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Abstract—As COVID-19 hounds the world, the common cause
of finding a swift solution to manage the pandemic has brought
together researchers, institutions, governments, and society at
large. The Internet of Things (IoT), Artificial Intelligence (AI)
— including Machine Learning (ML) and Big Data analytics —
as well as Robotics and Blockchain, are the four decisive areas
of technological innovation that have been ingenuity harnessed
to fight this pandemic and future ones. While these highly inter-
related smart and connected health technologies cannot resolve
the pandemic overnight and may not be the only answer to
the crisis, they can provide greater insight into the disease and
support frontline efforts to prevent and control the pandemic.
This paper provides a blend of discussions on the contribution
of these digital technologies, propose several complementary
and multidisciplinary techniques to combat COVID-19, offer
opportunities for more holistic studies, and accelerate knowledge
acquisition and scientific discoveries in pandemic research. First,
four areas where IoT can contribute are discussed, namely,
i) tracking and tracing, ii) Remote Patient Monitoring (RPM)
by Wearable IoT (WIoT), iii) Personal Digital Twins (PDT),
and iv) real-life use case: ICT/IoT solution in Korea. Second,
the role and novel applications of AI are explained, namely:
i) diagnosis and prognosis, ii) risk prediction, iii) vaccine and
drug development, iv) research dataset, v) early warnings and
alerts, vi) social control and fake news detection, and vii)
communication and chatbot. Third, the main uses of robotics and
drone technology are analyzed, including i) crowd surveillance,
ii) public announcements, iii) screening and diagnosis, and iv)
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essential supply delivery. Finally, we discuss how Distributed
Ledger Technologies (DLTs), of which blockchain is a common
example, can be combined with other technologies for tackling
COVID-19.

Index Terms—Internet of Things (IoT), Artificial Intelli-
gence (AI), Robotics, Big Data, Blockchain, eHealth, Healthcare,
COVID-19, Pandemic, Digital Twin, Wearable.

I. INTRODUCTION

The global COVID-19 pandemic, caused by the SARS-CoV-
2 virus, has adversely affected all aspects of daily life and tested
the functioning of our societies. As virologists work to develop
a vaccine rapidly, a multidisciplinary approach has become
vitally important for the appropriate tracing, monitoring, and
diagnosis of coronavirus patients. The turn of the decade was
expected to bring significant medical and scientific advancement
due to the development of digital technologies capable of
addressing large clinical issues or major diseases. Promising
smart and connected health (SCH) technologies, such as the
Internet of things (IoT), artificial intelligence (AI), robotics,
and distributed ledger technologies (DLT), are increasingly
becoming important in almost all healthcare processes [1], [2],
[3]. This paradigm shift, characterized by the convergence
of these technologies, has generated new opportunities and
advantages, such as availability and accessibility, the ability to
personalize and tailor content, and cost-effective just-in-time
delivery. The rapid growth of wearable IoT (WIoT), as well
as the public embracement of miniature wearable biosensors,
supports the creation of a highly connected personalized
patient-centric health ecosystem. Such a system facilitates
the collection, integration, and harmonization of real-time
data utilized by deep learning and AI to analyze healthcare
trends, project potential risks, forecast possible outcomes,
accelerate scientific discoveries, and improve decision-making
[4], [5]. These capabilities are amplified by the ability of DLT
to overcome the weaknesses and vulnerabilities of today’s
client/server cloud IoT models, such as security, privacy,
and traceability, by providing a shared, decentralized, and
immutable database ledger based on peer-to-peer networks.

With the transition of human life from a nomadic lifestyle
to living in larger groups or cities, humans have experienced



epidemics. The gathering of people creates an ideal environment
for virus transmission from person to person, resulting in an
epidemic. A greater physical distance between groups is a
means of slowing the spread of viruses, because an epidemic
only grows if a host travels between groups. As illustrated in
Fig. 1, epidemics have generally grown along land, water, or
commerce passageways. In the past, travel was much slower and
infrequent; therefore, epidemics did not grow into pandemics
for several years. In today’s world, groups of people in cities
and towns are much larger than in the past, and travel between
groups occurs much more quickly and often, facilitating the
growth of epidemics and pandemics [6].

Over the last 100 years, the world has experienced several
epidemics and outbreaks, with the majority of them caused by
influenza viruses, such as H1N1, H2N2, and H3N2, as well as
coronaviruses [7]. In fact, H1N1 has caused two pandemics: the
Spanish flu of 1918 and the swine flu pandemic of 2009. The
H2N2 virus caused the Asian flu of 1957, and H3N2 caused
the Hong Kong flu of 1968. Over the last 20 years, multiple
coronavirus outbreaks have also occurred, including the 2002
SARS-CoV outbreak and the 2012 MERS-Co-V outbreak.
These viruses are spherical, positive-sense RNA viruses with
diameters ranging from 60 to 140 nm [8]. Protruding proteins
appear as spikes, giving the virus a crown-like appearance
when viewed through an electron microscope. The SARS-CoV
outbreak started in China’s Guangdong province and spread to
37 countries through more than 8000 infections and almost 800
deaths. The initial MERS-CoV case was recognized in Saudi
Arabia and led to a large outbreak across the Middle East,
resulting in almost 900 deaths [7]. The COVID-19 outbreak
began in Wuhan, China in December 2019, and it was declared
a global pandemic by the World Health Organization (WHO)
on March 11, 2020. The WHO indicates that viral infections,
including coronaviruses, will continue to appear, posing serious
threats to public health. The epicenter of the outbreak was
traced back to an outdoor wholesale market in Wuhan, China,
where animals, such as bats, snakes, and marmots, were sold.
COVID-19 is distinguished by a long incubation period of up to
14 days and a highly contagious nature. During the incubation
period, infected individuals do not necessarily demonstrate
symptoms and can unknowingly infect others, resulting in the
high basic reproduction number of COVID-19 [7].

Due to the absence of a solid treatment solution, social
distancing has been recommended as the best preventative
measure for battling COVID-19. However, social distancing
requirements have resulted in lockdowns worldwide and
negatively impacted economies around the globe. The shutdown
of nonessential services has resulted in the disruption of
supply chains and job losses across multiple sectors. The rapid
spread of the virus has also resulted in trade restrictions that
put international trade in danger of collapse. For example,
JP Morgan Chase estimated that the current pandemic will
cost the U.S. economy more than 5.5 trillion dollars over
the following 18–24 months [7]. In light of the challenges
posed by COVID-19 to our societies and healthcare systems,
there is an imperative need for immediate countermeasures.

To this end, SCH technologies can be utilized to mitigate the
adverse impacts of the pandemic. For instance, a highly vigilant
investigation using currently available data in conjunction with
expressive predictions may prove valuable in future policy
development and decision-making. The massive volume of
epidemiological and scientific big data is empowering frontline
healthcare workers, strategists, scientists, and epidemiologists
to make smart decisions during the COVID-19 pandemic. AI
may also play a vital role in understanding and suggesting the
development of a vaccine for COVID-19. The efficacy and
efficiency of clinical trials is another main contribution of big
data, as the world prepares against possible future pandemics.
The integration of IoT and AI enables scientists to gather,
combine, and fully evaluate global incident data, perform proper
screening, and analyze, predict, and track current patients and
likely future patients, allowing healthcare systems to handle
the impacts of the pandemic better. This paper consolidates
several key technological enablers, evaluates various novel SCH
solutions to combat COVID-19, and provides opportunities
for more holistic research toward solutions to benefit all
of humanity. We will also propose and present a set of
complementary techniques to tackle the COVID-19 pandemic,
ranging from novel contact tracing to early diagnosis.

The rest of this paper is organized as follows. In Section
II, the role of digital twins is discussed. In Section III, we
discuss the benefits of IoT for the healthcare industry and the
challenges and barriers to be tackled in this regard. Section
IV presents 10 novel cases of AI use. Section V describes the
main techniques and models for integrating robotics and drone
technology into healthcare scenarios. Section VI explores the
use of DLT and blockchain technologies to help tackle the
impact of the COVID-19 pandemic. Section VII demonstrates
a holistic use case. Finally, Section VIII concludes the paper.

II. PERSONAL DIGITAL TWINS (PDT) AND THE PROMISE
OF PERSONALIZED HEALTH

While the modern world is a more fertile ground for
epidemics, humanity has also developed tools, such as vaccines,
to protect against viruses. However, it takes a significant amount
of time to create a vaccine, which is problematic when a virus
unexpectedly emerges. This is the case with the coronavirus
pandemic of 2020 that likely jumped from bats to humans
only months ago. Unfortunately, tools, such as vaccines, can
sometimes be in short supply, making it vital that potential
epidemics be identified as quickly as possible in order to slow
their spread. The illustration in Fig. 1 was developed using
historical contagion data. However, such a data graphic needs
to be created in real time to forecast the development of an
epidemic. Modern tools utilize data from various sources and
interpret the data using epidemic models that consider the
method and speed of the spread of contagions across different
communities and areas.

Different techniques can be used to monitor the spread
of viruses and identify habits that increase exposure. For
instance, the 2020 coronavirus pandemic is being monitored
by several organizations, including Northeastern University’s



Fig. 1: Origin and spread of smallpox, leprosy, and malaria around the globe. Macrorepresentation. Image credit: Doug Belshaw
blog [6].

Network Science Institute, through social media using big-data
analytics. While social media can be utilized as a sensor, their
level of sensitivity and resolution is not ideal. Thus, personal
digital twins (PDTs) can be useful in this regard (see Fig.
2). A digital twin is a virtual and digital copy/replica of a
tangible entity (a physical object). Although the concept of a
digital twin has its roots mostly in the manufacturing industry,
several institutes have recently utilized this concept in the
domains of medicine and healthcare to develop the digital
twin models of human organs [9]. PDTs provide 360-degree
health information by synchronizing all sources of data, from
electronic health records (EHRs) to clinical data, public records,
patient portals, smartphones, wearables, IoT devices, social
media, etc. In general, PDTs can be combined with machine
learning (ML) algorithms to predict different user contexts,
detect early warning signs for preventive measures, forecast
the transition from baseline states, and enable the deduction
of optimal treatment and personalized medicine. The main
advantages of PDTs can be summarized as follows:
• Self-generation of alerts: The auto-generation of alerts

allows people to be more aware of a possible critical
situation.

• Widespread analytics: Analytics across a vast community
or country help anticipate a significant spread.

