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ABSTRACT: We provide a novel method for computing the most likely path taken by drifters between arbitrary fixed

locations in the ocean. We also provide an estimate of the travel time associated with this path. Lagrangian pathways and

travel times are of practical value not just in understanding surface velocities, but also in modeling the transport of

oceanborne species such as planktonic organisms and floating debris such as plastics. In particular, the estimated travel time

can be used to compute an estimated Lagrangian distance, which is often more informative than Euclidean distance in

understanding connectivity between locations. Our method is purely data driven and requires no simulations of drifter

trajectories, in contrast to existing approaches. Ourmethod scales globally and can simultaneously handlemultiple locations

in the ocean. Furthermore, we provide estimates of the error and uncertainty associated with both the most likely path and

the associated travel time.
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1. Introduction

The Lagrangian study of transport andmixing in the ocean is

of fundamental interest to ocean modelers (van Sebille et al.

2018, 2009; LaCasce 2008). In particular, the analysis of data

obtained fromLagrangian drifting objects greatly contribute to

our knowledge of ocean circulation, e.g., through analyzing the

accuracy of numerical and stochastic models (Huntley et al.

2011; Sykulski et al. 2016), or the use of drifter data to better

understand various pathways and where to search for marine

debris (Miron et al. 2019; van Sebille et al. 2012; McAdam and

van Sebille 2018).

Meehl (1982) used ship-drift data to create a surface velocity

dataset on a 58 3 58 grid. These velocities were used to simulate

the Lagrangian drift of floating objects inWakata and Sugimori

(1990). More recent works focus on using drifting buoys to

derive Lagrangian models to discover areas where floating

debris tends to end up (van Sebille 2014; van Sebille et al. 2012;

Maximenko et al. 2012). Advances in technology have resulted

in much better data quality, which now permits the use of a

more detailed method. The newer models provide densities of

where debris ends up on grid scales as small as 0.58 3 0.58.
In this paper, we propose a novel computationally fast

method for estimating a so-calledmost likely pathway between

two points in the ocean, alongside an estimated travel time for

this pathway. The method is purely data driven. We demon-

strate our method on data from the Global Drifter Program

(GDP), but the method is designed to work with any

Lagrangian tracking dataset. Additionally, we develop and

test a related method for providing uncertainty on both the

pathways and the travel times. Our method is automated with

little expert knowledge needed from the practitioner. We

provide a set of default parameters that allow the method to

run as intended. The method simply takes in a set of locations

within the ocean, and outputs a data structure containing

most likely paths and corresponding travel time estimates

between all pairs of locations. We focus on a global scale: we

aim to provide a measure of Lagrangian connectivity for lo-

cations that are thousands of kilometers apart. An individual

drifter trajectory is unlikely to connect two arbitrary loca-

tions far apart; hence the need for our method that fuses in-

formation across many drifters.

A tool that predicts travel times is of practical use in many

fields. For example in ecological studies of marine species,

genetic measurements are taken at various locations in the

ocean (Watson 2018). Euclidean distance is often used as a

measure of separability and isolation by distance (Becking

et al. 2006; Ellingsen and Gray 2002) to find correlations with

diversity metrics or genetic differentiation between commu-

nities or populations of organisms. Due to various currents and

land barriers, we expect Euclidean distance to often be a poor

measure of how ‘‘distant’’ or dissimilar communities or pop-

ulations sampled in two locations are. The method proposed in

this work would use the estimated travel times to supply a

matrix containing a Lagrangian distance measure between all

pairs of locations. This matrix can then be contrasted with a

pairwise genetic distance matrix between these locations and
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will yield new insights. In many instances the Lagrangian dis-

tance matrix will be more correlated with genetic relatedness

than a Euclidean distance matrix. This observation was already

made in the Mediterranean Sea when studying plankton

(Berline et al. 2014), and off the coast of California for a species

of sea snail (White et al. 2010). Both of the works by Berline

et al. (2014) and White et al. (2010) rely on simulating trajec-

tories from detailed ocean current datasets to estimate the

Lagrangian distance. Such approaches do not scale globally

and rely on simulated trajectories from currents rather than

real observations.

In Fig. 1, we show seven locations plotted on a map with

ocean currents. We use these locations as a proof-of-concept

example throughout this paper. The exact coordinates are

given in Table 1. The aim is to introduce and motivate a

method that provides an estimate as to how long it would take

to drift between any two of these locations. For example, the

travel time from location 2 to location 3 in the South Atlantic

Ocean should be smaller than the return journey because of

the Brazil Current. We choose to include locations in both the

North and South Atlantic as we wish to demonstrate that the

method successfully finds pathways linking points that are ex-

tremely far apart.

Comparison with related works

In this section we give a brief overview of techniques that

have used the Global Drifter Program to achieve a similar or

related task. The work by Rypina et al. (2017) proposes a

statistical approach for obtaining travel times. A source area is

defined such that at least 100 drifters pass through the source

area. The method focuses on obtaining a spatial probability

map and a mean travel time for every 18 3 18 bin outside of the

source area. This method successfully combines many trajec-

tories; however, for multiple locations one would have to de-

cide on a varying grid box for each location of interest. Such a

grid box must be manually chosen by the practitioner meaning

that the method does not scale well with multiple locations.

Rypina et al. (2017) also focus on estimating a mean travel

time, where our method provides a travel time associated with

the most likely path and is hence more akin to estimating a

mode or median travel time.

The method by van Sebille et al. (2011), which proposes the

use of Monte Carlo supertrajectories (MCST), could naturally

be used to estimate travel times. This method simulates new

trajectories as sequences of unique grid indices along with

corresponding travel time estimates for each part of that

journey. The method is purely data driven; i.e., they only use

real trajectories to fit the model. The travel time and pathway

we supply here should be similar to the most likely MCST to

occur between the two points. The advantage of our method is

that we do not base the analysis on a simulation, such that the

results from the method described in section 3 are not subject

to any randomness due to simulation.

Various other works have made attempts to compute

Lagrangian-based distances. For example, Berline et al. (2014)

used numerically simulated trajectories to estimate mean

connection times within the Mediterranean Sea. Smith et al.

(2018) used MCST to estimate various statistics of how

seagrass fragments could drift from the southeast coast of

Australia to Chile. Specifically, Smith et al. (2018) simulated

10 million MCST starting from the SE coast of Australia and

only 264 (0.002 64%) of the simulated trajectories were

found to travel roughly to the Chilean coast.

