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a b s t r a c t 

With so many things around us continuously producing and processing data, be it mobile phones, or sensors 

attached to devices, or satellites sitting thousands of kilometres above our heads, data is becoming increasingly 

heterogeneous. Scientists are inevitably faced with data challenges, coined as the 4 V’s of data - volume, variety, 

velocity and veracity. In this paper, we address the issue of data variety. The task of integrating and querying such 

heterogeneous data is further compounded if the data is in unstructured form. We hence propose an approach 

using Semantic Web and Natural Language Processing techniques to resolve the heterogeneity arising in data 

formats, bring together structured and unstructured data and provide a unified data model to query from disparate 

data sets. 
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. Introduction 

Recent advances in technology have led to an explosion in the avail-

bility of data, often referred to as ‘big data’. This is particularly true

n the domain of flood risk management, where there is a plethora of

ata now available from a range of sources including from satellite im-

gery, ground-based sensors, citizen science and data mined from the

eb. To be effective, however, this data needs to be brought together

o achieve the necessary level of integration and subsequently to foster

ecision-making that is more open and transparent and that supports

he necessary level of collaboration amongst different stakeholders and

pecialists in this important area. In contrast, at present, this data is of-

en siloed and this is increasingly a major problem for the field. This

iloing problem is easily overcome by bringing the data together in one

lace, for example exploiting the potential of cloud computing. This is

 necessary first step but this alone is not sufficient - there is also a need

o tackle a key problem of data heterogeneity. Heterogeneity in data,

ither in the form of diverse data formats or in the form of disparate

ata sources, poses a serious hindrance to domain specialists in moving

owards a more integrated and collaborative mode of working. As a re-

ult, there is an urgent need to tackle this data heterogeneity problem

n flood risk management (note that this is also one of the 4 V’s of ‘big

ata’, i.e. ‘variety’, which sits alongside - ‘volume’, ‘velocity’ and ‘verac-

ty’), and to build a unified model that can facilitate the integration of

isparate data sets. 
∗ Corresponding author. 

E-mail addresses: vatsala@lancaster.ac.uk (V. Nundloll), rob.lamb@jbatrust.org (R

G. Blair). 

ttps://doi.org/10.1016/j.envc.2021.100064 

eceived 26 November 2020; Received in revised form 22 February 2021; Accepted 

667-0100/© 2021 The Authors. Published by Elsevier B.V. This is an open access ar
The task of integrating data is further compounded with unstruc-

ured forms of data. Many existing approaches talk about integrating

tructured data mostly. With technological advances in Natural Lan-

uage Processing (NLP) methods, there is ongoing research on extract-

ng information from unstructured data such as text and images. How-

ver, there is little attention on how to bring unstructured data to-

ether with structured data, which is a key focus of this paper. Exist-

ng literature on the use of NLP to extract information from unstruc-

ured text focuses on information that is textual in nature such as a

erson’s name, nationality, etc. However, in the flood domain, the in-

ormation to be extracted also consists of important quantitative infor-

ation such as measurements of a river level, flow of water, etc. This

nformation is more challenging as we need to preserve the informa-

ion context. Hence, we not only use NLP techniques to extract infor-

ation from text, but also reflect on the use of an ontological approach

o preserve the context of the information extracted and to integrate

nformation from structured and unstructured sources in a more mean-

ngful way. Hence, this paper presents an approach using Natural Lan-

uage Processing alongside Semantic Web technologies to extract un-

tructured information from text and to bring this together with infor-

ation from more structured sources with the aim to make more in-

ormed queries. 

Bringing these threads together, this paper investigates possible tech-

ological solutions to achieve data integration for the field of flood risk

anagement. This breaks down into the following research questions: 
. Lamb), barry.hankin@jbaconsulting.com (B. Hankin), g.blair@lancaster.ac.uk 

23 February 2021 

ticle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

https://doi.org/10.1016/j.envc.2021.100064
http://www.ScienceDirect.com
http://www.elsevier.com/locate/envc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.envc.2021.100064&domain=pdf
mailto:vatsala@lancaster.ac.uk
mailto:rob.lamb@jbatrust.org
mailto:barry.hankin@jbaconsulting.com
mailto:g.blair@lancaster.ac.uk
https://doi.org/10.1016/j.envc.2021.100064
http://creativecommons.org/licenses/by/4.0/


V. Nundloll, R. Lamb, B. Hankin et al. Environmental Challenges 3 (2021) 100064 

 

 

 

 

 

 

 

 

 

 

 

m  

t  

m

 

c  

o  

t  

o  

s  

S  

S  

d

2

 

d  

T  

v  

b  

r  

v  

i  

t  

c  

u  

t  

d  

T  

W  

h

 

r  

c  

T  

a  

t  

f  

c  

p  

r  

i  

i  

d  

i  

t  

t  

n  

t  

n  

t  

e  

a  

c  

t  

c  

E  

r  

n  

n  

a  

d  

a  

s  

p  

(  

n  

b  

d  

v  

o  

a  

s  

v  

p  

t

 

t  

(  

b  

t  

e  

t  

p  

o  

i  

m  

o  

c  

L  

m  

t  

t  

s  

Z  

g  

d  

d  

o  

I  

u  

g  

m

 

m  

d  

i  

f  

z  

o  

e  

A  

i  

r  

D  

b  

s  

t  
1. Can we achieve full and meaningful data integration in flood risk

management through the application of Semantic Web technologies,

including the use of domain ontologies, and does this achieve our

goal of a unified view over all available flood risk management data;

2. Can we naturally extend the above solution to unify both structured

and unstructured data sources, through an approach based on Natu-

ral Language Processing; 

3. Can we subsequently interrogate and query this data as a unified

whole, drawing data from disparate sources including structured and

unstructured sources, and hence support our vision of enriched sup-

port for collaborative and transparent decision-making in flood risk

management. 

The work presented has been carried out in collaboration with do-

ain experts from the field of flood risk management and is part of a

ransdisciplinary project investigating the use of digital technologies to

itigate the challenges faced in the environmental domain. 