• Clearer focus: A clearer focus leads to fewer widespread
restrictions where the risk is lower and more robust
restrictions in high-risk areas.

• Lower cost: More focused restrictions reduce the eco-
nomic impact.

• Greater adaptability: This approach is more dynamic
and allows groups or individuals to react to specific
situations.

• Better personal awareness: PDTs enable greater per-
sonal awareness and prompt behavior appropriate to the
situation.

• Quicker feedback: PDTs allow for real-time or near-
real-time feedback regarding actions taken using the data
gathered and shared.

• Reduced effort: PDTs require lesser effort and offer a
lower-cost means of monitoring people.

• Service development: PDTs facilitate the development of
services aimed at infected individuals by creating virtual
groups or communities.

• Better resource use: PDTs enable the efficient use of
resources considering the availability of resources and
competing needs.

• Faster triage: Individuals can gain access to neces-
sary support services more appropriately through the
cyberspace.

In the context of COVID-19, PDTs can represent different
personal aspects, such as a person’s movement, health status,
and interaction with others in geophysical locations. For
instance, a person’s physical location and movements can be
tracked through smartphone data, and their health status can



Fig. 2: Schematic representation of the use of PDTs in epidemic
control. The healthcare institution sets the parameters to be
monitored by the PDTs, based on global data analytics. The
authority enforces the behavioral framework proposed by the
healthcare institution (e.g., when Rt is greater than 1.5, in
a given area, people have to stay home; if it is between 1.1
and 1.5, people must not share cars; if a physical twin is
COVID positive, he/she has to stay home). This framework
becomes the reference for the PDT that will ensure awareness
of its physical twin and signal the authority if any deviation
from the framework occurs. Thus, privacy is protected. The
authority is notified only when a behavior is inconsistent with
the framework. A person notifies the healthcare institution of
a positive test result, not the authority, thus preserving privacy.
However, a behavior that is not consistent with the authority-
enforced framework will result in the generation of a report.

be monitored using smartwatch sensors. As another example,
PDTs could be designed to send an alert if the gathered data
form a pattern, such as increased resting body temperature and
rapid breathing, which are known to be possible indicators
of coronavirus infection. Government healthcare organizations
could receive these alerts generated by PDTs, analyze the linked
data, including the prevalence of alerts in a specific location,
and review the movements of individuals over previous weeks
and months to correlate with other emerging alerts.

Complete epidemic monitoring and control using PDTs is
still several years away. Nevertheless, as will be explained
in Section VII, the government of South Korea and the
Korean Center for Disease Control have already gathered
a massive amount of data from smartphone locations using
local telecommunications and public security cameras to
develop a contagion map using microlevel human interactions.
Rapid testing combined with the interaction map enabled the
appropriate isolation of specific hosts rather than the large-area
lockdowns enforced in China and other countries, including
Italy, Austria, and Spain. Outlining the different processes can
clarify the differences and similarities between South Korea’s
model and the use of PDTs; however, the goal of containing
an epidemic is the same in both scenarios.

• South Korea’s Model:
– Possible symptoms emerge: An individual with

possible symptoms of a coronavirus infection is tested.
If positive, the individual is quarantined.

– Contact tracing: The contact of the infected individ-
ual with others is traced through technology, including
smartphone movements and security camera footage.

– Data analysis: The contact data of the individual
are reviewed using data analytics to determine the
likelihood of exposure for others. The contacts are
located and tested. If positive, these individuals are
quarantined. The sequence is repeated to identify any
other likely exposure.

• PDT model:
– Prescriptive analytics: All PDTs are notified by the

healthcare organization of a need to send alerts based
on specific conditions, such as increased resting body
temperature, elevated heart rate, rapid breathing at
rest, and other infection indicators.

– Global analytics: The healthcare organization ob-
tains the data through PDTs and uses global analytics
to detect the development of patterns. The organiza-
tion then alerts PDTs that are part of a visible pattern
or in a location with a high likelihood of exposure
to request that the individual be tested.

– Trigger action: The coronavirus test results trigger
specific action, such as quarantine for those infected,
and provides additional updates to affected PDTs.

– Contact tracing: The PDTs of those who test positive
then report the movement and contact history of the
infected individual.

– Dynamic updating: PDTs continue to update the
healthcare organization and communicate with the
PDTs of the people nearby, resulting in warnings of
proximity that can help reduce risk.

PDTs have several advantages and disadvantages. In such a
situation, healthcare organizations and governmental agencies
may use data analytics and alerts on all PDTs to gather the
required data, increase awareness of likely epidemics, and
allow for a better forecasting based on the movement of
individuals and groups. This would provide a more accurate
and timely picture of the global situation. While these would
be positive improvements, issues around data privacy and
organizational/governmental control would also be raised, as
these measures would push society into unprecedented areas.
In the world of healthcare, actions taken are shaped by multiple
factors, including social concerns, cost, ethics, and resource
availability. Even now, newspapers are exploring the importance
of protecting privacy while monitoring people to identify
infections. Nations and businesses that did not previously favor
lockdowns are now adjusting their guidelines and policies. The
West adopted a macrolevel approach, whereas South Korea
adopted a microlevel approach. To date, it appears that South
Korea’s model is better at reducing the spread of the virus
and protecting business operations. The trade-off between the



two models lies between civil rights and privacy. Every society
operates on a system of trade-offs between community and
personal rights and societal versus personal advantages. The
larger issue on which there is no global agreement is where
personal rights end and societal rights begin.

Technology can be beneficial in identifying the line between
personal privacy and the needs of society by protecting
privacy as much as possible while still meeting societal
safety needs. PDTs can serve to separate social and private
spheres by protecting the privacy of personal data and sending
metadata to the social sphere. This generates a buffer zone
that can be defined by a regulator. PDTs may be capable
of developing a privacy shield that can transmit only the
information required to meet community needs. In this context,
blockchain is a promising technology for monitoring data flow
and safeguarding privacy [10].

From a practical point of view, various COVID-19-related
systems, applications, and services that are currently developed
and used are likely to disappear after temporary use. Previously,
several systems have been created to respond to infectious
diseases or disasters. However, after the incidents were resolved,
these systems became difficult to maintain further due to
the decrease in the number of users and were terminated.
For example, in the case of a mask inventory management
application currently used in Korea, several people used it in
the first half of 2020, when it was difficult to purchase a mask;
however, now that the mask supply-and-demand situation has
stabilized, there are no more users of this application. On the
other hand, the EISS platform has shown the possibility of
operating as a hub of various kinds of data, as it was expanded
by interlocking the platforms of telecommunication companies
and card companies based on the smart city system that was
already being developed. In other words, it is necessary to
expand the developed system into a more general system, not
a service for COVID-19 alone, to maintain its sustainability
and practicality.

III. ROLE OF IOT IN MANAGING COVID-19

The IoT revolution is reshaping the healthcare landscape,
generating new opportunities and advantages, particularly in
the age of COVID-19, such as increasing the availability and
accessibility of diagnosis and treatments, reducing hospital
visits, reducing the fatigue of healthcare workers, reducing the
risk of infection for medical staff, and lowering interactions
and costs. The major applications of IoT for the COVID-
19 pandemic in three main phases, namely, early diagnosis,
quarantine time, and after recovery, include [11], [7]:
• Contact tracing: identifying those who have had contact

with an infected individual
• Rapid screening and early diagnosis: Rapid screening

and early diagnosis are the key to prevent the spread of
COVID-19. WIoT can be utilized to monitor remotely and
understand the corresponding symptoms (e.g., fever, dry
cough, tiredness, aches and pains, sore throat, diarrhea,
headache, loss of taste or smell, skin rash, discoloration
of fingers or toes, and difficulty breathing or shortness

of breath) in a faster and more efficient manner than
traditional techniques while reducing the risk of infection
for medical staff.

• Remote monitoring (RM): RM is utilized to collect
medical data from biosensors or WIoT devices to monitor
the status of a patient (e.g., heart rate variability, pressure,
and temperature) outside a clinical setting. RM is a vital
component of treating patients while preventing medical
staff from being infected and reducing the fatigue of
healthcare workers.

• Alerting: IoT can be used to alert the authorities, health-
care providers, and families in case of an emergency.

• Controlling social distancing: IoT can also be utilized to
monitor and enforce social distancing policies.

A. Contact Tracing

The identification of those who have been exposed to or
infected by the virus is known as contact tracing. The extended
incubation period of COVID-19 and the lack of extensive
testing have made it difficult for authorities to quantify the
number of infections accurately. The WHO indicates that
contact tracing includes the following three steps [7]:
• Identifying those who have had contact with an infected

individual
• Documenting the details of the contacted individuals
• Testing those individuals as quickly as possible
The state-of-the-art contact tracing solutions can be classified

into the following categories:
The spring of 2020 witnessed the emergence of several

smartphone contact-tracing application projects, championed
in large part by TraceTogether, an application developed by
Singapore’s government. TraceTogether utilizes Bluetooth to
support anonymous, close-proximity smartphone-to-smartphone
communication. Several tracing application projects also center
on Bluetooth technology. One of the primary issues in the
development of a contact-tracing application is the precise
perception of distance and discernment using a meter scale.
Most developers have determined that a 2-m standard distance
for contact-tracing applications is ideal.

The implementation of contact-tracing applications requires
one of the technologies indicated below:
• Bluetooth: Applications using Bluetooth measure the

distance between two parties by calculating the space
between devices with the received signal strength indicator
(RSSI). The applications are capable of storing a device’s
previous Bluetooth connection history, including data
about the amount of time the devices were connected.
If an individual is diagnosed with COVID-19, tracing
applications can use the Bluetooth connection history to
trace all the individuals exposed to the virus through the
infected person [7].

• GPS: Governmental agencies can monitor the location of
COVID-19 patients in real time and view historical GPS
data, which can be useful in tracing coronavirus exposure.

• Ultrasonic: It has been argued that Bluetooth cannot
precisely calculate distance. In addition, GPS and Blue-



tooth are susceptible to inappropriate logging interactions
between parties located in separate rooms when signals
traverse ceilings or walls. We propose the use of ultrasonic
technology in conjunction with Bluetooth. As ultrasound
measures the time required for sound to travel, it is
capable of measuring device distances more precisely.
The NOVID application was launched in April 2020. An
experiment using the publicly accessible features of the
application allowed for systemic testing in various real-
world settings. The data suggest that a nine-foot threshold
for distance measurement is highly effective. NOVID was
tested in challenging environments. Consequently, the
distances in 99.6% of 225 interactions where the devices
were 12 or more feet apart were correctly categorized as
greater than 9 feet. The distances in more than 50% of
the 187 interactions where the devices were less than 6
feet apart were accurately categorized as less than 9 feet.
The experiment indicates that contact-tracing applications
can substantially benefit from ultrasound technology.