The approach by Jönsson andWatson (2016) uses simulated

drifter data to construct connectivity matrices between loca-

tions in the ocean. As the matrix is sparse, Dijkstra’s algorithm

is used to connect arbitrarily distant locations in the ocean to

FIG. 1. Locations of interest from Table 1. Annual mean values of the near-surface currents derived from drifter

velocities (Laurindo et al. 2017) are plotted. Arrows are drawn on a 38 3 38 grid to show current direction.

TABLE 1. Table of station locations.

Longitude Latitude

1 9.0 225.5

2 225.0 25.0

3 245.0 240.0

4 269.0 39.0

5 242.5 41.5

6 242.0 27.5

7 293.2 24.8
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measure Lagrangian distance. Although this method may at

first glance bare similarities with ourmethod (specifically in the

use of Dijkstra’s algorithm), there are in fact many differences.

First of all, the method uses simulated trajectories whereas we

use real drifter trajectories. Second, Dijkstra’s algorithm is

performed by Jönsson and Watson (2016) on the connectivity

matrix (which finds minimum connection times between loca-

tions), whereas our approach uses Dijkstra’s algorithm on the

transition matrix, which describes a probabilistic framework

for drifter movement.We found the latter approach to perform

much better with real data. Finally, we cannot directly imple-

ment the approach described in Jönsson and Watson (2016) as

only connectivity values higher than one year are used by the

algorithm. For real data such a step would result in a very

sparse connectivity matrix making the method infeasible. An

initial analysis we conducted using a similar method achieved

poor results.

There are a variety of works that use Markov transition

matrices for different aims to this work. Ser-Giacomi et al.

(2015b) and Miron et al. (2019) look at probable paths, where

both of these works find a path going between two points in a

certain number of days using a dynamic program. Froyland

et al. (2014) and Miron et al. (2017) study ocean dynamics by

analyzing eigenvalues of the transition matrix. Other methods

in the literature include characterizing dispersion and mixing

(Ser-Giacomi et al. 2015a), identification coherent regions

(Froyland et al. 2007; Ser-Giacomi et al. 2015a), forward in-

tegration of tracers (van Sebille et al. 2012; Maximenko et al.

2012), and guiding drifter deployments (Lumpkin et al. 2016).

We differ from these works as we ultimately aim to find travel

times, as well as pathways, between multiple fixed locations.

Our proposed algorithm for computing travel times and

pathways will also use the aforementioned Markov transition

matrix approach. Our key novelty is that we build on this

conceptual approach by implementing and demonstrating

the benefits of using the H3 spatial indexing system for

discretization, and by supplying uncertainty quantification

guidelines by applying grid rotations and data bootstrapping.

The steps outlined in algorithm 1 are individually known across

disparate literature; however, this is the first paper to our

knowledge that effectively combines these steps to solve the

problem of interest. We provide numerous examples to show

how our method robustly outperforms state-of-the-art alter-

native approaches. In addition, we supply freely available

software in the form of a Python package, of which all pa-

rameters in the model can easily be customized to suit the

needs of the practitioner.

In summary, the novel contributions of this work are (i) the

combination of the steps in section 3 to form a computationally

efficient algorithm that applies directly to transition matri-

ces to find most likely paths and travel times simultaneously,

(ii) computation of uncertainty from discretization error

and data sampling (section 4), and (iii) the demonstration of

the method showing it successfully obtains robust measures

of connectivity between both very distant and closely lo-

cated points (section 5). The key outcome is that we obtain

oceanographic travel times and most likely paths requiring

no simulated trajectories.

We believe our method is preferable to Rypina et al. (2017)

as we do not require custom treatment to different source

areas. Jönsson and Watson (2016) requires the simulation of

many very long and expensive-to-compute trajectories that

obtain spurious results on real data. Using MCSTs as in Smith

et al. (2018) relies on simulation. The estimation of a full

pairwise travel time matrix of the locations in Table 1 requires

42 travel time estimations. With MCSTs this would likely re-

quire the simulation of millions of trajectories and manual

analysis of each location pair. Our method, in contrast, can

produce such a travel time matrix in a matter of seconds given

that the transition matrix needs to be estimated just once a

priori. In a similar manner, global travel time maps can be

made in a matter of minutes, such as those that we will be

showing in section 5.

2. Background and notation

a. Global Drifter Program

The GDP is a database managed by the National Oceano-

graphic and Atmospheric Administration (NOAA) (Lumpkin

and Centurioni 2019; Lumpkin and Pazos 2007). This dataset

contains over 20 000 free-floating buoys temporally spanning

from 15 February 1979 through to the current day. These buoys

are referred to as drifters. The drifter design comprises a sub-

surface float and a drogue sock. Often this drogue sock de-

taches. We refer to the drifters that have lost their drogue sock

as nondrogued drifters and use drogued for those that still have

the drogue attached.

Here we use the drifter data recorded up to July 2020. We

use data that have been recorded from drogued drifters

only. This results in a total of 23 461 drifters being used, where

the spatial distribution of observations is shown in Fig. 2.

Only using drogued drifters is not a restriction; it would be

straightforward to simply use the data from nondrogued

drifters if a practitioner was interested in a species or object

that experiences a high wind forcing, or a combination of both

if it is believed that the species followed a mixture of near

surface and wind-forced currents. The data are quality con-

trolled and interpolated to 6-hourly intervals using the method

fromHansen and Poulain (1996). These interpolated values do

contain some noise due to both satellite error and interpola-

tion; however, the magnitude of this noise is negligible in

comparison to the size of grid we use in section 3. Hence, we

FIG. 2. Number of observations from theGlobalDrifter Program in

each 18 3 18 longitude–latitude box.
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ignore this noise and treat the interpolated values as observa-

tions. For the same reason we note that the interpolation

method used is not important here, instead of the six hourly

product we could use the hourly product produced by amethod

proposed by Elipot et al. (2016), or drifter data smoothed by

splines as proposed by Early and Sykulski (2020).

