouncy Particle Sam-
pler and describes some extensions. The Bouncy Particle Sampler or the Zig-Zag Sampler requires
more than simple point-wise evaluations of the log-target density and its gradient: one typically
needs local upper bounds on derivatives of the log-target density. Unfortunately, those bounds are
unavailable or difficult to compute in many applied situations. Consequently, such continuous-time
samplers cannot be directly used in these settings. This article presents a discrete-time MCMC
sampler, inspired by the Bouncy Particle Sampler, that can be implemented when only point-wise
evaluations of the target-density and its gradient are available.

Our algorithm, the Discrete Bouncy Particle Sampler, is described in detail in Section 2.1.
It extends the statespace from a position to a position and a direction in the same way that the
Zig-Zag and Bouncy Particle samplers do; however, our algorithm operates in discrete time and
is based upon the guided random walk of Gustafson (1998). The guided random walk combines
two reversible kernels to create a non-reversible kernel which heads in a specific direction until
a rejection occurs, at which point it reverses direction. Our key addition is a particular delayed-
rejection proposal (Tierney and Mira, 1999), used after any initial rejection, potentially avoiding
many inefficient direction reversals. The delayed-rejection move is analogous to the bounce in the
Bouncy Particle Sampler and we show that the Discrete Bouncy Particle Sampler can be viewed as
a time discretization of the Bouncy Particle Sampler. An alternative discretization of the Bouncy
Particle Sampler, based on the reflective slice sampler (Neal, 2003) is described and extended in the
independent work of Vanetti et al. (2017). Importantly, several interesting extensions have recently
been proposed (Vanetti et al., 2017; Wu and Robert, 2017; Wu and Robert, 2020; Monmarché, 2019;
Michel et al., 2020) to scale and enhance this class of Piecewise-Deterministic-Markov-Processes
MCMC samplers.

As with the Bouncy Particle Sampler, our algorithm can be reducible. To solve this issue, we
perturb the direction vector at the end of every iteration. The size of this per-iteration perturbation
has a substantial impact on the performance of the algorithm, in a similar way to the occasional,
complete direction refresh of the Bouncy Particle Sampler (Bierkens et al., 2018). Analogously
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to the independent investigations for the Bouncy Particle Sampler in Bierkens et al. (2018), for
the Discrete Bouncy Particle Sampler exploring a Gaussian target we use diffusion-approximation
arguments to describe the limit of the radial process as dimension increases to infinity. We then
leverage this to obtain the theoretical efficiency of the Discrete Bouncy Particle Sampler as a func-
tion of the partial-refreshment parameter, κ. This leads to a simple and robust tuning criterion that
is described in Section 3.2. In more practical developments, we show that a surrogate may be sub-
stituted for the gradient of the target density when it is computationally expensive or impossible to
obtain. Our final contribution is a construction that allows the user to choose to only calculate a
fixed number of orthogonal components of the gradient vector.

Throughout the remainder of this article, the distribution of interest is referred to as π(dx), and
is assumed to have support on the standard Euclidean space X ≡ (Rd, 〈·, ·〉) with associated norm
‖·‖. This distribution is assumed to have a density with respect to Lebesgue measure, which, with
a slight abuse of notation, is also denoted by π. We set x ∧ y = min(x, y). For a distribution π and
a π-integrable function ϕ, the quantity π(ϕ) refers to the expectation of ϕ under π. For x ∈ R, its
positive and negative part are denoted as x+ ≥ 0 and x− ≥ 0 so that x = x+− x−. For two vectors
u, v ∈ Rd, their dot product is 〈u, v〉 = u1 v1 + . . . + ud vd. For any time t, t− refers to the instant
in time just prior to t and t+ to that just after t.

2 The Discrete Bouncy Particle Sampler

2.1 Algorithm description
The Discrete Bouncy Particle Sampler operates on the extended state space X × S, where S ⊆ X ,
and explores the extended target distribution

π̃(dx, du) = π(dx)⊗ ρ(du)

where ρ(du) is an auxiliary spherically symmetric distribution with support S ⊂ X . Section
2.2 describes several standard choices of auxiliary distributions. Henceforth, we will refer to the
variable x ∈ X as the position of a particle and the variable u ∈ S as its direction. The bounce
after which the Discrete Bouncy Particle Sampler is named enters through the operator u 7→ Rv(u)
that reflects the vector u ∈ S with respect to the hyperplane orthogonal to the vector v ∈ X \ {0},

Rv(u) ≡ u− 2
〈u, v〉
‖v‖2

v. (1)

For any vector v ∈ X \ {0}, the reflection operator Rv is an involution Rv ◦ Rv(u) = u that
preserves norms. This remark underlies the proof of correctness of the Discrete Bouncy particle
Sampler whose details are presented in the Supplementary Material. As discussed in Michel et al.
(2020), it is possible to rely on more general reflection operators. Most of the methods developed in
this text extends to these variants, although we concentrate on Equation (1) for ease of exposition.
The Discrete Bouncy Particle Sampler relies on a non-vanishing vector field

F : X → X \ {0}.

In practice, this vector field is either chosen as F (x) = ∇ log π(x), replaced by an arbitrary
modification when the gradient vanishes, or as an approximation of it, as described in Section 2.4.
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The quantity RF (x)(u) represents the resulting direction when a particle with incoming direction u
performs an elastic bounce off the hyperplane orthogonal to the vector F (x).

The Discrete Bouncy Particle Sampler deterministically cycles through two Markovian transi-
tions that leave the extended target distribution π̃ invariant, (1) a Position Update, with a possi-
ble Direction Reflection (2) a Direction Refreshment. The resulting scheme is, in general, non-
reversible. For the direction refreshment, one can choose any Markov transition kernel Pρ(u, du′)
that leaves the auxiliary distribution ρ invariant. For a discretization parameter δ > 0, and a current
state (xk, uk) ∈ X × S, the algorithm proceeds as follows.

1. POSITION UPDATE: Generate a proposal (x′, u′) = (xk + δ uk, uk). With position update
probability

αpu(xk, uk) ≡ 1 ∧ π(x′)

π(xk)
, (2)

set (x̂k, ûk) = (x′, u′) and go to Step 3. Otherwise, proceed to Step 2.

2. DIRECTION REFLECTION: consider u′′ = RF (x′)(u
′) and x′′ = x′ + δ u′′. With direction

reflection probability

αdr(xk, uk) ≡ 1 ∧
{

1− αpu(x′′,−u′′)
1− αpu(xk, uk)

× π(x′′)

π(xk)

}
, (3)

set (x̂k, ûk) = (x′′, u′′). Otherwise, negate the direction by setting (x̂k, ûk) = (xk,−uk).

3. DIRECTION REFRESHMENT: Set (xk+1, uk+1) = (x̂k, U) where P(U ∈ A) = Pρ(ûk, A).

By construction, the Direction Refreshment step preserves the extended target distribution. The
fact that the combination of the Position Update and Direction Reflection steps also preserves the
extended distribution is discussed in the Supplementary Material. This can be understood as a slight
generalization of the standard delayed rejection mechanism (Tierney and Mira, 1999) when applied
to a deterministic and volume preserving proposal. A similar scheme was proposed independently
in Vanetti et al. (2017). Furthermore, and importantly for Section 2.4, the algorithm remains valid
if the deterministic vector field is replaced by a randomized version of it. The proof of correctness
is identical to the deterministic case and is briefly discussed in the Supplementary Material.

A simple thought experiment, such as considering a target density π with spherically-symmetric
contours and Pρ(u, du

′) = δu(du
′), shows that, as with the Bouncy Particle Sampler, the Discrete

Bouncy Particle Sampler can be reducible. The choice and tuning of the direction refreshment
operator Pρ is consequently important in practice and is discussed at length in the sequel.

2.2 Direction dynamics
The choice of the auxiliary distribution ρ(du) and the update operator Pρ, which we now allow
to depend on a tuning refreshment parameter, κ, has a major influence on the efficiency of the
resulting Discrete Bouncy Particle Sampler. Two standard choices for the isotropic distribution
ρ are the uniform distribution ρS on the unit sphere of Rd and the centred Gaussian distribution
ρG with covariance (1/d) Id. The scaling of the covariance matrix implies that

∫
‖u‖2 ρG(du) =
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∫
‖u‖2 ρS(du) = 1, which ensures that the effect on the algorithm of the tuning parameters δ and κ

are comparable across the different auxiliary distributions. As will be described in Section 2.3, it is
convenient to think of Pρ(u, du′) as the discretization between time t and t+δ of a continuous-time
Markov process {Vt}t≥0 that leaves ρ(du) invariant, Pρ(u, du′) = P(Vt+δ ∈ du′|Vt = u). We now
describe several standard ways of generating a random variable U that, conditioned on a current
direction u ∈ S, is approximately distributed as Pρ(u, du′).

