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Abstract— A new Hopfield neural network (HNN) model for 

downscaling a digital elevation model in grid form (gridded DEM) 
is proposed. The HNN downscaling model works by minimizing 
the local semivariance as a goal, and by matching the original 
coarse spatial resolution elevation value as a constraint. The HNN 
model is defined such that each pixel of the original coarse DEM 
is divided into f×f sub-pixels, represented as network neurons. The 
elevation of each sub-pixel is then derived iteratively (i.e. 
optimized) based on minimizing the local semivariance under the 
coarse elevation constraint. The proposed HNN model was tested 
against three commonly applied alternative benchmark methods 
(bilinear resampling, bi-cubic and Kriging resampling methods) 
via an experiment using both degraded and sampled datasets at 20 
m, 60 m and 90 m spatial resolutions. For this task, a simple linear 
activation function was used in the HNN model. Evaluation of the 
proposed model was accomplished comprehensively with visual 
and quantitative assessment against the benchmarks. Visual 
assessment was based on direct comparison of the same 
topographic features in different downscaled images, scatterplots 
and DEM profiles. Quantitative assessment was based on 
commonly used parameters for DEM accuracy assessment such as 
the root mean square error (RMSE), linear regression parameters 
m and b, and the correlation coefficient R. Both visual and 
quantitative assessment revealed the much greater accuracy of the 
HNN model for increasing the grid density of gridded DEMs. 
 

Index Terms—Digital Elevation Model, Downscaling, Hopfield 
Neural Networks.  

I. INTRODUCTION 

HE spatial resolution of a gridded DEM affects both the 
information content and the accuracy of the data and, 

potentially, of many other secondary data products [1], [2]. 
Examples include the well-known effects of spatial resolution 
on DEM-related spatial properties [3], [4] such as slope and 
aspect [5], [6], watershed boundary delineations and soil-water-
atmosphere transfer schemes [7], [8], water run-off models [9], 
[10], three-dimensional modelling of landscapes [11], local 
slope, plan curvature, drainage area [12], [13], soil survey 
variables and soil moisture [14], [15]. All of these studies 
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showed that DEMs with a finer spatial resolution can produce 
more informative and potentially more accurate results. 

Gridded DEMs with fine spatial resolution and high accuracy 
can be acquired using remote sensing and airborne LiDAR 
technology, ground surveying or photogrammetry [16], [17]. 
Airborne LiDAR enables the acquisition of data with a very 
high density of 3-dimensional coordinate points and, therefore, 
production of a DEM with sub-meter spatial resolution. 
Airborne LiDAR-derived DEMs have been used in many 
different applications, some of which require very fine spatial 
resolution and very high accuracy [18]. Although being capable 
of generating a fine spatial resolution DEM, airborne LiDAR 
technology has some challenges such as the very large amount 
of data storage and extensive computing resource required for 
data processing. Compared with airborne LiDAR, other 
methods for fine spatial resolution DEM acquisition such as 
ground surveying and photogrammetry are more time 
consuming and labour intensive [19]. Hence, if the spatial 
resolution of the DEM can be increased using algorithms, it is 
possible to save time and labour costs.  

Sometimes, it is necessary to resample a coarse resolution 
raster DEM to create a DEM with a finer grid spacing and a 
common approach is to use algorithms such as nearest 
neighbor, bilinear and bi-cubic interpolation. That is, these 
algorithms are used to interpolate the raster DEM data  [20] 
such that the resolution or the accuracy of the raster DEM is 
increased slightly [21], [22]. Another method for resampling 
gridded DEM data to create a finer grid with higher accuracy is 
Kriging interpolation [23]. Dixon and Earls [24] used simple 
nearest neighbor resampling to increase the grid density of 
DEMs and compare the effects of this for DEM products such 
as stream flow, watershed, delineations, number of sub-basins 
and slopes. It was clear that simple nearest neighbor DEM 
resampling did not increase the accuracy of the DEM greatly, 
or the resampling methods did not create new significant 
information that is not available at the original resolution of the 
DEM [25]. The experiments by Rees [26] and Shi et. al. [22] 
showed that bilinear, bicubic and Kriging resampling increased 
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the accuracy of DEMs in terms of the root mean square error 
(RMSE) given a suitable value of re-sampling ratio r. 
Comparing three resampling methods, Kriging performed more 
accurately than the other two methods for smooth terrain. 
However, for rough terrain, the accuracies of the three 
resampling methods were similar [26]. Nevertheless, all studies 
suggested that the resampling of raster DEM data can 
potentially increase the resolution and accuracy of the data. 

The accuracy of a gridded DEM can be increased by 
combining the original DEM with additional elevation data. 
Jana et. al. [27] and Jordan [28] increased the accuracy of a 
DEM from raster contour and ridgeline elevation data. These 
methods used additional information from raster channels to 
correct the elevation values in the DEM cells. Similarly, the 
accuracy and details of a gridded DEM can be increased using 
geostatistical methods and sets of additional high accuracy 
elevation data points [29], [30]. Other methods include B-spline 
resampling and the filtering method used in a patent by Atkins 
et al. [31]. This research showed that integrating additional 
elevation data through algorithms can increase the detail and 
accuracy of a DEM. The focus of this paper, in contrast, is to 
increase a DEM’s detail and accuracy through downscaling 
when new measured data at the sub-pixel level are not available.  

