
Evaluation of CMAF in Live Streaming Scenarios
Tomasz Lyko

Lancaster University
United Kingdom

t.lyko@lancaster.ac.uk

Matthew Broadbent
Lancaster University
United Kingdom

m.broadbent@lancaster.ac.uk

Nicholas Race
Lancaster University
United Kingdom

n.race@lancaster.ac.uk

Mike Nilsson
British Telecommunications

United Kingdom
mike.nilsson@bt.com

Paul Farrow
British Telecommunications

United Kingdom
paul.farrow@bt.com

Steve Appleby
British Telecommunications

United Kingdom
steve.appleby@bt.com

ABSTRACT
HTTPAdaptive Streaming (HAS) technologies such asMPEGDASH
are now used extensively to deliver television services to large num-
bers of viewers. In HAS, the client requests segments of content
using HTTP, with an ABR algorithm selecting the quality at which
to request each segment to trade-o� video quality with the avoid-
ance of stalling. This introduces signi�cant end to end latency
compared to traditional broadcast, due to the the client requiring a
large enough bu�er for the ABR algorithm to react to changes in
network conditions in a timely manner. The recently standardised
CommonMedia Application Format (CMAF) has helped address the
issue of latency by de�ning segments as composed of independently
transferable chunks. In this paper, we describe a simulation model
we have developed to evaluate the performance of four popular
ABR algorithms using DASH and CMAF in various low latency live
streaming scenarios. Realistic network conditions are used for the
evaluation, which are based on throughput data taken from the
CDN logs of a commercial live TV service. We quantify the perfor-
mance of the ABR algorithms using a selection of QoE metrics, and
show that CMAF can signi�cantly improve ABR performance in
low delay scenarios.

CCS CONCEPTS
• Information systems →Multimedia streaming.

KEYWORDS
CMAF, DASH, ABR, live, latency, video streaming, adaptive stream-
ing

ACM Reference Format:
Tomasz Lyko, Matthew Broadbent, Nicholas Race, Mike Nilsson, Paul Far-
row, and Steve Appleby. 2020. Evaluation of CMAF in Live Streaming Scenar-
ios. In Istanbul’20: ACM SIGMMWorkshop on Network and Operating Systems
Support for Digital Audio and Video, June 10-11, 2020, Istanbul, Turkey. ACM,
New York, NY, USA, 6 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
NOSSDAV’20, June 8-11, 2020, Istanbul, Turkey
© 2020 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Video streaming is the dominant and fastest growing source of traf-
�c on the Internet1. A large proportion of this tra�c is delivered by
HTTP Adaptive Streaming (HAS) technologies such as MPEG Dy-
namic Adaptive Streaming over HTTP (DASH)[12], where content
is split into short segments (usually from 2-10 seconds), encoded at
multiple bit rates and hosted on a standard HTTP server. A manifest
�le is created that indicates the encoded bit rates and where the
content can be obtained. The client requests the manifest �le, then
makes HTTP requests for consecutive segments of content at bit
rates selected by an Adaptive Bit Rate (ABR) algorithm to maximise
the Quality of Experience (QoE) of the viewer.

The use of HAS technologies such as DASH usually causes high
end to end latency compared to traditional terrestrial or satellite
broadcast television due to bu�ering of received but not yet decoded
segments in the player, this provides time for the player to adapt to
changes in the network throughput by switching to an appropriate
video quality before the bu�er is depleted and play-out stalls. For
live streaming scenarios, the potential maximum bu�er level is
limited by how far behind the live edge the player is.

The Common Media Application Format (CMAF) has been stan-
dardised [16] to help address the latency issue by enabling a seg-
ment to be created as a sequence of chunks, each of which can be
delivered to the client as soon as it is created, rather than having to
wait until a whole segment has been created as with DASH.

In this paper, we describe a simulation model we have developed
to evaluate the performance of four popular ABR algorithms when
used in a low latency live streaming environment with realistic
network conditions, where the clients run MPEG DASH with and
without the use of CMAF chunks.