• FULL REFRESH: for ρ = ρS or ρ = ρG and an update rate κ > 0 the Markov process with
generator L(V )ϕ(u) = κ (ρ(ϕ)− ϕ(u)) completely refreshes the direction at rate κ and has
a mixing time of O(1/κ). For a time discretization parameter 0 < δ < 1, set

U = Bδ
κ u+ (1−Bδ

κ) ξ

where ξ ∼ ρ and Bδ
κ is a Bernoulli random variable with P(Bδ

κ = 1) = exp(−κ δ).

• ORNSTEIN-UHLENBECK REFRESH: for ρ = ρG and an update rate κ > 0, the Ornstein-
Uhlenbeck process dVt = −(κ/2)Vt dt+ (κ/d)1/2 dW leaves ρG invariant and has a mixing
time of O(1/κ). Set

U = αu+ (1− α2)1/2 ξ (4)

for ξ ∼ ρG and α = exp(−κ δ/2).

• BROWNIAN MOTION ON THE UNIT SPHERE: for ρ = ρS and an update rate κ > 0, consider
the Brownian motion on the unit sphere in Rd. It is described by the stochastic differential
equation

dVt = −κ
2
Vt dt+ {κ/(d− 1)}1/2 P⊥(Vt) dW (5)

whereW is a standard Brownian motion in Rd and P⊥(Vt) ∈ Rd,d is the orthogonal projection
on the hyperplane orthogonal to Vt. The Brownian motion on the unit sphere leaves ρS
invariant and has a mixing time of O(1/κ). One can define U by normalizing an Ornstein-
Uhlenbeck update (4),

U =
αu+ (1− α2)1/2 ξ

‖αu+ (1− α2)1/2 ξ‖
,

for ξ ∼ ρG and α = exp(−κ δ/2).

2.3 Continuous-time limit
In this section we show that, as δ → 0, the Discrete Bouncy Particle Sampler converges to a
well defined continuous-time and piecewise-continuous Markov process. This result clarifies the
role of the reflection operator RF (x) and explains the connection between the Discrete Bouncy
Particle Sampler and the continuous time Bouncy Particle Sampler. For any time discretization
parameter δ > 0, consider a Discrete Bouncy Particle Sampler chain {(xδk, uδk)}k≥0 with update
operator Pδρ(u, du

′). The superscript δ indicates, as will be made clearer in Assumption A3 stated
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below, that the update operator Pδρ(u, du
′) is obtained as the discretization of a Markov process

{Vt}t≥0 between time t and t+ δ. For a time horizon T > 0, consider the continuous time process
zδt = (xδt , u

δ
t ) defined on the interval [0, T ] by setting

zδkδ = (xδkδ, u
δ
kδ) = (xδk, u

δ
k) ∈ X × S

for any integer 0 ≤ k ≤ T/δ and linearly interpolation in between. The main result of this section,
Proposition 1, whose proof is presented in the Supplementary Material, relies on the following
regularity assumptions.

A1 The function x 7→ log π(x) is twice differentiable with a bounded second derivative.

A2 The vector field F : X → X \ {0} is continuous.

A3 There exists a continuous time Markov process {Vt}t≥0 with generator L(V ) such that, for any
time discretization parameter δ > 0, the transition kernel Pδρ describes the transition of the
Markov process V in the sense that Pδρ(u, du

′) = P(Vt+δ ∈ du′|Vt = u). We assume that the
trajectories of the Markov process {Vt}t≥0 are almost surely continuous.

Proposition 1. Let Assumptions A(1-2-3) hold and consider a fixed time horizon T > 0. As δ →
0, the sequence of continuous time processes zδt = (xδt , u

δ
t ) converges weakly in the Skorokhod

topology to the bivariate Markov process Zt = (X t, U t) with generator

L(Z) ϕ(x, u) = L(V )ϕ(x, u) + 〈u,∇x ϕ(x, u)〉
+ λ(x, u)

(
[A(x, u)ϕ{x,RF (x)(u)}+ {1−A(x, u)}ϕ(x,−u)]− ϕ(x, u)

) (6)

with rate λ(x, u) ≡ 〈−∇ log π(x), u〉+ and acceptance probability

A(x, u) ≡ 1 ∧
λ{x,−RF (x)(u)}

λ(x, u)
∈ [0, 1]. (7)

The limiting Markov process Zt = (X t, U t) with generator (6) evolves according to the dynamics

dX t = U t dt, dU t = dVt, (8)

in between events that arrive at rate λ(X t, U t). When such an event is triggered, the direction is
reflected, i.e. U t = RF (Xt− )

(U t−), with probability A(X t− , U t−), and completely reversed, i.e.
U t = −U t− , with probability 1 − A(X t− , U t−). Possible choices of Markovian dynamics with
generator L(V ) in Assumption A2 are detailed in Section 2.2. In the case when F (x) = ∇ log π(x)
and L(V )ϕ(u) = κ {ρ(ϕ)− ϕ(u)}, for a fixed refreshment rate κ > 0, the limiting Markov process
is the standard Bouncy Particle Sampler (Bouchard-Côté et al., 2017). The interested reader is
referred to Vanetti et al. (2017); Wu and Robert (2017) for other interesting generalizations

In order to understand the influence of the vector field F , it is instructive to study the limiting
acceptance probability (7). The limiting process Z is rejection free, i.e. never backtracks, if for any
(x, u) ∈ X × S we have that λ{x,−RF (x)(u)} = λ(x, u). It is readily seen that this condition is
equivalent to choosing F (x) proportional to ∇ log π(x) for any x ∈ X where this quantity does
not vanish. In other words, any other choice of vector field F leads to a limiting process that is
not rejection-free. Section 2.4 describes ways to efficiently approximate this optimal choice when
evaluating∇ log π(x) is not computationally efficient.
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2.4 Approximate reflections
As described in the previous section, vector fields that lead to a rejection-free algorithm in the
limit δ → 0 are such that F (x) is proportional to ∇ log π(x) for all x ∈ X where this quantity
is non-zero. When computing the gradient of the log-density is not computationally feasible, one
can instead use a vector field F that only approximates ∇ log π, necessarily paying the price of a
non-zero probability for the limiting algorithm to backtrack. Another strategy, similar to the one
presented in Fielding et al. (2011), consists in choosing F (x) as the gradient of an approximate
surrogate target distribution.

Assume that the Discrete Bouncy Particle Sampler stands at (x, u) ∈ X ×S and that a Direction
Reflection is attempted. The exact gradient g(x) ≡ ∇ log π(x) being unavailable, one can instead
numerically evaluate g(x) ∈ Rd along a set of ncpt ≤ d random directions described by a set of
ncpt mutually orthogonal unit vectors ζ ≡ (ζ1, . . . , ζncpt) generated from a distribution Gx(dζ) that
may depend on the current position x ∈ X but not the current direction u ∈ S. As described in
the Supplementary Material, the fact that the distribution Gx(dζ) does not depend on the current
direction ensures that the resulting algorithm has the correct invariant distribution. A standard
choice consists in orthonormalizing a set of ncpt vectors generated from an isotropic Gaussian
distribution. The approximate gradient is then defined as g̃(x) =

∑ncpt
i 〈g(x), ζi〉 ζi, where each

coefficient〈g(x), ζi〉 can be evaluated numerically (Ramm and Smirnova, 2001). In other words,
g̃(x) is the orthogonal projection of the vector g(x) onto the plane V (ζ) ≡ span(ζ1, . . . , ζncpt).
Decomposing the direction as u = u⊥ + u‖ with u‖ ∈ V (ζ) and u⊥ ∈ V (ζ)⊥, the following two
modified bounce operators u 7→ u′ both lead to a correct algorithm:

1. The updated direction u′ ∈ S can be defined as the reflection with respect to the hyperplane
orthogonal to g̃(x), i.e. u′ = Rg̃(x)(u). This update can also be expressed as

u′ = Rg̃(x)(u) = u⊥ + Rg̃(x)(u
‖).