The paper is structured as follows. Section 2 presents related work,

onsidering literature on data integration particularly in the domain

f flood risk management. Section 3 then gives a brief introduc-

ion to ontologies. Section 4 describes the methodology used and the

verall approach adopted, and Section 5 presents the prototype de-

ign. Section 6 provides an evaluation of the proposed approach, and

ection 7 presents a discussion emanating from this analysis; Finally

ection 8 concludes the paper, including statements on future research

irections in this promising field. 

. Related work 

Data integration is the process of bringing together data from

isparate sources to enable a unified query mechanism. Authors in

owe et al. (2020) highlight the need to bring data together from di-

erse sources for drawing better analysis in flood risk management and

ring to attention the inherent dependency of decision-making in flood

isk management on data. With the added challenge that data is pro-

ided from heterogeneous sources, the key requirement is to enable the

ntegration and subsequent analyses of a complex array of data in order

o tackle the challenges in flood modelling. The authors present the con-

ept of a hypercube model — using cloud computing, data integration

sing a semantic web approach and the use of notebook technologies

o help bring more insight into flood modelling. Our paper provides a

etailed narrative of the semantic data integration work presented in

owe et al. (2020) and presents a linked data model using Semantic

eb and Natural Language Processing techniques to address the data

eterogeneity issue arising in the flood domain. 

Moreover, the authors in Blair et al. (2019) envision the need to

educe uncertainty in environmental models through generic models

apable of capturing processes and behaviours across multiple places.

he core motivation of such models is to exploit as much knowledge

s possible regarding a particular place in order to reduce this uncer-

ainty. Blair et al. (2019) also highlights the need to bring data together

rom heterogeneous sources in order to draw better insight from pro-

ess and data models. For example, the knowledge for drawing flood

redictions can be provided from remote sensing data, historical Parish

ecords, flood marks, satellite imagery and local sensors. New data min-

ng techniques enable scraping the web or social media for information

n the form of text and images. Better insight can be drawn from these

ata sources if combined together for usage. However, the heterogene-

ty arising in the data formats and data sources poses a barrier to scien-

ists to properly utilise data from disparate sources, thus causing data

o remain silo-ed. Furthermore, Beven and Smith (2015) emphasises the

eed to validate information in hydrological modelling, emanating from

he fact that modelling in hydrology is limited by its measurement tech-

iques. The inconsistencies arising in data introduce disinformation into

he models. The main sources of uncertainty in these models are due to

rrors in the models, errors in the observations in model calibration
2 
nd computational constraints. The problem highlighted in this paper

alls for the need to bring in other dimensions of data, other than just

he observed measurements, that can possibly help to alleviate the in-

onsistencies arising in the model outputs. The Environment Agency in

ngland, for instance, owning hydrology models on flood defences, flood

isk assessments, detailed constructions of drainage systems, etc., recog-

ises the necessity for these models to evolve over time by incorporating

ew data and bringing in technical improvements to their models. The

gency published a technical report ( Environment-Agency-Cost, 2018 )

rawing estimates of economic cost of flood events to highlight the dev-

stating impact on property damage that can be caused as a result of

ignificant flood events. There is also a growing recognition of the im-

ortance of drawing new types of data in future flood risk assessments

 Environment-Agency, 2020 ). The agency stresses there remains a sig-

ificant gap in literature and practice as to how new data sources can

e brought in together in order to derive better process-driven and data-

riven paradigms. Baldassarre et al. (2016) and Smith et al. (2017) ad-

ocate the need to bring in heterogeneous data to improve the hydrol-

gy models and to mitigate risks. Smith et al. (2017) , for instance, talks

bout a real-time modelling framework using information gathered from

ocial media to identify flood-prone areas. McCallum et al. (2016) ad-

ocates the use of new digital technologies to collect and analyse data,

rovided by communities and citizens across the globe, that may be used

o monitor, validate and reduce flood risks. 

The data integration problem points to the need to tackle

he data heterogeneity (variety) issue first. The Semantic Web

 SemanticWeb, 2021 ) is a vision of the World Wide Web Consortium to

uild a web of data which are linked from different sources. Semantic

echnologies such as RDF, OWL, IRI and SPARQL have been proposed to

nable data integration. Another valuable contribution from the Seman-

ic Web is the use of ontologies which help to resolve the data variety

roblem by enforcing data standardisation and hence enabling the inter-

perability of heterogeneous data. A good introduction of Semantic Data

ntegration is provided by ontotext (a leading company on the use of Se-

antic Web techniques) ( Ontotext, 2021a ). A survey of a few existing

ntologies can be found at d’Aquin and Noy (2012) and methodologi-

al guidelines for reusing ontologies have been proposed in Fernández-

ópez et al. (2013) . Ontologies have been widely applied in bioinfor-

atics and healthcare information systems. Ison et al. (2013) shows

he need to integrate information about bioinformatics operations

hrough the use of ontologies. He et al. (2017) presents innovative

emantic-based methods to address important problems in healthcare.

hang et al. (2018) introduces an ontological framework to support inte-

ration of cancer-related data. Turki et al. (2019) is a large-scale medical

atabase using ontologies to resolve heterogeneity issues and to bring

ata together from different biomedical systems. Other domains where

ntologies are being applied are Web Search, Ecommerce, Geographic

nformation Systems, etc. For instance, Sun et al. (2019) presents the

se of ontologies to tackle semantic heterogeneity and integration of

eospatial data. Best practices for ontology engineering in the IoT do-

ain can be found at Atemezing (2015) . 

