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We present the multiple particle identification (MPID) network, a convolutional neural net-
work (CNN) for multiple object classification, developed by MicroBooNE. MPID provides the prob-
abilities that an interaction includes an e−, γ, µ−, π±, and protons in a liquid argon time projection
chamber (LArTPC) single readout plane. The network extends the single particle identification
network previously developed by MicroBooNE [1]. MPID takes as input an image either cropped
around a reconstructed interaction vertex or containing only activity connected to a reconstructed
vertex, therefore relieving the tool from inefficiencies in vertex finding and particle clustering. The
network serves as an important component in MicroBooNE’s deep learning based νe search analysis.
In this paper, we present the network’s design, training, and performance on simulation and data
from the MicroBooNE detector.

I. INTRODUCTION

A series of liquid argon time projection cham-
ber (LArTPC) detectors have been or are being de-
ployed at Fermilab as part of the Short-Baseline Neu-
trino (SBN) program [2] along the Booster Neutrino
Beamline (BNB [3]) and as part of the long-baseline
program of the Deep Underground Neutrino Experi-
ment (DUNE) [4]. The MicroBooNE experiment [5], part
of the Fermilab SBN program, has been operating since
2015, collecting data accumulated during beam-on and
beam-off time periods.

MicroBooNE operates a 170 ton (85 ton active)
LArTPC placed 470 m from the BNB target at Fermi-
lab. The LArTPC is 10.4 m long, 2.6 m wide and 2.3 m
high. The detector has three readout wire planes with
2400 readout wires on the two induction planes and 3456
readout wires on the collection plane [6]. Wires are in-
stalled with two induction planes oriented at ±60◦ with
respect to the vertical collection plane at a wire pitch
of 3 mm. An array of 32 PMTs are installed behind
the collection plane to detect the scintillation light from
argon ionization caused by charged final state particles
from neutrino interactions [7]. The TPC readout time
window is 4.8 ms and is digitized into 9600 readout time
ticks. Charged particles in liquid argon produce ioniza-
tion electrons, which drift to the readout wire planes in
an electric field of 273 V/cm. It takes 2.3 ms for an
ionization electron to drift across the full width of the
detector.

The MicroBooNE LArTPC continuously records
charge drifted and its arrival time on each wire. A soft-
ware trigger, based on PMT signals, records an event
triggered by the BNB beam spill if the interaction light
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detected by the PMT array is above a set threshold. Each
event consists of data collected from 1.6 ms before the
trigger and 3.2 ms after the trigger. Therefore, each
event has three sets of TPC data for each wire on all
three planes. A truncation of the wire readout is per-
formed around the trigger results so that the two induc-
tion planes have resolutions of 2400 wires × 6048 read-
out ticks, while the collection plane has a resolution of
3456 wires ×6048 readout ticks. Wire and time data can
be converted into an image format (charge on each wire
versus drift time) using the software toolkits LArSoft [8]
and LArCV [9] while maintaining high resolution in wire,
time and charge amplitude space. These information-rich
LArTPC images are suitable for applying deep learning
tools. In consideration of computing resources, images
for deep learning tools are compressed along the time
tick axis by a factor of six. Pixel values are merged by a
simple sum. Images become 2400 wires × 1008 ticks and
3456 wires × 1008 ticks for the induction and collection
planes, respectively. This corresponds to an effective po-
sition resolution of 3.3 mm [10] and 3 mm [6] along the
time tick and wire number directions, respectively.

Convolutional neural networks (CNN), deep learning
networks commonly applied to image processing appli-
cations, are currently used across neutrino and high
energy physics experiments [11]. For accelerator neu-
trino experiments, NOvA has applied a CNN as a neu-
trino event classifier [12] in its νµ → νe oscillation mea-
surement [13, 14] and its neutral-current (NC) coher-
ent π0 production measurement [15]. NOvA has also
demonstrated a context-enriched particle identification
network [16]. MINERvA has developed CNN tools to de-
termine neutrino interaction vertices and study possible
biases due to models used in the large simulated training
sample [17]. The NEXT experiment has also used a CNN
classifier to perform particle content studies at candidate
neutrinoless double beta decay vertices [18].

A variety of deep learning techniques have been used in
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neutrino LArTPC experiments. In MicroBooNE, a CNN
for assigning probabilities of particle identities for single
particles in the MicroBooNE LArTPC has been demon-
strated on simulated data in Ref. [1]. A semantic segmen-
tation network for LArTPC data [19, 20] has been used
for π0 event reconstruction [21], vertex finding, and track
reconstruction [22]. The DUNE experiment has recently
presented an updated long-baseline neutrino oscillation
sensitivity study incorporating a CNN for neutrino event
selection and background rejection [23].

In this article, we present our study in developing and
applying a multiple particle identification (MPID) net-
work with the task of multiple binary logistic regression
problem solving in MicroBooNE. It is the first demon-
stration of the performance of a CNN on LArTPC data
including systematic uncertainties, and the first parti-
cle identification network applied to LArTPC datasets.
The MPID network extends the functionality of Mi-
croBooNE’s previously-described single PID CNN net-
work [1]. It does not require pre-processing of image data
to identify and filter selected pixels in an image assumed
to be produced by a specific particle. The network pro-
vides simultaneous prediction scores for particle existence
probabilities in the same image among five different par-
ticle species: electrons (e−), photons (γ), muons (µ−),
charged pions (π±) and protons (p). The network is a
particularly useful tool for data analysis of particle in-
teractions in LArTPC detectors, since the region of an
interaction vertex often contains many particles.

