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Abstract We introduce a new Markov chain Monte

Carlo (MCMC) sampler for infinite-dimensional inverse

problems. Our new sampler is based on the affine invari-

ant ensemble sampler, which uses interacting walkers to

adapt to the covariance structure of the target distri-

bution. We extend this ensemble sampler for the first

time to infinite-dimensional function spaces, yielding

a highly efficient gradient-free MCMC algorithm. Be-

cause our new ensemble sampler does not require gra-

dients or posterior covariance estimates, it is simple to

implement and broadly applicable.

Keywords Bayesian inverse problems · Markov chain

Monte Carlo · infinite-dimensional inverse problems ·
dimensionality reduction

Mathematics Subject Classification (2010) 65C05 ·
35R30 · 62F15

1 Introduction

In many Bayesian inverse problems, Markov chain Monte

Carlo (MCMC) methods are needed to approximate

distributions on infinite-dimensional function spaces,

for example in groundwater flow [15], medical imaging

[10], and traffic flow [7]. Yet designing efficient MCMC

methods for function spaces has proved challenging.

The earliest proposed sampler for function spaces

was the preconditioned Crank-Nicolson algorithm (PCN,

[4]). PCN is easy to code and broadly applicable, but it
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is not always efficient. When sampling from a posterior

distribution that is poorly scaled or multimodal, PCN

can require a huge number of samples to accurately cal-

culate statistics [6].

Recent gradient-based MCMC methods [6,9,2], pre-

conditioned MCMC methods [23,20], and SMC meth-

ods [16] have improved on the computational efficiency

of PCN. However, these new samplers require gradients

or posterior covariance estimates that may be challeng-

ing to obtain. Calculating gradients is difficult or im-

possible in many high-dimensional inverse problems in-

volving a numerical integrator with a black-box code

base [5]. Additionally, accurately estimating posterior

covariances can require a lengthy pilot run or adap-

tation period [19]. These concerns raise the question:

is there a functional sampler that outperforms PCN

without requiring gradients or posterior covariance es-

timates?

To address this question, we turn to the literature on

finite-dimensional MCMC. In finite-dimensional spaces,

there is a gradient-free sampler that avoids explicit co-

variance estimation yet adapts naturally to the covari-

ance structure of the sampled distribution. This sam-

pler, called the affine invariant ensemble sampler (AIES,

[12]), is easy to tune, easy to parallelize, and efficient at

sampling spaces of moderate dimensionality (d ≤ 20).

AIES is used extensively due to its implementation in

the popular emcee package for python [11].

The main contribution of this work is to propose a

new functional ensemble sampler (FES) that combines

PCN and AIES. To apply this new sampler, we first

calculate the Karhunen–Loève (KL) expansion for the

Bayesian prior distribution, assumed to be Gaussian

and trace-class. Then, we use AIES to sample the pos-

terior distribution on the low-wavenumber KL compo-

nents and use PCN to sample the posterior distribution

on the high-wavenumber KL components. Alternating
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between AIES and PCN updates, we obtain our func-

tional ensemble sampler that is efficient and easy to

use, without requiring detailed knowledge of the target

distribution.

In past work, several authors have proposed split-

ting the Bayesian posterior into low-wavenumber and

high-wavenumber components and then applying en-

hanced sampling to the low-wavenumber components

[17,16,8,2,3]. Yet compared to these other samplers,

FES is unique in its simplicity and broad applicabil-

ity. FES does not require any derivatives, and the need

for derivative-free samplers has previously been empha-

sized in [5,14,23,3]. FES also eliminates the require-

ment for posterior covariance estimates. Lastly, FES is

more efficient than other gradient-free samplers in our

tests.

In two numerical examples, we apply FES to chal-

lenging inverse problems that involve estimating a func-

tional parameter and one or more scalar parameters. In

our first example, we consider the advection equation{
∂ρ
∂t + c ∂ρ∂x = 0, t > 0,

ρ = ρ0, t = 0.
(1)

We simultaneously estimate the advection speed c and

the initial condition ρ0 from a set of noisy observations.

We compare the performance of PCN and FES and find

that PCN mixes slowly because c and ρ0 are highly cor-

related under the posterior distribution. In comparison,

FES mixes more quickly, reducing integrated autocor-

relation times [21] by two orders of magnitude.