2. One can also completely reflect the component of u ∈ S that is orthogonal to the plane V (ζ).
In other words, the updated direction u′ is defined as

u′ = −u⊥ + Rg̃(x)(u
‖). (9)

While both reflection operators are valid, we have empirically found that the operator (9) leads to
better mixing properties.

2.5 Preconditioning
A general target may have very different length scales in different directions and, just as with
Metropolis-Hastings algorithms such as the random walk Metropolis or the Metropolis-Adjusted
Langevin algorithm (Roberts and Rosenthal, 2001), the efficiency can be improved, often by several
orders of magnitude, by preconditioning. Consider an invertible matrix Γ ∈ Rd,d and define the
whitened variable x̃ implicitly defined as x = Γ x̃. Instead of using the Discrete Bouncy Particle
Sampler for exploring a target density π(x), one can instead explore the whitened density π̃(x̃) ∝
π(Γ x̃). See Pakman et al. (2017) for an analogous description of preconditioning for the BPS.
Typically, the transformation x̃ 7→ Γx̃ is chosen such that the transformed density π̃ is as isotropic
as possible. A standard strategy is to choose Γ such that ΓΓ> is an approximation of the covariance
matrix of the target distribution π, or of the negative inverse Hessian of log π at a mode.
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3 Algorithm tuning through diffusion approximation

3.1 Diffusion Limit
In this subsection, we derive a diffusion approximation, in a Gaussian setting, for the log-target pro-
cess in the high-dimensional regime d → ∞, as the discretization parameter δ → 0. We are inter-
ested in understanding the mixing properties of the process k 7→ log πd(xd,δk ) when {(xd,δk , ud,δk )}k≥0
is a Discrete Bouncy Particle Sampler chain targeting the d-dimensional Gaussian distribution πd.
One could also study the mixing properties of any other functional of the Markov chain: for a fixed
dimension D ≥ 1 and a sequence of functions Fd : Rd → RD indexed by d ≥ 1, one can investi-
gate the properties of the stochastic process k 7→ Fd(x

d,δ
k ). For example, Deligiannidis et al. (2021)

proves scaling limits of a finite and fixed set of coordinates, which corresponds to the projection op-
erator Fd(x1, . . . , xd) = (x1, . . . , xD). Our choice F d(x) = log πd(x) is motivated by the empirical
observation that in many scenarios, when the Discrete Bouncy Particle Sampler is employed, the
mixing of the log-target process is much slower than the mixing of any given coordinate. Similar
empirical observations are discussed in Terenin and Thorngren (2018), and Bierkens et al. (2018)
proves different diffusion limits for the standard Bouncy Particle Sampler when full refreshments
are used to ensure ergodicity. Using entirely different techniques, Andrieu et al. (2021) obtains
insights into the scaling of the Bouncy Particle Sampler and more general Piecewise Determinis-
tic Markov Processes. The expression we obtain for the limiting process allows us in Section 3.2
to formulate robust strategies for tuning the refreshment parameter κ > 0. Consider a Discrete
Bouncy Particle Sampler with reflection RF (x) where F (x) = ∇ log πd and when the refreshment
updates are obtained as discretization of a Brownian motion on the unit sphere, as described in
Section 2.2. We concentrate on the case where the target distribution πd is a centred d-dimensional
Gaussian density with covariance σ2 Id, for a fixed standard deviation σ > 0. Thanks to the rota-
tional symmetry of πd, all the bounce attempts are accepted and studying the log-target process is
equivalent to studying the radial process k 7→ ‖xd,δk ‖. Proposition 1 identifies, for a fixed dimension
d ≥ 1, the scaling limit as δ → 0 of the Discrete Bouncy Particle Sampler chain {xd,δk , ud,δk }k≥0.
For concreteness, we denote this limiting continuous-time Markov process, whose generator is de-
scribed in Proposition 1, as (X

d

t , U
d

t ). Now, for investigating the high-dimensional regime d→∞,
note that for a sequence of random variables Xd ∼ πd, the sequence ‖Xd‖ − σ d1/2 converges in
distribution towards a centred Gaussian distribution with variance σ2/2. We consequently define
the shifted process

Rd
t = ‖Xd

d×t‖ − σ d1/2. (10)

Note that, in the definition of the processRd
t , time has been accelerated by a factor of d. Proposition

2 stated below shows that, in order to observe a non-degenerate scaling limit as d → ∞, this
acceleration factor is the correct one. As will be demonstrated, the mixing properties of Rd

t are
closely related to the mixing properties of the scalar jump-diffusion {θκt }t≥0 with generator

L(κ,σ) =
κ

2
LK +

1

σ
LJ where

{
L(K)ϕ(θ) = −θ ϕ′(θ) + ϕ′′(θ)

L(J)ϕ(θ) = ϕ′(θ) + θ+ {ϕ(−θ)− ϕ(θ)}.
(11)

The operator L(K) is the generator of an Ornstein-Uhlenbeck process that is reversible with the
standard Gaussian density. Similarly, L(J) is the generator of the Markov process with unit drift
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and reflections θ 7→ −θ that occur at rate θ+ = max(0, θ). It can readily be checked that this
process also leaves the standard Gaussian distribution invariant. Combining these two facts show
that the process θκt also leaves the standard Gaussian distribution invariant. We denote by Vσ(κ) the
asymptotic variance of ergodic averages along θκt defined as

Vσ(κ) = lim
T→∞

Var

(
1√
2T

∫ T

0

θκt dt

)
. (12)

There is no closed form expression for the quantity Vσ(κ) but it can easily be approximated nu-
merically, as displayed in Figure 1. Note that Vσ(κ) → 0 as κ → 0 and κ → ∞. Proposition
2, whose proof can be found in the Supplementary Material, shows that the asymptotic variance
Vσ(κ) dictates the mixing rate of the log-target process. The higher the asymptotic variance Vσ(κ),
the faster the mixing of the radial process.

Proposition 2. Let T > 0 be a finite time horizon. For a fixed refreshment parameter κ > 0, the
sequence of accelerated processes Rd defined in Equation (10) converges weakly as d → ∞ in
C([0, T ],R) to the Ornstein-Uhlenbeck process

dRt = −Vσ(κ)

σ2/2
Rt dt+ {2Vσ(κ)}1/2 dW. (13)

The velocity function Vσ(κ) is defined in Equation (12).

The process (13) is an Ornstein-Uhlenbeck that is reversible with respect to the centred Gaus-
sian distribution with variance σ2/2. Since the Ornstein-Uhlenbeck (13) has a mixing time of
order O(1), this indicates that in the high-dimensional regime d → ∞ and δ → 0, one can expect
(Roberts and Rosenthal, 2016) the log-target process to mix on a time scale of orderO(d/δ). When
implementing the Discrete Bouncy Particle Sampler in practice, the parameter δ should be chosen
small enough to guarantee that the acceptance rate remains high-enough, but not smaller. Similar
guidelines for the Hamiltonian Monte-Carlo method are described in Betancourt et al. (2014). The
optimal tuning of the parameter δ, and study of its dependence with respect to the dimensionality
of the target distribution, is beyond the scope of this article. Instead, we concentrate on the tuning
of the refreshment parameter κ. When optimising the mixing of the log-target process, we observe
empirically that the tuning of the parameter κ is insensitive to the value of δ. This is in part because
whatever the value of δ, as long as it is sufficiently small, the log-target process is an approxima-
tion of the limiting diffusion (13) (see also Section 3.2); empirical evidence that this insensitivity
continues to hold for large δ is provided in Section 4.1.

3.2 Tuning of the refreshment parameter κ
The limiting diffusion (13) obtained in Section 3.1 indicates that, for an isotropic Gaussian target
distribution with marginal variance σ2 and in the regime d → ∞, optimising the efficiency of the
Discrete Bouncy Particle Sampler is achieved by choosing a refreshment parameter κ > 0 that
maximizes the velocity Vσ(κ). In other words, for a given marginal variance σ2 > 0, the optimal
refreshment rate κ?(σ) is given by

κ?(σ) = argmax {κ 7→ Vσ(κ)}.