B. COVID-19 and the Rise of WIoT-based Remote Patient
Monitoring (RPM)

Due to the increasing number of patients and the lack of
appropriate medication, several nations have been seriously
affected by COVID-19. During pandemic outbreaks, such as
COVID-19, wearable health devices can play a very important
role by providing unique patient-centric insights into health and
well-being in everyday settings. Unlike conventional monitoring
solutions, which are performed in a noncontinuous manner a
few times a year, WIoT provides continuous access to real-
time physiological data, thus changing the healthcare landscape.
In addition, wearables can offer new methods to incentivize
or “game-ify” self-monitoring. Stay-at-home orders and social
distancing have accelerated the adoption of WIoT. Indeed, in
the age of COVID-19, WIoT devices have been increasingly
piloted in clinical trials to track remotely those individuals
who might require hospital admission or who have recently
been discharged from hospitals, or to monitor the vital signs
of people in quarantine [12], [13], [14], [15]. WIoT can be
utilized in the early diagnosis of diseases and for tracking by
inspecting systemic infection sources. Wearable devices may
alert patients and doctors of possible COVID-19 symptoms
prior to a severe illness. The desire for a noninvasive device to
detect continuously and track coronavirus infections at home
and in the hospital makes wearable devices attractive. After
a rapid diagnosis, having the capability to monitor and track
vital biological signs can encourage doctors to proceed with
the appropriate action for a quick recovery or reduce severe
deterioration.

The continuous expansion of monitoring from the hospital
to the home represents an optimism in overcoming COVID-19
infections. Wearable technologies with clinical-grade accuracy
may illustrate the degree of this benefit through ongoing
clinical analyses. An emphasis on information sharing and
interoperability empowers the growth of predictive algorithms,
which can be generalized within various populations. Along

with the worldwide development of successful drugs and
vaccines to treat and counteract COVID-19, compatible skin-
integrated devices and sensors, placed at the optimal positions
on the body, resolve the critical and ongoing requirement for
continuous, objective, and sensitive systems to identify COVID-
19 symptoms.

Generally, after exposure to this virus, the human body
undergoes various physiological changes that can be monitored
for treatment purposes. These signs can be in the form of
biochemical, electrical, and biosignals, which are derived from
different body parts [16], [17]. These physiological signs help
predict the health status of a patient or individual easily.
Consequently, based on these measurements, the appropriate
medication can be administered, or people can be transferred to
the hospital when necessary. Current commercial wearables and
WIoT technologies can monitor and collect only a small portion
of the physiological data and biomarkers (see Fig. 4) [18], [19],
[20], [21], [22], [23], [24], [25], [26], [27], [1]. The sensor
modalities implemented to measure physiological symptoms
at the onset of COVID-19 include (but are not limited to)
the temperature, heart rate (HR) using an electrocardiogram
(ECG); pulse plethysmography (PPG); heart rate variability
using ECG and PPG; blood pressure using PPG; respiratory
rate using ECG, PPG, and an accelerometer; oxygen saturation
(SpO2) using PPG; sleep using an accelerometer; and cough
using mechanical or piezoelectric sensing.

While wearables, implantable devices, and smart textiles
have received considerable attention in the literature, and
numerous consumer wearables are commercially available in
the marketplace, the potential of WIoT has yet to be fully
realized. This state of affairs can be attributed to specific
technological shortcomings, including [28], [29], [30], [31],
[32], [33]:
• The available wearables are limited in measurement

precision and modalities. For instance, commercial gad-
gets typically do not provide a measurement of body
temperature and high-fidelity respiratory rate, or pulse
oximetry.

• Existing devices are typically not medical-grade. For
example, popular Oura Ring and FitBit sensors still
lack FDA approval for remote monitoring. On the other
hand, FDA-approved devices, such as the Apple Watch
Series 4, can be used for episodic ECG and may provide
notifications for uneven heart rhythm for people aged over
22. However, with such limited specifications, this device
is not a substitute for clinical diagnostic systems.

• The current solutions do not fulfill support interoperability
(i.e., effectively connect, exchange data, and function with
each other) criteria.

• The performance of the sensors varies over time. The
collected data are often unreliable due to motion artifacts
and measurement. These inadequacies may undermine the
potential benefits of wearable technologies for monitoring,
predicting, and tracking coronavirus patients.

• WIoT technologies for continuous monitoring present
opportunities and challenges in data management and



Fig. 3: NOVID application

data analytics, due to the remarkably large amount and
broad range of health data produced through each device.
Consequently, wearable sensor systems must incorporate
accessible information backends that securely store, trans-
fer, process, and provide the required patient data in an
amenable way. In addition, the necessity to associate this
information with additional distinct sources (e.g., EHRs)
to improve the data content encourages the expansion
of strategies for interoperability. With the help of ML
techniques, by associating such physiological information
along with clinical results, the outcomes of investigational
therapeutics and molecular assessments will provide a
treasured large-scale source to identify asymptomatic
COVID-19 infections. This will institute digital biomes
of anticipated recuperation specific to the health status of
a patient and offer recommendations for staff to continue
working carefully.

ECGs are extensively used in wearable technology to monitor
cardiac function [34], [35]. ECG measures the electrical activity
of the heart [34]. Although ECG sensors are generally mounted
as epidermal patches that are attached to the surface of
the skin (e.g., Zio Patch) by using benchtop equipment, the
commercialization of predictive algorithm-based wrist-worn
devices has empowered the heart activity measurement from
wearable devices, for example, Apple Watch 4 and 5 [36].
ECG has the potential to provide meaningful insight into the
onset of COVID-19, as it measures the heart function directly.
The early indications of COVID-19 infections are high fever
(98%), coughing (65%), and breathing difficulties (55%) [37],
[38]. There are also cases where symptoms were obtained from
mobile applications (e.g., loss of taste and smell), suggesting
a more analytical advantage. Another indication of COVID-19
contamination and deterioration is silent hypoxemia [39]. There
is evidence to suggest that COVID-19 is accompanied by a
greater chance of arrhythmic incidents [40]. Upon analysis of
138 COVID-19 patients by Driggin et al., arrhythmias, such
as ventricular tachycardia/fibrillation, accounted for prominent
impediments (19.6%) after severe respiratory distress syndrome,
predominantly in intensive care unit (ICU) patients, in whom
the prevalence increased to 44.4% [41].

In assessing the signs and treatment of COVID-19, soft

and flexible electronic systems that can be attached com-
fortably to the skin at positions outside the finger or wrist
present crucial benefits. As COVID-19 is a respiratory disease,
measuring numerous respiratory biomarkers, such as cough
intensity/frequency/sound, respiratory effort, and rate, directly
from the thorax may provide vital information [42]. Similarly, it
is critical to ensure the maintenance of clinical-grade standards
for measuring blood oxygenation through pulse oximetry. In
[15], a soft sensor was mounted close to the skin near the
suprasternal notch, including precision temperature and high-
bandwidth accelerometer sensor mounts, as shown in Fig. 5
[42]. This small area of the body close to the neck offers an
exceptional interface for recordings of high-fidelity respiratory
activities through cough rate, duration, or frequency, and
respiratory features linked with sneezing and wheezing. Heart
sounds, cardiac amplitude, and heart rate were also included
in the same data streams. To measure skin temperature, a
temperature sensor with thermal insulation is used, which is
correlated to the core body temperature to ensure that the
ambient conditions do not influence the measurement. As they
are soft and flexible, these sensors can support the natural
movements of the neck. Fig. 5 shows the wearable device and
some illustrative data gathered from a COVID-19 patient.

IV. ROLE OF AI/ML IN MANAGING COVID-19

During this global public health crisis, the healthcare industry
is seeking technology capable of monitoring and controlling
the spread of COVID-19. AI/ML is capable of tracing the virus,
identifying at-risk individuals, and controlling infection rates
in real time. AI/ML can also predict the risk of mortality by
analyzing the previous medical data of patients. AI can also
aid in population screening and notification, and enhance the
treatment and outcomes of COVID-19 patients as an evidence-
based healthcare tool. In this section, we review, present, and
discuss the 10 most important AI/ML use cases—including
our proposed solutions—to tackle the COVID-19 pandemic.

A. COVID-19 Open Research Dataset

Scientific literature is an important source of technical infor-
mation about COVID-19. Most findings about the progression,
diagnostics, treatment, vaccines, and social impacts of COVID-
19 are eventually disseminated to the scientific audience and
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health officials through published research papers and preprints.
The rate and speed of publication around COVID-19 have been
unprecedented. Several hundreds of new papers or preprints
have been released every day since March 2020, and they
continue to be released. AI-powered text mining systems
and systems that leverage natural language processing (NLP)
techniques to provide search, discovery, and summarization
of the literature are urgently required. Several corpora of
structured, machine-readable scientific literature have emerged
to assist in the development of these systems. This includes
the COVID-19 Open Research Dataset 1 [43], LitCovid2 [44],
and other organization-specific databases, such as the World
Health Organization’s (WHO) COVID-19 database.3

CORD-19 was the earliest corpus released for this purpose,
and it has been used in the majority of COVID-related
automated text mining systems. The CORD-19 corpus was
released by the Allen Institute for AI in conjunction with seven
other institutions. CORD-19 is a fairly comprehensive dataset
of coronavirus and COVID-19 papers, incorporating papers
and preprints from PubMed Central, PubMed, the WHO’s
COVID-19 database, bioRxiv, medRxiv, and arXiv. Metadata
are collected from these sources, harmonized, and deduplicated,
and the full text of open-access publications is extracted
and represented in the S2ORC JSON format [45] to support
downstream text mining applications. Detailed descriptions of
the data processing pipeline and design motivations of CORD-
19 can be found in [43].