The value of using the Global Drifter Program is we obtain a

true model-free representation of the ocean. All phenomena

that act on the drifters are accounted for in the dataset. The

other common approach is to first obtain an estimate of the

underlying velocity field, then simulate thousands of trajecto-

ries using the velocity field. While this simulation approach is

often satisfactory in some applications, themodels generally do

not agree completely with the actual observations.

b. Notation

Here we use x8, y8 to be a geographic coordinate corre-

sponding to latitude and longitude, respectively. We refer to

the longitude–latitude grid system using the notation x8 3 y8,
which means each grid box goes x8 along the longitude axis

and y8 along the latitude axis. We use boldface font for any

data that are in longitude–latitude pairs (e.g., r 5 rlon, rlat)

and nonboldface text for either a grid index or a single

number. We use S to denote the set of all possible grid in-

dices. A full table of notation is given in section b of the

appendix.

c. Capturing drifter motion

We define the drifter’s probability density function as

P(r
1
, tjr

0
, t

0
),

where the drifter started at r0 2 R
2 at time t0 and moved to

position r1 2R
2 at time t, where r0 and r1 are longitude–latitude

pairs. In the absence of a model, this probability density cannot

be estimated continuously from data alone. Therefore, we

follow previous works that spatially discretize the problem

(Maximenko et al. 2012; van Sebille et al. 2011; Miron et al.

2019; Rypina et al. 2017; Lumpkin et al. 2016). Instead of

considering r0 2 R
2, we consider r0 2 S, where S is some set of

states that correspond to a polygon in space; we will define how

these are formed in section 3b. Often these states are simply

18 3 18 boxes (e.g., as used in Fig. 2). As in Maximenko et al.

(2012), we assume that the process driving the drifter’s

movement is temporally stationary. In other words,

P(r
1
, tjr

0
, t

0
)5P(r

1
jr
0
, t2 t

0
), r

0
, r

1
2 S ;

that is, the probability of going from r0 to r1 depends only on

the time increment. The probability does not depend on the

start or finish time.

Furthermore, given that we are using data that are ob-

served at regular and discrete times, we shall only consider

discrete values of time. Let s 5 {s0, s1, s2, . . . , sn} be a se-

quence of locations equally spaced in time where each entry

si can take the value of anything within S. We define the

probability p(si11 5 qjsi 5 k) as the probability that the

position at time i 1 1 is q given that the state at time i was k

where q, k 2 S.

A Lagrangian decorrelation time causes the drifter to

‘‘forget’’ its history (LaCasce 2008). We aim to choose a

quantity that is globally higher than the Lagrangian decor-

relation time. The reasoning behind using this time is that if

we consider a sequence of observations, which are at least

the Lagrangian decorrelation time apart then the following

Markov property is satisfied:

p(s
i11

5q
i11

js
i
5q

i
, s

i21
5q

i21
, . . . , s

0
5 q

0
)

5p(s
i11

5 q
i11

js
i
5q

i
) , (1)

where qi is just some fixed state and si is the random process. In

other words, the Markov property states that probability of

transition to state si11 is independent of all the past states at

times i2 1 and earlier, given the state at time i is known. In this

case, the physical time difference associated with i 1 1 and i

being larger than the chosen Lagrangian decorrelation time

validates the use of the Markov assumption.

For the rest of this paper we assume that the time between

discrete time observations is equal to T L. We call this quantity

the Lagrangian cutoff time. Setting T L higher than the de-

correlation time allows us to use the Markov property from

Eq. (1) freely. In so doing, alongside the simplification of dis-

cretizing locations, this allows the problem to be treated as a

discrete time Markov chain. Here we fix T L 5 5 days as this

matches previous similar works (Maximenko et al. 2012; Miron

et al. 2019). The estimated decorrelation time for the majority

of the surface of the ocean is likely to be lower than 5 days [e.g.,

see Zhurbas and Oh (2004) for the Pacific Ocean and Lumpkin

et al. (2002) for regions in the Atlantic Ocean]. In section e of

the appendix, we conduct a sensitivity analysis to show our

results are not overly sensitive to the choice of T L as long

as T L . 2 days.

3. Method for computing the most likely path and
travel time

Maximenko et al. (2012) and van Sebille et al. (2012) focus

on the use of a transition matrix estimated from drifters to

discover points where drifters are likely to end up. In this

section we build on such an approach by providing a method to

take such a matrix and provide an ocean pathway and

travel time.

In section 3a, we explain in detail how the transitionmatrix is

formed. As a grid system is needed to form the discretization of

data we introduce our chosen system in section 3b. Then in

section 3c, we describe how we estimate the most likely path

of a drifter to have taken. Finally, in section 3d, we explain how

we turn the most likely path and transition matrix into an es-

timate of travel time. We give a summary of how this articu-

lates in the pseudocode in algorithm 1.

a. Transition matrix

The location of a drifter at any given time is a continuous

vector in R
2, the longitude and latitude of the point. We define

an injective map that maps this continuous process onto a

discrete set of states that are indexed by integers in S. We

define the map as follows:
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f :R2 /S . (2)

We aim to make a Markov transition matrix T of size nstates
rows and columns, where Ts,q denotes, the probability of

moving from s to q in one time step. Similar to the approach of

Maximenko et al. (2012), we form our transition matrix using a

gap method. In each drifter trajectory we only consider ob-

servations as a pair of points T L days apart. When using this

method for other applications we advise using T L to be higher

than the decorrelation time of velocity to justify the Markov

assumption.

Consider a trajectory as a sequence of positions yj 5 fyi, jg
nj

i51

where j is the jth of N trajectories, nj is the number of location

observations in the trajectory, and yi,j 2 R
2 are the longitude–

latitude positions. First, we map each trajectory into observed

discrete states. We will denote these states as follows:

g
i, j
5 f (y

i, j
). (3)

For each s, p 2 S we estimate the relevant entry of our

transition matrix T through using the following empirical

estimate:

T
s,p

5

�
N

j51
�

nj24T L

i51

I[g
i14T L , j

5p]I[g
i, j
5 s]

�
N

j51
�

nj24T L

i51

I[g
i, j
5 s]

, (4)

where I is the indicator function, such that it takes the value 1 if

the statement inside it is true, and zero otherwise. Note

that we take gaps of 4T L as observations are every 6 h in the

GDP application and T L is in days. The estimation of the

transition matrix, using the discretization of trajectories in

Eq. (3), in combination with Eq. (4), is commonly referred

to as Ulam’s approach (Ulam 1960). We expect that states

in S that are not spatially close will have nonzero entries

such that the matrix T will be very sparse, but this is not a

problem for the method to work over large distances as we

shall see.

b. Spatial indexing

Clearly the resulting transition matrix described in section 3a

strongly depends on the choice of grid function in Eq. (2). Most

previous works (van Sebille et al. 2012; Maximenko et al. 2012;

Rypina et al. 2017; McAdam and van Sebille 2018; Miron et al.

