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Introduction

The “mid-point” approximation to the integral
∫ 1

0
f is

Mn(f) =
1

n

n∑
r=1

f

(
2r − 1

2n

)
.

This represents the area obtained by adopting the mid-point value on each interval [ r−1
n
, r
n
],

equally by taking the tangent to the curve (if there is one) at these mid-points within their

respective intervals.

Meanwhile, the trapezium rule estimate using these sub-intervals is

Tn(f) =
1

2n

n−1∑
r=0

[
f
( r
n

)
+ f

(
r + 1

n

)]
.

For all reasonably well-behaved functions, both approximations converge to the integral

as n→∞. Do they become closer to it as n increases? A very simple example is enough to

show that this is not always the case.

Example 1. Let f(x) = |x− 1
2
|. It is easily checked that M2(f) = T2(f) = 1

4
, coinciding

with the integral (a diagram helps). However,

M3(f) = 1
3
(1
3

+ 0 + 1
3
) = 2

9
, T3(f) = 1

6
(1
2

+ 1
3

+ 1
3

+ 1
2
) = 5

18
.

Both approximations have a particular resonance for convex functions. Recall that a

function f is convex (informally, curving upwards) if it lies below the straight-line chord

between any two points on its graph. Convex functions lie above their tangents (see below

for details). From these two descriptions, it is clear that Mn(f) ≤
∫ 1

0
f ≤ Tn(f) for such f .

So one might expect Mn(f) to increase with n and Tn(f) to decrease. However, Example 1

disposes of this idea, since the function there is convex.

The following partial result is true: if n is a multiple of m and f is convex, then Mn(f) ≥
Mm(f) and Tn(f) ≤ Tm(f). In both cases, this is quite easily seen from the fact that each

sub-interval for m divides neatly into a number of sub-intervals for n.

For the general case, the correct statement is that Mn(f) increases with n, and Tn(f)

decreases, under the further condition that the derivative f ′ is either convex or concave. This

was established by the author and Grahame Bennett in [1], but the proofs given there are

long and intricate: I would not recommend them to anyone. For Mn(f), Bennett gave a more
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pleasant proof in [2, Theorem 1]. Actually, his proof delivers a more general result: here I

will reproduce it in the slightly simplified version applying to Mn(f). It must be conceded

that even this version is not without work; however, it is a vast improvement on the original

and (in my view) rather elegant. I will then show how the method can be adapted to prove

the result for Tn(f). This has not appeared anywhere in Bennett’s papers, though a proof

restricted to functions of the form xp was given in [3, p. 1055]. (Sadly, Bennett died in 2016,

after a lifetime of pioneering work in the area of inequalities.)

Of course, these statements can be translated to a general interval [a, b] by the substi-

tution F (x) = f [a + (b − a)x]. Having said this once, we shall present everything for the

interval [0, 1].

A few more remarks about convex functions will help to prepare the way. Formally,

the definition is: f is convex on the interval I if for x1, x2 in I and 0 ≤ λ ≤ 1, we have

f [(1− λ)x1 + λx2] ≤ (1− λ)f(x1) + λf(x2). It is “strictly convex” if strict inequality holds

for 0 < λ < 1. We say that f is “concave” if −f is convex. If f is both convex and concave,

then it is linear. Clearly, if f is convex on [0, 1], then so is f(1− x).

For differentiable functions, convexity is equivalent to f ′(x) increasing with x: with the

mean-value theorem, it follows that the function lies above its tangents, as stated earlier.

Clearly, it is sufficient if f ′′(x) ≥ 0; if f ′′(x) > 0, then f is strictly convex. In particular, xp

is strictly convex for x > 0 if p > 1 or p < 0, and strictly concave if 0 < p < 1 .

An equivalent way to state convexity is: if mf (x1, x2) is the gradient of the chord between

x1 and x2, and x1 < x < x2, then mf (x1, x) ≤ mf (x, x2). Now let g(x) denote the linear

function agreeing with f at x1 and x2. By definition, if x1 < x < x2, then f(x) ≤ g(x).

