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All clocks, in some form or another, use the evolution of nature towards higher entropy states
to quantify the passage of time. Due to the statistical nature of the second law and corresponding
entropy flows, fluctuations fundamentally limit the performance of any clock. This suggests a deep
relation between the increase in entropy and the quality of clock ticks. Indeed, minimal models for
autonomous clocks in the quantum realm revealed that a linear relation can be derived, where for
a limited regime every bit of entropy linearly increases the accuracy of quantum clocks. But can
such a linear relation persist as we move towards a more classical system? We answer this in the
affirmative by presenting the first experimental investigation of this thermodynamic relation in a
nanoscale clock. We stochastically drive a nanometer-thick membrane and read out its displacement
with a radio-frequency cavity, allowing us to identify the ticks of a clock. We show theoretically that
the maximum possible accuracy for this classical clock is proportional to the entropy created per tick,
similar to the known limit for a weakly coupled quantum clock but with a different proportionality
constant. We measure both the accuracy and the entropy. Once non-thermal noise is accounted
for, we find that there is a linear relation between accuracy and entropy and that the clock operates
within an order of magnitude of the theoretical bound.

I. INTRODUCTION

By modern standards, the accuracy with which we can
keep time is truly astonishing; nowadays the best atomic
clocks keep time to an accuracy of approximately one sec-
ond in every one-hundred million years [1]. This is more
accurate than any physical constant we have ever mea-
sured (for example, the magnetic moment of an electron g
is known to 12 digits [2]), and better than computer arith-
metic which has an accuracy of 16 digits for 64-bit cal-
culations [3]. Atomic clocks run by the rules of quantum
mechanics, targeting a specific hyperfine transition in an
atom’s energy spectrum; yet despite the great progress
in keeping time, surprisingly little is known about the
relation between quantum clocks and thermodynamics.
Famously invariant under time-reversal, the equations
of quantum mechanics provide little explanation for the
passage of time, whereas the theory of thermodynamics,
although elucidating little more on the same front, does
at least leave some entropic signatures [4–9]. One of the
milestones at the intersection of the two fields is to de-
rive a quantitative relation between the second law of
thermodynamics and the flow of time. Investigations in
this direction are also a vital component in our under-
standing of quantum thermodynamics, a field focused on
the investigation, analysis and design of machines on the
quantum scale, to which clocks are no exception [10, 11].

Alongside philosophical and conceptual curiosities,
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clocks constitute an intrinsic component in the operation
of numerous systems, from the clocks used to time the
gates on a desktop CPU to the clocks necessary for deter-
mining your GPS coordinates. In the quantum regime,
as opposed to the classical case, the thermodynamic cost
associated with the precise control of a system is compa-
rable to the energy scale of the system itself [12–14].

For example, the cycles of a quantum Otto engine
need to be controlled by a microscopic autonomous
clock [15, 16]; a device that produces a stream of ticks
without any timing input or external control. The en-
ergetic cost of running this clock is comparable to the
energetic output of the engine and thus can no longer
be neglected. These clocks have been studied rigorously
from the perspective of open quantum systems, where it
has been shown that their performance with respect to
the resources they consume is subject to particular rela-
tions, as well as trade-offs [4].

One of the challenges in deriving such relations from
microscopic thermodynamic principles is that reasonably
large systems are required for irreversible dynamics to
emerge [17, 18]. In developing relations and trade-off
models, we are forced to make assumptions about the
underlying parameters and system dynamics [10, 19].

At the other end of the scale, in the classical domain,
it is difficult to keep track of thermodynamic costs be-
cause the systems become large and complex. Systems
for which thermodynamic costs could be accurately es-
timated allowed for experimental breakthroughs in the
study of stochastic and quantum thermodynamics. For
example, a Brownian Carnot engine [20] and a single-
atom heat engine [? ] were demonstrated using electric
field noise as a hot reservoir.
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FIG. 1. a) For timekeeping, the clockwork consumes resources, part of which are lost as waste. The hands of the clock register
the clock’s ticks. b) Simple mechanical clock. Here, a mass is suspended from a spring and the heat from the environment
excites the mass’ motion at frequency f0. These vibrations are probed by a signal of power Pcav. This system (the clockwork)
generates a periodic signal, which is registered to identify the clock’s ticks. c) A schematic of our electromechanical system
acting as a clock. A nm-thick membrane is driven by a white noise signal of power PWN. The membrane’s vibrations are
probed by an RF cavity driven with a signal of power Pcav. The cavity output signal, and thus the clock tick’s, are registered
by an oscilloscope.

In this article we experimentally explore the thermo-
dynamic costs of timekeeping by directly measuring both
the accuracy and the entropy generation associated with
a simple nano-electromechanical clock. In our implemen-
tation, the clock is a thermal engine that operates be-
tween a hot reservoir realised by means of a noisy elec-
tric field coupled to a mechanical element, and a cold
reservoir realised by a room-temperature measurement
circuit. The clock is driven by the heat flow through the
engine and the work required to observe the mechanical
vibrations. The thermodynamics of clocks can thus be
experimentally investigated, in the same way as conven-
tional heat engines, by comparing the heat flow through
the clock with the resulting accuracy. We compare our
results to quantum and classical clock models, and anal-
yse the relation of our findings to thermodynamic un-
certainty relations (TURs) [21–25], arising in classical
stochastic thermodynamics. In the latter, we find our
results to be both conceptually and quantitatively differ-

ent.

A clock, like any thermodynamic machine, operates by
consuming a resource and creating waste in the form of
entropy (Fig. 1(a)). Its useful output is a train of ticks
which can be counted by a register. Previously, two av-
enues of research in that direction have led to similar
conclusions: on the one hand, using TURs, the authors
of [26] show an entropic cost to measuring time based
on a finite markov model, on the other hand, a simple
two-qubit quantum engine coupled to a ladder was used
to derive a similar entropic cost in autonomous quantum
clocks [4]. Both of these show that in their respective
regimes of validity, there is a fundamental price to time-
keeping: the more regular and frequent the ticks, the
greater the rate at which the clock must create entropy.

This work experimentally and theoretically studies a
new kind of classical clock which realises this thermo-
dynamic process. The clock is based on a simple op-
tomechanical model (Fig. 1(b)), in which the Brownian
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motion of a mechanical resonator is monitored using an
electronic cavity interferometer. Each mechanical oscil-
lation identified by the interferometer corresponds to one
tick. The clock is driven by the work performed to illumi-
nate the cavity and by the heat transferred from the hot
resonator to the cold measurement electronics. While the
accuracy can be improved by increasing either the me-
chanical amplitude or the electrical illumination power,
in both cases this leads to greater heat dissipation and
therefore increased entropy, as explained in Section II
and Appendix B.

The experimental realisation of the model is shown in
Fig. 1(c). The mechanical resonator is a high-quality
silicon nitride membrane vibrating in its fundamental
flexural mode. To excite quasi-Brownian motion, the
membrane is driven by a white-noise electrical signal,
which acts as an effective thermal bath that raises the
mechanical mode temperature [27]. To monitor the
membrane’s displacement, it is capacitively coupled to a
radio-frequency (RF) cavity operated in an optomechan-
ical readout circuit [28–33]. The voltage output of this
circuit is proportional to the instantaneous displacement.
This output is recorded using an oscilloscope which acts
as the clock register. Each completed oscillation, iden-
tified by an upward zero-crossing of the voltage record,
represents one tick of the clock.