2 BACKGROUND AND RELATEDWORK
2.1 Latency
Shuai et al. [23] found, that the main contributor to latency in HAS
is the client bu�er, which stores fetched video segments that are
queued for playback. Its size is determined by an ABR algorithm’s
ability to adapt to changing network conditions in a timely manner.
It needs to be large enough to give the ABR algorithm enough time
to measure network conditions and change video quality before
any rebu�ering occurs. Hence, an insu�cient bu�er size will lead
to a high level of rebu�ering events.

1Cisco Visual Networking Index: Forecast and Trends, 2017-2022

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

NOSSDAV’20, June 8-11, 2020, Istanbul, Turkey T. Lyko et al.

Lohmar et al. [20] outlined four sources of delay that are speci�c
to HTTP streaming. The main one is the client bu�er, and the other
three are as follows. Asynchronous fetching of media segments,
where a client may issue an HTTP GET request for a segment some
time after it is made available. HTTP download time, where segment
size and available bandwidth determine how fast a segment can be
fetched. Segmentation delay, which introduces a delay of at least
one segment duration, but which CMAF could reduce to one chunk
duration as segments can be divided into chunks [16].

2.2 Common Media Application Format
The Common Media Application Format (CMAF) [16] allows a
segment to be created as a sequence of chunks. Whereas a DASH
segment must be completely written to a server before it can be
addressable and requested, a segment with CMAF chunks can be
requested as soon as the �rst chunk is written to the server. This
reduces the minimum latency in live streaming from one segment
duration to one chunk duration, although it is still only possible to
change the video quality and video bit rate at segment boundaries.

A segment containing CMAF chunks can be requested as soon
as the �rst chunk is created. HTTP/1.1 Chunked Transfer enables
subsequent chunks of a segment to be delivered as soon as they
become available without additional requests from the player.

Figure 1 demonstrates the di�erence between segment delivery
in DASH with and without CMAF when the player is close to the
live edge. DASH segments can be requested as soon they become
available, periodically every segment duration, whereas segments
with CMAF chunks can be requested as soon their �rst chunk
becomes available. The �rst chunk is delivered immediately, and
the remaining chunks are delivered as they become available every
chunk duration. In the illustrated case, where segments have four
CMAF chunks, three CMAF chunks could have been delivered
before the DASH segment becomes available.

However, since chunk delivery at the live edge is restricted by
the encoder, estimation of network throughput becomes di�cult
for applications that have no direct visibility of any idle periods
between chunks. Bentaleb et al. [14] attempted to solve this problem
by ignoring throughput measurements for chunks that contain the
idle time in their download times. The simulation model that we
have developed calculates the delivery time of chunks correctly,
and hence we do not consider this issue further.

2.3 ABR Algorithms
Kua et al. [18] published a survey of ABR algorithms, including
Panda[19], Festive[17],MPC[25], and Bola[24]. They stated that
the goals of ABR algorithms are to maximize the average video
quality, minimize the rebu�er rate, the frequency of changes of
video quality and the start-up delay; they also state that trade-o�s
are required, as these goals are in competition with each other.

Panda uses a probe-and-adapt approach similar to TCP’s con-
gestion control. It determines a target average data rate, based on
which an appropriate quality bitrate is selected. It monitors through-
put and adjusts the target average data rate accordingly, as well as
calculating the inter-request time for each segment, allowing the
bu�er level to move towards the con�gured minimum bu�er level.
Festive employs a random scheduler and estimates bandwidth using

Figure 1: Timing diagram comparing segment delivery in
DASH with and without CMAF.

a harmonic mean which is robust to outliers, this helps improve
bandwidth estimation; additionally, the random scheduler requests
segments independently of the player’s start time, which improves
the fairness between players operating in parallel. MPC solves an
optimization problem for a number of segments ahead and uses
throughput prediction. It requires both throughput estimation and
bu�er level to solve this, optimizing towards a set of de�ned QoE
metrics. We have used the RobustMPC variant of MPC which is
referred to as MPC in the remainder of this paper. Bola employs
Lyapunov optimization techniques in order to minimize rebu�er-
ing and maximize video quality. It primarily uses bu�er level to
determine the appropriate bit rate for future segments.

