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7       Abstract  

Psychology’s tendency to focus on confirmatory analyses before ensuring constructs are clearly 

defined and accurately measured is exacerbating the generalizability crisis. Our growing use of 

digital behaviors as predictors has revealed the fragility of subjective measures and the latent 

constructs they scaffold. However, new technologies can provide opportunities to improve 

conceptualizations, theories, and measurement practices.   

  

8       Main Text 

Yarkoni (2020) highlights the disconnect between psychology’s descriptive theories and its 

inferential tests—a problem we argue is exacerbated by inadequate measurement. The primacy of 

measurement in psychology’s history has ebbed-and-flowed, from the absolute focus on what was 

observable and quantifiable that defined behaviorist approaches (Hayes & Brownstein, 1986; 

Skinner, 1963, 1976) to the overreliance on button presses and mouse clicks that characterizes 

some modern research (Baumeister et al., 2007). Today, digital trace data provides new 

opportunities for rich measurement that captures behavioral, situational, and 

environmental/contextual factors simultaneously (Lazer et al., 2020; Mischel, 2004). For instance, 

smartphones are a powerful data source—a collection of sensors and logging routines that we carry 

with us for large swathes of the day—that psychologists are utilizing to predict a variety of 

https://sites.google.com/view/clemensstachl/home
https://pauljtaylor.com/
http://www.joinson.com/home/Welcome.html


outcomes, from social interaction, personality, mood, to general health (Davidson, 2020; Ellis, 

2020; Miller, 2012; Piwek et al., 2016; Harari et al., 2019; Stachl et al., 2020). 

 

Improved methodology alone will not result in rapid progress for the behavioral sciences (see 

Kaplan, 1964 and Uttal, 2001). For example, digital trace data has re-ignited problems with 

traditional operationalizations of latent variables. Research demonstrating associations between 

new and old measures often fails to articulate why a connection between a latent measure (e.g., 

mood disturbance) and behavioral (digital) predictor (e.g., keystroke speed) should exist in 

advance of an analysis (Davidson, 2020; Zulueta et al., 2018). Without specification or theory, the 

focus on prediction over explanation restricts generalizability further. A related challenge is the 

disconnect between subjective and objective (e.g., Taylor et al. 2021), where predictive studies 

find their survey data predicts an outcome, but objective measures do not (Eisenberg et al., 2019). 

Here, the problem is an overreliance on subjective methodologies to measure both latent and 

observable constructs. For example, the gold standard for personality measurement relies on 

surveys (e.g., HEXACO, OCEAN, Big 5) and remains contested (Cattell, 1958; Kagan, 2001). 

Similarly, other measures including estimates of everyday behavior rarely align with reality (Parry 

et al., 2020). While latent measurement remains core to psychological science, many constructs 

are developed rapidly, with little standardization, and rely on face validity alone (e.g., ‘internet 

addiction’, despite being sardonic in origin, has spawned 100s of technology addiction scales; 

Howard & Jayne, 2015). New digital sources need to avoid these issues if they are to prosper.  

 

Illuminating the complex relationship between generalizability and measurement further—

observations of behavior via digital traces will often only explain (or predict) part of a broad latent 

construct. At face value, predicting part of extraversion may appear straightforward from digital 



recordings of speech, or time spent using social apps. However, there are other sub-components 

of extraversion that this data will struggle to explain (e.g., feeling indifferent to social activities). 

Other personality factors such as openness and agreeableness remain conceptually more 

challenging to map onto (a single) digital behavior (Hinds & Joinson, 2019, Stachl et al., 2020). 

Hence, it is critically important psychology shifts away from predictive validity alone as evidence 

for successful operationalization and parameterization, especially from new data sources (Boyd et 

al., 2020). Any new digital measure has to be developed incrementally, where researchers first 

describe how it conceptually aligns with an existing latent construct (Glewwe & van der Gaag, 

1990). Assuming that digital traces are behavioural expressions of latent variables, researchers 

should be able to qualitatively express links at a more general level first across contexts, then move 

to specifics, which would enhance generalizability.  

 

Of course, re-focusing on actual behavior via digital traces will not be a panacea. Some digital 

traces may be ‘objective’, but they are rarely error-free (Sen et al., 2019). For example, a 

microphone-based audio classifier can detect whether ambient conversations are taking place 

around an individual, but it may not distinguish real conversations from someone watching 

television. Similarly, little consideration is given to how measurement variance might be reduced 

or maximized for a new digital source. For example, while some assessments in psychology (e.g., 

cognitive tasks) do not produce reliable individual differences, others (e.g., mood) purposefully 

reflect variations in individual responses (Hedge et al., 2018). Hence, it is critical to find ways to 

share raw data, processing pipelines, and analysis scripts for digital trace research, as the degrees 

of freedom are vast, which causes large variance in conclusions made from the same data 

(Silberzahn et al., 2018; Towse et al., 2020). Validation procedures are likely to reflect the disparity 



of digital data sources, but combining small and large-scale approaches (e.g., N=1 sample, case 

studies) can successfully quantify errors associated with smartphone sensing-based methods 

(Geyer et al., 2020; Sen et al., 2019; Szot et al., 2019). Only then can related work explore how 

signals from multiple systems may be combined to improve data efficiency. Failure to ensure this 

basic research is completed will result in little progress as research agendas risk shifting in the 

wrong direction if the grounding principles are weak, particularly in applied settings, such as 

security and health, which are increasingly interested in digital traces (Davidson, 2020; Guttman 

& Greenbaum, 1998). 

 

Moreover, we acknowledge that research in this space remains challenging to conduct because 

data derived from digital sources can be difficult to access, handle, and interpret (DeMasi et al., 

2017). This challenges the way psychologists are trained and incentivized (not) to publish 

descriptive findings in an interdisciplinary landscape. However, we are hopeful that new methods 

and emerging forms of data will complement psychology’s diverse measurement practices. 

Collectively termed the Internet of Things, the future potential for data linkage that could further 

leverage real-world research remains an exciting prospect. In the long term, taking time to 

understand how behavioral, situational, and environmental/contextual factors can be extracted 

from objective digital data will allow psychology to develop robust contextualized and 

comprehensive theory (Lazer et al., 2020). 

 

Our muse are people and psychology should critically consider how it moves forward and merges 

old and new. Generalizability requires sound measures first, but there is still little agreement 

between psychologists on what is worth measuring. 
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