2019) use longitude–latitude-based square grids where all grid

boxes typically vary between 0.58 3 0.58 and 18 3 18. A 18 3 18
grid cell around the equatorial region will be approximately

equal area to a 111.2 km 3 111.2 km square box. However, if

we take such a grid above 608 latitude—for example, the

Norwegian Sea—the grid cell will be approximately equal area

to a 55.6 km 3 111.2 km square box.

There are a few other choices that we argue are more suit-

able for tracking moving data on the surface of Earth.

Typically, three types of grids exist for tessellating the globe:

triangles, squares, or a mixture of hexagons and pentagons.

Here we choose to use hexagons and pentagons as they have

the desirable property that every neighboring shape shares

precisely two vertices and an edge. This is different to say a

square grid where only side-by-side neighbors share two ver-

tices and an edge, whereas diagonal neighbors share only a

vertex. This equivalence-of-neighbors property for hexagons

and pentagons is clearly desirable for the tracking of objects as

this will result in a smoother transition matrix.

We specifically use the grid system called H3 by UBER

(UBER 2019). This system divides the globe such that any

longitude and latitude coordinate is mapped to a unique

hexagon or pentagon. This shape will have a unique geohash

that we can use to keep track of grid index. The benefit of

using such a spatial indexing system is that attention is paid

to ensuring that each hexagon is approximately equal area.

We use the resolution 3 index in which each hexagon has an

average area of 12 392 km2. A square box of size 111.32 km3
111.32 km has roughly the same area as this, which is very

similar to the size of a 18 3 18 grid cell near the equator. An

example of an area tessellated by H3 is shown in Fig. 3.

Other potential systems that could be used include S2 by

Google, which is a square system, or we could simply use a

longitude–latitude system as various other works do. We

show some example pathways using different grid systems

and resolutions in Fig. S1 of the online supplemental mate-

rial. The longitude–latitude system results in pathways that

unrealistically follow long blockwise vertical or horizontal

straight-line motions, in contrast to the more realistic and

meandering pathways produced by the hexagonal–pentagonal

H3 grid system.

c. Most likely path

For our analysis, the first step is to define a most likely

path. A path is simply a sequence of states such that the first

element is the origin and the last element is the destination.

FIG. 3. A small area around the Strait of Gibraltar that is tes-

sellated using the H3 spatial index. We show resolutions 1, 2, and 3

in red, blue, and black, respectively. Black is the resolution used in

this work.
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We also require that two neighboring states are not equal to

each other.

1) DEFINITION 1 (PATH)

We define the space of possible paths Po,d, between the or-

igin o 2 S and destination d 2 S, as the following:

P
o,d

5 fp5 (p
0
, p

1
,p

2
, . . . , p

n
): p

i
2 S,

"i 2 f1, . . . ,n2 1g, p
0
5o, p

n
5d, p

i21
6¼ p

i
g,

with a cardinality operator jpj 5 n that denotes the length of

the path.

Given the transition matrix T we define the probability of

such a path:

P(p)5P
n21

i50

P(s
i11

5 p
i11

js
i
5 p

i
)5P

n21

i50

T
pi , pi11

. (5)

2) DEFINITION 2 (MOST LIKELY PATH)

Consider any path p 2 Po,d 5 fp0, p1, p2, . . . , png. By the

most likely path p̂ we mean the path that maximizes the

probability of observing that path:

p̂5 argmax
p2Po,d

fP(p)g5 arg max
p2Po,d

(
P
n21

i50

T
pi , pi11

)
. (6)

OptimizingEq. (6) appears intractable at first glance.However,

this can easily be solved with shortest path algorithms such as

Dijkstra’s algorithm (Dijkstra 1959).We give precise details on

how to find this pathway in section c of the appendix.

d. Obtaining a travel time estimate

The most likely path is often a quantity of interest in itself;

however, we can also obtain a travel time estimate of this path.

The method should be fast and efficient as it should be able to

run for large sets of locations quickly. We achieve this by

giving a formula to estimate the travel time based directly on

the transition matrix.

Consider the path, p 5 {p1, . . . , pn}, from which we aim to

estimate the expected travel time. The key consideration this

section addresses is that the path is a sequence of unique states,

whereas when simulating from a discrete time Markov chain,

the chain has a probability of remaining within the same state

for multiple time steps. We therefore aim to obtain an estimate

of how long the Markov chain takes, on average, to jump be-

tween pi and pi11, and then aggregate this over the path to

form a travel time estimate.

We assume that the only possibility is that the drifter follows

the path in which we are interested. So, pi must be followed by

pi11. Now we use t to index the time of the Markov chain and

suppose st 5 pi. We are then interested in the random variable

kwhere t1 k is the first time that the process transitions from pi
to pi11. Note that the only possibility for states fst1lgk21

l51 is that

they are all pi, otherwise the object would not be following the

path of interest. Therefore, we obtain the distribution of k as

follows (see the proof in section d of the appendix):

P(s
t1k

5p
i11

, fs
t1l

5p
i
gk21

l51
js
t
5p

i
, pg)

5
T

pi , pi11
Tk21

pi , pi

(T
pi , pi

1T
pi , pi11

)k
. (7)

Note that if we set a5Tpi , pi/(Tpi , pi 1Tpi , pi11
) in Eq. (7) we get

P(s
t1k

5p
i11

js
t
5p

i
,p)5 ak21(12 a) , (8)

which is the probability distribution function of a negative

binomial distribution with success probability a and the

number of failures being 1. We denote the random variable

for the travel time between pi and pi11 as ki. As the negative

binomial distribution corresponds to the time until a fail-

ure, we are interested in taking one time increment longer

than this as we require ki to be the time that we move from

pi to pi11, that is, the time of the failure. Therefore, the

distribution of ki exactly follows ki 2 1 ; NB(1, a). Also,

note that ki is in units of the chosen Lagrangian cutoff

time T L.