The following fact, less frequently mentioned, will be important for us: if y > x2, then

mf (x1, x2) ≤ mf (x2, y), hence f(y) ≥ g(y), and similarly for y < x1.

An inequality for functions with convex derivative

The method is based on an inequality for functions with convex derivative which is of

interest in its own right, and has other applications. We now present it, in two versions.

Proposition 1: Suppose that a1, a2, a3 and b1, b2, b3 are real numbers such that

a1 < b1 ≤ b2 < a2 ≤ a3 < b3. (1)

Let f be a function such that f ′ is convex on [a1, b3]. Let p, q, r be positive numbers such

that

pa1 + qa2 + ra3 = pb1 + qb2 + rb3. (2)
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Suppose further that either

pa21 + qa22 + ra23 = pb21 + qb22 + rb23 (3)

or that f is also convex and

pa21 + qa22 + ra23 ≤ pb21 + qb22 + rb23. (4)

Then

pf(a1) + qf(a2) + rf(a3) ≤ pf(b1) + qf(b2) + rf(b3). (5)

Proof: First, assume (3). Conditions (2) and (3) can be rewritten as

q(a2 − b2) = p(b1 − a1) + r(b3 − a3),

q(a22 − b22) = p(b21 − a21) + r(b23 − a23).

These identities equate, respectively, to the statements that

q

∫ a2

b2

g = p

∫ b1

a1

g + r

∫ b3

a3

g (6)

for g(x) = 1 and for g(x) = x, and hence for all linear g(x) = mx+ n. Now take g to be the

linear function agreeing with f ′ at b2 and a2. Since f ′ is convex, we have f ′ ≤ g on [b2, a2],

while f ′ ≥ g on [a1, b1] and [a3, b3]. Hence

q

∫ a2

b2

f ′ ≤ p

∫ b1

a1

f ′ + r

∫ b3

a3

f ′.

In other words,

q[f(a2)− f(b2)] ≤ p[f(b1)− f(a1)] + r[f(b3)− f(a3)],

which equates to (5).

Now assume that f is convex (so that f ′ is increasing) and (4) holds. Then equality is

replaced by ≤ in (6) for g(x) = x, hence also for g(x) = mx+n with m ≥ 0. This condition is

satisfied by the linear function agreeing with f ′ at b2 and a2, since f ′(b2) ≤ f ′(a2). Inequality

(5) follows as before.

Of course, if f ′ is strictly convex, then strict inequality holds in (5).

Applied to −f , the Proposition says that if f ′ is concave, and in the second version if f

is also concave, with the other conditions unchanged, then the reverse of (5) applies. Note

that if f(x) = xp, then f ′(x) = pxp−1 is strictly convex for p > 2 and 0 < p < 1, and strictly

concave for 1 < p < 2 and p < 0. (Apologies for the double use of p!)
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Some further remarks on the hypotheses are in order. First, there is some redundancy in

conditions (1) and (2). Given that a1 < b1, a3 < b3 and p > 0, r > 0, the rewritten version

of (2) shows that if q > 0, then a2 > b2, and conversely if a2 > b2, then q > 0. Second, if aj,

bj satisfy (1), (2), (3) or (1), (2), (4), then so do the numbers aj + h, bj + h for any h.

The special case p = q = r = 1 is already of interest: given (1), if
∑3

j=1 aj =
∑3

j=1 bj and∑3
j=1 a

2
j =

∑3
j=1 b

2
j , then

∑3
j=1 f(aj) ≤

∑3
j=1 f(bj) when f ′ is convex, and the opposite when

f ′ is concave. So, for instance,
∑3

j=1 a
p
j <

∑3
j=1 b

p
j (strict inequality) for all p > 2. There

are plenty of integer triples that that satisfy these conditions, for example (aj) = (1, 4, 4),

(bj) = (2, 2, 5) and (aj) = (1, 5, 6), (bj) = (2, 3, 7). (A systematic description of such pairs of

triples would be interesting, but we will not embark upon it here.) A completely different

route to results of this sort, but restricted to the functions xp, is by a generalisation of

Descartes’ rule of signs: see [4, Example 3].

