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Abstract

Vibrational resonance (VR) is a phenomenon wherein the response of a nonlinear oscillator driven by biharmonic forces with two
different frequencies, ω and Ω, such that Ω ≫ ω, is enhanced by optimizing the parameters of high-frequency driving force. In this
paper, an counterintuitive scenario in which a biharmonically driven nonlinear oscillator does not vibrate under the well known
VR conditions is reported. This behaviour was observed in a system with an integrable and asymmetric Toda potential driven
by biharmonic forces in the usual VR configuration. It is shown that with constant dissipation and in the presence of biharmonic
forces, VR does not take place, whereas with nonlinear displacement-dependent periodic dissipation multiple VR can be induced
at certain values of high-frequency force parameters. Theoretical analysis are validated using numerical computation and Simulink
implementation in MATLAB. Finally, the regime in parameter space of the dissipation for optimum occurrence of multiple VR
in the Toda oscillator was estimated. This result would be relevant for experimental applications of dual-frequency driven laser
models where the Toda potential is extensively employed.
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1. Introduction

Since Toda [1,2,3,4] proposed an exponential interaction
lattice between particles, now known as the Toda potential
more than forty decades ago to explain the phenomenon
of self-pulsation, a quasi-periodic pulsation of the output5

intensity of a solid-state laser in the transient regime, the
Toda potential has gained enormous research attention due
to its several applications in optics engineering. The ma-
jor important properties of the Toda potential are its inte-
grability, the existence of periodic and stable solitary wave10

solutions; as well as exact solutions for the dynamics and
the statistical thermodynamics [5,6,7]. The Toda potential
is also of special interest because it is the simplest poten-
tial function with an Henon type integral or constant of
motion and interaction acts only between the neighbour-15

ing particles [8]. The aforementioned properties makes the
Toda lattice system one of the most prominent subject of
research focus, even in the recent times. Indeed, earlier
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studies employed the Toda potential or lattice for mod-
elling of DNA [9], modelling a linear chain coupled to differ-20

ent heat baths at the ends [10], and the molecular dynam-
ics of muscle contraction [11]. Some new soliton solutions
to the Toda lattice were obtained using a modified bilin-
ear Bäcklund transformation [12], Darboux transformation
[13,14], exponential-function method [15], hyperbolic func-25

tion method [16], and extended tanh-function approach,
with the asymptotic stability proved in [17]. The Toda lat-
tice has been shown to be super-integrable because for ev-
ery N degrees of freedom, it possesses 2N − 1 independent
constants of motion [7]. In addition, numerical solution for30

the Toda lattice has been obtained via the Variational It-
eration Method [18], and Adomian Decomposition Method
[19].
More pertinent to the present study, Toda lattice has

been successfully used to model different classes of lasers35

such as a damped an-harmonic oscillator subject to the
Toda potential (Otto and Politi [20]), modulated lasers
[21,22], class-B lasers [23,24] and bad-cavity lasers [25,26].
Cialdi et al. [24] confirmed experimentally that the Toda os-
cillator model describes excellently the early stage dynam-40
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ics of the Nd:YAG laser. Investigations on the dynamics of
the Toda oscillator has revealed several intriguing dynam-
ical behaviours including sub- or supercritical Andronov-
Hopf bifurcation born from stable or unstable branch of
periodic solutions, period doubling, saddle-node, Neimark-45

Saker bifurcations, fold-bifurcations, chaos and hyperchaos
in coupled antiphase driven Toda oscillators [27,28,29,30].
In all the previous studies, the Toda oscillators were driven
mostly by a single sinusoidal force. In the paper by Kim et

al. [31], intermittent route to strange nonchaotic attractors50

was reported in a dual-frequency driven Toda oscillator at
two incommensurate frequencies. However, to the best of
our knowledge there is no report on the occurrence of vibra-
tional resonance (VR) [32] in dual-frequency driven Toda
oscillator.55

