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Abstract 24 

Understanding the intra-city variation of PM2.5 is important for air quality management 25 

and exposure assessment. In this study, to investigate the spatiotemporal variation of PM2.5 26 

in Guangzhou, we developed land use regression (LUR) models using data from 49 routine 27 

air quality monitoring stations. The R2, adjust R2 and 10-fold cross validation R2 for the 28 

annual PM2.5 LUR model were 0.78, 0.72 and 0.66, respectively, indicating the robustness 29 

of the model. In all the LUR models, traffic variables (e.g., length of main road and the 30 

distance to nearest ancillary) were the most common variables in the LUR models, 31 

suggesting vehicle emission was the most important contributor to PM2.5 and controlling 32 

vehicle emissions would be an effective way to reduce PM2.5. The predicted PM2.5 exhibited 33 

significant variations with different land uses, with the highest value for impervious surfaces, 34 

followed by green land, cropland, forest and water areas. Guangzhou as the third largest city 35 

that PM2.5 concentration has achieved CAAQS Grade II guideline in China, it represents a 36 

useful case study city to examine the health and economic benefits of further reduction of 37 

PM2.5 to the lower concentration ranges. So, the health and economic benefits of reducing 38 

PM2.5 in Guangzhou was further estimated using the BenMAP model, based on the annual 39 

PM2.5 concentration predicted by the LUR model. The results showed that the avoided all 40 

cause mortalities were 992 cases (95% CI: 221−2140) and the corresponding economic 41 

benefits were 1478 million CNY (95% CI: 257−2524) (willingness to pay approach) if the 42 

annual PM2.5 concentration can be reduced to the annual CAAQS Grade I guideline value 43 

of 15 μg/m3. Our results are expected to provide valuable information for further air 44 

pollution control strategies in China. 45 

Keywords: PM2.5, Land use regression model, BenMAP, Guangzhou, Health benefit 46 
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1. Introduction 47 

Ambient particle matter (PM) has been recognized as a great threat to human health 48 

and has received worldwide attention. Numerous epidemiological studies have shown that 49 

long-term exposure to fine particulate matter (PM2.5, particles with aerodynamic diameter 50 

smaller than 2.5μm) is associated with many adverse health effects, such as respiratory and 51 

cardiovascular diseases, and an increase of mortality (Beelen et al., 2014; Chen et al., 2018b; 52 

Chen et al., 2012; Stafoggia et al., 2014). In addition, PM2.5 is also responsible for climate 53 

deterioration and haze episodes that exert negative impacts on the living environment 54 

(Huang et al., 2014; Wu et al., 2005). Moreover, more than half of the global population live 55 

in high-density urban environments where these adverse effects are expected to be stronger 56 

(Jin et al., 2019; Yuan et al., 2014). However, intra-city variations of PM2.5 have been shown 57 

to be significant, thus, it is critical for air quality management and exposure risk assessment 58 

to accurately estimate the spatial distribution of PM2.5 within cities. 59 

 60 

Early studies mostly used data from fixed monitoring stations to present regional PM2.5 61 

concentrations, but it is generally difficult to capture intra-city variability due to the limited 62 

geographic coverage of monitoring stations (West et al., 2016). To address such challenges, 63 

previous studies tried to combine monitoring data and spatial interpolation (e.g. kriging and 64 

inverse distance weighted interpolation)(Meng et al., 2015). However, interpolation 65 

methods are considered too mechanistic and can produce overly smoothed concentration 66 

surfaces, and cannot consider environmental characteristics (Meng et al., 2015; Zou et al., 67 

2015). Alternatively, air quality models (e.g., chemical transport models and dispersion 68 

models) could estimate spatiotemporal variations of air pollution concentrations, 69 
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considering the emission sources, meteorology and topography conditions. However, the 70 

simulated results of air quality models are highly reliant on the accuracies of emission 71 

inventories, which usually makes the simulation process complicated and high-cost (de 72 

Hoogh et al., 2014; Solomos et al., 2015; Zhang et al., 2012). Satellite-based aerosol optical 73 

depth (AOD) data has also popularly applied to predict ground-level PM2.5, but this method 74 

is limited by the imaging time and the spatial resolution is relatively coarse (Ma et al., 2016; 75 

Zang et al., 2017). In addition, the relationship between PM2.5 and AOD could be affected 76 

by PM optical properties, PM vertical and diurnal concentration profiles, and meteorological 77 

conditions (Lee et al., 2011). Compared with the above methods, the land use regression 78 

(LUR) model was shown to be able to capture intra-city variations of air pollutants at a 79 

refined spatial scale with a relatively low demand for data input (Briggs et al., 1997; Hoek 80 

et al., 2008). In LUR models, the concentration of air pollutants at unmonitored sites could 81 

be predicted by a linear regression framework based on spatial predictors that include 82 

emission sources (e.g. land use, traffic, population density and nearby pollutant emissions) 83 

and dispersion conditions (e.g. elevation, boundary layer height, meteorology) (Chen et al., 84 

2018b; Meng et al., 2015; Sampson et al., 2013; Wu et al., 2005; Young et al., 2016). 85 

Especially, the real time meteorological parameters (e.g., temperature, wind speed and 86 

relative humidity) and anthropogenic activities related pollutants (e.g., NO2 and CO) can be 87 

combined into the linear regression frameworks to develop high time resolution grid-scale 88 

models (Hsieh et al., 2020; Lee et al., 2016). With the development of Geographic 89 

Information System (GIS) technology, LUR models have been shown to be a cost-effective 90 

approach to estimate spatial variations of air pollutants in different regions of the world 91 

(Briggs et al., 1997; Chen et al., 2018b; Hoek et al., 2008; Meng et al., 2015; Vienneau et 92 
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al., 2013; Zou et al., 2015). Also, in recent years LUR models have been widely used to 93 

assess air pollutants exposures in epidemiological research (Beelen et al., 2014; Chen et al., 94 

2017b). 95 

 96 

Evaluating the health impacts and benefits associated with air quality improvements is 97 

essential for governments and policy makers. In recent years, the Environmental Benefits 98 

