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ARTICLE INFO ABSTRACT

Keywords: Wind-generated waves are often treated as stochastic processes. There is particular interest in
wave spectrum their spectral density functions, which are often expressed in some parametric form. Such spec-
parameter estimation tral density functions are used as inputs when modelling structural response or other engineering
JONSWAP concerns. Therefore, accurate and precise recovery of the parameters of such a form, from ob-
spectral-likelihood served wave records, is important. Current techniques are known to struggle with recovering
de-biased Whittle likelihood certain parameters, especially the peak enhancement factor and spectral tail decay. We intro-
parameter uncertainty duce an approach from the statistical literature, known as the de-biased Whittle likelihood, and

address some practical concerns regarding its implementation in the context of wind-generated
waves. We demonstrate, through numerical simulation, that the de-biased Whittle likelihood
outperforms current techniques, such as least squares fitting, both in terms of accuracy and pre-
cision of the recovered parameters. We also provide a method for estimating the uncertainty of
parameter estimates. We perform an example analysis on a data-set recorded off the coast of
New Zealand, to illustrate some of the extra practical concerns that arise when estimating the
parameters of spectra from observed data.

1. Introduction

Due to the random nature of wind-generated gravity waves, it is common to treat them as stochastic processes.
There is particular interest in the spectral density function of such wave processes. For this reason, it is important that
we are able to construct good spectral density estimators. Using such an estimator, estimates of the spectral density
function can be obtained from observed wave records. Broadly speaking, there are two approaches for obtaining
such an estimator: non-parametric and parametric. The most basic non-parametric spectral density estimator is the
periodogram — the Fourier transform of the sample autocovariance. However, the periodogram is a noisy estimator.
Therefore many less noisy estimators, such as that of Bartlett (1948), have been developed. The second approach is
to use a parametric spectral density estimator. Here we assume that the spectral density function follows a parametric
form, meaning that the inference task becomes estimation of the parameters of this form. In general, parametric
estimators are often preferable because they result in smoother estimates and more concise representations of the
spectral density function—and the parameters themselves provide physical interpretation of the nature of the wave
process.

Many such parametric forms have been developed in the oceanography literature. Phillips (1958) gave theoretical
arguments for the tail behaviour of the spectral density function for wind-generated wave processes. Based on this,
Pierson and Moskowitz (1964) established a parametric form that characterised the spectral density function of a fully
developed sea, describing both the spectral tail and peak behaviour. This was later extended by Hasselmann, Barnett,
Bouws, Carlson, Cartwright, Enke, Ewing, Gienapp, Hasselmann, Kruseman, Meerburg, Miiller, Olbers, Richter,
Sell and Walden (1973), so that the parametric form could encompass a wider variety of spectral density functions,
including those associated with fetch limited wave processes. This widely used parametric form is usually known as
the JONSWAP spectral form. It should be noted that we use JONSWAP to refer to the original formulation given by
Hasselmann et al. (1973), with a tail decay of @™ (where @ denotes angular frequency).

*Corresponding author

b j.p.grainger@lancaster.ac.uk (J.P. Grainger)
& yww.lancaster.ac.uk/"graingjp (J.P. Grainger)
ORCID(s): 0000-0002-8808-4821 (J.P. Grainger); 0000-0002-5564-3674 (A.M. Sykulski); 0000-0001-7651-9181 (P. Jonathan);

0000-0003-3863-3973 (K. Ewans)

J. P. Grainger et al.: Preprint submitted to Elsevier Page 1 of 31


www.lancaster.ac.uk/~graingjp

Estimating the parameters of ocean wave spectra

Despite general acceptance of the JONSWAP spectral form amongst practitioners, there is debate concerning the
values of the tail decay index and peak enhancement factor. Arguments for an ™ tail decay, made by Phillips (1958),
were called into question by Toba (1973) and later by Phillips (1985), who argued that an ™ tail had a stronger
theoretical basis. Experimental work such as Hasselmann et al. (1973) and Battjes, Zitman and Holthuusen (1987)
found evidence for both ™* and w™> tail decays, while Hwang, Fan, Ocampo-Torres and Garcia-Nava (2017) could
not find evidence for either, further suggesting that the tail decay index should be treated as a free parameter. In addition,
there is a large literature speculating on other tail behaviours, such as the occurrence of a transition frequency from
w*tow™> (Forristall, 1981; Ewans and Kibblewhite, 1986; Babanin, 2010, for example). It is also common to fix the
peak enhancement factor to 3.3; however, there is little evidence for using precisely this value. In this work, we adopt
a more general version of the JONSWAP spectral form, which treats both the tail decay index and peak enhancement
factor as free parameters (though our methods also apply to the special cases mentioned, in terms of estimating the
remaining parameters of interest).! Many authors (Rodriguez and Soares, 1999; Ewans and McConochie, 2018, for
example) have found that both the tail decay index and peak enhancement factor are hard to estimate accurately, using
current techniques. However, both of these parameters are important for determining the properties of a given sea
state. Our contention is that current techniques are not sufficiently accurate or precise to allow strong statements to be
made concerning the true values of the tail decay index or peak enhancement factor, from typical data sets. Indeed, in
Section 5 we demonstrate with simulated half hour records that estimates for the tail decay (using current estimation
techniques) range from @3 to =, when the true tail decay is known to be @~*. Because there is too much variability
in the estimates, it is impossible to determine from data of such lengths if the true tail decay is @™* or @™>. In this
work we present an alternative technique that is capable of obtaining these parameters more accurately and precisely,
and show in simulated data that this technique can distinguish w™* and @™ tail decays, even from short records.

The standard approach for estimating parameters of a stochastic model from data is by using maximum likelihood
inference. When an analytical form for the likelihood function is known, such parameters can be optimally estimated
using maximum likelihood (Pawitan, 2001). However, in the case of wind-generated wave processes, the exact prob-
ability distribution is unknown. Though it is possible to make the simplifying assumption that the wave process is
Gaussian, for many sea states this assumption will not be reasonable. For this reason, it has become common for
oceanographers to use a non-parametric estimator of the spectral density function, and obtain parameters by fitting a
parametric form in the least squares sense. However, such least squares estimators will in general be sub-optimal when
compared to full maximum likelihood (Constable, 1988).

We therefore turn to frequency domain likelihoods, which are widely used in both time series analysis and spatial
statistics (Nordman and Lahiri, 2006; Fuentes, 2007, for example). The canonical approach is to use an approximation
to maximum likelihood known as the Whittle likelihood (Whittle, 1953). The Whittle likelihood can be computed
quickly using Fast Fourier Transforms and does not require Gaussianity (Dzhaparidze and Yaglom, 1983). However,
the Whittle likelihood has been shown to produce biased estimates for small sample sizes (Dahlhaus, 1988; Velasco
and Robinson, 2000). Sykulski, Olhede, Guillaumin, Lilly and Early (2019) developed a de-biased version of the
Whittle likelihood that corrects for this bias, without sacrificing the computational speed or making extra distributional
assumptions. In Section 3.4, we will provide some intuition as to why we would expect the de-biased Whittle likelihood
to perform better than least squares, both in terms of accuracy (bias) and precision (variance). Then in Section 5, we
evidence this claim using numerical simulations.

The contributions of this paper are as follows. Firstly, we introduce the de-biased Whittle likelihood estimator for
use on wind-generated wave processes (Section 3). Secondly, we detail practical concerns regarding the implementa-
tion of the estimation procedure for wind-generated ocean wave processes (Section 4), with accompanying MATLAB
code provided on GitHub (Grainger, 2021). This includes an important generalisation of the Sykulski et al. (2019)
procedure to allow parameters to be fitted directly to the proposed spectral form without having to posit an analytical
form for the time-domain theoretical autocovariance sequence—as required in Sykulski et al. (2019), but unavailable
for ocean wave spectral forms. Thirdly, we present a novel reformulation of the variance of the de-biased Whittle
likelihood estimator which can be used to quantify the uncertainty of parameter estimates (Section 6). Finally, we
perform a detailed simulation and field data study comparing the performance of different parametric spectral density
estimators for wind-generated wave processes (Section 5 and Section 7).

ITo avoid potential confusion, it should be noted that we are interested in estimating the parameters of assumed parametric forms for the spectral
density function (such as the generalised JONSWAP) and not spectral parameters of a sea state such as significant wave height (H).
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2. Background

So far we have used the word “wave” loosely to describe the shifting nature of the sea surface. In truth, we are
actually interested in modelling the displacement of the sea surface from the resting surface. Of course, in reality this
is a 3-dimensional phenomena, but in this paper we shall consider the vertical displacement of the surface over time
at a specific location in space. We can think of the displacement at a given time as being a random variable with
some distribution. Therefore we can describe the displacement over time by a stochastic process, an indexed family
of random variables, which we shall denote X = {X,},cr. Note that this is a family of random variables indexed over
continuous time, as the actual physical process is constantly changing. However, since we cannot actually record data
continuously in time, we must instead settle for recording the process at discrete points in time. We assume that the
data are being sampled regularly and denote the sampling interval A and the process that arises from sampling X every
A seconds we shall call X 5 = { X5 };e7-

For the duration of a given record, observations of the sea surface are usually assumed to be from an underlying
process X that is second-order stationary. This means X satisfies all of the following conditions:

1. E[X,] = E [Xq],
2. E[IX,1?] < o0,
3. E[X,X,] = E [X,_, X,

for all ¢, s € R. However, the sea surface is not actually stationary: it evolves over time. One way to circumvent this
is to notice that whilst the conditions at sea do evolve over time, they do so relatively slowly if we sample frequently.
Therefore, we treat the sea surface as being stationary over short time intervals, sometimes known as sea states. This
is essentially the same approach as locally stationary modelling in time series analysis (Dahlhaus, 2012). Ideally we
would make this sea state as short as possible. However, we must balance this with another fundamental statement:
the more observations we have, the more confident we can be in our inferences. The question of the correct time
interval to use will not be covered here; though, it is useful to keep in mind that improving the precision of parameter
estimates will mean that we could use shorter sea states in our analysis. This would allow us to track the evolution of
certain meteorological processes, such as tropical cyclones, at a higher precision and resolution. To summarise, the
underlying wind-generated wave process is not second-order stationary; however, for short enough time windows, this
is a widely used working assumption that allows some inference to be made about the process in question.