Motivated by the foregoing, we investigate the phe-
nomenon of vibrational resonance (VR), first studied by
Landa and McClintock [32] - manifesting in nonlinear sys-
tems driven by a biharmonic external force with two dif-
ferent frequencies ω and Ω; a low-frequency force F cosωt60

and a high-frequency force G cosΩt [33]. The amplification
of the weak input signal by the biharmonic periodic exter-
nal force carries significant importance in communications
[34,35], laser physics [36], acoustics [37], medicine [38],
neuroscience [39], geosciences [40], and ecology [41]. Fol-65

lowing the work of Landa and McClintock [32], Gitterman
[42] and Blekhman and Landa [43] developed theoretical
techniques for analysing VR. Consequently, the occurrence
of VR has been investigated theoretically and numerically
in monostable systems [44,45,46], multistable systems [44],70

excitable systems [47], and time-delayed systems [48],
asymmetric Duffing oscillator [46,49], biological nonlinear
maps [50], the quintic oscillator [44,45], a bistable system
[51], gene transcriptional regulatory system [52,53]; and
more recently in the FitzHugh-Nagumo model driven by75

a bichromatic excitation [54], nonlinearly-damped oscilla-
tors [55,56,57], asymmetrical deformable oscillator [58], in
time-delay gene transcriptional regulatory system [59] and
in systems with rough potentials [60], to mention but a
few. The majority of the above-mentioned results demon-80

strated the effects and roles of the high-frequency force
parameters G and Ω on the occurrence of VR. Recently,
the effect of depth and location of the potential well on
VR was reported in a quintic oscillator [61]. Furthermore,
nonlinearity in the damping coefficient plays significant85

contributory roles in the occurrence of VR [55,56,57]. Very
recently, a new body of research in connection with the VR
phenomenon in the quantum domain has emerged [62,63].
In addition, a recent review presented a new formalism for
describing VR in position-dependent mass systems [64].90

The wide incidence of VR observed in many kinds of sys-
tem are linked to its potential applications in, for instance,
detection of weak random signals [65], improving weak ape-
riodic signals [66], amplification of an auto-dyne signals in
vertical-cavity surface-emitting laser [67], enhancing weak95

signal with arbitrary high-frequencies [68,69], detection of
weak signals in the presence of strong background noise

[70].
In this paper, we report the result of an analysis on pos-

sible occurrence of VR in an oscillator with an integrable100

and asymmetric Toda potential. We will show, counter-
intuitively, that under the actions of dual-frequency signal
forces, the Toda oscillator with constant dissipation coeffi-
cient does not vibrate. However, with periodic dissipation
in place, VR is induced. We employed both analytical and105

numerical treatments to investigate the mechanism of the
VR and provide clear evidence that introducing period-
icity into the otherwise constant damping coefficient can
induce VR in the presence of the dual-frequency driving
force. The present result differs significantly from previous110

reports in which nonlinear dissipation enhances vibration-
induced resonances as reported in [55,56,57]. The paper is
organized as follows: the model is introduced in Section 2.
The theoretical and numerical analysis of VR are presented
in Section 3 and 4 respectively with the discussions and115

conclusion provided in Section 5.

2. The model

The model is a generalized damped and bi-harmonically
driven nonlinear system with a Toda potential. The equa-
tion of motion is given by [31]120

d2x

dt2
+ ν(x)

dx

dt
+
dU

dx
= F cosωt+G cosΩt, (1)

where F cosωt is the low-frequency force with frequency ω
while G cosΩt is the high-frequency force with frequency
Ω; and Ω >> ω. In Eq. (1), we have included a 2π-periodic
multiplicative displacement-dependent damping term, ν(x)125

which is a function of k0 and ǫ denoting, respectively the
damping amplitude and the strength of the dissipation in
the form

ν(x) = k0 (1 + ǫ cosx) ; (2)

while U(x) is the well known Toda potential given by130

U(x) = ex − x+ 1. (3)