In our second example, we consider the Langevin

diffusion
dX = P dt, t > 0,

dP = −αX dt+σ dW, t > 0,

X = P = 0, t = 0.

(2)

We simultaneously estimate the drift parameter α, the

diffusion parameter σ, and the posterior path (Xt)0≤t≤10
from noisy observations. We compare the performance

of PCN, FES, and an alternative derivative-free sampler

[23] that explicitly estimates the posterior covariance

matrix. We conclude that FES is the fastest available

gradient-free sampler for this challenging, multimodal

test problem.

The rest of the paper is organized as follows. Section

2 reviews the PCN and AIES samplers, Section 3 intro-

duces the new ensemble sampler for function spaces,

Section 4 presents numerical examples, and Section 5

concludes. Code to reproduce the examples is available

on Github1.

1 https://github.com/jeremiecoullon/functional_

ensemble_sampler

2 Background on MCMC samplers

In this section, we explain why it is difficult to approx-

imate a Bayesian posterior distribution on an infinite-

dimensional function space. Then, we describe the pre-

conditioned Crank-Nicolson sampler (PCN, [4]) which

can be used for this approximation task. Lastly, we

describe the affine invariant ensemble sampler (AIES,

[12]), an efficient sampler for finite-dimensional spaces

that has not previously been extended to the infinite-

dimensional setting.

2.1 Infinite-dimensional inverse problems

In a typical infinite-dimensional Bayesian inverse prob-

lem, the goal is estimating a posterior distribution

π(du) ∝ exp (φ(u))π0(du), (3)

where u is a square-integrable function on a domain

Ω ⊆ Rd, φ(u) is a log-likelihood functional, and π0 =

N (0, C) is a Gaussian prior distribution.

To estimate π, we must select a finite-dimensional

approximation space and then sample π restricted to

this space. However, ensuring high accuracy with this

approach is difficult. To accurately calculate statistics

of the posterior distribution, a high-dimensional ap-

proximation space is needed. Yet, as we increase the di-

mensionality, the acceptance probability for a standard

MCMC sampler, such as the Metropolis random walk

sampler [18], sinks to zero. Hence, the MCMC sampler

takes an increasingly long time to move anywhere, and

sampling from π becomes tediously slow [6].

2.2 Preconditioned Crank-Nicolson

PCN solves the problem of vanishing acceptance proba-

bilities by proposing MCMC moves that are always ac-

cepted under the Gaussian prior distribution. Because

of this stability property, even as we increase the dimen-

sionality of the approximation space, the average accep-

tance probability remains bounded away from zero [13].

Starting from a position U , the PCN update is

Ũ =
√

1− ω2U + ωξ, (4)

where ξ ∼ N (0, C) is a random draw from the Gaussian

prior and ω ∈ (0, 1] is a step size parameter. If ω � 1,

the proposal is a small perturbation of the position U ,

whereas if ω = 1 the proposal is independent from U .

The main computational cost of PCN then comes from

evaluating the acceptance probability

min
{

1, exp
(
φ(Ũ)− φ(U)

)}
, (5)

https://github.com/jeremiecoullon/functional_ensemble_sampler
https://github.com/jeremiecoullon/functional_ensemble_sampler
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which requires calculating the log-likelihood functional

at the proposed parameter value Ũ .

PCN is a simple, widely applicable approach that

requires little more than making inexpensive proposals

and evaluating the log-likelihood at the proposed pa-

rameter values. However, the main limitation of PCN

is the slow convergence of statistics when the posterior

distribution is poorly scaled or multimodal. This slow

convergence has led to myriad efforts to improve on

PCN’s sampling speed [6,9,16,2,23,20], but the avail-

able methods require gradients or covariance estimates

that can be difficult to obtain.

2.3 Affine invariant ensemble sampler

The affine invariant ensemble sampler (AIES, [12]) is a

finite-dimensional MCMC sampler with the remarkable

property of affine invariance. Affine invariance means

that the sampler remains completely unchanged if the

state space is stretched, compressed, or translated by an

affine transformation x 7→ Ax+b. Because of this prop-

erty, AIES efficiently samples from distributions that

are wide in some directions and narrow in other direc-

tions. These “poorly scaled” distributions would cause

problems for other samplers, but they do not compro-

mise the performance of AIES.