We used our setup to test the relation between the re-
sources used to power the clock and its accuracy. The
accuracy was determined by an algorithm which marked
the instance at which a tick (a particular behavioural
signature of the membrane’s motion) occurred. We then
looked at the accuracy of the optomechanical system for
a range of white noise driving power and compared it
to the prediction of a classical clock model. In order
to make this comparison, we associated the system’s re-
sources to the clock’s total entropy production. Our re-
sults confirm clear proportionality between the driving
power (the resource) and the periodicity of the cavity
output signal (the accuracy), which is the trademark re-
sponse predicted by both a quantum and a classical clock
model. This finding suggests that fundamental relations
for the thermodynamics of timekeeping can be observed
in a broad class of operating regimes, making them uni-
versal. In this way, our results support the idea that
entropy dissipation is not just a prerequisite for measur-
ing times passage, but that the entropy dissipated by any
clock is quantitatively related to the fundamental limit
on that clock’s performance.

II. THEORY: THE THERMODYNAMIC COST
OF TIMEKEEPING

Be it quantum or classical, we define the accuracy of a
clock as in [4]:

N :=

(
ttick

∆ttick

)2

, (1)

where ttick is the mean interval between successive ticks
and ∆ttick is the standard deviation of this interval.
Equivalently, N−1 is the Allan variance [34] when the
observation period is equal to ttick. This is a more severe
measure of accuracy than the Allan variance of a much
larger number of ticks. If Markovian stationarity is as-
sumed, i.e. if successive tick intervals are uncorrelated,
N is also the number of ticks before the expected accu-
mulated timekeeping error is equal to one tick interval.

Our objective is to test the measured value of N , de-
rived by analysing a series of ticks generated by the ex-
periment, against the prediction of models in which the
accuracy of the clock appears as a function of the re-
sources used to drive it. This line of inquiry is inspired
by [4], in which the rate of entropy production and ac-
curacy of an autonomous quantum clock are found to be
linearly related (assuming weak coupling), i.e.

NQ =
∆Stick

2kB
(2)

where kB is Boltzmann’s constant and ∆Stick is the
entropy generated per tick. This entropy arises due to
power being dissipated by the clock, from which we un-
derstand that greater power dissipation corresponds to
greater accuracy.

In similar spirit we have analyzed a classical model of
the optomechanical experiment of Fig. 1(c). In this op-
tomechanical clock, the electrical cavity containing the
membrane is excited with a cavity illumination tone with
power Pcav. Part of this tone is reflected from the cavity,
and its phase is modulated by the thermal vibration of
the membrane. By identifying each modulation cycle, a
series of ticks can be derived, repeating at a interval set
by the mechanical period. However, there is a thermo-
dynamic price. For accurate timekeeping, the modulated
signal should be made as large as possible. This increases
the dissipation in the detection circuit, and therefore cre-
ates greater entropy than a small signal. By calculating
the minimal uncertainty with which ticks can be identi-
fied in the presence of thermal noise, Appendix B shows
that the greatest possible accuracy for this classical clock
is

NC =
2π2

kB

Tc

TN
∆Stick (3)

where TN is the noise temperature of the measurement
electronics and Tc is the temperature of the environment,
assumed to be colder than the mechanical effective tem-
perature.

Increasing the thermodynamic resources supplied to
the clock, i.e. Pcav and PWN, increases both the accu-
racy and the entropy creation rate. Intriguingly, this
classical experiment, despite representing a completely
different physical system from the quantum clock of [4],
obeys a similar relationship between accuracy and en-
tropy. Whereas N in Eq. (1) is the accuracy which can
be extracted from a sequence of ticks experimentally re-
alised by the clock, NC in Eq. (3) is a statistical pre-



4

diction based on the thermodynamic properties of the
setup.

In order to compare the values of N obtained from the
experiment with the prediction of the model, we must
identify the source of entropy ∆Stick in our system. We
acknowledge there are various types of entropy emerging
from the setup. Here, we focus on the entropy in the
cavity output signal, as it is directly observable in our
temporal traces. Additional entropy contributions are of
course produced in the instruments used to control the
systems (from the tone that drives the readout cavity to
the oscilloscope that measures the cavity output signal).
We do not focus on this type of entropy, as it depends on
the specific implementation and it is not present in au-
tonomous devices. Finally, there is the source of entropy
production that comes from the white noise driving. This
is the fundamental entropy dissipated per natural tempo-
ral event (tick) in our experiment. Here it is important to
note that not all of the power injected in the system will
be converted into a useful drive signal, just as not all the
energy from a hot bath can be converted into work in a
heat engine; some will be dissipated in the environment
at the expense of entropy production elsewhere. This
does not impact our results as long as the power of the
white noise signal used to drive the clock is high enough
to make the ticks identifiable above the thermal back-
ground. Thus, we estimate the relevant entropy ∆Stick

from the spectral density of the cavity output signal by
computing the area of the spectral density peak located
at the membrane’s resonance frequency.

III. EXPERIMENTAL SETUP

The vibrating membrane is measured using the setup
shown in Fig. 2(a). The membrane, which consists of
50 nm thick SiN metallized with Al, is suspended over
two Cr/Au electrodes patterned on a silicon chip, forming
a capacitor. A dc voltage Vdc = 15 V is applied to elec-
trode 1, with electrode 2 grounded. Electrode 1 is con-
nected to a RF cavity, which is realised with an inductor
and capacitors (Fig. 2(a)). As the membrane vibrates,
the capacitance CC between the membrane and the elec-
trodes changes. Driving the RF cavity with a resonant
tone, we can probe the membrane’s motion by monitor-
ing the cavity’s output signal [33]. The cavity is driven by
injecting a RF signal via port 1 via a directional coupler.
A signal to excite the membrane’s motion is incorporated
in the circuit via port 3. The experiment is carried out
at room temperature at approximately 5× 10−6 mbar.

To determine the cavity’s resonant frequency, we mea-
sure the scattering parameter |S21|, which is proportional
to the reflection from the cavity, as we sweep the fre-
quency of a probe tone fP. The cavity resonance is evi-
dent as a minimum in |S21| (Fig. 2(b)). To identify the
mechanical resonance, we perform two-tone spectroscopy.
While driving the cavity at its resonance frequency (i.e.
with fP = 210.3 MHz) through port 1, we applied an-
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FIG. 2. (a) Experimental setup. A metalized silicon nitride
membrane is suspended over two metal electrodes, forming
a capacitor CC . One of the electrodes is connected to a RF
tank circuit which acts as a readout cavity. Electrode 2 is
grounded. The tank circuit is formed from a 223 nH inductor
L, and two 10 pF capacitors CD and CM. Parasitic capaci-
tances contribute to CM and parasitic losses in the circuit are
parameterized by an effective resistance R. The cavity can be
probed by injecting a RF signal at port 1 via a directional
coupler. The output signal is measured at port 2 using a
vector network analyser or a spectrum analyser. The mem-
brane’s motion can be excited by injecting a signal at port
3. Bias resistors allow a dc voltage Vdc to be applied to elec-
trode 1. Red (blue) arrows indicate resources (waste) for our
system. (b) |S21| as a function of probe frequency fp. (c) One
of the mechanical sidebands observed in the spectrum of the
cavity output signal when an excitation tone at frequency fE
is injected at port 3 and swept in frequency whilst the cavity
is driven at its resonant frequency via port 1. The sideband
power grows when fE coincides with the resonance frequency
of the membrane f0. (d) Demodulated readout signal V (t),
as a function of time, for Pcav = 14 dBm. PWN = 0.25 W
and PWN = 0.063 W for the red and blue traces, respectively.
The inset shows the demodulation circuit. (LO: local oscilla-
tor; BPF: band pass filter)
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other tone of frequency fE through port 3 in order to
excite the membrane. The power spectrum of the re-
flected signal is shown in Fig. 2(c) as a function of fE.
The mechanical response is evident as a strong increase
in the sideband power at fP ± fE when fE matches the
mechanical frequency f0 ≈ 74.5 kHz [33].