The analysis of second-order stationary stochastic processes usually involves two important characteristics: the
autocovariance and the spectral density function. The autocovariance of a process at a given lag z, is just the covariance
of a process with itself 7 time-steps later. More formally, the autocovariance is ¢(z) = E [X,X,| — E [X,| E [X,].
For our purposes, we assume that E [X t] = 0 for all # € R; noting that if this is not the case, then by first removing
the mean of the data we can obtain a process with the desired property. Therefore, the autocovariance simplifies to
c(r)=E [X X 0]. The spectral density function is a frequency domain analogue of the autocovariance, which for the
stochastic processes X and X, we shall denote f(w) and f,(w) respectively. A formal construction of the spectral
density function can be found in, for example, Brockwell and Davis (2006, page 118) (for the discrete time process), or
Doob (1953, page 522) (for the continuous time process). However, for our purposes it suffices to note the following
relations. Firstly for the discrete time process,

[e5]

fal®) = % Y. c(zA)expl—iwTA), 1)

T=—00

forw € [-n/A,n/A], where /A is the Nyquist frequency and is the highest observable frequency of the sampled
process. Secondly for the continuous time process,

flw)=— / o(z) exp{—ior}dr, @
27 J_ o
for almost every @ € R (i.e. equal except on a set of measure zero).” Similarly, the inverse relations are
n/A
c(tA) = / falw)expliorAl}dw, 3)
—/A

2Note that we are working with angular frequency here, and for all examples in this paper this is measured in units of rad s™'.
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for r € Z and
c(7) =/ f(w)explior}do, 4

for r € R. The spectral density of the discrete time process, f,(®), can be thought of as an aliased version of the
continuous time spectral density function f(w). More formally, we have the following relation:

fat@) = 2 7o+ Z5), ®)

forw € [z /A, n/A] (Percival and Walden, 1993, chapter 4). In Section 5, we demonstrate that aliasing can cause bias
in parameter estimation, which is why it is important to define both f(w) and f, () and understand their relationship.

2.1. Non-parametric spectral density estimators
Though our purpose is the analysis of parametric spectral density estimators, it is also pertinent to define some of
the non-parametric spectral density estimators that are used throughout this paper. There are two important properties
that should be considered when choosing an estimator. The first of these is bias, which is the expectation of the
estimator minus the true value. Ideally we would want to choose an estimator that is unbiased, i.e. has a bias of zero.
This is often not possible, but the weaker condition of asymptotically unbiased is often achievable. An estimator is said
to be asymptotically unbiased if, as the number of observations increases, the bias tends to zero. The second important
property is consistency. For an estimator to be consistent it must converge in probability to the true parameter as the
number of observations tends to infinity. More formally, denote the true parameter by 6, and an estimator from a series
of N observations by éN. Then éN is a consistent estimator if, for all € > 0, P (|9N — 6y > e) —0as N — oco.
The most basic non-parametric estimator for the spectral density function of a discrete time process is the peri-
odogram. Let X n = {Xy, Xjp, ..., Xpv-1)} be a series of N consecutive random variables from X, then the
periodogram is defined as
N-1 2
I@)= 7 Z Xy, expl—itho}|

for ® € R. In practice, the periodogram is typically only evaluated at the Fourier frequencies w = 2zj/AN using
the FFT procedure, where j = —[N /2] + 1,..., | N/2]. For convenience, we shall write Q, , for the set of these
frequencies. It should also be noted that the perlodogram is an estimator for the spectral density of the discrete time
process f(w), not the spectral density of the continuous time process f(w). The periodogram can be shown to be an
asymptotically unbiased estimator for f,(w), but the periodogram is not consistent.

For this reason, modified versions of the periodogram, which are consistent, are usually used as an alternative to
the periodogram. One such modified periodogram, suggested by Welch (1967), splits the series into smaller segments,
applies a window, calculates the periodogram of each segment and then averages these modified periodograms at each
frequency. In practice, Welch’s method results in an estimate that is less noisy than a standard periodogram, but has
lost resolution in frequency and may be more biased. A subset of such methods is known as Bartlett’s method (Bartlett,
1948). This approach uses non-overlapping segments with no window function. In other words, Bartlett’s estimator is

P oL 2

@ =231 Y Xy expl-itdw)] | ©)

2nPL =S

where P is the number of segments and L is the number of observations in each segment (with PL < N).

2.2. Models for the sea surface

When describing the sea surface, models are often expressed in terms of the spectral density function. Many
different spectral density functions have been developed for ocean waves, perhaps most notably the JONSWAP spectra,
developed by Hasselmann et al. (1973). We shall consider a more general model, which encompasses many of the other
waves models that have been developed. Following Mackay (2016), we use the following parametrisation:

Sg(w | 0) = aw™" exp {—g <§>_ }y‘s(a’lg), @)

p
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where
1 w 2
S(w|f) =expy ———— | — -1 ,
(@10)=exp 20(w|9)2<wp >
and
| 68) = o foro<w,,

0, forw>a)p,

for w > 0; where @, w,,s > 0,7 > 1, r > 13 and @ denotes the vector of parameters. Typically, and for the remainder
of this paper, o}, 0, and s are set to 0.07,0.09, and 4 respectively (Mackay, 2016). In this case, the parameter vector
is 0 = (a,w,,y,r). Also let © denote the parameter space — the set of possible values that  can take. Then for this
general model, the parameter space is ® = (0, 00) X (0, 00) X [1, 00) X (1, 00) C R*. Note that (7) is a one sided spectral
density, and is not defined at @ = 0. We shall work with the two sided version as this fits in with the way we have
defined the spectral density function, the way techniques are described in the statistical literature, and the way Fast
Fourier Transforms are implemented on a computer. Therefore, we define f; : R X ©® — [0, 00),

Sglw|0)/2 forw>0,

felw]0) =50 forw =0, )
Sg(—w ] 6)/2 forw < 0.

We shall refer to the function defined by (8) as the generalised JONSWAP spectral form. In this formulation, « is

measured in units of m? s!=" rad” _1, w, inrad s~ and y and r are dimensionless. For convenience, we omit the units
in future references.

p

3. Fitting parametric spectral density functions

The process of fitting a parametric spectral density function to observations can be thought of as estimating the
parameters of a statistical model, which we denote §. The techniques discussed in this section are applicable to a broad
class of spectral density functions. As such, we consider the general case and shall write f(w | 0) for the spectral
density function of the continuous time process, given some choice of parameters §. We shall also write f,(w | ) and
c(z | @) for the spectral density function of the discrete time process and the autocovariance function respectively. For
convenience, we shall sometimes refer to the spectral density function of the continuous time process as the spectral
density function, and the spectral density function of the discrete time process as the aliased spectral density function.
We also write X, for the covariance matrix of the multivariate random variable corresponding to N consecutive random
variables from X ,. We now describe each of the fitting methods discussed in this paper.

3.1. Least squares

Current approaches to estimating parameters of spectral density functions used in the ocean waves literature, such as
the approaches described by Ewans and McConochie (2018), usually involves two key steps. Firstly, a non-parametric
estimator of the spectral density function is constructed. Secondly, a curve fitting algorithm is used so that the corre-
sponding parametric form is a good fit for the observed data. Typically this involves minimising the square distance
between the parametric form and non-parametric spectral density estimator. As such, we shall refer to such approaches
as least squares fitting techniques.

For the purpose of this section, we let I () denote a general non-parametric spectral density estimator (this could be
the periodogram, I (w), Bartlett estimator, I z(®), or some other non-parametric spectral density estimator). The second
part of this fitting routine involves fitting the parametric form to the obtained non-parametric estimator. Typically, this
is done by minimising the Euclidean distance between the non-parametric estimator and the parametric spectral density
function. We therefore must minimise the objective function given by

trs (01 Xan) = Y, (F@]0)- @), ©)

[01=(9]

3Mackay (2016) gives the condition that » > 0. However, for the spectral density to be integrable (such that the stochastic process has finite
variance), we require that r > 1.
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where Q C Q4 (the choice of Q is discussed in Section 4.1). In other words, the least squares estimator for § is
defined as 9 Ls = argmingcg £ (0 | X4, N). This approach could be adapted to account for aliasing by replacing
f(w | 0) with f(w@ | 0), the aliased spectral density function; however, such a modified approach is not currently used
in the ocean waves literature and therefore we shall use the form given by (9) in our simulation study.

Part of the reason that least squares performs poorly is that the variance of a spectral estimate will be different at
different frequencies. This means that low density areas of the spectral density function (such as the high frequency
tail) tend to be under-weighted. For this reason, log transforms are often used in least squares objective functions,
especially in the statistics literature (Bloomfield, 1973). Because standard least squares is widely used in the ocean
waves literature, we present a comparison of standard least square in this paper. However, in simulations not shown in
this paper, log least squares still does not perform as well as the de-biased Whittle likelihood. Whilst log least squares
does provide better estimates of the spectral tail decay index than standard least squares, some of the other parameter
estimates have increased bias when compared to standard least squares. Plots of these log least squares simulations
are available on GitHub (Grainger, 2021).

3.2. Maximum likelihood

Maximum likelihood inference treats the sea surface data as observations of a random variable with a given distri-
bution. The parameters for this distribution are chosen by maximising the probability of observing the data given that
the underlying distribution has certain parameters. For the moment, let the sea surface observations be multivariate
Gaussian with expectation zero and an unknown covariance matrix X,. The log-likelihood function for observations
of such a process is

1 _
(01 Xan) =3 <—N log(27) — log [Z,| — XZ’NZGIXA’N» (10)

where X X  denotes the transpose of X . The maximum likelihood estimator is then obtained by maximising the

log-likelihood function. More formally, the maximum likelihood estimator of 8 is 8,,,; = argmaxycg €1 (9 | XA N ) .
Provided that the underlying random variable is actually multivariate Gaussian, this technique will provide asymptot-
ically optimal estimates of 0, in the sense that they converge at an optimal rate (see Pawitan (2001), chapter 8.5, for
more details).

This approach can be computationally expensive because evaluating the objective function given by (10) requires
the inversion of an N X N matrix. Also, if we want to model a distribution that is not Gaussian, then a different
log-likelihood function must be used. This may take significantly longer to compute, or may not even be tractable. As
previously discussed, wave processes will not typically be precisely Gaussian. However, in Section 5 we shall compare
fitting techniques on simulated Gaussian processes in the first instance. In this case, full maximum likelihood provides
a useful benchmark to compare the performance of other estimators to the optimal choice of estimator.

3.3. Spectral-likelihood

To avoid some of the problems associated with maximum likelihood estimation we can use approximations to the
likelihood, known as pseudo- or quasi-likelihoods, to gain some of the accuracy and precision of maximum likelihood,
while keeping computational costs (and distributional assumptions) low. One such quasi-likelihood* is known as the
Whittle likelihood (Whittle, 1953). The Whittle likelihood has been used in a wide range of applications due to its
computational efficiency and fairly free distributional assumptions (in particular, we no longer need to assume that the
underlying process is Gaussian). In its discretised form, the Whittle likelihood is

I(w)
Cw (01X =- 1 0 —_— 7, 11
w (01 Xan) Lg;z{og(f(wl >>+f(w|9)} an

where I (w) denotes the periodogram ordinate at angular frequency w. The corresponding estimator is again obtained
by maximising this spectral-likelihood, which we shall denote by 8y, = argmaxyeg £y (6 | X ). This estimator
also does not account for aliasing. However, by replacing f(w | 8) with f,(w | €) in (11), we obtain an estimator that
does account for aliasing. We shall refer to this as the aliased Whittle likelihood, though it should be noted that some
authors refer to this as simply the Whittle likelihood.