Sub-pixel mapping is a technique used in remote sensing to 
predict land cover class at the sub-pixel scale (i.e., at a spatial 
resolution that is finer than the original input data) using a soft-
classified land cover proportions image as input [32]. In terms 
of geographical scaling, sub-pixel mapping approaches are 
downscaling techniques which use the soft-classified land cover 
proportions as a pixel-level constraint and maximize some goal 
functions (e.g., the spatial dependence between sub-pixels) to 
increase the spatial resolution of the land cover classification 
[33]. Several sub-pixel mapping techniques have been 
developed such as the sub-pixel swapping [34], [35], Markov 
random field [36], geospatial and Hopfield neural network 
(HNN) approaches [37], [38], [39], [40], [41]. The HNN 
technique has been modified previously for smoothing and 
increasing the spatial resolution of raw multispectral remotely 
sensed imagery [42]. Because remote sensing images and 
gridded DEMs are both provided in the raster data model, it may 
be expected that the HNN approach developed for remote 
sensing images may, with appropriate adjustment, have some 
utility for increasing the detail and accuracy of gridded DEMs. 
This paper, therefore, explores the potential for development 
and application of a new HNN model for downscaling DEM 
imagery. Specifically, a new and simple HNN was developed 
for resampling a coarse resolution gridded DEM to create a 
finer gridded DEM (i.e., with a denser grid) that is closer to the 
real Earth's surface than both the original DEM and finer grid 
DEMs generated by several benchmark methods (common 
resampling approaches such as bilinear, bi-cubic and Kriging 
interpolation). The proposed HNN model uses the spatial 
dependence maximization and coarse elevation constraint 
functions to produce a DEM on a finer grid and with greater 
accuracy than that of the original DEM. The advantage of the 
HNN model is, thus, drawn from knowledge of the real world; 
specifically that the elevation of a sub-pixel is likely to be more 

similar to the elevations of its adjacent sub-pixels than sub-
pixels that are further away (Tobler’s first law of geography). 
This information is novel relative to the coarse DEM (whereas 
the coarse elevation constraint is not) and explains the 
advantage imparted by application of the HNN downscaling 
operation.    

II. METHOD 

A.  HNN approach for sub-pixel mapping 

The model proposed here for increasing the grid density of a 
gridded DEM is based on the HNN designed for sub-pixel 
mapping in remote sensing [37], [43]. In the HNN for sub-pixel 
mapping, an original pixel is divided into f×f sub-pixels and 
each sub-pixel is represented by a neuron in the HNN. This 
particular model is based on an area proportion constraint and 
two goal functions. The proportion constraint ensures that the 
total number of sub-pixels of each land cover class in each pixel 
is equal to the number of sub-pixels that would be assigned by 
the soft-classified land cover proportion in each coarse pixel. 
The goal functions play the role of a spatial dependence engine, 
which increases the tendency of adjacent sub-pixels to belong 
to the same land cover class. 

In the HNN used for sub-pixel mapping, the output vij of a 
neuron (sub-pixel) (i, j) is: 

𝑣 = 𝑔൫𝑢൯ =
ଵ

ଶ൫ଵା௧ఒ௨ೕ൯
                           (1) 

here 𝑔(𝑢) is an activation function of each neuron, 𝑢 is the 
input value of each neuron and λ is steepness value, which is 
defined empirically as 100. 

The input value 𝑢 is determined at the time t as 

𝑢(𝑡) = 𝑢(𝑡 − 𝑑𝑡) +
ௗ௨ೕ

ௗ௧
𝑑𝑡                   (2), 

where, dt is time step, 𝑢(𝑡 − 𝑑𝑡) is the output value at the time 
(𝑡 − 𝑑𝑡)  and 𝑑𝑢 𝑑𝑡⁄  is defined as follows: 

ௗ௨ೕ

ௗ௧
=

ௗாೕ

ௗ௩
                      (3), 

where, E is the energy, defined as E = Goals + Constraint and  
 

ௗாೕ

ௗ௩
= ቀ∑

ௗீ

ௗ௩


 +

ௗ௦௧௧ 

ௗ௩
ቁ                                     (4) 

where, K is the number of Goal functions. Depending on the 
specific application, the goal and constraint functions can be 
modified for optimization. In Tatem et al. [1], the Goal 
functions are the two Goal functions for spatial dependence 
maximization, and the Constraint Functions comprise an Area 
Constraint function used for retaining the area proportions 
predicted by the soft-classification and a Multi-class Function 
which ensures that a sub-pixel belongs to only one class. In 
Nguyen et. al. [43] a Panchromatic Constraint Function was 
added to the HNN model of Tatem et. al. [37]  to increase the 
accuracy of the sub-pixel mapping results. 

The running of the HNN in the above cases is terminated 
when the total energy E of the HNN reaches a minimum value 
determined as 

     𝐸 = ∑ ∑ ቀ∑ ቀ𝑘𝑣


ீቁ + ∑ ቀ𝑘𝑣


௦௧௧
ቁ ቁ = min      

 Or:      𝐸(𝑡) − 𝐸(𝑡 − 𝑑𝑡) = 0               (5). 
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B. Proposed HNN approach for gridded DEM downscaling 

The newly proposed approach is based on the expectation 
that the elevation of each sub-pixel is likely to be more similar 
to its adjacent sub-pixels than to more distant sub-pixels (spatial 
dependence assumption). The realization of spatial dependence 
in this case is calculated using the semivariance, which can be 
defined as 

𝛾(ℎ) =
ଵ

ଶே()
∑ ൣ𝑣 − 𝑣ା ൧

ଶே()
ଵ             (6),  

where, 𝛾(ℎ) is the semivariance value at lag distance h (i.e., 
ignoring direction), h is the distance between a pair of data 
points 𝑣  and 𝑣ା, and 𝑁(ℎ) is the number of pairs of data 
points. If the points are spatially dependent, the semivariance 
will be small at small value of h. In other words, there is greater 
spatial dependence when there is a large difference between the 
a priori variance (maximum fitted semivariance at large h) and 
the smallest semivariance at small h. Thus, minimizing the 
semivariance at small h (at the sub-pixel scale) effectively 
maximizes the spatial dependence, that is, creates the greatest 
amount of spatial structure in the DEM at fine spatial resolution. 
The minimum value of semivariance can be defined based on 
the derivative as 

డఊ()

డ௩
= 0                                                                   (7) 

and, 
డఊ()

డ௩
=

ଵ

ଶே()
∑ ൫2𝑣 − 2𝑣ା൯ே()

ଵ = 𝑣 −
∑ ௩ೕశ

ಿ()
భ

ே()
     (8). 

So, from Equation (7), it is possible to achieve an expected 
output value of 

 𝑣
௫௧ௗ

=
∑ ௩ೕశ

ಿ()
భ

ே()
                                    (9). 

The change in elevation of each sub-pixel from the spatial 
dependence maximization operation is 

𝑑𝑢
௦ௗ = 𝑣

௫௧ௗ
− 𝑣                                            (10). 