9
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Figure 1: Velocity V (κ) for σ = 1 as a function of κ > 0 (Left) and as a function of the mean
dot product (Right). The scale of the velocity function being irrelevant, only the rescaled velocity
function κ 7→ V (κ)/‖V ‖∞ is depicted.

Furthermore, a change of time argument immediately shows that κ?(σ) = κ?/σ with κ? ≡ κ?(σ =
1). In practice, the variance parameter σ2 > 0 is not known so that the optimal refreshment
parameter is not directly accessible. To make progress, denote by {τj}j≥1 the (strictly increasing)
sequence of time indices at which Direction Reflection events are attempted (and always accepted
in the Gaussian setting). We denote by uτ−j ∈ S the direction right before a reflection event, and by
uτ+j ∈ S the direction right after the reflection. For tuning purposes, we propose to monitor the dot
product β ∈ [−1, 1] between the direction vectors right after and before the Direction Reflection
attempts,

β =
〈
uτ+j , uτ

−
j+1

〉
. (14)

For a Discrete Bouncy Particle Sampler evolving at stationarity, as δ → 0 and for any fixed di-
mension d ≥ 2, consider the distribution µd(dβ;κ, σ) of these dot products. One can readily check
that if {xd,δk , ud,δk }k≥0 is Discrete Bouncy Particle Sampler chain with parameters κ, δ > 0 explor-
ing the centred d-dimensional Gaussian with marginal standard deviation σ then, for any scaling
factor s > 0, the Markov chain defined as {s × xd,δk , ud,δk }k≥0 is also Discrete Bouncy Particle
Sampler chain, with refreshment parameter κ/s and time discretization parameter s δ > 0, ex-
ploring the centred d-dimensional Gaussian with marginal standard deviation s σ. It follows that
µd(dβ, κ, σ) = µd(dβ;κ/s, s σ) for any scaling factor s > 0. Consequently, since κ?(σ) = κ?/σ,
the distribution µd(dβ;κ?(σ), σ) ≡ µd?(dβ) does not depend on the standard deviation σ. It is
straightforward to numerically estimate the average dot product at optimality,

β? ≡ lim
d→∞

∫ 1

−1
β µd?(dβ) ≈ 0.2.

Figure 1 illustrates this optimality result. Very low values β � β? indicate that the directions
are updated too frequently, leading to an inefficient random-walk behaviour. High values β ≈ 1
indicate that the directions are not updated frequently enough, leading to an inefficient exploration
of the state space. The case β = 1 corresponds to the case when the direction are not updated at
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all, which is known in the Gaussian case to lead to a reducible Markov Chain with an incorrect
invariant distribution. For tuning the refreshment parameter κ > 0 of a general Discrete Bouncy
Particle Sampler, we consequently propose to estimate empirically the expectation at stationarity of
the quantity β in (14). Let {τj}j≥1 now denote the realization of the sequence of indices at which
direction reflection attempts occur. A direction reflection attempt is accepted with probability (3),
otherwise the direction is negated. We define

β̂ =
1

J

J∑
j=1

〈
uτ+j , uτ

−
j+1

〉
and choose κ > 0 so that this quantity approximately equals its optimal value β? ≈ 0.2. Just
as with the estimation of acceptance rates when tuning the scaling of various algorithms (Roberts
and Rosenthal, 2001), and unlike the Effective Sample Size itself that is notoriously difficult to
reliably estimate, the mean dot product can be estimated accurately from short MCMC runs. Im-
portantly, and as described in Section 4, we have found this tuning procedure to be robust with
respect to departure from Gaussianity and to approximately hold in non-isotropic and relatively
low-dimensional settings with δ � 0.

3.3 Non-isotropic target and non-zero δ
The diffusion limit in Section 3.1 was obtained as δ ↓ 0 and for an isotropic Gaussian target where
the direction reflection proposals are always accepted. In this Section, we consider the non-isotropic
case of a d-dimensional target distribution defined as

π(d)(x(d)) =
d∏
i=1

γi exp{f(γixi)}, (15)

for inverse scalings γi > 0 drawn independently from a distribution with second moment m2(γ) ≡
E(γ2) and finite third moment. For a Discrete Bouncy Particle Sampler Markov chain exploring
this density, denote by α

(d)
pu {x(d), u(d)} and α

(d)
dr {x(d), u(d)} the relevant acceptance probabilities

in dimension d ≥ 1. The corresponding acceptance rates are α(d)
pu ≡ E[α

(d)
pu {X(d), U (d)}] and

α
(d)
dr ≡ E[α

(d)
dr {X(d), U (d)}|DR], where {X(d), U (d)} follows its stationary distribution, and DR is

the event that the initial proposal is rejected and that a Direction Reflection is attempted. The
definition of the acceptance rate α(d)

dr requires conditioning on there being a direction update in
order to ensure that the quantity α(d)

dr {X(d), U (d)} is well-defined. Theorem 1, whose proof is in the
Supplementary Material, shows that, in the high-dimensional regime d→∞ and for a fixed δ > 0,
the probability of accepting the direction reflection proposals converges towards one.

Theorem 1. Let {X(d)
t }∞t=0 be a d-dimensional Discrete Bouncy Particle Sampler Markov chain

created by the algorithm described in Section 2.1, exploring the target density defined in Equation
(15). Assume that the function f : R → R has a Lipschitz second-derivative and that the quantity
J ≡ E{f ′(ξ)2} = −E{f ′′(ξ)}, for a random variable ξ with density exp{f(ξ)}, is finite. The
acceptance rates are such that

lim
d→∞

α(d)
pu = 2 Φ

[
−δ

2
{m2(γ) J}1/2

]
and lim

d→∞
α
(d)
dr = 1

11



Figure 2: Left: relative effective sample size against κ for a 100-dimensional standard Gaussian
target. Right: maximum (solid), minimum (solid) and median (dashed) iterations to converge from
a random tail point of target (16) as a function of the mean dot product statistic β in a stationary
run.

where Φ(t) = (2π)−1/2
∫ t
0
e−t

2/2 dt is the standard Gaussian cumulative function.

In the Supplementary Material, a simulation study verifies the theorem for a particular target
distribution and a variety of time discretization parameters δ. This study also suggests that, if δ
is kept fixed with respect to the dimension, then 1 − α(d)

dr ∼ 1/d. In Section 2.2, the refreshment
parameter κ was intentionally defined so that as δ ↓ 0 the effect of κ, which is on the mixing time
of the velocity refreshment, should be insensitive to the time discretization paremeter δ. Given
the definitions of κ and δ, it is not unreasonable to expect this insensitivity to carry through to
macroscopic values of δ. Section 4.1 details a simulation study that confirms that the tuning choice
for κ is insensitive to the value of δ. This, together with Theorem 1, suggests that the tuning
strategy obtained from the isotropic Gaussian diffusion limit could be applicable for more general
high-dimensional targets.

4 Simulation studies

4.1 Tuning of κ is insensitive to δ
We first1 investigate the robustness to the choice of δ of the effect of κ on efficiency. We con-
sidered an isotropic Gaussian target distribution with dimension d = 100 and, for a range of
δ ∈ {0.04, 0.2, 1.0}, we estimated the efficiency of the Discrete Bouncy Particle Sampler as a
function of the refreshment parameter κ. For a fixed δ, the relative variation in 1− αpu was small,
varying less than 5% from a central value over the whole range of κ values. Central values of
1 − αpu were 2% (δ = 0.04), 8% (δ = 0.2) and 38% (δ = 1.0). These values span the range of
potential interest in the applications we have looked at. The left panel of Figure 2 suggests that the
optimal value of the refreshment parameter κ is insensitive to the time discretization parameter δ.
This insensitivity over more than an order of magnitude of δ values suggests that the value of the

1Code is available at this GitHub repository
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Figure 3: Scaled effective sample size as a function of the mean dot product for several values of κ,
obtained from MCMC runs of length N = 106. The Discrete Bouncy Particle Sampler is applied
to the target distributions πlog and πiso (Left) and πaniso using d = 20, d = 50 and d = 200 (Right)

optimal refreshment parameter κ obtained in the limit δ → 0 and, hence, 1−αpu → 0, is indicative
of the optimal refreshment parameter κ when δ is macroscopic and 1− αpu � 0.

4.2 Robustness of advice to departures from Gaussianity and isotropy
We next investigate the robustness of our tuning advice to departures of the target from Gaussianity
and isotropy.