We now restate Proposition 1 for the case where a2 = a3 and b1 = b2. A change of

notation is appropriate. Write a1 = a, b1 = b2 = b, a2 = a3 = c and b3 = d. Then (2)

becomes

pa+ (q + r)c = (p+ q)b+ rd,

equivalently q(c− b) = p(b− a) + r(d− c), and (3), (4), (5) can be rewritten similarly. We

make the further substitution

p = α, p+ q = β, q + r = γ, r = δ.

The conclusion now appears as follows. This was Bennett’s version, given in [2, Lemma 2]

and [3, Theorem 8].

Proposition 2: Suppose that a < b < c < d and α, β, γ, δ are positive numbers such that

α + γ = β + δ, (7)

αa+ γc = βb+ δd. (8)

Let f be a function such that f ′ is convex on [a, d]. Suppose that either

αa2 + γc2 = βb2 + δd2, (9)

or that f is convex and

αa2 + γc2 ≤ βb2 + δd2, (10)

Then

αf(a) + γf(c) ≤ βf(b) + δf(d). (11)

Proof: Let p = α, r = δ and q = β − α = γ − δ. Then (8), (9), (10), (11) translate into

(2), (3), (4), (5), rewritten as above in terms of a, b, c, d. As remarked previously, the fact
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that q > 0 follows from p > 0 and r > 0 and condition (2). So Proposition 1 translates into

the statement given.

To set this result in a wider context, we divert briefly here to mention a much simpler

statement of the same sort which applies when the two middle values are compared with the

two outside ones. No quadratic condition or assumption about f ′ is needed.

Proposition 3: Let a, b, c, d be real numbers with a < d and b, c in [a, d]. Let α, β, γ, δ

be non-negative numbers such that

β + γ = α + δ,

βb+ γc = αa+ δd.

Then for any convex function f on [a, d],

βf(b) + γf(c) ≤ αf(a) + δf(d).

Proof: The hypotheses are equivalent to the statement that for any linear function g,

βg(b) + γg(c) = αg(a) + δg(d). Take g to be the linear function agreeing with f at a and d:

then f(b) ≤ g(b) and f(c) ≤ g(c). The statement follows. (It does not matter whether c is

greater or less than b.)

By applying this twice, one can derive a companion result to Proposition 1 for the case

where a1 > b1 and a3 < b3: given this, condition (2) and convexity of f , then (5) follows.

However, Proposition 2 is what we need for our purposes. The quadratic condition (10)

can be laborious to verify in particular cases. The following Lemma sometimes serves to

simplify it.

Lemma 1: Let a < b < c < d. Given (7) and (8), a sufficient condition for (10) is:

b+ c ≤ a+ d and α ≤ δ.

Proof: We revert to the notation p, q, r, so p ≤ r. In these terms, (10) is equivalent to

q(c2 − b2) ≤ p(b2 − a2) + r(d2 − c2).

Recall that q(c− b) = p(b− a) + r(d− c). Substituting this, we have

p(b2 − a2)− q(c2 − b2) + r(d2 − c2) = p(b2 − a2)− (c+ b)[p(b− a) + r(d− c)] + r(d2 − c2)

= r(d− c)(d− b)− p(b− a)(c− a)

≥ 0,

since r ≥ p, d− c ≥ b− a and d− b ≥ c− a.
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The mid-point estimate

It will slightly simplify the formulae if we replace f [(2r − 1)/2n] by f [(2r − 1)/n] in the

definition of Mn(f) (this amounts to considering f(2x) instead of f(x)). So we now take

Mn(f) =
1

n

n∑
r=1

f

(
2r − 1

n

)
.

Theorem 1: If f is convex and f ′ is either convex or concave on (0, 2), then Mn(f)

increases with n.