CORD-19 has been incorporated into dozens of COVID
search and discovery systems; a survey of these text mining
resources and applications is provided in [46]. Of these

1https://www.semanticscholar.org/cord19/download
2https://www.ncbi.nlm.nih.gov/research/coronavirus/
3https://www.who.int/emergencies/diseases/novel-coronavirus-2019/global-

research-on-novel-coronavirus-2019-ncov

resources, some have integrated the literature data of CORD-19
with other documents (patents, clinical trial documentation) and
biomedical and clinical knowledge bases (e.g., CovidGraph4).
Other systems focus on tasks such as: (a) search, e.g., Neural
Covidex [47], (b) question-answering, e.g., COVIDASK [48],
(c) summarization, e.g., CAiRE-COVID [49], (d) scientific
claim verification, e.g., SciFact [50], and (e) assistive literature
review, e.g., ASReview [51]. The CORD-19 corpus has also
been leveraged as the foundation of several community shared
tasks: the Kaggle CORD-19 Challenge,5 TREC-COVID ad-
hoc retrieval challenge6 [52], [53] at TREC 2020, and the
Epidemic Question Answering challenge7 at TAC 2020, which
aim to evaluate and compare the performances of various text
mining and NLP systems.

Challenges, such as the availability of open-access full text
(over 60% of COVID-19-related papers from 2020 do not have
an associated license allowing redistribution), and difficulties
in PDT parsing and metadata harmonization have impeded our
ability to expand and improve the quality of CORD-19. We
believe that these challenges are surmountable, and we continue
to work with publishers and the community to improve the
dataset. Based on preliminary responses, the CORD-19 corpus
offers a strong example of how text mining and NLP can be
used to address and respond to major scientific challenges,
such as COVID-19.

B. Multi-modal Diagnosis of COVID-19

With the global spread of COVID-19, the early diagnosis
and identification of the risk of infection in potential patients

4https://covidgraph.org/
5https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-

challenge
6https://ir.nist.gov/covidSubmit/
7https://bionlp.nlm.nih.gov/epic qa/

https://www.semanticscholar.org/cord19/download
https://www.ncbi.nlm.nih.gov/research/coronavirus/
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/global-research-on-novel-coronavirus-2019-ncov
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/global-research-on-novel-coronavirus-2019-ncov
https://covidgraph.org/
https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge
https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge
https://ir.nist.gov/covidSubmit/
https://bionlp.nlm.nih.gov/epic_qa/


Fig. 5: Soft, wireless, skin-interfaced wearable ECG patch placed on the suprasternal notch. (A) Representation of the ability of
the gadget to follow natural neck movements. (B) Illustration of the mechanical deformation of the device. (C) Data recorded
from a COVID-19 patient. Recreated from Ref. [42].

who may not be showing visible critical symptoms can assist
medical staff when allocating limited resources. In this section,
we propose solutions using ML methods that can help doctors
improve the diagnosis and further prognosis of patients using
the knowledge extracted from the available data of all patients.
Accordingly, a dataset comprising more than 2000 samples
from individual triaged patients was constructed. Data were
collected during triage and follow-ups by medical experts at
Sina Hospital in Tehran. In addition, there was a subsequent
validation step to minimize the entry-level error in the collected
data.

Through feature selection methods, the large initial feature
set was reduced to simplify the process for both patients
and medical staff. ML techniques were employed to create
prediction models for identifying the risk of COVID-19 in
patients. This system is currently deployed at Sina Hospital for
the diagnosis and clinical monitoring of COVID-19 patients. A
key strength of this work is the close continuous collaboration
with the medical team at Sina Hospital and regular information
updates about the patients. This helps create more robust
models that are less prone to bias and overfitting. The proposed
framework, adopted methods, and highlighted preliminary
results are briefly presented in the following sections.

1) System Overview: Our proposed system is composed of
four classifiers that are fused to achieve more robustness, as
shown in Fig. 6. The four data modalities used in our system
are i) the information gathered during triage and the following
tests, ii) cough sound recordings, iii) CT scans, and iv) ECG
signals. In this section, we focus on estimating the risk of
infection among the risks shown in Fig. 6, as this is the most
vital information requested by doctors. This risk measure can

Fig. 6: Overview of the main components of the proposed
framework

Dataset #Features Deceased patients Recovering patients
DF1

81 15 1985
DF2

81 4 196
DH 1186 104 507

TABLE I: Dataset specifications

be used as a tool to consult with doctors in the diagnosis stage,
and also for activating an alarm system in case the clinical
conditions of a hospitalized patient dramatically change.

2) Data Collection: In the first step, we gathered information
on more than 2000 patients in three categories: the first follow-
up (F1), hospitalization (H), and the second follow-up (F2).
All the data were entered and verified by the medical staff and
were later checked again using our scripts for data cleaning.
The data collection procedure is briefly explained as follows:
After visiting the hospital, the patients will undergo triage.
In some cases, they are discharged and a follow-up occurs



M-I
Method #Features Accuracy F1 Score Sensitivity Precision Specificity

MLP (ReLu) 16 81.99 62.43 56.22 70.19 91.31
SVM (Linear) 15 79.81 65.03 70.76 60.41 83.21
Decision Tree using Entropy 9 74.75 59.1 68.65 52.72 77.22
Random Forest using Entropy 11 75.21 59.52 68.50 52.71 77.68
Logistic Regression 15 78.97 64.47 71.84 58.60 81.63
SVM (Polynomial) 14 77.05 62.29 71.22 55.43 79.2

M-II
SVM (Linear) 30 72.34 79.14 80.29 78.24 57.12
Decision Tree using Entropy 6 67.59 74.53 72.32 76.93 58.54
Logistic Regression 28 72.01 77.88 75.32 80.84 65.71
MLP (ReLu) 10 72.17 80.32 86.53 74.95 44.69
AdaBoost 7 71.36 77.36 74.56 80.38 65.21
Bagging KNN 23 73.32 80.46 83.77 77.45 53.25

TABLE II: Performance of the different trained models for COVID-19 diagnosis and the clinical condition classification
problems

between one and four weeks later with information contributing
to the (DF1) dataset. In some cases, the patients undergo
hospitalization. In such cases, more information is added to the
patients’ records, resulting in a more complete entry in the (DH )
dataset. Unfortunately, some patients pass away. The remaining
patients return home and are contacted in 1–4 weeks for another
follow-up, leading to the (DF2) dataset. The selected features
comprise the clinical information collected upon arrival, CT
scan image information, the laboratory test results of patients
admitted to the ICU, the additional information of patients
in that unit, and patient medications and the corresponding
reactions. Table I lists the specifications of the datasets.

3) Feature Selection: Due to the different conditions of the
patients and the corresponding treatments and medications, not
all data fields are present in the collected samples, and there are
several missing values for some of the patients. Therefore, we
selected the features that are more frequently available while
considering the inherent importance of some less frequent
features. We choose a threshold that will ensure that the top
k% of the features are preserved by considering the histogram
of their weighted frequencies. Thus, a feature selection step
is performed prior to training our models based on i) a cutoff
threshold in a weighted histogram of features, and ii) the
expertise of the doctors. We further refined the features using
the chi-squared method, eventually narrowing down the features
to 17 for Df1 , and 18 for DH .

Heart diseases High blood pressure Diabetes
Gender Age Smoking
COPD Asthma Rheumatological
Malignancy Body temperature SPO2

Vaccination background BMI Opium

TABLE III: Features selected for the logistic regression model

4) Trained Models: We trained two sets of models for
the diagnosis of COVID-19 (M-I) and the clinical condition
classification of virus-infected patients (M-II). M-I is trained
based on DF1

and DH , with two class labels of low and
high risks. Patients who have died of coronavirus, who have
been hospitalized, have suspicious CT scans (diagnosed by a

radiologist based on bronchopneumonia, ground glass opacity,
and patchy airspace), or have been revisiting the hospital for
COVID-19-related symptoms are identified as high-risk patients
(695cases), and the others are considered low-risk patients
(1916 cases).

Although having a richer dataset and higher-dimensional
feature space leads to more accurate representation and possibly
better predictions, providing the required information for
constructing these samples can be very expensive in terms
of time and the limited availability of resources. Additionally,
training such complex models relies on having significantly
more samples compared with simpler models and is more
prone to overfitting. Therefore, as the first step for COVID-19
diagnosis, our objective is to construct models that take as input
the data obtained from the measurements and initial checks by
the medical staff and the recorded cough sounds, as these data
modalities can be provided quickly and comparatively more
conveniently, leading to a faster diagnosis and a larger and
more diverse dataset.

For clinical condition classification (M-II), we used the
hospitalized dataset (DH ), with two class labels of mild to
moderate, and severe/critical conditions based on the request
of doctors. Patients showing mild to moderate symptoms
are in the first class (210cases), and patients showing more
severe symptoms, such as respiratory failure and low oxygen
levels in their blood (SPO2 < 93), are in the second class
(401cases). The labeling conditions were defined by our medical
collaborators.

5) Model Performance: A series of classification methods
was used to find the model with the best performance.
Table II lists some methods, along with their complexity
and performance for both models. All the models were
validated using three-fold cross validation. As the doctors
prefer better sensitivity, followed by better specificity (stated in
our discussions with the medical team), we chose the logistic
regression model as our classifier for M-I. The features selected
by this model are listed in Table III. For clinical condition
classification M − II , the best sensitivity was obtained using



M ′ − I
Accuracy F1 Score Precision Sensitivity

Healthy 0.91 0.90 0.93 0.88
Affected 0.92 0.89 0.94

M ′ − II
Accuracy F1 Score Precision Sensitivity

COVID-19-infected 0.80 0.68 0.66 0.70
Other 0.86 0.87 0.85

TABLE IV: Performance of the two trained models using the
cough sounds of patients

a multilayer perceptron (MLP) model with two layers, and
the best specificity was obtained using the logistic regression
model.

6) Cough Sound Analysis for COVID-19 Diagnosis: A
respiratory symptom in several COVID-19 patients is dry cough,
and having a model that can predict the risk of infection based
on cough sounds can be very useful as a preliminary tool
for both triaged patients and people who have just started
showing symptoms and have not yet visited a doctor. To create
models for predicting the infection risk, we constructed a
dataset composed of cough sound recordings gathered by a
nurse using a mobile device, at a distance of 0.3 m to 0.4 m
from a patient, recording three incidents per patient.

Such samples collected from diagnosed and hospitalized
patients are very limited and expensive, as finding nurses
who would be willing to get close to infected patients is
very difficult. Moreover, the ward environment is very noisy
and uncontrolled in terms of the presence of different sounds.
Nonetheless, 133 samples comprising 65 healthy cases, 39
COVID-19-infected cases, and 29 cases with other respiratory
diseases were collected. The first 25 mel-frequency cepstral
coefficients (MFCCs) [54] of the cough signal were selected as
the features for a support vector machine (SVM) model with
a radial basis function kernel, which was validated using 10-
fold cross validation as our classifier. We trained two models,
each with two class labels, i) (M ′ − I) with healthy patients
and patients who may have any respiratory disease, and ii)
(M ′ − II) with two classes of COVID-19-infected and other
patients. Table IV presents the performances of both models.
The results show that the performance of M ′− I is better than
that of M ′ − II . Moreover, it is easier to differentiate healthy
cases from infected cases with any respiratory disease, and
correctly classifying COVID-19-infected cases is considerably
more difficult.