4These likelihoods are usually referred to as quasi-likelihoods. However, we also use the term spectral-likelihood as it integrates nicely with
current terminology used in the literature, as well as giving an intuitive sense of what a spectral-likelihood does.
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Though this aliased approach accounts for some of the bias in the Whittle likelihood, other forms of bias introduced
through phenomena such as blurring are still present (Percival and Walden, 1993, chapter 6). Sykulski et al. (2019)
introduced the de-biased Whittle likelihood to deal with both aliasing and blurring simultaneously. The de-biased
Whittle likelihood is

- RION }
Cow (01 Xan)=— log (f,(@ | 0 12
pow (01 Xan) aé){ og (fu(@|0)) + 7@l o) (12)

where f,(w | ) = E[I(w) | 0] is the expected periodogram. As noted by Sykulski et al. (2019), the expected peri-
odogram can be calculated in O(N log N) time by using the relation:

N-1
E[I(o) ] 6] = —Re(ZA > (1 - —) e(t | 0) exp{—iwrA} — Ac(0 | 9)> (13)
0

T=

The resulting estimator can then be expressed as 0py = argmaxgcq £ pw (0 | X4, N) . Despite being constructed
from the periodogram, an inconsistent estimator of the spectral density function, the de-biased Whittle likelihood is a
consistent estimator of the parameters for the parametric model. The de-biased Whittle likelihood is able to address
the deficiencies in the periodogram without introducing bias, by accounting for the finite sample properties of the
periodogram. Sykulski et al. (2019) also show that, under certain conditions, the de-biased Whittle estimator converges
optimally. These condition are discussed further in Appendix C.

3.4. Comparison

In Section 5, we perform a simulation study to compare each of the estimators that we have discussed.

However, we can also try to build some intuition as to why certain approaches are likely to be more effective than
others. To achieve this we shall consider the conditions in which each technique would be equivalent to full maximum
likelihood for a finite sample, then evaluate how likely it is that said assumptions are satisfied. Note that this is not (and
nor is it intended to be) a formal proof; results related to the convergence of de-biased Whittle estimators and their
proofs can be found in Sykulski et al. (2019). Rather, this is a sketch of what is going on under the hood that causes
the de-biased Whittle likelihood to outperform least squares based techniques.

Maximum likelihood inference works by making probabilistic statements about the distribution of data and then
using this to work out the parameter choice that would have been most likely to have given rise to the data in question.
The part of this process of interest to us here is making such distributional statements. For this comparison, we shall
think of the non-parametric spectral density estimates as “the data”, and shall consider what their distribution would
need to be for least squares or the Whittle likelihood to be the optimum likelihood function for this data.’

Then, for the least squares approach to yield the same parameter estimates as the optimum likelihood function,
we would need the non-parametric spectral density estimator used in the fitting routine, I(w), to satisfy the following
four assumptions. Firstly, at each frequency, the non-parametric estimator must be Gaussian. In general, this is not
true for non-parametric spectral density estimators, though it is true asymptotically for some of them (e.g. Bartlett’s
method). Secondly, the expectation of the non-parametric estimator must be equal to the spectral density function at
a given frequency. This is not actually true for non-parametric spectral density estimators, as these are constructed to
estimate the aliased spectral density function, not the spectral density function of the continuous time process. Though
this aliasing could be accounted for by modifying the spectral form used in the fitting routine, such modification is
not standard practice and many non-parametric spectral density estimators are still biased. Thirdly, the variance of the
non-parametric spectral density estimator must be the same for each frequency. This is not the case for non-parametric
spectral density estimators in general, as the variance at a given frequency depends on the spectral density function
at that frequency (Brockwell and Davis, 2006). Though weighted least squares approaches, such as the approach
proposed by Chiu (1988), do begin to address the problem of assumption three, they are not widely used and still make
the first and second assumptions. Fourthly, the non-parametric estimators at any two different frequencies must be
uncorrelated. This assumption is discussed further in Section 3.5.

For the Whittle likelihood to yield the same parameter estimates as the optimum likelihood function, we would
need the following three assumptions on the periodogram to hold. Firstly, we would require the periodogram to be

SThis differs from full maximum likelihood on the time series as we have lost the phase information in calculating a spectral density estimate.
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exponentially distributed at each Fourier frequency.® Secondly, we would require that the expectation of the peri-
odogram is equal to the spectral density function at a given frequency (and consequently that the variance is the square
of the spectral density function). Thirdly, the periodogram at any two different frequencies must be uncorrelated. At
fixed frequencies, the first assumption is true asymptotically for linear processes (Brockwell and Davis, 2006) and
for some classes of non-linear processes (Shao and Wu, 2007). At first glance, this may seem to be similar to the
asymptotic normality of Bartlett modified periodograms that are often used in least squares. However, it should be
noted that in the case of the periodogram, this asymptotic result is in terms of the number of observations; whereas
for Bartlett modified periodograms, this result is in terms of the number of segments that are used, which is much
smaller. When it comes to the second assumption, the periodogram is an asymptotically unbiased estimator of the
aliased spectral density function. For this reason, the aliased version of the Whittle likelihood should be used over
the standard version. Again it may seem that this is also true for Bartlett modified periodograms, as Bartlett’s method
averages periodograms and each periodogram is an asymptotically unbiased estimator of the aliased spectral density
function. Therefore if we were to adjust for this aliasing, least squares would be justified. However, each of these
component periodograms are calculated from small segments of the full record, so it is difficult to invoke asymptotic
results. Indeed, this creates somewhat of a catch-22 for Bartlett least squares: to get asymptotic normality we must
average many periodograms; but this results in using shorter segments for each periodogram, introducing bias (and
vice versa). The de-biased Whittle likelihood (Sykulski et al., 2019) bypasses the second assumption (made by the
Whittle likelihood) altogether, as it uses the theoretical expectation of the periodogram in place of the spectral density
function. This means that even for small sample sizes the de-biased Whittle likelihood produces estimates with very
small to no bias. The final assumption, the assumption of independence between frequencies, is required by both least
squares and spectral-likelihoods; however, the Whittle likelihood is also in a strong position when it comes to satisfying
this assumption. This is because asymptotically the periodogram is uncorrelated at different frequencies, and we are
using the longest periodogram possible, given the length of the data. Of course, least squares techniques could be used
on the raw periodogram, meaning that the second and last assumptions are just as likely to be satisfied as when using
spectral-likelihoods, but in this case, the asymptotic normality required for least squares will not be satisfied (nor in
general will the constant variance assumption).

When it comes to the final assumption for both least squares and spectral-likelihood techniques, there are some
practical concerns that should be considered. In particular, when the aliased spectral density has high dynamic range,
the frequencies are often correlated. As we shall shortly show, in the case of wind-generated waves, this issue does
not present itself for 1Hz data. Although, for higher sampling frequencies, such as 4Hz data, the periodogram is often
highly correlated. To solve this problem we can turn to differencing, a technique that is well established for reducing
correlations in the periodogram (Velasco and Robinson, 2000).

3.5. Differencing

If the periodogram is highly correlated across frequencies, spectral-likelihoods will perform poorly when com-
pared to full maximum likelihood Velasco and Robinson (2000). Differencing can sometimes provide a convenient
mechanism for removing such correlations. Define the differenced process as ¥; = X, , — X,. We briefly switch
notation and let cx (7) and fy () denote the autocovariance and spectral density function of X at 7 and w respectively,
and likewise cy(7) and fy (w) for the differenced process Y. First notice that

cy(r) = E [YyY,] (14)
=E[Xa X, 1n — Xo X pa — Xp X, + Xo X, ] (15)
=2cy(t) —c(t + A) —c(z — A), (16)
by stationarity. Then from (2) we can see that
fy(w) = /00 (ZCX(T) —c(t+A) —c(t— A)) exp{—itw}dr (17
=2fx(@) — * fx(@) — e fx (@) (18)
= 2(1 = cos(wA)) fy (@) (19)
= 4sin? (%) Iy(@). (20)

6 A slightly different assumption is made about the zero and Nyquist frequency, though in practice they are often omitted.
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Therefore, differencing can be easily incorporated into the fitting techniques that have been discussed in this paper,
by simply replacing X with the differenced process Y and fy with fy using the relation given by (20). Consider
the correlation matrix of the periodogram: the matrix with i, jth element defined to be the correlation between the
periodogram at the ith and jth Fourier frequencies. Figure 1 shows a plot of the correlation matrix for the periodogram
of a wind-generated wave process, estimated using the technique described in Appendix B. We can see that for data
recorded at a 1Hz sampling rate there is little correlation in the periodogram; however, this is not the case for 4Hz
data. We can also see that the periodogram of the differenced process is almost completely uncorrelated, even for the
4Hz data.” From the signal processing perspective, this has reduced the dynamic range of the spectrum as we are
multiplying the spectral density function by something that is close to zero for angular frequencies that are small, but
is close to one near the Nyquist, down-weighting the peak far more than the tail.

0 0. 1
0.8
0.6
3 7/2 T 3 7/2
0.4
0.2
by T 0
0 /2 s 0 /2 T
w w
(a) No differencing and A = 1. (b) Differencing and A = 1.
0 Om
3 27 T 3 27
4 : 4n
0 2w 4 0 2w 4
w w
(c) No differencing and A = 1/4. (d) Differencing and A = 1/4.

Figure 1: Image plots of the correlation matrix of the periodogram of a wind-generated wave process for different values
of A and the corresponding images for the differenced process, for a generalised JONSWAP with parameters a = 0.7,
w,=0.7,y=33and r=35.

4. Practical concerns for implementation with the generalised JONSWAP

In Section 3, we described some techniques that can be used to estimate model parameters. When implementing
these techniques for ocean wave models, there are some practical concerns that must be addressed. Firstly, we need
not use all of the Fourier frequencies when fitting the model. Indeed, it may be preferable to remove some frequencies
that are contaminated by some other process or by observational noise. Secondly, there is no known analytical form for
the autocovariance corresponding to many of the spectral density functions used when modelling ocean waves. There-
fore, numerical techniques for estimating the autocovariance play an important role in many of the fitting procedures

71t should be noted that the region of high correlation in the top left corner of each of the correlation matrices is part of the reason for removing
such frequencies from the objective function when performing fits, as discussed further in Section 4.1.
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discussed in Section 3. In particular, it is necessary for both the de-biased Whittle likelihood and for full maximum
likelihood.

