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Abstract

We consider a version of the continuum armed bandit where an action induces a filtered

realisation of a non-homogeneous Poisson process. Point data in the filtered sample are then

revealed to the decision-maker, whose reward is the total number of revealed points. Using

knowledge of the function governing the filtering, but without knowledge of the Poisson in-

tensity function, the decision-maker seeks to maximise the expected number of revealed points

over T rounds. We propose an upper confidence bound algorithm for this problem utilising

data-adaptive discretisation of the action space. This approach enjoys Õ(T 2/3) regret under a

Lipschitz assumption on the reward function. We provide lower bounds on the regret of any

algorithm for the problem, via new lower bounds for related finite-armed bandits, and show that

the orders of the upper and lower bounds match up to a logarithmic factor.

Keywords: Applied Probability; Poisson Processes; Multi-Armed Bandit; Machine Learning

1 Introduction

The challenge of detecting interesting events, using limited resources, arises in numerous settings.

In a defence context, surveillance teams wish to observe suspicious activity or gain intelligence.

In ecological and environmental data collection, scientists wish to observe behaviours of endan-

gered species or record notable measurements of environmental variables. In manufacturing and

logistics settings, it is desirable to observe faults in machine operation or a supply chain.

However, in all of these settings, practitioners may face the problem of having insufficient

resource to observe everything they wish to, and must optimise their resource allocation to

maximise the detection of events. In these settings “resource” may refer to human searchers,

fixed or mobile sensors, cameras, or a variety of other equipment with a capacity to observe

events of interest.

∗j.grant@lancaster.ac.uk; corresponding author
†rszechtm@nps.edu
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Two factors play a particularly important role in the rate of detection. Crudely put, these

are where we look, and how good we are at looking. In any of these settings, we can only

expect to observe events in locations (spatial or temporal) where we deploy resource. Further,

the precision of the detection may also be affected by how resource is deployed. If resource is

spread over a large region, the probability of detecting events within this region may be lower

than if focused on a small area.

Inspired by these challenges, we consider a stylised model of resource allocation which cap-

tures the challenge of balancing coverage and detection probability. This framework is suffi-

ciently abstract to model problems across the various aforementioned applications and beyond.

Consider a decision-maker who aims to detect the maximum number of events occurring ac-

cording to a Non-homogeneous Poisson process (NHPP) on a segment [0, 1]. The decision-maker

selects a point y ∈ [0, 1] and then sweeps the sub-segment [0, y] searching for events. However,

the decision-maker’s search is imperfect, in that events in [0, y] are detected, independently of

each other, with filtering probability γ(y), where γ : [0, 1] → [0, 1], is a known, nonincreasing

function. The expected number of events detected by the decision-maker on a single sweep is

then determined by the filtering probability, and the cumulative intensity function (CIF) of the

NHPP,

Λ(y) =

∫ y

0

λ(z)dz, ∀ y ∈ [0, 1]

where λ : [0, 1] → R is the rate function of the NHPP. Given the decision-maker chooses to

sweep [0, y], the number of events detected has a Poisson(Λ(y)γ(y)) distribution.

Figure 1 illustrates this process. An example intensity function λ is represented by the

blue curve and a function γ giving the filtering probability is given by the black curve. The

blue points towards the bottom of the left pane illustrate a single sample of events from the

NHPP with intensity λ. The decision-maker selects y = 0.6 and sweeps the sub-segment [0, 0.6],

detecting each event therein with probability γ(0.6). The red piecewise-constant function in

the right pane illustrates the effective filtering probability over [0, 1]. The points plotted in red

then represent the events actually detected by the decision-maker during their imperfect search

- which we observe are a subset of the events that actually arose.

In this paper, we consider a sequential variant of this problem, where the CIF, Λ, is unknown

to the decision-maker, but the choice of endpoint y can be updated over a series of rounds, in

response to observing the locations of detected events in previous rounds. The decision-maker’s

aim is then to maximise the expected number of detected events over T ∈ N rounds. The study

of this problem is motivated both by its theoretical challenge and its practical interest.

Versions of this problem may arise in a number of settings such as ecological surveillance,

defence, and logistics, where sightings of endangered species, criminal activity, or machine faults

may for instance comprise the events of interest. As a motivating, and sufficiently general

example, consider a scenario where observations are made by searchers (representing cameras,

sensors, robotic and human searchers, etc.), that must restart at the same point after each round.

We note that while in the material that follows we will treat the line segment as indexing space

(for clarity and consistency), it could equivalently be thought of as indexing time or space-time

and apply to a yet broader range of examples.
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Figure 1: Graphical representation of the filtering process.

From a theoretical perspective, the problem is closely related to the one-dimensional case

of the stochastic continuum-armed bandit (CAB) problem (Agrawal 1995). This is a sequential

decision-making problem where in each of a series of rounds t ∈ [T ] ≡ {1, . . . , T}, a decision-

maker selects an action xt ∈ [0, 1] and receives a reward, which is a noisy realisation of some

unknown smooth function f : [0, 1] → [0, 1] evaluated at xt. The decision-maker’s aim is to

maximise the expected sum of rewards amassed over T rounds. To realise this aim, the decision-

maker must deploy a strategy which appropriately balances between exploring the action space

[0, 1] to learn the function f , and exploiting this information, selecting actions known to produce

larger rewards to maximise the cumulative total.

In the Poisson process-based problem at hand, a similar dilemma arises, we lack knowledge

of the filtered CIF - which corresponds to the reward function - and can only hope to maximise

the sum of rewards by exploring the action space - i.e. choosing a range of endpoints y ∈
[0, 1]. However, the feedback received on actions in our problem is much richer than in the

standard CAB problem. In addition to a noisy realisation of the filtered CIF, Λγ, we observe

the location of detected events, which can help with the estimation of the reward function beyond

the inferences from smoothness properties alone. Methods for the standard CAB problem are

therefore inappropriate for the problem we face, as is the existing unmodified theory. In this

paper we present a specific treatment of the previously described sequential endpoint selection

problem, which we henceforth refer to as a Filtered Poisson Process Bandit (FPPB), deriving a

bespoke decision-making algorithm and theoretical analysis of the problem.

1.1 Related Literature

Sequential decision-making problems on continuous action spaces have been studied extensively,

following from initial works of Agrawal (1995) and Kleinberg (2005). Most successful strategies
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have employed a combination of adaptive discretisation of the action space, and optimism in

the face of uncertainty. Our approach for the FPPB problem, also uses these techniques.

Adaptive discretisation, as used in the “Zooming” algorithm of Kleinberg et al. (2008) and

“hierarchical online optimisation” (HOO) algorithm of Bubeck et al. (2011a), reduces the avail-

able action space in round t to some At ⊂ [0, 1]. Restricting the action set ensures exploration

occurs at a predictable rate, and makes the action selection more straightforward. Gradually, as

the rounds proceed and more information is gathered, At is increased, usually in a data-adaptive

fashion to permit choice from a more granular set of actions. Intuitively, this is also appealing,

as when estimates of the reward are very crude, there is little motivation to make decisions at

a very granular level.