This means that the expected value 𝑣  is the average of the 
values of all data points at lag distance h (𝑣ା). In this model, 
for a grided DEM, the data points with smallest h are the eight 
sub-pixels surounding the sub-pixel. We term this function the 
spatial dependence maximization function. Similar to two Goal 
functions in the HNN model proposed by Tatem et al. [37] the 
spatial dependence maximization function also maximizes the 
spatial dependence between the adjacent sub-pixels. However, 
the difference between these functions is that while the Goal 
functions of Tatem et al. increase the value of the central sub-
pixel to 1 or reduce the value of the central sub-pixel to 0, the 
spatial dependence maximization function in the new HNN 
model increases or reduces the output value of the central sub-
pixel to the average elevation of the eight surrounding sub-
pixels. 

The proposed model developed for downscaling a gridded 
DEM is presented in Fig. 1 for the example of a coarse DEM 
with 2×2 pixels. A pixel in the original DEM is divided into 4×4 
sub-pixels in the new DEM (zoom factor f = 4). So the original 
image of 2×2 pixels is resampled to an image of 8×8 sub-pixels. 
Each sub-pixel is represented by a neuron in the HNN model 
where the initial value is the elevation value of the pixel in the 
original DEM (or may be assigned randomly). According to 

Equation (10), the expected elevation for each sub-pixel is 
equal to the average of the eight surounding sub-pixels (based 
on the spatial dependence maximization function using a 3×3 
window). 

If the spatial dependence maximizing function is the only 
function used in the model, the elevation of all sub-pixels in the 
new DEM will be finally the same and the elevation values of 
the coarse original DEM will not be preserved. To resolve this 
problem, a simple constraint function is used. The aim of this 
constraint is to achieve theoretically perfect consistency 
between scales; the elevation of a pixel of the coarse DEM 
represents the average elevations of all sub-pixels within that 
pixel. That is, the average elevation of all sub-pixels located 
within a pixel of the original DEM must be equal to the 
elevation of that original pixel. For example, the average of the 
elevation of all sub-pixels within the area of the pixel (1,1) of 
the original image in Fig. 1 must be equal to the elevation of the 
pixel (1,1).  

𝑑𝑢


= 𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛௫,௬ −
∑ ∑ ௩


(షభ)

ೣ
(ೣషభ)

×
        (11), 

Fig. 2 Hopfield Neural Network Model for DEM downscaling 
(illustrating the example of downscaling from 20 m to 5 m) 

Fig. 1 Downscaling of grid DEM by a factor of 4 
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where 𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛௫,௬ is the elevation value of pixel (x, y) in the 
original image, 𝑣 is the output (elevation) value of the sub-
pixel (p, q) in the newly generated image covered by pixel (x, 
y), and f is the zoom factor. If the average of the elevation values 
of all sub-pixels within a pixel is smaller than the 𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛௫,௬, 
then the elevation values 𝑣 of all sub-pixels within the 
footprint of pixel (x, y) are increased. In contrast, when the 
average of the elevation values of all sub-pixels within pixel 
(x,y) is larger than the 𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛௫,௬, a value is subtracted from 
the output value 𝑣 of the neuron (p, q). 

Given the above, the input value of each neuron (sub-pixel) 
can be calculated based on Equation (2) with the value 𝑑𝑢 𝑑𝑡⁄  
as 

ௗ௨ೕ

ௗ௧
=

ௗாೕ

ௗ௩
= 𝑑𝑢

௦ௗ + 𝑑𝑢
                      (12). 

 
The output value 𝑣  of each neuron is then calculated using 

an activation function 𝑔(𝑢). However, in this new HNN 
model, the activation function 𝑔(𝑢) is not the same as in 
Equation 1 because it is not used to push the output value of the 
neurons to 0 or 1 as for sub-pixel mapping. Instead, a linear 
activation function, as presented in Tank and Hopfield [44], was 
used in this new approach as  

𝑣 = 𝑔൫𝑢൯ = 𝑎𝑢 + 𝑏                                  (13) 
where, a = 1 and b = 0 in this model. 

The HNN network runs until the energy E value is 
minimized as  

𝐸 = ∑ ∑ ൫𝑑𝑢
௦ௗ + 𝑑𝑢


൯ = 𝑚𝑖𝑛                         (14) 

or, the 𝐸(𝑡) − 𝐸(𝑡 − 𝑑𝑡) = 0 , where (t - dt) and t  are two 
consecutive iterations of the HNN.  

Another difference between the HNN model for sub-pixel 
mapping and the HNN model for DEM downscaling is in the 
constants K in Equation (5). These K values were used to 
control the effect of the goal and constraint functions. Because 
the activation function of the proposed HNN for DEM 
downscaling is a linear function, K no longer provides a useful 
effect.  

Fig. 2 shows a flowchart of the modified HNN model for 
DEM downscaling illustrating the example of downscaling 
from an original 20 m to a fine 5 m resolution. Firstly, the 20 m 
original DEM is resampled to 5 m using a simple resampling 
method such as nearest neighbor to provide the initial status of 
the HNN. Each 5 m sub-pixel represented by a neuron in the 
HNN and the initial input values of the neurons are the elevation 
values of the sub-pixels. The output values of the neurons of the 
HNN (or the elevation values) are calculated based on the goal 
function and elevation constraint. The sum of all goal function 
(Equation 10) and elevation constraint (Equation 11) values is 
the energy function value (Equation 14). If the total energy 
function value of the network is not minimized, then the Min 
Value is new energy value and the HNN will run for a further 
iteration. The iterative process continues until the energy 
function value of two consecutive iterations does not change 
and the final output value of each neuron in the HNN is the 
elevation of the sub-pixel corresponding to this neuron. 