The Toda potential has an extremely asymmetric curva-
ture and a linear dependence on the displacement x in the
x < 0 region when limx→−∞ U(x) = −x + 1, which is
equivalent to free fall dynamic. In the region x > 0, i.e.135

when limx→∞ U(x) = ex the system contains a very hard
spring. In the analysis that will follow, we will show that
the displacement-dependent periodic damping is essential
for the occurrence of VR and that in its absence, the Toda
oscillator will not vibrate even in the presence of dual-140

frequency forcing. Using Eq. (2) and Eq. (3) in Eq. (1), the
system to be analysed becomes

ẍ+ k0 (1 + ǫ cosx) ẋ+ ex − 1 = F cosωt+G cosΩt. (4)

When ǫ = 0, system (2) reduces to the exact model of
a quasiperiodically forced Toda oscillator exhibiting non-145

trivial intermittent route to strange nonchaotic attractors
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(SNAs) reported in [31]. Furthermore, if only one exter-
nal driving force is considered for constant damping, i.e.
ǫ = 0, system (2) reduces to the well investigated driven
Toda oscillator exhibiting abundant varieties of bifurcation150

structures including period-doubling, devil’s staircase and
chaos [27]. This system possesses unique asymmetry that
is at variance with oscillators in Duffing family. In fact,
its arguably, a good prototypical and simplest model for
asymmetric oscillators; and as such has been used to model155

a nonlinear RLC circuit [71]. Figures 1 and 2 illustrate
the salient features of the Toda potential and the periodic
damping in Eq. (4). The amplitude and location of local
minima and maxima of the periodic damping depends on
the sign of the damping amplitude k0 and strength of in-160

homogeneity ǫ.
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Fig. 1. Shape of the Toda Potential U(x) = ex − x+ 1.
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Fig. 2. Shape of the Periodic Damping Term ν(x) for; (a) four values
of ǫ with k0 = 1 (b) four values of k0 with ǫ = 1.

3. Theoretical Analysis

To examine VR theoretically, we employ the method of
separation of motion to separate Eq. (4) into slow and fast
motion. Since Ω ≫ ω, we can assume that the solution of165

Eq. (4) is of the form x(t) = X(t) + ψ(t, τ = Ωt), where
X and ψ are the slow motion with frequency ω and period
2π/ω and fast motion in fast time τ with frequency Ω and
period 2π/Ω, respectively. Themean value ofψ with respect
to time τ is given by170

〈ψ〉 = 1

2π

∫ 2π

0

ψ(τ)dτ = 0. (5)

Substituting x = X+ψ and Eq. (5) into Eq. (4), we obtain

Ẍ + ψ̈ + k0 [1 + ǫ cosX cosψ − ǫ sinX sinψ] (Ẋ + ψ̇)

+eX+ψ − 1 = F cosωt+G cosΩt. (6)

Since ψ is a periodic function in fast time τ , then by av-
eraging both sides of Eq. (6) over the period

[

0, 2πΩ
]

, then175

the equation for the slow motion can be obtained as

Ẍ + k0 [1 + ǫ cosX〈cosψ〉 − ǫ sinX〈sinψ〉] Ẋ + eX〈eψ〉 − 1 = F cos

The equation for the fast motion ψ is obtained by sub-
tracting Eq. (7) from Eq. (6) and by inertial approximation
ψ̈ >> ψ̇ >> ψ, it reduces to ψ̈ = G cosΩt, which has the180

solution

ψ(τ) = − G

Ω2
cos τ. (8)

With ψ in Eq. (8), we obtain the mean values

〈sinψ〉 = 1

2π

∫ 2π

0

sinψ(τ)dτ = 0,

〈cosψ〉 = 1

2π

∫ 2π

0

cosψ(τ)dτ = J0
(

G/Ω2
)

, (9)

〈eψ〉 = 1

2π

∫ 2π

0

eψ(τ)dτ = I0
(

G/Ω2
)