Mapping and Analysis Program Community Edition (BenMAP-CE) developed by the 99 

United States Environmental Protection Agency (USEPA) has been widely used to estimate 100 

health benefits of PM2.5 reduction at local, regional, and national scales (Chen et al., 2017b; 101 

Kheirbek et al., 2014; Li et al., 2019; Sacks et al., 2018). The reliability of BenMAP 102 

estimates highly depend on the accuracy and suitability of air quality exposure fields used 103 

in benefit calculations. However, it should be noted that the exposure PM2.5 fields in 104 

previous studies that used BenMAP were mostly generated by chemical transport models 105 

and interpolation methods (Chen et al., 2017b; Luo et al., 2020). Given the advantages of 106 

using a LUR model that were mentioned above, the combination of a LUR model and 107 

BenMAP could help better estimate health benefits associated with PM2.5 reduction. 108 

 109 

To reduce the PM2.5 concentration and minimize its adverse influence on human health, 110 

the China State Council released a 5-year Air Pollution Prevention and Control Action Plan 111 

in 2013. From 2013 to 2017, the nationwide-average annual PM2.5 concentrations decreased 112 

from 67.8 μg/m3 to 45.6 μg/m3 (Wu et al., 2020). These concentration reductions were seen 113 

especially in the Pearl River Delta (PRD) region where in 2017 the annual PM2.5 114 

concentration already met the Chinese Ambient Air Quality Standards (CAAQS, GB3095-115 
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2012) Grade II guidelines (35 μg/m3) (Shen et al., 2020). In Guangzhou, the main city of the 116 

PRD region annual PM2.5 concentrations in the past three years (2017 to 2019) were lower 117 

than 35 μg/m3, due to emission control measures and favorable meteorological conditions. 118 

However, there is still a distance to reach the annual Grade I guideline of 15 μg/m3 proposed 119 

by CAAQS. In addition, the PM2.5 concentrations of Guangzhou were higher in fall and 120 

winter due to the unfavorable meteorological conditions for pollutant dispersion. Therefore, 121 

there remains a need to better understand the spatial and temporal variation of PM2.5 in 122 

Guangzhou. Moreover, as Chinese air quality has improved a lot in recent years, the PM2.5 123 

concentrations in many cities have fallen below Grade II guideline (35 μg/m3). Guangzhou 124 

as the third biggest city in China with relatively lower PM2.5, it represents a useful case study 125 

city to examine the health and economic benefits of further reduction of PM2.5 to the lower 126 

concentration ranges. This could provide valuable information for future efforts to reduce 127 

air pollution in China. 128 

 129 

 The purpose of this study was therefore to: (1) develop seasonal and annual LUR 130 

models based on 49 routine air quality monitoring stations, to investigate the spatiotemporal 131 

variation of PM2.5 in Guangzhou; (2) estimate public health benefits of reducing PM2.5 to 132 

CAAQS Grade I guidelines (15 μg/m3) by combining LUR modelling and BenMAP. Our 133 

results are expected to help policymakers to improve air quality and achieve health and 134 

economic benefits for citizens. 135 

 136 

2. Methodology 137 

2.1 Study area 138 
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Guangzhou (22°26′–23°56′N, 112°57′–114°3′E, Figure 1) is the capital and most 139 

populous city of the province of Guangdong in Southern China. On the Pearl River about 140 

120 km north-northwest of Hong Kong and 145 km north of Macau, Guangzhou serves as 141 

a major port and transportation hub. Guangzhou is China's third largest city with a 142 

population of 14.9 million in 2018, covering an area of 7,434 km2 with a typical subtropical 143 

monsoon climate. 144 

 145 

2.2 Ground PM2.5 monitoring data 146 

The daily PM2.5 concentration data of 2018 were obtained from the air pollution 147 

monitoring network operated by the Guangdong Environmental Monitoring Centre. There 148 

are 49 routine monitoring stations included in this study (Figure 1). The daily concentrations 149 

were only included in calculations when there were at least 18 hours of valid data per day. 150 

The PM2.5 measurement and quality control follow the regulation of the CAAQS (No. 151 

GB3095-2012). To investigate the spatiotemporal variation of PM2.5 in Guangzhou, the 152 

seasonal average PM2.5 concentrations were calculated and served as dependent variables of 153 

seasonal LUR models. 154 

 155 

2.3 Geographical data 156 

As presented in Table 1, we employed a combination of point, buffer, and proximity 157 

based geographic variables. A total of 352 predictor variables were considered. Each 158 

predictor variable was first given an expected direction of the regression coefficient (e.g., 159 

positive or negative). We used the ESRI ArcGIS 10.5 to extract predictor variables from 160 

GIS layers. 161 
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 162 

We obtained the road data from OpenStreetMap (https://www.openstreetmap.org). 163 

Considering the jurisdiction and function, we divided the roads into four categories: main 164 

roads (freeways, such as motorways and trunk ways, usually with limited access), highways 165 

(primary roads, important roads that often link towns or main road within cities), ancillary 166 

(tertiary roads, such as residential roads, which serve as an access to housing or within a 167 

community), and alley (residential roads, pedestrian walkways, and tracks). It should be 168 

noted that, because it is difficult to obtain the traffic intensity, we used the distance to nearest 169 

road and length of road to represent traffic related variables. Compared to traffic intensity 170 

which could indicate the number of vehicles, the road information in GIS just represented 171 

as one-dimensional lines that cannot reflect the number of vehicles, width of road, and the 172 

number of lanes. However, previous studies have found that the performance of LUR models 173 

developed with lengths of road were comparable to those using traffic intensity data for 174 

explaining the refined spatial variability of pollutant concentrations (Henderson et al., 2007; 175 

Rosenlund et al., 2007). Therefore, we considered distance to nearest road and road length 176 

as appropriate traffic related variables, in the absence of traffic intensity. 177 

 178 

Land use data were derived from International Symposium on Land Cover Mapping 179 