Optimistic approaches are those which encourage an appropriate balance of exploration and

exploitation by making decisions with respect to high probability upper confidence bounds

(UCBs) on the expected reward of the available actions. The Zooming and HOO algorithms

both calculate UCBs for the reward of available actions in each round and select the action

with the largest UCB. These approaches were the first to achieve order optimal performance, in

terms of regret, for this class of problems.

Strong results have also been obtained by approaches which use Gaussian processes and avoid

discretisation of the action space. The GP-UCB (Gaussian Process - Upper Confidence Bound)

algorithm of Srinivas et al. (2010) constructs an upper confidence bound on the reward function

over all actions, rather than at specific points, and selects the action which maximises this UCB

function. This method also has order optimal performance guarantees, but with respect to a

Bayesian measure of regret, rather than the frequentist one used in the analysis of the Zooming

and HOO algorithms.

It is worth noting that none of these algorithms can sensibly be applied to the FPPB, and

that their theoretical guarantees do not carry to the FPPB problem. Principally, this is because

they lack a means to handle the additional feedback in terms of the location data, but a more

subtle point is that without modification, these methods are not suited to unbounded rewards,

as we have in this setting, with the Poisson distributed reward.

Grant et al. (2020) consider a filtered Poisson bandit problem which is similar in some senses

to ours, but theirs employs a fixed discretisation of the action space, such that the spatial

locations of the events are irrelevant. They focus instead on the challenges of choosing multiple

non-overlapping sub-segments and analyse performance with respect to the best possible action

among a fixed discrete set. Grant et al. (2019) considers a continuous action space, but without

filtering of the observations. Inference is therefore more straightforward in this setting, and

the Thompson Sampling method proposed is not applicable to the FPPB setting. Recently, Lu

et al. (2019) provide an algorithm combining the adaptive discretisation of Kleinberg et al. (2008)

and heavy tailed UCBs of Bubeck et al. (2013) for a version of the CAB problem with heavy-

tailed reward noise distributions. While the Poisson does fit in to this class of distributions, it

also enjoys tighter bespoke concentration results, and a general heavy-tailed approach is overly

conservative for the FPPB - even if event locations were not observed.
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1.2 Key Contributions and Structure

The main contribution is a UCB algorithm with Õ(T 2/3) regret over T rounds. By derivation

of a lower bound, we show that under the assumptions on the CIF, this is optimal up to a

logarithmic factor. From the methodological viewpoint, we extend the Lipschitz multi-armed

bandit framework (Kleinberg et al. 2008) to deal with a filtered Poisson process on continuum.

The remainder of the paper is structured as follows. In Section 2 we precisely state the

problem of interest. In Section 3 we present our UCB approach to the problem. Sections 4 and

5 provide the upper and lower bounds on regret respectively. We conclude with a simulation of

our method in Section 6, and discussion in Section 7.

2 Model

The formal specification of the FPPB problem is as follows. In rounds t ∈ [T ], the decision-maker

selects an endpoint yt ∈ [0, 1] and makes an observation on the sub-segment [0, yt]. In round t,

the environment generates a realisation of the NHPP with CIF Λ, consisting of an increasing

sequence of event locations {Xt,1, Xt,2, . . . , Xt,Nt} ∈ [0, 1]Nt , where Nt ∼ Poisson(Λ(1)). The

end-point selected by the decision-maker implies a filtering probability γ(yt) ∈ [0, 1], such that

events to the left of yt are detected independently of each other with probability γ(yt), and all

events to the right of yt are not detected. As a result, a sequence of i.i.d. Bernoulli(γ(yt)) random

variables, Bt,1, Bt,2, . . . , Bt,Nt , is generated. The decision maker receives the count of detected

events Rt ≡ Rt(yt) =
∑Nt
k=1 1(Bt,k = 1, Xt,k ≤ yt) as a reward, and observes the locations of

detected events Xt,k with Bt,k = 1 and Xt,k ≤ yt. By construction, Rt ∼ Poisson(Λ(yt)γ(yt)).

The decision-maker’s objective is to maximise the sum of rewards obtained over T rounds,∑T
t=1Rt. To realise this objective we aim to determine a policy, A, which maps from a history of

actions and observations to a next action, which maximises the expected reward, or equivalently

minimises the regret,

RegA(T ) = E

(
T∑
t=1

Rt(z
∗)−Rt(yt)

)
, (1)

where z∗ ∈ argmaxy∈[0,1] Λ(y)γ(y) is an optimal endpoint which maximises the expected per-

round reward. Here the expectation is with respect to both the random process governing the

generation and filtering of events and the decision-maker’s actions. We will be interested in

upper bounding the regret as a function of T for our proposed algorithm, and comparing the

order of this upper bound to that of lower bounds on the best achievable regret of any algorithm.

Bounded regret is achievable only if the reward function is suitably well-behaved as to admit

learning from a finite sample of observations. This is ensured through assumptions on the

form of the CIF and filtering function. These assumptions, enforced throughout the paper, are

Lipschitz continuity of the filtered CIF and a rate bound,

A1: |γ(y)Λ(y)− γ(x)Λ(x)| ≤ m|y − x|,∀x, y ∈ [0, 1],

A2: λ(y) ≤ λmax,
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for m,λmax ≥ 0 known and finite. Assumptions A1–A2 are used to bound the estimation error

for the expected number of detected events in each cell; this can be achieved by including in

the cell index an additive term proportional to the cell length. We also assume that γmin =

infy∈(0,1]{γ(y)} > 0; this is without loss of generality, as segments with γ(·) = 0 do not contain

the optimal endpoint.

3 Algorithm

In this section we present our algorithm for the FPPB problem, CIF-UCB, given as Algorithm

1.

Algorithm 1 CIF-UCB (Cumulative Intensity Function - Upper Confidence Bound)

1: Input: Rate bound λmax, filtering probabilities γ(·), Lipschitz constant m, active cell set
A1 = {(0, 1]}, effective number of samples V1(0, 1) = ∅, index I1(0, 1) = m.