,

where J0
(

G/Ω2
)

and I0
(

G/Ω2
)

are respectively the185

zeroth-order Bessel function of the first kind and the
zeroth-order modified Bessel function of the first kind.
Eq. (9) allows us to simplify Eq. (7), so that the equation
for the slow motion becomes

Ẍ + k0
[

1 + ǫJ0
(

G/Ω2
)

cosX
]

Ẋ + I0
(

G/Ω2
)

eX − 1 = F cosωt.(10)190

Eq. (10) can be re-written as the equation of motion of a
system in the form

Ẍ + λeff Ẋ +
dVeff (X)

dX
= F cosωt (11)

where

Veff = I0
(

G/Ω2
)

eX −X (12)195

and

λeff = k0
[

1 + ǫJ0
(

G/Ω2
)

cosX
]

(13)

are the effective potential and effective damping coefficient
respectively. The shape and number of local minima and
maxima of the effective potential depends on the parame-200

ters G, Ω and β. Figure 3 shows that the location of local
minima changes with increasing G and Ω respectively.
The effective potential of the system is always a single

well with a minimum located at

X∗ = − ln

(

I0

(

G

Ω2

))

(14)205

The equation of motion for the deviation variable Y =
X −X∗ is given by

Ÿ + k0 [1 + ǫJ0 cosY +X∗] Ẏ + I0e
X∗

eY − 1 = F cosωt.(15)

Ÿ + k0 [1 + ǫJ0 cosX
∗ cosY − ǫJ0 sinX

∗ sinY ] Ẏ + eY − 1 = F cos

3
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Fig. 3. The effective potential Veff (X) for (a) four values of G with
Ω = 10 (b) four values of Ω with G = 250 and the effective damping
λeff (X) with k0 = 1, ǫ = 1.5 for (c) four values of G with Ω = 10
(d) four values of Ω with G = 250.

For F << 1, then |Y |<< 1 and we can approximate210

cosY ≈ 1, sinY ≈ Y and eY ≈ 1+Y , so Eq. (16) becomes

Ÿ + k0 [1 + ǫJ0 cosX
∗ − ǫJ0 sinX

∗Y ] Ẏ + Y = F cosωt.(17)

By neglecting the nonlinear terms in Eq. 17, we obtain an
approximate damped and periodically forced linear equa-
tion of the form215

Ÿ + λẎ + Y = F cosωt, (18)

where

λ = k0

[

1 + ǫJ0

(

G

Ω2

)

cosα

]

(19)

and α = ln
[

I0
(

G
Ω2

)−1
]

. The solution of Eq. (18) in the

long-time limit (t → ∞) is Y (t) = AL cos (ωt+ φ); where220

AL = F/
√
S and

S = (1− ω2)2 + λ2ω2, φ = tan−1

[

λω

ω2 − 1

]

. (20)

Hence, the response amplitude, which is the measure of am-
plification of the input signal by the high frequency signal
is defined by225

Q =
AL
F

=
1

√

(1− ω2)2 + λ2ω2
. (21)

Notably, for constant dissipation or damping, i.e. ǫ = 0,
λ in Eq. (19) reduces to λ = k0. Consequently, theoreti-
cal analysis based on the method of separation of motion
suggests that, the Toda oscillator (1) does not admit VR230

for constant dissipation or damping on account that the
response amplitude Q in Eq. (21) is independent on the
parameters G and Ω of the high-frequency force. Remark-
ably, a variation in the response amplitude with the high-
frequency force parameters G and Ω may appear in the235

numerical investigations. Whether the observed variation

is sufficiently significant to be regarded as an amplification
or de-amplification of the input signal is an open issue for
further investigation. However, when ǫ takes on nonzero
values multiple VR can occur in different ǫ-regimes - which240

is the main result of this paper as we shall further illus-
trate. It is emphasized here that the non-occurrence of VR
for constant dissipation is remarkably counterintuitive and
at variant with results obtained from the Duffing oscilla-
tor family as well as all the previous results obtained other245