(http://data.ess.tsinghua.edu.cn/), with a resolution of 30 m. The land use types were 180 

classified into bare land, cropland, forest, grassland, impervious surfaces, shrubland, water 181 

bodies, and wetland. The impervious surfaces were further separated into residential area, 182 

commercial area, industrial area, transportation area, public management and service aera. 183 

The nearest distance to the coast of each monitoring site was also calculated based on the 184 
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coastline shapefile of China. 185 

 186 

The population density data with approximately 1 km resolution in 2015 were obtained 187 

from the Landscan global population database, which was developed by the United States 188 

Department of Energy's Oak Ridge National Laboratory (https://www.worldpop.org/). 189 

Meanwhile, the gridded GDP data were provided by Resources and Environment Data 190 

Cloud Platform (http://www.resdc.cn). We downloaded the Digital Elevation Model (DEM) 191 

data from Shuttle Radar Topography Mission (SRTM, http://srtm.csi.cgiar.org), and the 192 

spatial resolution was 90 m. The locations of bus stops and parking areas were extracted 193 

using Amap Application Programming Interface (API) based on categories and keywords 194 

(https://lbs.amap.com/api/uri-api) The monthly meteorological data (e.g. boundary layer 195 

height, temperature, precipitation, pressure, and wind speed) were extracted from the Third 196 

Pole Environment Database (http://en.tpedatabase.cn/).  197 

 198 

2.4 LUR model development, validation and mapping 199 

The annual and seasonal concentrations of PM2.5 and geographic variables were used 200 

for the LUR model development. We followed the manually supervised forward multiple 201 

linear regression method to develop the LUR models for PM2.5 (Eeftens et al., 2012a). 202 

Briefly, the PM2.5 concentrations were considered as dependent variables, while the 203 

geographic variables were used as independent variables. The model construction started by 204 

including predictor variables with the highest adjusted R2 in univariate regressions analysis. 205 

Thereafter, the candidate variables were added into the model if they satisfied the following 206 

criteria; (1) the adjusted R2 of the model increased by at least 1%; (2) the p value of the 207 
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variable was < 0.05; (3) the variance inflation factor (VIF, a check for multi-collinearity) of 208 

the variable was < 3; (4) the coefficient of the variable accorded with the prior direction and 209 

variables already in the model did not change their regression directions. All possible 210 

predictor variables were added until no predictor variables added more than 1% to the 211 

adjusted R2 of the previous regression model. 212 

 213 

We used the 10-fold cross-validation method to evaluate overall model performance. 214 

The adjusted R2 and root mean squared error (RMSE) between the predicted and measured 215 

concentrations for all sites were calculated to present the model's fit. In addition, Moran's I 216 

was calculated to evaluate the spatial autocorrelation of the residuals. All the statistical 217 

analyses were conducted by R software (Version 3.2.2). 218 

 219 

The predicted PM2.5 concentration surfaces were created according to the final LUR 220 

models. The study area was divided into 7,225 1000×1000 m grid cells. The predictor 221 

variables of LUR model were drawn around the centroids of each grid cell and the PM2.5 222 

concentrations were calculated by the final LUR model coefficients. At last, we applied 223 

universal kriging interpolation to draw PM2.5 concentrations map across Guangzhou. It 224 

should be noted that the reliability of predicted PM2.5 concentrations maybe lower in areas 225 

with sparse monitoring stations, especially for the Northeast of Guangzhou (Figure 1). 226 

 227 

2.5 Health impacts and economic benefits estimates 228 

In this work, BenMAP-CE 1.5 was used to estimate the health and economic benefits 229 

of PM2.5 reductions. Since previous studies showed that more than 90% of health impacts 230 
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of PM2.5 were from mortality, we selected avoidable premature mortality to present the 231 

health benefits of PM2.5 reductions (DeMocker, 2003). According to the International 232 

Classification of Diseases Revision 10 (ICD-10), the causes of death in this study are 233 

classified into all causes (A00–R99), cardiovascular diseases (I00–I99), and respiratory 234 

diseases (J00–J98). The health impacts are estimated by BenMAP-CE according to 235 

following the equation (Davidson et al., 2007): 236 

 237 

∆Y = Y0(1 − e−β∆PM) ∗ Pop    (1) 238 

βmin = β − (1.96 × σβ)        (2) 239 

βmax = β − (1.96 × σβ)        (3) 240 

 241 

where ΔY is the avoided premature mortalities due to the PM2.5 reductions, Y0 is the 242 

baseline incidence rate for the health endpoint (mortality), ΔPM (μg/m3) is the annual PM2.5 243 

concentration change, Pop (person) is the exposed population, β is the exposure 244 

concentration-response coefficient, representing the percent change in a certain health 245 

impact per unit of PM2.5 concentration, and σβ is the standard error of β (Table S1). 246 

 247 

For this work, Guangzhou was divided into 7,225 1000×1000 m grids. The PM2.5 248 

annual mean concentration in each grid was estimated based on the LUR model. The control 249 

case concentration was rolled back to annual Grade I guidelines of 15 μg/m3 proposed by 250 

CAAQS. The gridded population data in 2018 with 1 km2 resolution was calculated by 251 

multiplying the each 1 km2 grid in 2015 by the Guangzhou population ratio of 2018/2015. 252 

The baseline incidence data for all-cause, cardiovascular diseases, and respiratory diseases 253 
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in 2018 were obtained from the Guangdong Statistical Yearbook 254 

(http://stats.gd.gov.cn/gdtjnj/).  255 

 256 

BenMAP-CE uses a Monte Carlo approach (5000 times) and specifies Latin hypercube 257 

points to generate 95% confidence intervals around mean prediction of β values of each 258 

health endpoint. Then the BenMAP-CE estimates the incidence of changes in each grid 259 

according to the assumption value of β and generates the distribution of the incidence 260 

changes. 261 

 262 

We further evaluated the economic benefits of the health impacts associated with the 263 

PM2.5 reduction. The willingness to pay (WTP), cost of illness (COI), and human capital 264 