The MPID algorithm can take as input a LArTPC im-
age with a fixed 512×512 pixel scale. A detailed descrip-
tion of the network design and training for MPID is given
in Section II. When used in MicroBooNE’s deep learning
based low-energy excess νe (LEE 1e-1p) search analysis,
the MPID network is primarily applied to images that
contain candidate reconstructed neutrino interaction ver-
tices as well as all reconstructed topologically connected
activity. MPID predictions are derived based on the full
information of all energy depositions topologically con-
nected to the vertex, particularly the first few centime-
ters of final-state particles’ trajectories, which are critical
for particle identification. In the νe search, the network
is also applied to more inclusive images roughly cropped
around the interaction vertex. This is a new feature com-
pared with the single PID network, which takes as input
only images containing filtered, reconstructed hits. Crop-
ping around the interaction vertex allows re-evaluation of
charge missing from the former topologically-connected
image, but is nonetheless present near the vertex, such as
photon showers from final-state π0s. This feature of the
MPID network can help MicroBooNE suppress impor-
tant photon backgrounds to a LEE search, as observed
by MiniBooNE [24]. We demonstrate this feature’s ro-
bustness against the presence of LArTPC activity such
as cosmic ray tracks that are uncorrelated with signal
features of interest.

In this paper, we are not prepared to show full per-
formance in the context of a physics analysis, but we

can present some specific measures of network perfor-
mance. Section III shows the efficiency of the different
particle scores on idealized events containing e−, µ−, and
p; Section IV shows data-simulation agreement on sam-
ples highly enriched in certain signal topologies; and Sec-
tion V shows efficiency and background rejection perfor-
mance for νe and some specific backgrounds.

II. MULTIPLE PARTICLE CONVOLUTIONAL
NEURAL NETWORK

A. Network design

The MPID network applies a typical CNN [25] struc-
ture for the task of multiple object classification, which
is summarized in block diagram form in Fig. 1. Input
images have a resolution of 512 × 512 (1.5 m×1.5 m) pix-
els, which generally matches the size of neutrino-induced
activity in MicroBooNE. A series of ten convolutional
layers are applied to the image for extracting high-level
features.

The first convolutional layer has a stride (shift unit of
the convolution calculation) of two with the goal of reduc-
ing the LArTPC images’ sparsity and increasing feature
abundance at the beginning of the algorithm. Follow-
ing convolutional layers have a stride of one, a block of
two convolution layers with a kernel size of three, fol-
lowed by a pooling layer that is repeated five times. An
average pooling layer is applied at every other convo-
lutional layer to contract the spatial dimension. Then
following the pooling layer is a rectifier activation func-
tion (ReLU) [26] for adding non-linearities to the net-
work, as well as a group normalization operator [27] to
avoid early overfitting.

Two fully connected layers with 192×8×8 nodes and
192×8 nodes are applied to combine the features derived
by convolutional layers. Output of the fully connected
layers is a vector with five floating point numbers, each
representing a confidence score for a target particle type
to be present in an image. The score is interpreted as
a normalized probability after applying a sigmoid func-
tion [28]. The algorithm is optimized by minimizing the
sum of binary cross entropy loss [29] across target parti-
cle types. In this way the prediction categories are not
exclusive between particles.

Figure 2 shows one example of the input and output
of the MPID network during inference. In this case,
the input image has one e− and one p concatenated at
the same vertex, a typical signal interaction topology for
an interaction-channel-exclusive 1e-1p search, as imple-
mented in the MicroBooNE deep learning based LEE
analysis. The MPID network calculates as output the five
floating point numbers described in the previous para-
graph, or “particle scores,” that correspond to the in-
ferred probability to have each type of particle present
in the image. In this example, high scores of 0.99 and
0.98 are given for p and e− in the image and low scores
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FIG. 1. MPID network scheme. The output has five num-
bers. Each of the values is between 0 and 1, representing the
probabilities of corresponding particles in the given LArTPC
image.

of 0.06, 0.01 and 0.02 are provided for γ, µ− and π±.

Figure 3 shows another example of the input and out-
put for the network during inference. The input image
has one γ, one e− and one p produced at same vertex,
which would in principle be rejected in an exclusive 1e-
1p search. Again, the MPID calculates scores that cor-
respond to containing each particle in the image. High
scores of 0.89, 0.95 and 0.85 are for p, e− and γ in the im-
age and low scores of 0.02 and 0.08 are found for µ− and
π± in the image. We also note for total clarity that the
photon particle score is indicative not of the predicted
total number of photons in the image, but rather the
probability that any photons are present in the image.
The former judgement, as well as the capability to iden-
tify the particle content of specific sub-features within an
image, is not within the scope of the MPID algorithm.

p e− γ µ− π±

MPID Score 0.99 0.98 0.06 0.01 0.02

FIG. 2. MPID example of an 1e-1p topology with a tabulated
output of particle scores. This image is generated by concate-
nating a p and an e− at the same vertex. Scores indicate high
probabilities of having a p and e− in the image. The image
applied to MPID has 512 × 512 pixels. A zoom-in image of
250 × 250 pixels is shown for visualization.

B. Training and Test Samples

Training and test samples for the MPID CNN are pro-
duced with a customized event generator that uses LAr-
Soft [8] and LArCV [9]. Detector processes are simulated
with the GEANT4 [30–32] simulation tool.

The first generator step produces a 3D vertex uni-
formly distributed in the MicroBooNE LArTPC. The
second step generates a random number of particles from
e−, γ, µ−, π±, and p options. All particles are generated
at the vertex from the first step with isotropic directions.
The multiplicities for the total number of particles al-
lowed in each image are randomly distributed between
two and four. The multiplicity for each particle type is
allowed to vary randomly between zero and two. Such a
configuration will include as a subset final-state interac-
tion vertex topologies that we are searching for or trying
to reject in MicroBooNE analyses, such as 1e-1p, 1µ-1p
and 1γ − 1p, as well as non-signal ones, such as 2µ or
2e. This generation strategy purposefully does not rely
on any of the standard neutrino final-state generators [33]
to avoid possible biasing the MPID network via inclusion
of possibly-incorrect kinematic or multiplicity informa-
tion provided by the generator. Moreover, this training
model will produce a more robust particle identification
tool capable of producing unbiased results for a much
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p e− γ µ− π±

MPID Score 0.89 0.95 0.85 0.06 0.17

FIG. 3. MPID example of an 1e-1γ-1p topology with a tab-
ulated output of particle scores. This image is generated by
concatenating three particles at the same vertex. Scores indi-
cate higher probabilities of having p, e− and γ in the image.
The image applied to MPID has 512 × 512 pixels. A zoom-in
image of 250 × 250 pixels is shown for visualization.

broader range of vertex-generating physics processes. Fi-
nally, high multiplicity topologies generated in this ran-
domized training samples help the network to activate
more nodes and learn more parameters for classification.

