Optimisation of energy harvesting for stiffened composite shells with application to the aircraft wing at structural flight frequency

Daraji, A.H. and Hale, J.M. and Ye, J. (2021) Optimisation of energy harvesting for stiffened composite shells with application to the aircraft wing at structural flight frequency. Thin-Walled Structures, 161. ISSN 0263-8231

Text (Accepted Manuscript version)
Accepted_Manuscript_version.pdf - Accepted Version
Restricted to Repository staff only until 18 February 2022.
Available under License Creative Commons Attribution Non-commercial No Derivatives.

Download (1MB)


The conversion of structural dynamic strain into electric power using piezoelectric transducers to power microelectronic devices and wireless sensor nodes for structure health monitoring has been receiving growing attention from academic researchers and industry. Harvesting electric energy from vibration and storing it in an external infinite life-span capacitor is a proposed technique to eliminate the drawbacks of using conventional finite life-span batteries. Optimisation of the harvested power is an important research topic to ensure an endless power source with sufficient flow of electricity. This paper concerns optimisation of energy harvesting for composite shells stiffened by beams, with discrete flexible composite piezoelectric sensors bonded to the surface and located optimally. A homogenous composite shell stiffened by beams with a bonded piezoelectric transducer connected to an external resistive load is modelled using three-dimensional solid finite elements. An efficient and effective placement methodology is proposed to find the optimal locations of piezoelectric sensors based on the maximisation of average percentage sensor effectiveness as an objective function. This study is firstly verified against published work for a cantilever flat plate and beam, and then implemented to optimise the energy harvesting for a composite aircraft wing at structural frequencies during flight. The results show a high reduction in computational effort and improved effectiveness of the methodology to optimise energy harvesting for complex and large-scale structures compared with alternative methods. Furthermore, the harvesting power obtained from optimal sensor distribution shows promise to be sufficient to activate wireless sensor nodes for health monitoring.

Item Type:
Journal Article
Journal or Publication Title:
Thin-Walled Structures
Additional Information:
This is the author’s version of a work that was accepted for publication in Thin-Walled Structures. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Thin-Walled Structures, 161, 2021 DOI: 10.1016/j.tws.2020.107392
Uncontrolled Keywords:
ID Code:
Deposited By:
Deposited On:
19 Mar 2021 10:40
Last Modified:
16 Jun 2021 09:03