(HC) methods are commonly used to quantify the economic benefits associated with 265 

avoided mortality. Generally, WTP is the most widely preferred used method, because it 266 

takes intangible losses into account, such as pain, suffering and other adverse effects due to 267 

illness (Robinson, 2011). Thus, the WTP method was used to evaluate the economic benefits 268 

from avoided premature mortality, and the unit economic values associated with premature 269 

mortality were summarized in Table S2. We converted the US dollar to Chinese Yuan (CNY) 270 

based on Purchasing Power Parity adjusted exchange rates, and the unit value for various 271 

currency years was adjusted to the year 2018 by multiplying by the annual consumer price 272 

index (CPI) in China.  273 

 274 

3. Results and discussion 275 

3.1 Descriptive statistics for PM2.5 concentrations 276 
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The monitored annual average concentration of PM2.5 was 34.4 ± 21.0 μg/m3, which 277 

was lower than annual CAAQS Grade II guidelines (35 μg/m3). However, it should be noted 278 

that, the concentration of PM2.5 exhibited significant seasonal variation (Figure 2), which 279 

showed highest concentrations in winter (46.7 ± 31.0 μg/m3), followed by the fall (37.0 ± 280 

14.0 μg/m3), spring (35.6 ± 16.8 μg/m3), and summer (22.6 ± 8.0 μg/m3). The higher 281 

concentrations of PM2.5 in winter are associated with the unfavorable meteorological 282 

conditions (e.g. lower wind speed, precipitation, and boundary layer height) for pollutants 283 

dispersion (Chen et al., 2018a; Chen et al., 2018c). In addition, the emissions of PM2.5 would 284 

also increase due to cold start-up of automobiles in the lower winter temperatures (Zhang et 285 

al., 2015b). In fact, there were 52 days (57.8%) and 14 days (15.7%) of daily PM2.5 286 

concentrations in winter above current daily CAAQS Grade I (35 μg/m3) and II (75 μg/m3) 287 

guidelines, followed by fall (48.9% and 1.1%), spring (38.9% and 4.4%), and summer (10% 288 

and 0%). It is therefore important to investigate spatiotemporal variation of PM2.5 and further 289 

strengthen efforts to control the atmospheric pollutants in Guangzhou. 290 

 291 

3.2 PM2.5 LUR models and evaluation 292 

The annual and seasonal LUR models for PM2.5 in Guangzhou are shown in Table 2. 293 

There were 4 to 5 predictive variables in the final LUR models. The VIF values of all the 294 

variables were < 3, indicating a relatively low multicolinearity between the predictive 295 

variables. The Moran’s I value of the models ranged from 0.01 to 0.12 with p values lower 296 

than 0.05, which indicated no significant spatial autocorrelation of the residuals. 297 

 298 

For the annual PM2.5 models, five predictive variables remained in the final LUR model, 299 
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including the length of main roads (4000m buffer), DEM, distance to nearest ancillary, 300 

commercial area (1000m buffer), and wind speed. The predicted annual average PM2.5 301 

concentrations are mapped in Figure 3. The predicted annual PM2.5 concentrations were 35.5 302 

± 9.29 μg/m3, which are close to the measured values across 49 monitoring stations. As 303 

expected, the PM2.5 concentrations increased with the length of main road and commercial 304 

area, while DEM, distance to nearest ancillary and wind speed were negatively correlated 305 

with PM2.5 concentrations. Thus, we found that the higher PM2.5 concentrations occurred in 306 

the center of Guangzhou with a relatively intensive road network and commercial area, 307 

whereas lower concentrations areas distributed in the north and south Guangzhou suburbs 308 

with fewer roads (Figure 3). 309 

 310 

For the seasonal models, we found that the predicted seasonal and annual PM2.5 311 

concentrations across 7,225 1000×1000 m grids exhibited a good correlation with each other 312 

(Table S3). This indicated that the PM2.5 concentrations might be affected by similar factors 313 

throughout the year. Indeed, the predictive variables of seasonal models were similar to 314 

those in the annual model. In addition, the predictive variables left in the models could also 315 

be used to identify potential sources of air pollutants. In this work, we found that all the 316 

models contained traffic related variables (e.g. distance to nearest ancillary and length of 317 

main road), suggesting that vehicle emissions were an important contributor to PM2.5 and 318 

controlling vehicle emissions would be an effective way to reduce PM2.5 in Guangzhou. That 319 

is consistent with previous studies which reported that 20 to 47% of PM2.5 in Guangzhou 320 

derived from mobile sources (Liu et al., 2014; Yuan et al., 2018). The distance to nearest 321 

ancillary entered all the LUR models and was a strong predictor variable. That may be 322 
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because the speed of vehicles on ancillary roads is usually limited to below 40 km/h in China, 323 

and the emissions of PM2.5 and gaseous precursors of PM2.5 from vehicles tend to be higher 324 

at lower speeds (Jones and Harrison, 2006; Wang et al., 2013). Another important traffic 325 

related variable is the length of main road. Although the speed of vehicles on main roads is 326 

relatively high, traffic on main roads is much higher. Therefore, the length of main roads 327 

was treated as a predictive variable in 3/5 of LUR models.  328 

 329 

Meteorology has been shown to play a significant role in the distribution of air 330 

pollution (Chen et al., 2018a; Chen et al., 2018c). However, most previous studies did not 331 

incorporate meteorological variables in LUR models in China. In this work, all the LUR 332 

models contained the meteorological variables (e.g. wind speed and precipitation). We found 333 

that the PM2.5 concentration decreased with the increasing wind speed and precipitation. In 334 

fact, the wind would facilitate dispersion of PM2.5, while the rain would clean ambient PM2.5 335 

through the wash-out effect.  336 

 337 

In this study, only three buffer predictive variables with buffer sizes < 700 m enter the 338 

final LUR model (Table 2), while most of buffer predictive variables (7/10) in the final LUR 339 

models have a larger buffer buffers size (> 1000 m). Therefore, the final LUR models might 340 

be sensitive to variables with larger buffers. In general, PM2.5 could be directly emitted from 341 

primary sources, and secondarily formed from precursors by various atmospheric chemical 342 

reactions (Lai et al., 2016; Liu et al., 2014; Wang et al., 2018; Yuan et al., 2018). Moreover, 343 

primary pollutants (e.g., black carbon and heavy metals) tend to be more linked with 344 

variables with smaller buffers, whereas secondary pollutants (e.g., O3 and NO3
-) are more 345 
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associated with variables with larger buffers (Cai et al., 2020; Wu et al., 2015; Zhang et al., 346 