The need for data integration for the flood risk management do-

ain shows the scope for using ontologies in this field to bring in

isparate data sources together. However, the complexity of integrat-

ng data is further compounded with some data being in unstructured

orm. With the rise in social media platforms, there is a lot of citi-

en science information available in form of text and images. A lot

f scientific findings are also available in textual documents. Past lit-

rature such as Montori, F. et al. (2016) , Ziegler and Dittrich (2004) ,

raque et al. (2008) and Bernadette et al. (2002) have proposed data

ntegration solutions restricted to structured data only but the authors

ecognise the value of folding in unstructured data as well. For instance,

emir and Krajewski (2013) demonstrates a flood warning system that

uilds on sensor data collected from different sources and integrated

o that they can be shared in common data formats. However, this in-

egrated platform considers structured data only. The reason why un-
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tructured data has lagged behind has been due to major technological

arriers. 

However, we can see a few commercial online products such as

 IBM, 2020 , Astera, 2020 ) and Ontotext ( Ontotext, 2021b ) that pro-

ide services for extracting information from unstructured data. They

ay be efficient tools but can be costly and their price may vary de-

ending on the size of data, complexity of data etc. Moreover, the client

eeds to pay each time they want to extract information from a new

ocument. However, with recent technological advances in open source

echnologies such as Natural Language Processing frameworks, often ex-

loiting new developments in Machine Learning, the ability to extract

nformation from unstructured sources is increasing. Machine Learn-

ng is the science of training computers to learn and to draw predic-

ions whilst Natural Language Processing is the science of understand-

ng the interactions between the computer and the human language.

here is ongoing research in this area and one prominent area is in the

se of Sentiment Analysis to classify the opinions of people from cus-

omer surveys, reviews and social media posts. The work presented in

orecki and Mazurkiewicz (2015) talks about the use of Natural Lan-

uage Processing to classify words derived from text into emotions or

pinions. Text classification is also rapidly gaining popularity. Although

omanov et al. (2019) , for instance, has applied text pre-processing, fea-

ure extraction and classification of the extracted features using differ-

nt Machine Learning models, the authors recognise the need for more

esearch contributions in drawing information from textual sources. 

. Background on ontologies 

What is an ontology? Ontologies ( Gruber, 1993 ) are formal explicit

pecifications of a shared conceptualisation. They model some aspect

f the world (called a domain), and provide a simplified view of some

henomenon in the world that we want to represent. A domain can be

efined as any aspect related to the world, for example an educational

omain, a medical domain etc. The ontology acts as a vocabulary to ex-

licitly define concepts, properties, relations, functions, constraints of

 particular domain and also represents the schema of the data being

odelled. It can also enable to uniquely identify each concept through

n IRI (Internationalized Resource Identifier). For example, for a bird

omain, an ontology can be used to define the features of a bird such

s the feathers, wings, beak, eggs, etc. and assign an IRI to each bird

oncept. A popular open-source software available for the design of on-

ologies is Protege (2020) . We can add a layer of metadata above ‘raw’

ata by enriching each data atom with an ontological concept having

 definition. This metadata layer can thus enable to abstract over dis-

arate data sources and enable their integration. For example, if bird

eathers are labelled as Feather and BirdFeather in two separate datasets,

hey can still be annotated with the same ontological concept about bird

eathers. This abstraction can enable to bring both datasets together. 

Instead of devoting a lot of time and effort in designing one global

ntology to represent the domain concepts and its associated schema, it

s generally recommended to maintain a separation of concerns between

he data and the domain concepts. This approach can help a better ma-

ipulation and maintenance of the ontologies used. Hence, a hybrid ap-

roach can be adopted, where the general concepts of the flood domain

re represented through a flood domain ontology ; and the schema of

he flood-related data are represented through a single or multiple data

ntologies . Since it is not tied to any data, the flood risk management

omain ontology can be re-used with other flood-related data sets. 

Brief context on domain and data ontologies Different ontology

onfigurations can be used to enable data integration - single ontology,

ultiple ontology and hybrid ontology approaches. A single ontology

pproach requires all the source schemas to be directly related to a

hared global ontology. Examples of such systems are SIMS ( Arens et al.,

996 ), Carnot ( Collet et al., 1991 ) and PICSEL ( Goasdoué and Rey-

aud, 1999 ). The drawback of this approach is that the domain informa-

ion needs to be updated every time there is a new information source. A
3 
ultiple ontology approach requires every data source to be described

y its own local ontology, and all the local ontologies are eventually

apped to each other. An example of such a system is the OBSERVER

ystem ( Mena et al., 2000 ). A hybrid ontology approach is a combina-

ion of the first two approaches - a domain ontology captures the domain

nowledge at a level of abstraction free from implementation concerns;

 data ontology models the structure of a particular dataset and is used

o interface between data and a domain ontology. This hybrid architec-

ure provides greater flexibility in integrating new data sources as they

an be represented using local ontologies. This view is also backed by

ruz and Xiao (2003) , Dolbear et al. (2005) . 

. Methodology 

We adopt an agile approach as the core methodology to underpin

his research. An agile approach is one which is done in an iterative

ay, where each step can be revisited and altered as per the needs of

 process. It encapsulates a range of principles and values expressed in

oftware development. This approach helps to alleviate the inefficient

raditional practices in software development where continuous meet-

ngs, heavy documentation, strict adherence to a gantt chart used to be

he norm. The result is a set of agile methods iterating through a con-

inuous delivery of software in order to reach a solution. A good intro-

uction to this approach is provided at Ferrario et al. (2014) . This agile

rocess started off with a workshop where the inter-disciplinary project

artners, researchers and stakeholders from the flood community met

o discuss and reflect about the challenges involved in the flood domain.

he main output resulting from this workshop was the need for a more

ata driven approach to tackle the flood challenges. As a consequence,

e decided to adopt the agile method as our research methodology in

rder to investigate into technologies that can help to bridge the gap be-

ween structured and unstructured data forms and bring heterogeneous

atasets together into a unified model that can be eventually queried.