In order to use the membrane as a thermal clock, we
drive the membrane’s motion (of the fundamental mode)
stochastically by applying a white noise signal of power
PWN and bandwidth 500 kHz through port 3. This white-
noise signal is the clock’s heating resource. To register
the ticks, we must illuminate the cavity, and to do this
the resource is a resonant drive tone injected through
port 1 with power Pcav. We measure the displacement
of the membrane in real time by demodulating the cav-
ity output signal V (t). The demodulated signal is mea-
sured with an oscilloscope. We show V (t) after demodu-
lation and amplification for two different values of PWN

in Fig. 2(d). From these time traces, the ticks of the clock
can be identified, and an accuracy can be computed for
different values of PWN.

Studying clock performance in the absolute sense is not
strictly possible in our system, since this would require
us to synchronise multiple clocks (e.g. via the alternat-
ing ticks game [5, 35]). We have thus chosen a reference
clock that is orders of magnitude faster than the sys-
tem under investigation in order to resolve the temporal
dynamics. In our case, the membrane’s frequency is in
the kHz regime while our reference clock, the clock of
the oscilloscope, operates at a frequency several orders
of magnitude higher. Our system constitutes a quasi-
autonomous clock, since just with a driving tone, it is
able to convert the power of the white noise driving the
membrane’s motion into the observable ticks of a clock.

IV. RESULTS

Ticks are generated from time records of the demodu-
lated voltage signal as shown in Fig. 2. Each tick corre-
sponds to an upward zero-crossing of this signal. In prin-
ciple, these zero-crossings could be identified in nearly
real time using a threshold detector with an appropriate
input filter. In practice, we acquired the entire voltage
record and identified ticks in post-processing, in order to
be able to study the effects of different filter and thresh-
old settings.

At each setting of Pcav and PWN, a record of raw data
with a duration of 1 s was stored. In order to sup-
press noise, each record was then digitally filtered using
a band-pass filter of 75 kHz bandwidth centred at f0.
This bandwidth, which is nearly equal to f0, is sharp
enough to remove much of the electronic noise, and thus
avoids triggering false upward zero-crossings, but has a
fast enough ringdown to ensure that successive ticks are
nearly independent. In a real-time clock, it could be im-
plemented using an analogue filter. To extract N for each
record, the upward zero-crossings were identified in order

to generate a sequence of tick intervals, and the resulting
standard deviation ∆ttick was substituted into Eq. (1).

The results of this analysis are shown in Fig. 3(a) as a
function of Pcav and PWN. For small values of PWN, we
see that N increases approximately linearly with PWN.
This can be understood intuitively: a stronger drive
makes the mechanical oscillations easier to distinguish
from the noise. As PWN increases further, the linear re-
lationship breaks down and the accuracy shows signs of
saturating. This is to be expected due to noise in the cir-
cuit leaking from the heating tone and the membrane’s
motion entering the non-linear regime, effects which do
not allow a continued increase of N .

As Pcav increases, the linear increase of N as a func-
tion of PWN shows a larger gradient. This is because an
increased Pcav enhances readout. Above Pcav = 14 dBm,
however, demodulated V (t) shows significant fluctua-
tions, leading to the saturation of N at smaller values of
PWN (see Appendix D). The time traces corresponding
to Pcav < 8 dBm are too noisy for ticks to be identified
(see Appendix E). The oscilloscope’s sampling rate was
40 MSa/s, giving a resolution of 25 ns to the acquired
time traces. Given the frequency of the membrane, this
resolution sets an upper limit to the measurable accu-
racy of N . 290, 000; however, as seen from Fig. 3(a),
experimental values of N are less than a hundredth of
this limit.

To test the predictions of the classical clock model, we
now compare the measured N with the predicted accu-
racy NC according to Eq. (3). The relevant entropy arises
from the electrical power dissipated in the amplifier cir-
cuit by the optomechanical sidebands that contain the
displacement information. As shown in Appendix B, the
ratio ∆Stick/TN can be calculated from the same demod-
ulated voltage record used to identify ticks. To do this,
each record is first numerically transformed to generate
a power spectrum. The entropy ∆Stick is then calculated
from the integrated power within a 10 kHz window cen-
tered on the signal frequency f0; the noise temperature
TN is calculated from the average spectral density well
away from this frequency (see Eq. (B43)). The physi-
cal temperature of the measurement circuit is taken as
Tc = 300 K.

We have compared the values obtained for NC with the
accuracy N computed as in Eq. (1) (Fig. 3(b)). Our re-
sults confirm that increasing accuracy require increasing
∆Stick, and show the linear relation predicted by Eq. (3).
However, the constant of proportionality, for all heating
and illumination powers shown here, is approximately ten
times smaller than predicted. Since Eq. (3) represents an
upper bound on the clock’s efficiency, this discrepancy is
not inconsistent with the theory. It probably indicates
that identifying the zero-crossings, which does not use
all the information in the voltage record, is not an op-
timal procedure for identifying ticks. An improved tick
identification algorithm might allow us to get closer to
the bound set by the classical model of our setup.
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V. DISCUSSION

Our experiment is simple enough to account for the
thermodynamic resources used, like in Ref. [36], and at
the same time our system is too complex to be modelled
by a simple open quantum systems approach.

The results in Fig. 3 showcase an important relation
between the accuracy and the entropy production that
should be present in the most fundamental clocks [4],
both in a quantum and a classical model. The accuracy
is only a lower bound on the entropy creation, making it
entirely possible for the system to dissipate more entropy
at higher drive powers without providing more accurate
ticks. The fact that we nonetheless see such a consistent
linear relation between the accuracy and the entropy pro-
duction for a considerable range of cavity and white noise
drives, indicates that our clock’s performance is close to
optimal and that we are correctly identifying the relevant
entropy contributions.

Our clock provides a steady stream of ticks that are
identified from cumulative events; it would defeat the
purpose of a clock if only a finished sequence of events
can be used retroactively for the identification of ticks.
That would rather correspond to the concept of a stop-
watch, where upon interrogation one obtains a good es-
timate of how much time has elapsed between initialisa-
tion and interrogation, but does not provide a continu-
ous temporal reference frame. Although the system is
not fully autonomous, because a cavity drive is necessary
for readout, it presents a perfect testbed for generating
a stable time-ordered signal by exploiting thermal non-
equilibrium. In fact, any system that acts as a register is

expected to consume work, as it would inevitably require
to perform measurements of irreversible events [37].

Any thermally irreversible process could be used as a
clock [7], e.g. simply by observing the progress of equili-
bration as a proxy for time. We propose that an opera-
tional definition for a good clock is a system that reduces
the linear slope of the accuracy-dissipation relation and
keeps it linear for accuracy as high as possible. This
is consistent with another recent finding Ref. [9], which
shows that clockwork complexity can be used to decrease
that linear slope and to increase the saturation point,
beyond which extra dissipation will not correspond to a
better clock quality.