III. ASSESSMENT OF THE ALGORITHM 

A. Reference and testing data  

Two types of data were used to evaluate the proposed HNN 
model. The first type of data consisted of degraded coarse 
DEMs which were calculated from reference DEMs at fine 
resolution using simple averaging to create the source data for 
algorithm testing. Elevation values of pixels in these coarse 
degraded DEM datasets do not contain interpolation and 
measurement errors. These elevation values contain only very 
small or negligible calculation errors. The difference between 
the Earth’s surface depicted by these degraded DEMs and that 
depicted by the reference DEMs is due only to the difference in 
pixel size. So, these data are helpful for method evaluation. 
These data may be enough to assess the algorithm, but their use 
alone may lead to some skepticism because they may be 
thought of as “simulated” and are not obtained from measured 
elevation data (e.g., ground measuring, LiDAR) or contour 
data. Actually, the value in a pixel of a DEM represents the 
elevation of the surface covered by this pixel, that is, it 
represents the average elevation of this surface. Interpolation 
algorithms are used to estimate this elevation from point or 
contour data such that, again, the elevation of a pixel in a 
gridded DEM is the average elevation of all possible points 
within the footprint of each pixel with some estimation errors. 
Nevertheless, to provide a more comprehensive assessment of 
the new HNN model, (non-degraded) DEM data generated by 
interpolating point and contour data were also used directly for 
evaluation. 
 The spatial resolutions of all four testing DEM datasets in 
this paper were selected to be between 5 m and 90 m and the 
zoom factors were chosen to be 3 or 4. There are two reasons 
for this choice of spatial resolution. The first is because most 

Fig. 3 Downscaling of DEM from 60 m to 20 m spatial resolution. (a) Reference 
DEM at 20 m resolution; (b) Input coarse (Degraded) DEM at 60 m resolution 
(note: this forms the only input to the algorithms); (c) HNN downscaled DEM 
at 20 m resolution; (d) DEM at 20 m using bilinear resampling; (e) DEM at 20 
m resolution using bi-cubic resampling; (f) DEM at 20 m resolution using 
Kriging resampling; 
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gridded DEM data currently available are at this range of 
resolutions. The second and more important reason is that the 
potential increase in the grid density and, thereby, detail of these 
commonly available datasets may be useful for a wide range of 
applications. Fine spatial resolution gridded DEM data may be 
obtained from airborne LiDAR or 3D Laser scanners, but they 
are sufficiently resolved for most common applications such 
that increasing the grid density of these data is less likely to be 
required. 

Degraded DEMs 

The first set of degraded DEM data (termed the D1 dataset) 
covered an area of about 3.5 km by 3.5 km and was acquired at 
Yen Thanh District, Nghe An Province, in North Central 
Vietnam. The area is located at 18o 58’ 57.03” N, 105o 22’ 
44.87” E, about 45 km from Vinh City. This DEM was 
produced from topographic maps at a scale of 1:10000. The 
spatial resolution of the original DEM is 20 m (Fig. 3(a)) and 
this was degraded to 60 m by averaging the elevation values of 
20 m pixels within the footprints of the degraded 60 m pixels  

(Fig. 3(b)).   
The second degraded DEM dataset (termed the D2 dataset) 

was provided by the USGS Earth Explorer acquired by the 
Shuttle Radar Topography Mission (SRTM) (Fig. 4(a)). This 
dataset covered the same area as the D1 dataset, but with a 
spatial resolution of 30 m. This was also degraded to 90 m to 
create a second set of test data for the HNN model (Fig. 4(b)). 

Sampled DEMs 

 The first sampled dataset (termed the S1 dataset) was 
acquired using ground surveying in Lang Son Province of 
Vietnam. The area of the test field is about 200 m by 200 m in 
Mai Pha Ward, Lang Son City which is about 150 km from 
Hanoi. A set of 533 measured elevation points was used with 
Kriging interpolation to generate a gridded DEM dataset at 5 m 
grid spacing for use as a reference, as can be seen in Fig. 4(a). 
The accuracy of the reference DEM was assessed with a set of 
234 validation points [45], [46]. The results of accuracy 
assessment for the S1 dataset (Table 1) showed that the quality 
of the reference DEM is slightly greater than that of the ASPRS 

(a) (b) (c) 

(d) (e)   (f) 

Fig. 4 Downscaling of DEM from 90 m to 30 m spatial resolution (D2 dataset) (a) Reference DEM at 30 m resolution; (b) Input coarse (degraded) DEM at 90 m 
resolution (note: this forms the only input to the algorithms); (c) HNN downscaled DEM at 30 m resolution; (d) DEM at 30 m resolution resulted from bilinear 
resampling; (e) DEM 30 m resolution resulted from bi-cubic resampling; (f) DEM at 30 m resolution resulted by Kriging resampling;  
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Accuracy Standard for Digital Geospatial Data of 66.7 cm 
ASPRS DEM Class and Class VIII of ASPRS 1990 Standards 
[46] with a RMSE of 48.3 cm. The appropriate spatial 
resolution was created using the same interpolation contour 
interval of 1.449 m. The coarse DEM at 20 m spatial resolution 
was created using the same interpolation algorithm from the 
point data (Fig. 5(b)). This coarse resolution 20 m DEM was 
used as input for the HNN model to downscale to the 5 m DEM 
and this result was compared with 5 m DEM reference data. 

The second sampled DEM dataset (termed the S2 dataset) 
was created from contour data in Dac Ha district in Kontum 
Province in Vietnam. The location of this DEM dataset was at 
14.671794° N and 107.967292° E. The area of the test field is 
about 6.6 km by 6.6 km. From the original contour data at 5 m 
interval (Fig. 6(a)), a 30 m resolution DEM was generated and 
used as reference data (Fig. 6(c)). The coarse 90 m spatial 
resolution data (Fig. 6(d)) were then interpolated from the 10 m 
interval contours of the same area (Fig. 6(b)). The evaluation 
was then implemented by comparing the resulting 30 m DEMs 
downscaled from the coarse 90 m DEMs (zoom factor of 3) 
with the 30 m reference data. 