he technologies that have been investigated using this methodology

re: (i) Natural Language Processing (NLP) techniques to extract infor-

ation from an unstructured data source; (ii) Semantic Web techniques

o bridge the gap between structured and unstructured data forms and

nable their integration. Ongoing research on the use of NLP techniques

o extract information from textual sources is currently mostly around

dentifying textual entities from text. But in the flood context, crucial

nformation in the form of numerical quantities is also an important

eature of flood documents. We need to be able to extract these mea-

urement data without losing their context. Hence, the methodology

roposed looks at how to extract textual as well as numerical quanti-

ies in such a way that we can still preserve their context, and how to

ring this information together with related information from disparate

ata sets. The suggested architecture to enable the data integration can

e summed up as follows: 

1. Data Provisioning for a given domain 

2. Data Integration of structured and unstructured sources into a linked

data model 

3. Data Querying from the linked data model 

.1. Data Provisioning for a given domain 

The first step involves procuring the different data sources that re-

uire integrating. Structured data are ‘ready’ to be used owing to their

field label/value’ representation. They may need to undergo through

ome data processing or cleaning phase though. For the flood domain,

tructured data takes the form of model outputs or can be available

s a rich array of measurement data ranging from instruments, satel-

ite imagery through to remote sensing. This complexity is further com-

ounded with unstructured forms of data such as text, images or even

and-written notes. For unstructured data, they need to go through an

xtra step where the required information needs to be extracted using

atural Language Processing techniques. 
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Fig. 1. Data Integration using ontologies. 
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.2. Data Integration of structured and unstructured sources into a linked 

ata model 

This step is broken down into the ontology design for the given do-

ain first followed by a semantic enrichment of the data using ontolog-

cal concepts. 

.2.1. Ontology design for the given domain 

Fig. 1 shows how ontologies create that extra metadata layer that

its on top of disparate data sources, and enable data to be integrated

nto a unified model. This metadata layer enables the information sit-

ing in the data stores to be abstracted and represented in a standardized

ormat, that can enable the different sources to be integrated as shown.

he integrated model can then be stored into a semantic data store (also

nown as a triple store) that can be queried and that can produce richer

uery results provided from different repositories. A hybrid ontologi-

al approach has been adopted here where the flood domain has been

odelled through a domain ontology and the flood datasets have been

odelled through data ontologies (see Section 3 ). 

.2.2. Semantic Enrichment of data 

This step involves rendering the heterogeneous data into a standard-

zed format so that they can be linked together. This standardized format

s known as RDF (Resource Description Framework ( RDF, 2014 ), a data

epresentation format that enables ontologies to define data concepts

n a standard way which is a triple format: Subject-Predicate-Object .

he Subject and Object are the data components of a domain whilst the

redicate is the relationship between them. The ontology enrichment of

raw’ data is known as semantically-enriched data, and allows differ-

nt data components to be annotated with relevant concepts from the

ntology. Referring to the bird example, using bird observation data

 such as the colour of the bird (BirdColour = Red) or shape of the beak

BeakShape = Sharp) - the semantically enriched data can look as follows:

ird hasColour Red; Beak hasShape Sharp . Each component in the triple is

 concept from an ontology. For example, ‘Bird ’ and ‘Beak’ are both data

oncepts whilst ‘hasColour’ and ‘hasShape’ are relationship concepts. The

alues ‘ Red ’ and ‘ Sharp ’ can either be further data concepts or simply

alues especially if they are numerical. This semantic enrichment helps

o abstract over the heterogeneous datasets and to bring them together

nto a linked data model as shown in Fig. 1 . 
4 
.2.3. Information Extraction from unstructured sources using NLP 

echniques 

In this paper, we are considering text only as the unstructured form

f data. As mentioned above, data needs to be standardised into RDF

orm before the integration step. Whilst this can be a relatively straight-

orward process for structured data, the unstructured data will need to

o through an additional processing step, which is extracting the in-

ormation first using Natural Language Processing methods. Given that

DF is a Subject-Predicate-Object (SPO) triple structure, the information

xtracted from text should be close enough to this triple structure so

hat it can easily be converted into RDF. Therefore, the idea is to extract

 ‘subject’, ‘predicate’ and an ‘object’ from every sentence occurring in

he text. In this way, even if the object component of a sentence con-

ains numerical quantities, the latter does not lose its context since it is

ssociated to a subject and a predicate, both also components from the

ame sentence. 

.3. Data Querying from the linked data model 

Once the data has been semantically converted into RDF, they can

e loaded as triples onto a semantic data store or triple store. The triple

tore enables data from different sources to be linked together, and this

s known as a semantic linked data model. Triple stores can usually con-

ain millions of triples and are licensed either as a desktop version or a

loud version, depending on the size of the data to be integrated. They

lso provide a query facility (through a semantic query language) to

uery the information stored and bring forward information queried

rom disparate datasets. 

. Prototype design 

The prototype has been designed to validate the methodology

roposed and is based on bringing flood-related data together. The

dea of enabling data integration for the flood domain emanates

rom the need to do better hydrological modelling, as mentioned in

lair et al. (2019) and Towe et al. (2020) (see Section 2 ) emphasizing the

eed to bring in data from different sources to fold in other parameters to

ddress the uncertainty issue in modelling. This work has been carried

ut in close collaboration with flood scientists from the Environment

gency(EA) ( Environment-Agency, 2021 ), JBA Trust ( JBATrust, 2021 )

nd JBA Consulting group ( JBAConsulting, 2021 ). The flood scientists
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Fig. 2. Data integration using data and domain ontologies. 
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ely on measurement data about river levels, gauges, etc. to assess the

mpact of flooding on properties in flood-prone areas. However, they

ention that there is a lot of useful information sitting in government

eports that can help in their risk analysis and impact assessment. They

xpressed a need to draw information from one such government report
5 
nd bring it together with the measurement data regarding the flood-

rone areas in the UK. The challenge is how to extract this informa-

ion and integrate it with the measurement data. Fig. 2 illustrates the

rototype model, and the steps in the figure (bottom-up) are explained

elow. 
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.1. Data source identification 

.1.1. Communities at risk data 

The agencies EA and JBA Trust/Consulting provided the “Commu-

ities at Risk ” dataset - a set of measurement data which was collected

rom flood-prone localities and was used to assess the impact of flooding

n these areas. The data was provided in Excel files and was mainly about

iver gauges and building properties found in flood-prone areas. We con-

idered two Excel files for this prototype. One Excel file contained in-

ormation on the names of gauges at different river locations, the types

f river gauges, gauge measurement data and details about hydraulic

odels used for analysis. The other Excel file contained details of prop-

rties (pricing, dimensions, types) found near those river gauges and

etails of the models used for analysis purposes. To complicate things,

he details about these gauges and these residential/commercial proper-

ies were scattered across different spreadsheets in the files. This posed

 hindrance to the flood experts in collating this information and using

t in a timely manner for analysis purposes. 