4.1. Frequency selection

Many of the estimators defined in Section 3 involve minimising or maximising objective functions, which are
expressed as the sum over some set of frequencies Q C €y ». The most simple choice for this set €2 is just the set
of Fourier frequencies Qy 5. At first glance, this would seem like the most sensible choice (as omitting frequencies
is essentially the same as throwing away data-points). However, there are many different circumstances in which it is
preferable to remove some of the frequencies from the fit.

One practical reason for removing certain frequencies is that for very low frequencies, the generalised JONSWAP
spectra is zero to machine precision. This often introduces numerical instabilities, especially for objective functions
that involve dividing by the spectral density function (such as the Whittle likelihood). As can be seen in Figure 1,
there is also a region of high correlation in the low frequencies, which provides an additional motivation for removing
such frequencies. An alternative method to reducing correlations in the periodogram is to use tapered versions of
the spectral density estimate in the Whittle likelihood (Dahlhaus, 1988), but in simulations (available on GitHub) we
found omitting frequencies from the fit to be a better solution than tapering in terms of the resulting bias and variance
of parameter estimates. Another reason for removing certain frequencies from the fit is that it can help to remove noise
processes that are present in a record. For example, wave records often contain a low-frequency swell component,
but we are interested in the parameters of the wind sea component. By removing frequencies in which the swell is
dominant, we are better able to model the wind sea component of a sea state. On top of this, there is an added technical
concern when using the Whittle and de-biased Whittle likelihoods. The zero and Nyquist frequencies must be omitted
(or a modified version of the summand must used for those frequencies). This is because these methods are based on
the asymptotic distribution of the periodogram, which is different at the Nyquist and zero frequency than it is at other
frequencies.

Fitting the model in this way can be thought of as fitting a semi-parametric model (as some of the frequencies are
being modelled using a parametric model, and the remaining frequencies by some non-parametric model such as the
periodogram). It is worth noting that this approach can actually be applied to full maximum likelihood as well. This
can be achieved by transforming both the observations and autocovariance of the model into the frequency domain,
applying a band pass filter, and then transforming back. While this is possible in theory, it is fiddly in practice and is no
longer exact. This demonstrates another major advantage of spectral-likelihoods: it is far easier to filter out undesired
frequencies from the model fit. However, the choice of frequencies to be used in the fit should be made prior to the
objective function being optimised. Otherwise the number of degrees of freedom could be changing throughout the
optimisation routine, which would likely result in additional bias.

4.2. Numerical estimation of the autocovariance

To calculate both the multivariate Gaussian likelihood and de-biased Whittle likelihood we require the autoco-
variance of the process given a certain parameter choice (in (10) for the multivariate Gaussian likelihood and (13) for
the de-biased Whittle likelihood). For the generalised JONSWAP spectra, there is no analytical form for this auto-
covariance. As such, the autocovariance must be approximated numerically. Firstly, recall that the autocovariance is
the Fourier transform of the spectral density function, as defined in (4), and we wish to obtain the autocovariance at
lags 0, A, ..., (N — 1)A. The first problem we encounter is that this integral is over the entire real line. Clearly, we
cannot approximate such an integral numerically and must instead settle for integrating up to some finite frequency,
such that the spectral density function beyond that frequency is sufficiently small. In particular, it is convenient to
choose a multiple of the Nyquist frequency, as the integral will be approximated using a Fast Fourier Transform, so
the desired lags can be extracted by sub-sampling if a multiple of the Nyquist is used in the integration. Therefore,
based on equation (4), we can construct the approximate autocovariance

Lr/A
é(r) = / f(w)explitw}dw, 20
—Lz/A
for Le N=1{1,2,3,...}.
Alternatively, we could consider the relation given in equation (3), between the autocovariance and the discrete
time spectral density function. In this case, we would first need to approximate the spectral density function for the
discrete time process. To do this, we use a truncated version of the relation given by equation (5), between the spectral
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density of the continuous and discrete time processes. Consider the approximation of the aliased spectral density
function given by

K
> 2k
— Tk 22
fa@= 3 f(o+75), 22)
k=—K
for K € Ny = {0, 1,2, ...}. Then we can construct the alternative approximation to the autocovariance given by
/A
é(r) = / fa(w)explitw}dw. (23)
—-n/A
Notice that we may write
/A K
&) = / 3 s (a) + 2”—") explito}dw (24)
-m/A g=—K A
K /A
-y / 7 (a) + 2”—") explita)}do 25)
k=—K 4 —n/A A
K Qk+D)z/A
= Z / f (w)explitw}dw (26)
K=k J @k=Dym/A
QK+Dx/A
= / f (w)exp{itw}dw. 27
(=2K-1)z/A

From (27) we can see that, if L = 2K + 1, then é(r) and é(z) are equivalent. In practice, these integrals must be
approximated numerically. To do this, we consider a Riemann approximation with bins of width 2z / M A. By choosing
M to be some integer bigger than 2N, we can obtain the desired lags by performing a Fast Fourier Transform and then
sub-sampling appropriately.

We can now see that the approximation based on é(7) (in (21)) can be computed in O(L M log L M) time. However,
computing the second approximation, based on &(z) (in (23)), requires first computing f(w) at M frequencies (taking
O(L M) operations) and then performing a Fourier transform on M frequencies, requiring O(M log M) operations.
In other words, the first approach requires O(M (L log L + Llog M)) operations, whereas the second only requires
O(M (L + log M)) operations. For this reason, we use the latter approach when approximating the autocovariance:
first approximating the aliased spectral density, then approximating the autocovariance.

The choice of K (or equivalently L) depends on the tail behaviour of the spectral density function in question.
In practice, we choose K so that for frequencies beyond (2K + 1)z /A, the spectral density is below some threshold
(typically 10~® m? s rad™"), though K should really be chosen so that it scales with N, for convergence results to
still apply. The choice of M is based on the required accuracy of the integral approximation and should be tuned
accordingly. For the generalised JONSWAP, we have found that M = max{8192,2N} is a good choice.

5. Simulation Study

Though it is possible to make theoretical statements about the asymptotic behaviour of different estimators, from a
practical perspective, their finite sample behaviour is of primary interest. To investigate this, we perform a simulation
study to assess the performance of the estimators described in Section 3. In this simulation study, we compare six
different fitting techniques based on these estimators. The first, which we call least squares, uses the curve fitting
approach with the periodogram. The second approach is similar, but uses Bartlett’s method to estimate the spectral
density function, which we refer to as Bartlett least squares. The window size is chosen so that we have a spectral
resolution of 0.27, i.e. the window size is 100/ A.% For 1.28Hz data, this corresponds to a window size of 128. The
third and fourth approaches are the Whittle and aliased Whittle likelihoods respectively. The final two approaches are
the de-biased Whittle likelihood and full time domain maximum likelihood.

8Clearly for some values of A this would not be an integer; however, for the values of A that we choose it is.
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5.1. Method

To investigate the effectiveness of different fitting approaches we simulate a linear wave record with a known
parametric spectral density function and then re-estimate the parameters from the simulated record. By repeatedly
performing this process, we can assess the bias and variance of each of the estimators discussed in Section 3. For
the purposes of the simulation study we let X 5 5 be a random variable with a multivariate normal distribution result-
ing from sub-sampling the continuous-time mean-zero stationary Gaussian process X, where X has spectral density
function fg(w | 0), defined by (8). We then simulate a realisation of X 5  using the circulant embedding method
described by Davies and Harte (1987) (and for complex valued processes by Percival (2006)). We choose to use circu-
lant embedding over the typical approaches for simulating Gaussian processes often used in the ocean waves literature,
such as the method due to Tucker, Challenor and Carter (1984), as these methods only approximately simulate a Gaus-
sian process with the given spectral density function, whereas circulant embedding is exact (up to the quality of the
approximation of the autocovariance that is used). Furthermore, many techniques, such as the method proposed by
Tucker et al. (1984), or the more recent modification due to Mérigaud and Ringwood (2018) do not account for aliasing
when simulating the process. Since we are explicitly interested in the effect that aliasing has on recovered parame-
ters, it is important that we simulate something that is as close as we can get to a Gaussian process with the desired
aliased spectral density function. Circulant embedding generates time series with all of the sampling effects discussed
by Tucker et al. (1984), but also includes additional finite sampling effects such as aliasing and correlations between
spectral estimates at different frequencies. Such effects should be present in generated time series, but are not in time
series generated using the method suggested by Tucker et al. (1984). More details can be found in Davies and Harte
(1987); Dietrich and Newsam (1997); Wood and Chan (1994).

To perform the fitting we first choose one of the objective functions described in Section 3 and optimise this using
the fmincon function in MATLAB (with maximisation done by minimising the negative of the objective function). An
initial guess for the fitting procedure needs to be provided for each of the parameters. For w,, we use the frequency
corresponding to the largest value of the periodogram. For r, we use a basic linear regression coefficient between the
log spectral density and log periodogram over the tail frequencies (where the tail is chosen to be all frequencies that
are closer to the Nyquist than the peak). We choose to initialise y by setting it equal to 3. This is because choosing
y heuristically is not easy, and y = 3 is close to the value commonly assumed by many oceanographers. In practice,
the initial choice of ¥ does not seem to have a huge impact on the final fitted values; however, the optimisation could
also be run with multiple starting values of y and the best estimate could then be selected. Once these parameters are
initialised, « is initialised so that the area under the initial parametric spectral density function matches the area under
the periodogram. In simulations, we find that the inference is not sensitive to the initial guess (provided it is sensible).
In practice we are often fitting models to multiple consecutive sea states. In this case, it can be more efficient to use
the parameter estimates for the previous sea state as initial values when optimising.

5.2. A canonical sea state

We shall begin by considering how each of the estimators perform for one choice of true parameters, before showing
that the results are robust to the true parameters. In particular, we begin by considering a spectral density function of
the form described in Section 2.2, with oy = 0.07, 6, = 0.09 and s = 4 treated as known, and with a = 0.7, w, = 0.7,
y = 3.3 and r = 4 treated as unknown parameters to be estimated. The reason for choosing these parameters is that
a = 0.7 roughly corresponds to the scaling present when using Phillip’s constant in a JONSWAP spectra, w, = 0.7
is a reasonable choice for peak frequency, y = 3.3 is commonly assumed to be the peak enhancement factor, and
r = 4 is one of the suggested values for the tail decay index. Half hour records sampled at 1.28Hz (a standard time
interval and sampling frequency for wave records) were simulated and the parameters were estimated using each of the
six estimation methods described above. The resulting estimates across 1000 repeated simulations are summarised in
Figure 2, alongside the time taken to perform the optimisation. For comparison, the true value of each parameter is
given by a horizontal black dashed line.