Consider three scenarios: an isotropic multivariate logistic distribution πlogis with density∏d
i=1 exp(xi)/[1 + exp(xi)]

2, an isotropic Gaussian distribution πiso with density proportional to∏d
i=1 exp(−x2i /2) and a non-isotropic multivariate Gaussian distribution πaniso with density pro-

portional to
∏d

i=1 exp{−x2i /(2σ2
i )}. In this section, we choose d = 100 for both isotropic targets,

and d ∈ {20, 50, 200} for the anisotropic target. In order to test the robustness of our tuning guide-
lines to non-isotropic distributions, we chose the scales σ1 < . . . < σd linearly separated between
σ1 = 1 and σd = 10. The scaled effective sample size curves as a function of the mean dot-product
are displayed in Figure 3. There is extremely good agreement with the theory developed in Section
4 for the isotropic distribution πiso and the approximately isotropic distribution πlogistic. Not sur-
prisingly, mild departure from the theory is observed for strongly non-isotropic distributions such
as πaniso. However, for dimension d = 200 the departure, especially in terms of the optimal dot
product, is barely noticeable. When d = 20 and d = 50, however, our proposed guideline, i.e. tune
the refreshment rate κ such that the mean dot-product β ≈ 0.2, leads only to a loss of efficiency of
approximately 10% and 5% respectively.

4.3 Convergence and tail behaviour
One of the most commonly used algorithms for inference in high-dimensional scenarios is Hamil-
tonian Monte Carlo (Duane et al., 1987). However, it is well known (Livingstone et al., 2019) that
due to the dependence of the Leapfrog step on ‖∇ log π‖, Hamiltonian Monte Carlo is not geo-
metrically ergodic on targets with tails lighter than those of a Gaussian. By contrast, the Discrete

13



Bouncy Particle Sampler depends on ∇ log π only through the equivalent normalized vector. The
Supplementary Material details a simulation study on a non-isotropic, light-tailed target where
a tuned Hamiltonian Monte Carlo algorithm is nearly 50% more efficient than a tuned discrete
bouncy particle sampler when started from stationarity. However, with the same tunings, but when
started from a random point in the tail of the distribution, Hamiltonian Monte Carlo does not even
move, whereas the discrete bouncy particle sampler quickly converges to the centre of the posterior
mass.

Whilst our theory combined with empirical verifications suggests that the optimal refreshment
rate κ at stationarity is that which leads to an average dot product β ≈ 0.2, it may be that a different
value is optimal for convergence from the tails. Finally, therefore, we examine the effect of κ, when
the Discrete Bouncy Particle Sampler is used to explore the target distribution in Rd with d = 50
and a density of

f(x) ∝ exp

(
−1

a
‖x‖aM

)
for ‖x‖2M ≡

d∑
i=1

x2i
σ2
i

(16)

where a = 4 and σ1, . . . , σd are as described in Section 4.2. In d > 1 dimensions, the modal
value for ‖x‖M is r? ≡ (d − 1)1/a. For several values of κ > 0, we repeated the following
experiment n = 100 times: sample a random unit vector z ∈ Sd−1, set the initial position x0 =
10 r? · (σ1 z1, . . . , σdzd) ∈ Rd far out in the tail of the distribution, run the Discrete Bouncy Particle
Sampler with δ = 2.0 (a sensible value to explore the body of the target) until ‖x‖M ≤ r? and
note the iteration number at which that happened. The right-hand panel of Figure 2 shows the
minimum, maximum and median iteration number at which convergence (by this measure) was
achieved. Except for very low κ values, which lead to large dot product statistics, the behaviour
is robust to the choice of κ, suggesting that it is reasonable to apply our tuning criterion when the
chain is started away from its stationary distribution.

4.4 The Markov modulated Poisson process
A simulation study on the eight-dimensional posterior of a non-trivial statistical model, the Markov
modulated Poisson process, is detailed in the Supplementary Material. We find that mixing effi-
ciency of log π is optimized at a dot product statistic of β ≈ 0.4, tuning to β ≈ 0.2 would lead to
only a 10% reduction in efficiency. When either preconditioning or using only ncpt = 3 random
components of the gradient vector, the optimal efficiency is achieved for a dot product statistics of
β ≈ 0.2.

5 Discussion
The key advantage of the Discrete Bouncy Particle Sampler over its continuous-time counterpart
is that posterior and gradient evaluations can be treated as a “black box” with no requirement to
bound the gradient so as to apply Poisson thinning. Unlike the continuous-time algorithm, there
is a chance that an attempted bounce will be rejected and the particle will approximately back-
track, however for sensible tunings, the back-tracking probability converges towards zero as the
dimension of the problem increases.
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The average computational cost per iteration is insensitive to the choice of κ since the direction
is updated every iteration, and κ has little effect on the number of steps between potential bounces.
Thus it is sufficient for the purposes of this article to describe and empirically record efficiency in
terms of effective sample size rather than effective samples per unit of time. The only exception to
this is when we compare against Hamiltonian Monte Carlo in Appendix C.1.

The dot-product tuning diagnostic maps κ to an absolute scale via the properties of the posterior,
just as the acceptance rate diagnostic does for the scaling in the random-walk Metropolis algorithm.
When κ = 0 the velocity direction just before the next bounce is identical to that just after the
previous bounce, and the dot product is unity. The mixing time of the refreshment process is 1/κ;
when this is small compared with the time between bounces or, equivalently, the length scale of the
target, the two velocity directions bear little relation to each other, and the dot product is small.

Whilst this article offers theory-based practical advice on the tuning of the refreshment parame-
ter, κ, it does not tackle the choice of the discretization parameter, δ. In contrast to the insensitivity
of computational cost to the choice of κ, increasing δ increases the frequency of potential bounces
and hence of expensive gradient calculations, and this would need to be accounted for in any anal-
ysis.
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Lelièvre, T., Nier, F., and Pavliotis, G. A. (2013). Optimal non-reversible linear drift for the con-
vergence to equilibrium of a diffusion. Journal of Statistical Physics, 152(2):237–274.

Livingstone, S., Betancourt, M., Byrne, S., and Girolami, M. (2019). On the geometric ergodicity
of Hamiltonian Monte Carlo. Bernoulli, 25(4A):3109–3138.
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A Correctness and proofs of propositions

A.1 Correctness of the Discrete Bouncy Particle Sampler
In this section, we prove the correctness of a slightly more general version of the Discrete Bouncy
Particle Sampler than the one described in the main text. This added generality is exploited in
Section 2.4. Consider a generalized reflection operator R : Rd×Rd such that for every x ∈ X ≡ Rd,
the mapping u 7→ R(u, x) satisfies the following three conditions:
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B1 For any u ∈ Rd, we have that R(−R(u, x), x) = −u

B2 The mapping u 7→ R(u, x) is volume preserving.

B3 The mapping u 7→ R(u, x) preserves norms, ‖R(u, x)‖ = ‖u‖.

For (xk, uk) ∈ Rd × Rd and a time discretization parameter δ > 0, consider the Markov kernel
(xk, uk) 7→ (xk+1, uk+1) defined as the composition of the following three steps.

Step 1. Generate a proposal (x′, u′) = (xk + δ uk,−uk). With probability

αpu(xk, uk) ≡ 1 ∧ π(x′)

π(xk)
,

set (x̂k, ûk) = (x′,−u′) and go to Step 3. Otherwise, proceed to Step 2.

Step 2. consider u′′ = −R(u, x′) and x′′ = x′ − δ u′′. With probability

αR(xk, uk) ≡ 1 ∧
{

1− αpu(x′′, u′′)

1− αpu(xk, uk)
× π(x′′)

π(xk)

}
,

set (x̂k, ûk) = (x′′, u′′). Otherwise, set (x̂k, ûk) = (xk, uk).

Step 3. Reverse the direction: (xk+1, uk+1) = (x̂k,−ûk)

Lemma 1. Consider any spherically symmetric probability density ρ(u). Under Assumptions B1-
2-3, the Markov kernel described by Step 1-2-3 leaves the density π̃(x, u) = π(x) ρ(u) invariant.