systems.
Now, let us analyze the occurrence of vibrational reso-

nance as G is varied. From Eq. (20), we see that SG =
2λω2λG, where λG = dλ/dG. Hence, VR is attained when
SG = 0, which could be achieved subject to the follow-250

ing conditions: (i) λ = 0 or (ii) λG = 0 with λGG =
d2λ/dG2|GV R

> 0.
Since k0 6= 0, then λ = 0 when

1

ǫ
= −J0

(

G

Ω2

)

cosα (22)

and the resonance value is given by Qλ=0 = 1/|1 − ω2|,255

ω2 6= 1; which satisfies case (i). Hence, for fixed values of
the other system parameters, the response amplitude Qλ=0

is achieved at values of G that satisfy Eq. (22). Figure 4
shows the values of G for which λ = 0 for selected values
of Ω and ǫ. Figure 4 shows that λ = 0 only for ǫ values in260

the region −1 < ǫ−1 < ǫ−1
0 with multiple VR due to λ = 0

occuring only for ǫ values in the region ǫ−1
1 < ǫ−1 < ǫ−1

0 ,
where ǫ−1

1 = −0.3243 and ǫ−1
0 = 0.0935. Also, the range of

values of G for which λ = 0 increases as Ω decreases. That
is, resonance due to λ = 0 occurs only for ǫ < −1 and ǫ >265

ǫ0. Hence, for −1 < ǫ < ǫ0, VR will not occur since λ = 0.
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Fig. 4. The Plot of 1/ǫ against G from Eq. (22) with (a) Ω = 10 and
(b) Ω = 15

The second condition, i.e. λG = 0 is such that

λG =
k0ǫ

Ω2

[

−J1 cosα+
I1J0
I0

sinα

]

(23)

where J1 and I1 are respectively the Bessel function of the
first kind of order 1 and the modified Bessel function of270

the first kind of order one. From Eq. (23), since k0 6= 0, for
λG = 0 and λGG > 0, then there are peaks in the response
amplitude for G that satisfy

J1 cosα =
I1J0
I0

sinα. (24)

The roots of Eq. (24), GV R, occur at the critical points of275

λ. For k0 > 0, GV R occur at the values of G for which λ

4



is at a local minimum. In addition, for k0 < 0, GV R values
at which VR occurs coincide with the local maxima of λ.
The minima and maxima values of λ are located at GV R
that satisfy (24). It was observed that the oscillatory nature280

of the effective damping term λ gives rise to oscillatory
variation of the response amplitudeQwith VR taking place
at the minima or maxima of λ for k0 > 0 and k0 < 0
respectively. Thus, one can infer that the choice of damping
nature would determine the nature of the response curve.285

We remark that not all values of GV R due to λG = 0
corresponds to VR, since the peak produced in the Q-curve
does not necessarily imply a gain in the response amplitude
at G = 0. The Q value at GV R due to λG = 0 corresponds
to VR when QGV R

> QG=0 with290

QG=0 =
1

√

(1 − ω2)2 + λ2G=0ω
2
, λG=0 = k0(1 + ǫ).(25)

The G values for which λG=0 produces a gain in the re-
sponse amplitude at QG=0 is subject to the condition that:
|λGV R

| < |λG=0| is satisfied.
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Fig. 5. Variation of the theoretically predicted GV R with the pa-
rameter ǫ for (a) Ω = 10 (b) Ω = 15. The vertical dashed lines are
at ǫ = ǫ1 = −3.08, ǫ = −1 and ǫ = ǫ0 = 10.70.

In Figure 5, we plot the theoretically calculated GV R295

against the strength of inhomogeneity of the system ǫ for
Ω = 10 and Ω = 15 respectively. The shape of the response
curves can be predicted and understood from Figure 5 by
analysing the Regions A-E of ǫ values.
(i) Region A (ǫ < ǫ1): Multiple VR occurs because both300

conditions λG = 0 and λ = 0 are satisfied.
(ii) Region B (ǫ1 < ǫ < −1): VR occur only at one value

of G when λ = 0 and at certain values of G when
λG = 0, provided |λGV R

| < |λG=0|.
(iii) Region C (−1 < ǫ < 0): No occurrence of VR.305

(iv) Region D (0 < ǫ < ǫ0): Multiple VR occurs because
only the condition λG = 0 is satisfied.