2.4 QoE Factors
Quality of Experience factors in video streaming are an active area
of research. Allan et al. [13] conducted a subjective test with 630
participants to �nd out how di�erent QoE factors a�ect users. They
concluded that rebu�ering events are the most annoying to users,
and that two short rebu�ering events are more annoying than
one long rebu�ering event of the same duration. Garcia et al. [15]
published a survey of QoE user studies, and also concluded that
rebu�ering events are the most annoying and that users would
accept longer video start-up delay to get less rebu�ering.

3 METHODOLOGY
We developed the simulation model described in this section to
enable time-e�cient evaluation of the performance of the four
ABR algorithms, Panda[19], Festive[17], MPC[25], and Bola[24].
These were evaluated in DASH clients with and without the use of
CMAF, with multiple settings of end to end latency and in many
varied network conditions.

3.1 Simulation Framework
We developed the simulation model in NS-3 [8], extending an im-
plementation of on-demand DASH [21] to: model live delivery
of DASH and CMAF, use the four ABR algorithms, and to en-
able tra�c shaping between the client and the server. The model,
which is available on GitHub [9], has �ve con�guration parameters,
DASH/CMAF, ABR Algorithm, Throughput Trace, Live Delay, and
Join O�set, which are used as described below.

The DASH/CMAF parameter determines whether the client acts
as a regular DASH client or as a DASH client that supports the

Evaluation of CMAF in Live Streaming Scenarios NOSSDAV’20, June 8-11, 2020, Istanbul, Turkey

CMAF format and chunked transfer encoding. When acting as a reg-
ular DASH client, the client requests segments from the server after
they have been fully written to the server, they are then delivered
by the server as whole segments. When acting as a CMAF client,
the client requests segments from the server as soon as the �rst
chunk of each segment has been written to the server; the server
responds by delivering CMAF chunks as soon as they become avail-
able, emulating the delivery of CMAF chunks when transmitted
using HTTP chunked transfer encoding.

The ABR Algorithm parameter determines which of the four
ABR algorithms, Panda, Festive, MPC and Bola, is to be used by
the client for future segment selection. The parameters of each
ABR algorithm are set to the default parameters presented in their
respective papers. The ABR algorithm simply provides the player
with the quality at which to request the next segment.

The Throughput Trace speci�es the �le that contains timestamps
and bandwidth values in kbps, which are used to adapt the band-
width of the link between the client and server over time.

The Live Delay parameter speci�es which segment the client
requests �rst: a value of one indicates that the newest segment
available on the server is requested �rst, two indicates the second
newest available segment is the �rst to be requested, and so on.

The Join O�set parameter determines the time at which the client
�rst requests a segment relative to the time at which segments are
made available on the server. When set to 0s, the client requests
a �rst segment as soon as a segment becomes available on the
server, although which segment is requested is determined by the
Live Delay parameter. When the segment duration is 2s and the
Join O�set is set to 1s, the client requests a �rst segment mid-way
between consecutive segments being made available on the server.

After the �rst segment has been delivered, the client requests
subsequent segments as soon as the previous one has been delivered,
or when they become available on the server, whichever is later.

The Live Delay and Join O�set parameters a�ect the end to end
latency, that is, the time between a segment being encoded and the
segment being played out by the client. Live Delay also a�ects the
potential maximum bu�er level of the client, as does Join O�set,
but only with CMAF and a chunk duration less than Join O�set.

3.2 Video Encoding
We selected the �rst four minutes of the BigBuckBunny movie [1]
and encoded it using x264 [11] at bitrates of {400, 800, 1200, 2400,
4800} (kbps) with resolutions {426x240, 640x360, 854x480, 1280x720,
1920x1080}. The encoded video was then segmented using MP4Box
[7] into 2s segments for DASH, and into 2s segments with 0.5s
chunks for CMAF-DASH. The resulting segments/chunks were
used in DASH.JS framework described below, but the simulation
model only required knowledge of their sizes.