The observed relationship between drive power and ac-
curacy (Fig. 3) is in qualitative agreement with the rela-
tion stemming from the oversimplified model in Ref. [4],
and with the prediction of our classical model. Our re-
sults also corroborate the notion that the quality of the
arrow of time is indeed limited by the entropy dissipated
by a clock. As described in Ref. [4], the linear relation
between accuracy and entropy production tends to break
down at some point. We have observed this effect in
our experiment, most likely due to the membrane’s mo-
tion entering the non-linear regime at high drive powers
or due to other non-linearities playing a more significant
role in the circuit. Below that threshold, our observed
relationship between drive power and accuracy points to-
wards a universal relation, in both quantum and classical
regimes, between entropy production and clock accuracy.

We also note an interesting relation to the phenomenon
of stochastic resonance [38], where noise can push a signal
beyond a detection threshold and in this way increase the
signal quality. Superficially our experiment is a similar
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scenario, since we inject noise to create a periodic signal.
However, instead of using noise to make a pre-existing
signal detectable, this experiment uses noise to create the
signal by heating the mechanical mode. Nevertheless,
it will be interesting to see if these techniques can be
fruitfully adapted to our setup.

We now consider the connection between these results
and the thermodynamic uncertainty relations (TURs).
These relations are a large class of inequalities that apply
to out-of-equilibrium systems and relate the fluctuations
of a driven observable F , such as the rate of a chemical
reaction, to the entropy created [21–25]. They have the
form

p(F ) ≡ |〈F 〉|
2

Var(F )
(4)

≤ g(Ṡ) (5)

where p(F ) is known as the precision and g(Ṡ) is a mono-

tonic function of the entropy creation rate Ṡ. (We follow
previous literature by calling N as in Eq. (1) the ac-
curacy [4] and p as in Eq. (4) the precision [25], even
though these do not correspond to the usual definitions
of accuracy and precision in metrology). A relation such
as Eq. (5) describes a trade-off between precision and
dissipation. To achieve high precision by overwhelming
the observable’s thermal fluctuations, the system must
be strongly driven and this creates entropy. An example
of an experimental verification of TURs can be found in
Ref. [39].

One should add, that while the upper bound on pre-
cision g(Ṡ) increases with increased dissipated entropy,
that by no means implies a generically increased preci-
sion in more strongly driven systems. Indeed, for canon-
ical thermodynamic choices in observables F , the preci-
sion of our system actually decreases with an increased
drive. One way to view the relation of clock accuracy
with increased entropy dissipation through the lens of
TURs would be to identify the output of our tick iden-
tification algorithm in relation to a reference clock with
the observable in a TUR , i.e. 〈Ftick〉 = ttick. While this
is not really a standard observable as its very definition
is dynamically updated, one can easily see that in this
case, the accuracy of the clock is equal to the precision
defined in the TUR.

So from that point of view, the non-canonical observ-
able can be taken as the measured interval between suc-
cessive ticks. If such an identification is possible, the
combination of Eqs. (1) and (3) leads to the following
relation:

p(Ftick) = N ≤ 2π2ttick
Tc

TN

Ṡ

kB
(6)

which clearly has the form of Eq. (5). However, we em-
phasize that calculating the accuracy of this experimental
clock is not simply a matter of applying known TURs.
To see this, suppose we take the observable F as be-
ing the energy flux contained in the demodulated output

of the clock, averaged over a fixed interval. When the
clock is weakly driven, this output consists of broadband
voltage noise which carries energy at a nearly constant
rate and therefore leads to a large precision defined by
Eq. (4). When the clock is strongly driven, the output
is dominated by the mechanical signal, which has a long
correlation time and therefore induces long-lived fluctua-
tions in the flux. In fact, as we show in Appendix C, the
precision in this case is as low as unity, even though the
accuracy reaches its maximum value. The clock output
encodes a temporal signal in a way that is not apparent
in the chosen observable, despite the fact that energy flux
is at first sight a reasonable choice as the basis of a clock.
This shows that although TURs are useful bounds in a
wide range of systems, they must be applied with care
even in a fairly elementary clock realisation such as this
one.

VI. CONCLUSION AND OUTLOOK

In this work, we have demonstrated a thermomechan-
ical clock which allowed us to reveal a universal relation
in the thermodynamics of timekeeping. We have first
showed that the heating resource introduced to drive the
clockwork of our optomechanical setup enhances the ac-
curacy of the clock signal. Modelling our system clas-
sically, we have then found that the linear relationship
between clock accuracy and entropy production, derived
in an idealised quantum setting, is found to hold in the
classical regime. The universality of this relation provides
a clear link between the entropy dissipated by the clock
and the quality of the arrow of time. We also uncover
an interesting relation to thermodynamic uncertainty re-
lations (TURs) studied in the field of stochastic ther-
modynamics. In some sense, our method of identifying
ticks can be interpreted as a means to finding observ-
ables that maximally increase precision with increased
entropy dissipation rates. We have shown that in our sys-
tem, contrary to the identified clock ticks, conventional
thermodynamic currents do not experience an increased
precision with increased driving. As all clocks are funda-
mentally thermodynamic in nature [8, 9], we believe that
a further study of the relation between TURs and clocks
will be fruitful.

Another exciting avenue for future investigation, that
one can imagine would be interpreting the system as a
heat engine, instead of a clock. Since the oscillations of
the membrane can induce a current, they are able to pro-
duce work, thus mimicking a heat engine that converts
unstructured noise into regular beats. For a system of
this scale, work fluctuations become crucial, in contrast
to a classical macroscopic engine, for which the power
delivered in each stroke is approximately the same. This
opens up the opportunity of studying work fluctuation
relations as well as deriving rates for heat to work con-
version. Finally, it would be interesting to see if the noise
(heat) driving the membrane could be harnessed from
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the environment, rather than being input from a charac-
terised source; in this way one would be able to say that
the system is truly performing as a useful engine.
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FIG. 4. Simple electrothermal clock. (a) The setup. The Johnson noise of resistor R0, in equilibrium with a hot bath at temperature Th,
is filtered to pass frequency f0 with bandwidth f0/Qf . The resulting signal, whose power is P0, is passed to a matched resistor and
amplifier at temperature Tc. (b) From the noisy voltage record (points) seen by the amplifier, we can generate clock ticks by estimating
the zero crossing of each cycle using a sinusoidal fit (lines). Here ∆t marks the sampling interval, ttick = 1/f0 is the average tick interval,
±tr is the fit range, and ∆ttick is the fit uncertainty.

Appendix A: Electromechanical system

The silicon nitride membrane is 50 nm thick and has an area of 1.5 mm × 1.5 mm. 90% of the area of the
membrane is metalized with 20 nm of Al. We suspend this membrane over two Cr/Au electrodes patterned on a silicon
chip. The capacitor formed between the electrodes and the metalized membrane, which depends on the membrane’s
displacement, leads to coupling between the cavity and the mechanical motion. The RF circuit is modelled and
characterised in Ref. [33]. The entire setup forms a three-terminal circuit with input ports 1 and 3 and output port
2. We used a vector network analyzer to measure the scattering parameter (Fig.1b), a spectrum analyzer to measure
power spectra (Fig.1c) and an oscilloscope to measure the displacement as a function of time (Fig.1d).