Perhaps the most striking feature of Figure 2 is the difference in the variability in estimates of the tail parameter,
r, when comparing least squares type techniques to likelihood based techniques. Least squares techniques recover
parameter estimates ranging from well beyond three to five, making it very difficult to make any statements about the
true value of the tail decay. However, we can see that statistical techniques such as the de-biased Whittle likelihood are
able to recover the original tail parameter to within a few decimal places. Therefore, by using the de-biased Whittle
likelihood, practitioners would be able to distinguish between w~* and @™ spectral tails in observed records. Though it
should be noted that this assumes the wind-sea had a spectral density that is well described by a generalised JONSWAP
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and so we cannot provide model free estimates of the tail decay. In particular, a different model would be required for a
transition in tail decays over frequency, such as the effect discussed by Babanin (2010); however, the de-biased Whittle
likelihood is generic and could be applied to other models provided they satisfied certain conditions (see Appendix C).
We can also see that the de-biased Whittle likelihood offers an improvement in estimates of y, performing almost as
well as full maximum likelihood.

It is also interesting that bias can be seen in both the Whittle and aliased Whittle likelihood estimates, but that this
bias is not present in the de-biased Whittle likelihood estimates. This verifies that the de-biased Whittle likelihood is
indeed accounting for some of the bias present in standard Whittle likelihood, and demonstrates why de-biased Whittle
likelihood is necessary over the aliased Whittle likelihood, which can still be seen to be biased for some parameters.
In the analysis of Figure 2 full maximum likelihood provides the best estimates, in terms of root mean square error.
However, this comes at significant computational cost, whilst giving limited improvement in bias and variance when
compared to the de-biased Whittle likelihood.

Often, during optimisation, parameters may trade off against one-another. Therefore it is also important to look at
the joint behaviour of parameter estimates. Figure 3 shows a scatter plot of the de-biased Whittle likelihood estimates
from Figure 2. We can see that there is very strong correlation between the estimates of @ and r, and some negative
correlation between « and y. This likely occurs because y and r change the area under the spectral density function, so
a is likely to be adjusted to compensate. Though it would be possible to reparameterise to try and avoid this, it does
not seem to have a significant impact on the resulting estimates and is therefore not necessary.

In practice, longer sea states are often used to estimate model parameters. Therefore, we also compare some of
the methods for 3 hour records. Figure 4 shows the comparison of least squares, Bartlett least squares and de-biased
Whittle likelihood estimates for these 3 hour records. The variance in the first two estimators has indeed decreased
when compared to the estimates from half hour records shown in Figure 2. However, by comparing the de-biased
Whittle likelihood estimates in Figure 2 to the least squares estimates in Figure 4, we can see that the de-biased Whittle
likelihood used on a half hour record yields better estimates than the least squares based estimates performed on 3 hour
records. The longer record reduces the variance of the least squares and Bartlett least squares techniques enough to
allow us to see another interesting feature, namely that there is significant bias present in the Bartlett least squares
estimates that is not present in the standard least squares estimates. This demonstrates that non-parametric smoothing
can have unexpected consequences when used to fit a parametric spectral density function.

In essence, by using the de-biased Whittle likelihood, we can obtain more accurate and precise parameter estimates,
whilst simultaneously reducing the length of the record required to obtain the estimates. This improvement is espe-
cially noticeable (and important) for the peak enhancement factor, y, and tail decay index, r. In practice, this has two
important consequences. Firstly, we can reduce the amount of time for which the surface is assumed to be stationary.
This means that we can fit stationary models to weather systems that evolve very quickly, such as tropical cyclones.
Secondly, we can obtain parameter estimates at more frequent time intervals. This higher parameter resolution means
that we gain a more detailed insight into how certain parameters evolve throughout the course of a meteorological
event.

5.3. Robustness of results

In Section 5.2 we have demonstrated that the de-biased Whittle likelihood can produce parameter estimates that are
both more accurate and more precise than those produced by least squares techniques, without making huge sacrifices
in terms of computational time. However, it is also important to check that these results extend to different choices of
the true parameter.

In Table 1, we present the results of a simulation study comparing least squares, Bartlett least squares and the de-
biased Whittle likelihood over 24 different choices of true parameter. For each choice of true parameter, we calculated
the percentage bias, standard deviation (SD) and root mean square error (RMSE) of the estimates (relative to the true
parameter). We then averaged over all the choices of true parameter, yielding an average percent bias, SD and RMSE
for each parameter. The parameter choices used to perform these simulations were all the combinations of a = 0.7;
w, =0.7,09,12;y = 1,2,3.3,5; and r = 4,5. Boxplots for each set of parameter choices are available on GitHub
(Grainger, 2021). We can see from Table 1 that there are substantial reductions in both the bias and standard deviation
of all the estimated parameters.

True parameters on the boundary of the parameter space can cause problems when performing parametric esti-
mation. As such, we shall further discuss the results for the special case when y = 1. The fitted parameters for half
hour simulated records with true parameter values « = 0.7, w, = 0.7, y = 1 and r = 5, using the least squares,
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Figure 2: Boxplots of parameter estimates and time taken for six different fitting routines with true parameters denoted by
the dashed black lines. Each row displays the results for a given fitting technique, as well as the log of the time taken to
perform the optimisation, recorded in seconds. The fitting was performed on simulations of 1.28Hz observations recorded
for half an hour (2304 observations). The process was repeated 1000 times.
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Figure 3: Scatter plot of the de-biased Whittle estimates obtained from half hour records shown in Figure 2.

Bartlett least squares and de-biased Whittle likelihood techniques can be seen in Figure 5. This is an interesting case
because not only does the true parameter lie on the boundary of the parameter space, but this value of y corresponds
to a Pierson-Moskowitz spectrum, for a fully developed sea. This means that such a value of y could occur in nature,
and as such it is important that we can model this case. The problem is that the theoretical guarantees for an approach
such as the de-biased Whittle likelihood rely on the assumption that the true parameter does not lie on the boundary
of the parameter space. Since this is not the case for y = 1, therefore we must take care when dealing with records for
which the true value of y may indeed be 1. In particular, we can see from Figure 5 that the de-biased Whittle likelihood
estimates for y is not normally distributed, a result that is assumed when constructing the confidence intervals that are
described later in Section 6. One way to deal with this problem is to fit both a model with y = 1 fixed and one with y as
a free parameter, and then test to see if there is evidence for y > 1. Such a procedure allows us to circumvent potential
issues caused by y lying on the boundary of the parameter space. This could be performed by using the procedure
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Figure 4: Boxplots of 1000 parameter estimates using three different fitting routines on the same simulations using the
same true parameters as Figure 2 and same sampling interval but simulating 3 hour records.
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Bias SD RMSE
LS BLS DW LS BLS DW LS BLS DW
a 470% 10.88% 0.80% | 34.64% 30.69% 9.13% | 35.46% 33.49% 9.19%
o, 0.08% 0.11% 0.06% 1.73% 1.85% 0.77% 1.74% 1.86% 0.77%
Y 15.88% 10.20% 2.98% | 43.29% 29.27% 18.00% | 46.39% 31.75% 18.71%

r 3.89% 5.60% 0.18% | 17.57% 15.76% 2.09% | 18.35% 17.44% 2.11%
average | 6.14%  6.70% 1.01% | 24.31% 19.39%  7.50% | 25.49% 21.13%  7.69%

Table 1

Average percentage bias, standard deviation and root mean squared error across 24 different parameter choices calculated
from 1000 repetitions per parameter choice for least squares (LS), Bartlett least squares (BLS) and de-biased Whittle
likelihood (DW). Parameter choices were all the combinations of « = 0.7; w,=07,09,12; y =1,2,33,5 and r = 4,5.
Simulated records were half an hour long and sampled at 1.28Hz. The bottom row shows the average of these quantities
over all the parameters in the model.

developed by Sykulski, Olhede, Lilly and Early (2017), adapted to the 1D case.

5.4. Differencing for high sampling frequencies

As we discussed in Section 3.5, for wind generated waves observed at a 4Hz sampling rate, the periodogram
is highly correlated. As noted in Section 3.4, in this case, we would expect spectral techniques to perform poorly
compared to full maximum likelihood. Differencing can reduce the correlation in the periodogram, and therefore can
be a powerful tool to remove bias from spectral methods. Figure 6 shows box plots of estimated parameters for least
squares, Bartlett least squares and de-biased Whittle likelihood techniques, both with and without differencing, for
both 1Hz and 4Hz data (in this case, 2048 seconds worth of data was simulated per record, i.e. 2048 observations for
the 1Hz simulation and 8192 for the 4Hz simulation). We can see little benefit from differencing in the 1Hz estimates
(Figure 6a). However, when it comes to 4Hz data, there is a major benefit to differencing, especially for the de-biased
Whittle likelihood. Because there is little difference between the de-biased Whittle fits on the original and differenced
1Hz data, we would recommend that differencing is used as standard, to protect against the issues seen in Figure 6b. At
the very least, investigating the correlation matrix of the periodogram should be an important diagnostic when fitting
spectral models.

6. Quantifying estimation uncertainty

As with any statistical analysis, it is important to quantify the uncertainty in the parameter estimates that are
obtained using the de-biased Whittle likelihood. Sykulski et al. (2019) developed an approach for quantifying the
asymptotic variance of the estimator for a single time series. Say that we have p parameters that are written in a vector
6 and are interested in the de-biased Whittle likelihood estimator 6y, of the true parameter vector 6. Sykulski et al.
(2019) decompose the variance as

var (Opy, ) = E[H(0)]™" var (V£ (0)) ELHO)] ", (28)

where H (0) denotes the matrix of second derivatives of the log-likelihood function £y, (0), and V denotes the vector
of first derivatives of £y, (6).
Now for the de-biased Whittle likelihood, we may write

P 1 I(w) 0 =
— = — - EY'R ?
5 TOEEDY {(fn(w 5 P 9)> aejf"(w | 0)}, (29)

weQ

for j = 1,...,p. As will be seen in Appendix B, this is required to calculate var (Vf DW(B)). Furthermore, we may
write

0’ _ 1 0 - 0 -
E [dﬁj()@k fD(G’)] =- Z {Wa_ejfn(w | Q)Efn(a) | 9)} , (30)

weQ
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Figure 5: Boxplots of 1000 parameter estimates using three different fitting routines with true parameters a = 0.7, w, = 0.7,

Estimating the parameters of ocean wave spectra

_‘ ““““““““““““““““““““““ A _:
_ _T ? | ]
B s |
e I m————

e R — —_— ]
L — __'__ _
T I I

Least Squares Bartlett LS Debiased Whittle

y =1 and r =5, estimated from simulated half hour records sampled at 1.28Hz.