3.3 Throughput Traces
We used CDN logs from the live BT Sport 1 service to set the
bandwidth of the link between the client and server as a function
of time. The CDN logs contained the request time, segment size
and download time of each segment for every streaming session
over a whole day. From these we produced a throughput trace �le
for each streaming session in the CDN logs, where each trace �le

0 1 2 3 4 5
Throughput (Mbps)

0%
2%
4%
6%
8%

10%
12%
14%
16%
18%

Fr
eq

ue
nc

y

Figure 2: Histogram showing the distribution of throughput
measurements below 5Mbps in the 7,000 throughput traces.

contained pairs of timestamp, equal to the segment request time,
and throughput, calculated as the size of the segment divided by
its download time.

We discarded trace �les shorter than our four minute video clip,
and cropped the others to the �rst four minutes. We discarded trace
�les that had mean throughput higher than our highest encoding
bit rate of 4800 kbps. Additionally, since we wanted to study ABR
performance, we discarded trace �les where all of the throughput
measurements were between the same two encoding bit rates.

This left 7,000 throughput traces to use in the experiments. The
distribution of throughput in these traces is shown as a histogram
in Figure 2, which shows the relative frequencies of throughput
measurements below 5 Mbps. About 89% of the measurements are
below the highest encoding bitrate of 4.8 Mbps.

3.4 Metrics
We used the following metrics to evaluate the performance of the
four ABR algorithms. Video Quality is the arithmetic mean of the
indices, in the range 0 to 4, of the quality at which the segments
are requested. Quality Variability is the standard deviation of the
encoded bitrates of the requested segments. Rebu�er Ratio is the
ratio of the total rebu�ering time to playback time. QoE Score is
the overall score computed using the ITU-T Rec. P.1203 QoE model
which combines bitrate, resolution, framerate and stall duration
into a single value between 1 and 5 [22]. We have used a standalone
implementation of the model found here [5].

4 VERIFICATION OF SIMULATION MODEL
ACCURACY

To con�rm the accuracy of our simulation model, we compared its
performance with that of a real-time implementation based on the
DASH.JS [4] player which we modi�ed to allow us to test di�erent
delay settings. We enabled the use of the parameters Live Delay,
which determines how far the player is behind the live edge, and
Stable Bu�er Time, which is the target bu�er for the player; these
are normally over-ridden when the player is in low-latency mode,
which is required to deliver CMAF chunks using HTTP Chunked
Transfer. The player was run in the Chromium browser [2].

We created a HTTP server in Node.js to serve pre-encoded DASH
segments and CMAF chunks using HTTP/1.1 Chunked Transfer.
Segments and chunks are served when they become available, as
if the content were being encoded in real-time. Our server, which

NOSSDAV’20, June 8-11, 2020, Istanbul, Turkey T. Lyko et al.

Figure 3: The average percentage di�erence in performance
of the NS-3 and Dash.JS frameworks, measured using the
QoEmetrics, Video Quality (left), and Rebu�er Ratio (right).

is available on GitHub [3], was placed inside a virtual mininet
[6] network, with the client located outside on a separate local
network. These networks were connected by a link with bandwidth
controlled using the linux tc module [10].

We compared the performance of the simulation model with
that of the DASH.JS player using 100 throughput traces, with Live
Delay set to 1 to 6 segments, and with the player con�gured to
CMAF mode. In total, this resulted in 600 real-time runs with the
four minute clip giving a total run time of around 42 hours.

Figure 3 shows the average percentage di�erence in performance
of our simulation model and DASH.JS, when measured using the
two QoE metrics: Video Quality, and Rebu�er Ratio. The left plot
shows that the average Video Quality achieved by our simulation
model and by DASH.JS on each of the 600 runs di�er by less than
+/-2%, with most di�erences being within +/-1%. The right plot
shows that the average Rebu�er Ratio values achieved by our sim-
ulation model and by DASH.JS are also within +/-2% of each other,
and most di�erences are between 0% and 1%.

Considering the di�culty of precise tra�c shaping on a real
network, we conclude that these results con�rm that the simulation
model is an accurate re�ection of a real world system.

5 RESULTS
In this section we present a comparison of the performance of
the four ABR algorithms, Panda, Festive, MPC and Bola, when
used with DASH and CMAF, with Live Delay ranging from 1 to 4
segments, Join O�set equal to 0s, 0.5s, 1s, and 1.5s, and with the
link between the server and the client being limited in turn by each
of the 7,000 trace �les. In total, we simulated the four minute clip
being delivered to the client 896,000 times.