Appendix B: Entropy-accuracy relation for a thermomechanical clock

This Appendix derives the entropy-accuracy relation, Eq. (3), which is tested in the main text. We do this by
considering two classical clock models. The first is a very simple clock that uses the filtered Johnson noise of a hot
resistor. The second is the optomechanical clock — an elaboration of the Johnson noise clock which is realised in
our experimental setup. As shown below, both designs obey the same relation, which in turn resembles previously
derived relations for classical [26] and quantum [4] clocks.

In both models, the clock must derive ticks from a periodic but noisy voltage record. We ask the question: how
precisely can any clock identify a tick instant from a segment of this record? From the perspective of the clock, this
is clearly a problem of phase estimation. From the nth segment of the record, an error δφn in estimating the phase
leads to an error δtn = ttickδφn/2π in identifying the corresponding tick instant tn. Thus from Eq. (1), the clock
accuracy in any classical model is related to the phase error by

NM :=
4π2

〈(δφn)2〉
. (B1)

since the tick uncertainty ∆t is by definition the root-mean-square value of δtn. Furthermore, we require that successive
ticks be statistically independent, which means that every tick must be derived from a non-overlapping segment of
the record. In what follows, we construct models for δφn for two physical scenarios and thus estimate the accuracy
of those clock models.

1. Measuring time from filtered Johnson noise

Figure 4 shows a design for a thermodynamical clock based on Johnson noise. The clock contains two heat baths at
temperatures Th and Tc. Inside the hot bath, at temperature Th, is a resistor R0, which is connected via a matched
transmission line to an ideal voltage amplifier located in the cold bath at temperature Tc. To ensure an impedance
match and thus prevent reflections from the end of the transmission line, an equal resistor R0 is connected to the
amplifier input. A reflective band-pass filter is placed in the transmission line, centered at frequency f0 and with
quality factor Qf , so that it passes frequencies in a bandwidth of f0/Qf near the center frequency. The combined
Johnson noise of the two resistors leads to an incoherent voltage oscillation at the cold amplifier input, whose peak
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amplitude VS satisfies

〈V 2
S 〉 = 2kB(Th + Tc)R0

f0

Qf
. (B2)

where 〈·〉 denotes an average over many oscillations. Each oscillation cycle corresponds to one tick of the clock.
Demarcating each cycle accurately requires a large oscillation amplitude, meaning that a larger power is dissipated in
the cold resistor; this is the thermodynamic price that we aim to quantify.

The amplifier measures the input voltage V (t) as a function of time t (Fig. 4(b)). To generate a timing signal,
the clock’s task is to identify ticks from particular instances of the record, for example, those instants at which the
upward crossings of the t-axis occur. This is the phase estimation problem described above. The reason that a perfect
estimate is impossible even in principle is that the record is contaminated by voltage noise, including the broadband
Johnson noise of the cold resistor.

How should the clock best perform a phase estimate, given a segment from the noisy voltage record? The answer is
to perform a maximum-likelihood estimation. If the noise is uncorrelated and has a Gaussian distribution, as expected
for broadband Johnson noise, this means a least-squares fit to the data [40]. No implementation of the clock can
perform better than this.

To this end, we imagine that we have obtained some experimental data; we discretize the time interval in the record
into pieces around the expected tick locations (the upward crossings), and fit one curve for each tick of the clock, such
that for n ticks we fit n curves. For a particular tick we imagine fitting the function

V (t|φn) = V0 sin(2πft+ φn) 2n · ttick − tr ≤ t ≤ 2n · ttick + tr for n ∈ Z (B3)

where V0 is the oscillation amplitude; f is the frequency; φn is the phase; and where we have chosen to fit the n-th
tick to a function over the interval 2tr (see Fig. 4(b)). The parameters V0 and f can be estimated over several recent
oscillation cycles because they are slowly varying properties and are therefore not determined by the noise over a single
cycle. The only parameter to fit is thus the phase φn, which motivates the notation V (t|φn) as per the prescription
in [40]. For a particular data set D, the optimal value of the parameter for the n-th tick, denoted φ∗n, is the one that
minimises the χ2 function, defined as

χ2(φn) =
∑
i

(
Vi − V (ti|φn)

σi

)2

, (B4)

where i labels the data points and ranges over the total number of data-points, and σi is the vertical standard
deviation of each point. The uncertainty is then determined by ∆χ2 = 1 and the curvature parameter α, and follows
the expression:

∆φ :=
√
〈(δφn)2〉 :=

√
∆χ2 α−1/2. (B5)

The curvature parameter is calculated from the fitted function and the experimental points i as

α :=
∑
i

1

σ2
i

(
∂V (ti|φn)

∂φn

)2

. (B6)

A final value for Eq. (B5) would be obtained by evaluating α at the fitted parameter φ∗n which minimises Eq. (B4)
and choosing ∆χ2 such that it corresponds to the desired confidence interval. Since we are in the business of
constructing a model for the accuracy (i.e. we are not analysing the fit of a particular data set), we must make a
statement that is reasonable for all data sets {D} that may emerge from this setup. To do this, we must make a few
additional assumptions. First, we are interested in a situation where the oscillation frequency is sharply defined, i.e.
Qf � 〈V 2

0 〉/σ2
i , which means that within a single cycle σi is dominated by the broadband noise at the amplifier input

and therefore takes a constant value σ for all data points. Next, we imagine that the n ticks are fitted by choosing n
windows (or regions) of length 2tr where tr = 1/2f0, and the χ2 minimisation gives us the value of the crossing φ∗n
for each tick. To calculate α in any such region, we idealise Eq. (B6) by imagining a continuum of data points, and
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thus convert the sum to an integral normalised by ∆t, the sampling interval. This gives

α =
1

σ2∆t

∫ tr

−tr

(
∂V (t|φn)

∂φn

)2

dt (B7)

=
V 2

0

σ2∆t

∫ tr

−tr
cos2(2πf0t+ φn) dt (B8)

=
V 2

0

σ2∆t

(
tr +

cos(2φn) sin(4πf0tr)

4πf

)
(B9)

=
V 2

0

2σ2∆tf0
(B10)

where the last step assumes tr has been chosen at the optimal value of 1/2f0, and without loss of generality the zero
of t has been chosen at the centre of the fit interval.

Notice that choosing to fit the function in windows of width 2tr = 1/f0 has resulted in an expression for α that is
independent of the fitted parameter φn. Indeed, the integral in Eq. (B7) is independent of φn for all integration regions
of width 2tr = 1/f0, regardless of where they are centred. Thus, knowledge of the membrane frequency f0 implies
that the standard error in the fitted parameter φn is only related to the physical parameters set for the experiment.
Also note that on converting the sum to an integral, we would expect the expressions to be approximately equal.
Observe that the right-Riemann sum α∆t would overestimate the integral of any monotonically increasing function
in the interval, while underestimating for a monotonically decreasing function. If the parameter is fitted such that
it falls roughly within the centre of the window each time (i.e. we place the window roughly where we expect the
crossing), the effects of over and underestimating the symmetric function under the integral will roughly balance out.