To sample from a density π on RM , AIES generates

an ensemble of walkers
−→
X = (X1, ...XL) that is invari-

ant with respect to the product density π (x1) · · ·π (xL)

on RML. To update the ensemble, AIES proposes slid-

ing one walker toward or away from another walker.

Then, AIES accepts or rejects the proposal according

to a Metropolis-Hastings step. The proposals and ac-

ceptance probabilities are invariant under affine trans-

formations, so the scheme is affine invariant overall.

To perform the AIES proposal step, we randomly

choose a walker Xi and a second walker Xj 6= Xi. Then,

we propose moving the walker Xi to the new position

X̃i = Xi + (1− Z) (Xj −Xi) , (6)

where Z is a random number in an interval [1/a, a],

chosen with density g (Z) ∝ 1/
√
z. Typically, a = 2

in applications, but more generally a is a parameter

that modulates the step size. The main computational

cost of AIES then comes from evaluating the acceptance

probability

min

{
1, ZM−1

π(X̃i)

π(Xi)

}
, (7)

which requires calculating the density π at the proposed

position X̃i.

AIES is a popular and efficient sampler for low-

and moderate-dimensional densities (M ≤ 20). AIES

would not typically be an efficient sampler for higher-

dimensional denities. However, in the sections to fol-

low, we explain how AIES can be applied to a low-

dimensional subspace of an infinite-dimensional func-

tion space, thereby improving the sampling compared

to PCN.

Remark 1 A parallel implementation of AIES is avail-

able in the emcee package for python [11]. In this ver-

sion of AIES, we split the walkers into two groups and

sample in two stages. Initially, we select walkers from

the first group and slide these walkers toward or away

from walkers in the second group. Then, we select walk-

ers from the second group and slide these walkers to-

ward or away from walkers in the first group. By split-

ting the walkers into two groups, we can conduct AIES

in parallel across multiple processors, helping to spread

out the computational cost.

3 New ensemble sampler

In this section, we describe the Karhunen-Loève (KL)

expansion, which is helpful tool for constructing func-

tional MCMC samplers. Then, we introduce our new

functional ensemble sampler (FES) and discuss its main

properties.

3.1 KL expansion

The KL expansion [22] is a rapidly converging basis
expansion for a random function ξ drawn from a trace-

class Gaussian distributionN (0, C). The KL expansion

decomposes ξ into a linear combination of “KL modes”

η1, η2, . . ., which are eigenfunctions of the covariance

operator C. Thus, the KL expansion takes the form

ξ =

∞∑
i=1

〈ηi, ξ〉 ηi, (8)

where 〈·, ·〉 denotes the inner product in L2 (Ω). Be-

cause ξ is a Gaussian with mean zero, the KL compo-

nents 〈ηi, ξ〉 are independent Gaussians with mean zero

and variances λ1 ≥ λ2 ≥ · · · that are determined by

the eigenvalues of C.

The KL expansion converges as rapidly as possible

in the sense of minimizing the mean squared error

Eξ∼N (0,C)

∥∥∥∥∥ξ −
L∑
i=1

〈ηi, ξ〉 ηi

∥∥∥∥∥
2

L2(Ω)

, (9)
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for any truncation threshold L ≥ 1. Because the KL

expansion converges so rapidly, the low-wavenumber

modes explain most of the variance in ξ. For example,

if ξ is a Brownian motion on [0, 1], the eigenfunctions

of the covariance operator are

ηi (t) =
√

2 sin

((
i− 1

2

)
πt

)
, i = 1, 2, . . . , (10)

and the eigenvalues are λi =
(
i− 1

2

)−2
π−2. Hence, the

five lowest-wavenumber KL modes account for 96% of

the variance in ξ, while the high-wavenumber modes

account for just 4% of the variance.

We now consider the implications of the KL expan-

sion for Bayesian inference. In a Bayesian inverse prob-

lem with a Gaussian prior, we can decompose a func-

tional parameter U in terms of the KL modes

U =

∞∑
i=1

Uiηi, Ui = 〈ηi, U〉 . (11)

Under the prior distribution π0 = N (0, C), the Ui com-

ponents are independent Gaussians. Under the poste-

rior distribution π (du) ∝ exp (φ (u))π0 (du), the Ui
components have an unknown distribution that must

be approximated through sampling.