2: for t = 1 to T do
3: Selection Rule:
4: Find cell

(at, bt] = argmax
(x,y]∈At

It(x, y),

breaking ties randomly.
5: Do a sweep up to bt.
6: Update Vt+1(at, bt) = Vt(at, bt) ∪ {t}, and

ζt+1(bt) =
6 log(T ) max{1, λmax}+

√
6λmax log(T )vT (at, bt)∑|Vt+1(at,bt)|

i=1 γ(bτi)
,

with vT (at, bt) as in (5).
7: Update Λ̄t+1(bt) as in (2).
8: Division Rule:
9: if m(bt − at) ≥ ζt+1(bt) then

10: Update the active cell set At+1 = At \ {(at, bt]} ∪ {(at, (at + bt)/2], ((at + bt)/2, bt]}.
11: Set Vt+1((at, (at + bt)/2) = Vt+1(((at + bt)/2, bt) = Vt+1(at, bt), and

ζt+1

(
at + bt

2

)
=

6 log(T ) max{1, λmax}+
√

6λmax log(T )vT (at, (at + bt)/2)∑|Vt+1(at,(at+bt)/2)|
i=1 γ(bτi)

,

ζt+1(bt) =
6 log(T ) max{1, λmax}+

√
6λmax log(T )vT ((at + bt)/2, bt)∑|Vt+1(at+bt)/2,bt)|

i=1 γ(bτi)

12: Define Λ̄t+1((at + bt)/2) and Λ̄t+1(bt) as in (2).
13: end if
14: UCB Computation:
15: Set It+1(x, y) = γ(y)Λ̄t+1(y) +m(y − x) + γ(y)ζt+1(y) for all cells (x, y] ∈ At+1.
16: end for
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At a high level, CIF-UCB proceeds as follows. For each round t = 1, . . . , T , the algorithm

maintains a set of active cells, At, which form a partition of [0, 1]. An index, It, taking the form

of optimistic estimate of the expected reward, is computed for each cell in At. The algorithm

selects the right endpoint of the active cell with largest index as the action for that round.

Initially, the active set contains the unit interval, A1 = {(0, 1]}, so that the algorithm does a

complete sweep in the first round. If the number of sweeps of a cell exceeds some threshold

in relation to its length, the cell is split in half. Hence, active cells make up a partition of the

interval [0, 1] for all rounds. A new cell inherits the number of sweeps and detection count that

fall in its interval from the parent cell.

Accumulating rewards over the interval to the left of the selected endpoint makes the problem

structure combinatorial in nature, which poses a challenge for the analysis. The insight that

makes the analysis tractable is that, by the independent increment property of the Poisson

process, the filtered Poisson counts corresponding to the active cells that lie to the left of the

endpoint selected by the algorithm in each round are independent. This leads to a CIF estimator

for each active cell with tight error bounds.

We complete the notation needed to define the CIF estimator. Let {Ft}Tt=1 be the filtration

induced by the sequence of event locations and cell selections ((at, bt])
T
t=1. Also, let

Vt(x, y) = {τ1, τ2, . . .} ⊆ [t]

be the collection of (random) times when active cell (x, y] is swept by round t and let,

Zτi(y) =

Nτi∑
k=1

1(Bτi,k = 1, Xτi,k ≤ y)

be the filtered Poisson count to the left of y in round τi, corresponding to the i’th time that

cell (x, y] is swept. Finally, let
∑|Vt(x,y)|
i=1 Zτi(y) be the total filtered Poisson count to the left of

y over the rounds when cell (x, y] is swept, where |Vt(x, y)| is the the number of times that cell

(x, y] is swept by round t (i.e., the cardinality of Vt(x, y)). When the context is clear, we write

V in lieu of Vt(x, y).

For active cell (x, y], Λ(y) is estimated by dividing the cumulative filtered Poisson counts up

to y by its effective number of sweeps by round t,

Λ̄t(y) =

∑|Vt(x,y)|
i=1 Zτi(y)∑|Vt(x,y)|
i=1 γ(bτi)

. (2)

Essentially, in (2) the filtered Poisson count is unfiltered by dividing it by
∑|Vt(x,y)|
i=1 γ(bτi).

The filtering probability γ(bτi) ∈ Fτi−1 and the conditional expectation E[Zτi(y)|Fτi−1] =

Λ(y)γ(bτi), a.s. Then, iteratively conditioning Fτ|Vt(x,y)|−1, . . . ,Fτ1−1, leads to E[Λ̄t(y)] = Λ(y),

meaning that Λ̄t(y) is an unbiased estimator of Λ(y).

CIF-UCB samples from the origin to the endpoint of the active cell with largest index, and

divides the latter cell if its length exceeds certain threshold. The complexity of the CIF-UCB is

O(T ) for the variable updates, and O(
∑T
t=1 t log t) = O(T 2 log T ) for sorting the indices, since
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there are at most t active cells by round t.

4 Upper Bound on Regret

In this section we present the first of our main theoretical contributions, an upper bound on the

regret of CIF-UCB.

Theorem 1. The regret of CIF-UCB applied to the FPPB problem, with CIF and filtering

function satisfying Assumptions A1 and A2 satisfies

Reg(T ) = Õ(T 2/3).

Proof. The proof has three main stages. We first bound the CIF estimator error for each active

cell (Lemma 1), and then use the Lipschitz assumption to extend the bound to include all the

points inside an active cell (knowing that one of these points is an optimal endpoint for some

active cell; Corollary 1). Second, we use the Division rule to express the confidence bound of

each active cell in terms of its length (Lemma 2), which yields a bound for the per-round regret

of the cell selected by the algorithm (Lemma 3). Finally, we accumulate these per-round regrets

to obtain an upper bound for the regret over T rounds.

Firstly, we present the following concentration result, which asserts that the difference be-

tween the true CIF and the estimated CIF is unlikely to exceed the upper confidence terms used

in Algorithm 1.

Lemma 1. Let (x, y] be an active cell in round t. Then,

P
(∣∣Λ̄t(y)− Λ(y)

∣∣ > ζt(y)
)
≤ 2T−2,

where

ζt(y) =
6 log(T ) max{1, λmax}+

√
6λmax log(T )vT (x, y)∑|Vt(x,y)|

i=1 γ(bτi)
,

for vT (x, y) an a.s. upper bound of |Vt(x, y)|.

Proof. The Poisson count Zτi(y) ∈ Fτi and γ(bτi) ∈ Fτi−1, implying

E[Zτi(y)|Fτi−1] = Λ(y)γ(bτi), a.s.

Define,

Mk(y) =

k∑
i=1

(Zτi(y)− Λ(y)γ(bτi)).

Observe that τk−1 ≤ τk − 1 implies Fτk−1
⊆ Fτk−1, so that

E
[
Zτk(y)− Λ(y)γ(bτk)|Fτk−1

]
= E

[
E[Zτk(y)− Λ(y)γ(bτk)|Fτk−1|Fτk−1

]
= 0.

It follows that {Mk∧|V |(y),Fτk}k≥1 is a martingale, and Mk∧|V |(y)−M(k−1)∧|V |(y) = (Zτk(y)−
Λ(y)γ(bτk))1(k ≤ |V |) is a martingale difference sequence.
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If
∑k∧|V |
i=1 E

[
(Zτi(y)− Λ(y)γ(bτi))

2|Fτi−1
]
≤ z a.s. for k ≥ 1, Theorem 1.2A in (de la Peña

(1999)) leads to

P

k∧|V |∑
i=1

(Zτi(y)− Λ(y)γ(bτi)) > η for some k

 ≤ exp

(
− η2

2z + 2 max{1,Λ(y)}η

)
.

Since E[(Zτi(y)− Λ(y)γ(bτi))
2|Fτi−1] ≤ Λ(y)γ(bτi) a.s., the choice of z = Λ(y)vT (x, y) yields

P

k∧|V |∑
i=1

(Zτi(y)− Λ(y)γ(bτi)) > η for some k

 ≤ exp

(
− η2

2Λ(y)vT (x, y) + 2 max{1,Λ(y)}η

)
.