Each particle is generated with a single particle simula-
tion package, where no neutrino interaction model kine-
matics are assumed. For 80% of the training and test
samples, particles are simulated with kinetic energies be-
tween 60 MeV and 400 MeV for protons and between
30 MeV and 1 GeV for other particles. For the other
20% of the training and test samples, particles are simu-
lated with kinetic energies between 40 MeV and 100 MeV
for protons and between 30 MeV and 100 MeV for other
particles. Particles are generated with a flat energy dis-
tribution. Energy ranges are chosen based on the BNB
neutrino energy distribution and the analysis priority to-
wards the lower energy range. We generated 60,000 sim-
ulated events for training and 20,000 images for testing.
The images are intentionally generated without overlay-
ing cosmic rays on simulated images to retain separation
capabilities for µ−. Images used for training, testing and
inference are from the better performing collection plane
only [34], similar to networks described in Ref. [1] and
Ref. [19]. This choice serves to reduce the network’s
reliance on upstream reconstruction steps, such as the
matching of pixels from different wire planes.

C. Network Training

The loss of the network is defined using the BCEWith-
LogitsLoss [29] function in PyTorch taking the output
layer (five floating point number) as input. The BCE-
WithLogitsLoss function combines a sigmoid [28] oper-
ator with the binary cross entropy calculation. During
training, we applied an initial learning rate of 0.001.
Batch sizes of 32 and 16 are chosen for the training and
test processing. Training is processed with one single
NVIDIA 1080 Ti graphics card. Regularization methods
of dropout [35] and group normalization [27] are applied
to avoid early overfitting during training.

FIG. 4. Losses of training and test events during train-
ing (top). Accuracies of training and test events during train-
ing (bottom).

An accuracy is calculated while the training is moni-
tored for loss. Accuracy is defined as the fraction of pre-
dicted labels matching the truth labels with a threshold
value of 0.5 per event. MPID training curves of accu-
racies and losses are shown in Fig. 4. After epoch 29,
the test curve continues to improve but does not keep up
with the training curve. With the consideration of not
introducing bias from the training sample, we checked
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FIG. 5. Simulated 1e-1γ-1p final state event example (top). p score map (bottom left), p scores decrease as occluded region
crosses the p pixels. γ score map (bottom right), γ scores decrease as pixels in the trunk region of the gamma shower are
occluded and increase as the trunk region of the e- shower are occluded.

weights around epoch 29 and selected the one with best
accuracy on the test sample.

D. MPID Occlusion Analysis

We applied an occlusion analysis [36] to determine
whether the MPID network has calculated its predictions
using image features associated with underlying physics
for example, dE/dx at the first pixels of a particle (re-
ferred as the trunk region of a particle), as opposed to
other extraneous features in the image. The strategy is to
feed the network an image partially masked to check how
the MPID responds to the masked image. The occlusion
analysis places a 9×9 pixel box in the top left corner of

the image, which masks all pixels in the occlusion box
with zero values. With this box placed, we then apply
the MPID network to the masked image and plot at that
center pixel the produced score value. This process is
then repeated for each pixel as the occlusion box scans
along the x and y axis of the image. Figure 5 shows an
example of the occlusion box placed on the image. After
scanning the whole image, we obtain score maps showing
the MPID responses to each occlusion box placement lo-
cation. A lowered score for a particular pixel in occlusion
images indicates that the masked region contains topo-
logical information valuable for determining the identity
of that particular particle.

A simulated interaction image with one e−, one γ and
one p at the same vertex, shown in Fig. 5 is chosen
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to demonstrate the occlusion analysis. The bottom left
panel in Fig. 5 shows the p scores from the occlusion
study on the input image. The p score drops significantly
as the proton track’s Bragg peak region, where strong
p dQ/dx features exist, is masked. This indicates that
the MPID network is properly identifying and leveraging
features associated with the p’s unique energy deposition
density profile. It can also be seen that a few pixels in the
circle with very high pixel values in the pictured shower
are mildly misinterpreted as p-like features.

The bottom right panel in Fig. 5 shows the γ scores
from occlusion analysis of the same input image. From
the occlusion image, it is clear that a few key physics fea-
tures of γ-containing images have been properly learned
by the MPID network. There are two critical features in
the particle trunk region for e−/γ separation: the pro-
jected trunk region dE/dx difference and the presence or
absence of a gap between the trunk and the interaction
vertex. One can see the γ score drops to near 0.3 when
the trunk region of the γ (rather than the gap region
between γ and vertex) is masked. We also applied an
occlusion analysis to images with single γ images to con-
firm that γ scores drop and e− scores increase as the γ
trunk region is masked. We observe in this example that
the γ score also increases to near one when nearby pixels
connecting the p and e− are masked, since this produces
more gaps between different particles. The e− score does
not change much as we move the occlusion box around
since there are overwhelming e−-like features in the im-
age from both the e− and γ. This observation indicates
that consideration of both e− and γ scores is likely im-
portant in attaining good e− and γ separation with the
MPID network.

III. PERFORMANCE ON SIMULATION

To provide a first look at the capabilities of the trained
MPID algorithm, we present particle score results re-
turned from the test images generated using the same
method applied in producing training images. This sec-
tion is divided into discussions of individual final state
vertex and particle topologies of interest to MicroBooNE
physics analyses, with occasional reference to a larger
set of complimentary final state particle combinations lo-
cated in Appendix A.

We primarily focus on two generated test samples with
particles 1µ-1p and 1e-1p in the final state, which are not
used in training. 10,000 events are generated in each
sample. These samples are generated with the same cus-
tomized event generator described in Section II B. Ver-
tices are uniform in the detector with one proton and
one corresponding lepton. Kinetic energies of the pro-
tons are between 50 MeV and 400 MeV, while kinetic
energies of leptons are generated between 50 MeV and
1 GeV. The 1e-1p final state dataset has a similar final
state as the target events of MicroBooNE’s deep learn-
ing based LEE 1e-1p analysis. The 1µ-1p dataset has a

final state similar to a MicroBooNE νµ selection analysis,
described in Section IV A, that will be used to constrain
the beam-intrinsic backgrounds in the LEE search. For
complimentary final state particle combinations located
in Appendix A, generated protons, muons, and electrons
are generated with similar requirements as given above,
while pions and gammas follow requirements similar to
those of muons and electrons, respectively. For complete-
ness, Appendix A includes descriptions of MPID perfor-
mance all combinations of the five considered final state
particle types, excepting the 1µ-1p and 1e-1p sets de-
scribed in this section.