B. Accuracy Assessment 

1) Results and assessment methods 
To test the proposed HNN model, the DEMs with coarser 

spatial resolution were used as an input to produce DEMs at the 
same resolution as the reference data using the bilinear, bi-cubic 
and Kriging resampling approaches and the HNN downscaling 
model. In the experiment with Kriging resampling, several 
Kriging parameters such as semivariogam models, number of 
observations and the range of searching for observations were 
tested. The optimal for Kriging resampling were the 
exponential variogram model with eight observations. A 
computer program for the HNN downscaling was created using 
Visual Basic 6. The HNN downscaling program was performed 
on a desktop computer with Intel Pentium 5 Processor and 8 GB 
RAM. For the S1 dataset, the running time was 2 seconds after 
53 iterations. For the other three test datasets (D1, D2, S2), the 
running times were from 5 minutes to 7 minutes, depending on 
the sizes of the DEMs.  This running time is more than for the 
conventional resampling methods, each of which took less than 
a minute for all four datasets. Results of these downscaling 
methods for the four datasets are presented in Fig. 3, Fig. 4, Fig. 
5 and Fig. 6. 

The assessment was implemented based on both visual 
comparison of the resulting DEMs from the four different 
methods and quantitative evaluation using the parameters 
which were usually used for DEM accuracy assessment such as 
RMSE [47], coefficient of determination [48], linear regression 
parameters, and the elevation profiles [47], [49]. 

Visual assessment of the results was carried out by several 
approaches. The first approach was direct visual comparison of 
the DEM images, especially comparison of the same 
topographical features in different images. The second 
approach was to analyse the scatterplots between the elevation 
values of the pixels of the reference DEM and the elevation 
values of the corresponding pixels of the HNN downscaled 
DEM, and the benchmark DEMs as in Fig. 9 and Fig. 10. 

Another approach used in previous research on DEM 
evaluation involves comparing the cross-sections (profiles) of 
the resulting downscaled DEMs [45], [46]. These profiles 
present the match between the surfaces formed by the reference 
fine grid DEM and the surfaces formed by the DEM at coarse 
spatial resolution, DEMs generated by the benchmark 
approaches, and the HNN downscaling model and, thereby, 
enable evaluation of the effects of the algorithms on different 
forms of terrain and topographical features. The profiles for the 
four datasets are presented in Fig. 7.  

  Quantitative assessment was implemented based mainly on 
the RMSEs for the whole DEMs and profiles of the four 
datasets as presented in Table 2, where the overall RMSE, and 
profiles of the largest and smallest RMSE improvements are 
shown. Together with the RMSEs, linear regression coefficients 
such as slope m, intercept b, and correlation R were used to 
assess the match between the downscaled DEMs and the 
reference DEMs for the four datasets (Table 3). 
2) Visual assessment 

Visual comparison showed that the resulting DEMs from the 

Fig. 5 Downscaling of DEM data for S1 dataset (a) Reference DEM data at 5 
m resolution; (b) Input coarse DEM data at 20 m resolution (note: this forms 
the only input to the algorithms); (c) HNN downscaled DEM at 5 m resolution; 
(d) DEM at 5 m resolution resulted from bilinear resampling; (e) DEM at 5 m 
resolution resulted from bi-cubic resampling; (f) DEM at 5 m resolution 
resulted from Kriging resampling; 

TABLE I 
ACCURACY ASSESSMENT BASED ON ASPRS ACCURACY STANDARD FOR 

DIGITAL GEOSPATIAL DATA 

Dataset and 
standards 

Absolute Accuracy Appropriate 
Contour 
Interval 

Supported by 
the RMSEz 

value 

RMSEz 

Non-
Vegetated 

(cm) 

NVA at 
95% 

Confidence 
Level (cm) 

VVA at 
95th 

Percentile 
(cm) 

Mai Pha, 
Langson DEM 

48.3 144.9 144.9 144.9 

Standard 
ASPRS class 

VIII (66.7-cm) 
66.7 200 200 200 
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newly proposed HNN method are visually more similar to the 
reference DEMs than the input coarse spatial resolution DEMs  
and the DEMs generated by the bilinear, bi-cubic and Kriging 
benchmark methods for both the degraded and the sampled 
datasets. The improvement in visual similarity between the 
downscaled DEMs and reference DEM is seen clearly when 
comparing the 20 m DEM of the D1 dataset (Fig. 3), 30 m DEM 

of the D2 dataset (Fig. 4), 5 m DEM of the S1 dataset  (Fig. 5) 
and 30 m DEM of the S2 dataset (Fig. 6) with the respective 
reference DEMs. The images of the input coarse resolution 
DEMs and the DEMs produced by the benchmark methods, 
especially the images created by bi-cubic resampling, are 
blurred with noise and the shapes of terrain features in these 
images look distorted. 

(a) (b) 

 

 
(c) 

 (d) (e) (f) 

(g) (h) 

 

Fig. 6 Downscaling of DEM data from 90 m to 30 m spatial resolution (S2 dataset). (a) Contour data at 5 m interval; (b) Contour data at 10 m interval; (c) 
Reference DEM data at 20 m resolution (created from 5 m internal contour data); (d) Input DEM data at 90 m resolution (created from 10 m internal contour 
data) (note: this forms the only input to the algorithms); (e) HNN downscaled DEM at 30 m resolution; (f) DEM at 30 m resolution resulted from bilinear 
resampling; (g) DEM at 30 m resolution resulted from bi-cubic resampling; and (h) DEM at 30 m resolution resulted from Kriging resampling. 
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In contrast, the images of the HNN downscaled DEMs in Fig. 
3(c), Fig. 4(c), Fig. 5(c) and Fig. 6(e) look free of noise and 
similar to the reference DEMs in Fig. 3(a), Fig. 4(a), Fig. 5(a), 
and Fig. 6(c). The most clear improvement in the reconstruction 
of the shape of the terrain from the input coarse resolution data 
can be seen in the marked areas in Fig. 3, Fig. 4, Fig. 5, and Fig. 
6. Comparison of the surfaces of the resulting DEMs using 
profiles from the locations shown in Fig. 7 reveals the clear 
advantage of the HNN downscaling method over the 
benchmark resampling methods. The elevation profiles of the 
HNN downscaled DEMs are closer to the profiles of the 
reference DEMs than those of the benchmark DEMs for all four 
datasets.  This is most clearly seen in the D1 dataset in (a) (an 
example column profile) and (b) (an example row profile) in 
places such as tops of hills or bottoms of valleys and S1 dataset 
(c) (an example column profile) and (d) (an example row 
profile) (Fig. 9). In these images, it is possible to see that the 
surfaces formed by the resampling methods are closer to the 
input coarse spatial resolution surface while the surface formed 
by the HNN downscaled DEM is closer to the 5 m reference 
surface. The HNN downscaling method performed much more 
accurately than the benchmark resampling methods for more 
extreme elevation features such as the tops of ridges and hills 
or bottoms of valleys, especially for V-shaped valleys and sharp 
ridges and hills. This can be explained by the effects of the 
elevation constraint which helps to reduce or increase the 
elevation at such points while the spatial dependence 
maximization function ensures that the elevations of the 
adjacent sub-pixels change gradually, as in the real terrain. 