We report the performance of the four ABR algorithms using
the QoE metrics previously described, averaged over the 7,000 runs
with di�erent throughput pro�les. We combined Live Delay and
Join O�set into a single value termed Join Delay, being equal to the
time between the �rst segment being created and it being requested,
measured in segment periods, and calculated as Live Delay added
to Join O�set divided by two seconds.

5.1 Rebu�ering
Figure 4 shows the percentage of sessions that experienced rebu�er-
ing as a function of Join Delay, for each of the four ABR algorithms

Figure 4: The percentage of sessions that experienced re-
bu�ering as a function of Join Delay.

and for DASH and CMAF. The �gure demonstrates that for most
settings, all four ABR algorithms perform better with CMAF, with
fewer sessions experiencing rebu�ering. The best improvements
occur at the lower values of Join Delay. For example, when Join
Delay is 1 segment, the use of CMAF enables an additional 71%,
61%, 43%, and 66% of all sessions to avoid rebu�ering, for Panda,
Festive, MPC, and Bola respectively.

For all ABR algorithms except MPC, the percentage of CMAF
sessions experiencing rebu�ering generally decreases with increas-
ing Join Delay. As Join Delay increases to 1.75, indicating a Join
O�set of 1.5s, the percentage of all sessions experiencing rebu�er-
ing decreases by a further 7%, 13%, and 26% for Panda, Festive
and Bola respectively. For MPC, the percentage of sessions with
rebu�ering increases as Join Delay increases from 1.0 to 1.75, and
then decreases with increasing Join Delay. MPC outperforms Panda
and Festive at all values of Join Delay.

Festive shows consistent but reducing bene�t of CMAF over
DASH as Join Delay increases, with 26% less sessions su�ering
rebu�ering when Join Delay is 2.0 and only 7% when it is 4.0. Panda
achieves decreasing bene�t from CMAF over DASH as Join Delay
increases, with 33% fewer sessions su�ering rebu�ering when Join
Delay is 2.0, but with DASH slightly outperforming CMAF when
Join Delay is 3.75 or more. MPC shows variable performance, espe-
cially with DASH, as initially the percentage of sessions su�ering
rebu�ering decreases as Join Delay increases, but then rises to a
peak at Join Delay of 2.5, before falling again. CMAF performance
is better than DASH, except during the minimum Join Delay of
1.75. With Bola, CMAF performs much better than DASH when
Join Delay is less than 2.0, but otherwise there is little di�erence.

Figure 6c shows the Average Rebu�er Ratio for all sessions as a
function of Join Delay.

For Panda, Festive and Bola, the use of CMAF reduces the Aver-
age Rebu�er Ratio for low values of Join Delay. This bene�t persists
over the whole range for Festive, up to about 2.0 for Panda after
which DASH su�ers less rebu�ering, and up to about 2.0 for Bola,
after which DASH and CMAF alternate in terms of which causes
more rebu�ering.

MPC with either CMAF or DASH causes less rebu�ering than
the other three ABR algorithms across the range of Join Delay, with
CMAF a little better for Join Delay greater than 2.0.

Evaluation of CMAF in Live Streaming Scenarios NOSSDAV’20, June 8-11, 2020, Istanbul, Turkey

Figure 5: The average ITU-T Rec. P.1203 QoE Score of all ses-
sions as a function of Join Delay.

5.2 Quality and Quality Variation
Figure 5 shows the average ITU-T Rec. P.1203 QoE Score of all
sessions as a function of Join Delay, for each of the four ABR algo-
rithms and for DASH and CMAF. The QoE Score generally increases
with Join Delay for both DASH and CMAF. The QoE Score is higher
when using CMAF for most settings with all ABR algorithms ex-
cept Panda, where CMAF is better for Join Delays less than 2.5, and
marginally worse otherwise. Generally there is more gain from us-
ing CMAF at low values of Join O�set, for example, improvements
in QoE Score of 1.38, 1.4, 0.12 and 0.42 for Panda, Festive, MPC and
Bola respectively when Join Delay is 1.0.