A. 1µ-1p Simulated Sample

Figure 6 shows stacked MPID scores of five particle
hypothesis for the 1µ-1p simulated test dataset. A sim-
ilar plot showing a complementary inverted final-state
configuration (Ne-Nγ-0µ-Nπ-0p) is shown in Fig. 35 in
appendix A. One can see between Fig. 6 and Fig. 35 the
MPID network provides good separation between track-
like and shower-like particles with p and µ− scores con-
centrated near one and e− and γ piled up near zero and
vice versa in the complementary sample.

The plot also shows a good separation between µ− and
π± using MPID, with a low score distribution for π±.
Separation between µ− and π± comes from the fact that
π± have higher rates of nuclear scattering than the µ,
and the π± can have a kink point where they decay as
noted in Ref. [1]. The network is likely keying primarily
off of visible kinks in a particle’s trajectory in order to
identify π± and the absence of visible kinks in a parti-
cle trajectory to identify µ−. By checking MPID over a
hand scanning of images from a 1π±-1p sample, we no-
tice MPID predicts high π± score and low µ− score when
the kink is visible, and vice versa when the kink is not
visible. Fig. 7 shows examples of predicting a high µ−

score for an 1π±-1p event where no kink is present and
and predicting a high π± score for an 1µ-1p event where
the muon scatters and has a kink on its track trajectory.

To perform particle identification as part of a neutrino
event selection analysis, a set of selections are usually
applied to particle score variables; these cuts will have
associated impacts on total signal selection efficiencies.
Figure 8 shows the passing fractions for track-like par-
ticles in the 1µ-1p dataset. Similar plots of the comple-
mentary configuration (Ne-Nγ-0µ-Nπ-0p) are shown in
Fig. 35 in appendix A. Passing fraction is defined as the
percentage of events with an MPID particle score above
a specified value; a tested set of events will have a passing
fraction calculated for each particle type. The cut value
for each particle score is varied between 0 and 1 with a
step size of 0.01. For example the blue dotted line shows
the passing fraction of p in the image at each p score
cut value. Figure 8 also shows the passing fractions for
shower-like particles in the 1µ-1p dataset. The passing
fractions are extremely low for either in the 1µ-1p sam-
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FIG. 6. MPID score distributions for the probabilities of p,
µ−, e−,γ, π± on the 1µ-1p validation sample.

ple. Fig. 35 shows low passing fractions for µ− and p and
high passing fractions for other three particles in images
with the final state of Ne-Nγ-0µ-Nπ-0p.

Figure 9 shows the correlation between µ−/π± scores
and the µ− kinetic energy using the same 1µ-1p sim-
ulation of 10,000 events. One can see that when the
µ− particles have low kinetic energy and produce fewer
µ−-like pixels in the image, the µ− score is decreased.
Meanwhile, π± scores for the same dataset appear to be
comparatively low across all tested muon energies.

B. 1e-1p Simulated Sample

Figure 10 shows stacked MPID score distributions for
the simulated 1e-1p dataset. A similar plot for a com-
plementary configuration (0e-Nγ-Nµ-Nπ-0p) is shown in
Fig. 30 in appendix A. MPID correctly calculates high
scores for signal particles of p and e−. One can see be-
tween Fig. 10 and Fig. 30, the network shows good sep-
aration between track particles in deriving low scores for
µ− and π±. The MPID CNN also shows good separa-
tion between shower-like particles when e−’s are present
in the image: derived scores for γ are clustered close to
zero, while e−-like scores are clustered around unity.

The passing fractions over MPID scores for track-like
particles in the 1e-1p dataset are given in Fig. 11. Simi-
lar plots of the complementary configuration (0e-Nγ-Nµ-

Nπ-0p) are shown is shown in Fig. 30 in appendix A. The
passing fraction for p in the image are much higher than
the fractions for µ− or π±. The capability to discriminate
between p and µ− appears to be particularly high, while
p/π± separation also remains high. This difference in
performance between µ− and π± should not be too sur-
prising given the level of π±-µ− passing fractions demon-
strated in the previous section. Figure 11 also shows the

FIG. 7. Simulated 1π-1p (top) and 1µ-1p (bottom) events.
MPID predicts a high µ− score at 0.93 and a low π± at 0.10
for the 1π−-1p event where no kink is present (top). MPID
predicts a high π± score at 0.97 and a low µ− score at 0.27
for an 1µ-1p event (low) where the muon scatters and has a
kink on its track trajectory.

passing fractions for the shower-like particles in the 1e-1p
dataset. Fig. 30 shows low passing fractions for e− and
p and high passing fractions for other three particles in
images with the final state of 0e-Nγ-Nµ-Nπ-0p.

Figure 12 shows the correlation between e−/γ scores
and e− kinetic energy. One can see the MPID network
has an overall high e− score until the e− kinetic energy
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FIG. 8. MPID passing fractions for track-like particles (top)
of p, µ− and π± on the 1µ-1p validation sample. MPID pass-
ing fractions for shower-like particles (bottom) of e− and γ
on the 1µ-1p validation sample.

approaches its critical energy in liquid argon and becomes
less shower-like. In a related sense, µ− scores for low en-
ergy 1e-1p interactions are found to be slightly higher
than high energy ones. Meanwhile, the γ score for these
events has a positive correlation with e− kinetic energy,
since high energy e− are more likely to experience sub-
stantial amounts of radiative energy loss.