Solving for the r.h.s. above equal to T−3 leads to,

η = 3 log(T ) max{1,Λ(y)}+
√

(3 log(T ) max{1,Λ(y)})2 + 6Λ(y) log(T )vT (x, y)

≤ 6 log(T ) max{1, λmax}+
√

6λmax log(T )vT (x, y).

Taking a union bound over all k ≤ T , and replacing for the definition of Λ̄t(y) and ζt(y) results

in

P
(
Λ̄t(y)− Λ(y) > ζt(y)

)
≤ T−2.

Finally, using the same approach it can be shown that

P
(
Λ̄t(y)− Λ(y) < −ζt(y)

)
≤ T−2,

so the proof is complete.

To determine vT (x, y) we use the Division rule, whereby

m(y − x) ≤
6 log(T ) max{1, λmax}+

√
6λmax log(T )vT (x, y)∑|Vt(x,y)|

i=1 γ(bτi)
, (3)

for t = 1, . . . , T . Since
∑|Vt(x,y)|
i=1 γ(bτi) ≥ |Vt(x, y)|γmin, (3) is implied by

|Vt(x, y)| ≤
6 log(T ) max{1, λmax}+

√
6λmax log(T )vT (x, y)

m(y − x)γmin
.

Therefore, we need to find vT (x, y) such that

vT (x, y) ≤
6 log(T ) max{1, λmax}+

√
6λmax log(T )vT (x, y)

m(y − x)γmin
. (4)

Solving the quadratic inequality leads after some algebra to

vT (x, y) = log(T )

(
12 max{1, λmax}
γminm(y − x)

+
6λmax

γminm2(y − x)2

)
, (5)
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which is a conservative solution of (4).

The Lipschitz assumption can be used to extend Lemma 1 to a high probability bound on

the filtered CIF for active cells.

Corollary 1. Let (x, y] ∈ At. Then, with probability at least 1− 2T−2

sup
x<c≤y

∣∣γ(y)Λ̄t(y)− γ(c)Λ(c)
∣∣ ≤ m(y − x) + γ(y)ζt(y).

Proof. Observe that,

sup
x<c≤y

∣∣γ(y)Λ̄t(y)− γ(c)Λ(c)
∣∣ ≤ ∣∣γ(y)Λ̄t(y)− γ(y)Λ(y)

∣∣+ sup
x<c≤y

|γ(y)Λ(y)− γ(c)Λ(c)|

<
∣∣γ(y)Λ̄t(y)− γ(y)Λ(y)

∣∣+m(y − x),

by the Lipschitz assumption.

Consequently,

P
(

sup
x<c≤y

|γ(y)Λ̄t(y)− γ(c)Λ(c)| > m(y − x) + γ(y)ζt(y)
)

≤ P
( ∣∣γ(y)Λ̄t(y)− γ(y)Λ(y)

∣∣+m(y − x) > m(y − x) + γ(y)ζt(y)
)

= P
( ∣∣Λ̄t(y)− Λ(y)

∣∣ > ζt(y)
)

≤ 2T−2,

by Lemma 1.

The index of a cell (x, y] active in round t is

It(x, y) = γ(y)Λ̄t(y) +m(y − x) + γ(y)ζt(y).

The γ(y)Λ̄t(y) part of the index induces exploitation, while the m(y − x) + γ(y)ζt(y) term

promotes exploration.

All the results that follow in this section are on the sample paths where

sup
x<c≤y

∣∣γ(y)Λ̄t(y)− γ(c)Λ(c)
∣∣ ≤ m(y − x) + γ(y)ζt(y) (6)

holds for all rounds t = 1, . . . , T . By Corollary 1, the contribution to the regret of the sample

paths that violate (6) is of order O(1), after accounting for the T rounds and up to T cells by

round T .

Our next result bounds the upper confidence term ζt for an active cell on the high probability

event of Corollary 1.

Lemma 2. For (x, y] ∈ At,

ζt(y) ≤ 2m2(y − x)2 max{1, 1/λmax}γ1/2min + 2m(y − x)
√

1 + 2 max{1, 1/λmax}m(y − x).
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Proof. Let V (p)(x, y) be the set of rounds the parent cell of (x, y] got swept. The Division rule

for the parent cell implies

2m(y − x) ≥
6 log(T ) max{1, λmax}+

√
6λmax log(T )vT (x, y)∑|V (p)(x,y)|

i=1 γ(bτi)
.

Using (5) we obtain the conservative lower bound,

|V (p)(x,y)|∑
i=1

γ(bτi) ≥
3λmax log(T )

γ
1/2
minm

2(y − x)2
. (7)

Next we upper bound ζt(y),

ζt(y) =
6 log(T ) max{1, λmax}+

√
6λmax log(T )vT (x, y)∑|V (p)(x,y)|

i=1 γ(bτi)

≤ 2m2(y − x)2 max{1, 1/λmax}γ1/2min + 2m(y − x)
√

1 + 2 max{1, 1/λmax}m(y − x),

where the first equality is from the definition of ζt(y), and the second inequality follows from

the lower bound (7) and the definition of vT (x, y).

Let z∗ be an optimal endpoint (i.e., γ(z∗)Λ(z∗) ≥ γ(y)Λ(y) for all y ∈ [0, 1]), and (ut, vt] ∈ At
the cell that contains z∗ in round t. The next result bounds the regret

∆(at, bt) = γ(z∗)Λ(z∗)− γ(bt)Λ(bt),

incurred in each round in terms of the length of the cell selected by the algorithm.

Lemma 3. The round t regret ∆(at, bt) satisfies

∆(at, bt) ≤ 5m(bt − at)
√

1 + 2 max{1, 1/λmax}m(bt − at) + 4m2(bt − at)2 max{1, 1/λmax}γ1/2min.

Proof. We will show that

γ(z∗)Λ(z∗) ≤ It(at, bt) ≤ γ(bt)Λ(bt) + 5m(bt − at)
√

1 + 2 max{1, 1/λmax}m(bt − at)

+ 4m2(bt − at)2 max{1, 1/λmax}γ1/2min,

from where the claim follows.

For the first inequality, we observe that,

It(at, bt) ≥ It(ut, vt) ≥ γ(vt)Λ(vt) +m(vt − ut)

≥ γ(vt)Λ(vt) +m(vt − z∗) ≥ γ(z∗)Λ(z∗).

11



In order, these inequalities follow from the Selection rule, the definition of the index function It
and Corollary 1, the fact that z∗ ∈ (ut, vt], and the Lipschitz assumption. In the other direction,

we have by application of Lemma 1 (whereby Λ̄t(bt) ≤ Λt(bt) + ζt(bt)), and then Lemma 2,

It(at, bt) ≤ γ(bt)Λ(bt) +m(bt − at) + 2γ(bt)ζt(bt)

≤ γ(bt)Λ(bt) + 5m(bt − at)
√

1 + 2 max{1, 1/λmax}m(bt − at)

+ 4m2(bt − at)2 max{1, 1/λmax}γ1/2min.