J. P. Grainger et al.: Preprint submitted to Elsevier

Page 18 of 31



Estimating the parameters of ocean wave spectra

2 . 2 :
+ +
1.5 % 1.5t
S 1§ F % % = S l-§ % =+ $ $
P == T S S X I R 2
0.5F 1 =+ + = == 05F - + =+
+ + r 7T

.
I
R, B
ﬂ}
ot {i N
%[ﬂ-%w

w
N -

fY _—
N R O 0 O N
]
e+

»

,Y —_—
D o 3D :
Do
rﬂmmm %Hlm}l

J’_
_|_
+
A I FoE o
S e
T + + + T +
12F 12
10t 10f + +
6r | j 5 = 1 6r | ‘ ; 1
fesengdde] feseeregeded
N A+ F
LIS BLS DIW LISd BLISd D\IVd LIS BTLS DW LSd BLSd DWwd
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Figure 6: Boxplots of 1000 parameter estimates for 1Hz and 4Hz data. LS, BLS, DW denote least squares, Bartlett least
squares and de-biased Whittle respectively, and LSd, BLSd and DWd denote the differenced versions. Note that the values
of y for the 4Hz DW have been truncated, the maximum was 19.81.

for j,k = 1, ..., p. Therefore, we require only the first derivative of the expected periodogram in order to compute
both parts of the variance decomposition given by (28).
Furthermore, the triangle function and Fourier basis are constant with respect to 8, so from (13) we have that

N-1
0 > 1 J 0
— ) = —Re| 2A 1-7/N)— 0 —iotA} —A— {y(0 | 0 , 31
20 @10= 5, e< Z‘(,)( TN w1 0] expl=ionh) = A (7O )}) 31
for j = 1,...,p. In other words, to calculate the derivative of the expected periodogram, we may first calculate the

derivative of the autocovariance, then calculate the expected periodogram of the process with that derivative as its
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autocovariance. In the case of the generalised JONSWAP spectral density function, when an analytical form for such
autocovariance is unavailable, we may instead approximate the derivative of the autocovariance by first approximating
the derivatives of the aliased spectral density function, and then of the autocovariance.

In Appendix A we show that, for the generalised JONSWAP form, partial derivatives of f5 (@ | 8) can be calculated
from the derivatives of the spectral density function, and that the resulting derivatives are continuous. Therefore, by
Leibniz’s rule

/A
0 0 .
JY(T | 6) = / ﬁfA((o | 0) exp{—iowr}dw. (32)
J J
—n/A

As aresult, we may approximate the derivative of the autocovariance from the derivative of the aliased spectral density
function in the same way that we approximated the autocovariance from the aliased spectral density function in Sec-
tion 4. Therefore, each partial derivative can be computed in the same time it would take to do one function evaluation,
which is faster than using numerical approximations for the derivative (e.g. finite differencing methods).

In Appendix B, we discuss a novel procedure for estimating var (Vf DW(Q)) in a computationally efficient manner.
Combining this with the approach for obtaining derivatives, we can estimate the variance of the de-biased Whittle
likelihood estimator using (28). This enables the computation of approximate confidence intervals for our estimates,
by using the asymptotic normality of the estimator and standard theory for confidence intervals.

7. Maui data

Observations of fetch-limited seas made near the Maui-A platform off the coast of New Zealand between November
1986 and November 1987 have been studied previously by Ewans and Kibblewhite (1986) and Ewans (1998). We revisit
these observations to demonstrate additional practical concerns when applying the techniques discussed in this paper
to observed wave records. Observations were taken using a Datawell WAVEC buoy at a location with a water depth
of 110m. Data were recorded for 20 minutes at a sampling rate of 1.28Hz, then there is a gap of 10 minutes while data
is processed. Non-parametric spectral density estimates were recorded for each of these intervals, while the raw time
series was only retained for the first 20 minutes of a 3 hour segment. In other words, a 20 minute record is available
starting at 00:00, 03:00, 06:00 etc. for each day.

For the sake of illustration, we shall analyse the behaviour of spectral parameters throughout a single storm event,
from the 2nd to the 7th of November, 1986.° As can be seen from Figure 7, throughout the first and second days, the
conditions become steadily more severe, before calming down over the proceeding days. Transforming to the frequency
domain, we see the presence of persistent swell, which remains fairly constant throughout all of the records. Parameters
of the wind-sea component of these bi-modal seas are estimated by first removing contaminated frequencies from the
objective function, with optimisation proceeding as previously described.!? Ideally we would aim to fit a bi-modal
model that was designed to also describe the swell component. However, such an approach is beyond the scope of this
paper, though we note that preliminary results for such a procedure are encouraging and are discussed further in Section
8. It was also observed that frequencies beyond 3 rad s~! exhibited a different behaviour from the rest of the spectral
tail. We suspect this may be related to the physical response of the buoy to the waves, though we do not know exactly
how such behaviour should be modelled. Therefore, we also chose to omit those frequencies in the spectral fitting
procedure when using each of the fitting procedures. After filtering out the aforementioned frequencies, a generalised
JONSWAP spectral form was fitted to each of the sea states in turn, using least squares, Bartlett least squares, and the
de-biased Whittle likelihood. These estimates are shown in Figure 7a.

From Figure 7a, we can see that, especially for the tail index, the de-biased Whittle estimates seem more stable than
both the least squares and Bartlett least squares estimates. Figure 7b shows the de-biased Whittle likelihood estimates
and approximate 95% point-wise confidence intervals, calculated using the technique described in Section 6. It is
worth noting that these confidence intervals are based on the asymptotic distribution of the estimator, in particular, we
assume asymptotic normality of the estimator. This is especially problematic for values near to or on the boundary of
the parameter space, as the confidence interval may include values outside the boundary. To represent this, in Figure

9Note that this is not intended to make general statements about the behaviour of these parameters. Rather, we are illustrating some of the
additional practical concerns faced when analysing recorded wave time series.
10This can be thought of as first applying a high pass filter, then fitting a uni-modal model to the resulting filtered record.
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(a) Parameter estimates using least squares, Bartlett least (b) Parameter estimates using de-biased Whittle likelihood
squares and de-biased Whittle likelihood. with approximate 95% confidence intervals.

Figure 7: Plots of H, and the estimated parameters over time, from the second to the seventh of November, 1986.
Estimates are from 20 minute records starting every 3 hours and are plotted at the start time of each record. Note that
some of the plots in (a) have been truncated. The maximum of the least squares estimate for « was 9.37 and maximum
and minimum for r were 9.66 and 2.28.
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Figure 8: Plot of periodograms and fitted models on normal and decibel scale, alongside diagnostic Q-Q plots. Each
column is from records recorded on the fourth of November, 1986, starting at 09:00, 12:00, 15:00 and 18:00 respectively.
Colours and line styles are used to denote different fitting techniques in the same manor as Figure 7a. In (c), reference lines

are added to each of the fitting methods to aid comparison to the black line denoting x = y. The symbols "+", "X" and
“o" denote quantiles from the de-biased Whittle likelihood, least squares estimates, and Bartlett least squares estimates,
respectively. Note that the plots in (c) have been truncated in the y axis so that they have a 1:1 aspect ratio, so some

quantiles are not shown. The untruncated figures can be found on GitHub (Grainger, 2021).

7b, we only shade regions of the confidence interval that are within the parameter space. Such confidence intervals
enable us to better understand and communicate the uncertainty surrounding parameter estimates. This uncertainty,
we argue, should be considered when using these parameters as inputs for other related models.

From Figure 7b we can see that the parameters behave broadly as expected when moving through the storm. We
see a steady evolution in peak frequency throughout the growth of the wind sea component, alongside large values of y
as the storm is developing. After this point, the values of y reside close to 1. We can also see that there is a greater level
of uncertainty when H was low. This is because there is very little energy in the wind-sea component. However, as
the storm evolves, this uncertainty quickly reduces. The uncertainty surrounding the peak enhancement factor remains
fairly high through the second half of the first day, even when the uncertainty around other parameters has reduced.
This is because when the true value of y is large, at frequencies around the peak the periodogram has more variance,
and it is these frequencies that contain the information about y.
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A useful diagnostic tool for spectral models can be constructed by noticing that (under certain technical conditions)
I(w)/E [I(w) | 8] should be approximately exponentially distributed with mean 1 (Brockwell and Davis, 2006), where
I(w) denotes the periodogram (this result is specific to the periodogram and is not true in general for non-parametric
spectral density estimators). Therefore, if we calculate this ratio for a given model at each Fourier frequency, we
can then compare the quantiles of these fractions to the quantiles of an exponential distribution with mean 1 using
a Q-Q plot. Figure 8a and 8b show the periodograms and fitted models on both the standard scale and the decibel
scale respectively, for 4 time periods during the early development of the storm. Figure 8c shows the corresponding
Q-Q plots, which demonstrate how well each of the models fits the data. The closer the points on the Q-Q plot are
to the reference line y = x, the better. We can see from Figure 8c that the de-biased Whittle likelihood consistently
outperforms the other techniques. Plots for the remaining sea states are available on GitHub (Grainger, 2021).

8. Discussion and Conclusion

The de-biased Whittle likelihood has been shown to yield major improvements in both the bias and variance of
estimated parameters for wind-generated waves. In particular, the tail decay index can be estimated to much greater
levels of accuracy and precision than when using least squares techniques. Such an improvement will enable reliable
tracking of the tail decay index’s behaviour throughout the course of meteorological events, allowing oceanographers
to gain fresh insights into the behaviour of wind-generated waves. We have also demonstrated some improvement in
the estimation of the peak enhancement factor. The de-biased Whittle estimator recovers estimates that are of similar
quality to full maximum likelihood, which can be thought of as optimal. Since information about the peak enhancement
factor is contained in a small region around the peak frequency, it is not surprising that it is so hard to estimate. Because
there is significant variability in estimates of the peak enhancement factor, it is essential that we can describe uncertainty
surrounding parameter estimates when performing an analysis. For this reason, the development of computationally
efficient techniques for quantifying uncertainty surrounding the estimated parameters is important. We have shown
that the method presented by Sykulski et al. (2019) for estimating the variance of the de-biased Whittle estimator can
be modified so that it can be computed using 2D Fast Fourier Transforms. Combining this with an analytical approach
for calculating derivatives, we are able to calculate the uncertainty in parameter estimates accurately and quickly. In
addition, differencing can be used so that we can cope with high sampling frequency data, which tend to be correlated
in the frequency domain.

As we discussed previously, when performing simulations we chose to use circulant embedding (Davies and Harte,
1987) to obtain realisations of Gaussian processes with the desired covariance matrix. This is different to the standard
method used for simulating linear ocean waves, presented by Tucker et al. (1984) (or to the adapted version due to
Mérigaud and Ringwood (2018), which is preferable). The first difference is that the standard waves method is only
approximate, and does not exactly simulate a Gaussian process with the desired covariance (equivalently spectral
density). The second is that these methods do not account for the aliasing that we would expect to be present in a record,
essentially treating the spectral density as if it is zero beyond the Nyquist frequency. Though for many applications
this will not matter, the methods discussed in this paper will be sensitive to this difference. If the simulated record does
not have the aliasing that should be present, then the parameters estimated using the de-biased Whittle likelihood will
seem biased (and standard Whittle will often seem better). This is important because if a method such as Tucker et al.
(1984) was used to perform the simulation study described in this paper, the results would be different, as likelihood
based estimation will be sensitive to this problem (which could be thought of as model miss-specification, as we are
trying to fit a model with a non-zero density beyond the Nyquist to a process that has been simulated with no density
above the Nyquist). Least squares is somewhat invariant to this problem, as it mainly effects frequencies where the
spectral density function is small, and least squares is not heavily influenced by such frequencies.