IV. COMPARISON OF DATA/SIMULATION
PERFORMANCE

We prepared two different MicroBooNE LArTPC data
samples to validate the performance of the MPID net-
work on data. The MPID network was not employed
in the selection of these data samples. The first data
sample is a 1µ-1p enriched selection that uses a hybrid
selection of a series of reconstruction algorithms [22] and
MicroBooNE’s semantic segmentation network [19]. This
dataset is intended to be used in a MicroBooNE LEE

FIG. 9. Muon score vs. muon kinetic energy (top) and
charged pion score vs. muon kinetic energy (bottom) for the
1µ-1p simulation. Red dots indicate the average score in the
vertical bin.

1e-1p analysis to provide a data-based constraint on the
BNB neutrino beam’s intrinsic νe contamination. The
second sample contains νµ charged current interactions
with a final-state π0 (νµCCπ0) as defined in Ref. [21].
In this section we demonstrate that the MPID network
works well on real LArTPC images. We show good agree-
ment in MPID scores between data and simulation for the
selected datasets.

To enable data/simulation comparisons for these two
event classes, we simulate neutrino interactions using the
GENIE v3.0.6 [33] neutrino Monte Carlo generator. To
accurately include on-surface cosmogenic backgrounds
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FIG. 10. MPID score distributions for the probabilities of p,
µ−, e−,γ, π± on the 1e-1p validation sample.

present in all MicroBooNE LArTPC images, beam-off
data containing only cosmic rays is overlayed on simu-
lated neutrino interaction images. Beam-off data is taken
with cosmic ray triggers. An overlay sample is a combi-
nation of GENIE simulated beam events and cosmic data
events. This ensures that the reported particle score dis-
tributions for data and simulated images will be equally
affected by the presence of cosmic rays.

In the study of the 1µ-1p dataset, we apply the MPID
network to processed images containing only wire sig-
nal activity associated with particles reconstructed at a
candidate neutrino interaction vertex. In the study of
νµCCπ0 dataset, we instead apply the MPID network
to images made with all pixels near the reconstructed
vertex; in this case, particle scores are completely in-
dependent of any previous reconstruction. We show
that the network can purify the desired particle con-
tent while maintaining good data-simulation agreement
in both the ‘cleaned’ (input images containing only the
reconstructed interactions) and potentially ‘polluted’ (in-
put images also containing cosmic rays) input images.

A. 1µ-1p Enriched Data

The 1µ-1p enriched dataset is selected from a set of
MicroBooNE beam-on data corresponding to 4.4 × 1019

protons on target (POT) in the BNB beam. These events
consist of exactly two reconstructed particles – ideally
one p and one µ− – at the candidate interaction vertex.
The selection consists of two steps. The first step involves
a set of preliminary cuts based on optical information and
interaction topology cuts. Candidate 1µ-1p interactions
are required to have more than a threshold number of
photo-electrons recorded in the beam trigger window to
be signal. Interaction topology selections require candi-

FIG. 11. MPID passing fractions for track-like particles (top)
of p, µ− and π± on the 1e-1p validation sample. MPID pass-
ing fractions for shower-like particles (bottom) of e− and γ
on the 1e-1p validation sample.

dates to be located inside the TPC with exactly two fully-
contained reconstructed tracks. Topology selections also
require an opening angle greater than 0.5 radians. The
second step involves two boosted decision trees (BDT)
to make a final 1µ-1p selection. The first BDT is trained
to separate 1µ-1p from the cosmic backgrounds using
a simulated νµ sample and a beam-off cosmic ray only
dataset. The second BDT is trained to separate 1µ-

1p from non-signal neutrino interactions (i.e non-charged
current quasi-elastic (CCQE) νµ interactions, off-vertex
νµ interactions and interactions missing more than 20%
energy in reconstruction) using a simulated νµ sample.
Details of preliminary selection and BDT selections will
be documented in detail in future publications. The se-
lection of the dataset described above produces 478 data
and 466 simulated input images for processing by the
MPID network. In the simulated dataset, 94% of these
images contain true neutrino interactions. Among these,
314 (67% of total images) events contain solely one re-
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FIG. 12. Electron score vs. electron kinetic energy (top)
and photon score vs. electron kinetic energy (bottom) for the
1e-1p simulation. Red dots indicate the average score in the
vertical bin.

constructable final-state p and µ−.

We produce the input images in three steps. First, the
interaction vertex is located and any associated track-like
particles are reconstructed using algorithms described in
Ref. [22]; two and only two reconstructed tracks are re-
quired. Next, a 512×512 image is produced, centered
at the pixel-weighted center of the reconstructed 1µ-1p
event from a flat weight for non-zero pixels. Finally, to
address noise-related features, a threshold is placed on
the images with a minimum and maximum pixel value of
10 and 500, respectively. This procedure removes effects
from pixels from unrelated interactions near the neutrino

interaction vertex. Figure 13 shows an example of a 1µ-

1p image fed into the MPID network. The image is from
the collection plane.

FIG. 13. Example of the input data image from 1µ-1p se-
lection. The image is centered at the non-zero pixel weight
center. The image has 512×512 pixels. A zoom-in image of
250 × 250 pixels is shown for visualization.

The top image of Fig. 14 shows the p score for the se-
lected candidate 1µ-1p interactions, broken down into the
true physics process of each imaged vertex. The simula-
tion predicts that true 1µ-1p charged-current neutrino in-
teractions should cluster at high p score, with background
processes (particularly cosmic processes) more evenly dis-
tributed across the score axis. In the data, a distinct peak
is present at high p score, providing a strong indication
of proton(s) being present in most of the images.