2015a). Thus, the larger buffer size of variables for PM2.5 models may suggest the significant 347 

contribution from secondary sources in Guangzhou. Additionally, the larger buffer may 348 

reflect the long-range transport of PM2.5 from emission sources.  349 

 350 

The LUR models have been widely applied to describe spatial variability in air 351 

pollution concentrations worldwide (Beelen et al., 2013; Chen et al., 2018b; Eeftens et al., 352 

2012b; Eeftens et al., 2012c; He et al., 2018; Meng et al., 2015; Wu et al., 2015). The 353 

percentage of explained spatial variability ranged from 51% to 88% in the PM LUR models 354 

in Chinese cities (Table 3), which was associated with quality of predictive variables and 355 

measured data, the model development approaches, and the complexity of the study areas. 356 

Our PM2.5 models’ performance was comparable to previous studies in China, which has an 357 

R2 of 0.62 to 0.82, adjusted R2 of 0.56 to 0.80, and 10-fold cross-validation (CV) R2 of 0.50 358 

to 0.78 (Table 3). The model R2 values were close to those of CV R2, suggesting the good 359 

robustness of our LUR models. Moreover, the CV RMSE ranged from 2.29 to 3.00 µg/m3, 360 

indicating the predicted values coincided well with the measured values. We found that the 361 

performance of the models exhibited significant seasonal variation, which showed highest 362 

explained spatial variability in winter (80%), followed by fall (62%), spring (60%) and 363 

summer (56%). This may be due to the fact that it is difficult for the LUR model to predict 364 

PM2.5 formed from secondary sources, and the contribution of secondary sources to PM2.5 365 

would be higher in warm seasons. 366 

 367 

As shown in Table 3, most PM LUR models in China were developed by the routine 368 
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monitoring stations data from government (Chen et al., 2018b; He et al., 2018; Meng et al., 369 

2015; Wu et al., 2015). However, the number of routine monitoring stations is limited in 370 

most Chinese cities, which cannot meet the minimum required number of sampling sites 371 

suggested for LUR model development (40 to 80 sites) (Hoek et al., 2008). In addition, 372 

routine monitoring stations were generally designed for regulatory purposes, with few sites 373 

situated close to traffic or industrial sources. To overcome such challenges, some studies 374 

have used purposefully designed monitoring networks to build their LUR models (Cai et al., 375 

2020; Eeftens et al., 2012c; Jin et al., 2019; Zhang et al., 2015a). Although the purpose-376 

designed monitoring sites have sufficient geographic coverage to capture the gradients of 377 

spatial predictive variables, it should be noted that purpose-designed monitoring campaigns 378 

can be money- and time-consuming (Beelen et al., 2013; Briggs et al., 1997; Eeftens et al., 379 

2012a). Additionally, the sampling period for purpose-designed monitoring campaigns is 380 

usually within several weeks, which can introduce uncertainties in the models.  381 

 382 

In this study, the number of routine monitoring stations (49 stations) was more than 383 

previous LUR models for Chinese cities based on routine monitoring stations data, and 384 

comparable to other studies with purpose-designed monitoring data. In addition, we 385 

obtained the PM2.5 data from routine monitoring stations is a relatively cost-effective 386 

procedure without additional sampling, and the measurements were continuous in temporal 387 

coverage. Moreover, most of the routine monitoring stations in Guangzhou were located in 388 

the urban centre with high population density, suggesting the data and the LUR models are 389 

suitable for PM2.5 human exposure assessment. 390 

 391 
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3.3 Seasonal and spatial variation of predicted PM2.5 392 

The seasonal pattern of predicted average PM2.5 concentrations was consistent with that 393 

of measured values, which exhibited highest values in winter (43.8 ± 9.6 μg/m3), followed 394 

by fall (35.6 ± 7.2 μg/m3), spring (35.3 ± 12.7 μg/m3), and summer (20.7 ± 5.8 μg/m3). In 395 

addition, the intercept of LUR models showed similar variation patterns to the predicted 396 

values (Table 2), which is higher in winter and fall. This suggested that the intercept of LUR 397 

models could be employed to reflect the seasonal variations (Chen et al., 2017c; 398 

Sabaliauskas et al., 2015; Wu et al., 2015). 399 

 400 

The spatial variations of PM2.5 were similar across seasons. The PM2.5 was higher in 401 

the center of Guangzhou where there is a more intensive road network, and a larger 402 

commercial area (Figure 4). The north and south of Guangzhou had lower PM2.5 403 

concentrations, which may be due to them being away from the pollutant sources. In 404 

addition, the more forested areas in the north may help filter the PM2.5, while proximity to 405 

the coast in the south may promote dispersion of PM2.5. 406 

 407 

Previous studies have reported that PM concentrations could be influenced by land use 408 

types (Anand and Monks, 2017; Tang et al., 2018), so it is important to investigate the 409 

distribution of PM in different land use types. Due to less than 1% of the areas being bare 410 

land and wetland we did not take these two land use types into account. In addition, the 411 

grassland and shrubland are usually used as roadside and in parks in the cities, so the 412 

grassland and shrubland were combined as green land in this study. The contribution of 413 

forest, cropland, green land, impervious surface, and water area was 45.3%, 22.7%, 4.5%, 414 
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21.3% and 6.0%, respectively. Figure 5 shows the predicted PM2.5 concentration in different 415 

land use types. Regardless of the land use type, we found that all the predicted annual PM2.5 416 

concentrations were above the annual CAAQS Grade I guide line, so there is a need to 417 

further reduce the PM2.5 emissions at source in Guangzhou. In this study, the highest annual 418 