Proof. Since ρ is spherically symmetric and R preserves norms, Step 3 leaves π̃ invariant. Now, the
combination of Step 1-2 is exactly a Delayed Rejection (Tierney and Mira, 1999) Markov kernel
with two proposal mechanisms: (x, u) 7→ (x + δ u,−u) and (x, u) 7→ (x + δ u + δ R(u, x +
δu),−R(u, x+ δu)) and target density π(x) ρ(x). Algebra directly shows that these two proposals
are volume preserving involutions. To conclude the proof of the lemma, it thus suffices to show
that the usual delayed rejection scheme for sampling from a density µ(z) on a state-space Z ⊂ RN

remains valid with deterministic proposals z 7→ z′ = T1(z) and z 7→ z′′ = T2(z) that are volume
preserving involutions. For an arbitrary bounded test function ϕ : Z → R, one needs to show that∫

[ϕ {T1(z)} α1(z) + ϕ {T2(z)} {1− α1(z)} α2(z) + ϕ(z)α3(z)] µ(z) dz =

∫
ϕ(z)µ(z) dz

with α1(z) = 1 ∧ µ{T1(z)}/µ(z) and α3(z) = 1− α1(z)− {1− α1(z)}α2(z) and

α2(z) = 1 ∧
{

1− α1{T2(z)}
1− α1(z)

× µ{T2(z)}
µ(z)

}
.

Algebra shows that this is equivalent to proving that∫
[ϕ{T1(z)} − ϕ(z)]× [µ(z) ∧ µ{T1(z)}]

+

∫
[ϕ{T2(z)} − ϕ(z)]× [µ(z){1− α1(z)} ∧ µ{T2(z)}(1− α1{T2(z)})] dz = 0.

(17)
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Since T1 and T2 are involutions that preserve volume, a change of variable z 7→ T1(z) shows that
the first integral in Equation (17) also equals its negation, and hence vanishes. And similarly, the
change of variable z 7→ T2(z) shows that the second integral in Equation (17) also vanishes. This
concludes the proof of the lemma.

In Section 2.1, the combination of the Position Update and Direction Update is equivalent to
Step 1-2-3 with the operator R(u, x) = RF (x)(u). Since algebra shows that the Conditions B1-2-3
are satisfied, Lemma 1 thus shows the correctness of the Discrete Bouncy Particle Sampler as de-
scribed in Section 2.1.

Indeed, one can consider mixtures of operators that satisfy Conditions B1-2-3. Namely, for a
conditional probability distribution M(x, dω) and an operator R̃ : Rd × Rd × Ω → Rd such that
for any value of (x, ω) ∈ Rd × Ω the operator u 7→ R̃(u, x, ω) satisfies the Conditions B1-2-3,
one can consider the Markov kernel that, for a given pair (x, u) ∈ Rd × Rd, starts by generating
ω ∼ M(x, dω) and then proceeds to Steps 1-2-3 with generalized operator u 7→ R̃(u, x, ω). Lemma
1 shows that this leads to a valid algorithm. This in turns shows that, in Section 2.1, one can also
consider randomized vector fields: instead of performing a reflection with respect to a fixed vector
field F (x), one can instead generate a random vector v ∈ X \ {0} sampled from a distribution
that depends on the vector x ∈ X only (i.e. does not depend on the current direction u ∈ S)
and attempts the reflection u 7→ Rv(u). This remark also shows the correctness of the methods
described in Section 2.4.

A.2 Proof of Proposition 1
Recall that the quantity λ(x, u) is defined as λ(x, u) ≡ 〈−∇ log π(x), u〉+. Under Assumption
(A1) and a discretization parameter δ > 0, the acceptance probability αδ(x, u)that the proposal
(x, u) 7→ (x+ δ u, u) is accepted reads

αδ(x, u) = exp [min {0, log π(x+ δ u)− log π(x, u)}]
= exp

{
δ × 〈∇ log π(x), u〉−

}
+ O(δ2)

= exp {−δ × λ(x, u)} + O(δ2)

(18)

whereO(δ2) is a quantity whose absolute value is less than a constant times δ2. For t > 0, the prob-
ability that the Discrete Bouncy Particle Sampler algorithm accepts bt/δc+1 consecutive proposals
(x, u) 7→ (x+δ u, u) without reflection attenpts equals

∏bt/δc
k=0 α

δ(xδk, u
δ
k). Under Assumption (A3),

one can condition upon a fixed trajectory of the Markov process V , i.e. Vt = vt for all 0 ≤ t ≤ T
and uδk = uδkδ = vkδ, not depending on the parameter δ, so that xδkδ = xδ0 + δ

∑k−1
j=0 vjδ. Equation

(18), the continuity of the rate function λ as well as the continuity of the trajectories of the Markov
process V , show that

lim
δ→0

bt/δc∏
k=0

αδ(xδk, u
δ
k) = lim

δ→0
exp

−δ
bt/δc∑
k=0

λ(xδkδ, vkδ)

+O(δ) = exp

{
−
∫ t

0

λ(xs, vs) ds

}

where xs = x0+
∫ s
0
vt dt. This means that, in the limit δ → 0, bounce attempts arrive at rate λ(x, u)

and, in between the bounces, the limiting process simply evolves according to the dynamics (8).
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Finally, once a proposal (x, u) 7→ (x+δ u, u) is rejected, the second proposal (x, u) 7→ (x′′, u′′),
i.e. the bounce, is accepted with probability αDR(x, u) described in Equation (3). By continuity
of the density x 7→ π(x), we have that π(x′′)/π(x) → 1 as δ → 0. Furthermore, the Taylor
expansion (18) gives that 1−αδ(x, u) = δ λ(x, u) +O(δ2). Under Assumption, the vector field F
is continuous, which implies that

lim
δ→0

1− αδ(x′′,−u′′)
1− αδ(x, u)

× π(x′′)

π(x)
=

λ{x,−RF (x)(u)}
λ(x, u)

, (19)

where we have dropped the dependence on δ from the notation x′′ = x + δ u + δRF (x+δu)(u)
and u′′ = RF (x+δu)(u). It follows from (19) that, in the limit as δ → 0, a proposed bounce
(x, u) 7→ (x′′, u′′) is accepted with probability A(x, u) described in Equation (7), with (x′′, u′′) →
(x,RF (x)(u)) as δ → 0. This completes the proof of Proposition 1.

A.3 Proof of Proposition 2
For a fixed dimension d ≥ 1, Proposition 1 describes its scaling limit as δ → 0: the processes t 7→
zd,δt = (xd,δδt , u

d,δ
δt ) converges on path-space to the jump diffusion that evolves according to dX

d

t =

U
d

t dt, where U
d

t is a Brownian motion on the unit sphere of Rd whose dynamics is described by
the Stochastic Differential Equation (5), in between reflections U

d

t = R
(
U
d

t− ,∇ log πd(X
d

t−)
)

that

arrive at rate λ(X
d

t , U
d

t ) =
〈
−∇πd(X

d

t ), U
d

t

〉
+

. The generator of the joint process (X
d

t , U
d

t ) reads

ϕ(x, u) 7→ 〈u,∇xϕ(x, u)〉+ L(κ,B)ϕ(x, u) + λ(x, u)Fϕ(x, u)

where L(κ,B) is the generator of the Brownian motion on the united sphere (5) and F is the flip
operator defined as Fϕ(x, u) = ϕ(x,−u) − ϕ(x, u). In order to obtain the limit of the process
defined in Equation (10), set

Rd
t ≡ ‖X

d

d×t‖ − σ d1/2 and θdt ≡ d1/2
〈
X
d

d×t, U
d

d×t

〉
/‖Xd

d×t‖.