The bottom sub-panel of this sub-figure shows the ra-
tio of data and simulation versus the p score. We note
that as we are primarily concerned with understanding
the agreement in the distribution of scores from 0 to 1,
discussion of the level of absolute agreement in normal-
ization between data and simulation is beyond the scope
of this study. For each point, the data’s statistical uncer-
tainty is shown, along with the systematic uncertainty as-
sociated with flux and cross-section uncertainties. Beam
flux uncertainties are evaluated by re-weighting events
according to the properties of the hadrons that decay
to produce the neutrinos. Cross section uncertainties are
evaluated by re-weighting events according to the proper-
ties of the neutrino’s interaction with an argon nucleus.
Detector uncertainties are in development and are ex-
pected to not have a dominant systematic effect on MPID
scores for 1e-1p events. Good agreement is found between
the data and simulation across the full range of p scores
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FIG. 14. MPID proton score distribution (top) and muon
score distribution (bottom) for selected 1µ-1p interactions.
Simulation-predicted score distributions show satisfactory
agreement with those realized in the 1µ-1p selection applied
to MicroBooNE data. Plot error bars indicate data statis-
tical errors, while hatched bands indicate statistical and/or
systematic uncertainties in the simulated dataset. The χ2

calculation incorporates contributions from systematic and
statistical uncertainties. The breakdown of interaction type
is based on the predicted event classification for the initial
neutrino interaction.

with flux and cross section uncertainties. This level of
agreement was quantified by calculating the χ2 between
the data and simulation distributions in the top panel of
Fig. 14. This χ2 includes both statistical and systematic
uncertainties in the data and simulation. A χ2/NDF of
32.4/ 20 is found, indicating a comparable performance
of the MPID on both data and simulation.

Figure 14 also shows the µ− score distribution for the
same selected 1µ-1p interactions. A majority of events
are found in the higher score region, indicating that the
MPID algorithm has correctly identified the presence of
µ− in these images. The bottom panel again shows the

ratio of data to simulation in the µ− score distribution;
systematic error bars are similarly defined as for the sim-
ulated p score distribution. A χ2/NDF of 9.9/ 20 is found
between the two distributions, indicating good MPID
data-simulation agreement for µ− score.

Figure 15 shows the score distributions for particle
types expected to be absent from or contained in lim-
ited quantities in the selected 1µ-1p dataset: π±, e−,
and γ. For γ and e−, the score distributions are peaked
very close to zero, since input images have only track-like
particles, and because, as demonstrated in Section III,
discrimination between track-like µ− and p particles and
shower-like γ and e− particles is expected to be high.
Scores for track-like π± particle scores are also clus-
tered towards zero, but with a broader overall width;
this result also matches the expectations of Section III.
The χ2/NDF of 22.0/ 20, 27.0/ 20, and 15.8/ 20 for
data/simulation comparisons for γ, π±, and e− indicate
comparable performances of MPID on data and simula-
tion.

The MPID network appears to provide similar perfor-
mance on both data and simulated neutrino interaction
images containing primarily track-like final-state parti-
cles. This similarity in performance is achieved despite
the input image’s reliance on other reconstruction algo-
rithms to ‘remove’ pixel content not related to final-state
particles connected to the candidate neutrino interaction
vertex. This indicates that not only the MPID algorithm,
but also the upstream reconstruction algorithms, treat
data and simulated LArTPC images on an equal footing.

B. νµCCπ0 Enriched Data

A study of π0-producing charged current νµ
(νµCCπ0) interactions is useful in providing a similar
data/simulation agreement validation for images that
also contain shower-like objects, as is expected from
charged-current νe interactions. For this study, we se-
lect events from the same dataset used in MicroBooNE’s
previous νµCCπ0 measurement [21]. The primary recon-
struction toolkits used to develop selection metrics for
these events are Pandora [37] and SSNet [19]. Selected
events are primarily required to have two showers close
to the interaction vertex. This requirement makes this
dataset distinct from a 1e− 1p selection, where one and
only one shower is allowed, which must be directly at-
tached to the vertex. In this way, in studying MPID
performance on the νµCCπ0 data sample, we demon-
strate not only data/simulation performance, but also
show how the network can help to reduce a major intrin-
sic background to the νe channel: π0-producing interac-
tions.

Input images from νµCCπ0 candidates are generated
by cropping a 512 × 512 square image centered at the
reconstructed interaction vertex, rather than at the im-
age’s pixel-weighted center as in the 1µ-1p images. To
ensure that π0 decay γs are not scrubbed from the im-
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FIG. 15. Charged pion score distribution (top), electron score
distribution (mid), and photon score distributions (bottom)
for selected 1µ-1p interactions. Score distributions agree with
the 1µ-1p selection. Data and simulation agree well. χ2 cal-
culation include systematic and statistical uncertainties.

age, no additional pixel ‘cleaning’ is applied. This means
that cosmic rays and other interactions unrelated to the
vertex remain in input images, presenting an additional
challenge to the MPID network’s performance. The same
noise filtering metric, as described for the 1µ-1p dataset,
is applied to the images. Figure 16 shows an example of
a νµCCπ0-containing image fed into the MPID network.
The image is from the collection plane.

FIG. 16. Example of the input data image from the νµCCπ0

selection. The image is centered at the reconstructed vertex.
The image has 512×512 pixels. A zoom-in image of 250×250
pixels is shown for visualization.

The selection and dataset described above produces
2051 data and 2011 simulated input images for process-
ing by the MPID network. According to the simulation,
41% of total events have νµCCπ0 interactions and 60%
of events contain π0-including interactions (including the
νµCCπ0 interactions).

Figure 17 shows the score distribution for having any
e− in the images cropped from the νµCCπ0 sample. The
score indicates a generally low probability of having e−-
like features in the data and simulated images. As a com-
parison, Fig. 17 also shows the score distribution for hav-
ing any γ-rays in the images. One can see a much higher
score distribution for the γ existence case, as expected
based on the event filtering criteria described above. Fig-
ure 18 shows the score distribution for having any µ− in
the νµCCπ0 images. The score generally indicates a high
probability of having µ−-like features in data and simu-
lation. In particular, it shows a difference between the
CC-and NC-π0 events in the low µ− score region.

The bottom panels of Fig. 17 and Fig. 18 show the ratio
of data to simulation versus e−, γ and µ− scores follow-
ing a area-only comparison. Systematic uncertainties are
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FIG. 17. Electron score distribution (top) and photon score
distribution (bottom) for selected νµCCπ0 interactions. Score
distributions agree with the νµCCπ0 selection. Data and sim-
ulation agree well. χ2 calculation include systematic and sta-
tistical uncertainties.

also included in the same manner as described for the 1µ-
1p dataset. Good comparable performance can be seen
between data and simulation with χ2/NDFs of 43.6/ 39
for e− score, 42.8/ 39 for γ score and 24.0/ 39 for µ−

score. Thus, this study demonstrates that, for a subset
of π0-containing neutrino interactions, the MPID algo-
rithm can reliably identify shower-related particle con-
tent in images without introducing biases between neu-
trino data and simulation predictions. This is achieved
despite the presence of additional incidental pixel activity
being present in interaction candidate images.