‘We have also developed a MATLAB toolbox, implementing the methods discussed in this paper. This is available,
alongside code to generate the figures in this paper and additional supplementary figures, on GitHub (Grainger, 2021).
The toolbox contains code to perform each of the fitting techniques discussed in this paper on arbitrary processes, as
well as a function implementing the generalised JONSWAP (including first and second derivatives), which can then
be used straight out the box. On top of this, the user may provide any spectral density function they wish, provided
it satisfies the assumptions in Appendix C, and then use the toolbox to obtain parameter estimates from observations.
Alongside this, an implementation of circulant embedding is provided, enabling exact simulation of a desired Gaussian
process.

Though the de-biased Whittle likelihood has been seen to perform well in the estimation of wind-seas, we have yet
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to fully explore its potential when we wish to describe multi-modal seas (e.g. including one or more swell components).
In this paper, we were able to describe the wind-sea component of such sea states by first removing swell with a high
pass filter. However, it would be preferable to develop and fit models that were bi-modal themselves, avoiding the need
for partitioning schemes to determine which frequencies should be filtered. Indeed, such a procedure could be extended
to describe seas with any number of components, using model selection to determine the number of components that
are actually present. Such techniques could also allow for the development of model-based partitioning schemes,
that could to separate overlapping wind-sea and swell components. In the development of such multi-modal models, it
would be important to consider the interactions between different component weather systems. In particular, techniques
such as higher-order spectral analysis could be used to determine if any non-linear interactions were present and help
characterise them. Such interactions could then also be parameterised and fitted using similar techniques to those
discussed in this paper.

Another important aspect of wind-generated waves is their directional characteristics. One approach to describing
these is to assume some dispersion relation between wave-number and frequency, and then look at frequency direction
spectra, which can be estimated, for example, from heave-pitch-roll buoys (Longuet-Higgins, Cartwright and Smith,
1963). However, it may preferable to model the three recorded series instead, requiring the use of a multivariate
extension to the de-biased Whittle likelihood. These are all important avenues of further investigation.

In summary, we have demonstrated that, by using the de-biased Whittle likelihood, we are able to obtain more accu-
rate and precise estimates of parameters for the wind sea component of a wind-generated wave process in O(N log N)
time. Using differencing, we are able to overcome correlations in the periodogram that are common in data sampled
at a high frequency. Furthermore, we have described a procedure which can be used to obtain the variance of such
estimates in O(N? log N) time. Together these developments will improve the tools available to practitioners, both in
terms of fitting models to data and describing the associated uncertainty.
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A. Derivatives of ocean wave spectra

When calculating the derivatives of the generalised JONSWAP form, special care must be taken around the peak
frequency and zero frequency, to check that the generalised JONSWAP form is actually differentiable. We do not show
this here, but for the first derivatives there is no issue (though this is not the case for the second derivatives, which do
not all exist at the peak). Consider the generalised JONSWAP spectral form, f;(@ | 6). We may write, for o > 0,

-5 —s-l 5@ 0) (-]
j%%@|®=%f%m{—f<ﬂ> }ﬁwka<£> L Pelf) w-w)ler)

s \ o, w, \, 1) a)ga(a) | )2
- 8@ 6) - (@~ w,)logy
r w r »
= —\\ - - 4
fG(wle)l p< p> D) a)go_(a)le)2 (3 )
- 0asw — 0+, (35)
%fc(w | 0) = w " exp {—g <a)ﬂ> } y5(wl'9)/2 (36)
p
=folw|0)/a 37)
- 0asw — 0+, (38)
s —s—1
9 =2 LA 5(l6) 1 @ CTD\_or <2>
dw, Je@1) 2w exp{ N <wp> }y lﬁ(w 10) Og(Y)a(a) | 6)2 a)g a)% w,

(39)
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= fo(@] ) | 5] ) log(—2— [ Z=2» ‘ﬂ<2>+1
—e 8 @l \ o 0?2 \o,

p
+
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aifG(‘” | 0) = aw™ exp {—f <3>_ }5(a> | 0)y*@O=1 /2
14 s \w

P
= folw | 6)o(w | 0)/y
> 0asw — 0T,
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By the chain rule, for w < 0
0 0
%fG(w | 0) = —£fc(—w | 9),
9 fo@10) =2 fo(-0 1 0)
da’ ¢ da” C ’
2 1@ 0) =~ fo(- | 0)
ow, G ow, G ’
d d
gfc(w | 6) = afc(—w | ),
J J
EfG(w | 6) = EfG(_w | ).
Finally, for o = 0, since f;(0, «, @), 7, r) = 0, we may write
d
%fG(aL | 0) |a)=() = 0’
0
afG(OJ 0) =0,
0
—f~(0,]10) =0,
70, /001)
0
afc(O,I 0) =0,
J
5fc(0,l 0) =0.

Therefore, we see that f; has continuous first derivatives.

Proposition 1. Forall x € {w, «, @), 7, r} the series

o 0 27k
9 27k 9>
Z afo <w+ A |
k=—00
converges uniformly.

PROOF. Firstly, due to symmetry, we may consider the series

< 0 27k
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. 4 2xL :
where L is such that w, < X + N Now write
8@ 0) = fg (w + % | 9) and (60)
0 2wk
8@ 0) = /o (0+ = 10). (61)
Next notice that
2wk \""
lg(@ 0 < ay (0+ =) (62)
- 2rk\7"
<ay(=Z+ —) 63
ay( A A (63)
z\ " _
=ay<z) Qk—1)". (64)

Let M, = ay (z/A)™" (2k—1)"". It now suffices to notice that each of the partial derivatives can be written as
fc(w | 6) multiplied by some other function. Furthermore, each of these functions can be bounded. Therefore we may
write

ng,x(w I 0)' < Cka’ (65)

for some constants C, > 0. Finally

[ee]
Y M, <, (66)
k=L

so by the Weierstrass M-test, we have uniform convergence. By extension we can see that
v 0 2k
T
— +— 9) 67
_Z ox76 <C" A (67)
k=—c0

is also uniformly convergent.

Proposition 2. Forall x € {w,a,®,,y,r}

L= Y Lig(o+Zkie).

k=—00

(68)

Furthermore, aix fa (@] 8) is continuous.

PROOF. This first part follows from Proposition 1, the convergence of ZZ’:_OO f¢ (@ +2xk/A | 0), the continuous dif-
ferentiability of f;, and Theorem 4.4.20 of Trench (2013). The continuity follows from the continuity of the derivatives
of f; and the uniform limit theorem.

B. Computing the variance of the first derivative
Sykulski et al. (2019) decompose the variance of the first derivative of the de-biased Whittle likelihood as follows:

N N
0
var (a—eif,)w(a)> =)' Y a;(@)ay(0) cov (I(@;). I(@y)) . (69)

j=1k=1
where w; denote Fourier frequencies and

NGO
20 fw; |0)

a;;(0) (70)
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To estimate the variance, they propose using
3 N N
var <£f,)w(9)> =YY a;@pp)ag@py) cov (1), I(@y)) - (7D
i j=1 k=1

For ocean wave models, a;; C pw ) can be easily computed by using the results from Section A. So, from Sykulski et al.
(2019), we are interested in computing

2

/A
A A S
cov (I(a)j), I(a)k)) =|— fal@ | Dy (A(w; — w) Dy (Alwy, — o)do'| , (72)
271'N —7[/A
where
Dy(v) = Me—w(zvm/; (73)
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To do this efficiently, first note that
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Now, consider the function
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where we have rearranged for later convenience. We can now see, by linearity of integration, that
z/A N-1N-1 z/A
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Thus forr =0,..., N—1land s =0..., N — 1 we must calculate
/A ) )
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Notice that by letting = r 4+ s we need to calculate the following integral fort =0,...,2N - 1) -1
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For clarity let
q(@) = fa(® | ) AN =D (84)

then we need to compute

/A )
o = / g(@)e” " do, (85)
—/A
fort =0,...,2N — 2. We notice that this is a Fourier transform and we can obtain an approximation of this integral

at each of the required t by doing an fft on the relevant length 2N — 1 sequence (the details of this are discussed in
Section B.1). This means that we only need to do one Fourier transform, and can then sub this into the previous sums.
Now we require

z/A ' N-1N-1 ' A
/ h.Jk(C())dCO = e—IA(Na)j—wk) z 2 elSAa)jeera)kQ(r+ S) (86)
-z/A s=0 r=0
N-1N-1
- e_iA(wa_wk) Z Z Q(r, s)eiAZH(rk+Sj)/NA (87)
s=0 r=0
N-1N-1
— e—iA(Na)j—wk) z 2 Q(r, s)ei27r(rk+sj)/N (88)
s=0 r=0
(89)

where O(r, s) = Q(r + s). This is a 2D Fourier transform, and can be computed efficiently for j,k = 0,..., N — 1.
This means we take O(N? log N) time. Importantly, libraries exist to compute this very quickly in most programming
languages. Finally

A /A 2
cov (I(w)), I(wy)) = N /_ s h i (@)dw (90)
_ ie—iA(ij—wk)Nz_:l Nz_:l O(r, s)e! 2 rk+si)/N ’ ©1)
2x N = =
= 5w Ni NZ_',I O(r, s)e2rrirs/N 2 92)
T 2zN == ’

B.1. Approximating Q(7)
Note that we must still approximate Q(t) at t = 0,...,2N — 2. We aim to approximate the integral in (85). To
achieve this, we use the Riemann sum given by
M-1
2r

() = —=— 27/ MA)e {tAQ2rj/Mb)
o) Ma & q2rj/MA)e 93)

J

An FFT will produce values of O@) fort = 0,1,...,(M — 1). Therefore, provided M > 2N — 1 we can obtain
approximations of the desired integrals.

C. Assumptions for de-biased Whittle

Theorem 1 of Sykulski et al. (2019) gives assumptions for the optimal convergence of the de-biased Whittle like-
lihood estimator. The first of these assumptions is that the parameter space is compact with non-null interior and that
the true value of the parameter lies in the interior of the parameter space. This is not strictly satisfied by the generalised
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JONSWAP spectral density; however, for physical reasons the parameter space can be restricted so that it is compact.
The greater problem is that a value of y = 1, which corresponds to the fully developed sea described by Pierson and
Moskowitz (1964), may occur in nature and would violate this assumption. In Section 5.3 we demonstrate that, in this
case, the de-biased Whittle likelihood estimator still performs well.