To get the expectation of the total Lagrangian travel time we

consider the sum of all of the individual parts of the travel times

k5�n21

i50 ki, such that we obtain

E[k]5 �
n21

i50

E[k
i
]5 �

n21

i50

 
T
pi , pi

T
pi , pi11

1 1

!
, (9)

where we have used that the expectation of the negative bi-

nomial (NB) is E[x ; NB(1, a)] 5 a/(1 2 a).

We could attempt to obtain a simple variance estimate for

the estimate E[k] with classical statistics. However, we

would only be able to account for variability within the es-

timates of the entries of the transition matrix, because we

would have to assume p is known. In our case we are in-

terested in the time of p̂, which is itself an estimate as it

depends on the transition matrix. Obtaining any analytical

uncertainty in the estimation of the most likely path would be

intractable due to the complexity of the shortest path algorithm.

Therefore, we propose to address the issue of uncertainty inE[k]

and p due to data randomness in section 4b using the nonpara-

metric bootstrap. To finish this section, we provide the pseudo-

code for our approach in algorithm 1:

Input: Drifter dataset y, a set of locations x, Lagrangian

cutoff time T L

Map all of the drifter locations y to their grids gj,i 5 f (yj,i)

using the map from Eq. (2).

Map all of the locations of interest to their grids gxi 5 f (xi).

Form transition matrix T using Eq. (4).

For each unique pair o and d in fgxigxi2x do
Find and store the most likely path p̂o,d by optimiz-

ing Eq. (6).

Using this path, find and store the expected travel time

E[k̂o,d] using Eq. (9).

End

Result: Travel times E[k̂o,d] for every pair of locations in x

and a corresponding path p̂o,d given as a sequence of grid in-

dices in S.
Algorithm 1: Pseudocode that summarizes how section 3 is

used to turn drifter data and a spatial index function into most

likely paths and travel time estimates.
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4. Stability and uncertainty

a. Random rotation

Akey consideration is that the final results of the algorithmic

approach may strongly rely on the precise grid system f chosen

in Eq. (2). To address the uncertainty due to the discretization

we propose to randomly sample a new grid system then run

the algorithm for the new grid system. In a simple 2D square

grid one could sample a new grid system by sampling two

numbers between 0 and the length of a side of the square,

then shifting the square by these sampled amounts in the x

and y direction. In global complicated grid systems such as

the one we consider here proposing uniform random shifting

is not trivial.

Rather than trying to reconfigure the grid system, instead we

suggest a more universal alternative. We suggest randomly

rotating the longitude–latitude locations of all the relevant

data using random rotations. Such a strategy will work for any

spatial grid system as it just involves a prepossessing step of

transforming all longitude–latitude coordinates.1 Note that

for each rotation we are required to reassign the points to the

grid and reestimate the transition matrix. These are the two

most computationally expensive procedures of the method.

To generate the random rotations we use the method sug-

gested by Shoemake (1992). In summary, it amounts to gen-

erating 4 random numbers on a unit four-dimensional hypersphere

as the quaternion representation of the three-dimensional ro-

tation, which can equivalently be represented as a rotation

matrix M. Then we apply this rotation to the Cartesian repre-

sentation of longitude and latitude.

To obtain travel times that remove bias effects from dis-

cretization, we sample nrot rotation matrices M(i). We then run

algorithm 1; however, as a preprocessing step we rotate all

locations of the drifter trajectories and locations of interest.

For each rotationmatrix this will result in a set of travel times d̂(i).

The sample mean of these rotations will be more stable than the

vanilla method. The sample standard deviation will inform us

about uncertainty in travel times due to discretization.

b. Bootstrap

If we required a rough estimate of uncertainty we could

consider that p̂, the most likely path, is fixed and then estimate

Var[k̂]. However, this would be a poor estimate because such

an estimate would assume that 1) the transition matrix entries

follow a certain distribution, and 2) the path p̂ is the true

most likely path. In reality neither of these are true, they will

both just be estimates. The transition matrix elements are

estimated from limited data and the shortest path strongly

depends on the estimated transition matrix; e.g., a small

change in the transition matrix could result in a significantly

different path. Therefore, we obtain estimates of uncertainty

by bootstrapping (Efron 1993).

Bootstrapping is a method to automate various inferential

calculations by resampling. Here the main goal is to estimate

uncertainty around û5E[k̂]. The bootstrap involves first resam-

pling from the original drifters to obtain a new dataset. We call

y* 5 {yj*}j 5 1,. . .,N a bootstrap sample, where yj* is a drifter tra-

jectory that has been sampled with replacement from the original

N drifters. Then we use y* as the input dataset to algorithm 1.

We do this resampling B times to obtain B estimates of

û5E[k̂]; we denote these bootstrap estimates as fû(b)gBb51. We

then estimate our final bootstrapped mean and standard de-

viation estimates as the following:

sd2
boot 5

(
�B

b51[û
(b) 2 û(.)]2

B2 1

)
,

where

û(.) 5�B

b51û
(b)/B . (10)

In addition to the uncertainty measure in travel time that

both the bootstrap and rotation methods provide, these

methods also supply a collection of sample most likely paths.

These paths can be used to investigate various phenomena,

such as why the uncertainty is high. We can plot the paths for a

fixed origin–destination pair and may see for example that

many paths follow one current where another collection of

paths follow a different current. We give numerous examples

of this in sections 5b and 5c.

5. Application

We use the locations given in Table 1 for the demonstration

of the method described in this paper. These locations were

chosen for multiple reasons; 1) they were placed on or near

ocean currents, such as the South Atlantic Current, the

Equatorial Current, and the Gulf Stream, the magnitudes of

which can be seen in Fig. 1, and 2) stations were placed in both

the North and South Atlantic Ocean to show how the method

can find pathways that are not trivially connected. First, we go

over an application of the vanilla method from section 3, and

then in sections 5b and 5c we respectively provide brief results

that use the adaptions using bootstrap and rotations that are

described in section 4. In section a of the appendix, we supply a

link to a Python package and code used to create these results.