PM2.5 concentration occurred over impervious surfaces (42.3 ± 6.3 μg/m3), followed by 419 

green land (38.0 ± 8.0 μg/m3), cropland (36.2 ± 7.4 μg/m3), forest (33.1 ± 10.9 μg/m3), and 420 

water bodies (28.1 ± 11.0 μg/m3). Industrial, commercial and transportation activities and 421 

hence sources are mainly carried out on impervious surfaces, which leads to the highest 422 

PM2.5 concentrations. The lowest PM2.5 concentrations were found in water areas, including 423 

rivers and lakes, which is likely related to the water surface removing PM2.5 via the 424 

absorption effect (Zhu and Zeng, 2018). 425 

 426 

Vegetation in urban areas (e.g. urban forests, urban parks, and roadside vegetation) is 427 

known to efficiently remove PM (Nowak et al., 2018; Selmi et al., 2016; Wang et al., 2019). 428 

However, the predicted PM2.5 concentrations varied a lot among the green land, cropland, 429 

and forest. That may be due to the removal efficiency of vegetation being highly dependent 430 

on tree species, leaf surface properties, and seasons (Chen et al., 2017a; Nguyen et al., 2015; 431 

Vos et al., 2013; Wang et al., 2019). The vegetation mainly captures the PM2.5 via the leaf 432 

surface, and the growth of leaves varies seasonally (Nguyen et al., 2015). However, it should 433 

be noted that Guangzhou has a warm climate, and the vegetation is lush throughout the year. 434 

Thus, it seems the season is not main reason for such differences here. The shrubs and 435 

grasses with lower leaf surface areas and height are the main vegetation species in the green 436 

land, usually found by the roadside and in urban parks close to traffic sources. Thus, the 437 
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predicted PM2.5 concentration in green land is only second to that in impervious surface. For 438 

the cropland, the combustion of straw residuals may contribute to the relatively high 439 

predicted PM2.5 concentration. Indeed, despite open straw burning being prohibited, biomass 440 

burning is still an important source of PM2.5 in Guangzhou (Lai et al., 2016; Liu et al., 2014). 441 

The forest vegetation in Guangzhou is dominated by tall evergreen trees with large leaf 442 

surface area. These trees are far away from the urban centre area with high pollution. Thus, 443 

the relatively low predicted PM2.5 concentration was observed in the forest area.  444 

 445 

3.4 Health and economic benefits of PM2.5 reduction 446 

The Chinese air quality has greatly improved after the 5-year Air Pollution Prevention 447 

and Control Action Plan that initiated in 2012. Actually, many Chinese cites’ PM2.5 448 

concentration achieved CAAQS Grade II guideline at the end of 2017. However, it is 449 

noteworthy that the number of cities’ PM2.5 concentration that meet CAAQS Grade I is very 450 

limited. To further improve the air quality in China, it is important to assess the public health 451 

benefits of further reduction of PM2.5 to the lower concentration ranges. Guangzhou as the 452 

third largest city with densely populated in China, of which PM2.5 concentration has 453 

achieved CAAQS Grade II guideline. Therefore, Guangzhou is an ideal case study city to 454 

estimate health and economic benefits of further reduction of PM2.5 to lower concentration 455 

ranges, which can provide valuable information for policy makers to analyze cost and 456 

benefits of air pollution management programs in China. In previous studies, the PM 457 

exposure surfaces imported in the BenMAP were estimated by interpolation methods or 458 

chemical transport models. However, the performance of interpolation methods was affected 459 

by the number and distribution of the monitoring sites, and the stimulation process of 460 
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chemical transport models was complicated and expensive. Recently, LUR models have 461 

been shown to be an efficient method to assess air pollution exposures in epidemiologic 462 

studies (Chen et al., 2017b; Sampson et al., 2013; Vienneau et al., 2013). Therefore, we 463 

estimated the health and economic benefits of reducing PM2.5 in Guangzhou using BenMAP 464 

based on the annual PM2.5 concentration predicted by the LUR model. 465 

The estimated values of avoided premature mortality and corresponding economic 466 

benefits are summarized in Table 4. The estimated avoided mortalities from all causes, 467 

cardiovascular, and respiratory were 992 (95% CI: 221−2140), 362 (95% CI: 124−768) and 468 

92 (95% CI: -18−176) cases in 2018 by reducing the annual PM2.5 concentration to annual 469 

CAAQS Grade I guideline (15 μg/m3) respectively. The contribution of cardiovascular and 470 

respiratory to all cause mortalities were 36.5% and 9.3%, respectively. Correspondingly, 471 

economic benefits due to avoided premature mortalities by reducing PM2.5 were 1478 472 

million CNY (95% CI: 257−2524) based on WTP approach, accounting for 0.064% GDP of 473 

Guangzhou in 2018. Although the BenMAP was widely applied to investigate the public 474 

health benefits of reducing PM2.5, there are very limited studies on the estimation of 475 

premature mortalities related to PM2.5 in Chinese cities. In Shanghai, the avoided all cause 476 

mortalities were estimated to range from 180 to 3500 per year, assuming the PM2.5 477 

concentration achieved the annual CAAQS Grade II guideline (35 μg/m3), which had an 478 

estimated monetary value ranging from 170 to 1200 million CNY (Voorhees et al., 2014). 479 

For the same scenario, the avoided premature mortalities ranged from 1100 to 4800 per year 480 

in Tianjin, the corresponding economic benefits ranged from 270 to 7200 million CNY 481 

(Chen et al., 2017c). The estimated health and economic benefits of the above two studies 482 

just considered the achievement of meeting the annual CAAQS Grade II guideline. However, 483 
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due to the annual PM2.5 concentration in Guangzhou having already achieved the annual 484 