FIG. 18. Muon score distribution for selected νµCCπ0 in-
teractions. Score distributions for data and simulation agree
well using the νµCCπ0 selection. χ2 calculation includes sys-
tematic and statistical uncertainties.

V. USE OF MPID IN A LOW ENERGY EXCESS
MEASUREMENT

In the two previous sections, we have demonstrated
the MPID network’s utility in particle identification for
both track and shower topologies in LArTPC images,
as well as its equivalent performance on both data and
simulated events. We will now apply the trained MPID
network to simulated BNB νe and νµ interactions over-
layed with beam-off cosmic event images to demonstrate
the ability of the MPID network to aid in event selection
for MicroBooNE’s deep learning-based 1e-1p low-energy
excess search.

A. Simulated Intrinsic νe vs. νµCCQE and νµπ
0

We generated simulated neutrino events to evaluate
the performance of MPID in the 1e-1p selection in iden-
tifying beam-intrinsic backgrounds originating from from
νµCCQE and neutrino interactions with one or more π0s
in the final state (νµπ

0). Samples for these three datasets
are produced using the standard GENIE v3.0.6 [33] neu-
trino interaction generator and filtered using truth-level
information. In these samples, we require the lepton ki-
netic energy be greater than 35 MeV and p kinetic en-
ergy greater than 60 MeV. The minimum kinetic energy
thresholds were set in order to choose events whose lep-
ton and p trajectories are long enough to be reconstructed
by our deep learning based vertex finding and particle re-
construction algorithms [22]. Samples are then processed
using the reconstruction algorithms to identify candidate
interaction vertices and nearby related particles. Finally,
input images are generated with pixels from only the re-
constructed interaction final-state particles; each inter-
action is required to have two particles at this stage.
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Images are centered at the pixel weighted center of re-
constructed interactions. No other selection cuts beyond
the truth-level filtration described above are applied to
the samples.

FIG. 19. Electron score of νe intrinsic events and νµπ
0 events.

Both datasets are generated with the GENIE neutrino gen-
erator and filtered using truth level information. Presented
events have a reconstructed vertex.

Figure 19 shows the e− score distribution of recon-
structed events from νe and νµπ

0 datasets. A good sepa-
ration is visible between these two event classes. For ex-
ample, with only an e− cut score of 0.5, 83% of νµNCπ0

and 86% of νµCCπ0 events are rejected, while 81% of
true 1e-1p events are selected. It seems likely that fur-
ther gains in background rejection could be achieved by
also considering scores for other particles and by using
differing input pixel image inclusion settings.

Previous discussion from the occlusion analysis pre-
sented in Section III provides some level of insight into
the causes of the substantial discrimination shown in
Fig. 19. In particular, νe interactions will contain a
shower-like object with a trunk directly connected to an-
other particle, a feature that was clearly noticed by the
MPID network. This is not the case for most γ rays
present in νµπ

0 interactions. Another critical parameter
for separating e−- and π0-including events is the energy
deposition density, dE/dx, along this vertex-connected
shower trunk; the trunk region information is usually
well-reconstructed, since it is almost always directly at-
tached to neutrino candidate vertex. Some of the dis-
crimination in Fig. 19 may thus also arise from the net-
work’s ability to discriminate a high trunk dE/dx for
vertex-connected showers from quickly-converting π0 γ
rays.

The e− score can also be applied to separate 1e-1p
and 1µ-1p events. The separation is shown in Fig. 20.
The νe and νµCCQE events are well separated using the

FIG. 20. Electron score between νe intrinsic events and νµ
CCQE events. Both datasets are generated with the GENIE
neutrino generator and filtered using truth level information.
Presented events have a reconstructed vertex.

e− score calculated by the MPID network. For example,
with only an e− cut score of 0.2, 91% of true 1e-1p events
are selected, while 95% of νµCCQE events are rejected.
This discrimination ability almost certainly arises from
the lack of shower-like topologies in the νµCCQE inter-
action images.

B. Simulated Intrinsic νe vs. Cosmic Event

Due to the lack of substantial overburden and the long
readout time, cosmic rays could provide a substantial
background to a BNB-based 1e-1p νe measurement in
MicroBooNE. As most of this cosmic ray activity is in-
duced by µ−, it is expected that the presence of a p in
the signal’s final state will aid in distinguishing the two
categories. To test the MPID network’s ability to dis-
criminate the signal’s p particle content, we generated
a simulated intrinsic νe dataset with cosmic data over-
lay, in addition to another event set consisting purely of
beam-off cosmic triggers. For both datasets, we applied
the vertex finding and particle reconstruction algorithms
developed for two-track events, as described in Ref. [22];
in particular, each image is required to have exactly two
reconstructed particles connected to the candidate neu-
trino interaction vertex. As in the sub-section above, no
selection cuts are applied beyond truth-level event filtra-
tion.

Figure 21 shows the p score distributions on images
from the intrinsic νe dataset with cosmic overlay and the
pure cosmics dataset. One can see that the majority of
pure cosmic dataset events reconstructed as two-particle
signals events have p scores below 0.2. Meanwhile, the
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majority of reconstructed νe intrinsic events have p scores
near 1. For example, with only a p cut score of 0.5, 81%
of true 1e-1p events are selected, while 79% of cosmic
events are rejected.

FIG. 21. Proton score of νe intrinsic events and beam-off
cosmic data. The νe dataset is generated with the GENIE
neutrino generator and filtered using truth level information.
Presented events have a reconstructed vertex.

Investigation of information from prior reconstruction
stages and hand-scanning of event displays indicates that
the small peak in p score close to zero in the νe intrin-
sic dataset is due to inefficiencies in p reconstruction as
shown in Fig. 21(a) of Ref. [22]. Similar investigations
show that the small peak of of p score close to one in the
cosmic sample is introduced by cosmics with small inci-
dent angles relative to the collection plane; these non-p
tracks are often topologically compressed by reconstruc-
tion algorithms, giving them the appearance of short
tracks with a proton-like Bragg peak. Thus, future im-
provements in lower-level signal processing and particle
reconstruction is likely to further improve the cosmic dis-
crimination shown in Fig. 21.