Note that time has been accelerated by a factor d. The process θdt describes the dot product between
the position Xd and the direction Ud, scaled by a factor d1/2 in order to observe a non-degenerate
limiting process. Itô’s lemma, neglecting terms of order 1/d, directly shows (after straightforward
algebra) that the Markov process (Rd

t , θ
d
t ) has a generator Lε that reads

Lε = ε−1 L(H) + ε−1
R

σ2
θ+F + ε−2

{
1

σ
L(J) +

κ

2
L(K)

}
︸ ︷︷ ︸

L(Fast)

(20)

with the standard multiscale expansion notation ε = 1/
√
d, generators L(J) and L(K) defined in

Equation (11) and

L(H)ϕ =
(
θ ∂R −

R

σ2
∂θ

)
ϕ
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It is important to note that the generator L(Fast) describes the dynamics of a Markov process that is
ergodic with respect to the standard centred Gaussian distribution G(dθ). The dynamics described
by the generator (20) is a fast-slow systems with slow variable R and fast variable θ. The effective
dynamics of the slow variable R as ε→ 0, or equivalently as d→∞, can be obtained with a stan-
dard multiscale expansion (Papanicolaou, 1977; Weinan, 2011), as described for example in Chap-
ter 11 of Pavliotis and Stuart (2008). One seeks a solution ϕε(t, R, θ) to the backward Kolmogorov
equation (∂t−Lε)ϕε = 0 expressed as ϕε(t, R, θ) = ϕ(t, R) + εA(t, R, θ) + ε2B(t, R, θ) +O(ε3)
in order to obtain the generator L describing the leading term ϕ, i.e. (∂t−L)ϕ = 0. Expanding the
Kolmogorov Equation (∂t − Lε)ϕε = 0 in powers of 1/ε shows that

O(ε−2) : L(Fast)ϕ = 0

O(ε−1) : L(Fast)A = −L(H)ϕ

O(1) : ∂tϕ =
(
L(H) + σ−2Rθ+F

)
A+ L(Fast)B

(21)

Equation L(Fast)ϕ = 0 is immediate since ϕ does not depend on the variable θ. Furthermore, we
have that L(H)ϕ = θ∂Rϕ(t, R). Consequently, it follows from the second equation of (21) that A =
c(t, R) + g(θ) ∂Rϕ(t, R) where g : R → R is solution of the Poisson equation L(Fast)g = −θ and
c(t, R) is a function that does not depend upon θ. For an arbitrary function (t, R, θ) 7→ h(t, R, θ),
we now use the standard notation 〈h〉G to denote the operation of averaging out the fast variable
θ over the standard centred Gaussian distribution G(dθ) = (2π)−1/2e−θ

2/2 dθ, i.e. 〈h〉G (t, R) ≡∫
R h(t, R, θ) G(dθ). We have that

〈
L(Fast)B

〉
G
≡ 0 so that the second equation in (21) leads to

∂tϕ(t, R) =

〈
L(H)A+

R

σ2
θ+FA

〉
G

= 〈θ g(θ)〉G ∂RRϕ(t, R) + σ−2R 〈−g′(θ) + θ+Fg(θ)〉G ∂Rϕ(t, R) ≡ Lϕ(t, R).

Algebra and an integration by part (i.e. Stein’s Lemma) show that 〈−g′(θ) + θ+Fg(θ)〉G also
equals 2 〈θ g(θ)〉G. Consequently, we have that

∂tϕ(t, R) = 〈θ g(θ)〉G
(
− R

σ2/2
∂R + ∂RR

)
ϕ(t, R) (22)

Since g is solution of the Poisson equation L(Fast)g(θ) = −θ, the quantity 〈θ g(θ)〉G also describes
the following asymptotic variance,

Vσ(κ) = lim
T→∞

Var

(
1√
2T

∫ T

0

θκt dt

)
,

where θκt is the Markov process with generator L(Fast) ≡ 1
σ
L(J) + κ

2
L(K). Indeed, Equation (22) is

the Kolmogorov backward equation associated to the Ornstein-Uhlenbeck

dRt = −2σ−2 Vσ(κ)Rt dt+
√

2Vσ(κ) dW,

which concludes the proof of Proposition 2.
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B High-dimensional behaviour for finite δ and non-isotropic
target

B.1 Proof of Theorem 1
In this section, we use the notation⇒ to denotes convergence in distribution. SinceU is a uniformly
random unit vector we may write it as U = Z/‖Z‖, where Z is a vector of independent standard
Gaussians. Further, since ‖Z‖/

√
d → 1 in probability as d → ∞, we henceforth substitute U =

Z/
√
d. We also set ξi = γiXi, so the ξi are independent and identically distributed with a density

of exp{f(ξi)}. We use the shorthand of g(x) = f ′(x) and h(x) = −f ′′(x), and we let L be the
Lipschitz constant for h. Finally we set `(X) ≡ log π(X) and defineB(X,U) ≡ `(X+δU)−`(X).
Firstly,

B(X,U) = δU>∇`(X) +
δ2

2
U>∂2`(X)U +

δ2

2
U>
{
∂2`(X + δU)− ∂2`(X)

}
U

=
δ√
d

d∑
i=1

γiZig(ξi)−
δ2

2d

d∑
i=1

γ2i Z
2
i h(ξi) +

1

2
√
d
T

(d)
1 ,

where |T (d)
1 | ≤ δ3/d×L

∑d
i=1 γ

3
i |Zi|3 → δ3L×E[γ3] E[|Zi|3] <∞. Hence as d→∞, the Central

Limit Theorem gives

B(X,U)⇒ N

{
−1

2
δ2m2(γ)J, δ2m2(γ)J

}
. (23)

The result for αpu then follows from Proposition 2.4 of Roberts et al. (1997). The ith component
of the gradient vector with respect to which a bounce might occur is

∂xi`(X + δU) = γig(γiXi + γiδUi) = γig(ξi +
δ√
d
γiZi)

= γig(ξi)−
δ√
d
γ2i Zih(ξi) +R

(d)
i ,

(24)

where |R(d)
i | ≤ Lδ2γ3i Z

2
i /d. Thus ‖∇`(X + δU)‖2 =

∑d
i=1 γ

2
i g(ξi)

2 +O(1), so

‖∇`(X + δU)‖2/d→ E[γ2g(ξ)2] = Jm2(γ).

Also, by (24) and the central limit theorem,

U>∇`(X + δU) =
1√
d

d∑
i=1

γiZig(ξi)−
δ

d

d∑
i=1

γ2i Z
2
i h(ξi) +O(1/

√
d)

⇒ N {−δm2(γ)J,m2(γ)J} .
(25)

Now U − V = 2[U>∇`(X + δU)]/‖∇`(X + δU)‖2 ×∇`(X + δU), so from (25) we have that

d× ‖U − V ‖2 =
4d

‖∇`(X + δU)‖2
× [U>∇`(X + δU)]2

⇒ 4

Jm2(γ)
[N{−δm2(γ)J,m2(γ)J}]2,
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so that ‖U − V ‖ = O(1/
√
d). Consequently, the quantity `(X + δU + δV )− `(X + δU) equals

δV >∇`(X + δU))− 1

2
δ2V >∂2`(X + δU)V +

1

2
√
d
T

(d)
2 ,

where |T (d)
2 | ≤ δ3L

∑d
i=1 γ

3
i V

2
i |Zi| = O(1) by the Lipschitz condition on f ′′, the boundedness of

E[γ3] and because ‖U − V ‖2 = O(1/d) and U = Z/
√
d. Further, the quantity −B(X,U) also

reads

`(X)− `(X + δU) = −δU>∇`(X + δU))− 1

2
δ2U>∂2`(X + δU)U +O(1/

√
d).

Subtracting the two expressions and noting that the bounce is constructed so that (U+V )>∇`(X+
δU) = 0 yields

`(X + δU + δV )− `(X) = δ(U + V )>∇`(X + δU)) +
1

2
δ2U>∂2`(X + δU)U

− 1

2
δ2V >∂2`(X + δU)V +O(1/

√
d)

=
1

2
δ2(U − V )>∂2`(X + δU)(2U − (U − V )) +O(1/

√
d).

(26)

Since ‖U‖ = 1 and ‖U − V ‖ = O(1/
√
d), the term to control in (26) is

δ2|(U − V )>∂2`(X + δU)U | = 2δ2
U>∇(X + δU)

‖∇`(X + δU)‖2
|U>∂2`(X + δU)∇`(X + δU)|

∼ 2δ2
|N{−δm2(γ)J,m2(γ)J}|

dJm2(γ)
|W (d)|,

where

W (d) ≡ 1√
d

d∑
i=1

Ziγ
3
i h(ξi + γiZi/

√
d)γig(ξi + γiZi/

√
d)

=
1√
d

d∑
i=1

{Ziγ3i h(ξi)γig(ξi) +O(1/
√
d)}.