(v) Region E (ǫ > ǫ0): Multiple VR occurs because both
conditions λG = 0 and λ = 0 are satisfied.

In general, for −1 < ǫ < ǫ0, multiple VR due to λG = 0310

only occurs for ǫ > 0 but there is no resonance for ǫ < 0.
However, for ǫ < ǫ1 or ǫ > ǫ0, VR peaks due to λG = 0
and λ = 0 are observed. In Figures 6 and 8, the theoret-
ically computed response amplitude Q against G is plot-
ted for different ǫ values corresponding to the Regions A-E315

for Ω = 10 and Ω = 15 respectively. To achieve optimal
VR phenomena in the Toda oscillator model, periodic dis-
sipation with strength of inhomogeneity ǫ values in regions
A, D and E earlier outlined is presented. Furthermore, the

number of GV R points decreases with increase in the high-320

signal frequency Ω.
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Fig. 6. Plot of theoretically computed response amplitude Q as a
function of G for ω2 = 0.75, k0 = 0.5, Ω = 10 and ǫ values in Regions
A-E.
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4. Numerical and Simulink Verification

The second-order nonautonomous ordinary differential
equation (ODE) given by Eq. (4) can be re-expressed as an
equivalent system of two first-order autonomous ODEs of325

the form:

dx

dt
= y;

dy

dt
= −k0 (1 + ǫ cosx) y − ex + 1 + F cosωt+G cosΩt.(26)

Numerical integration of Eq. (26) is achieved via the
fourth-order Runge-Kutta scheme with a suitable step size
over the time interval nT with T = 2π/ω being the period
of the low-frequency force F and n the number of complete330

oscillations.
Following the numerical integration of Eq. (26), the re-

sponse amplitude Q can then be calculated numerically us-
ing the components of the Fourier spectrum of the time
series of x given by335

Q =
A

F
=

√

Q2
S +Q2

C

F
(27)

where

QS =
2

nT

nT
∫

0

x(t) sinωtdt, QC =
2

nT

nT
∫

0

x(t) cosωtdt.(28)

n can be taken to be a suitably large value, say, 200.
We first examine and compare theoretically and numeri-340

cally obtained dependence of the response amplitude Q on
the damping amplitude k0 and strength of inhomogeneity
ǫ. In Figure 8, we have presented plot of the response am-
plitude Q as a function of the high-frequency force G, for
various values of the strength of inhomogeneity ǫ at a fixed345

k0 value; while in Figure 9, we present plot of the response
amplitude Q as a function of the high-frequency force G,
for various values of the damping amplitude k0 at a fixed
ǫ value. The response amplitude Q calculated from theory
and numerics are represented by the continuous curve and350

marker points respectively. In Figure 8, different ǫ values
were chosen, i.e. ǫ = −2.5, 1.5 and 11.5 in different param-
eter regimes, namely, negative, low and high values of the
damping inhomogeneity ǫ. Figures 8 and 9 shows that there
is good agreement between the theoretically and numeri-355

cally obtained response Q. Moreover, the shape and trend
of the theory (continuous curve) and numerics (solidmarker
points) are in good agreement. An increase in the value of
Ω leads to a decrease in the frequency of occurrence of the
resonance points. With the variation in the damping ampli-360

tude k0 at a fixed value of ǫ, the high-frequency forceG val-
ues at which VR occurs remains unchanged. However, the
position of the maxima and minima of the response ampli-
tude Q increases with decrease in the damping amplitude.
We implemented the Toda oscillator model given by365

Eq. (26) in MATLAB-Simulink. Simulink is a MATLAB-

based environment for modelling and simulating dynam-
ical systems. A block diagram of the system of equations
was created in MATLAB-Simulink and is shown in Fig-
ure 10. Subsystem 1 in Figure 10 has input 1 and input370