.1.2. The Section19 report 

There is a lot of information in government reports regarding flood-

ffected areas that are of relevance to the flood scientists in their day-

o-day work. One such document is known as the Section19 report

 FloodReport, 2021 ) and is circulated by the Risk Management Authori-

ies in the UK in response to flooding events. These reports are normally

n PDF, and represent a rich source of quantitative as well as quali-

ative information gathered by different stakeholders following flood

vents. They are considered to be an important source of flood risk

anagement-related information for stakeholders involved in mitigat-

ng flood risks in flood-prone areas. For example, these reports list flood

ccurrences and their locations, the severity of the events, highlights the

tatutory responsibilities and duties of flood-risk management authori-

ies, and denotes the types of emergency response schemes available to

ood-prone areas amongst other relevant information. However, given

he highly unstructured nature of this data source, it is difficult for the

ood scientists to make adequate use of this information. 

.1.3. The importance of integrating the Section19 report and the 

ommunities At Risk data 

The provisioning of any vital information on flood-affected places

an help the flood scientists to get a better understanding of these places.

ringing the “Communities At Risk ” data and the Section19 report to-

ether can highlight all relevant details about flood-prone areas and can

elp give a better insight about these areas. Given the textual nature of

he Section19 report, we need to find a way to extract the required in-

ormation, combine it with the measurement data from the spreadsheets

nd query for information from the multi-source data model. This is a

hallenging process, and we believe that a combination of Semantic Web

nd Natural Language Processing techniques can help to bridge the gap

etween these heterogeneous sources and combine them into a unified

odel, known as a linked data model, which can then be queried. 

.2. Ontology design 

As explained in the methodology section, the ontology is designed to

titch disparate data sets together by creating an abstraction layer above

hese data sets that binds different data components into relationships

hat reflect the different aspects of the flood domain. The result is the

ormation of a linked data model that links all the disparate flood-related

ata sets involved. Therefore, the first step in creating this linked data

odel for the flood domain is to have an ontology that reflects the dif-

erent aspects of that domain. This domain ontology will model the dif-

erent concepts and the relationships between the concepts. The knowl-

dge about these concepts/relationships comes from the flood scientists

ho are the domain experts. Furthermore, the concepts are elicited by

lso scanning through the datasets to identify prominent entities, and
6 
hrough discussion with the scientists to determine their relevance. Fur-

her knowledge about the domain knowledge has also been gathered

hrough literature survey. A hybrid ontological approach is adopted

here a domain ontology captures the general concepts of the flood do-

ain and data ontologies are used to model the different datasets that

ave been made available. 

.2.1. Domain ontology - EIA ontology 

In order to support the practice of reusing existing ontologies,

he EIA ontology (Environmental Impact Assessment) Garrido and Re-

uena (2011) has been used to capture the flood domain concepts. The

IA ontology broadly shows the impact of human activities and natu-

al phenomena on the environment; categorizes the impact identifiers;

escribes environmental factors, environmental services and impact as-

essment procedures. We found that the flood concept can been cate-

orized as a natural phenomenon, which impacts on the environment

nd the lives of people. The reason for choosing the EIA ontology is the

road spectrum of environmental concepts it captures. This can allow

o accommodate new sources of data from other parts of the ecosystem

nd this can help scientists to draw insight on the impact of flooding

n a wider scale. Although a new ontology can be designed to rep-

esent the different aspects of the flood domain, we did not want to

dd yet another level of heterogeneity by contributing new ontologies

hen we can accommodate new concepts to an already existing one.

ig. 3 shows a snapshot of the EIA ontology, depicting a flood con-

ept which occurs in a catchment area. There is a ‘model’ concept to

epresent simulation/statistical/process models that can be utilized to

nalyse flood risks. This concept also has a set of input and output pa-

ameters, each defined as two separate concepts. The catchment area,

n the other hand, is described as having:(i) a defence infrastructure

 refers to the types of defence systems put in place to prevent flood-

ng; and (ii) a receptor infrastructure - refers to the properties, struc-

ures, or landmarks found near a flood-prone area. The ontology is a

eflection of the source-pathway-receptor approach commonly used in

isk assessment and helps to uncover the different types of pathways

eading to flooding and types of receptors impacting from this flooding.

he ontology highlights what kinds of data need to be folded in so as

o further contemplate the source-pathway-receptor approach. Our do-

ain ontology is named floodmodel.owl , and shows the relationships be-

ween the different concepts identified for the flood domain, as depicted

n Fig. 3 . 

.2.2. Data ontology 

The data ontology is simply a schematic representation of the flood-

elated data sets. We have created two data ontologies for modelling the

ommunities at Risk dataset and the data extracted from the Section19 re-

ort. The Communities at Risk data ontology represents all possible pa-

ameters normally used in flood measurements such as gauge level, river

elocity, river depth, etc. It has been named D amage A ssessment.owl

nd is shown in Fig. 4 (a). Concepts such as Gauge, Model, River, Prop-

rty, etc. in this figure represent the measurement parameters for the

ood domain. The concepts can be further expanded to accommodate

ore fine-grained details which can be classified as sub-concepts. Re-

arding the data ontology for the Section19 report, it defines concepts

uch as ‘Data Provenance’ (data contributor, data collection methods,

ata source, data collected for, etc.), ‘Observation Types’ and ‘Times-

amp’. This ontology is called Localknowledge.owl , shown in Fig. 4 (b),

nd can be reused to represent any other data of a similar nature. 