Although the Ui components have an unknown pos-

terior distribution, the prior distribution restricts the

values these variables can take. The high-wavenumber

components are narrowly peaked Gaussians under the

prior, so they are constrained to be nearly Gaussian

with a low variance under the posterior. In contrast,

the low-wavenumber components are less constrained,

so the posterior distribution on these components can

become stretched, pinched, or otherwise distorted by

the likelihood function.

The KL coordinates divide an infinite-dimensional

inverse problem into a simple sampling part and a chal-

lenging sampling part. Sampling the high-wavenumber

components is comparatively simple. The prior and pos-

terior distributions on these components are nearly the

same, enabling PCN to sample efficiently. In contrast,

sampling the low-wavenumber components is more chal-

lenging. The posterior distribution on these components

may be poorly scaled or multimodal, causing difficulties

for PCN.

3.2 Functional ensemble sampler (FES)

To efficiently sample from function spaces, we propose

a Metropolis-within-Gibbs sampler that uses AIES on

the low-wavenumber KL components and PCN on the

high-wavenumber KL components. We call this algo-

rithm the functional ensemble sampler (FES) and pro-

vide pseudocode for the method below.

Algorithm 1 (Functional ensemble sampler)

To sample a distribution π(du) ∝ exp (φ(u))π0(du) where

π0 = N (0, C), perform the following steps:

1. Identify a matrix J whose columns are the first M

eigenvectors of C. Set P = JJT and Q = I − JJT .

2. Initialize an ensemble of walkers
(
X0

1 , ...X
0
L

)
.

3. For τ = 0, 1, . . .:

(a) For i = 1, . . . , L:

i. Randomly choose a walker X2τ
j 6= X2τ

i .

ii. Propose the update

X̃2τ
i = X2τ

i + (1− Z)P
(
X2τ
j −X2τ

i

)
, (12)

where Z ∈ [1/a, a] has density g (z) ∝ 1/
√
z.

iii. Set X2τ
i = X̃2τ

i with probability

min

1, ZM−1
π
(
X̃2τ
i

)
π (X2τ

i )

 . (13)

(b) Set
(
X2τ+1

0 , . . . , X2τ+1
L

)
=
(
X2τ

0 , . . . , X2τ
L

)
.

(c) For i = 1, . . . , L:

i. Propose the update

X̃2τ+1
i = PX2τ+1

i +Q
(√

1− ω2X2τ+1
i + ωξ

)
,

(14)

where ξ ∼ N (0, C).

ii. Set X2τ+1
i = X̃2τ+1

i with probability

min
{

1, exp
(
φ
(
X̃i

)
− φ (Xi)

)}
. (15)

(d) Set
(
X2τ+2

0 , . . . , X2τ+2
L

)
=
(
X2τ+1

0 , . . . , X2τ+1
L

)
.

3.3 Properties of FES

FES is a novel method for function space sampling,

which enhances the standard PCN approach. FES re-

mains stable as we refine the functional discretization,

similarly to PCN. However, compared to PCN, we can

tune FES to achieve faster mixing.

The main tuning parameter in FES is M , which

controls how many KL coordinates are included in the

AIES sampling. When M = 0, no AIES sampling is

performed, so the algorithm reduces to PCN. As M

increases, FES begins to outperform PCN. However,

if M increases past 20, the performance deteriorates,

since AIES is only an efficient sampler for subspaces of

dimension 20 and lower.

The precise number of KL coordinates to include

in the AIES sampling is a tuning decision, with the

optimal number depending on the estimation problem.

However, based on our numerical tests, we recommend
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setting M = 5 as a default and then adjusting M dur-

ing the early stages of the sampling to be as small as

possible while ensuring the PCN sampler can take large

steps (ω ≥ 0.5) with acceptance rate ≥ 20%.

To explain the limitations of FES, we recall the idea

of a likelihood-informed subspace (LIS), originally intro-

duced in [9]. An LIS is a low-dimensional linear sub-

space in which prior and posterior marginal distribu-

tions differ substantially. Moreover, conditioning on an

LIS ensures that differences between prior and poste-

rior distributions become small. An LIS is useful for

constructing efficient MCMC algorithms, because en-

hanced sampling is needed on the LIS but PCN pro-

vides efficient updates in directions orthogonal to the

LIS [9,8,3].