To obtain the standard deviation ∆φn, we should take ∆χ2 = 1 in Eq. (B5), giving

∆φ = α−1/2. (B11)

With this, the accuracy in the Johnson-noise model is

NJ = 4π2α (B12)

=
2π2V 2

0

σ2∆tf0
. (B13)

The per-point standard deviation depends on the measurement bandwidth of the amplifier and on the system noise.
In the best case, it will be set by the Johnson noise of the cold resistor [41], giving

σ =
√

4kBTcR0B (B14)

where B is the measurement bandwidth (defined using the single-sided frequency convention), and the factor 4
appears because the bandpass filter presents on open load except near resonance. In order that successive points are
independent but no data is lost, the sampling interval should be related to the bandwidth by B = 1/2∆t. Thus

σ2∆t = 2kBTcR0. (B15)

Substituting into Eq. (B11) gives for the phase uncertainty in the interval which we chose to fit

δφn =

√
4f0kBTcR0

V0
. (B16)

Over many oscillations, V0 fluctuates, but its root-mean-square value is VS, given by Eq. (B2). Substituting this and
(B15) into Eq. (B13) gives us a model for the accuracy of the clock

NJ =
2π2

f0kBTcR0
〈V 2
S 〉 (B17)

=
2π2

Qf

Th + Tc

Tc
. (B18)

The clock creates entropy because the power carried by the electrical oscillation is converted to heat in the cold
resistor. The entropy creation rate can be written

Ṡ = kB
Th − Tc

Tc

f0

Qf
, (B19)
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FIG. 5. The thermomechanical clock. (a) The setup. An optomechanical circuit consists of an LC tank circuit whose capacitance,
and therefore frequency, is modulated by a thermomechanical resonator at temperature Th. To use the vibrations in a clock, the tank
circuit is illuminated by a carrier tone Vin at frequency fc, giving rise to a reflected signal Vout which is passed to a cold matched resistor
and amplifier. The effect of the vibrations is to modulate the phase of Vout. (b) Sketch of the resulting voltage record at the amplifier
input (points), with fits (lines) from which each tick is extracted. The modulation envelope is indicated by the shaded background.
Inset: Power spectrum at the amplifier input, showing uniform noise background, central delta-function peak from the carrier, and two
thermomechanical sidebands. In the experiment, a demodulation circuit was applied after the amplifier (as in Fig. 2(d)) because it makes
ticks practically easier to identify in the record. However, the demodulator cannot improve the clock accuracy because it cannot increase
the timing information present in the signal V (t); in fact a detailed calculation would show that the accuracy is unchanged. For simplicity
the demodulator is therefore omitted from this model.

since the net power transferred is P0 = kB(Th − Tc)f0/Qf . Combining this expression with Eq. (B18) gives the
accuracy in terms of the entropy created:

NJ = 2π2 Th + Tc

Th − Tc

∆Stick

kB
(B20)

≈ 2π2 ∆Stick

kB
for Th � Tc. (B21)

where ∆Stick ≡ Ṡ/f0 is the entropy generated per tick. This best case scenario (i.e. smallest σ) provides an upper
bound for the best achievable accuracy of an experiment of this type. Thus, we can expect this model to overestimate
the accuracy compared to that coming from a live experiment. Similar expressions to Eq. (B21) hold for a classical
clock defined by transitions on a network [26] and for an autonomous quantum clock [4]; however, in both these cases
the factor 2π2 is replaced by 1/2.

2. Measuring time from an optomechanical signal

In this section we proceed to build a classical model, that predicts the accuracy, which we call NC, for a scheme
that is more fitting to our experimental setup. Fig. 5 shows the optomechanical setup, which serves as the clock of
our experiment. The clock works by illuminating a tank circuit containing a vibrating membrane with an RF tone
of power Pc (Fig. 5(a)). The thermal motion of the membrane modulates the phase of the reflected signal, and from
this signal the ticks are derived. This is the principle of the clock realised in our experiment. The advantage of this
clock over the version of Fig. 4 is that the reflected signal can be increased by increasing Pc as well as by heating the
membrane more strongly. As this section will show, this clock obeys a similar entropy-accuracy relation to Eq. (B21).
The voltage incident on the tank circuit is

Vin(t) = Vc cos(2πfct) (B22)

where Vc =
√

2R0Pc and fc are respectively the amplitude and frequency of the illumination signal, and the charac-
teristic impedance of the transmission line is assumed equal to R0. The reflected amplitude is therefore

Vout(t) = ΓVc cos(2πfct+ βx(t)) (B23)

where Γ is the cavity reflection coefficient, β is the mechanical coupling strength, and x(t) is the instantaneous
membrane displacement. The phase reference plane is assumed to be chosen so that the phase is zero at the mem-
brane’s equilibrium position. The membrane vibrates with a mechanical temperature Th. If its quality factor is high,
the mechanical amplitude x0 and phase φ are approximately constant over one oscillation cycle, meaning that the
displacement is

x(t) = x0 cos(2πf0t+ φ). (B24)
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In this experiment, the electromechanical coupling is weak, meaning that βx0 � 1. This means that we can substitute
Eq. (B24) into Eq. (B23) and expand to lowest order in βx0, giving

Vout(t) = ΓVc [cos(2πfct)− βx0 sin(2πfct) cos(2πf0t+ φ)] . (B25)

In other words, the reflected signal is modulated at frequency f0 with phase φ, as sketched in Fig. 5(b). Each full
cycle of the modulation is one period of the clock. To generate ticks, the clock must identify a particular point of
the modulation cycles, which implies it must precisely identify φ. As in Section B 1, we want to know how accurately
this can be done in principle. Again, we imagine we have obtained a set of experimental data and wish to know how
accurately the n-th tick can be identified. We proceed by fitting the function

V (t|φn) = A0 cos(2πfct) +A1 sin(2πfct) cos(2πf0t+ φn). (B26)

in windows of width 1/f0 around the expected tick locations. The parameters A0, A1, fc, and f0 can be extracted over
several recent cycles, and are thus known values. Therefore, just as in Section B 1 we are performing a one-parameter
fit.

We imagine that for some dataset we minimise Eq. (B4) for the function in Eq. (B26), which gives us the optimal
parameter φ∗n. We now want to know: what is the error in this fit given the optomechanical setup we have described?
We follow the recipe give in the previous section and proceed to calculate the curvature parameter of our model

α =
1

σ2∆t

∫ tr

−tr

(
∂V (t|φn)

∂φn

)2

dt (B27)

=
A2

1

σ2∆t

∫ tr

−tr
sin2(2πfct) sin2(2πf0t+ φn) dt (B28)

=
A2

1

4σ2∆t

∫ tr

−tr
1− cos(4πf0t+ 2φn)− cos(4πfct)

− cos(4π(fc + f0)t+ 2φn)

2

+
cos(4π(fc − f0)t− 2φn)

2
dt

(B29)

where tr = 1/2f0 is the fit range. Since the fit window extends over many cycles of the carrier tone, i.e. tr � 1/fc

the last three oscillatory terms make a negligible contribution to the integral, leaving

α =
A2

1

4σ2∆t

∫ tr

−tr
1− cos(4πf0t+ 2φn) dt (B30)

=
A2

1

2σ2∆t

(
tr −

cos 2φn
4πf0

sin(4πf0tr)

)
(B31)

=
A2

1

4f0σ2∆t
(B32)

Since the tank circuit presents an open electrical impedance except at its resonance frequency, the Johnson noise
again obeys Eq. (B15), leading to

α =
A2

1

8f0kBTcR0
, (B33)

which implies that δφn =
√

8f0kBTcR0/A1 and

NC = 4π2α =
π2〈A2

1〉
2f0kBTcR0

. (B34)

To connect this to thermodynamic quantities in the experiment, we recognise that A1 is related to the combined
power PSB in the two sidebands by