VI. CONCLUSION

We have developed a CNN-based multiple particle
identification network, MPID, and applied it to images
of event interactions in MicroBooNE data. This is the
first demonstration of the performance of a CNN that
incorporates systematic uncertainties in LArTPC data,
and the first use of CNNs to perform particle identifica-
tion on real LArTPC data. The network takes a 512×512
LArTPC image and calculates the probability scores for
any particle in the image as p, e−, γ, µ−, and π±. The
training images are generated with a customized event
generator that concatenates particles at the same vertex.

The code for making the network and training sample
are made available in MPID [38] and LArSoft [8].

10,000 1e-1p and 1µ-1p images are used to benchmark
the network performance on simulated interactions. Pass
fractions of particles present in the images are found to
surpass those not present in the input images.

Satisfactory agreement in all score distributions are
found between data and simulation despite the many
complexities of the MicroBooNE liquid argon TPC re-
sponse, including inactive wire regions [39], electronics
noise [39], signal processing [40, 41], and space charge
effects [42].

We also demonstrated the metrics and performance of
applying the MPID network on BNB beam data from
MicroBooNE, which also illustrated the MPID network’s
clear capabilities in particle discrimination. When we
take reconstructed vertex activity as input in filtered 1µ-

1p candidate event images, MPID score distributions are
indeed high for p and µ−, and low for e−, γ and π±.
When we instead take all pixel activity as input in fil-
tered images containing π0-produced γ rays, we see large
differences between obtained e− and γ scores. By ap-
plying these demonstrated particle identification capabil-
ities to simulated BNB νe and νµ interactions, we have
shown that this validated tool can play an important role
in achieving a successful low-energy electron-like excess
measurement in MicroBooNE.
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Appendix A: MPID scores for all particle
combinations

This section serves to supplement Section III in pro-
viding a complete description of the performance of the
MPID network on a variety of simulated final-state parti-
cle combinations. In this section we present the network
performances on the full set of different samples over all
possible final particle state particle combinations. There
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are 32 different combinations regarding the five consid-
ered particle types. However, cases involving none of the
particle types, as well as all five particle types, were not
included in the training or test samples. The remaining
30 combinations are presented in this paper. For each
combination we present a stacked distribution similar to
Fig. 6 and a passing fraction plot similar to Fig. 8 for
each of the five type of particles. We present the 30 com-
binations in 15 pairs, with each pair having two comple-
mentary configurations, for example the network perfor-

mances over the final states of Ne−0γ−0µ−−0π±−0p
and 0e − Nγ − Nµ− − Nπ± − Np as shown in Fig. 22.
The data is generated using the same configuration for
the test sample described in Section II B. For 80% of the
sample, particles are simulated with kinetic energies be-
tween 60 MeV and 400 MeV for protons and between
30 MeV and 1 GeV for other particles. For the other
20% of the sample, particles are simulated with kinetic
energies between 40 MeV and 100 MeV for protons and
between 30 MeV and 100 MeV for other particles. Par-
ticles are generated with a flat energy distribution.
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FIG. 23. MPID score distributions and MPID passing fractions on a complementary set of 0e-Nγ-0µ-0π-0p and Ne-0γ-Nµ-
Nπ-Np. N is randomly one or two in each event.
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FIG. 24. MPID score distributions and MPID passing fractions on a complementary set of 0e-0γ-Nµ-0π-0p and Ne-Nγ-0µ-
Nπ-Np. N is randomly one or two in each event.
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FIG. 25. MPID score distributions and MPID passing fractions on a complementary set of 0e-0γ-0µ-Nπ-0p and Ne-Nγ-Nµ-
0π-Np. N is randomly one or two in each event.
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FIG. 26. MPID score distributions and MPID passing fractions on a complementary set of 0e-0γ-0µ-0π-Np and Ne-Nγ-Nµ-
Nπ-0p. N is randomly one or two in each event.
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FIG. 27. MPID score distributions and MPID passing fractions on a complementary set of Ne-Nγ-0µ-0π-0p and 0e-0γ-Nµ-
Nπ-Np. N is randomly one or two in each event.
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FIG. 28. MPID score distributions and MPID passing fractions on a complementary set of Ne-0γ-Nµ-0π-0p and 0e-Nγ-0µ-
Nπ-Np. N is randomly one or two in each event.
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FIG. 29. MPID score distributions and MPID passing fractions on a complementary set of Ne-0γ-0µ-Nπ-0p and 0e-Nγ-Nµ-
0π-Np. N is randomly one or two in each event.
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FIG. 30. MPID score distributions and MPID passing fractions on a complementary set of Ne-0γ-0µ-0π-Np and 0e-Nγ-Nµ-
Nπ-0p. N is randomly one or two in each event.
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FIG. 31. MPID score distributions and MPID passing fractions on a complementary set of 0e-Nγ-Nµ-0π-0p and Ne-0γ-0µ-
Nπ-Np. N is randomly one or two in each event.
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FIG. 32. MPID score distributions and MPID passing fractions on a complementary set of 0e-Nγ-0µ-Nπ-0p and Ne-0γ-Nµ-
0π-Np. N is randomly one or two in each event.
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FIG. 33. MPID score distributions and MPID passing fractions on a complementary set of 0e-Nγ-0µ-0π-Np and Ne-0γ-Nµ-
Nπ-0p. N is randomly one or two in each event.
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FIG. 34. MPID score distributions and MPID passing fractions on a complementary set of 0e-0γ-Nµ-Nπ-0p and Ne-Nγ-0µ-
0π-Np. N is randomly one or two in each event.
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FIG. 35. MPID score distributions and MPID passing fractions on a complementary set of 0e-0γ-Nµ-0π-Np and Ne-Nγ-0µ-
Nπ-0p. N is randomly one or two in each event.
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FIG. 36. MPID score distributions and MPID passing fractions on a complementary set of 0e-0γ-0µ-Nπ-Np and Ne-Nγ-Nµ-
0π-0p. N is randomly one or two in each event.
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