FES relies on the assumption that the 20 lowest-

wavenumber KL components contain an LIS. This as-

sumption is often but not always satisfied in practice.

By considering a sufficiently large number of KL coordi-

nates, we can always find an LIS. However, the required

number of coordinates may be larger than 20. For ex-

ample, a large number of KL coordinates is needed if

the posterior distribution emphasizes solutions that are

not very smooth, which can happen if the observational

noise in the problem is small. If the required number of

KL coordinates is higher than 20, FES may no longer

provide an efficient sampling solution, although it is still

not slower than PCN.

Ideally, we would extend FES by applying AIES di-

rectly to a likelihood-informed subspace and applying

PCN to the complementary subspace. However, to our

knowledge, all the available methods for identifying an

LIS require calculating gradients [8] or posterior covari-
ance matrices [3]. Developing broadly applicable tools

for identifying an LIS remains an issue for future re-

search.

Other extensions to FES are also possible. Whereas

Algorithm 1 presents a sequential implementation of

FES, there is also a parallel implementation using the

modified AIES sampling discussed in Remark 1. An-

other extension to FES involves jointly sampling func-

tional and scalar parameters in a Bayesian inverse prob-

lem. Indeed, it is straightforward to include additional

scalar parameters in the AIES subspace, as we demon-

strate through numerical examples in Section 4. We re-

gard this extension of FES as especially useful, since

there is often simultaneous uncertainty around func-

tional and scalar parameters in a model.

Lastly, we compare FES to the “hybrid sampler”

of Zhou and coauthors [23]. The hybrid sampler is a

gradient-free method that uses PCN to sample the high-

wavenumber KL components and uses Gaussian ran-

dom walk proposals to sample the low-wavenumber KL

components. In the hybrid sampler, the covariance of

the Gaussian perturbations is adaptively tuned based

on the estimated posterior covariance matrix.

We find in our experiments that the hybrid sampler

can be very efficient when the posterior distribution

is nearly Gaussian and the posterior covariance ma-

trix is accurately estimated (even slightly more efficient

than FES). However, limitations of the hybrid sampler

include sensitivity to non-Gaussian posterior distribu-

tions and long adaptation periods needed to achieve

peak performance. As we show in Section 4, FES ad-

dresses both of these limitations. FES is a fast sampler

for many non-Gaussian distributions, and FES is effi-

cient over short sampling runs.

4 Numerical examples

In this section, we apply FES to two challenging inverse

problems involving functional and scalar parameters.

For both problems, we fix the AIES step size to a = 2,

as recommended in [11], and we tune the PCN step size

ω to give an acceptance rate of 20%. We remove the

first 10% of each trajectory as burn-in, and we run the

trajectories at least 100 times as long as the integrated

autocorrelation time to ensure robust statistics [21].

4.1 Advection equation

We first consider the advection equation ∂ρ
∂t +c ∂ρ∂x = 0, a

simple first-order PDE that is a prototype for more gen-

eral hyperbolic PDEs. Given an initial condition ρ0(x)

and a wave speed c ∈ R, the solution to the advection

equation can be written explicitly as

ρ(x, t) = ρ0(x− ct). (16)

We aim to recover the initial condition and wave

speed from noisy observations of flow. Flow is the prod-

uct of density and velocity, given by the equation q =

ρc. When flow is the only quantity observed, the initial

condition and wave speed become highly correlated in

the posterior, making the MCMC sampling difficult.

In our Bayesian model, we set a Unif (0, 1.4) prior

on c and a Gaussian prior on ρ0 with mean 100 and

covariance function

k(x, x′) = 130 exp

(
−1

2
(x− x′)2

)
. (17)

We generate a true solution to the PDE by setting

ctrue = 0.5 and drawing ρ0 according to the Gaussian

prior. Then, we generate observations of the flow at lo-

cations x = 2, 6, and 10 and times t = 1, 1.5, and 2,

subject to independent N (0, 0.04) observational noise.
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To approximate the posterior distribution on ρ0 and

c, we apply FES using L = 100 walkers. During the ini-

tialization, we independently sample the walkers from

a ball around the posterior mode, as recommended in

[11]. We discretize ρ0 using 200 grid points, equally

spaced between x = 0 and x = 10.