Prior to our analysis we take a practical step to improve the

reliability of the method. we find the states corresponding

to 279.78, 9.078, 280.738, 8.668 (two points on the Panama

landmass), 25.68, 368, and 25.618, 35.888 (two points on the

Strait of Gibraltar) and then remove the corresponding rows

and columns from T. If this step is not taken the method often

uses pathways crossing the Panama landmass, resulting in im-

possibly short connections to the Pacific Ocean. The reasoning

for removing the points on the Strait of Gibraltar is data driven;

further details are in the online supplemental material, par-

ticularly how one can adapt the method to specify travel times

into and out of the Mediterranean Sea.

Figure 4 shows the pathways between a representative

sample of the stations. First we note what features are observed

1 Conditional on the grid system having a reasonable minimum

area. This method rotates the poles to a randompoint, which would

give spurious results in a longitude–latitude grid—thus providing

another reason why the H3 system is more suitable.
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in the most likely path. The Gulf Stream is used on almost

every path trying to access locations 4, 5, or 6 in Fig. 4. Observe

in Fig. 4c when going from location 3 to 5 that the method

chooses to enter the Gulf of Mexico and then uses the Gulf

Stream to access location 5, even though the actual geodesic

distance of this path is long. Other examples that use the Gulf

Stream include Figs. 4d and 4h. Generally, any of the paths

leaving location 1 and attempting to travel northwest use the

Benguela Current—for example, Figs. 4a, 4g, and 4i.

The travel times obtained between the sample stations in

Fig. 4 show interesting results with regard to the lack of sym-

metry when reversing the direction of the path between

two stations. When going from location 2 to location 4 we

estimate a long most likely path in terms of physical distance.

However, the resulting travel time of this path (0.7 yr) is

smaller than the travel time of the more direct path from lo-

cation 4 to location 2 (4.8 yr)—which is much shorter in dis-

tance. This is because the path going from location 2 to location

FIG. 4. Example pathways found from the method. Sequences of blue hexagons are going from the lower number to the higher number.

Sequences of red hexagons are going from the higher number to the lower number. Numbered locations are as in Table 1. The expected

travel time of the most likely path is given in the title of each plot. Similar plots can be provided for every location pair using the online

code; however, these are not presented here owing to page-length considerations.
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4 follows strong currents such as the North Equatorial Current

and the Gulf Stream. Another interesting result is that going

from 3 to 5 and vice versa are relatively close in terms of travel

time even though from 3 to 5 uses the Gulf Stream but the

return does not. In the most likely path from 3 to 5, up until

around 2168 latitude the travel time is 5.2 yr, which we expect

as the pathway seems to be going against the Brazil Current.

After this point the rest of the path takes the remaining 3 years

despite the remainder being over half the actual physical

distance of the pathway. We expect this short time is due to

the method finding a pathway along the North Brazil

Current, followed by the Caribbean Current, followed by

the Gulf Stream.

a. Global travel times

Figure 5 shows the travel time distribution to and from two

fixed locations, taken to match the studied locations of Jönsson
andWatson (2016), to the entire globe. We note that the travel

time map is less smooth than the one shown in Jönsson and

Watson (2016). The black and purple areas however (up to

5 years of travel time) are similar to those found in Jönsson and

Watson (2016), showing agreement over short spatial scales.

For larger distances, we generally find that the maps are

markedly different. For example, the yellow patch in the

northeast pacific in Fig. 5c is not seen in Jönsson and Watson

(2016). Such discrepancies can be attributed to many reasons,

such as the following: 1) they reflect the difference in methods,

where we use a transition matrix approach, and Jönsson and

Watson (2016) use a connectivity matrix; 2) Jönsson and

Watson (2016) aim to find the shortest path in time, whereas we

aim to find the expected time of the most likely path; and 3) the

results shown here are derived from real data, whereas Jönsson
and Watson (2016) use simulated trajectories.

We show an example in Fig. 6 that explains the lack of

spatial smoothness in Fig. 5, where we show two pathways

both originating from a fixed point and ending at two distinct

points only 18 latitude apart. The points are on either side of

the discontinuity in the north-east Pacific seen in Fig. 5c.

The pathways become visibly different after they have both

reached the South Pacific. Such a phenomenon results in the

lack of spatial smoothness of travel time distributions. This

demonstrates that the travel times do not necessarily obey

the triangle inequality. If smoothness is desired, we show an

alternative approach in the online supplemental material, in

which instead a minimum travel time is the objective, which

is then more analogous to the Jönsson and Watson (2016)

approach. We argue however that the expected travel time

of the most likely path, rather than the minimum travel time,

is a more relevant metric for estimating connectivity and

Lagrangian distance in applications measuring spatial de-

pendence between points in the ocean.

b. Bootstrap

To show the value of the bootstrap we show the results for

one particular pair of stations, the pathway going from location

1 to location 3 and back. The pathways that result from the

FIG. 5. Travel times of the most likely path originating from the

red stars and going to or from (indicated by the title) the centroid of

a 2.58 3 2.58 square grid system. Figure setup and locations taken to

match Fig. 2 of Jönsson and Watson (2016).

FIG. 6. The most likely path from two points in the North Pacific

to the southeast coast of Africa. The green and blue pathways are

almost identical as they cross the South Atlantic. The pathways

differ greatly, however, as they cross the Pacific, even though the

two starting points in the North Pacific are only 18 apart. The path

going from 21318, 258 has an expected travel time of 21.2 yr; the

path going from 21328, 258 has an expected travel time of 11.4 yr.
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bootstrap are shown in the bottom panel of Fig. 7. The darker

lines on the figure imply that that this transition is used more

often. We see that for most of the journey the darker lines

closely follow the original path. The bootstrap discovers some

slightly different paths, for example around2208 longitude the
path going from 3 to 1 occasionally seems to find that going

farther south is a more likely path. Also, around the beginning

of the path going from 1 to 3, we see that the most likely path

taken most frequently by the bootstrap samples often does not

follow the most likely path from the full data.

The main goal of the bootstrap is that we obtain an estimate

of the standard errors. In this case we get standard error esti-

mates using Eq. (10) of 0.5 yr for going from 3 to 1 and 0.6 yr for

going from 1 to 3. In general, we found that the standard error

was lower when the path follows the direction of flow. The top

row of plots in Fig. 7 appears to show that there is a slight bias

between the bootstrap mean and the vanilla method travel

time. We believe this is due to the variance within the paths.