PSB =
〈A2

1〉
4R0

. (B35)
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Entropy is created because the reflection from the tank circuit containing the hot resonator leads to irreversible
heating in the cold resistor. Eq. (B25) and the inset of Fig. 5(b) show that there are potentially two contributions
to the heat: the reflected carrier, which is a coherent monochromatic tone at frequency fc; and the two incoherent
sidebands centred at fc±f0. However, the carrier contains no information about x(t). In principle (although this was
not implemented in our experiment) a narrowband filter could be used to direct this portion of the spectrum back
towards the tank circuit without affecting the accuracy of the clock. Thus the reflected carrier does not contribute
to the fundamental entropy cost of the clock. Instead, the unavoidable entropy increase is determined by the two
sidebands, which dissipate heat PSB in the cold resistor. The entropy creation rate is

Ṡ =
PSB

Tc
. (B36)

In contrast to Eq. (B19), there is no decrease of entropy in the hot element, because illuminating the membrane at
the cavity frequency does not cool it. Thus we can re-express Eq. (B34) in terms of the entropy generated per tick,
leading to

NC =
2π2

kB
∆Stick (B37)

where

∆Stick =
PSB

f0Tc
. (B38)

Eq. (B37) is the fundamental entropy-accuracy relation for the optomechanical clock.
There is one more adjustment which must be made to compare Eqs. (B37-B38) to experiment. The derivation

above assumed that the amplifier noise is much less than the Johnson noise of the cold resistor. Although this is
perfectly possible, it is also common (and is the case in our experiment) that other noise sources contribute, leading to
a decrease in accuracy that reflects technical imperfections in the voltage measurement rather than any fundamental
bound. To account for this possibility, Eq. (B37) should be generalized to

NC =
2π2

kB

Tc

TN
∆Stick (B39)

where TN is the effective temperature, including the Johnson noise of the cold resistor, determined by the noise in the
record.

To evaluate Eq. (B39) from the experiment, we express its components in terms of the output signal’s power
spectrum SV V , which is proportional to the modulus squared of the Fourier transform of the record V (t). In this
language, the effective temperature is given by

TN =
S(N)
V V

4kBR0
. (B40)

Here S(N)
V V is the single-sided average spectral density of the noise in the Fourier transformed signal, i.e. the average

background level of the power spectrum. In terms of the power spectrum, the heat PSB in the cold resistor is given
by integrating the excess spectral density (i.e. the signal) above the noise background, the integral running over both

sidebands,
∫
S(S)
V V (f) df . Thus the classical model predicts the accuracy from the experimental data to be

NC =
2π2

f0

A2
1

S(N)
V V

(B41)

=
8π2

f0

PSBR0

S(N)
V V

(B42)

=
8π2

f0

∫
S(S)
V V (f) df

S(N)
V V

(B43)

where S(S)
V V is the and the second line follows from Parseval’s theorem. In practice, our analysis applies Eq. (B43) to

the record of the demodulated voltage as in Fig. 2(d). Since demodulation does not change the signal-to-noise ratio,
Eq. (B43) remains valid, with the integral now taken over the single signal peak.



15

(a) (b)
1000

0

N
 

0.250 PWN (W)

 Pcav = 20 dBm

 Pcav = 18 dBm

 Pcav = 16 dBm

1000

0

N

60000 NC

 Pcav = 20 dBm

 Pcav = 18 dBm

 Pcav = 16 dBm

 
N = NC

 

N = NC/6

 

N = NC/9

FIG. 6. (a) Accuracy N of the clock vs the white noise power PWN for cavity drive powers in the range 16 to 20 dBm.
(b) Accuracy N of the clock vs NC for cavity drive powers in the range 16 to 20 dBm.The black dotted line is a guide for
the eye to show the expected gradient should the extracted accuracy and the theoretical accuracy predicted from the entropy
production be equal. The dark grey dotted line shows the approximate gradient of the 20 dBm data of N = NC/6 and the light
grey line shows the approximate gradient of the 16 and 18 dBm data of N = NC/9.

Appendix C: Analysis of a thermodynamic uncertainty relation

1. Extracting the energy precision

The “precision” in the sense of a thermodynamic uncertainty relation (TUR) is a statistical measure that charac-
terizes the fluctuations of an observable F . It is defined as

p(F ) ≡ |〈F 〉|
2

VarF
(C1)

where 〈. . .〉 denotes the expectation value. The less F fluctuates, the larger the precision will be. Previous work [21–
25] has shown that with an appropriately chosen observable, the precision satisfies a TUR inequality. As stated in
the main text, an appropriate TUR for the clock studied here is given by Eq. (6).

However, Eq. (6) is only useful if there is a mechanism to identify ticks and therefore correctly measure the
observable. Naively applying Eq. (C29) to the wrong observable, even if that observable is derived from the same
voltage record as that used to generate ticks, leads to a precision that can be very different from the accuracy as
defined by Eq. (1).

To demonstrate this surprising fact, we select as an observable the power entering the measurement circuit, averaged
over an interval chosen as 10 cycles of the mechanical oscillation. This is a natural choice to make, because the
observable is conventionally taken as a current [39]. In this case it is the energy current into the measurement circuit.
Up to a proportionality constant, which cancels from Eq. (C29), this energy is

F (t) =
1

10 ttick

∫ t+10 ttick

t

V 2(t′)dt′ (C2)

where V (t) is the demodulated voltage record, as plotted e.g. in Fig. 2(d).
Fig. 7 shows the energy precision calculated from Eqs. (C29) and (C2) from the same demodulated voltage record

as in Figs. 3(a) and 9(a). As can be seen, the precision p(F ) of this observable differs drastically from the accuracy N ,
and even has the opposite dependence on both PWN and Pcav. The reason is that the slowly fluctuating mechanical
signal delivers a strongly varying amount of power (i.e. low precision, defined by Eq. (C29)) but nevertheless encodes
a regular timestep (and therefore high accuracy, defined by Eq. (1)).
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FIG. 7. Precision p(F ) of the demodulated signal as a function of mechanical drive power PWN for different settings of the
cavity illumination power Pcav. Crosses: precision calculated from the voltage record data using Eqs. (C29) and (C2). The
experimental data is consistent with the limiting cases of the theory. Curves: Predictions from Eq. (C32). The free parameter
α is set by fitting to the data with Pcav = 8 dBm, then held fixed to generate the other curves. We separate the data into two
figures for cavity drive powers Pcav of (a) 8− 14 dBm and (b) 16− 20 dBm.

2. Analytic prediction for the thermodynamic precision

To confirm that the precision calculated in Fig. 7 has the expected form, we also calculate it analytically, beginning
with the predicted output voltage from Eq (B25). The voltage record V (t) is generated from the received voltage
Vout(t) by the demodulation circuit in Fig. 2(d). The first effect of this circuit is to multiply the received voltage by
sin 2π, thus generating a signal

Vmixed(t) = Vout(t) sin 2πfct (C3)

= ΓVc

(
cos 2π sin 2πfct− βx(t) sin2 2πfct

)
. (C4)

The second effect is to band-pass filter (BPF) this signal around the mechanical frequency f0 to generate the demod-
ulated voltage

V (t) = BPF{Vmixed(t)} (C5)

= −ΓVcβx(t), (C6)

which as expected is proportional to the instantaneous displacement. This is the voltage that would be recorded if
there was no noise in the measurement circuit. Since noise is inevitably present, we include it by replacing Eq. (C6)
with

V (t) = −ΓVcβx(t) + ξ(t), (C7)

where ξ(t) is the measurement noise voltage.
We can now calculate the precision according to Eq. (C29). The observable according to Eq. (C2) is

F ≡ [V 2(t)], (C8)

where [. . .] denotes a time average. Substituting from Eq. (C7) gives:

〈F 〉 = 〈[(−ΓVcβx(t) + ξ(t))2]〉 (C9)

= Γ2V 2
c β

2〈[x2(t)]〉+ 〈[ξ2(t)]〉 (C10)

= Γ2V 2
c β

2〈x2(t)〉+ 〈ξ2(t)〉 (C11)

= Γ2V 2
c β

2X2 + Ξ2. (C12)
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Here Eq. (C10) follows because the displacement and the measurement noise are uncorrelated, Eq. (C11) because
the order of time average and expectation value can be exchanged, and Eq. (C12) by defining X and Ξ to be the
root-mean-square amplitudes of displacement and of measurement noise respectively.