C. Image-based Diagnosis of COVID-19

AI has the potential to improve the medical diagnosis
processes drastically based on imaging. COVID-19 has spread
quickly due to the transmission between individuals. SARS
is confirmed via laboratory testing with RT-PCR, but this test
may require up to 48 h for completion. Chest CT can be
an important element in diagnosing and evaluating patients
suspected of having SARS. Chest CT results may be normal
in some newly infected patients. Therefore, chest CT alone

has a limited predictive value for infection. This highlights
the need to include clinical information during the diagnosis.
AI algorithms may contribute to the diagnostic process by
combining chest CT results with symptomology, laboratory
testing, and the history of exposure.

We propose a dataset composed of 4173 CT scans of 210
different patients, who were divided into 80 patients infected by
SARS-CoV-2, 80 patients with other pulmonary diseases, such
as non-COVID pneumonia, DPOC, and lung cancer, and 50
patients with healthy lung conditions [55]. Data were collected
from March 15 to June 1, 2020, at the Public Hospital of the
Government Employees of Sao Paulo, and the Metropolitan
Hospital of Lapa, Sao Paulo, Brazil. Table V details the patients
investigated in this study.

The inclusion criteria for this study are listed as follows:
• Patients with a positive new coronavirus nucleic acid

antibody test confirmed by the CDC;
• Patients who underwent thin-section CT;
• Age>= 18;
• Presence of lung infection in CT images.
Fig. (7) illustrates the data distribution for patients infected

with SARS-CoV-2 considered in this study.
The duration from the onset of illness to the CT scan was

in the range of 1 to 14 days, with a median of 5 days. The
CT protocol was as follows: 120 kV; automatic tube current
(180 mA–400 mA); iterative reconstruction, 64 mm detector;
rotation time, 0.35 s; slice thickness, 5 mm; collimation, 0.625
mm; pitch, 1.5; matrix, 512 × 512; and breath hold at full
inspiration. The reconstruction kernel used was set as “lung
smooth with a thickness of 1 mm and an interval of 0.8 mm.”
During reading, the lung window (with a window width of
1200 HU and window level of 600 HU) was used. Fig. 10
illustrates some examples of CT scans found in the dataset.

We relied on the xDNN classification approach [56] for
the proposed SARS-CoV-2 CT scan dataset to detect patients
infected with COVID-19. We divided the dataset into 80% for
training purposes and 20% for validation purposes. However,
notably, xDNN does not require full retraining if new data are
presented, which retains all the prototypes identified so far and
may add new ones if the data pattern requires them [57].

Using the xDNN method, we generated (extracted from the
data) linguistic IF...THEN rules that involve actual CT scans
of all the classes (COVID-19, other pulmonary diseases, and
healthy), as illustrated in Fig. 9. Such transparent rules can
be used by specialists to support clear early diagnostics for
COVID-19 infection or other diseases. Rapid detection with a
high sensitivity to viral infection may allow a better control of
viral spread. The early diagnosis of COVID-19 is crucial for
disease treatment and control.

D. Forecasting Spread of COVID-19

Anticipating and monitoring the spread of the disease is
vital. Generally, there are three methods for identifying the
rise and decline of illnesses, such as flu.
• Nowcast: An estimate of the number of current infections;

Laboratories collect historical and current data from the



Condition No. of Patients No. of CT-Scans Average No. of CT-Scans per patient
Healthy 50 758 15

COVID-19 80 2168 27
Other pulmonary diseases 80 1247 16

TOTAL 210 4173 20

TABLE V: Composition of the dataset. In this case, we considered the data from 80 patients infected with SARS-CoV-2, among
whom 41 were male and 39 were female. We also considered data from 80 patients presenting with other pulmonary diseases,
such as lung cancer and DPOC. The dataset is also composed of CT scans from 50 patients who do not present any pulmonary
disease.

Fig. 7: Data distribution for 80 different patients (41 male and 39 female patients). The data revealed that most of the patients
were 50–59 years old.

CDC and other organizations and data about illness-
related Google searches, medical website traffic, and
Twitter activity. Such data streams are analyzed using
ML algorithms to make predictions.

• ML forecasting: This method predicts up to four weeks in
advance and anticipates milestones, such as the maximum
number of cases and when an outbreak will peak; This
information enables healthcare providers and the CDC to
anticipate and prepare for capacity needs. ML forecasting
considers both the nowcast and previous CDC data. With
20 years of the U.S. flu season data available, the algorithm
has a large amount of information.

• Crowd-sourced opinion forecasting: This forecasting
method utilizes volunteers. Each week, both experts and
amateurs log into a system illustrating the trajectory of the
current and past flu seasons. These groups of volunteers
then forecast the current curve by projecting the number
of cases over time. While individuals may not accurately
predict the trajectory, in groups, they are as accurate as
ML forecasting.

The nowcast and ML forecasts use several common data
sources but different prediction models. Algorithms must
learn new correlations between the ground truth and the
data signals. This is because of the increased panic around
COVID-19, which results in different online activity patterns

as people search for coronavirus information. As people who
are not ill will still search for information, it can be difficult
to know who is experiencing symptoms. In the event of a
pandemic, there is little historical data available, which can
affect forecasting. While the flu occurs cyclically, pandemics
are rarer and less predictable. The H1N1 pandemic in 2009 was
characteristically different from the COVID-19 pandemic. In
contrast to COVID-19, H1N1 affected younger rather than older
individuals. In addition, in 2009, the tracking systems were not
completely developed. Teams rely on historical data from the
current pandemic due to a lack of data from prior pandemics.
Researchers include data from countries that experienced earlier
cases and will continue to update ML models as data are
provided. At the end of each week, the CDC reports on the
updated U.S. case trajectory and revises prior numbers. This
allows laboratories to update the models and eliminate the gaps
in the rolling statistics and original predictions.

E. Risk Prediction

AI may be used to predict the risk of COVID-19. In general,
risk prediction can be categorized into three areas:
• Risk of infection;
• Risk of severe symptom development;
• Risk of specific treatment use for an infected individual.
During the flood of COVID cases and the lockdown phase,

intensive care in Italy was pushed to the limit, reaching a peak



Fig. 8: A) A 27-year-old male patient presenting with fever and headache for 2 days. CT scans did not show the presence
of any pulmonary disease. The RT-PCR test was negative for SARS-CoV-2. B) A 63-year-old female patient presenting with
shortness of breath and cough for 4 days. CT scans showed the presence of a subpulmonic pleural effusion. The RT-PCR test
was negative for SARS-CoV-2. C) A 31-year-old female patient presenting with fever, dry cough, and shortness of breath for
4 days. CT scans revealed multifocal bilateral consolidation with ground-glass opacities with a typical distribution. RT-PCR
tested positive for SARS-CoV-2.

R: IF (CT Scan ∼ ) OR (CT Scan ∼ )

OR (CT Scan ∼ ) OR ... OR (CT Scan ∼ ) THEN ‘Infection by
SARS-CoV-2’

Fig. 9: Final rule given by the xDNN classifier for COVID-19 identification. In contrast to typical deep neural networks, xDNN
provides highly interpretable rules that can be visualized and used by human experts for the early diagnosis of patients suspected
of being infected with COVID-19.

at the end of March, 2020 of approximately 4000 hospitalized
patients in ICUs. Italian doctors were forced to choose ICU
patients who had the best chance for survival. In particular,
the last data on April 8, 2020 confirmed the reaching of the
peak and the stabilization of the trend in Italy. The Civil
Protection Bulletin reported that 3693 people were admitted
to the ICU, 99 fewer than the previous day. A total of 28485
people were hospitalized with symptoms, 233 fewer than the
previous day. The contagion was reduced, with an incidence
of 7.4%. On April 8, 2020, 542 people died (there were 604
deaths the day before), reaching a total of 17669 deaths in
Italy. This worldwide emergency has highlighted the need to
define a predictive care model that can provide an accurate
estimation of resources and preventive medicine. Currently,
the conditions that predispose people to develop complications
are largely unknown, and the ability to understand them by
using patient records is hampered by numerous challenges.
These obstacles include the difficulty in finding structured
clinical data, nonuniform data sampling leading to several
missing values, and a lack of annotation with respect to a

target variable that may represent the patient’s own risk level.
Understanding and predicting the risk of a particular patient
developing complications associated with COVID-19 is a very
important and topical challenge. Therefore, we proposed the
design and development of ML algorithms for the early-stage
prediction of complications and the risk stratification of COVID-
19 patients in ICUs using heterogeneous longitudinal EHR
data. In particular, the study was performed as part of the
collaborative international ICU registry for critically ill COVID-
19 patients (RISC-19-ICU). The aim of the registry is to collect
real-time data of COVID patients admitted to non-ICU or ICU
wards. The registry was launched on March 13, 2020 and it
already included 97 ICU centers from 16 countries collecting
data. The registry includes more than 1000 patients and more
than 400 fields (e.g., laboratory analysis and ICU analysis).
The idea behind our project is to better prevent and treat the
complications that appear in patients affected by COVID-19
by developing a clinical decision support system (CDSS) that
allows computing:

• Risk profiles of individual patients from which a different



intensity of care can be deduced, with a consequent
modification of the control time according to the patient
needs; this approach would shorten the waiting time and
improve the appropriateness of care.

• Prediction of risk of short-term complications, which
will activate personalized prevention systems directly
addressed to the patient: from targeted recalls to targeted
motivational and training activities.

The EHR and ICU data pose different challenges within
the ML community. These challenges should be considered
when predicting the complications associated with COVID-19.
The ML model should be able to achieve a higher predictive
performance but simultaneously ensure a high interpretability
(i.e., localize the most discriminative features). The model
should deal with high-dimensional data, representing irrelevant
and redundant features, and the naturalistic unbalanced setting
of this task (e.g., larger sample size of the control class with
respect to the pathological class). Simultaneously, the temporal
evolution of features should be encapsulated. However, the
employed EHR/ICU data reflect the clinical use-case scenar-
ios, where not all laboratory examinations were prescribed
uniformly over time. This problem leads to a highly sparse
dataset in which each patient can have missing features and/or
sparse annotations of diagnosis over time. Our recent work in
this field aimed to overcome these challenges by proposing
ML methodologies for predicting type 2 diabetes (T2D) [58]
and the early temporal prediction of T2D risk conditions [59]
using the EHR data collected by general practitioners. The ML
algorithm represents the core of CDSS (see Fig. 10).