The final stage of the proof combines these results to realise the bound on regret of each cell

depending on its size by the last round. For cells of length at most 2−k we use Lemma 3, and

for cells larger than 2−k we use the Division rule. By adding the regret over all possible cell

sizes and optimizing over k (which is arbitrary), we obtain the result claimed in the theorem.

By setting ` = bt−at, Lemma 3 allows us to conclude that whenever a cell of length at most `

gets selected, it incurs a regret at most 5m`
√

1 + 2 max{1, 1/λmax}m`+4m2`2 max{1, 1/λmax}γ1/2min.

Consequently, the regret of cells with length at most ` is bounded by

T (5m`
√

1 + 2 max{1, 1/λmax}m`+ 4m2`2 max{1, 1/λmax}γ1/2min) = O (T`) (8)

over all rounds up to T .

Cells with final length ` have three properties: (i) there are at most 1/` such cells; (ii)

their regret per round is at most 5m`
√

1 + 2 max{1, 1/λmax}m`+ 4m2`2 max{1, 1/λmax}γ1/2min

(Lemma 3); and (iii), satisfy (cf., Eq. (5))

|V | ≤ log(T )

(
12 max{1, λmax}

γminm`
+

6λmax

γminm2`2

)
.

From (i)–(iii) the total regret from cells of length ` is at most

(5m`
√

1 + 2 max{1, 1/λmax}m`+ 4m2`2 max{1, 1/λmax}γ1/2min)|V | × `−1

≤ log(T )
(

5m
√

1 + 2 max{1, 1/λmax}m`+ 4m2`max{1, 1/λmax}γ1/2min

)
×
(

12 max{1, λmax}
γminm`

+
6λmax

γminm2`2

)
= O

(
log(T )

`2

)
. (9)

Using Eqs. (8) and (9) with ` = 2−k results in,

Reg(T ) = O

(
2−kT + log(T )

k−1∑
i=0

4i

)
= O

(
2−kT + log(T )4k

)
, (10)

for all integer k ≥ 0. In the right-hand side of (10), O(2−kT ) includes the regret over all
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rounds of cells with length at most 2−k. The term O(log(T )4k) corresponds to the regret of

cells with length ranging from 1 to 2−(k−1). In this way we account for all possible cell lengths

in the right-hand side of the inequality. The cutoff value of k that minimises regret equalises

the leading growth rates of both summands in (10), meaning that 2k = T 1/3. The claim follows

from here.

5 Lower Bound on Regret

In this section we give a lower bound on the regret obtained by any algorithm for the filtered

Poisson process bandit. The result is given below as Theorem 2, and we see, subject to further

minor conditions on the filtering function, that the order of the lower bound on regret matches

that of the upper bound on the regret of CIF-UCB up to a logarithmic factor. In this sense,

CIF-UCB is therefore asymptotically order optimal (up to the exclusion of logarithmic factors).

Theorem 2. For the filtered Poisson process bandit problem on [0, 1] as described in Section 2

with filtering function γ satisfying

γ(a)− γ(b)

b− a
≥ 1

2
γ

(
a+ b

2

)
(11)

for any 0 ≤ a ≤ b ≤ 1, there exists a valid CIF such that, the regret of any algorithm utilising the

same information as CIF-UCB (i.e. per-round rewards and actions rather than the full event

location feedback) is bounded below as

Reg(T ) = Ω(T 2/3).

The proof of this lower bound is based on an established analytical technique of relating the

regret of an algorithm for a continuum armed bandit problem to that of an algorithm for an

associated finite-armed bandit problem. A lower bound on regret for the finite-armed problem

is then utilised to lower bound the regret of the continuum armed bandit algorithm.

The condition (11) ensures that we can construct a Lipschitz CIF that is flat everywhere

except in a small region, and use that to prove the lower bound. Specifically it stipulates that

the rate of decay of the filtering function is sufficiently large. Linear choices of γ, for instance,

are valid as long as their gradient is less than −0.5γ(0), and there exist many more practical

concave and convex functions satisfying the condition.

In the present setting, the associated finite-armed bandit problem must share the filtering

structure of the FPPB to relate regret across the problems, and as such we require a bespoke

finite-armed problem. Therefore, before giving the proof of Theorem 2, we introduce a filtered

Poisson multi-armed bandit (FPMAB) problem which can be viewed as a discretised version of

the FPPB. We derive a lower bound on the regret of any algorithm for the FPMAB, which is a

key component of the proof of Theorem 2.

We define the FPMAB problem as follows. The problem is instantiated by K arms with mean

parameters µk ∈ [0, λm]. Each mean parameter may be decomposed as the product of a CIF
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parameter Λk ∈ [0, λm] and filtering parameter γk ∈ [0, 1] - i.e. µk = Λkγk, k ∈ [K]. The ordered

CIF parameters comprise a monotonically increasing sequence, Λ1 ≤ Λ2 ≤ · · · ≤ ΛK , and the

ordered filtering parameters comprise a monotonically decreasing sequence, γ1 ≥ γ2 ≥ · · · ≥ γK .

The problem takes place over a series of rounds t ∈ [T ], in each of which the decision-maker

selects an arm at ∈ [K] and receives a stochastic reward Rt = R(at). In addition, the decision-

maker observes filtered observations, R̃k,t for 1 ≤ k ≤ at. These observations are distributed

as

R̃k,t ∼ Poisson(γat(Λk − Λk−1)).

The reward is defined as the sum of the filtered observations Rt =
∑at
k=1 R̃k,t, and therefore

follows a Poisson distribution with parameter µat , by the superposition property of the Poisson

distribution.

Similarly as to the FPPB, the decision-maker’s aim is to minimise regret in T rounds, defined

as

Reg(T ) = E
( T∑
t=1

Rt(a
∗)−Rt(at)

)
,

where a∗ ∈ argmaxk∈[K] µk is an optimal arm. We have the following minimax lower bound on

the regret of any algorithm for the FPMAB problem.

Theorem 3. For any number of arms K ≥ 2, a set of filtering parameters γ1, . . . , γK satisfiying

γk ≥
(

1 + ε
)
γk+1 (12)

for k ∈ [K − 1], and some small ε > 0 there exist a set of CIF parameters Λ1, . . . ,ΛK such that

the regret of any algorithm for the FPMAB problem is at least

ε

(
T − T

K
− T

√
ε2T

2K

)
. (13)

This Theorem is similar to the lower bound on regret for stochastic multi-armed bandits with

bounded rewards in Theorem 5.1 of Auer et al. (2002), and its generalisation in Bubeck et al.

(2011b), but here we consider filtered Poisson random variables rather than Bernoulli random

variables in the previous works. We show that the same order with respect to ε and T can be

recovered.

In the remainder of this section we prove Theorems 2 and 3.