Panda and Festive with CMAF achieve a consistent QoE Score
across the range of Join Delays, while with DASH, performance
is signi�cantly worse for Join Delays less than 2.0, illustrating the
bene�t of being able to fetch chunks earlier with CMAF. MPC and
Bola also show this with their QoE Score, with DASH being shifted
about 0.75 to the right of the respective CMAF versions.

Figure 6a shows the Average Quality Level of all sessions as a
function of Join Delay. Panda and Festive achieved consistent an
Average Quality Level across the range of Join Delay, with little
di�erence between CMAF and DASH.

The curve for MPC with DASH is again approximately shifted
to the right by 0.75 compared to MPC with CMAF, suggesting that
MPC bene�ts from the earlier availability of chunks with CMAF.
Bola exhibits similar shifted characteristics, but also shows di�erent
behaviour with very low values of Join Delay.

Figure 6b shows the Average Quality Variability of all sessions
as a function of Join Delay. Again, Panda and Festive achieved
consistent values across the range of Join Delays, but each showing
less Average Quality Variability with CMAF than with DASH.

MPC again has a CMAF curve 0.75 to the left of the DASH curve.
Average Quality Variability is low for Join Delays less than 2.0,
because low quality is chosen consistently. But with both CMAF
and DASH, the variation increases as Join Delay increases, as more
bu�ering is available to allow quality to vary as a result of the MPC
optimisation algorithm.

Bola also chooses low quality when Join Delay is low, and hence
achieves low Average Quality Variability, but this increases beyond
that of Panda and Festive at higher values of Join Delay.

6 DISCUSSION
ABR algorithm performance, with DASH and CMAF, generally
improves as Join Delay increases, with higher video quality being
requested and less rebu�ering occurring; this is mainly due to the
potential maximum bu�er level increasing as Join Delay increases.
For example, when Join Delay is one segment, the player is only
one segment behind the live edge, restricting the player’s maximum
bu�er level to one segment duration, giving only this time window
for the player to detect and adjust to changes in network conditions.

Figure 7 shows the bu�er level for two sessions with the same
throughput trace, one for DASH and one for CMAF, where Join
Delay is 2.0 and the Festive ABR algorithm is used. Bu�er level was
recorded after each segment had been fetched and again after each
segment had �nished playback. We observe that when using CMAF
the average bu�er level is higher, allowing it to avoid rebu�ering at
approximately 160s, unlike DASH, where multiple short rebu�er-
ing events occurred at this time. The higher average bu�er level
with CMAF is due to new segments being downloaded as chunks
periodically every chunk duration, instead of being downloaded as
segments periodically every segment duration. This also makes the
bu�er level more stable. With DASH, the bu�er depletes by almost
an entire segment duration before the next segment is fetched, after
which the bu�er level increases again by the segment duration.
With CMAF the bu�er depletes by almost an entire chunk dura-
tion before the next chunk is fetched, after which the bu�er level
increases again by the chunk duration.

Figure 7 also shows that after the period of rebu�ering with
DASH, the bu�er level increases beyond the earlier peak because the
end to end latency has increased by the total duration of rebu�ering.
This increases the potential maximum bu�er level by the same
amount, which the ABR algorithm takes advantage of from around
time 200s.

In most cases, increasing Join Delay improves ABR performance
with both DASH and CMAF. ABR performance is much higher with
CMAF than with DASH when Join Delay is less than 2.0 and the
player is close to the live edge. In this case, with DASH there are
no additional segments available as they become available every
segment duration, but with CMAF, where chunks become available
every chunk duration, there are additional chunks available for
download and playback. This can be seen in Figure 1.

Performance improvement with CMAF was not universal for
all four ABR algorithms and settings. In general, the bene�t from
CMAF decreased as Join Delay increased, as the ABR algorithms per-
formed well with DASH at high Join Delay. MPC and Bola bene�ted
the most from CMAF, Festive achieved only a small improvement,
and Panda was often better with DASH. This demonstrates the need
for ABR algorithms to be designed taking CMAF into account to
maximise the performance.

7 CONCLUSION
Live video streaming su�ers higher latency than traditional broad-
cast, primarily due to the need for a large client bu�er that allows
the ABR algorithm to detect and respond to changes in network
conditions in a timely manner. Improving ABR algorithm perfor-
mance could allow a smaller bu�er to be used, thereby reducing
the latency for live streaming.