Fig. 10: FIMMG dataset, in which the general practitioner
stores the EHR data. The features were used to train the
sparse balanced support vector machine (SB-SVM) model
and to predict T2D. The SB-SVM is formulated with a sparse
regularizer and adaptive posterior thresholding.

The sequential organ failure assessment (SOFA) score is
used to track a patient’s status during ICU stay to determine
the extent of the organ function or rate of failure of the patient.
The SOFA score can be measured daily in all patients admitted
to the ICU to determine the level of acuity and mortality risk.
The accurate prediction of SOFA may be relevant to the clinical
scenario to provide the risk profiles of individual patients, from
which a different intensity of care can be deduced, with a
consequent modification of the control time according to the
patient needs. We aim to predict the worsening or improvement

of SOFA on day 5 of the ICU stay of patients by solving a
classification task. We are currently adopting a no-temporal
approach based on the extreme gradient boosting (XGBoost)
algorithm. The predictors consisted of patient characteristics
during hospitalization and ICU admission. The model should
be capable of being generalized across subjects. Thus, we
performed a leave-one-subject-out cross-validation procedure.

The algorithm was tested on a subset of 100 patients from the
RISC-19 ICU registry. Fig. 11 shows the predictive performance
and feature importance of the XGBoost algorithm. The model
achieved an accuracy, macroprecision, macrorecall, and macro-
f1 of 0.69, 0.70, 0.69, and 0.68, respectively.

Fig. 11: Predictive performance (confusion matrix, left side)
and feature importance (right side) of the XGBoost algorithm
tested on a subset of 100 patients from the RISC-19 ICU
registry

The proposed framework (Fig. 12) aims to provide a coordi-
nated, evidence-based, fair, and global public-health response.
Therefore, the effectiveness and robustness of our framework
are not limited to the accuracy of the ML algorithm, but they
depend on ICU data-sharing, multidisciplinary collaborations,
and the interpretability, reproducibility, and transparency of the
extracted results. The continuous expansion of the RISC-19
ICU registry with the collaboration of new ICU centers has
led to the creation of a standardized benchmark to support
worldwide researchers in the fight against COVID-19. Thus,
our framework can be encapsulated in smart healthcare IoT
solutions, which may improve the medical service performance
and accessibility of preventive medicine.

Fig. 12: Framework of the proposed risk prediction approach

F. Voice-based Diagnosis of COVID-19

Multiple voice detection applications have been developed
to assist in COVID-19 screening. These applications analyze a



user’s voice sample to detect viral infection symptoms. The
Corona Voice Detect app utilizes forensic voice technology
and AI to identify patterns in voice, tone, and speaking sounds
related to illness.

G. Respondent-driven Sampling (RDS)

In the SNOWBALL study, which is a CDC-funded contract
(BAA 75D301-20-R-68024), we investigated the potential
of respondent-driven sampling (RDS) to fill the gaps in
understanding SARS-CoV-2 and COVID-19 by relying on the
active engagement of respondents in their own close-contact
networks to build a self-generating contact trace from persons
who test positive for SARS-CoV-2. The key components of
the proposed approach include:
• Building a rapid-deployment RDS platform to detect

active, undiagnosed cases and determine the spread
or distribution of active infection in the community.
By developing the capability to deploy targeted testing
rapidly into North Carolina (NC) communities, we can
provide early, high-impact data for the public health
management of future influenza-like illnesses, such as
COVID-19, leveraging transmission pathways to recruit
community members systematically to complete electronic
surveys and present for testing.

• Testing the effectiveness of RDS sampling in identi-
fying novel positive cases and reaching otherwise un-
derrepresented populations and assessing differential
social contact patterns via personal network surveys to
evaluate the social determinants of infection risk. We
will test whether the RDS platform yields a substantively
different population of the epidemic by reacting rapidly
with multiple testing modalities and by reaching more
distal network contacts than are typically accessed through
traditional contact tracing channels.

• Using RDS to inform and direct molecular epidemi-
ology studies that are representative of the local
population. Combining detailed contact patterns with the
transmission patterns assessed through molecular epidemi-
ology will permit the estimation of secondary attack rates
in multiple settings. Identifying contact patterns with a
higher transmission likelihood protects health workers in
hospitals and other care settings.

Network-targeted sampling can efficiently sample the com-
munity, starting with Duke University Health System (DUHS)
patients as COVID-19+ “seeds” (index cases). Its benefits
include 1) locating cases where they are most likely to occur,
2) assessing community spread/distribution, and 3) interrupting
transmission by diagnosing infected people before they are
infectious to others in the community. SNOWBALL offers
a translational toolset combining social-structural insights
regarding how the community structure channels infectivity
with clinical expertise that can detect, treat, and monitor
populations.

1) Rationale and Research Strategy: In order to “reopen”
NC to typical activities, we must develop efficient surveillance
designs to understand how widespread SARS-CoV-2 is, where

and how people are most at risk of acquiring or transmitting
it, and whether recovered individuals are immune and prevent
the transmission of the virus. Contact patterns and underlying
comorbidities are likely different for the most vulnerable groups,
putting them at risk biologically and socially (COVID-19
cases are quickly climbing in the Hispanic/Latinx population,
a group that has poor access to care). However, a network-
targeted community sampling design can also direct testing
to yield a higher proportion of results that indicate active
infection and potentially differentiate venues or communities
where transmission is active and undiagnosed. Network-targeted
methods require neither intensive contact tracing to achieve a
robust, representative sample, nor personnel to circulate through
the community to collect samples. Instead, this approach
passively recruits community members to complete electronic
surveys and present for testing.

We propose a network-targeted, short-term sampling strategy
to identify active cases efficiently and reduce SARS-CoV-2
transmission in NC. With the end of statewide shelter-in-place
orders, any new COVID-19 case indicates that the case has
had sufficient contact to acquire the infection and is likely
to continue to have the same types of contacts, which can
further spread the infection. Surveying the contact patterns of
the case can locate where to deploy testing and where such
testing is still limited. This social-network-targeted sampling
creates an efficient sample for identifying and diagnosing
additional infections. Building on the model of public health
contact tracing, a network-targeted method focused on the
entire network of an infected person will also include the
weaker or incidental contacts often responsible for epidemic
spread.

We need an approach that can quickly identify and contain
new COVID-19 cases to prevent the second wave from
overwhelming the state health system of NC. Network-targeted
sampling can identify where in the community undiagnosed
infections might be present, as confirmed through RT-PCR
to diagnose active infections. This scalable sampling strategy
would be useful for capturing asymptomatic or minimally
symptomatic cases or close network contacts not within the
same household. This approach improves public health contact
tracing in three important ways.
• First, we will leverage the social contact network of those

diagnosed with COVID-19 to identify the periphery of
the epidemic. Social contact networks comprise multiple
ties between people, with strong ties reflecting intensive
interaction, which is a clear risk for transmission, and
weak ties representing incidental contact through common
daily activities. Although weak ties are less likely to pass
infection per tie, a much larger number indicates that
people are likely to pass through these ties. Importantly,
as index patients will be largely aware of the symptoms
and recent activities of their strong-tie contacts, they are
best positioned to understand where they acquired the
disease or whom they may have infected, helping to guide
targeted recruitment and sampling.

• Second, to broaden participation, we will use both in-



clinic and at-home testing. We have multiple teams of
testers, including at least one with Spanish fluency, who
can be mobilized to collect appropriate respiratory samples
(nasopharyngeal) for RT-PCR testing for active infection
and venous blood for antibody and serologic testing.

• Third, testing for both active infection with RT-PCR
and for convalescence with serology, combined with a
symptom diary, will provide key knowledge about the
infection course, symptom prevalence in conjunction with
infection prevalence, and transmission related to behavior
and contact patterns.

2) Approach: The transmission of SARS-CoV-2 is most
likely to occur with repeated, prolonged, or invasive contact,
indicating that close contacts, people in congregate living
situations, and healthcare workers are most likely to become
infected. Thus, targeting social contacts is likely to yield
higher numbers of undiagnosed but positive cases than random
sampling would. “Index” cases (seeds) for these link-sampling
designs would be patients from Durham County who test
positive for SARS-CoV-2 at DUHS. We will also trace weaker
contacts who might be the source of infection for the index
case, or someone to whom the index spread the infection.

Our goal is to work closely with DUHS to develop a
workflow whereby index cases will be sampled from anyone
testing positive for SARS-CoV-2. Once a case is enrolled, we
will administer a survey that elicits general information about
activities and symptoms and includes a social network module
to capture details about social networks, living situations,
and activities/venues. Building this capability will create a
“SNOWBALL Platform,” allowing public health departments
and/or epidemiologic researchers to deploy an easy-to-use
platform quickly for physical and electronic coupons and
surveys in future pandemics. The platform employs the Fast
Healthcare Interoperability Resources (FHIR) standard to
facilitate access to EHRs and public health surveillance systems.

RDS leverages cases to identify testing candidates. Each
index is given 3–5 unique electronic codes to invite peers,
together with recommendations to guide their selection, based
on survey information about seed–peer contact patterns, peer
risk, and sample diversity to achieve representativeness. We
excluded peers known by the seed to have been diagnosed
with COVID-19. We will aim for 1 close contacts likely to be
infected based on index–peer interactions, 1 contacts at risk
due to their close interactions, and 1 contacts constituting a
central figure at a venue frequented by the index. Indexes in
congregate living situations will receive 1–2 additional coupons
for co-residents. Indexes whose samples required fewer than 10
RT-PCR cycles until detection received 1–2 additional coupons
for people with whom they had sufficient contact during the
48 h prior to sampling. We also aim to maximize diversity
in the sample through venue-targeted sampling. Contacts with
coupons who complete the survey will be given an appointment
for testing (in-clinic or at home). Recruited contacts who test
positive via RT-PCR will be given coupons to elicit their own
set of contacts, following the same protocols as the seeds.