5.1 Proof of Theorem 2

Proof. Consider the instance of the filtered Poisson process bandit problem referred to as

J (x∗, ε), for x∗ ∈ { 1
2K ,

3
2K , . . . ,

2K−1
2K } (where K ∈ N will be fixed later in the proof) and

ε > 0, and specified by the following reward function

νx∗,ε(x) =

 mε(1 + ε− |x− x∗|), x : |x− x∗| ≤ ε

min(mx,mε), othw.
(14)
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Such a reward function is realised by setting the CIF to

Λx∗,ε(x) =


(γ(x))−1mε

[
1 + ε− (x∗ − x)

]
, x ∈ [x∗ − ε, x∗)

(γ(x))−1mε
[
1 + ε− (x− x∗)

]
, x ∈ [x∗, x+ ε)

(γ(x))−1 min(mx,mε), othw.

(15)

To verify that this CIF is increasing, consider the derivative,

dΛx∗,ε(x)

dx
=



d( 1
γ )

dx mε
[
1 + ε− x∗ + x

]
+mε(γ(x))−1, x ∈ [x∗ − ε, x∗)

d( 1
γ )

dx mε
[
1 + ε+ x∗ − x

]
−mε(γ(x))−1, x ∈ [x∗, x∗ + ε)

d( 1
γ )

dx mx+m(γ(x))−1, x ∈ [0, ε)
d( 1
γ )

dx mε othw.

We note that (γ(x))−1 > 1 for all x ∈ [0, 1] since γ : [0, 1] → [0, 1], and that d(γ(x))−1/dx ≥ 0

for all x ∈ [0, 1] since γ is assumed to be strictly decreasing on [0, 1]. It follows that for

x ∈ [x∗ − ε, x∗),

dΛx∗,ε(x)

dx
≥ d(γ(x))−1

dx
mε

[
1 + ε− ε

]
+mε(γ(x))−1 =

d(γ(x))−1

dx
mε+mε(γ(x))−1 > 0.

For x ∈ [x∗, x∗ + ε), consider

dΛx∗,ε(x)

dx
≥ d(γ(x))−1

dx
mε

[
1 + ε− ε

]
−mε(γ(x))−1 = mε

(
d(γ(x))−1

dx
− (γ(x))−1

)
. (16)

In the limit as b−a→ 0 condition (11) implies that −dγ(x)dx ≥ γ(x). We have, for a differentiable

function f such that f(x) 6= 0 that the derivative of g(x) = 1/f(x), that

dg(x)

dx
=
−df(x)dx

(f(x))2
.

Thus,

d(γ(x))−1

dx
=
−dγ(x)dx

(γ(x))2
≥ γ(x)

(γ(x))2
= (γ(x))−1,

and it follows from (16) that dΛx∗,ε(x)/dx > 0 for x ∈ [x∗, x∗ + ε). For all other values of

x ∈ [0, 1] it should be obvious that the derivative of the CIF is positive since it comprises a

sum of non-negative terms. As such Λx∗,ε satisfies the necessary increasing assumption, and the

instance J (x∗, ε) is a valid instance of the FPPB.

We will lower bound the regret of any algorithm for the problem instance J (x∗, ε) by relating

it to an instance of the filtered Poisson MAB problem.

We fix K ∈ N to be defined later and let ε = (2K)−1. Further we introduce the function

fε : [K]→ [0, 1] with

fε(a) = (2a− 1)ε, a ∈ [K].

This function is used to map between actions in the MAB problem and the CAB problem. We
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then define an instance K(a∗, ε) of the K-armed filtered Poisson MAB problem as that with arm

means

µa = νx∗,ε(fε(a)), a ∈ [K],

and filtering probabilities

γa = γ

(
2a− 1

2K

)
, a ∈ [K].

It follows that in the problem instance K(a∗, ε) there is a single optimal arm a∗ ∈ [K] : x∗ ∈
(a−1K , aK ] with expected reward µa∗ = mε(1 + ε) and all other arms, a 6= a∗, have expected

reward µa = mε.

Let ALG be any algorithm for the CAB problem J (x∗, ε). We will define ALG’ as an associated

algorithm for the MAB problem K(a∗, ε). These algorithms are related as follows. When ALG

selects an action xt ∈ [0, 1], ALG’ selects an arm at ≡ a(xt) ∈ [K] such that

xt ∈
(
fε(at)−

1

2K
, fε(at) +

1

2K

]
.

By definition of the FPMAB, ALG’ will receive reward R′(at) ∼ Pois(µat) generated as the

sum of per-arm observations R̃′i,t ∼ Pois(γ(at)(Λi−Λi−1)) for i ≤ at. Similarly, ALG will receive

reward R(xt) ∼ Pois(νx∗,ε(xt)).
The construction of at = a(xt) is such that

E(R′(a(xt)) =

 mε(1 + ε), xt : |xt − x∗| ≤ ε,

mε, othw.

Comparing to (14), it is clear that E(R(xt)) = νx∗,ε(xt) ≤ E(R′(a(xt)). We also notice that for

both J (x∗, ε) and K(a∗, ε) the reward of the optimal action is mε(1 + ε). It therefore follows

that the regret of ALG’ serves as a lower bound on the regret of ALG, i.e. we have

E(RegALG(T )) ≥ E(Reg′ALG′(T )).

As ALG’ is an algorithm for the FPMAB problem, and the assumption (11) implies,

γ

(
2a− 1

2K

)
≥ 1

2K
γ

(
2a

2K

)
+ γ

(
2a+ 1

2K

)
≥
(

1 +
1

2K

)
γ

(
2a+ 1

2K

)
, a ∈ {1, . . . ,K − 1}

(i.e. condition (12) holds) the regret of ALG’ is lower bounded as in Theorem 3, and we therefore

have

E(RegALG(T )) ≥ ε

(
T − T

K
− T

√
ε2T

2K

)
,

for a known constant C > 0.

We complete the proof of Theorem 2 by optimising our choice of K as a function of T .
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Substituting ε = 1/2K, we have

E(RegALG(T )) ≥ T

2K
− T

2K2
− T

2K

√
T

8K3
,

and choosing K = O(T 1/3) yields the stated result.

5.2 Proof of Theorem 3

Proof. Given a set of filtering parameters γ1, . . . , γK we construct a problem instance where

there is a single “good” arm, i ∈ [K], with mean reward µi = 1+ ε, for small ε ∈ (0, 1/2], and all

other arms, k 6= i, have mean rewards µk = 1. This is achieved by setting the CIF parameters

as follows

Λ
(i)
i =

1 + ε

γi
, Λ

(i)
k =

1

γk
, ∀k 6= i.

Here the superscript ·(i) denotes that i is the good arm under this choice of parameters, and we

notice that the condition of the filtering parameters (12) is required for Λ
(i)
1 , . . .Λ

(i)
K to constitute

a valid (i.e. increasing) sequence of CIF parameters.

