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Abstract—Genetic improvement for emergent software systems
faces unique challenges due to its deployment in highly dynamic
environments. In this paper, we discuss four of those challenges
along with our initial plans for new research.

I. INTRODUCTION

Modern software systems are both highly complex, and
also deployed into highly dynamic environments; together this
makes it very difficult to quickly adjust a system’s implemen-
tation to its current deployment conditions with small samples
of the new environment. A recent example is the Zoom
hosting servers which went from handling 10 to 300 million
daily meetings between December 2019 and April 2020 [1];
such services also experience significant hourly fluctuations in
demand both over time and geographic distribution.

Emergent software systems aim to mitigate these issues
by autonomously and continuously discovering the ideal be-
haviour for a target system from among a large pool of small
fragments of encapsulated logic (basic functions of 200 lines
of code or less), and learning which of those compositions best
suit the current deployment conditions at runtime to constantly
adapt to the environment [2]. These systems rely on the
existence of variation in their pool of building blocks to learn
better compositions of behaviour – such as different sorting
algorithms, cache replacement algorithms, or load balancing
policies. While most systems require human engineers to
generate this pool of variation, an initial study by McGowan et
al. indicated that genetic improvement (GI) could automate the
generation of environment-tailored variation with the example
of a hash table [3]. Based on this study, we examine the wider
set of challenges in genetic improvement for emergent systems
and some of the most promising research directions to explore.

We begin by briefly reflecting on the key challenges in
general GI, then examine the more specific challenges to
emergent systems in how we navigate to different areas of
a fitness landscape over time to solve changing problems.

In general, GI algorithms search a landscape of possible
code that is functionally infinite in size and known to be
extremely rugged [4]. The main challenge in these algorithms
lies in the design of the fitness function [5, 6], which de-
fines the phenotype (functional or non-functional properties
of the software) and assesses the performance of our code; in
particular, changes in the genotype (the code itself) have an
unpredictable effect on the phenotype fitness function, which
can make the genetic search process different to control.

When applying GI to emergent software systems we have a
moving target in the deployment conditions of the system; in
this case the code that we use to implement sorting, cache re-
placement, or load balancing can become not just sub-optimal
but fundamentally the wrong approach. We need to transition
from tuning existing code within these implementations to
moving between wholly different forms of implementation.
We need to do this quickly, with a limited view of the new
environment providing minimal training data.

In the remainder of this paper we present four challenges for
GI, and particularly for emergent software systems, with our
initial plans for new research. These are (a) search space cov-
erage with limited genetic source material; (b) generalisation
techniques; (c) navigating between different implementation
forms; and (d) leveraging human knowledge and creativity.

II. CHALLENGES

a) Searching the space: Our base implementation for GI
is always limited by the genetic material we can use; emergent
systems consider encapsulated code of 100-200 lines, which
exacerbates this challenge. While we can add new material
with horizontal gene transfer [7], which has proven effective
with evolved self replicators in dynamic environments [8], the
question is where we get the material from.

Three main options exist here: open-source repositories such
as GitHub; random genetic material; or a curated selection of
material. GitHub is a great source of code but is also very
large, posing search issues for appropriate material to insert.
Random genetic material is limited by the random code we set
up and may be less useful. Curated material from past success
at injecting material, by comparison, may be a good way to
better use either of these resources by storing material that has
been useful in the past for faster access to good material.

A systematic study of these alternatives in the context of
emergent systems would be highly informative to future GI
research, and is one of our early objectives.

b) Generalisation: While optimisation to a given target
is important, genetic improvement algorithms typically aim
towards a fixed environment – for example optimising a
particular component towards a specific set of inputs. Rather
than using GI to derive a hash function for all words in
the English language, we would instead use a smaller subset
of commonly-seen inputs from a particular environment [3].
However, this presents a potential dichotomy between spe-
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cialising on a smaller set of inputs or generalising on a much
broader set – a problem analogous to over-fitting in wider
machine learning and a significant problem in all evolutionary
systems. In emergent software systems, which need to switch
between different implementations, an extension of this chal-
lenge (beyond smaller training data sets) is on whether it is
better to have many variants available for highly specialised
roles, which expands the runtime search space for the system,
or to aim instead for a few variants for major classes of
environment that the system is likely to encounter.

To avoid extreme over-fitting in GI, we could examine the
effects of using multiple training sets, randomly sampling from
a larger training set [9], or periodically using a different sets
either in blocks or as single generation events [10]. We could
also examine the shape of data we use for our GI fitness
function: for instance, to improve a hash function, instead of
using a specific set of inputs observed in the running system,
we may instead want to bias our training set to keys with a
given length or character entropy to match a target language
like English. In other words, can we shape our training data to
better represent classes of data for which we want to derive a
good implementation, rather than specific examples of a class?

A study of how we could better select or generate our
GI training data, and the effect of this on over fitting when
combined with methods for changing training data between
generations, is another of our early research objectives.

c) Navigating between distant optima: In some cases,
the optimisation of code to a given environment may require
a larger leap. For instance, a bubble sort is a good solution
for sorting a small amount of data but if the amount of
data increases by a hundred fold then a more optimal sort
algorithm might be shell sort. The difference between these
two algorithms is huge in terms of their code, with large areas
of the intermediate space having low or zero fitness [4]. It is
almost impossible for classic genetic improvement methods to
traverse this kind of search space – akin to evolving a shark
into a dolphin; this inherently limits the degree to which an
emergent system can optimise to its deployment environment.

We could approach this problem in different ways: by
creating a system that specifically encourages large leaps
across the search space [11], by searching in multiple areas
at the same time [12], or by changing our fitness function to
encourage movement towards handling the change.

These all have different challenges. Making large leaps is
highly random and requires a large population to find the cor-
rect area. Searching multiple areas at once spreads resources
thinner and requires some idea of areas to be searched. Trying
to tailor a fitness function to change the space to encourage
movement towards a different type of algorithm is a further
challenge in generating a suitable fitness function.

d) Human Guidance: Human guidance already exists in
GI systems through design choices: we choose the genetic
material in the system, the possible mutations, the fitness
function, the training data, and a stopping point.

Each of the above forms of human guidance apply to the
initial creation of the GI system. Further forms of human input

may be useful, however, during the GI process to boost its
search power: humans could identify new search areas for
distant optima, could add specific genetic material for injection
to a curated set, update training data to correspond better to
expected input, or even change the fitness function to better fit
the priorities of the system and guide it to a desired outcome.

More ambitious still, human input could provide outlines for
new kinds of algorithmic (rather than code) structures for the
system to explore, or suggest points at which functional blocks
become too big and need to be separated into sub-blocks. It is
our long term goal to embrace human involvement in emergent
software synthesis via GI, to gain the benefits of creativity and
insight that machine learning algorithms still lack.

Summary In this paper we have examined some of the most
pressing open challenges in GI for emergent systems, along
with initial studies to begin exploring these challenges. We aim
to initially focus on search space coverage and generalisation,
then examine the more difficult topics of utilising human
guidance and navigating between distant optima.
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