Proof: We use Proposition 2 to prove the statement when f ′ is convex. The result for

concave f ′ then follows by applying it to g(x) = f(2− x): then Mn(f) = Mn(g), and g and

g′ are convex, since g′(x) = −f ′(2− x).

The statement Mn(f) ≤Mn+1(f) equates to

(n+ 1)
n∑

r=1

f

(
2r − 1

n

)
≤ n

n+1∑
r=1

f

(
2r − 1

n+ 1

)
. (12)

Bennett’s master stroke in [2] is the introduction of extra terms that cancel. For certain

terms Jr to be chosen (with J0 = 0), we will prove an inequality of the form

(n+ 1)f

(
2r − 1

n

)
+ Jr−1 ≤ nf

(
2r − 1

n+ 1

)
+ Jr (13)

for 1 ≤ r ≤ n. Addition then gives

(n+ 1)
n∑

r=1

f

(
2r − 1

n

)
≤ n

n∑
r=1

f

(
2r − 1

n+ 1

)
+ Jn.

To recapture (12), we require

Jn = nf

(
2n+ 1

n+ 1

)
.

This is achieved by taking Jr = rf(rEn), where

En =
2n+ 1

n(n+ 1)
=

1

n
+

1

n+ 1
.

We prove (13), with Jr defined in this way. The case r = 1 says

(n+ 1)f

(
1

n

)
≤ nf

(
1

n+ 1

)
+ f(En).

This follows directly from convexity of f , since n+1
n

= n
n+1

+En, hence 1
n

= n
n+1

1
n+1

+ 1
n+1

En.

For 2 ≤ r ≤ n, we apply Proposition 2, with

a = (r − 1)En, b =
2r − 1

n+ 1
, c =

2r − 1

n
, d = rEn,
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α = r − 1, β = n, γ = n+ 1, δ = r.

Then α + γ = β + δ. Also,

δd− αa = [r2 − (r − 1)2]En = (2r − 1)En,

γc− βb = (2r − 1)

(
n+ 1

n
− n

n+ 1

)
= (2r − 1)En.

Clearly, b < c. The condition a < b is equivalent to (r − 1)(2n + 1) < n(2r − 1), which

equates to r− 1 < n. The condition c < d is equivalent to (2r− 1)(n+ 1) < r(2n+ 1), which

equates to r < n + 1. Finally, we use Lemma 1 to verify the quadratic condition (10). We

have α < δ and

b+ c = (2r − 1)

(
1

n+ 1
+

1

n

)
= (2r − 1)En = a+ d.

So if f is concave and f ′ is convex or concave, then Mn(f) decreases with n.

Applied to f(x) = xp, the conclusion is that 1
np+1

∑n
r=1(2r− 1)p increases with n if p ≥ 1

or p ≤ 0, and decreases if 0 ≤ p ≤ 1: in all cases, f ′ is either convex or concave (of course,

the expression is constant if p is 0 or 1). However, a direct proof of this result is not difficult:

see [6]. Another application of Theorem 1 is:

Corollary: Let Qn =
∏n

r=1(2r − 1). Then 1
n
Q

1/n
n decreases with n.

Proof. Let f(x) = log x. Then f is concave and f ′ is convex, so Mn(f) decreases with n.

But

Mn(f) =
1

n

n∑
r=1

(
log(2r − 1)− log n

)
=

1

n
logQn − log n = log

(
1

n
Q1/n

n

)
.

We mention that limn→∞Mn(f) =
∫ 1

0
log 2x dx = log 2− 1, hence 1

n
Q

1/n
n → 2

e
as n→∞.

We describe another application of the reasoning in Theorem 1, rather than the Theorem

itself.

Example 2. We show that if f is convex and f ′ is either convex or concave, then

2f(2) + 2f(6) ≤ f(1) + 2f(4) + f(7).