We define three notions of probability and expectation, relevant to the analysis of problem

instances of this type. Let P∗(·) denote probability with respect to the above construction of

the FPMAB where the good arm is chosen uniformly at random from [K]. Let Pi(·) be defined

similarly, but denote probability conditioned on the event that i ∈ [K] is the good arm. Finally

let Pequ denote probability with respect to a version where µk = 1 for all k ∈ [K]. We let E∗(·),
Ei(·), and Eequ(·) be respective associated expectation operators.

Let A be the decision-maker’s algorithm, let

rt = (R(a1), . . . , R(at))

denote the sequence of observed rewards in t rounds. Any algorithm A may then be thought

of a deterministic function from rt−1 to at for all t ∈ [T ]. Even an algorithm with randomised

action selection can be viewed as deterministic, by treating a given run as a single member of

the population of all possible instances of that algorithm.

Further, we define GA =
∑T
t=1Rt to be the reward accumulated by A in T rounds and

Gmax =
∑T
t=1Rt(a

∗) to be the reward accumulated by playing the best action. The regret of

A in T rounds may be expressed as

RegA(T ) = E
(
Gmax −GA

)
.

Let Nk be the number of times an arm k ∈ [K] is chosen by A in T rounds. The first step of

the proof is to bound the difference in the expectation of Ni when measured using Ei and Eequ,

i.e. to bound the difference in the number of times an algorithm with play i between when i is

the good arm and when all arms are equally valuable.
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Lemma 4. For any arm i, the expected number of plays in T rounds under Pi is bounded as

Ei(Ni) ≤ Eequ(Ni) +
T

2

√
2ε2Eequ(Ni).

By construction of the CIF paramters Λ
(i)
1 , . . . ,Λ

(i)
K we have that for any t ∈ [T ], Ei(Rt) =

1 + εPi(at = i). It follows that the expected reward of algorithm A, GA satisfies Ei(GA) =

T + εEi(Ni). The expectation in the regret measure is taken with respect to P∗, rather than

any Pi, as such E∗(GA) is the quantity of interest. We recall that under P∗ the “good” arm is

chosen uniformly at random, and thus, it follows that

E∗(GA) =
1

K

K∑
k=1

Ek(Ga)=T +
1

K

K∑
k=1

εEk(Nk)

≤ T +
ε

K

K∑
k=1

(
Eequ(Nk) +

T

2

√
2ε2Eequ(Nk)

)

= T +
εT

K
+
εT

2K

K∑
k=1

√
2ε2Eequ(Nk), (17)

where the second inequality uses Lemma 4.

Considering the final term of (17), we have firstly by Cauchy-Schwarz, and the property that∑K
k=1 Eequ(Nk) = T , the following,

K∑
k=1

√
2ε2Eequ(Nk) ≤

√√√√2ε2K

K∑
k=1

Eequ(Nk) =
√

2ε2KT.

It follows that

E∗(GA) ≤ T +
εT

K
+ εT

√
ε2T

2K
,

and the regret is bounded as

E∗|Gmax −GA| ≥ (1 + ε)T − T − εT

K
− εT

√
ε2T

2K
= εT − εT

K
− εT

√
ε2T

2K
.

5.3 Proof of Lemma 4

We first introduce some further notation used in the proof. Define for any distributions P and

Q over vector sequences r̃ ∈ NK×T , the variational distance as

||P−Q||1 ≡
∑

r∈NK×T
|P(r̃)−Q(r̃)|,
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and the KL divergence as

KL(P || Q) ≡
∑

r∈NK×T
P(r) log

(
P(r)

Q(r)

)
.

By Pinsker’s inequality, we have the following relationship between these distances

||P−Q||1 ≤
√

2KL(Q || P). (18)

Finally, the KL divergence between two Poisson distributions with parameters λ and ν is given

as,

KL(λ||ν) ≡ λ log

(
λ

ν

)
+ ν − λ.

Proof. For any function f : NT → [0,M ], with M > 0 constant, we have,

Ei(f(rT ))− Eequ(f(rT )) =
∑

rT∈NT
f(rT )

(
Pi(rT )− Pequ(rT )

)
≤

∑
rT :Pi(rT )≥Pequ(rT )

f(rT )
(
Pi(rT )− Pequ(rT )

)
≤ M

2
||Pi − Pequ||1

≤ M

2

√
2KL(Pi||Pequ), (19)

where the final inequality follows from (18). Considering the KL divergence term in isolation,

we have for any i ∈ [K], by Theorem 2.5.3 of Cover and Thomas (2012)

KL(Pi || Pequ) =

T∑
t=1

KL
(
Pi(R(at) | rt−1)

∣∣∣∣ Pequ(R(at) | rt−1)
)

=

T∑
t=1

K∑
k=1

Pequ
(
at = k

)
KL

(
Pi(R(at) | at = k)

∣∣∣∣ Pequ(R(at) | at = k)
)

=

T∑
t=1

Pequ
(
at = i

)
KL

(
Pi(R(i))

∣∣∣∣ Pequ(R(i))
)

(20)

The final equality follows from the observation that if at < i then the distribution of the filtered

observations is identical under Pequ and Pi.
As R(i) is Poisson distributed under both Pi and Pequ, we have, by the formula for the KL

divergence between two Poissons,

KL
(
Pi(R(i))

∣∣∣∣ Pequ(R(i))
)

= KL

(
γi ·

(1 + ε)

γi

∣∣∣∣∣∣ γi · 1

γi

)
= (1 + ε) log(1 + ε)− ε ≤ ε2. (21)

The inequality holds since log(1 + ε) ≤ ε for all ε ≥ 0. Combining (19), (20), and (21) and

recognising Ni as a function from NT to {0} ∪ [T ] ⊂ [0, T ] the stated result follows.
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6 Experiments

In this section we illustrate the performance of CIF-UCB via numerical examples. We work

with a linear intensity function λ(x) = 20 − 20x and exponential filtering probability γ(x) =

exp(−x), both for x ∈ [0, 1]. The plot of Λ(x)γ(x) is shown in Figure 2, with x∗ = 0.586

and Λ(x∗)γ(x∗) = 4.61 (found numerically). In the experiment, we set the Lipschitz constant

m = 20, which equals max0≤x≤1(Λ(x)γ(x))′ (since Λ(x)γ(x) is concave), and λmax = 20.

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3
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x
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0 
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ex

p(
−x

)

Figure 2: Plot of Λ(x)γ(x).

We ran 100 independent sample paths over a time horizon of T = 50000, and computed the

average cumulative regret over the 100 sample paths. The resulting average cumulative regret

is shown in Figure 3, along with the upper regret bound, as determined in Theorem 1.

Several observations are in order. First, the dotted curve in Figure 3 doesn’t include the

constant terms nor the sub log(t)t2/3 terms that come up in the regret upper bound derivation

(cf., Eq. (10)). Still, we note that the regret growth is plausibly of order Õ(t2/3).