Visual comparison of the scatterplots in Fig. 9 and Fig. 10 
also show the closer match between the results of the HNN  
downscaling method and the reference DEM data in 
comparison with the input coarse DEM and benchmark results. 

In these scatterplots, the two DEM datasets are considered to be 
closer if the data points are located closer to the regression line. 
Additionally, the slope coefficient m should be closer to the 
value of 1 and the intercept coefficient b closer to the value of 
0. The scatterplots of the HNN downscaling results in Fig. 9(a) 
and Fig. 10(a) show a closer match between the reference DEM 
and the HNN downscaled DEM data in comparison with the 
bilinear (Fig. 9(b) and Fig. 10(b), bi-cubic resampling (Fig. 9(c) 
and Fig. 10(c)), Kriging resampling (Fig. 9(d) and Fig. 10(d)) 
DEM data. This increase in accuracy can be seen most clearly 
with the 5 m S1 dataset and 20 m D1 DEM which produced a 
closeness to the best fit line and the regression coefficients (m, 
b) in these scatterplots are closer to the values of 1 and 0. 
Comparing the two datasets, the data points in the scatterplots 
in Fig. 9(c) and Fig. 10(c) (bilinear resampled DEM), Fig. 9(d) 
and Fig. 10(d) (bi-cubic resampled DEM), Fig. 9(e) and  Fig. 
10(e) (Kriging resampled DEM) are more scattered away from 
the 1:1 line than those of the HNN downscaled DEMs. 
3) Quantitative assessment 

Coinciding with the result of visual observation, quantitative 
assessment based on the RMSE (Table 2) reveals the greater 
accuracy of the HNN downscaling method over the benchmark 
methods for all four datasets. Among the two degraded datasets 
(D1 and D2 datasets), the increase in accuracy is greater for the 
D1 dataset. The RMSE for the HNN downscaling DEM is 
1.9853 m while the RMSEs for the bilinear, bi-cubic and   
Kriging resampling methods are 3.3716 m, 3.3716 m and 

(a) (b) 

(c) 
 

(d) 

Fig. 7 The positions of profiles for DEM accuracy evaluation: (a) D1 dataset; 
(b) D2 dataset; (c) S1 dataset; and (d) S2 dataset. 

TABLE 2 
ROOT MEAN SQUARED ERROR FOR BILINEAR, BI-CUBIC, KRIGING RESAMPLING 

AND HNN DOWNSCALING 

Datasets 
Bilinear 

(m) 
Bi-cubic 

(m) 
Kriging 

(m) 
HNN 
(m) 

Accuracy 
improve-
ment over 
Bilinear 

(%) 

20 m  
Nghe An 

(D1) 

Overall 
RMSE 

3.3026 3.3716 2.8874 1.9853 39.9% 

Min CP 2.5245 2.5619 2.6330 1.9124 24.2% 
Max CP 2.9851 3.0731 2.7065 2.0171 32.4% 
Min RP 2.8843 2.9332 2.8899 1.9631 31.9% 
Max RP 2.9903 3.0293 2.8799 1.7544 41.3% 

30 m  
Nghe An 

(D2) 

Overall 
RMSE 

8.8105 8.8736 8.5719 8.3510 5.2% 

Min CP 10.7635 10.8141 11.0702 10.4270 3.1% 
Max CP 6.8408 6.9101 6.9668 6.4673 5.5% 
Min RP 6.4032 6.4005 6.2829 6.3202 1.3% 
Max RP 8.0953 8.0897 8.0478 7.6225 5.8% 

5 m  
Lang Son 

(S1) 

Overall 
RMSE 

1.5139 1.6000 1.2092 0.8493 43.9% 

Min CP 1.2419 1.2912 0.8727 0.9734 21.6% 
Max CP 1.1635 1.1821 1.1771 0.5120 56.0% 
Min RP 1.4081 1.4297 1.4138 1.1131 21.0% 
Max RP 1.4361 1.5174 1.6807 0.5897 58.9% 

30 m  
Dac Lac  

(S2) 

Overall 
RMSE 

2.3284 2.4218 2.1095 2.0946 10.0% 

Min CP 2.2395 2.2698 2.1836 2.3247 -3.8% 
Max CP 1.1377 1.2514 1.0253 0.9323 18.1% 
Min RP 1.5355 1.5676 1.3829 1.6376 -6.6% 
Max RP 1.2816 1.4015 1.1203 1.3186 -2.9% 

*Overall RMSE stands for Overall Root Mean Square Error  
* Min CP stands for the Column Profile with Min Accuracy Improvement 
* Max CP stands for the Column Profile with Max Accuracy Improvement 
* Min RP stands for the Row Profile with Min Accuracy Improvement 
* Max RP stands for the Row Profile with Max Accuracy Improvement 
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 2.8874 m, respectively. Comparing with the RMSE of the 20 
m DEM obtained by bilinear resampling from the 60 m data of 
Nghe An (D1 dataset), the RMSE of the HNN downscaled 20 
m reduced significantly by 39.9%. For the 30 m D2 dataset test, 
the increase in accuracy for the HNN downscaling algorithm is 
not as large as for the other datasets but is still convincing with 
the RMSE reduced by 5% compared with the 30 m DEM 
obtained by bilinear resampling from the input 90 m DEM. The 
increase in accuracy for the sampled DEMs is similar to that for 
the degraded DEMs. The RMSE of the 5 m Lang Son data (S1 
dataset) decreased sharply for the HNN downscaling DEM to 
0.8493 m from 1.5139 m for the 5 m DEM obtained by bilinear 
resampling (43.9%), 1.6 m for bi-cubic resampling, and 1.2092 
m for Kriging resampling. The result for the S2 test dataset is 
not as impressive as that for the S1 dataset. However, the 
increase in DEM accuracy is significant with the RMSE 
reduced by 5.2% in comparison with the bilinear resampled 
DEM. These statistics show that the proposed HNN method can 
increase the sub-pixel accuracy of a gridded DEM by 
downscaling. Furthermore, the HNN model in the presented 
examples appeared to work more effectively with the finer 
spatial resolution DEMs. 
  The increase in accuracy in terms of the RMSE, along with 
the profiles, showed the effects of terrain features on the 
performance of the HNN algorithm. For the 20 m D1 dataset 
and 30 m D2 dataset in Nghe An, the increase in accuracy 
between the resampled and downscaled DEMs is relatively 