To calculate the variance, we also need

〈F 2〉 = 〈[V 2(t)]2〉 (C13)

= 〈[(−ΓVcβx(t) + ξ(t))2]2〉 (C14)

= Γ4V 4
c β

4〈[x2(t)]2〉+ 2Γ2V 2
c β

2〈[x2(t)][ξ2(t)]〉+ 〈[ξ2(t)]2〉 (C15)

= Γ4V 4
c β

4〈[x2(t)]2〉+ 2Γ2V 2
c β

2X2Ξ2 + Ξ4. (C16)

Here Eq. (C15) follows by expanding the bracket and using that [x(t)] = 0 for integration over an integer number of
cycles, and Eq. (C16) uses that x(t) and ξ(t) are uncorrelated and that the correlation time of ξ(t) is much shorter
than the averaging interval.

To evaluate the first term in Eq. (C16), we separate x(t) into its two quadratures by writing

x(t) = x1 cos 2πf0t+ x2 sin 2πf0t. (C17)

Provided the averaging window is shorter than the mechanical damping time, which is well-satisfied in Fig. 7, then
x1 and x2 can be taken as constant within each average, leading to

〈[x2(t)]2〉 = 〈[(x1 cos2 2πf0t+ x2 sin 2πf0t)
2]2〉 (C18)

= 〈[x2
1 cos2 2πf0t+ 2x1x2 cos 2πf0t sin 2πf0t+ x2

2 sin2 2πf0t]
2〉 (C19)

=
〈(

(x2
1 + x2

2)/2
)2〉

(C20)

=
1

4
〈x4

1 + 2x2
1x

2
2 + x4

2〉 (C21)

=
1

2
(〈x4

1〉+ 〈x2
1〉2). (C22)

Eq. (C20) follows because [cos2 2πf0t] = [sin2 2πf0t] = 1
2 and [cos 2πf0t sin 2πf0t] = 0. Eq. (C22) follows because the

statistics of x1 and x2 are equivalent.
To evaluate Eq. (C22), we use the fact that x1 is a response to many random impulses received by the resonator at

different times. It therefore follows a normal distribution, which implies that

〈x4
1〉 = 3〈x2

1〉2 (C23)

and therefore

〈[x2(t)]2〉 = 2〈x2
1〉2 (C24)

= 2X4. (C25)

Substituting Eq. (C25) into Eq. (C16) leads to:

〈F 2〉 = Γ4V 4
c β

4X4 + (Γ2V 2
c β

2X2 +N2)2. (C26)

The precision according to Eq. (C29) is therefore

p(F ) =
〈F 〉2

〈F 2〉 − 〈F 〉2
(C27)

=
(Γ2V 2

c β
2X2 + Ξ2)2

Γ4V 4
c β

4X4
(C28)

=

(
1 +

Ξ2

Γ2V 2
c β

2X2

)2

. (C29)

Let us now examine the limiting cases of the precision with this choice of F . In the first case, when the noise is small
compared to the signal, we have

lim
ΓVcβX�Ξ

p(F )→ 1 , (C30)
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whilst on the other hand, when the noise dominates the signal we find

lim
Ξ�ΓVcβX

p(F )→∞ . (C31)

The reason that this model predicts an apparently infinite precision is that white noise contains independent con-
tributions to F at infinitely many frequencies. By contrast, Eq. (C30) describes a situation where the clock output
is dominated by the mechanical signal, which exists in a narrow frequency range but whose amplitude is subject to
long-lived fluctuations. In fact, the limit of Eq. (C31) is unphysical because the power needed to amplify the entire
spectrum of white noise would be infinite.

To relate Eq. (C29) to experimental parameters, we use that V 2
c is proportional to the cavity illumination power

Pcav and that X2 is proportional to the mechanical drive power PWN. Then the expected precision is

p(F ) =

(
1 +

α

PcavPWN

)2

(C32)

where α is a constant proportional the intensity of the measurement noise. Eq. (C32) is the fitting function used in
Fig. 7, with α as the fit parameter. To plot the curves in Fig. 7, we fit the data for Pcav = 8 dBm to extract the
value α = 8.6 × 10−5 W2. We then use this value of α to predict p(F ) for all the other data sets in the figure, with
no free parameters. There is moderately good agreement with all data sets, with discrepancies being consistent with
an excess of measurement noise at high illumination power; importantly, the limits derived in Eqs. (C30) and (C31)
are observed in our experimental data. This agreement confirms that our physical model and numerical analysis are
sound.

Appendix D: Overdriving the membrane

Above 14 dBm we enter the nonlinear regime of the membrane’s motion. As can be seen from Fig. 9(a), for these
higher drive powers the relationship between accuracy N and white noise power PWN is more erratic. The general
trend of accuracy increasing with PWN is still there for the lower values of PWN but then the accuracy saturates and
unstable dynamics dominates the motion of the membrane. As discussed in the main text the saturation of accuracy
is to be expected. Surprisingly, Fig. 9(b) shows that the higher power measurements show better agreement with the
theoretical predictions of Eq. (3) (or equally Eq. (B39)) with a gradient of 1/9 for the 16 and 18 dBm data sets and
1/6 for the 20 dBm data set.

Appendix E: Measurements at low cavity illumination power

Fig. 3 only shows measurements down to a drive power of Pcav = 8 dBm. This is due to the fact that below this
drive power the signal is weak and identifying the oscillations becomes difficult. Example traces corresponding to a
white noise power of 0.25 W with 8, 10 and 12 dBm drive powers are shown in Fig. 8 before (a) and after (b) filtering.
As can be seen in the signal for a 12 and 10 dBm drive oscillations can easily be identified, however they are much
fainter in the 8 dBm signal.

Appendix F: System Noise Temperature

As can be seen from Fig. 9(a) the noise temperature of the system increases both for an increased cavity drive or an
increased white noise power, PWN. Fig. 9(b) shows that the power in the sideband, used in the entropy calculations
(Eq. (B43)), increases approximately linearly with PWN.
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FIG. 8. The demodulated cavity output signal before (a) and after (b) filtering as a function of time for input powers of 8, 10,
and 12 dBm to the cavity with 0.25 W white noise input from port 3. The traces are vertically offset for clarity.
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FIG. 9. (a) Noise temperature of the system, TN, increasing as the cavity drive power and white noise power increase for cavity
drive powers in the range 8 - 20 dBm. (b) The increase in the power of the sideband with increase in the white noise power for
different cavity drive powers in the range 8 - 20 dBm. For both (a) and (b) the higher drive powers have dotted lines and the
data shown in the main text has full lines.