The second observation concerns the shape of the average cumulative regret. Note that

the cumulative regret appears to be piece-wise convex increasing, such that the regret of each

extra convex piece grows at a slower rate; this observation is even more noticeable on individual

sample paths (not shown). This growth pattern is due to the splitting condition of CIF-UCB,

whereby the algorithm initially samples the best of the two segments that result from a split,

and explores other (typically worse) segments as t gets larger. As t grows, the algorithm exploits
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Figure 3: Plot of average cumulative regret.

more often, and thus each convex piece grows slower.

The final observation is about the splitting pattern. We include in Table 6 the data frame

for the final round of a sample path in the R implementation, which includes the two endpoints

(x and y), the effective number of samples of each final segment
∑|VT (x,y)|
i=1 γ(bτi), the index

IT (x, y), and the CIF estimator Λ̄T (y) in the rightmost column. The finer spatial grid around

x∗ is appreciable, suggesting that the algorithm gravitates towards the segment that contains

the optimal solution x∗. Note also that the estimates of Λ(x) = 20x−10x2 are very precise (the

largest relative error is 0.67% for y = 0.906, since the segments close to 1 have the fewest number

of effective samples
∑|VT (x,y)|
i=1 γ(bτi)). The index values are similar across the final segments,

as is typical with UCB algorithms, and the effective number of samples drops off significantly

to the right of x∗. On the other hand, the effective number of samples to the left of x∗ is large,

since the algorithm needs to cover that space to reach (and exploit) the neighborhood around

x∗.

To test the sensitivity of the algorithm to multiple local maximums, we ran a second ex-

periment with parameters identical to those of the first experiment, except for the filtering
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probability γ(·), which now is set to be piece-wise linearly decreasing,

γ(x) =



1, for x ∈ [0, 0.25)

1.5− 2x for x ∈ [0.25, 0.5)

0.5, for x ∈ [0.5, 0.8)

1.3− x for x ∈ [0.8, 1].

This filtering probability leads to a Λ(x)γ(x) objective as in Figure 4, with x∗ = 0.8 and

Λ(x∗)γ(x∗) = 4.8.
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Figure 4: Plot of Λ(x)γ(x).

We tested CIF-UCB over 100 independent sample paths, with a time horizon T = 50000.

This resulted in an average cumulative regret as shown in Figure 5.

Two main observations can be drawn. First, the Õ(T 2/3) upper bound of Theorem 1 holds

over t ∈ {1, . . . , T}. Second, the average cumulative regret is similar to the one in the first exper-

iment over all rounds, suggesting that CIF-UCB is not overly sensitive to the extra exploration

induced by the local maximum at x = .33.
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Figure 5: Plot of average cumulative regret.

7 Discussion

This work considers a sequential variant of the problem faced by a decision-maker who attempts

to maximise the detection of events generated by a filtered non-homogeneous Poisson process,

where the filtering probability depends on the segment selected by the decision-maker, and the

Poisson cumulative intensity function is unknown. The independent increment property of the

Poisson process makes the analysis tractable, enabling the use of the machinery developed for

the continuum bandit problem. The problem of efficient exploration/exploitation of a filtered

Poisson process on a continuum arises naturally in settings where observations are made by

searchers (representing cameras, sensors, robotic and human searchers, etc.), and the events

that generate observations tend to disappear (or renege, in a queueing context), before an

observation can be made, as the interval of search increases. Besides extending the state-of-the-

art to such settings, the main contributions are an algorithm for a filtered Poisson process on a

continuum, and regret bounds that are optimal up to a logarithmic factor.
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x y
∑|VT (x,y)|
i=1 γ(bτi ) IT (x, y) Λ̄T (y)

0.0000000 0.1250000 23514.821 4.630386 2.342395
0.1250000 0.1875000 23514.821 4.146363 3.398240
0.1875000 0.2500000 23514.821 4.727119 4.369287
0.2500000 0.2812500 23504.696 4.373603 4.829333
0.2812500 0.3125000 23504.696 4.583164 5.273414
0.3125000 0.3437500 23503.965 4.763377 5.699294
0.3437500 0.3750000 23503.965 4.908491 6.095695
0.3750000 0.3906250 23502.590 4.709670 6.285265
0.3906250 0.4062500 23502.590 4.768220 6.475499
0.4062500 0.4218750 23501.924 4.818334 6.657242
0.4218750 0.4375000 23501.924 4.863777 6.835823
0.4375000 0.4531250 23500.633 4.904790 7.011343
0.4531250 0.4687500 23500.633 4.937762 7.177807
0.4687500 0.4843750 23500.007 4.966426 7.340721
0.4843750 0.5000000 23500.007 4.992014 7.501870
0.5000000 0.5156250 23339.883 5.012626 7.656422
0.5156250 0.5234375 23339.883 4.951941 7.730202
0.5234375 0.5312500 23339.883 4.958799 7.805352
0.5312500 0.5390625 23335.768 4.961784 7.874478
0.5390625 0.5468750 23335.768 4.965532 7.945571
0.5468750 0.5546875 23335.189 4.968213 8.015405
0.5546875 0.5625000 23335.189 4.970493 8.085128
0.5625000 0.5703125 23158.556 4.972732 8.152581
0.5703125 0.5781250 23158.556 4.971220 8.216704
0.5781250 0.5859375 22866.302 4.972223 8.281138
0.5859375 0.5937500 22866.302 4.970029 8.345031
0.5937500 0.6015625 22662.521 4.970318 8.410583
0.6015625 0.6093750 22662.521 4.969129 8.477301
0.6093750 0.6171875 21734.441 4.972098 8.536221
0.6171875 0.6250000 21734.441 4.967966 8.598519
0.6250000 0.6328125 20560.077 4.972496 8.655220
0.6328125 0.6406250 20560.077 4.965080 8.712273
0.6406250 0.6484375 18723.611 4.974903 8.762092
0.6484375 0.6562500 18723.611 4.964946 8.815180
0.6562500 0.6640625 16737.671 4.980877 8.864973
0.6640625 0.6718750 16737.671 4.968506 8.914263
0.6718750 0.6875000 15092.034 5.016761 9.023303
0.6875000 0.7031250 13466.883 5.016845 9.130695
0.7031250 0.7187500 11233.776 5.016386 9.205364
0.7187500 0.7343750 10035.355 5.016370 9.304006
0.7343750 0.7500000 9475.902 4.998117 9.390241
0.7500000 0.7656250 8453.701 4.994940 9.475613
0.7656250 0.7812500 8453.701 4.955597 9.548244
0.7812500 0.7968750 7352.612 4.950174 9.607063
0.7968750 0.8125000 7352.612 4.906035 9.669625
0.8125000 0.8281250 5992.970 4.928547 9.729400
0.8281250 0.8437500 5992.970 4.876716 9.775287
0.8437500 0.8750000 4885.046 5.016379 9.875854
0.8750000 0.9062500 3614.451 5.016335 9.978557
0.9062500 0.9375000 2602.339 5.016298 9.977178
0.9375000 0.9687500 1801.506 4.777890 10.039380
0.9687500 1.0000000 1801.506 4.781975 10.050482

Table 1: Summary of main parameters after a sample path
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