2 as x and 1 respectively and an output that performs
k0(1 + ǫ cosx). Subsystem 2 is a time-input block with
two outputs: output 1 and output 2 which represents the
driving functions, F cosωt and G cosΩt, respectively. The
data obtained from the Simulink environment was plotted375

in MATLAB and are presented in Figures 11 and 12. Fig-
ures 11 and 12 show that the Simulink implementation of
the Toda oscillator model given by Eq. (26) was in excel-
lent agreement with the theoretically calculated response
amplitude Q given by Eq. (21).380
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Fig. 8. Dependence of the response amplitude Q on G for three values
of the damping amplitude ǫ = −2.5, ǫ = 1.5 and ǫ = 11.5 with the
other parameters fixed at F = 0.2, ω2 = 0.75, k0 = 0.5, Ω = 10
(left-panel) and Ω = 15 (right-panel). The continuous curve and
solid markers represent the theoretically and numerically computed
values of Q respectively.
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Fig. 9. Dependence of the response amplitude Q on G for three values
of the damping amplitude k0 = 0.5, k0 = 1.0 and k0 = 2.0 with
the other parameters fixed at F = 0.2, ω2 = 0.75, ǫ = 1.5, Ω = 10
(left-panel) and Ω = 15 (right-panel). The continuous curve and

solid markers represent the theoretically and numerically computed
values of Q respectively.

5. Conclusion

In this paper, we have theoretically studied and numer-
ically verified the occurrence of the phenomenon of vibra-
tional resonance in a damped and bi-harmonically driven
Toda oscillator model with asymmetric potential. Theoret-385

ical analysis of VR was carried out by first separating the
model into fast and slow motions. The response amplitude
was then obtained from the linearised equation of the slow
motion. One of the most striking and remarkable observa-
tions was the non-occurrence of VRwhen the damping coef-390

ficient take on constant values. However with displacement-
dependent periodic damping, multiple resonances are in-
duced for a wide range of the damping parameters. The
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Fig. 10. Simulink implementation of the Toda oscillator system 1.

strength of displacement-dependent periodic dissipation ǫ
impacts significantly on the nature and occurrence of VR.395

We emphasize that the present result is a departure from
previous reports in which nonlinear dissipation enhances
vibration-induced resonances as reported in [55,56,57]. The
study showed that multiple VR is admissible in the model
with the Toda potential for ǫ values in the region ǫ < −1.5400

and ǫ > 0 with the highest number of VR points observed
for ǫ > ǫ0, where ǫ0 is a threshold that depends on the
high-frequency Ω values. Numerical approach was also em-
ployed to confirm the theoretical analysis and very good
agreement was achieved. This study provided insight into405

the conditions and the system parameter (k0 and ǫ) regime
for which one can achieve VR in the Toda oscillator model.
The results have great potential for modelling modulated
lasers [21,22], class-B lasers [23,24] and bad-cavity lasers
[25] for laser output amplification. In this regard, we im-410

plemented the dual-frequency driven Toda oscillator model
using MATLAB-Simulink, compared the response output
from the MATLAB-Simulink with theoretical results, and
found excellent agreement. Finally, we remark that the ef-
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Fig. 11. The response amplitude Q as a function of G computed
theoretically (continuous line) and Simulink simulation (red dots) of
the Toda system Eq. (26) for ǫ = 1.5, F = 0.2, ω2 = 0.75, k0 = 0.5
and Ω = 15.
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Fig. 12. The response amplitude Q as a function of G computed
theoretically (continuous line) and Simulink simulation (red dots) of
the Toda system Eq. (26) for ǫ = 11.5, F = 0.2, ω2 = 0.75, k0 = 0.5
and Ω = 15.

fects of dual-frequency driving presented here can be im-415

plemented in the context of the experimental configuration
of class-B lasers presented by Cialdi et al. [24].
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