constant. For the 30 m sampled dataset (S2 dataset), the 
increase in accuracy for most profiles is between 10% and for 
the 5 m sampled Lang Son dataset (S1 dataset) is more variable 
with a smallest value of 21% and largest value of 58%. This is 
because most of the profiles with a large increase in accuracy 
of more than 50% (such as column cross-sections 2, 4 and row 
cross-sections 2, 4, 9 (Fig. 7)) are located in areas of specific 
terrain such as valley bottoms or the tops of hills. In contrast, 
the profiles with a smaller increase in accuracy occur mostly on 
the sides of mountains where the surface represented by the 
input DEM is relatively close to the reference (fine) DEM. The 
smaller variation in the accuracy increase for the 20 m and 30 
m degraded (D1 and D2) DEMs and 30 m S2 DEMs occurs 
because most profiles are located in different types of terrain 
rather than occurring mostly in specific terrain forms. The range 
of the increase in accuracy (comparing with bilinear) for the 20 
m dataset is 16% and between 24% and 41%.  

The similarity of the two DEMs can also be evaluated 
quantitatively using the linear regression coefficients (m, b) and 
the correlation coefficient R. Because the value of m may be 
greater or smaller than 1 and the value of b may be greater or 
smaller than 0, comparison between different values of m and b 
was undertaken using the sub-parameters |1 − 𝑚|  and |𝑏|. 
Accordingly, smaller values of |1 − 𝑚| and |𝑏| simultaneously 
indicate greater similarity between two datasets. The third 
parameter for evaluating the fit of the two datasets is the 
correlation coefficient R. The correlation coefficient measures 

(a) (b) 

(c) (d) 

Fig. 8 Comparison of reference surface (reference DEM), HNN downscaled surface (downscaled DEM), input coarse resolution surface (input-DEM), bilinear, bi-
cubic and Kriging resampled surfaces based on profiles: (a) a column profile for the D1 dataset; (b) a row profile for the D1 dataset, (e) a column profile for the S1 
dataset; (f) a row profile for the S1 dataset. 
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the association between two datasets and, thus, captures the 
distribution of the data points in the scatterplots around the best 
fit line. The closer the value of R2 to 1, the more data points are 
located close to the best fit line. A perfect match between two 
DEM datasets means that all the data points are located on the 
identity line (y = x) and the coefficient of determination R2 = 1. 
That means the two datasets are exactly the same if the value of  
m is equal to 1, b is equal to 0 and R2 is equal to 1, 
simultaneously. 

To evaluate the results of the different methods, linear 
regression models were fitted to the relations between the 
reference data and the downscaled datasets (Table 3). The 
coefficient values show the better fitting of the HNN 
downscaled DEMs with the reference DEMs than those of the 
benchmark resampled DEMs. For all four datasets, the values 
of the parameters m, b and R2 of the HNN downscaled DEMs 
are much closer to the values of 1, 0, and 1, respectively, than 
those of the bilinear, bi-cubic, and Kriging resampled DEMs. 
For the Lang Son (S1 dataset) DEMs, the values |1 − 𝑚| = 
0.0195, |𝑏| = 5.9080 and R2 = 0.9937 for the HNN downscaled 
DEM showed greater similarity to the reference DEM than 
those of the bilinear resampled DEM (|1 − 𝑚| = 0.0399, |𝑏| =  
12.3782 and R2 = 0.9793), bi-cubic resampled DEM (|1 − 𝑚| 
= 0.0342, |𝑏|= 10.6432 and R2 = 0.9763), and Kriging 
resampled DEM (|1 − 𝑚| = 0.0550, |𝑏| = 16.3717 and R2 = 
0.9884). Linear regression statistics for the Dac Ha (S2 dataset) 
sampled data also showed the better match of the downscaled 
DEM to the reference DEM with |1 − 𝑚| = 0.0043, |𝑏| = 
4.1179 and R2 = 0.9968 compared with |1 − 𝑚| = 0.0128, |𝑏| = 
12.1453 and R2 = 0.9960 for bilinear resampling, |1 − 𝑚| = 
0.0115, |𝑏| = 10.9118 and R2 = 0.9959 for bi-cubic resampling, 

and |1 − 𝑚| = 0.0078, |𝑏| = 7.3917 and R2 = 0.9967 for Kriging 
resampling.  

Linear regression coefficients for the 20 m Nghe An 
degraded (D1) dataset showed that the HNN downscaled DEM 
matches very closely to the reference DEM with |1 − 𝑚| = 
0.0019, |𝑏| = 0.2949 and R2 = 0.9973 whereas the other 
downscaled DEMs are very different to the reference DEM.  

For the 30 m degraded (D2) dataset, the increase in 
prediction precision of the HNN downscaling is seen clearly 
when comparing the linear regression parameters of the four 
other methods. Although the coefficient of determination of the 
HNN downscaling result (R2 = 0.9686) is just slightly larger 
than those of the bilinear (R2 = 0.9646) and bi-cubic (R2 = 
0.9639) methods and even smaller than that of Kriging (R2 = 
0.9694), the best fit lines of the datasets showed less bias for the 
HNN downscaled DEM data with the reference data (|1 − 𝑚| 
= 0.0096 and |𝑏| = 1.6013) than those of the bilinear resampling 
(|1 − 𝑚| = 0.0500 and |𝑏| = 3.2057), bi-cubic resampling 
(|1 − 𝑚| = 0.0471 and |𝑏| = 2.8723), and Kriging interpolation 
(|1 − 𝑚| = 0.0392 and |𝑏| = 1.9291) data. 