(This Example is given in [3, p. 1047]. Its significance, for any readers familar with the

concept, is that it shows that (6, 6, 2, 2) is “power majorised” by (7, 4, 4, 1), although it is

not majorised; other readers can ignore this comment.) We prove the statement for convex

f ′; the statement for concave f ′ then follows by considering g(x) = f(8−x). As in the proof

of Theorem 1, we introduce an extra term: by convexity of f , we have 2f(2) ≤ f(1) + f(3).

To prove our statement, we now require

f(3) + 2f(6) ≤ 2f(4) + f(7),

which follows at once from Proposition 1, applied to (3, 6, 6) and (4, 4, 7).
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The trapezium rule

We now present the companion result for the trapezium rule. The steps are analogous,

but the details are different.

Theorem 2: If f is convex and f ′ is either convex or concave on [0, 1], then Tn(f) decreases

with n.

Proof. We use Proposition 2 to prove the statement when f ′ is convex. The result for

concave f ′ then follows, since Tn(f) = Tn(g), where g(x) = f(1− x).

We have to show

n

n∑
r=0

[
f

(
r

n+ 1

)
+ f

(
r + 1

n+ 1

)]
≤ (n+ 1)

n−1∑
r=0

[
f
( r
n

)
+ f

(
r + 1

n

)]
. (14)

Again we introduce extra terms that cancel. We will show that

nf

(
r

n+ 1

)
+ nf

(
r + 1

n+ 1

)
+ Jr+1 ≤ (n+ 1)f

( r
n

)
+ (n+ 1)f

(
r + 1

n

)
+ Jr (15)

for 0 ≤ r ≤ n− 1, for terms Jr to be chosen (with J0 = 0). Addition then gives

n
n−1∑
r=0

[
f

(
r

n+ 1

)
+ f

(
r + 1

n+ 1

)]
+ Jn ≤ (n+ 1)

n−1∑
r=0

[
f
( r
n

)
+ f

(
r + 1

n

)]
.

To recapture (14), we require

Jn = n

[
f

(
n

n+ 1

)
+ f(1)

]
.

We take

Jr = r

[
f

(
r

n+ 1

)
+ f

( r
n

)]
.

With this choice, (15) becomes

(n− r)f
(

r

n+ 1

)
+ (n+ r + 1)f

(
r + 1

n+ 1

)
≤ (n+ r + 1)f

( r
n

)
+ (n− r)f

(
r + 1

n

)
.

The case r = 0 says (n + 1)f [1/(n + 1)] ≤ f(0) + nf(1/n), which follows from convexity of

f . For 1 ≤ r ≤ n− 1, we apply Proposition 2 with

a =
r

n+ 1
, b =

r

n
, c =

r + 1

n+ 1
, d =

r + 1

n
,

α = δ = n− r and β = γ = n+ r + 1. Then a < b < c < d and

αa+ γc =
1

n+ 1

[
(n− r)r + (n+ r + 1)(r + 1)

]
=

(n+ 1)(2r + 1)

n+ 1
= 2r + 1,

βb+ δd =
1

n

[
(n+ r + 1)r + (n− r)(r + 1)

]
=
n(2r + 1)

n
= 2r + 1.

8



Again we use Lemma 1 to verify (10). We have α = δ and

b− a =
r

n(n+ 1)
<

r + 1

n(n+ 1)
= d− c.

Note: The choice of Jr is critical. The author first tried f( r+1
n+1

) instead of f( r
n
) for the

second term: this fails dismally!

Explicit applications of Theorem 2 can involve awkward expressions because of the half

values at the end points. However, these disappear if f(0) = f(1) = 0, as in the following

example.

Example 3: If 0 < p ≤ 1, then

1

np+2

n−1∑
r=1

rp(n− r)

increases with n. To show this, let f(x) = xp − xp+1. Then f is concave, since xp is concave

and xp+1 is convex. Similarly, f ′ is convex. We have

Tn(f) =
1

n

n−1∑
r=1

(
rp

np
− rp+1

np+1

)
=

1

np+2

n−1∑
r=1

rp(n− r).
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