In FES applications, we recommend choosing the

AIES subspace to be as low-dimensional as possible,

while ensuring that PCN can take large steps (ω ≥ .5)

with a high acceptance rate (≥ 20%). Here, we empir-

ically support this recommendation by evaluating the

performance of FES when the AIES subspace includes

the wave speed parameter c as well as M = 0, 1, 5, 10,

or 20 of the lowest-wavenumber KL components.

As our first conclusion from this comparison, we find

that we can take larger PCN steps with a 20% accep-

tance rate if we choose M to be large. We report the

precise PCN step sizes in Table 1, which reveals that a

PCN step size ω ≥ .5 is possible whenever M ≥ 10.

PCN step size
M=0 M=1 M=5 M=10 M=20

ω 0.04 0.05 0.15 0.60 1.00

Table 1: PCN step size for various FES trials.

As our second conclusion, we verify that choosing

M = 10 leads to the most efficient sampling. We report

the autocorrelation functions (ACFs) and integrated

autocorrelation times (IATs) for various observables in

Figure 1 and Table 2. For comparison purposes, we also

report the ACFs and IATs from a standard PCN-based

sampler. With the optimal parameter M = 10, we find

that FES reduces the IATs by two orders of magnitude

compared to PCN.

Integrated autocorrelation time ÷ 1000
PCN M=0 M=1 M=5 M=10 M=20

c 360 130 50 7.7 1.5 4.3
η1 390 110 30 6.8 1.4 3.1
η5 290 46 55 11 1.1 1.9
η15 280 30 16 12 1.0 1.2
η100 310 43 20 11 1.1 1.4

Table 2: IATs for wave speed c and several KL coeffi-

cients with the fastest IATs in bold. All IATs have been

divided by 1000 to improve readability.

To check that FES remains stable with increasing

dimension, we also run our experiments with a dis-

cretization into twice as many grid points. The IATs re-

main statistically indistinguishable from those reported

in Table 2 with relative differences of ≤ 10%.

Fig. 1: ACF curves for wave speed c and the first KL

coefficient.

Lastly, to help explain why FES performs so much

better than PCN, we present Figure 2, which shows

posterior samples of ρ0 conditioned on several values

of c. This figure reveals the strong correlation between

the wave speed c and the low-wavenumber components

of ρ0. Since the PCN sampler does not account for this

correlation structure, large PCN updates are highly un-

likely to be accepted. In contrast, FES naturally adapts

to this correlation structure, eliminating the major bot-

tleneck in the sampling.

Fig. 2: Samples of ρ0 conditioned on three values of the

wave speed c.
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4.2 Path reconstruction for Langevin dynamics

We consider a dynamical system in which position Xt

and momentum Pt evolve according to the following

Langevin SDE.
dX = P dt, t > 0,

dP = −αX dt+σ dW, t > 0,

X = P = 0, t = 0.

(18)

We aim to recover the parameters α > 0 and σ > 0, as

well as the complete path (Xt)0≤t≤10, based on noisy

observations of position at a few specific times.

We use the following Bayesian priors.

α ∼ Exp(12), σ ∼ Exp(4), W ∼ BM([0, 10]). (19)

As an example of mild model misfit, we set Xt = sin(4t)

and then add N (0, 0.09) observational noise at times

t = 1, 3, 5, 7, and 9.

To approximate the posterior path distribution, we

first infer the driving Brownian motion (Wt)0≤t≤10 and

the scalar parameters logα and log σ. Then, we recover

the posterior path by integrating forward the SDE (18)

using a standard Euler solver. To discretize Xt and Wt,

we use 200 equally spaced times between t = 0 and

t = 10.

We compare the performance of five different MCMC

samplers:

1. A PCN-based sampler that simultaneously proposes

PCN updates for W and Gaussian random walk up-

dates for (logα, log σ).

2. The “hybrid sampler” of [23], which explicitly esti-

mates the posterior covariance matrix.

3. A modified FES sampler with L = 8 walkers and

joint proposals that combine AIES and PCN moves

to update all the parameters at once.