The primary purposes of selecting network contacts for

serological testing were efficiency and sample diversity. Each
respondent will provide information on close contacts and
venues frequented, acting as key informants for the likelihood
of infection risk at each place/type. We will conduct a network
analysis of contact patterns and venue-based behaviors aimed
at evaluating population diversity and spatial heterogeneity. We
anticipate collecting samples for 100 serological tests drawn
from persons who tested positive for SARS-CoV-2 at a DUHS
clinic. Although this does not provide sufficient power to
test effectiveness fully, this pilot will provide information on
feasibility and population diversity. Peers will be asked to
consent to nasopharyngeal swabbing to diagnose active COVID-
19 infection and to consent to blood draws for a serological
test.

Serology test results provide us with an assessment of
previously infected but recovered cases to help map the extent
of infection within the “network neighborhood” of each RT-
PCR+ positive SNOWBALL participant. Our goal is to use
the network contacts and contact patterns described above
to develop our understanding of SARS-CoV-2 transmission,
including asymptomatic and presymptomatic transmission
likelihood among diverse contacts and with detailed information
about previous symptoms, mitigating or exacerbating behaviors,
and the social and spatial ranges of Durham County residents.

H. Early Warnings and Alerts: Face Recognition and Body
Temperature Scanning

AI is transforming COVID-19 diagnosis and screening.
Infrared temperature scanners have been used to screen for fever
in public places. However, this technology requires personnel
to complete scanning. Cameras with multisensory technology
based on AI have begun to be used to limit the potential
exposure of frontline staff at airports, hospitals, or healthcare
facilities. These enhanced cameras can recognize individuals
with elevated body temperatures, recognize corresponding faces,
and trace an individual’s movement. During the COVID-19
pandemic, several states have begun to use facial recognition
to fight the spread of the virus. This technology assists
in monitoring those who disregard quarantine guidelines or
assessing the body temperature of infected people in a crowd.
Facial recognition and AI provide unparalleled control for
quarantine scenarios by using facial recognition in collaboration
with other technologies. For example, the FindFace system
combined with CCTV cameras can identify individuals in
real time, facilitating prompt responses, even as AI assesses
individuals’ social networks.
• Social interaction analysis: Uses complex recognition

and searches of historical data to assess the number of
likely infected individuals

• Real-time violation monitoring: Identifies quarantined
individuals and notifies authorities if they are recognized
on camera, even if wearing a mask or facial covering

• Tracking quarantine compliance: Algorithms that rec-
ognize silhouettes make it possible to monitor individuals
using multiple cameras even if facial imaging is not
available.



• Age detection: AI is highly useful in assessing age, which
is helpful in monitoring those aged 60 and over who are
encouraged to remain at home during the COVID-19
pandemic because they are more susceptible to infection.

I. Social Control and Fake News Detection

While fighting the actual pandemic, science and medicine
must also battle the dissemination of incorrect information
online. During the COVID-19 pandemic, inaccurate information
spreads quickly. Overcoming misinformation requires the
integration of various tools in the arenas of information
technology, law, and education. Previously, news was spread
by a limited number of organizations; in contrast, today, news
is spread via social media and the Internet. Fake news can
be defined as deliberately inaccurate information disseminated
through traditional or social media. Unfortunately, fake news
can seriously mislead or harm individuals and organizations.
Fake news is sometimes aimed at profiting from the promotion
of specific treatments, supplements, or products. Stressful
situations, such as pandemics, are often linked to an influx
of information or misinformation. When COVID-19 was
designated as a global public health emergency, the WHO
Information Network for Epidemics (EPI-WIN), a platform for
sharing specific information with targeted groups, was created.
In the context of misinformation, AI tools can recognize and
monitor incorrect information from questionable sources. Doing
so helps focus on fighting the coronavirus, which is vital to an
effective response. For example, the JRC created an AI-based
classifier capable of identifying misinformation by evaluating
the language in news articles. While a 100% detection rate is
not possible, the JRC ML algorithm offers a success rate of
80%.

J. Communication and Chatbot

Using triage systems based on AI may reduce the load
on physicians. Medical chatbots could assist patients with
identifying symptoms, provide vital education about hand
hygiene, and refer individuals for treatment if symptoms
worsen. In addition, phone software capable of recognizing
and recording patient data, such as temperature and advancing
symptoms, could prevent patients from seeking unnecessary
hospital care if they have mild symptoms. These additional data
can also be used with AI algorithms to monitor COVID-19.

K. Vaccine and Drug Development

Fighting COVID-19 effectively over the long term requires
the development of vaccines. AI can be utilized to facilitate
vaccine production. Emerging studies using the Vaxign-ML
tool to forecast two dozen COVID-19 vaccine options using
five nonstructural proteins and the S protein focus on exploring
the whole proteome of COV-2. Using ML in conjunction
with reverse vaccinology allows researchers to predict vaccine
targets. Another vaccine trial is using HLA-binding prediction
tools that require peptide stability assays. In the study, 777
peptides were evaluated and predicted as acceptable binders for
11 MHC allotypes with elevated prediction binding scores. The

initial results will make key contributions to the creation of
an effective COVID-19 vaccine. Another study utilizes DL to
create a drug-target interaction model known as the molecule
transformer-drug target interaction (MT-DTI). It recognizes
available drugs capable of acting on COVID-19 viral proteins.
This model suggests that atazanavir, an antiretroviral drug
typically used to treat HIV, may be beneficial in developing
a drug aimed specifically at COVID-19. The drug must pass
through the trial stage before possibly being used to treat
coronavirus patients. The study creates a data-driven drug
utilization framework using statistical analysis and ML methods
to mine large transcriptome data and knowledge graphs. The
data supporting analytics to identify antivirals and vaccines
rest upon an understanding of the genomic content of SARS-
CoV-2, which contains the necessary molecular targets for
these health interventions. To support this research, the IBM
Functional Genomics Platform has analyzed over 60,000 SARS-
CoV-2 genomes and precomputed all gene, protein, functional
domains, and biochemical pathways for this virus, presenting
the data as an open research asset to aid in the pandemic. This
data resource provides important ground-truth data to aid in
controlling this global health crisis. Trial results indicate that
ML can effectively predict drug SARS candidates, making
it a possible means of reframing drugs to combat the global
COVID-19 pandemic.

V. ROLE OF ROBOTICS IN MANAGING COVID-19

As the COVID-19 pandemic grows, the potential use of
robotics has become evident. Robotics can be utilized during
a pandemic to disinfect, deliver food or medication, monitor
vital signs, or assist with border control. Generally, robots
have been created to handle dangerous, tedious, or dirty jobs.
Initially, they were used industrially. Similarly, an infectious
disease can result in environments that are unsafe for human
interaction. The recent Ebola outbreak indicated various use
cases, but interdisciplinary research funding in collaboration
with government agencies and industries is still limited.
However, the far-reaching impacts of the COVID-19 pandemic
may facilitate more expansive research into the use of robotics
to mitigate infectious disease risks [60].
• Disease prevention: Currently, robotic ultraviolet (UV)

disinfection of surfaces is in use because COVID-19
spreads through respiratory droplets and contaminated
surfaces. The virus can live on surfaces, such as glass,
plastic, and metal, for days. However, UV light is effective
in reducing the contamination of high-touch surfaces in
hospital settings. While disinfection normally requires
manual work by humans, which increases exposure risks
for workers, remote-controlled or autonomous robots
may provide effective, fast, and low-cost disinfection.
Additional opportunities remain in the sensing of high-
touch areas and intelligent navigation. There is potential
for the next generation of robots to traverse high-risk areas
and constantly sanitize all high-traffic areas.

• Crowd surveillance: Containing COVID-19 requires that
governments enforce social distancing mandates. Some



countries, including India and China, have utilized drones
to monitor crowds and gatherings.

• Public announcements: Drones are capable of broadcast-
ing vital information, especially in locations without open
communication channels.

• Mass screening: Drones can utilize thermal cameras,
night vision, computer vision systems, or specialized
sensors to monitor crowds and screen groups using body
temperature and heart rate data.

• Essential supply delivery: Drone technology can quickly
deliver medical or other essential supplies, reducing
the strain on healthcare institutions and staff. During
pandemics and outbreaks, it is difficult to maintain
sufficient staffing to test individuals and process samples.
Automated oral or nasal swabbing may accelerate the
process, lessen the chance of infection, and allow staff to
undertake more complex tasks.

• Screening and diagnosis: Mobile robots may be utilized
to measure body temperature in public spaces. Auto-
mated camera systems are often used to screen crowds
in expansive areas. Integrating vision algorithms and
thermal sensors with autonomous or remote-controlled
robots may enhance screening coverage and efficiency.
Mobile robots could also be utilized for monitoring body
temperature for hospitalized individuals or outpatients
with data automatically linked with healthcare IT systems.
It is possible that linking facial recognition software
and security systems would enable faster contact tracing;
however, appropriate guidelines are required to respect
privacy.

• Drones and UAVs: These technologies offer apparent ad-
vantages during public health emergencies. These devices
can reach remote areas or reduce human interactions.
China has successfully utilized drone technology to
combat the COVID-19 pandemic. Thus, several countries
are collaborating with researchers to drive innovative
drone use in the fight against the coronavirus. Drones
offer several benefits for mitigating pandemic effects and
stopping further outbreaks.

VI. ROLE OF BLOCKCHAIN IN MANAGING COVID-19

While DLT/blockchain and the IoT are distinct forms of
technology, the integration of the IoT and blockchain is a
massive paradigm shift that will spur the evolution of systems
across the health industry. Blockchain has the capability to
address IoT vulnerabilities and resolve security issues around
the connection of WIoT devices. Blockchain creates and stores
data and consensus mechanisms, and uses its decentralized
nature to resolve issues found in centralized cloud-based IoT
systems. Several use cases have illustrated the applicability of
blockchain to all IoT system aspects. Blockchain can be utilized
to manage device identities, store cloud data or distributed
objects, and confirm and encrypt data within communication
networks. It also mitigates risk by using multiple nodes to
transmit peer-to-peer data, making data tampering almost
impossible. The consensus mechanism of blockchain can also

prevent a compromised node from contributing data to the
chain, which safeguards data integrity [61], [10].