The mean estimated from the bootstrap samples are close to

the estimates from the rotation method we will shortly present

(in Fig. 9). The rotation mean estimates are within 0.4 yr of the

bootstrap means in both cases shown here.

c. Rotation

If we consider two points in the same H3 index, for example

location 1 (98, 225.58) and a new point 98, 226.28 (as shown in

Fig. 8), then using the original grid system the method will

simply produce a travel time of 0. To solve this problem, we

consider using 100 rotations as explained in section 5a. For

each rotation we estimate the travel time both back and forth.

In 22 of the rotations, the two points ended up in the same

hexagon, resulting in a zero travel time. We plot the distribu-

tion of the other 78 travel times in the bottom row of Fig. 8. The

mean of all of the entries including the zeros is 20.5 days for

going from the new point to location 1 and 22.2 days for going

from location 1 to the new point.

The second benefit of performing rotationsis to make esti-

mates less dependent on the grid system. We use the same 100

rotations as with the previous example and compute the most

likely path and the mean travel times. In Fig. 9, we plot the

FIG. 7. (top) Two bootstrap distributions of travel times resulting from 200 bootstrap

samples. The vertical line is the travel time if the full data are used to estimate the path and

time. (bottom) The corresponding bootstrapped paths. Blue lines and hexagons are for going

from 1 to 3; red lines and hexagons are for going from 3 to 1. The lines connect the centroids of

the spatial index of the bootstrapped paths. Darker lines mean that path is taken more often.

The light hexagons are the pathway taken if the full data are used with no resampling, e.g., the

pathway shown in Fig. 4.

FIG. 8. (top) Plot of location 1 from Table 1 and the point 98,
226.28, which is 0.78 south of location 1. The relevantH3 hexagon is

plotted over the points. (bottom) The histogram and density esti-

mate of the travel times in each direction from applying 100 rota-

tions. The 22 zeros for when the two locations are in the same

hexagon are not included in the histogram.
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pathways with the mean and standard deviation of the travel

times resulting from these 100 rotations. The travel times and

paths shown in this figure are comparable to those given in

Fig. 4. In most of the pathways we see that the darkest, most

popular paths match up with the pathways in Fig. 4.

One of the more interesting results from this analysis is the

path going from 2 to 1 in Fig. 9a. Most of the paths go up closer

to the equator, then use the Equatorial Countercurrent, fol-

lowed by the Guinea and Gulf of Guinea Currents as in the

original vanilla application of the method. A small number of

the rotations result in pathways that end up crossing the South

Atlantic, to the south of location 2, then follows the South

Atlantic Current over to location 1.

In general, the travel times from the rotation and original

method can be significantly different, which supports the need

for this rotation method. If we compare Figs. 4 and 9, most of

the distances stay close to what they were in the original results

using no rotations. We see that going from 6 to 4 drops from

5.6 yr in Fig. 4e to 3.8 yr in Fig. 9e and from 4 to 6 increases from

3.3 to 5.4 yr. This causes the ordering of the distances to change

FIG. 9. This figure layout is the same as in Fig. 4, except here we plot paths resulting from 100 random rotations. Each line connects the

centroid of each hexagon within the path. Note that the hexagons now come from rotated grid systems, so the centroids could be at any

location—hence the smooth continuous-looking lines. The lines are plotted with transparency; whenmultiple lines overlap these lines will

look darker. Standard deviations of the travel times of the 100 paths are reported in the title of each figure.
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as from 6 to 4 is now the shorter travel time. We believe the

case in e) is mainly due to 4 being located just northwest of the

stronger currents of the Gulf Stream, which makes it sensitive

to the grid system. However, the high standard errors in Fig. 9

suggest we are uncertain about this travel time.

6. Discussion and conclusions

In contrast to van Sebille (2014), our method as presented

does not take into account seasonality. We have a few ideas for

how seasonality could be incorporated in future work. An

obvious adaptation, if the aim was to obtain a short travel time

that is expected to lie in a small 3-month window, is to just

estimate T using drifter observations that are in that time window.

Alternatively, we could use T L to be a certain jump such as a gap

of two months, then we estimate six transition matrices, say T(k),

where the entriesT
(k)
i, j are probabilities of going from the previous

time period at state i to state j at the current time. Such a set up

could still be solved using our shortest path algorithm. We justify

our approach in the sameway asMaximenko et al. (2012): we aim

to provide a global view and a simple general concept explaining

the pattern of potential pathways and travel times. The base

method can then be adapted by practitioners to account for local

spatial or temporal considerations.

More results demonstrating the robustness of our method,

along with motivation of parameter choices, can be found in

the online supplemental material. A key finding that we discuss

here is that we found the size of the grid system affects the

estimated travel times significantly, regardless of whether the

latitude–longitude or the H3 grid system is used. Therefore, we

do not recommend comparing travel times obtained from two

different grid sizes. In general, the results are correlated in an

order comparison sense; however, their magnitudes change.

Typically, a smaller grid system results in shorter travel times.

Because of this we would only advise the results to be used in

relative comparison to each other, for example by saying that

the travel time from a to b is 2 times that than from b to c, where

both times are obtained with the same grid system. The choice

to show resolution 3 in this paper was found to perform ro-

bustly (balancing the error from discretization and data spar-

sity) and follows grid sizes that approximately match previous

works where 18 3 18 grids are used, but this can be changed

easily in the online package.

The use of the bootstrap and rotations are relatively easy

methods to implement, each of which provides effective esti-

mates of uncertainty from data uncertainty and discretization,

respectively. However, combining these procedures into one

requires careful consideration. If we wanted to run nrot rota-

tions and B bootstraps for each rotation, we still require a

method to combine these estimates of travel times. We could

treat every rotation equivalently, so say that our bootstrap

sample in Eq. (10) is all nrot 3 B samples to obtain an estimate

of uncertainty in travel time due to the combination of grid

discretization and data randomness. Additionally, we could

decompose the uncertainty and provide a standard error for

just the data randomness by estimating a standard error for

each rotation using just the B samples in each rotation, and

then taking the average of all nrot standard error estimates.

Our choice of the Lagrangian decorrelation time of 5 days

may be too low in some instances. Previous works have found

correlations in the velocity data lasting longer than 5 days in

certain regions (Lumpkin et al. 2002; Zhurbas and Oh 2004;

Elipot et al. 2010). This may suggest that using a larger value

for T L may be needed to justify the Markov assumption. The

trade-off however is resolution, where shorter time scales allow

pathways and distances to be computed with more detail. Our

method is designed flexibly such that the practitioner can pick

the most appropriate time scale for the spatial region and ap-

plication of interest.