The second assumption is that the spectral density of the aliased process is bounded above and is bounded below
by some positive real number. This is satisfied by the generalised JONSWAP spectral density. The aliased spectrum is
bounded below by the non-aliased spectrum, and is bounded above by the variance of X, (which is finite). Therefore,
the only frequency remaining to consider is zero, as the spectral density is zero when @ = 0. However, contributions
from above the Nyquist frequency are positive, and as such the aliased spectral density at zero will also be positive.

Assumption three relates to parameter identifiability. Informally, this requires the aliased spectral density function
to be different for different choices of 8. Intuitively, provided the sampling interval is sufficiently small (so that the peak
frequency is smaller than the Nyquist), then each of the parameters is changing the shape of the generalised JONSWAP
spectrum in a different way, such that the parameters will in general be identifiable for a sufficient sample size.

The fourth assumption states that the aliased spectral density function must be continuous in # and Riemann inte-
grable in w. This is satisfied for the generalised JONSWAP spectral form as it is continuous in 6 and .

Assumption five states that the expected periodogram has two continuous derivatives in 8, and that these derivatives
are bounded uniformly for all N. Furthermore the first derivatives are required to have ®(/N') non-zero frequencies.
Strictly speaking, the generalised JONSWAP is not twice differentiable (the second derivative does not exist at the
peak, due to the step function o(w | 8)). However, a simple adaptation can be made, by replacing o(w | 8) with

6'(w|0)=c71+(62—01)<%+iarctan(C(a)—a)p))), 94)

where C € (0, o) is chosen to be large. This has the advantage of having continuous second derivatives, and is
essentially equivalent to the generalised JONSWAP, because C can be chosen such that it would be impossible to
distinguish between the two models from observed data. Since this part of the generalised JONSWAP was developed
empirically, there is no practical difference in using the step function over this reformulation. Indeed, in keeping with
the general philosophy of statistical modelling — ““all models are wrong, but some models are useful” — we suggest
that this alternative formulation is just as appropriate as the generalised JONSWAP, but more useful here as it allows
us to show this assumption is satisfied. By similar arguments to those presented in Appendix A and Appendix B, we
can see that the aliased spectral density has continuous second derivatives. The autocovariance then has continuous
second derivatives by a similar argument to that in Section 6, and noting that the second derivative of the aliased spectral
density function is integrable, and so therefore the second derivative of the autocovariance must be continuous (as they
can be shown to be Fourier pairs). Therefore, the expected periodogram also has continuous second derivatives by
linearity of derivatives and the fact that linear combinations of continuous functions are continuous. These derivatives
are also bounded uniformly for all N due to the compactness of the set of frequencies Q and the parameter space ©.

The final assumption states that the process in question is fourth-order stationary with finite fourth order moments
and absolutely summable fourth order cumulants. Clearly this is true for a Gaussian process (as second order sta-
tionarity implies strict stationarity for Gaussian) and it is also true for some non-linear processes, such as the class of
non-linear processes discussed by Sykulski et al. (2019).

Finally, in our simulations the estimator based on the de-biased Whittle likelihood performs in broad agreement
with the theory, for example we observed desirable properties such as root N convergence when exploring different
values of N. We also did not find any problems with local minima during optimisation for any of the record lengths
considered, suggesting that the parameters of the generalised JONSWAP form are indeed identifiable in practice for
sufficiently long records.

J. P. Grainger et al.: Preprint submitted to Elsevier Page 29 of 31



Estimating the parameters of ocean wave spectra

References

Babanin, A., 2010. Wind input, nonlinear interactions and wave breaking at the spectrum tail of wind-generated waves, transition from f 4t f =5
behaviour. Ecological Safety of Coastal and Shelf Zones and Comprehensive Use of Shelf Resources , 173-187.

Bartlett, M.S., 1948. Smoothing periodograms from time-series with continuous spectra. Nature 161, 686—687.

Battjes, J.A., Zitman, T.J., Holthuusen, L.H., 1987. A reanalysis of the spectra observed in JONSWAP. Journal of Physical Oceanography 17,
1288-1295.

Bloomfield, P., 1973. An exponential model for the spectrum of a scalar time series. Biometrika 60, 217-226.

Brockwell, PJ., Davis, R.A., 2006. Time Series : Theory and Methods. Second ed., Springer.

Chiu, S.T., 1988. Weighted least squares estimators on the frequency domain for the parameters of a time series. The Annals of Statistics 16,
1315-1326.

Constable, C.G., 1988. Parameter estimation in non-Gaussian noise. Geophysical Journal International 94, 131-142.

Dahlhaus, R., 1988. Small sample effects in time series analysis: A new asymptotic theory and a new estimate. The Annals of Statistics 16, 808—841.

Dahlhaus, R., 2012. Locally Stationary Processes, in: Handbook of Statistics. Elsevier B.V.. volume 30, pp. 351-413.

Davies, R.B., Harte, D.S., 1987. Tests for Hurst effect. Biometrika 74, 95-101.

Dietrich, C.R., Newsam, G.N., 1997. Fast and exact simulation of stationary Gaussian processes through circulant embedding of the covariance
matrix. SIAM Journal of Scientific Computing 18, 1088-1107.

Doob, J.L., 1953. Stochastic Processes. Wiley publications in statistics, Wiley, New York.

Dzhaparidze, K., Yaglom, A., 1983. Spectrum Parameter Estimation in Time Series Analysis, in: Developments in Statistics. Elsevier. volume 4,
pp. 1-96.

Ewans, K., McConochie, J., 2018. OMAE2018-78386: On the uncertainties of estimating JONSWAP spectrum peak parameters, in: Proceedings
of the International Conference on Offshore Mechanics and Arctic Engineering, American Society of Mechanical Engineers (ASME), Madrid,
Spain.

Ewans, K.C., 1998. Observations of the directional spectrum of fetch-limited waves. Journal of Physical Oceanography 28, 495-512.

Ewans, K.C., Kibblewhite, A.C., 1986. Spectral characteristics of ocean waves undergoing generation in New Zealand waters, in: 9th Australasian
Fluid Mechanics Conference, Auckland Univ, Auckland, New Zealand.

Forristall, G.Z., 1981. Measurements of a saturated range in ocean wave spectra. Journal of Geophysical Research 86, 8075-8084.

Fuentes, M., 2007. Approximate likelihood for large irregularly spaced spatial data. Journal of the American Statistical Association 102, 321-331.

Grainger, J.P., 2021. Software for spectral fitting. https://github.com/JakeGrainger/SpectralFitting.

Hasselmann, K., Barnett, T., Bouws, E., Carlson, H., Cartwright, D., Enke, K., Ewing, J., Gienapp, H., Hasselmann, D., Kruseman, P., Meerburg,
A., Miiller, P., Olbers, D., Richter, K., Sell, W., Walden, H., 1973. Measurements of wind-wave growth and swell decay during the Joint North
Sea Wave Project JONSWAP). Ergéinzungsheft 8-12 .

Hwang, P.A., Fan, Y., Ocampo-Torres, F.J., Garcia-Nava, H., 2017. Ocean surface wave spectra inside tropical cyclones. Journal of Physical
Oceanography 47, 2393-2417.

Longuet-Higgins, M.S., Cartwright, D.E., Smith, N.D., 1963. Observations of the directional spectrum of sea waves using the motions of a floating
buoy, in: Ocean Wave Spectra, pp. 111-136.

Mackay, E.B.L., 2016. A unified model for unimodal and bimodal ocean wave spectra. International Journal of Marine Energy 15, 17-40.

Meérigaud, A., Ringwood, J.V., 2018. Free-surface time-series generation for wave energy applications. IEEE Journal of Oceanic Engineering 43,
19-35.

Nordman, D.J., Lahiri, S.N., 2006. A frequency domain empirical likelihood for short- and long-range dependence. Annals of Statistics 34,
3019-3050.

Pawitan, Y., 2001. In All Likelihood: Statistical Modelling And Inference Using Likelihood. Oxford University Press.

Percival, D.B., 2006. Exact simulation of complex-valued Gaussian stationary processes via circulant embedding. Signal Processing 86, 1470-1476.

Percival, D.B., Walden, A.T., 1993. Spectral Analysis for Physical Applications : Multitaper and Conventional Univariate Techniques. Cambridge
University Press, Cambridge.

Phillips, O.M., 1958. The equilibrium range in the spectrum of wind-generated waves. Journal of Fluid Mechanics 4, 426—434.

Phillips, O.M., 1985. Spectral and statistical properties of the equilibrium range in wind-generated gravity waves. Journal of Fluid Mechanics 156,
505-531.

Pierson, W.J., Moskowitz, L., 1964. A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigorodskii.
Journal of Geophysical Research 69, 5181-5190.

Rodriguez, G., Soares, C., 1999. Uncertainty in the estimation of the slope of the high frequency tail of wave spectra. Applied Ocean Research 21,
207-213.

Shao, X., Wu, W.B., 2007. Asymptotic spectral theory for nonlinear time series. The Annals of Statistics 35, 1773-1801.

Sykulski, A.M., Olhede, S.C., Guillaumin, A.P., Lilly, J.M., Early, J.J., 2019. The de-biased Whittle likelihood. Biometrika 106, 251-266.

Sykulski, A.M., Olhede, S.C., Lilly, J.M., Early, J.J., 2017. Frequency-domain stochastic modeling of stationary bivariate or complex-valued signals.
IEEE Transactions on Signal Processing 65, 3136-3151.

Toba, Y., 1973. Local balance in the air-sea boundary processes. Journal of the Oceanographical Society of Japan 29, 209-220.

Trench, W.F., 2013. Introduction to Real Analysis. Faculty Authored and Edited Books & CDs. URL: https://digitalcommons.trinity.
edu/mono/7.

Tucker, M.J., Challenor, P.G., Carter, D.J., 1984. Numerical simulation of a random sea: a common error and its effect upon wave group statistics.
Applied Ocean Research 6, 118-122.

Velasco, C., Robinson, P.M., 2000. Whittle pseudo-maximum likelihood estimation for nonstationary time series. Journal of the American Statistical
Association 95, 1229-1243.

Welch, P., 1967. The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified

J. P. Grainger et al.: Preprint submitted to Elsevier Page 30 of 31


https://github.com/JakeGrainger/SpectralFitting
https://digitalcommons.trinity.edu/mono/7
https://digitalcommons.trinity.edu/mono/7

Estimating the parameters of ocean wave spectra

periodograms. IEEE Transactions on Audio and Electroacoustics 15, 70-73.

Whittle, P., 1953. Estimation and information in stationary time series. Arkiv for Matematik 2, 423-434.

Wood, A.T.A., Chan, G., 1994. Simulation of stationary Gaussian processes in [0, 119. Journal of Computational and Graphical Statistics 3,
409-432.

J. P. Grainger et al.: Preprint submitted to Elsevier Page 31 of 31