Blockchain offers the ability to create audit trails for health-
care interactions, protect system access, facilitate data sharing,
and support healthcare supply chains, as the health industry
moves to embrace a patient-centered, IoT-based paradigm.
Healthcare systems created using blockchain technology would
benefit from greater data security and accuracy as records could
be integrated, and patients would have clearer ownership of
their health data. In addition, blockchain lessens the reliance
of a system on a centralized third party to manage the sharing
of data, handle transactions, and confirm data accuracy or
ownership. Blockchain enables chain participants to engage
directly in pseudonymous secure transactions. Blockchain
enables data owners and eHealth service providers to interact
without the need for a third party. The type of data shared
and the timeframe of use are controlled by the data owner via
smart contracts. The distributed ledger of blockchain allows
data owners to observe the transfer of data among chain
participants. Cryptocurrencies, such as Bitcoin, also allow for
the monetization of eHealth data [4], [10].

Blockchain technology is also capable of aiding in the
fight against COVID-19 by providing verifiable blockchain
certificates. This technology could secure COVID-19 testing
results, providing people with a certificate to confirm whether
the test results are positive or negative. This would be useful
for providing proof of immunity based on antibody testing.
Blockchain can help users confirm their health status, which
would enable communities to lift restrictions appropriately and
target quarantine guidelines better. Blockchain technology also
offers the ability to monitor patients infected with contagious
viruses, including COVID-19. Infected or exposed individuals
can wear an IoT device to monitor movements, enabling
effective containment and simultaneously protecting privacy.
Remote patient monitoring can also benefit from blockchain
technology. Reviewing the gathered data incurs both data
privacy and security issues. Blockchain provides a new means
of accessing, storing, and sharing data in compliance with the
GDPR and HIPPA protocols. Blockchain technology can also
be used for supply chain management. For instance, VeChain
is a blockchain-based platform created to track the vaccine
production in China. All aspects related to vaccine production,
including codes, materials, and packaging, can be documented
and maintained via distributed ledgers. This platform provides
a dependable method for mitigating risks around alterations
to vaccine data because the records are permanent, enabling
researchers to create a high-quality vaccine during the pandemic
[10].

VII. A REAL-LIFE USE CASE: KOREAN SOLUTION

In Korea, a large-scale epidemic occurred mainly at the
Shincheonji Church in Daegu, followed by sporadic community
infections, such as a group infection at a call center in Seoul.
At one time, the number of confirmed cases per day was
in single digits, but the group infection in a nightclub for
young people was at risk of causing a large-scale secondary



infection. However, it was possible to induce a rapid diagnosis
of the confirmed person through a thorough epidemiological
investigation based on the identification of the movement line
of the confirmed person using IoT technologies. Furthermore,
by inducing voluntary diagnosis and isolation of the citizens
through the disclosure of the movement line, large-scale sec-
ondary infections were successfully prevented. In this section,
we describe how the Korean government uses information and
communications technology (ICT) to detect and prevent the
spread of COVID-19.

A. IoT systems for COVID-19 in South Korea

At the time of writing this article, various applications
and services are available in South Korea to provide useful
information to citizens, as follows:
• Pandemic tracking app: There exist approximately 10

webpages and 50 mobile apps that disclose the path of
confirmed patients. Such apps provide various functions,
such as linkage displays between confirmed patients and
providing traffic line information using reactive maps.
However, there is a limit to the information displayed
because only the traffic line information disclosed by the
quarantine authorities and local governments is used.

• Self-quarantine safety protection app: The self-
quarantine safety protection app developed by the Ministry
of Public Administration and Security needs to be installed
on smartphones owned by self-quarantined people. Ini-
tially, the installation of this app was voluntary, but as
the COVID-19 situation became serious, the installation
became mandatory. The main function is to notify the
officials in charge automatically when symptoms are
developed during quarantine and notify them when leaving
the quarantine area.

• Mask inventory checking app: A government organiza-
tion developed a platform that provides real-time quantities
of available masks that can be purchased at pharmacies,
post offices, and marts.

• QR code-based entry log app: A government organi-
zation in Korea introduced quick response (QR) code-
based electronic access lists for facilities at risk of group
infection in cooperation with social media companies.
Such applications attempt to solve problems caused by
false statements of confirmed persons and concerns about
the leakage of personal information in handwritten lists.

• Epidemic investigation support system (EISS): Govern-
ment agencies and research centers have developed an IoT-
based epidemiological investigation support system. For
the epidemiological investigation of infectious diseases,
the system systematically acquires access information to
the base station of telecom companies and card usage
information for the confirmed person authorized by the
domestic infectious disease prevention law. It quickly uses
the collected information to analyze the travel route of
a confirmed person. This system is being used by the
epidemiological investigators of local governments for the
rapid epidemiological investigations of COVID-19.

Table VI presents the comparison of various available
COVID-19 solutions in Korea.

B. Enhanced Smart City Platform for COVID-19

As EISS provides the most useful information collected from
various sectors, we describe the EISS system in detail [62].
Upon the outbreak of COVID-19, a responsible government
organization conducted an epidemiological investigation by
collecting information on the movement lines of confirmed
patients and payment details by credit card based on the
epidemic law, which was legislated in 2015 for the Middle East
Respiratory Syndrome Coronavirus (MERS-CoV). However,
as all the data were collected and handled through e-mail,
the analysis of the movement line data requires a long time
and a considerable amount of human resources. Therefore,
the development of ICT-based systems that enable rapid
epidemiological investigations through the systematization of
requests for information provision and provision of traffic data
analysis functions is strongly required.

The EISS system was developed to collect and analyze
information related to COVID-19 by expanding the IoT-based
smart city platform called CityHub, which was previously
developed as a national R&D project. According to the
infectious disease prevention method, data related to confirmed
patients are collected in real time from mobile carriers and
credit card companies, refined and analyzed, and used for
epidemiological investigations.

Fig. 13 shows the additional functions and procedures of
the EISS system. The EISS system provides three functions:
(1) data collection of confirmed patients, (2) refinement of
movement data, and (3) analysis based on the movement of
confirmed patients. A security function to prevent the leakage
of personal information that may occur during this process has
also been added to the EISS system.

• Data collection of confirmed patients: To collect the
data of a confirmed case, the epidemiological investigator
registers the confirmed case in the system. The EISS sys-
tem receives the data related to the confirmed case through
an interface connected to the National Police Agency,
credit card network, and telecommunication systems. EISS
analyzes the data and converts it into a standard-based data
format referring to oneM2M global IoT standards [63].
The converted data in CityHub can be accessed through
a context-aware application programming interface (API),
that is, the NGSI-LD API developed by ETSI, which can
process semantic data [64].

• Data refining of confirmed cases: The location data
collected from the telecommunication company are the
location data of a base station to which the confirmed
person is connected. Therefore, they may be different
from the actual location data of a confirmed person.
To correct this deviation, EISS infers the moving path
of the confirmed patient by applying ML technology
through various interpolation, clustering, and classification
algorithms based on the location data and access time



TABLE VI: Comparison of ICT services and applications for COVID-19

Service/App Service Target Data Type Supporting Functions Limitations

Pandemic tracking app Personal Public data Linkage display between confirmed
patents Limited route information

Self-quarantine safety pro-
tection app Government GPS Checking personal health status

Initially voluntary but not manda-
tory app installation for entering
South Korea

Mask inventory checking
app Personal Government data Mask inventory No available information for con-

firmed persons
QR code-based entry log
app Government QR code Access lists for high-risk places Only available information for vis-

ited persons

EISS Government
Location data

Credit card usage

Rapid investigation results on the
travel route of confirmed persons

Only government people can use
the information

Fig. 13: Smart CityHub architecture with EISS extension

of the base stations to which the confirmed terminal is
connected.

• Analysis of confirmed patient movement: As shown in
Fig. 14, EISS provides a map-based location service that
supports epidemic investigators to analyze the movement
of the confirmed person. EISS also supports a function
that analyzes infection hotspots to derive and display the
contact area between infected people. Based on the results
of epidemiological investigations, the EISS visualizes the
connection network between infected people.

• Security concerns: EISS provides two-factor authentica-
tion using a one-time password (OTP) via a virtual private
network (VPN) connection and password-based web login
to allow access only to authorized users. In the case of
user accounts and access rights, an indiscriminate use
of the system is prevented by creating an account only
through official letters issued by an authorized government
agency.

C. Effectiveness of EISS and Lessons Learned

Simplifying the collection process: The process of requesting
and collecting data for confirmed cases, which was done
through the official letters or e-mails, has been simplified to
be possible with just a few clicks in EISS. This improvement
reduces unnecessary waiting time so that the processing time
is shortened from 2–3 days to within 10 min.

Data standardization: Existing movement data and card
payment details from individual companies are not standardized.
Different data formats and storage mechanisms were used by

each provider and person in charge. This was one of the factors
hindering the rapid analysis of COVID-19 data. EISS purified
these data and saved them in a standardized manner in the
system according to the international IoT standard, that is,
oneM2M, thereby reducing the time related to data processing.
Consequently, by enabling an automatic analysis of movement
routes and infection hotspots, the epidemiological investigation
time could be drastically reduced from 24 h to 10 min.

The IoT-based common smart city platform, CityHub,
provides a standardized framework for smart city services
based on the convergence of various data, easy connection
of new data sources and services, and standardized APIs. A
horizontal IoT service platform that can be used in common
with various applications plays a crucial role in accepting
various services in the city quickly and easily. EISS could
quickly respond to COVID-19 by developing and linking the
necessary service functions for epidemiological investigation
as a separate module by utilizing the standardized interface
of CityHub. As such, the use of a common IoT service layer
platform in a city using global standards can support various
smart city services and connect data. Such systems can be a
solution for quickly responding to various urban problems that
may arise in the future.

VIII. CONCLUSION

The COVID-19 pandemic has caused extreme strains on
healthcare systems and has shut down almost the entire
global economy. As the scientific and research community
is struggling to find a swift solution and a cure, Smart and



(a) (b) (c)

Fig. 14: Analysis of movement routes of confirmed cases for epidemiological investigation. (a) Route analysis; (b) infection
hotspots; and (c) visualization of connection network

Connected Health has become the core technology for fast
prediction, modeling, examination, and evaluation of infected
patients. In light of the urgent need for SCH solutions, this paper
presented a selection of original and innovative techniques in
the field to help combat this raging pandemic. We began this
paper by proposing a set of complementary techniques and
providing a comprehensive overview of the role of (W)IoT.
Following this, we discussed how AI, ML, and Big Data can be
harnessed to stop the epidemic and minimize the loss of human
lives. We also took a broad look on the role of robotics and
drone technology in managing public health and pandemics.
Finally, we examined how DLT/blockchain can improve the
shortcomings of the current SCH solutions and help us in the
event of pandemics.
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