NOSSDAV’20, June 8-11, 2020, Istanbul, Turkey T. Lyko et al.

Figure 6: ABR performance as a function of Join Delay: a) Video Quality, b) Quality Variability, and c) Rebu�er Ratio.

Figure 7: Bu�er level of two Festive sessions using the same
throughput trace, one using DASH and one with CMAF.

In this paper, we described a simulation model that supports
live DASH and CMAF streaming and provided validation against a
live implementation in DASH.js. We evaluated the impact of using
CMAF rather than DASH onABR performance for live video stream-
ing, di�erent end to end latency settings were used and server to
client throughput was set according to data from the CDN logs of
a commercial live television service provider. We conclude that the
use of CMAF can signi�cantly improve ABR performance at low
latency, with a 43%-71% reduction in the number of sessions expe-
riencing rebu�ering with very low latency. However, we have also
found that one of the four ABR algorithms tested, Panda, performed
worse with CMAF across most settings, which highlights the need
for ABR algorithms to be designed taking CMAF into account.

REFERENCES
[1] 2020. BigBuckBunny. https://peach.blender.org/.
[2] 2020. Chromium Web Browser. https://www.chromium.org/.
[3] 2020. CMAF Server. https://github.com/tomlyko/cmaf-server.
[4] 2020. DASH.JS. https://github.com/Dash-Industry-Forum/dash.js/wiki.
[5] 2020. ITU-T Rec. P.1203 Standalone Implementation. https://github.com/itu-

p1203/itu-p1203.
[6] 2020. Mininet. http://www.mininet.org.
[7] 2020. MP4Box. https://gpac.wp.imt.fr/mp4box/.
[8] 2020. NS-3. https://www.nsnam.org/.
[9] 2020. A simulation model for Live DASH with CMAF chunks support.

https://github.com/tomlyko/ns3-dash-cmaf-model.
[10] 2020. TC Module. http://manpages.ubuntu.com/manpages/xe-

nial/man8/tc.8.html.
[11] 2020. x264. https://www.videolan.org/developers/x264.html.
[12] ISO/IEC 23009-1. 2019. Information technology-Dynamic adaptive streaming

over HTTP (DASH)-Part 1: Media presentation description and segment formats.

(2019).
[13] Brahim Allan, Mike Nilsson, and Ian Kegel. 2019. A Subjective Comparison

of Broadcast and Unicast Transmission Impairments. SMPTE Motion Imaging
Journal 128, 6 (2019), 1–15.

[14] Abdelhak Bentaleb, Christian Timmerer, Ali C. Begen, and Roger Zimmermann.
2019. Bandwidth Prediction in Low-latency Chunked Streaming. In Proceedings
of the 29th ACM Workshop on Network and Operating Systems Support for Digital
Audio and Video (NOSSDAV ’19). ACM, New York, NY, USA, 7–13. https://doi.
org/10.1145/3304112.3325611

[15] M. . Garcia, F. De Simone, S. Tavakoli, N. Staelens, S. Egger, K. Brunnström, and
A. Raake. 2014. Quality of experience and HTTP adaptive streaming: A review of
subjective studies. In 2014 Sixth International Workshop on Quality of Multimedia
Experience (QoMEX). 141–146. https://doi.org/10.1109/QoMEX.2014.6982310

[16] K Hughes and D Singer. 2017. Information technology–Multimedia applica-
tion format (MPEG-A)–Part 19: Common media application format (CMAF) for
segmented media. ISO/IEC (2017), 23000–19.