CAAQS Grade II guideline in the past few years, it is difficult to compare the results of 485 

these two studies with Guangzhou. In Guangzhou, the PM2.5-related premature mortalities 486 

were estimated to be 1926 cases in 2012, and the reduction of annual PM2.5 concentration 487 

being greater than 15 μg/m3 from 2013 to 2015.(Li et al., 2019; Pan et al., 2012). The 488 

estimated avoided mortalities from all causes ranged from 791 to 1473 (Li et al., 2019) 489 

which is comparable to the results of this work. In addition, we only chose mortality as the 490 

health endpoint, while morbidity was not included in this study. Therefore, the health and 491 

economic benefits will be underestimated, and there is a need to further improve the air 492 

quality and public health benefits by reducing PM2.5 concentration. 493 

 494 

3.5 Limitation and further works 495 

There are several limitations to this study. Source-specific emissions were not 496 

considered in this work, which may be important predictors in the study areas. In addition, 497 

the performance of LUR models in warm seasons was poorer, which may be because the 498 

predictors cannot indicate the secondary formations of PM2.5 as well. Therefore, to improve 499 

the performances of LUR models, data from air quality models which has considered 500 

emission source inventories and chemical reactions should be incorporated into future LUR 501 

models in Guangzhou (de Hoogh et al., 2016; Yang et al., 2017). 502 

 503 

For the health benefits estimation, we only selected all cause, cardiovascular, and 504 

respiratory mortality as the health endpoints in this work. Moreover, the sex and age of the 505 

population was not considered when estimating the avoided premature mortality. In addition, 506 
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the LUR models only predict the ambient air pollution concentrations, and the use of 507 

ambient concentration to estimate people’s exposure to air pollution may not provide a 508 

reliable result, because more than 80% of people’s lives is typically spent indoors (Lim et 509 

al., 2011). All of these may introduce uncertainties into estimation of potential health 510 

benefits of PM2.5 reduction. Therefore, to enhance the accuracy of health benefits estimation 511 

in future, there is a need to develop the dynamic exposure models that consider differential 512 

exposures between population subgroups (e.g. age and sex) and exposure characteristics in 513 

different microenvironments (Tang et al., 2018). 514 

 515 

4. Conclusion 516 

In this work, we applied LUR models to study the spatiotemporal variations of PM2.5 517 

in Guangzhou. The results showed that all the LUR models had a high accuracy and 518 

predictive ability, and the traffic variables (e.g., length of main roads and the distance to 519 

nearest ancillary) were most common among the LUR models, suggesting that vehicle 520 

emissions were an important source for PM2.5. The R2, adjusted R2 and 10-fold cross 521 

validation R2 of the annual PM2.5 LUR model were 0.78, 0.72 and 0.66, respectively, which 522 

could provide useful spatial information for air quality management and air pollution 523 

exposure assessment. Therefore, we estimated the health and economic benefits of reducing 524 

PM2.5 in Guangzhou using BenMAP based on the annual PM2.5 concentration predicted by 525 

the LUR model. The results showed that, by achieving the annual CAAQS Grade I guideline 526 

(15 μg/m3), the avoided all cause mortalities due to exposure to PM2.5 were 992 cases (95% 527 

CI: 221−2140) and the corresponding economic benefits were 1478 million CNY (95% CI: 528 

257−2524) (willingness to pay approach) in 2018 in Guangzhou.  529 
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 543 

Figure 1. The distribution of air quality monitoring stations, land use types, and main roads 544 

in the study area. 545 
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 555 

Figure 2. The monthly average concentrations of PM2.5 in Guangzhou, China, 2018. The 556 

mean (filled circle), median (horizontal line in the box), 25th and 75th percentiles (lower 557 

and upper end of the box), 10th and 90th percentiles (lower and upper whiskers) are shown. 558 
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Figure 3. The spatial variation of predicted annual average PM2.5 concentrations by land 571 

use regression model in Guangzhou. 572 
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Figure 4. The seasonal averages of PM2.5 concentrations predicted by land use regression 577 

models in Guangzhou. 578 
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 583 

Figure 5. The seasonal and annual predicted concentrations of PM2.5 in different land use 584 

types in Guangzhou. The green land is the sum of shrubland and grassland. 585 
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Table1. Potential predictor variables and expected direction of the regression coefficient 598 

considered for the LUR model.  599 

Categories Predictor variables Unit 
Buffer size (radius in 

meters) 

Assigned 

direction 

Physical 

geography 
DEM m NA - 

Socioeconomic 

  

Population Population/km2 NA + 

GDP CNY/km2 
1000, 2000, 3000, 

4000, 5000 
+ 

Meteorology 

  

  

  

  

  

  

Wind speed m/s NA - 

Relative humidity % NA NA 

Pressure kPa NA NA 

Temperature °C NA NA 

Boundary layer height m NA - 

Precipitation mm NA - 

Short wavelength radiation  W/m2 NA NA 

POI Bus stops Number 

100, 300, 500, 700, 

1000, 2000, 3000, 

4000, 5000 

+ 

  Parking areas Number 

100, 300, 500, 700, 

1000, 2000, 3000, 

4000, 5000 

+ 

Land use types 

  

  

  

  

  

  

  