But E{
∑d

i=1 Ziγ
3
i h(ξi)g(ξi)} = 0 so W (d) = O(1), and, hence, `(X + δU + δV ) − `(X) =

O(1/
√
d). It follows that

`(X + δU)− `(X + δU + δV ) = `(X + δU)− `(X)− {`(X + δU + δV )− `(X)} → B(X,U)

in probability. If there is a delayed-rejection event then the standard move must have been rejected
and, for example, B must be negative. Let DR be the event that the standard move has been
rejected and so a delayed-rejection step is being attempted. Let fB(b) be the a priori density for B
at stationarity, and let fB|DR(b) be the density conditional on there being a delayed-rejection event.
Then

fB|DR(b) =
fB(b) {1− 1 ∧ exp(b)}∫∞

−∞ fB(b) {1− 1 ∧ exp(b)} db
, (27)
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which is well-behaved and has no mass where αdr(X
(d), U (d)) is undefined. In the limit as d→∞,

fB(b) is the density of the Gaussian distribution in (23), and (27) gives the limiting conditional
density. It follows from the Bounded Convergence Theorem that

αdr(X,U) = E

[
1 ∧ 1− 1 ∧ exp{`(X + δU)− `(X + δU + δV )}

1− 1 ∧ exp{`(X + δU)− `(X)}
exp{`(X + δU + δV )− `(X)} | DR

]
→ E

[
1 ∧ 1− {1 ∧ exp(B)}

1− {1 ∧ exp(B)}
| DR

]
= 1,

as required.

B.2 Simulation study varying d for fixed δ
In dimension d we explore a N {0, diag(σ2

1, . . . , σ
2
d)} target with γ2i = 1/σ2

i = 2i/(d + 1). In this
case, J = 1 and, essentially, m2(γ) = 1, so that for fixed δ, Theorem 1 tells us that, asymptotically,
we expect αpu → 2Φ(−δ/2) and αdr → 1. For each combination of d ∈ {5, 10, 20, 50, 100, 200}
and δ ∈ {0.1, 0.2, 0.5, 1.0, 2.0, 3.0} (except d = 5 and δ = 0.1) where the Monte Carlo relative
error was large) three replicate runs were performed with κ = 1.0. Empirical acceptance rates for
the standard moves and for the delayed-rejection move were recorded for each run.

Figure 4: Left: αpu against log10 d split by δ; centre: log10(1−αdr) against log10 d split by δ; right:
log10(1− αdr) against log10 δ split by d.

The left panel of Figure 4 plots αpu against the dimension d for each fixed δ and demonstrates
that for each fixed δ, the acceptance rate αpu is insensitive to d, suggesting that the asymptotics are
highly relevant even for very low dimension. The central and right panels plot (1 − αdr) against
the dimension d and (1 − αdr) against δ respectively, and suggests that, not only does αdr → 1 as
d→∞ but that, at least in this example, asymptotically, 1− αdr ∝ δ2/d.

C Further simulation studies

C.1 Convergence from the tails
We illustrate the contrast between the discrete bouncy particle sampler and Hamiltonian Monte
Carlo on a fifty-dimensional target with a density described in Equation (16). We first tuned each
algorithm by starting at random positions of the form (σ1z1, . . . , σdzd) × r?, where z ∈ Sd−1 is a
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uniformly random unit vector in Rd. For Hamiltonian Monte Carlo we tried different integration
times, T , and for each T , we followed the advice of Beskos et al. (2013), noting that convergence to
the optimal acceptance rate as dimension increases is slow, and tuned the number of leapfrog steps
so as to achieve an acceptance probability of a little over 70%. For the discrete bouncy particle
sampler we tried different values for δ, and for each δ we chose κ so that, as suggested in Section
4.1, the mean dot product diagnostic is around 0.3-0.4. This suggested that (T = 2.0, L = 4)
for Hamiltonian Monte Carlo and (δ = 2.0, κ = 0.7) for the discrete bouncy particle sampler
were reasonable tunings. Since, for a non-toy target in d = 50, gradient evaluations will be much
more costly than likelihood evaluations it is reasonable to a first approximation to assess efficiency
by comparing the ratio of effective sample size to the average number of gradient evaluations per
iteration. With 105 iterations this is ≈ 1473 for Hamiltonian Monte Carlo and ≈ 1014 for the
discrete bouncy particle sampler. However, the apparent relative success of Hamiltonian Monte
Carlo disguises a serious underlying issue.

We reran Hamiltonian Monte Carlo for 106 iterations 40 additional times withX0 = γ(σ1z1, . . . , σdzd)×
r? for each γ ∈ {1.5, 2.0.2.5, 3.0}, with a new, independent z vector on each of the 160 occasions.
On each occasion we counted the fraction of times where, by iteration 106 the algorithm had ever
had a value with ‖x‖M ≤ r?; i.e., the algorithm had reached the main posterior mass. The number
of runs which converged by this measure were: 40/40 (γ = 1.5), 36/40 (γ = 2.0), 4/40 (γ = 2.5)
and 0/40 (γ = 3.0); indeed, for every run with γ = 3.0 the empirical acceptance rate was ex-
actly zero. This fits with the known lack of geometric ergodicity of Hamiltonian Monte Carlo on
light-tailed targets. By contrast, for the discrete bouncy particle sampler with γ = 3.0, all 40 runs
converged within 1000 iterations, and, indeed, 26 of the runs converged within 300 iterations.

In summary, on this occasion, when both algorithms were started from the main posterior mass,
the discrete bouncy particle sampler was competetive with Hamiltonian Monte Carlo, though less
efficient. However, because our algorithm depends on ∇ log π only through the unit vector, it is
robust to large ‖∇ log π‖, unlike Hamiltonian Monte Carlo.

C.2 The Markov modulated Poisson process
Finally, we consider a k-state, continuous-time Markov chain Zt started from state 1, and a Poisson
process Nt whose rate λt is a fixed function of Zt. The doubly-stochastic process is parameterized
by the rate matrix for the Markov chain, Q, and a vector of rates for the Poisson process, λ, where
λi, (i = 1, . . . , k) is the rate of Nt when Zt = i.

The event times of Nt are observed over a time window [0, tend], but the behaviour of Zt is
unknown, and we wish to perform inference on (Q, λ). Setting Λ = diag(λ), the likelihood for the
number of events n and the event times t1, . . . , tn is (Fearnhead and Sherlock, 2006):

L(Q, λ; t) = e′ exp[(Q− Λ)t1]Λ exp[(Q− Λ)(t2 − t1)]Λ . . .Λ exp[(Q− Λ)(tend − tn)]1,

where 1 is the k-vector of ones and e′ = (1, 0, . . . , 0). We simulated a dataset using a cyclic
four-state Markov chain for a 200-second time window with Q parameters of: Q12 = Q23 =
Q41 = 1.0, Q34 = 0.25 and all other off-diagonal rates set to zero. The rate parameters were
λ1 = 20.0, λ2 = 5.0, λ3 = 1.0 and λ4 = 10.0. We then conducted inference on the natural
logarithm of each parameter that was not systematically zero, placing independent N(0, 22) priors
on each of these.
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Figure 5: Scaled effective sample size as a function of the mean dot product for several values of
κ, obtained from Discrete Bouncy Particle Sampler runs of length N = 2 × 105 applied to the
logarithms of the MMPP parameters with no preconditioning and with ncpt = d = 8 and ncpt = 3
(Left), and with crude preconditioning and ncpt = d (Right).

Code was written in C++ where auto-differentiation was not available for general matrix ex-
ponentials, and so numerical differentiation via centred differences was used (the cheaper, first-
order Euler approximation led to precision problems). We applied the Discrete Bouncy Parti-
cle Sampler for 2 × 105 iterations for a number of κ values and repeated this but evaluating
only ncpt = 3 randomly-orientated components of the eight-dimensional gradient vector on each
delayed-rejection step. Figure 5 plots scaled effective sample size against κ and suggests that the
optimal mean dot product is around 0.5 when all gradient components are used and around 0.2
when three random components are used. The optimal effective sample size in the latter case
is around 3/8 of the former; since the number of gradient calculations during a bounce is also
reduced by 3/8 this suggests no loss in overall efficiency. When all components are used, tun-
ing to a dot product of 0.2 brings only a 10% reduction in effective sample size. The posterior
variance matrix has a condition number of 49.2, so, following typical practice, for each κ the
Discrete Bouncy Particle Sampler was rerun using a crude preconditioning matrix (Section 2.5)
of M = diag(1/2, 2, 1, 1, 2, 2, 2, 2). Although the effective variance matrix still has a condition
number of ≈ 4.3 the right panel of Figure 5 shows that the optimal choice of κ is now ≈ 0.2.
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