Comparing the slope parameter m and intercept parameter b 
of the best fit lines of all four datasets, it is clear that all the 
slope parameters m of the resampled DEMs are smaller than 1 
and the intercept parameters b are larger than 0. This means that 
for locally-low places (usually the bottom of valleys) the pixels 
of the DEM data produced by these methods are likely to be 
higher than the corresponding pixels in the reference DEM.  
Conversely, for locally-high places such as the tops of hills or 
mountain ridges, the elevations of the pixels in the resampled 
DEM data are likely to be lower than that of the corresponding 
pixels in the reference image. This is due to the smoothing 

 
(a) 

  
(b) 

 
(c) 

 
(d) 

Fig. 9 Scatterplots of the reference fine spatial resolution DEM against the 
downscaled DEMs for the D1 dataset: (a) HNN downscaled DEM; (b) bilinear 
resampled DEM; (c) bi-cubic resampled DEM; (d) Kriging resampled DEM. 

Fig. 10 Scatterplots of the reference fine spatial resolution DEM against the 
downscaled DEMs for the S1 dataset: (a) HNN downscaled DEM; bilinear 
resampled DEM; (c) bi-cubic resampled DEM; (d) Kriging resampled DEM. 

(a) 
 

(b) 

 
(c) 

 
(d) 
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effect (referred to as conditional bias where highs are under-
predicted and lows are over-predicted) and can be reduced 
using HNN downscaling. The evidence for this is in the values 
of the four pairs of m and b values for the HNN downscaling 
method for the 20 m (m = 0.9981, b = 0.2949) and 30 m (m = 
0.9904, b = -1.6013) degraded DEMs, and 5 m (m = 1.0195, b 
= -5.9080) and 30 m (m = 1.0043, b = -4.1179) sampled DEMs. 
These best fit lines are very close to the 1:1 line with m = 1, and 
b = 0. Even for the 5 m D1 dataset, the HNN downscaling 
method has a tendency to produce elevation values in low 
elevation areas that are slightly lower and elevation values in 
high elevation areas that are slightly higher than those of the 
reference DEM. This can be explained by the effect of the 
elevation constraint of the HNN downscaling model. This 
effect is crucial, as it reveals that the HNN approach works not 
because it is an alternative spatial smoother that captures more 
of the salient information in the coarse resolution data, but 
explicitly because it imposes a pixel-level constraint on the 
predictions such that extremes tend to be more closely 
honoured. In other words, the structure of the HNN method 
(formulated as a within- and across-pixel smoothing goal and 
pixel-level constraint) means that it brings a specific advantage 
that other commonly applied resampling and interpolation 
methods do not. 

Although the proposed HNN model for downscaling DEMs 
has been demonstrated to be more accurate than conventional 
resampling methods, the algorithm has some limitations. In 
particular, because the HNN model uses a linear activation 
function there is no tolerance in the constraint as in the HNN 
model for sub-pixel mapping. Thus, if the input coarse DEM 
contains a large error, this error may be fully transferred to the 
downscaled DEM. To solve this problem, further research and 
modification of the HNN model, especially the activation 
functions, is needed.  

IV. CONCLUSION 

A new method for increasing the spatial pixel size and 
accuracy of gridded DEMs was proposed and tested 
comprehensively using data with different DEM spatial 
resolutions and characteristics. The newly proposed 
downscaling algorithm was formulated based on the Hopfield 
neural network (HNN) with a spatial dependence maximization 
goal function and an elevation constraint. Tests of the proposed 
HNN model were implemented on two types of elevation 
datasets; 20 m (D1) and 30 m (D2) degraded DEMs in Nghe An 
province, Vietnam, a 5 m sampled DEM (S1) in Lang Son 
province (from ground surveying elevation data), and 30 m 
sampled DEM (S2) in Dac Ha, Kontum Province, Vietnam 
(generated from contour lines). The proposed method was 
evaluated against three existing and commonly applied 
benchmark methods: the bilinear, bi-cubic and Kriging 
resampling methods.  

The test results showed a sharp increase in accuracy for the 
HNN downscaled gridded DEMs in comparison with the 
bilinear, bi-cubic, and Kriging resampled DEMs. Visual 
assessment revealed the greater similarity of the HNN 
downscaled DEMs with the reference DEM than the DEMs 
generated by bilinear, bi-cubic and Kriging resampling. 
Quantitative accuracy assessment based on the RMSE showed 
an increase in DEM accuracy for the HNN downscaling 
algorithm over the bilinear, bi-cubic and Kriging resampling 
methods. The RMSE of the downscaled DEMs decreased by 
approximately 39.9%, 5.2%, 43.9%, and 10.0% for the 20 m 
and 30 m degraded DEMs in Nghe An province (D1 and D2 
datasets), 5 m sampled DEM in Lang son province (S1 dataset), 
and 30 m sampled DEM in Dac Ha, Vietnam (S2 dataset), 
respectively. The overall RMSE values of the HNN downscaled 
DEM were smaller in comparison with those of the bilinear, bi-
cubic and Kriging resampling methods, especially for the 5 m 
and 20 m datasets.  

Further evaluation was also implemented using linear 
regression of the reference spatial resolution DEM against the 
HNN downscaled DEM and the benchmark resampled DEMs, 
particularly focusing on the coefficients m, b and R2. Analysis 
of these parameters showed that the HNN downscaled DEMs 
were closer to the reference DEMs than those produced using 
the benchmark methods. 

Visual and quantitative assessment showed that the HNN 
downscaling algorithm performed more accurately for some 
specific terrain features such as valley bottoms or the crests of 
ridges. The RMSEs of profiles located mostly in these terrain 
features decreased by about 20% (i.e., improved more) 
compared with those of the profiles occurring mostly on 
mountain sides or flat areas. This improvement can be 
attributed to the effects of the combination of the elevation 
constraint with the spatial dependence maximization functions 
in the HNN approach. That is, the specific formulation of the 
HNN method brings structural advantages to the DEM 
downscaling task that cannot be achieved using commonly 
applied spatial resampling and interpolation methods. 
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