Bare land m2 

100, 300, 500, 700, 

1000, 2000, 3000, 

4000, 5000 

+ 

Cropland m2 

100, 300, 500, 700, 

1000, 2000, 3000, 

4000, 5000 

- 

Forest m2 

100, 300, 500, 700, 

1000, 2000, 3000, 

4000, 5000 

- 

Grassland m2 

100, 300, 500, 700, 

1000, 2000, 3000, 

4000, 5000 

- 

Impervious surfaces m2 

100, 300, 500, 700, 

1000, 2000, 3000, 

4000, 5000 

+ 

Shrubland m2 

100, 300, 500, 700, 

1000, 2000, 3000, 

4000, 5000 

- 
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Water body m2 

100, 300, 500, 700, 

1000, 2000, 3000, 

4000, 5000 

- 

Wetland m2 

100, 300, 500, 700, 

1000, 2000, 3000, 

4000, 5000 

- 

Impervious 

surfaces 

Residential area m2 

100, 300, 500, 700, 

1000, 2000, 3000, 

4000, 5000 

+ 

Commercial area m2 

100, 300, 500, 700, 

1000, 2000, 3000, 

4000, 5000 

+ 

Industrial area m2 

100, 300, 500, 700, 

1000, 2000, 3000, 

4000, 5000 

+ 

Transportation area m2 

100, 300, 500, 700, 

1000, 2000, 3000, 

4000, 5000 

+ 

Public management and 

service area 
m2 

100, 300, 500, 700, 

1000, 2000, 3000, 

4000, 5000 

+ 

Traffic 

Length of main road m 

100, 300, 500, 700, 

1000, 2000, 3000, 

4000, 5000 

+ 

Length of highway m 

100, 300, 500, 700, 

1000, 2000, 3000, 

4000, 5000 

+ 

Length of ancillary m 

100, 300, 500, 700, 

1000, 2000, 3000, 

4000, 5000 

+ 

Length of alley m 

100, 300, 500, 700, 

1000, 2000, 3000, 

4000, 5000 

+ 

Distance 

Distance to nearest main 

road 
m NA - 

Distance to nearest highway m NA - 

Distance to nearest ancillary m NA - 

Distance to nearest alley m NA - 

Distance to nearest coastline m NA + 

600 
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Table 2. Annual and seasonal LUR models for PM2.5 based on 49 monitoring stations in Guangzhou, China. 

 

Predictive variables 
Annual Spring Summer Fall Winter 

βa p value VIFb β p value VIF β p value VIF β p value VIF β p value VIF 

Intercept 44.2 < 0.001 − 41.8 < 0.001 − 28.8 < 0.001 − 45.4 < 0.001 − 55.8 < 0.001 − 

Length of main road (4000m) 2.56 × 10-5 0.001 1.50 − − − − − − − − − − − − 

Length of main road (3000m) − − − 6.09 × 10-5 < 0.001 1.26 − − − − − − 4.50 × 10-5 < 0.001 1.14 

Length of ancillary (500 m) − − − 0.001 0.01 1.3 − − − − − − − − − 

DEM -0.46 < 0.001 1.33 − − − − − − − − − − − − 

Distance to nearest ancillary -8.08 × 10-3 < 0.001 1.04 -0.011 0.002 1.16 -0.05 0.03 1.07 -5.66 × 10-3 0.02 1.04 -6.34 × 10-3 0.03 1.05 

Shrubland (5000 m) − − − − − − -9.04 × 10-7 0.002 1.93    1. 84 × 10-6 0.02 1.69 

Forest (3000 m) − − − − − − − − − -4.29× 10-7 < 0.001 1.17 − − − 

Water (500 m) − − − -9.13 × 10-6 0.02 1.04 − − − − − − − − − 

Commercial area (1000 m) 4.18 × 10-6 0.009 1.39 − − − − − − 6.31× 10-6 < 0.001 1.22 − − − 

Commercial area (700 m) − − − − − − 1.07 × 10-5 < 0.001 1.02 − − − − − − 

Wind speed -5.52 0.001 1.32 -5.51 0.015 1.17 -3.41 0.01 1.95 − − − -6.21 0.001 1.78 

Precipitation − − − − − − − − − -66.8 0.049 1.18 − − − 

 

a β is the regression coefficient of each predictor variable. 

b VIF is the abbreviation of Variance Inflation Factor. 
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Table 3. Comparison of performance statistics of land use regression models for PM2.5/PM10 in China. 

Study area Type of monitoring data 
Number of 

monitoring sites 
PM2.5/ PM10 Adjusted R2 

RMSE 

(µg/m3) 

Cross 

Validation R2 

Cross Validation 

RMSE (µg/m3) 
References 

Annual Guangzhou  

 

routine monitoring stations 

 

49 

 0.72  2.20  0.66  2.50  

This study 

Spring Guangzhou   0.60  2.90  0.56  2.42  

Summer Guangzhou  PM2.5 0.56  1.95  0.50  2.29  

Fall Guangzhou   0.62  2.63  0.55  3.00  

Winter Guangzhou   0.80  2.48  0.78  2.77  

Pearl River Delta routine monitoring stations 69 PM2.5 0.88  − 0.87  2.75  Yang et al. (2017) 

Hong Kong routine monitoring stations 15 PM2.5 0.67  − − 2.62  Shi et al. (2017) 

Hong Kong mobile monitoring 222 PM2.5 0.63  6.52  0.61  − Shi et al. (2016) 

Hong Kong purpose-designed monitoring 63 PM2.5 0.54  4.00  0.43  4.70  Lee et al. (2017) 

Nanjing routine monitoring stations 9 PM2.5 0.72  2.10  0.38  2.58  Huang et al. (2017) 

Tianjin routine monitoring stations 28 PM2.5 − − 0.73  6.38  Chen et al. (2017c) 

Shanghai routine monitoring stations 35 PM2.5 0.88  − − − Liu et al. (2016) 

Beijing routine monitoring stations 35 PM2.5 0.68  − − − Hu et al. (2016) 

Beijing routine monitoring stations 35 PM2.5 0.58  − − 9.30  Wu et al. (2015) 

Lanzhou purpose-designed monitoring 38 PM2.5 0.73  9.60  0.67  − Jin et al. (2019) 

Yantai purpose-designed monitoring 29 PM2.5 0.65  3.12  0.56  − Cai et al. (2020) 

Changsha 
routine monitoring stations and 

purpose-designed monitoring 
36 PM10 0.62  9.00  0.58  − Liu et al. (2015) 

Changsha purpose-designed monitoring 40 PM10 0.51  5.60  0.60  − Li et al. (2015) 
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Tianjin routine monitoring stations 30 PM10 0.84  0.21  − − Shang et al. (2012) 

Wuhan routine monitoring stations 9 PM10 0.59  − − − Xu et al. (2016) 

Shanghai routine monitoring stations 28 PM10 0.80  4.20  0.73  5.00  Meng et al. (2016) 



35 

 

 

Table 4. Estimated avoided premature mortality and benefits of health effects associated 

with PM2.5 reduction in Guangzhou. 

 

 

Health endpoints 
Avoided cases (person)  Benefits (Million CNY) 

Mean 95% CI  Mean 95% CI 

All cause 992 221−2140  1478 257−2425 

Cardiovascular 362 124−768  567 48−924 

Respiratory 92 -18−176  139 24−278 
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