[17] J. Jiang, V. Sekar, and H. Zhang. 2014. Improving Fairness, E�ciency, and Stability
in HTTP-Based Adaptive Video Streaming With Festive. IEEE/ACM Transactions
on Networking 22, 1 (Feb 2014), 326–340. https://doi.org/10.1109/TNET.2013.
2291681

[18] J. Kua, G. Armitage, and P. Branch. 2017. A Survey of Rate Adaptation Techniques
for Dynamic Adaptive Streaming Over HTTP. IEEE Communications Surveys
Tutorials 19, 3 (thirdquarter 2017), 1842–1866. https://doi.org/10.1109/COMST.
2017.2685630

[19] Z. Li, X. Zhu, J. Gahm, R. Pan, H. Hu, A. C. Begen, and D. Oran. 2014. Probe and
Adapt: Rate Adaptation for HTTP Video Streaming At Scale. IEEE Journal on
Selected Areas in Communications 32, 4 (April 2014), 719–733. https://doi.org/10.
1109/JSAC.2014.140405

[20] T. Lohmar, T. Einarsson, P. Fröjdh, F. Gabin, and M. Kampmann. 2011. Dynamic
adaptive HTTP streaming of live content. In 2011 IEEE International Symposium
on a World of Wireless, Mobile and Multimedia Networks. 1–8. https://doi.org/10.
1109/WoWMoM.2011.5986186

[21] Harald Ott, Konstantin Miller, and AdamWolisz. 2017. Simulation Framework for
HTTP-Based Adaptive Streaming Applications. In Proceedings of the Workshop
on Ns-3 (WNS3 ’17). ACM, New York, NY, USA, 95–102. https://doi.org/10.1145/
3067665.3067675

[22] Werner Robitza, Steve Göring, Alexander Raake, David Lindegren, Gunnar
Heikkilä, Jörgen Gustafsson, Peter List, Bernhard Feiten, Ulf Wüstenhagen,
Marie-Neige Garcia, Kazuhisa Yamagishi, and Simon Broom. 2018. HTTP
Adaptive Streaming QoE Estimation with ITU-T Rec. P.1203 Open Databases
and Software. In 9th ACM Multimedia Systems Conference. Amsterdam. https:
//doi.org/10.1145/3204949.3208124

[23] Y. Shuai and T. Herfet. 2018. Towards reduced latency in adaptive live streaming.
In 2018 15th IEEE Annual Consumer Communications Networking Conference
(CCNC). 1–4. https://doi.org/10.1109/CCNC.2018.8319262

[24] K. Spiteri, R. Urgaonkar, and R. K. Sitaraman. 2016. BOLA: Near-optimal bitrate
adaptation for online videos. In IEEE INFOCOM 2016 - The 35th Annual IEEE
International Conference on Computer Communications. 1–9. https://doi.org/10.
1109/INFOCOM.2016.7524428

[25] Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, and Bruno Sinopoli. 2015. A Control-
Theoretic Approach for Dynamic Adaptive Video Streaming over HTTP. SIG-
COMM Comput. Commun. Rev. 45, 4 (Aug. 2015), 325–338. https://doi.org/10.
1145/2829988.2787486

https://doi.org/10.1145/3304112.3325611
https://doi.org/10.1145/3304112.3325611
https://doi.org/10.1109/QoMEX.2014.6982310
https://doi.org/10.1109/TNET.2013.2291681
https://doi.org/10.1109/TNET.2013.2291681
https://doi.org/10.1109/COMST.2017.2685630
https://doi.org/10.1109/COMST.2017.2685630
https://doi.org/10.1109/JSAC.2014.140405
https://doi.org/10.1109/JSAC.2014.140405
https://doi.org/10.1109/WoWMoM.2011.5986186
https://doi.org/10.1109/WoWMoM.2011.5986186
https://doi.org/10.1145/3067665.3067675
https://doi.org/10.1145/3067665.3067675
https://doi.org/10.1145/3204949.3208124
https://doi.org/10.1145/3204949.3208124
https://doi.org/10.1109/CCNC.2018.8319262
https://doi.org/10.1109/INFOCOM.2016.7524428
https://doi.org/10.1109/INFOCOM.2016.7524428
https://doi.org/10.1145/2829988.2787486
https://doi.org/10.1145/2829988.2787486

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Latency
	2.2 Common Media Application Format
	2.3 ABR Algorithms
	2.4 QoE Factors

	3 Methodology
	3.1 Simulation Framework
	3.2 Video Encoding
	3.3 Throughput Traces
	3.4 Metrics

	4 Verification of Simulation Model Accuracy
	5 Results
	5.1 Rebuffering
	5.2 Quality and Quality Variation

	6 Discussion
	7 Conclusion
	References