.3. Semantic enrichment of structured data 

.3.1. Data transformation for structured data 

When people talk about structured data, they are generally referring

o data stored in RDBMS, Excel or CSV files. Such data are stored in a

tructured way, in a classic field/value pair. Nonetheless, there is still
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Fig. 3. Snapshot of EIA Ontology extended for the flood domain. 

Fig. 4. Data Ontologies - Damage Assessment and Local Knowledge 

7 
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 number of issues that need to be dealt with first before working with

uch data - such as some field values are left blank; some field values

f type string may consist of multiple sub-strings, and may require ag-

regating or splitting as per the requirements of the application; some

eld labels contain special symbols, which are non-ASCII values (e.g.

stimatedDamage £); some field values contain both lowercase as well

s uppercase characters and may require a standardised way to repre-

ent them. Whilst we have written a Python script to take care of all

hese irregularities, it is worth mentioning that there are software tools

vailable for data cleaning/preparation, such as Talend Talend (2020) ,

penRefine OpenRefine (2021) and OntoRefine GraphDB (2020) . For

nstance, using Talend, we can even create data subsets if we have big

ata sets, and then semantically convert each subset separately. 

.3.2. Using the ontology to semantically enrich data 

The domain ontology defines the domain concepts, and enables to

titch things like the provenance of information to the concepts in-

olved, which is called the metadata. Fig. 5 (a) shows the kind of meta-

ata created around the ‘River’ concept - such as cause of hazard for

he river bursting its banks; the flood warning areas around the river

tc. Such enrichment not only helps in enabling a deeper analysis of the

ata gathered about the concept but also helps to identify missing data

aps required for a deeper analysis. For example, from Fig. 5 (a), one ax-

om says: River hasCharacterizingIndicator some WasteWaterServices . This

oints to the fact that if we have data about waste water services, af-

liated with a particular river, it can help to give more insight on the

ctions to be taken around this river. 

.3.3. Using the ontology to integrate data 

Fig. 2 illustrates how different data sets can be integrated through

he data ontology and semantically enriched with metadata from the

omain ontology. The example shown in Fig. 2 demonstrates a data on-

ology where ’ Station ’ is a term used to represent a gauge by a river, and

ence can abstract heterogeneous representations of the ‘Gauge’ infor-

ation found in the data sets. For example, ‘ GaugeWharfe ’, ‘GaugeRiver-

harfe’ , etc. are all considered to be of type ‘Station’ through such ab-

traction. Furthermore, the ‘Station’ concept, being defined the same as

he ‘Gauge’ concept from the domain ontology (as shown in Fig. 2 ),

nherits all the metadata properties of this domain ontology concept.

his abstraction can also help resolve heterogeneities arising in data on-

ologies as well. For example, ‘ Station ’ concept from one data ontology

nd ‘ Base ’ concept from another data ontology, both representing gauge

easurements, can be further abstracted to the ‘Gauge’ concept in the

omain ontology, thus ensuring integration across all the different data

ets (as shown in Fig. 2 ). Moreover, the domain ontology represents the

ifferent concepts affiliated to the flood domain such as: a River has a

auge; a River has a Defence; a Defence is next to a Property; a River has

 Location . Given these relationships among the flood concepts (‘River’,

Defence’, ‘Property’, etc.), the semantically-enriched data also inherit

hese relationship properties. Hence, if there are data about other con-

epts such as ‘ Defence ’ or ‘ Property ’, they can be represented similarly

hrough data ontologies and integrated with the existing data sets and

icher query sets can be formulated. 

.4. Semantic enrichment of unstructured data 

.4.1. Data transformation for unstructured data 

Unlike structured data, the unstructured data in the Section19 re-

ort consists of sentences, tables and figures. The approach elicited here

hows how we can extract information from such a document through

he use of NLP techniques. Fig. 6 (a) gives an extract of a page from the

ection19 report. 

.4.2. Approach adopted to extract data from Section19 report 

Fig. 6 illustrates the steps followed for the data transformation of

ne page from the Section19 report. 
8 
1. Slicing the PDF The first step is to slice the PDF file into individ-

al pages. This is done owing to the size of the report which is around

6 pages. The idea is to treat each page individually, and each page is

amed according to the page number (e.g. page12.pdf ). 

2. Converting one PDF page into text The next step is to convert a

articular page into text form (e.g. page12.txt ). This step enables the

ser to browse which page is required for data extraction; hence, con-

erting only required pages into text form. Here, it is worth mentioning

hat the user can also remove any unwanted sentences or text from the

le. Moreover, one detail that is added in this text file is a header at

he start of each page. Related pages will have the same header, which

enotes the topic of interest represented by this page, and helps to pro-

ide useful context during data querying. For example, all pages under

 section like ‘River Wharfe’ will bear the header ’River Wharfe’ . 

3. Extracting information (Subject-Predicate-Object (SPO) from

he text using Natural Language Processing (NLP) techniques) At this

tage, NLP techniques have been used to identify nouns and verbs from

he text page (e.g. page12.txt ). A python parser has been written, mak-

ng use of the nltk library NLTK (2020) , to identify nouns and verbs

nd to split the sentences into three parts similar to a triple (Subject-

redicate-Object). The python parser identifies the verbs, and eventually

dentifies the phrase preceding the verb as the subject, and the phrase

ucceeding the verb as the object. In this way, a sentence is rendered as

n SPO . The python parser extracts the SPOs from the sentences from

ach page and saves them in a different text file ( e.g. page12-SPO.txt ).

ut at this stage, the resulting page ( e.g. page12-SPO.txt ) is checked

or redundancy. This action is required since the nltk library recognises

every’ verb as a verb, and if there is a verb within a subject phrase or

bject phrase, it is also recognised as a verb, and obviously, the prefix

nd suffix of this verb will be automatically classified as subject and ob-

ect respectively. This step is semi-automated as it requires the user to

rowse through the list of SPOs per text file and remove those that do

ot make any sense. This is not such a tedious process as the text file

epresents a single page from the report. This step can be classified as a

ata cleaning process. 