4. A modified FES sampler with L = 100 walkers and

joint proposals.

5. A standard FES sampler with L = 100 walkers.

We initialize our samplers by drawing randomly from

the Bayesian prior distribution. After a short pilot run,

we find that M = 5 is a near-optimal truncation pa-

rameter, and we fix this parameter for all the samplers

(besides PCN). We report the IATs for the samplers in

Table 3, and we show ACF curves in Figure 3.

As a first comparison, we find that FES mixes more

quickly with L = 100 walkers than with L = 8 walkers.

L = 8 is the minimal possible number of walkers to

ensure the AIES sampler does not get stuck in a low-

dimensional subspace. However, it is recommended to

use more walkers whenever possible. Foreman-Mackey

and coauthors recommend using hundreds of walkers

Integrated autocorrelation times ÷ 1000
PCN Hybrid Joint,

L=8
Joint,
L=100

L=100

logα 51 38 23 11 12
log σ 26 22 18 6.6 8.1
η1 5.7 1.5 6.3 1.0 1.6
η10 5.9 1.6 2.8 2.0 0.39
η100 5.8 1.2 2.5 1.8 0.30

Table 3: IATs for logα, log σ, and several KL coeffi-

cients with the fastest IATs in bold. All IATs have been

divided by 1000 to improve readibility.

Fig. 3: ACF curves for the α parameter

[11], and in some applications up to 2000 walkers have

been used [1].

As a second comparison, we find that joint updates

lead to slightly faster sampling within the AIES sub-

space but slower sampling in the complementary sub-

space, compared to standard FES updates. Thus, the

advantages of joint updates versus standard Metropolis-

within-Gibbs updates depend on the particular statis-

tics being estimated.

As a last comparison, we find that the hybrid sam-

pler of [23] has two shortcomings that can be addressed

by using FES. First, the hybrid sampler is very slow to

estimate the posterior covariance matrix. Figure 4 re-

veals that more than a million iterations are needed for

the estimated variances for logα and log σ parameters

to stabilize. Since the hybrid sampler tunes its propos-

als based on the estimated posterior covariance matrix,

the method requires over a million iterations to achieve

its peak efficiency. In contrast, FES does not require

such an adaptation period: the dynamics remain stable

from the very first iteration onwards.

Second, even after the hybrid sampler has adapted

to the posterior covariance structure, mixing times for

all observable are still comparatively slow. A major ob-

stacle limiting the efficiency of the hybrid sampler is
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Fig. 4: Variance estimates for logα and log σ using the

adaptive hybrid sampler.

the multimodality of the posterior distribution, which

is highlighted in Figures 5 and 6. It is very challeng-

ing for a Gaussian random walk to efficiently traverse

a multimodal distribution. In contrast, we find in this

example that FES significantly outperforms the hybrid

sampler, suggesting a robustness to multimodality that

is highly desirable in applications.

Fig. 5: Posterior pdf for α exhibiting multimodality.

5 Conclusion

In this work, we introduced the functional ensemble

sampler (FES). FES requires no gradients, it is easy to

code, and it is parallelizable. These factors make FES

a widely applicable sampler for infinite-dimensional in-

verse problems.

In two numerical examples, we demonstrated the

benefits of using FES. First, when parameters in the

posterior distribution are highly correlated, we showed

how FES can reduce integrated autocorrelation times

by two orders of magnitude compared to PCN. Second,

Fig. 6: Posterior paths exhibiting multimodality.

when the posterior distribution is mildly multimodal,

we showed how FES outperforms PCN and the alter-

native gradient-free sampler of [23].

We acknowledge two opportunities to improve the

performance of FES even further. First, FES sampling

could be streamlined by identifying a likelihood-informed

subspace where enhanced sampling is most essential.

Second, after isolating a low-dimensional subspace for

enhanced sampling, we find that FES is typically an effi-

cient sampler, except in cases of extreme multimodality

in which FES deteriorates in its performance [12] and

further sampling modifications may be needed.

In conclusion, FES pushes the limits of the MCMC

approach to solving infinite-dimensional inverse prob-

lems. Despite having a few limitations, the method of-

fers a practical and powerful solution for many sampling

problems where PCN falls short, and we recommend

FES as a general-purpose gradient-free sampler.
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