In general, some unexpected features of the method do occur

such as the discontinuity discussed in section 5a.We expect there

would be less of a discontinuity if these times were computed

with the rotation method; however, we argue that the disconti-

nuities with travel times of most likely pathways should always

exist. If smoothness of travel times was a major requirement,

then one could consider the shortest path in travel time rather

than themost likely path. We briefly show this adaptation in the

online supplemental material. We expect the results would re-

quire more careful checking in such an approach, as the shortest

path would be more likely to use any glitches in the grid system

such as if there was a connection over Panama.

To summarize, in this paper we have created a novel method

to estimate Lagrangian pathways and travel times between

oceanic locations, thus offering a new, fast, and intuitive tool to

improve our knowledge of the dynamics of marine organisms

and oceanic transport and global circulation.
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APPENDIX

Additional Material

a. Package

Code to reproduce all figures related to themethod is available

online (https://github.com/MikeOMa/MLTravelTimesFigures).

The Python package implementing all of the methods in this

paper alongside an interactive demonstration can also be found

online (https://github.com/MikeOMa/DriftMLP). The package

takes roughly 3min total to go from raw data to a pairwise travel

timematrix for the locations shown in Table 1 using algorithm 1.

b. Table of notation

We include a table of mathematical notation for reader

reference in Table A1.
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c. Finding the shortest path

To solve the optimization of Eq. (6), we can equivalently

consider the logarithm of P(p):

logP(p)5 �
n21

i50

logT
pi ,pi11

.

Then we use the fact that

p̂5 arg max
p2Po,d

flogP(p)g5 arg min
p2Po,d

f2logP(p)g

5 argmin
p2Po,d

�
2�

n21

i50

logT
pi ,pi11

�
. (A1)

Now, in this form this equation can be solved using the vast

literature on shortest path algorithms.

Shortest path algorithms (Gallo and Pallottino 1988; Dijkstra

1959), such as Dijksta’s algorithm, are popular algorithms that

find the so-called shortest path within a graph. In our case the

graph is formed such that the vertices or nodes uniquely cor-

respond to a grid system index, that is, a row/column in the

transition matrix T. If there is a nonzero probability in Ti,j we

add an edge denoted ei,j, where the weight on this edge is de-

noted w(ei,j)52log(Ti,j) between the vertex i and going to the

vertex j. Note that Ti,j is not necessarily the same as Tj,i; hence,

we have a directed graph. Given a start vertex o and an end

vertex d, shortest path algorithms will find the path P5 {y1 . . . ,

yn} such that P minimizes the following:

�
n21

i51

w(e
yi ,yi11

);

hence, it solves the problem in Eq. (A1). The algorithm used is

exact; hence, if no path is found then no path exists given the

current network.

d. Derivation of Eq. (7)

The derivation uses the Markov property, the conditional

probability definition, and the fact that P(x 2 {a, b}) 5 P(x 5
a) 1 P(x 5 b):

P(s
t1k

5 p
i11

, fs
t1l

5 p
i
gk21
l51 jst 5 p

i
,pg)

5P(s
t1k

5 p
i11

js
t1k21

5p
i
, s

t1k
2 fp

i
,p

i11
g)

3P
l51

k 1

P(s
t1l

5p
i
js
t1l21

5 p
i
, s

t1l
2 fp

i
,p

i11
g)

5
P(s

t1k
5p

i11
js
t1k21

5p
i
)

P(s
t1k

2 fp
i
,p

i11
gjs

t1k21
5p

i
)

3P
l51

k 1 P(s
t1l

5p
i
js
t1l21

5p
i
)

P(s
t1l

2 fp
i
, p

i11
gjs

t1l21
5 p

i
)

5
P(s

t1k
5p

i11
js
t1k21

5p
i
)

P(s
t11

2 fp
i
,p

i11
gjs

t
5p

i
)
k

3P
l51

k 1

P(s
t1l

5 p
i
js
t1l21

5p
i
)

5
T

pi , pi11
Tk21

pi , pi

(T
pi , pi

1T
pi , pi11

)k
,

where the first equality follows from the explanation given in

section 3d.

e. Brief sensitivity analysis to cutoff time

The main tuning parameter that we have fixed in this

paper is the Lagrangian cutoff time used when estimating

the transition matrix T. The method is not especially sen-

sitive to this choice, as we shall now demonstrate. To show

the sensitivity we ran an experiment in which for a grid of

values for T L we estimated a pairwise travel time matrix

for the locations in Table 1 and then estimated the Spearman

correlation coefficient between the nondiagonal entries of

TABLE A1. Table of mathematical notation.

P(xjy) Denotes the probabilities of event(s) x given that y

occurs

E[x] The expectation of x

f(s) The discretization function, e.g., H3

I[x] Indicator function giving 1 if x is true and 0 otherwise

arg max
x2S

An operator that gives the input value, which

maximizes the function q, restricted to the set S

T, Ti, j T denotes transition matrix, with entries Ti, j, i, j 2 S,
denoting the probability of moving from state i to j

in T L days

x8 3 y8 Refers to a longitude–latitude grid system, x degrees

in the longitudinal direction, y degrees in the lat-

itudinal direction

T L Lagrangian cutoff time

S The set of all possible spatial indices

Po,d The set of all possible paths going from o to d

p5 fpigni51 A pathway of length n; indicates a sequence

p1, p2, . . . , pn; all pi 2 S
k The expected travel time of a path p

p̂, k̂ Caret notation implies that we are considering the

most likely path and travel time of that path,

respectively

st Used to index the state of the Markov chain after

t steps

FIG. A1. Spearman correlation coefficient between the non-

diagonal elements of the travel time matrix generated by T L 5 5

and the matrices generated by the values of T L on the x axis.
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each matrix to the corresponding entry of the travel time

matrix generated from T L 5 5. Results are shown in Fig. A1.

The experiment shows that the distances change but that

overall the matrices are very strongly correlated, particu-

larly for T L . 2. For comparison, the average correlation

value between the pairwise travel time matrix T L and the

travel time matrices generated from the 100 rotations used

in section 5c is 0.8. A similar analysis that considers sen-

sitivity to grid sizes is given in the online supplemental

material.
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