4. Converting the SPOs into RDF triples Once the SPOs have been

ormulated, they can then be semantically converted into an appro-

riate RDF triple form. In order to maintain the uniformity between

he SPO and the RDF data, rdf constructs from the rdf vocabulary

DFSchema (2014) have been used to semantically convert the unstruc-

ured text. One such example is shown below: 

“rdf:subject ” : “River Wharfe ”; 

“rdf:predicate ” : “has ”; 

“rdf:object ” : “GaugeName:Addingham Peak stage:2 Time:07:30

ate:26 Dec RankInRecord:5 RecordLength:43 CurrentorPreviousHigh-

st:2.541 Jan 1982 ”. 

.5. Loading and Querying the data from a semantic data store 

Once the triples have been created, they are ready to be loaded onto

 semantic data store for querying. The semantic augmentation has been

arried out using a Python script which converts the data into RDF form

nd stores them in relevant JSON-LD files. These JSON-LD files can then

e loaded onto the semantic store. The semantic data store used here is

raphDB ( GraphDB, 2020 ) and the semantic query language used to

uery the semantic data is SPARQL ( Sparql, 2008 ). The next section

ives examples of queries executed from this unified model, and pro-

ides an evaluation of the GraphDB tool. 

. Evaluation 

This section evaluates the linked data model qualitatively through

ome use cases, and also presents a quantitative analysis based on run-

ing the SPARQL queries on GraphDB. The benefit of using modular

ntologies has also been highlighted in this section. 
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Fig. 5. River Concept. 

9 
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Fig. 6. Semantic enrichment of unstructured data. 
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.1. Qualitative analysis of the linked data model 

The linked data model was set up by integrating different data sets

ogether on GraphDB. These data sets were represented principally by

he information extracted from the Section19 report, the Communities

t Risk data set and the metadata about flood concepts provided through

he flood ontologies. Not to mention that we can bring in other flood-

elated data sets in this model if available. The linked data model was

valuated to see if we can query for information from the individual

atasets and also to see if we can query from multiple datasets behaving

s one unified model. Therefore, the aim is to show how the informa-

ion spread across the spreadsheets can be brought together, how the

nformation extracted from the Section19 report can be queried, how

he metadata of the ’raw’ data can be queried from the flood ontology

nd how we can query for finer-grained details embedded within the

ommunities at Risk data set that have emerged as a result of applying

ata transformation to this set. Most essentially, we also show how the

inked data model can be queried as an integrated model, pulling data

 

10 
itting across structured and unstructured data sets - the Section19 re-

ort and the Communities at Risk data set - in order to reveal combined

etails as opposed to querying them individually. These queries were

xecuted using a SPARQL query facility provided through the GraphDB

ool and have been presented below: 

• Integration of structured data provided through the Excel spread-

sheets: 

Fig. 7 (a) shows the results of a query across different Excel spread-

sheets for details about a gauge station near a river named “Wharfe ”.

The different codes highlighted in the figure denote different data

records pulled out from the spreadsheets. 
• Data transformation on the structured data: 

Fig. 7 (b) highlights 4 fields, which are a result of splitting one single

field from one Excel spreadsheet. The aim behind this data transfor-

mation is to reveal some crucial details that are relevant to the flood

scientists. For instance, the example shown in this figure shows de-

tails such as: who created a flood model, what is the dimension of the
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Fig. 7. Querying data. 
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Fig. 8. Integrating Excel data with Section19 report. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Triples queried. 

Query Type Triples Queried 

Query river “Wharfe ” from Excel sheets 174 

Query all observations from Section19 document 2043 

Query by Gauge 39 

Query for a given gauge code 2 

Query Property Return Periods for river “Wharfe ” 320 

Query river “Wharfe ” across Excel sheets and 

Section19 document 

213 
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o  
model, what is the name of the model, and when was the model cre-

ated. The availability of more information through such data trans-

formation not only reveals important information to the user, but

also means that more data can be integrated given their availability.
• Querying an unstructured document: 

Fig. 7 (c-e) shows the results of querying the Section19 report. Infor-

mation pertaining to the river ’ Wharfe ’ ( Fig. 7 (c)), water levels ( Fig. 7

(d)) and the time period Dec 2015 ( Fig. 7 (e)) are shown as queries

from the Section19 report. This flexibility of querying such a highly

complex document emphasizes the benefits of using a semantic ap-

proach to make such information available. 
• Semantic enrichment of data with metadata from the flood domain

ontology: 

Fig. 5 (b) shows the metadata of the river concept, and reflects how a

particular concept is related to other concepts through the ontology.

Querying such metadata not only helps the scientists to see how the

data has been enriched but also enables them to identify data gaps

in their analysis. 
• Integration of structured data (Excel spreadsheets) together with un-

structured data (Section19 report): 

Fig. 8 shows the results of integrating structured data and unstruc-

tured data. This query demonstrates the power of creating a unified

data model over data which would have otherwise been silo-ed, and

such integration can enable the flood scientists to gain a better in-

sight about a given location/river. This particular use case shows

observed measurements on the river “Wharfe ” but also shows added
information from the Section19 report. m  

12 
.2. Quantitative analysis of the linked data model 

This section gives an overview of the number of triples formed during

he integration process, and the time taken to run every query. Table 1

ives a glimpse of the number of triples produced from executing differ-

nt queries against the Excel files and the Section19 document. 

Although the number of triples output for each query varies in a

ange of 2 to 2043, we note that the time taken for running the queries

s trivial (0.1-0.2 sec). The GrapdhDB query facility (SPARQL) may be ef-

cient, but also the GraphDB version used is one of a standalone server,

mplying that the triple store is running on the same machine where we

uery the triples. Another observation is that although we converted

nly 11 pages (out of 56) of data into semantic format, there were a lot

f triples generated (2043). This is due to the fact that textual data is

ore compact, and although one page of data seems trivial compared
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i  
o a long list of records from an Excel sheet, one page can generate

any triples owing to the high number of sentences it may contain.

n the other hand, there was a lot of data regarding properties that

as also converted (4000 records), but the relatively small number of

riples resulting from querying any property data was due to the fact

hat the properties may not be affiliated to the gauge or river data that

as loaded. To load the whole property data (around 19800 records),

e would require more computing resources in terms of loading the

raphDB on a server machine or on a cloud-based version to accommo-

ate the high quantity of triples generated. 

.3. Benefit of modular ontologies 

The data ontology can be imported into the domain ontology in order

o reflect the existence of the schematic data in the domain context.

or example, the ‘Input Parameters’ (see Fig. 3 ) is a general concept in

he flood domain ontology, but it can get contextualised through the

ata ontology. Hence, the idea behind keeping the ontologies modular

s to enable the reuse of the domain ontology with some other data

ntology; and likewise reuse the data ontology, if required, with some

ther domain ontology. This way, we can exert a better control over

he ontologies regarding their maintenance and update. We do not need

o disrupt the entire flood ontological model if we need to add a new

omain concept or change the data schema. One reason behind keeping

ntologies modular is due to the high heterogeneity arising in the data.

sing only a global ontology (see Section 3 ) would imply constantly

pdating the ontology with new concepts to accommodate new data,

hus making the ontology more bulky and unmanageable. 

. Discussion 

This paper shows an approach to extract numerical as well as textual

nformation from an unstructured source and how to bring this together

ith information from a structured source. Regarding the unstructured

ata, we have extracted information from sentences and tables from

 PDF file but the approach highlighted can be applied to other types

f textual sources. JBA Trust/JBA Consulting are enhancing this proto-

ype model by looking at ways to extract further information from the

ood reports, either from text or images, and integrate them with other

atasets for further analysis. We also envisage to use Natural Language

rocessing techniques to extract relevant pieces of information from tex-

ual data that may be found within the subject or object entities. 

The modular ontological approach adopted in this paper enables a

etter maintenance of the domain and data ontologies. It allows for

reater flexibility in terms of updating only the data ontologies in order

o accommodate new data sources without affecting the domain ontol-

gy. Since the domain ontology models higher level concepts, it remains

nchanged even if the data parameters are changed. Depending on the

ature of the application, it is sometimes better to create a new ontol-

gy rather than reuse an existing one which can be bulky. The ontology

esign however requires the input of a domain expert and also of a de-

eloper with some experience in ontologies. Ontologies can also be used

o make inference of new knowledge based on their reasoning capabil-

ties. For example, a reasoning can indicate whether there is a danger

f water pollution in a flooded area if the water has been found to con-

ain excess of nitrogen and phosphorus. We intend to infer information

hrough ontological reasoning in the future. 

GraphDB has been used as the triple store as it can support millions

f triples, and is also now available as a cloud version to host data. The

ata we used was for a prototype implementation; however, on a larger

cale, triple stores such as GraphDB can deliver highly scalable solutions.

egarding the SPARQL queries, environmental scientists will need the

ssistance of a developer who has the knowledge of using the SPARQL

anguage. However, further work can be done around writing queries in

imple English or developing a visual query interface, and mapping them

utomatically onto their corresponding SPARQL query. There has been
13 
ome work done around this such as Ferré (2013) . Such an approach

an enable scientists to focus more on running their queries rather than

guring out how to formulate them in SPARQL. Moreover, the use of

emantic techniques looks like a promising step towards preventing data

rom being silo-ed, and also helping scientists towards better decision-

aking process. 

. Conclusion 

The need to reduce uncertainty in flood modelling and flood risk

anagement more generally is imperative for better decision making

nd policy making. Flood scientists stipulate that bringing in a broader

pectrum of parameters into the modelling process can help alleviate the

ncertainty dilemma. Although flood risk management largely depends

n measurement data, there is a need to bring in data from different di-

ensions in order to understand the unknown parameters in modelling.

 huge plethora of information in flood reports can help bring better

nsight on flood risk analysis. However, their unstructured nature im-

ose a barrier on the usage of the contained information for analytical

urposes. Previously, the emphasis of data integration approaches was

ore on structured datasets, but there is now a gradual shift towards

andling unstructured data sources as well especially with technologi-

al advances in Machine Learning and Natural Language Processing. Ex-

sting approaches allow the extraction of textual entities from text, but

ince we are dealing with both numerical and textual data in flood re-

orts, extracting only textual entities is not sufficient. We need to extract

umerical values from text without losing their contextual information.

Hence, this paper has demonstrated how we can extract numerical

s well as textual data from a document whilst preserving their integrity

nd how we can bring them together with data from structured sources

o form a unified model for richer querying. The linked data model

hows that it is possible to bridge the gap between structured and un-

tructured sources, and hence support our vision for an enriched support

or collaboration and decision-making in flood risk management. The

oles of Semantic Web and Natural Language Processing techniques have

een highlighted to enable such integration. This combination of tech-

ologies has successfully addressed our three research questions iden-

ified in the introduction. In particular, we have demonstrated how we

an successfully achieve data integration including the incorporation of

nstructured and structured sources and subsequently applied queries

hat draw on both sources of information. Our use of a hybrid ontologi-

al model of domain and data ontologies to integrate the heterogeneous

ata sources has also been particularly successful, most notably in facil-

tating the update and maintenance of the ontologies. 

Our approach has been demonstrated and evaluated through a real

orld case study and one important area of future work would be to

arry out further case studies drawing on different aspects of flood risk

anagement. We also believe that the approaches advocated in this

aper have broader applicability across other areas of environmental

cience and we are currently considering the use of Natural Language

rocessing and Machine Learning techniques to extract information on

lants, observers and locations from historical archives relating to bio-

iversity. 
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